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Comparison of Four IRT Models When
Analyzing Two Tests for Inductive Reasoning

Els de Koning, Leiden University

Klaas Sijtsma, Tilburg University

Jo H. M. Hamers, Utrecht University

This article discusses the use of the nonparamet-
ric IRT Mokken models of monotone homogeneity
and double monotonicity and the parametric Rasch
and Verhelst models for the analysis of binary test
data. First, the four IRT models are discussed and
compared at the theoretical level, and for each model,
methods are discussed for evaluating the fit of the
model to test data. Second, each of the four IRT
models is used for analyzing the data collected
by means of two versions of a test for inductive
reasoning. Finally, the results are discussed and

recommendations are given about the practical use
of each of the IRT models. It is concluded that the
simultaneous use of several IRT models for practical
data analysis provides more insight into the structure
of tests than the rigid use of only one model. Index
terms: double monotonicity model, goodness-of-fit in
IRT, IRT model comparison, monotone homogeneity
model, nonparametric item response models, one
parameter logistic model, parametric item response
models, Rasch model.

Psychological testing aims at measuring individuals on scales for cognitive abilities such as
inductive reasoning and divergent thinking, but also personality traits such as introversion and
neuroticism. Item response theory (IRT; e.g., Embretson & Reise, 2000; Van der Linden & Ham-
bleton, 1997) provides a set of statistical models for the analysis of the item scores of a sample of
persons who responded to the items from a test, aimed at constructing scales for persons and items.
For the IRT parameter estimates for persons and items to be useful, the IRT model should fit the
person-by-item item score matrix.

The purpose of this studywas to compare the usefulness of twononparametric and twoparametric
IRT models for the analysis of empirical test data relevant to applied psychological measurement.
The IRT models were the nonparametric Mokken (1971; Mokken & Lewis, 1982; related to later
work of Stout, 1990)models ofmonotone homogeneity and doublemonotonicity and the parametric
Rasch (1960) and Verhelst (Verhelst & Glas, 1995) models. Several of these IRTmodels are nested,
each more restrictive model adding one assumption about the response process to the more general
model that is closest. Also, each of these IRTmodels uses its own statistical model-data fit methods
implemented in a stand-alone computer program for that particular model. The authors believe it
is interesting to users of IRT models, at both the theoretical and the practical level, to learn where
the differences between models and their methods are when analyzing test data. In particular, they
illustrate how various models and their methods can be combined to obtain more information
about one’s data than when just one model and its methods were used. Moreover, this study allows
researchers to compare the less-well-known nonparametric IRT models with the better known
parametric IRT models. The data analyzed here as an example were collected with two versions of
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a test for inductive reasoning (de Koning, Sijtsma, & Hamers, in press). Inductive reasoning is at
the core of the intelligence construct.

First, the authors discuss and compare the four IRT models at the theoretical level. Also, for
each IRTmodel, they discuss methods for evaluating the fit of the model to test data. Then, they use
each of the four IRT models for analyzing the data collected by means of two inductive reasoning
tests. Finally, they discuss and compare the data analysis results and give recommendations on the
use of each of the IRT models.

IRT Models

IRT models use the item response function (IRF) for explaining a respondent’s probability of
answering an item correctly as a function of a latent trait, such as inductive reasoning (de Koning
et al., in press). Let θ denote the latent trait and let j be the item index (j = 1, . . . , J ). Also, let
Xj denote the item score variable with realizations xj , valued 0 (incorrect answer) or 1 (correct
answer); and let X denote a vector with J random variables and x the vector with J 0,1-realizations
of these randomvariables. The IRF is the conditional probabilityPj(θ) ≡ P(Xj = 1 | θ). A common
assumption of the IRT models discussed here is local independence of the J item scores,

P(X = x | θ) =
J∏

j=1

Pj(θ)
xj [1− Pj(θ)]1−xj . (1)

By integrating θ out, one obtains the J -variate distribution of the item scores,

P(X = x) =
∫
θ

J∏
j=1

Pj(θ)
xj [1− Pj(θ)]1−xj dG(θ), (2)

where G(θ) is the cumulative distribution function of θ . The multivariate distribution P(X = x)
is not restricted in any way without further restrictions on the IRFs, the cumulative distribution of
θ , or both (Holland & Rosenbaum, 1986; Junker, 1993; Suppes & Zanotti, 1981). As IRT models
differ in the way they restrict the IRFs, the multivariate distribution of X is differently restricted
for different IRT models. To investigate the observable consequences of an IRT model for the
purpose of model-data fit, usually only the univariate and the bivariate marginal distributions of
this J -variate distribution are studied (e.g., see Sijtsma & Junker, 1996).

Nonparametric IRTmodels place order restrictions on the IRFs, for example, requiring each IRF
to be monotonely nondecreasing in θ . Parametric IRT models define the IRFs to be functions from
a particular parametric family, for example, the logistic. As both kinds of models have advantages
and disadvantages (Meijer, Sijtsma, & Smid, 1990; Sijtsma, 1998), the authors used both for data
analysis and compared the results. First, they discuss the two nonparametric IRT models used here,
the monotone homogeneity model (MHM) and the double monotonicity model (DMM) (Mokken,
1971; Mokken & Lewis, 1982; Sijtsma, 1998; similar models were discussed by Stout, 1990; Stout
et al., 1996). Second, the authors discuss the parametric IRT models, the Rasch (1960) model
(RM), and the Verhelst (Verhelst & Glas, 1995) model, also known as the OPLM (the abbreviation
of one parameter logistic model, following Verhelst’s terminology). The simple RM was chosen
because of its theoretical advantages concerning parameter estimation and population-independent
measurement (Fischer & Molenaar, 1995), and the more general OPLM because it allows for
different IRF slopes, as does the two-parameter logistic model (e.g., Hambleton & Swaminathan,
1985), while maintaining all the favorable properties of the RM.
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Nonparametric IRT Models

Monotone Homogeneity Model and Methods

Theoretical background. The MHM assumes unidimensionality, local independence of the item
scores, and monotonicity in θ , that is, nondecreasing IRFs. The shape of an IRF can be anything
as long as the curve is nondecreasing, meaning that it could be an irregular and jumpy curve, or a
function with many steps, but also a neat convex or concave function, or even a logistic or normal
ogive function. Moreover, these possibilities and many others can exist next to each other in the
same test. The importance of the MHM is that with its few assumptions it allows for the ordering
of respondents on θ using their unweighted number-correct score, defined as X+ = Xj (Hemker,
Sijtsma,Molenaar, & Junker, 1997). The observable scoreX+ replaces θ , which cannot be estimated
due to the nonparametric nature of the MHM.

In this study, the MHM is useful for three reasons. First, although its theoretical foundation is
complex (e.g., Hemker et al., 1997; Junker, 1993; Junker & Sijtsma, 2000), the MHM is based on
few assumptions, making it robust compared with more complex models as a tool for analyzing
test data. This means that it often fits test data when more restrictive IRT models fail (Meijer et al.,
1990). Second, the MHM has powerful methods for investigating model-data fit, which makes it
interesting as amethod for test construction from a data-analysis point of view. Third, the parametric
models to be discussed shortly are special cases of the MHM. Thus, an MHM data analysis is a
strong and interesting precursor for a data analysis using parametric models (Meijer et al., 1990).
Investigating monotonicity. The program MSP5 for Windows (acronym MSP; which stands for

Mokken Scale analysis for Polytomous items;Molenaar&Sijtsma, 2000)was used for investigating
monotonicity in θ . For this purpose, Mokken (1971; Mokken & Lewis, 1982) proposed to use the
scalability coefficient Hjk for pairs of items, the scalability coefficient Hj for an item with respect
to the other items in the test, and the scalability coefficient H for the total set of items in the
test. Let Cov(Xj ,Xk) denote the covariance between Xj and Xk, and let Cov(Xj ,Xk)max denote the
maximum covariance given the marginal distributions of Xj and Xk. Also, let πj be the proportion
of examinees with a 1-score on item j and let πjk be the proportion with 1-scores on both items j
and k. Furthermore, assume that πj ≤ πk; then,

Hjk = Cov(Xj ,Xk)

Cov(Xj ,Xk)max
= πjk − πjπk

πj (1− πk)
. (3)

In this study, the authors interpret the H coefficients as statistics for slopes of IRFs relative to the
spread of the totalX+ score in the group under consideration. Thus, items with highHj discriminate
well in the group in which they are used. This interpretation allows them to compare Hj with
IRF slope indices from the RM and the OPLM. The authors now show that Hjk, Hj , and H are
nondecreasing functions of the variance of X+.

For this purpose, they write Hjk in terms of variances of a total score Xj+k = Xj + Xk: Let
σ 2(Xj+k) = σ 2(Xj ) + σ 2(Xk) + 2Cov(Xj ,Xk); σ 2

0 the variance under marginal independence of
Xj and Xk, that is, σ 2

0 = σ 2(Xj ) + σ 2(Xk) (note that σ 2
0 depends only on the fixed πjs); and σ 2

max

the maximum possible variance given the marginal distributions of Xj and Xk, that is, σ 2
max =

σ 2(Xj ) + σ 2(Xk) + 2Cov(Xj ,Xk)max (note that σ 2
max depends only on the πjs). Then one may write

Hjk = σ 2(Xj+k) − σ 2
0

σ 2
max − σ 2

0

. (4)

This equation shows that Hjk is an increasing function of the variance of the total total score Xj+k
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when the marginal distributions of the item scores are assumed fixed (which also causes σ 2
0 and

σ 2
max to be fixed quantities, because they depend only on the πjs).
The item coefficient Hj is defined as the ratio of the sum of all J -1 covariances of fixed item

j and the other items k(k 	= j) in the numerator and the sum of J -1 corresponding maximum
covariances in the denominator. To write Hj as a ratio of differences of variance terms, one can
again use the definitions of variances of sumsXj+k = Xj +Xk for all J -1 item pairs j, k with k 	= j ,
such that for fixed item marginals, Hj is an increasing function of the variances σ 2(Xj+k),

Hj =

∑
k 	=j

Cov(Xj ,Xk)

∑
k 	=j

Cov(Xj ,Xk)max
=

∑
k 	=j

[
σ 2(Xj+k) − σ 2(Xj+k)0

]
∑
k 	=j

[
σ 2(Xj+k)max − σ 2(Xj+k)0

] . (5)

An interesting question is whetherHj is an increasing function of the variance of the total scoreX+.
Keeping item marginals πj constant, this variance depends on the 1

2
J (J -1) item pair covariances,

but only J -1 item pair covariances figure in Hj . If the variance of X+ increases, this is due to
an increase in at least one item pair covariance. If covariances involving item j increase, Hj also
increases; otherwise, Hj is not affected. In other words, Hj only picks up some of the increases in
σ 2(X+) but not all, and Hj , therefore, is a nondecreasing rather than a strictly increasing function
of the total score variance. The relation between Hj and σ 2(X+) is used later on when comparing
item indices from different IRT models.

Finally, the H coefficient for J items is the ratio of all 1
2
J (J -1) item pair covariances in the

numerator and all 1
2
J (J -1) maximum item pair covariances in the denominator. Mokken (1971,

p. 151) showed that H is a strictly increasing function of σ 2(X+). Mokken, Lewis, and Sijtsma
(1986) argued that under the MHM, higher positive H values reflect higher discrimination power
of the items and, as a result, more confidence in the ordering of respondents by means of X+.
Because positive Hj values close to 0 imply nearly horizontal IRFs, for practical test construction
purposes Mokken (1971, p. 185) recommended to use Hj = 0.3 as a lower bound.

MSP estimates an IRF by means of the nonlinear regression of the score of the item j under
consideration on the sum score on the other J -1 items. Junker and Sijtsma (2000) called this sum
score the restscore, denotedR and defined asR = k 	=jXk, because it is the sumof the rest of the item
scores not including item j . Under the MHM, this regression must be monotonely nondecreasing
in R (Junker, 1993; Junker & Sijtsma, 2000; Rosenbaum, 1984). In empirical data, decreases in the
estimate of the item-restscore regression thus may indicate misfit of the MHM and are tested for
significance (Molenaar & Sijtsma, 2000).
Investigating dimensionality. For investigating the dimensionality of an item set, MSP contains

an automated item selection procedure (e.g., Hemker, Sijtsma, & Molenaar, 1995; Sijtsma, 1998),
based primarily on the inter-item covariances and the strengths of the relationships between items
and the latent trait(s) as expressed by the item Hj coefficients. Based on such information, clusters
of related items measuring a common θ may be identified. For selecting the first item cluster, the
item selection procedure starts with the two items having the highest significant positive Hjk, and
adds items from the remaining items one by one. This is done under the restrictions that (a) items
have positive covariances with each of the items already selected in the cluster at a particular point
in the selection process; (b) items have an Hj value of at least c (c > 0) with the already selected
items; and (c) the item selected in a particular selection round maximizes the overallH of this item
and the selected items, given all possible choices from the remaining items. The item selection
stops when no more items can be selected that satisfy these criteria for inclusion in the cluster. If
items remain unselected, using the same selection criteria the selection procedure continues and
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tries to select a second cluster, a third, and so on, until no items are left that can be clustered.
The end result may be one or more item clusters that each tap another latent trait or latent trait

composite, andpossibly one or a few items that tap unique latent traits. The substantive interpretation
of the clusters is done on the basis of the content of the clustered items and the substantive knowledge
one has about the test structure. The clusters can be the basis for further analysis, such as the
fitting of a particular model for each separate cluster. Comprehensive discussions of this item
selection procedure are given by Mokken (1971, pp. 170-199), Hemker et al. (1995), and Sijtsma
and Molenaar (2002).

Double Monotonicity Model and Methods

Theoretical background.The second nonparametric IRTmodel is the DMM. Thismodel is based
on the same set of assumptions as the MHM and adds the assumption that the IRFs do not intersect.
This means that for two arbitrary items j and k, if it is known for one θ0 that Pj(θ0) < Pk(θ0),
then it follows that for any θ , Pj(θ) ≤ Pk(θ). This is readily generalized to an ordering of J items.
Because the IRFs do not intersect, the item ordering based on the Pj(θ)s is the same, except for
possible ties, for each value of θ . Since θ and the conditional probabilities Pj(θ) are not observable,
in practice the proportions of correct answers for each item, the πjs, are used for ordering items. It
was shown (Sijtsma & Junker, 1996) that under the DMM this ordering reflects the ordering based
on the Pj(θ)s.

Sijtsma and Junker (1996) discussed the importance of an item ordering that is invariant across
θ for applications such as differential item functioning (e.g., Holland & Wainer, 1993), person
fit analysis (e.g., Meijer & Sijtsma, 2001), and intelligence testing procedures (e.g., Bleichrodt,
Drenth, Zaal, & Resing, 1985). In general, each application of a test that assumes that the ordering
of the items is the same for different individuals requires the property of an invariant item ordering
to hold for the test. See Sijtsma and Junker (1997) for a model-data fit study of the DMM to
developmental psychology test data concerning transitive reasoning.
Investigating intersection of IRFs.MSP was used to investigate whether IRFs intersected. The

scalability HT coefficient (Sijtsma & Meijer, 1992) for the J items in a test and the person coeffi-
cientsHT

a (a is a person index) were used to evaluate intersection of the J IRFs. TheHT coefficient
is similar in mathematical structure to the H coefficient, and the HT

a coefficient to the Hj coef-
ficient, but HT and HT

a use covariances between J item scores of pairs of persons. Sijtsma and
Meijer (1992) showed that this role change of items and persons renders the resulting HT and HT

a

coefficients suitable for investigating the intersection of the IRFs of a set of items. In particular,
they recommended that, for all practical purposes, simultaneously HT ≥ 0.3 and the percentage of
negative HT

a values < 10 mean that the J IRFs do not intersect.
An additional investigation of the nonintersection of the IRFs compares for each pair of items

the item-restscore regressions (here, the restscore was based on J -2 items, excluding the two items,
j and k, under consideration: S = m	=j,kXm). If in a particular restscore group the ordering of the
items j and k is opposite to the ordering of the items in the total group, the null hypothesis of
equality of item difficulties is tested against the alternative that the items have the ordering as found
in the restscore group (Molenaar & Sijtsma, 2000).

Parametric IRT Models

Rasch Model and Methods

Theoretical background. Like the DMM, the RM and the OPLM are special cases of the MHM.
The RM specializes the MHM by assuming logistic IRFs with a location parameter, denoted δ, and
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no other item parameters. This implies that the IRFs are parallel curves that do not intersect. The
IRF is defined as

Pj(θ) = exp(θ − δj )

1+ exp(θ − δj )
. (6)

Because its IRFs do not intersect, the RM is a special case of the DMM. The RM has strong
statistical properties, for example, sufficiency of total scores for estimation ofmodel parameters and
the population independence of these model parameters. Because the model is so well documented,
refer to Fischer and Molenaar (1995) for detailed information.
Investigating model-data fit. The authors used the computer program RSP (Rasch Scaling Pro-

gram; Glas & Ellis, 1993; also see Robin, Xing, & Hambleton, 1999) for investigating fit of the RM
to the data. RSP uses the asymptotic chi-square statistic R1 (Glas, 1988; Glas & Verhelst, 1995) for
testing the null hypothesis that J IRFs are logistic with equal slopes against the alternative that they
are not, and the asymptotic chi-square statistic R2 (Glas, 1988; Glas & Verhelst, 1995) for testing
the null hypothesis that J items are unidimensional and locally independent against the alternative
that they are not. For larger numbers of items, the calculation of R1 and R2 may run into trouble
(Glas & Ellis, 1993, p. 90), and RSP instead resorts to the approximate chi-square statisticsQ1 and
Q2 (Van den Wollenberg, 1982), which test the same hypothesis as R1 and R2, respectively, but are
computationally less complex.

In addition to global statistical testing using R1 / Q1 and R2 / Q2, the authors used local testing
by means of the approximate standard normal statistic Uj (Molenaar, 1983), which tests for each
separate item the null hypothesis that its IRF is logistic with slope 1 against the alternative that
it is not. Because the authors compare Uj with the item scalability coefficient Hj , they give the
formal definition of Uj . Let R = 1, . . . , J -1 be the restscore excluding item j , and define cutpoints
c1 and c2 such that R ≤ c1 defines the lowest quartile of the distribution of R and R ≥ c2 defines
the highest quartile. For frequencies nrj (the number of respondents with a restscore r and a score
of 1 on item j ) and the expectation under conditional maximum likelihood estimation given the
RM, E(nrj /RM), they define differences diffrj = nrj − E(nrj /RM), for all r , which after proper
standardization are denoted zrj . Statistic Uj is defined as

Uj =

c1∑
r=1

zrj −
J−1∑
r=c2

zrj

(c1 + J − c2)1/2
. (7)

Positive values of Uj indicate that the IRF is flatter than expected, and negative values indicate that
the IRF is steeper than expected.

One Parameter Logistic Model (OPLM) and Methods

Theoretical background. Like the RM, the OPLM has logistic IRFs that vary in location, but
unlike theRM, the IRFs of theOPLMalso vary in slope. TheOPLMdoes not have a slope parameter,
however, but instead requires the researcher to specify an integer slopeAj for each item. As a result,
the slope is fixed and the only parameters to be estimated are the location and the ability parameters.
The IRF is defined as

Pj(θ) = exp[Aj(θ − δj )]
1+ exp[Aj(θ − δj )] , Aj ∈ N+. (8)

Verhelst and Glas (1995) showed that with a user-specified integer slope, the statistical properties
of the RM apply for the OPLM. If the model with user-specified slopes is estimated and does not
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fit the data, new integer values for the slopes may be specified and the model again is estimated
and tested for fit to the data. This is repeated until a fitting model is obtained, perhaps after some
items have been deleted, and the final slope indices and parameter estimates are interpreted.
Investigating model-data fit. The authors used the computer program OPLM (Verhelst, 1992)

for estimating and fitting a logistic IRT model with location parameters and user-specified slope
indices. Model fitting according to the OPLM concentrates on the assumptions of monotonicity
and sufficiency of a total score based on item scores weighted by their slope indices. OPLM has
no test statistics for evaluating unidimensionality and local independence. The null hypothesis of
monotonicity and sufficiency is tested by means of a global asymptotic chi-square statistic R1c and
by four item-fit statistics, one of which is a chi-square and the other three being comparable to Uj

for the RM. Rather than discussing these item-fit statistics, in the Results section the authors report
(a) the values of the global R1c before and after slope index specification and (b) the final slope
indices Aj used.

Comparison of IRT Models

The OPLM is a special case of the MHM and a liberalization of the RM, but the mutual ordering
of the OPLMand theDMM is not clear-cut. TheOPLMhas logistic IRFs, which is a restrictionwith
respect to the DMM, but the DMM has nonintersecting IRFs, and this can be a strong restriction,
especially for longer tests. Thus, the partial ordering of the four IRT models from weak to strong
assumptions is MHM–DMM/OPLM–RM.

Method

To illustrate the use of the four IRT models for analyzing relevant psychological test data, the
authors used a pretest version and a posttest version of a test for inductive reasoning (de Koning &
Hamers, 1995, 1999; de Koning et al., in press), called Test for Inductive Reasoning I (TIR-I) and
Test for Inductive Reasoning II (TIR-II), respectively.
Tests, item types. Figures 1a and 1b provide examples of inductive reasoning items. The tests

distinguish attribute tasks and relation tasks. Comparing attributes requires the child to simulta-
neously consider two objects, whereas comparing relations requires simultaneously considering
three objects (Klauer, 1989; also see Carpenter, Just, & Shell, 1990). As comparison processes can
be aimed at finding similarities, dissimilarities, or both, attribute tasks and relation tasks both can
deal with any of these three modes. Finally, tasks with either concrete objects based on daily life
experience or geometric objects referring to reasoning at a more abstract level were distinguished
(see de Koning et al., in press, for further justification; also Klaver, 1989). To summarize, the TIR-I
and the TIR-II each contained 12 types of inductive reasoning items: Attribute or Relation; crossed
with Similarities, Dissimilarities, or Both; crossed with Concrete or Abstract. These 12 item types
are summarized in Figures 1a (Attribute Items) and 1b (Relation Items). See de Koning et al. (in
press) for a detailed description of the 12 item types.

Typical questions posedwith different item types arementioned in the first columns of Figures 1a
and 1b. The response mode of each item depends on the item type. Each response was scored as
incorrect (score of 0) or correct (score of 1).

The TIR-I and the TIR-II each had 27 unique items and shared 16 anchor items for the purpose
of equating (de Koning et al., in press). All 12 item types (Figures 1a and 1b) were represented
among the anchor items. Table 1 shows the distribution of the items across the tests and across the
item types.
Samples, procedure. The representative samples (stratified using social-economic status) con-

tained 476 third-grade primary school children for the TIR-I and 478 third-grade primary school
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Figure 1a
Review of the TIR Item Types: Attribute Items
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Figure 1b
Review of the TIR Item Types: Relation Items
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Table 1
Number of Items in TIR-I and TIR-II

Number of Items
Unique Unique Shared Total Concrete Abstract
TIR-I TIR-II TIR-I+II per TIR per TIR per TIR

Attributes
Generalization 6 6 3 9 5 4
Discrimination 5 5 2 7 4 3
Cross-classification 3 3 3 6 3 3

Relations
Seriation 3 3 3 6 3 3
Disturbed seriation 5 5 3 8 4 4
System construction 5 5 2 7 3 4

Total 27 27 16 43 22 21

children for the TIR-II. The tests were administered as group tests in January and June of the same
school year, respectively.

Results

Nonparametric IRT Modeling

The TIR as One Test

The monotone homogeneity model. Neither of the TIR item sets had negative item Hj values,
but values were low: For the TIR-I, 0.06 ≤ Hj ≤ 0.33, and for the TIR-II, 0.08 ≤ Hj ≤ 0.38.
Furthermore, for the TIR-I, the overall H = 0.19 with a percentage of negativeHjk values of 6.6%,
and for the TIR-II, the overallH = 0.22 with a percentage of negativeHjk values of 3.4%. Because
negativeHjks are in conflict with the MHM (Mokken, 1971, p. 150) and because Hjs and H s lower
than 0.3 indicate weak item discrimination, the IRFs of the TIR tests were investigated in greater
detail.

For the TIR-I, 14 items had Hj coefficients of 0.15 or lower, and for the TIR-II, this number
was 8. Under a fitting MHM, such low values indicate nearly flat but increasing IRFs, and under
a nonfitting MHM, such values indicate IRFs that may not be monotonely nondecreasing. Only
one item from the TIR-I and none of the items from the TIR-II had item-restscore regressions
that violated the monotonicity assumption (MSP combined adjacent restscore groups with scores
R = r, r + 1, and so on, until each group had at least 20 respondents user-defined; also, testing was
done at a nominal Type I error rate of 0.01). Thus, from the combination of nondecreasingness of
the IRFs and the low Hjs, the authors conclude that in both tests the IRFs are relatively flat curves
and, therefore, that most items have weak discrimination power.
The double monotonicity model. For the TIR-I, the authors foundHT = 0.31 and a percentage of

negative HT
a values of 0.4, and for the TIR-II, they found HT = 0.31 and a percentage of negative

HT
a values of 0.6. Thus, for practical purposes, the 43 IRFs of each test can be considered to be

nonintersecting, and HT s close to 0.3 suggested that IRFs are close together when incorrectly
ordered (Sijtsma & Meijer, 1992).

An additional investigation of the nonintersection of the IRFs compared for each pair of items
the item-restscore regressions. MSP combined adjacent restscore groups, S = s, s + 1, and so on,
until each group contained at least 20 respondents user-defined. An unexpected ordering (given the
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ordering based on proportions correct in the total group) of the two items within a restscore group
was tested at a nominal Type I error rate of 0.01. MSP counted for each item the total number
of reversals with each of the other 42 item-restscore regressions and also the total number of the
significant reversals. For the TIR-I, 22 items had no significant reversals with any of the other
items. The largest number found was 8 significant reversals (one item), the second largest number
was 6 reversals (two items), and the third largest number found was 5 reversals (one item). Given
the enormous number of opportunities that 43 curves have for crossing one another, these numbers
can be considered low enough to ignore them (Molenaar & Sijtsma, 2000). For the TIR-II, similar
results were found: 23 items had no significant reversals with any of the other items, and the largest
number of significant reversals found was 6 (one item). Thus, the detailed results supported the
results of the global HT method.

Investigating the Structure of the TIR Tests

As Figures 1a and 1b show, the items can be divided into two subsets measuring either inductive
reasoning using pictures of real-life objects or inductive reasoning using abstract geometric objects.
The authors call these item subsets Real-Life Objects and Geometric Objects, respectively. Another
subdivision comes from the distinction betweenAttributes of objects andRelations between objects.
A finer subdivision is into six item subsets: Generalization items, Discrimination items, and Cross-
Classification items (all measuring attributes), and Seriation items, Disturbed Seriation items, and
System Construction items (all measuring relations). In this section, the authors take the distinction
Real-Life Objects versus Geometric Objects, the distinction Attribute versus Relation, and the
distinction between the six item types as the basis for investigating the fit of the MHM and the
DMM, respectively.
Fitting the MHM to subscales. Table 2 shows the results of fitting the MHM to the data of the

Real-Life Objects and the Geometric Objects subsets, the Attributes and Relations subsets, and
each of the six item subsets measuring either attributes of objects or relations between objects.

For both TIR tests, for Real-Life Objects the H values were considerably lower than the mini-
mally acceptable value of 0.3, but for Geometric Objects theH values were close to 0.3. In general,
many item Hjs were lower than 0.3. For Real-Life Objects, many sample violations of the mono-
tonicity assumption were found, but none was significant at the 1% level (TIR-I and TIR-II). For
Geometric Objects, no significant violations were found (TIR-I and TIR-II). For both item subsets
and for both the TIR-I and TIR-II data, the authors concluded on the basis of the scalability results
and the monotonicity results that the IRFs of the items are increasing with relatively flat slopes.

Table 2 shows for both TIR tests that the subscale Relations had better scalability than the
subscale Attributes. However, for Relations, H was only 0.3 and several item Hjs were lower than
0.3. For Attributes, several sample violations of the monotonicity assumption were found, but none
was significant at the 1% significance level (TIR-I and TIR-II). For Relations, several but not many
significant violations were found at the 5% level (TIR-I; not reported in Table 2), but none of the
items stuck out in terms of the number of significant results. At the 1% level (reported in Table 2),
only one violation was significant, suggesting that there were no serious violations of monotonicity.
For the TIR-II at the 5% level, a few significant violations were found, and at the 1% level none.
For both item subsets and for both the TIR-I and TIR-II data, the monotonicity results and the
scalability results together led to the conclusion that the IRFs are increasing with relatively flat
slopes.

For both TIR tests, the three subtests measuring attributes of objects, which together constituted
the Attributes subset, had H s of 0.2 and item Hjs of which several were below 0.3. Again no
significant decreases in the item-restscore regressions for estimating the IRFs were found. For the
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Table 2
TIR-I and TIR-II Fit Results for the MHM and the DMM, Including Scalability Coefficients

and Count of Number of Significant Violations (# Sign Viol) of Monotonicity (1% significance level)

TIR-I TIR-II
Hj ; # Sign % Neg Hj ; # Sign % Neg

J H min, max Viol HT HT
a H min, max Viol HT HT

a

Real-Life Objects 22 .14 .07–.25 – .29 1.5 .18 .08–.41 – .22 3.6
Geometric Objects 21 .27 .14–.42 – .37 2.7 .31 .11–.41 – .46 2.2

Attributes 22 .16 .07–.29 – .27 4.2 .17 .10–.33 – .34 2.2
Relations 21 .29 .11–.41 1 .33 2.7 .34 .20–.42 – .30 5.2

Attributes
Generalization 9 .20 .09–.30 – .30 8.5 .25 .18–.47 – .28 14.6
Discrimination 7 .23 .19–.48 – .39 4.5 .19 .14–.52 – .49 2.1
Cross-Classification 6 .20 .12–.29 – .29 20.8 .21 .15–.30 – .38 12.5

Relations
Seriation 6 .31 .25–.37 – .29 20.6 .40 .30–.47 – .11a 21.8
Disturbed Seriation 8 .34 .20–.46 – .46 5.6 .33 .25–.45 – .46 7.0
System Construction 7 .47 .28–.55 – .18 23.5 .47 .44–.50 – .04a 36.1

aLow HT s probably due to large numbers (237 and 155, respectively) of respondents whose data could not be used (only 0 or 1
scores; leads to division by 0 when calculating HT ).
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three subsets measuring relations between objects, which together constituted the Relations subset,
the H s ranged from 0.3 to 0.5. Only a few items had Hjs lower than 0.3, and for two subsets all
Hjs were higher than 0.3. The three subsets each showed sample violations of the monotonicity
assumption, but none was significant, and the IRFs thus seem to be increasing indicators of latent
traits as measured by each subtest.
Fitting the DMM to subscales. For each subset of items from the TIR-I and TIR-II, the authors

calculated the HT coefficient and the percentage of negative HT
a s. Table 2 shows that for Real-Life

Objects from both TIR tests the HT s were too low (although close to 0.3 for the TIR-I) and that
for Geometric Objects from both TIR tests the requirements with respect toHT and the percentage
of negative HT

a s were satisfied. These results suggest that for Geometric Objects, the IRFs do not
intersect and that for Real-Life Objects, IRFs have several intersections.

Table 2 shows that for both the TIR-I and the TIR-II tests and for Attributes and Relations, HT

was near 0.30. The percentages of negative HT
a s were sufficiently small. Thus, for both subsets

one may conclude that these results represent borderline cases when intersection of the IRFs is
concerned.

For the six subsets based on attributes of objects and relations between objects, for both TIR data
sets, theHT results were not very consistent, but in general there was much evidence of intersection
of IRFs. Only for theDiscrimination subset (attributes of objects) and theDisturbed Seriation subset
(relations between objects) were the HT results pointing in the same direction showing evidence
of nonintersection of the IRFs.
Searching for subscales under the MHM. The authors used the automated item selection proce-

dure fromMSPbecause thismight in an exploratoryway lead to new insights into the dimensionality
of the datasets. Only the TIR-I data were analyzed because, based on the results found thus far, it
was expected that there would not be great differences with the TIR-II data. Following Hemker et
al. (1995), the authors tried several values for lowerbound c: c = 0.0, 0.3, and 0.4, and monitored
the subdivision of the itemset into subsets. Table 3 shows that for c = 0.0, 19 of the 21 Relations
items were selected into the first subscale along with 9 Attributes items (from each of the three a
priori Attributes subscales, 3 items were selected). Also, four other subscales were selected, but
none had a clear interpretation. For c = 0.3, the first subscale selected had 14 of the 21 Relations
items. The other five subscales had small numbers of items and contained items of one or two of
the a priori distinguished Attributes subscales. For c = 0.4, the set of 43 items was selected into
eight small scales, most of which appeared to have no sensible interpretation and, moreover, 15
items remained unscalable.

It was concluded that the Relations items are the best scalable items. The subdivision into six
a priori subsets was not found when using the exploratory item selection procedure. Also, the
subdivision into Real-Life Objects items and Geometric Objects items did not come out as two
clearly different dimensions.

Parametric IRT Modeling

The Rasch model. First, the RM was fitted to the complete set of 43 items of each TIR version.
As could be anticipated on the basis of the MHM analyses, the RM did not fit the data for both
test versions. For the TIR-I, R1 = 476, df = 168, and p = .00, which rejects the null hypothesis
of 43 logistic IRFs with equal slopes, and Q2 = 5730, df = 4300, and p = .00, which rejects the
null hypothesis of unidimensionality and local independence. For the TIR-II, the same conclusions
were drawn, based on R1 = 475, df = 168, and p = .00, andQ2 = 40,682, df = 4300, and p = .00.
Because of the heterogeneity of the tests and the clear-cut global test results, no local Uj tests were
performed.
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Table 3
Items From the TIR-I Using Automatic Item Selection Procedure
Results When Several Lowerbounds c Are Used for Selecting

c Scale J H Subset: # Items (# Concrete, # Abstract)

0.0 1 28 .26 Generalization: 3 (3, –)
Discrimination: 3 (2, 1)
Cross-Classification: 3 (–, 3)
Seriation: 6 (3, 3)
Disturbed Seriation: 6 (3, 3)
System Construction: 7 (3, 4)

4 other scales, unclear interpretation; No items left
0.3 1 14 .41 Seriation: 3 (–, 3)

Disturbed Seriation: 5 (2, 3)
System Construction: 6 (2, 4)

2 4 .43 Discrimination: 4 (3, 1)
3 5 .36 Generalization: 4 (1, 3)

Disturbed Seriation: 1 (–, 1)
4 5 .37 Discrimination: 2 (–, 2)

Cross-Classification: 3 (–, 3)
5 3 .34 Generalization: 3 (3, –)
6 3 .41 Seriation: 2 (2, –)
9 items unscalable with c = 0.3

0.4 1 9 .51 Seriation: 3 (–, 3)
System Construction: 6 (2, 4)

2 3 .62 Discrimination: 3 (2, 1)
3 4 .51 Disturbed Seriation: 4 (1, 3)
4 3 .48 Generalization: 2 (–, 2)

Disturbed Seriation: 1 (–, 1)
5 2 .56 Generalization: 2 (–, 2)
6 3 .43 Discrimination: 1 (–, 1)

Cross-Classification: 2 (–, 2)
7 2 .44 Generalization: 2 (2, –)
8 2 .41 Seriation: 2 (2, –)
15 items unscalable with c = 0.4

Using their knowledge of the a priori subtest structure, in the next step the authors fitted the RM
to subtests, exactly as for theMHMandDMManalyses. In addition to global statistical testing using
R1 andR2 /Q2, the authors used local testing by means of the approximate standard normal statistic
Uj (Molenaar, 1983). Because J standard normal Uj tests were performed, they tested two-sidedly
at a 0.2% significance level; thus, | Uj |≥ 3.08 led to the rejection of the null hypothesis.

Table 4 shows that for the TIR-I, all R1 and R2 / Q2 test results led to the rejection of the RM
assumptions at a 1% significance level (the highest probability of exceedance was .0049 for Cross-
Classification). Since the Uj values were almost always between the critical values of –3.08 and
3.08 (Table 4 only gives the two extreme Uj values), these results gave us almost no clues of how
to improve the subscales by removing items with either too flat or too steep IRFs. The apparent
contradiction between R1 results and Uj results may suggest that the overall R1 test may have been
too sensitive due to accumulating nonsignificant deviations between observed and expected IRFs
across the J items from a test. Also, theUj results supported the conclusion based on the MHM and
DMM analyses that the IRFs are increasing functions with often only few intersections. Moreover,
the Uj results provided evidence that these curves can be well approximated by logistic functions.
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Table 4
TIR-I and TIR-II Fit Results for the RM. Entries Below R1 and R2/Q2

Must Be Multiplied by 0.0001 to Obtain Probabilities of Exceedance

TIR-I TIR-II
J R1 Uj ; min, max R2/Q2

1 R1 Uj ; min, max R2/Q2
1

Real-Life Objects 22 3 –1.6; 1.7 – − –2.2; 2.5 –
Geometric Objects 21 − –2.1; 2.9 – − –1.5; 2.7 –

Attributes 22 9 –1.6; 1.9 – 1410 –1.4; .8 –
Relations 21 − –2.3; 3.5 – − –1.7; 1.9 –

Attributes
Generalization 9 26 –1.2; 1.0 – 1285 –1.2; 1.9 84
Discrimination 7 2 –.7; .8 – 9617 –.4; .7 –
Cross-Classification 6 − –1.9; 2.3 49 1082 –.9; 1.1 92

Relations
Seriation 6 − –1.5; 2.2 – 3 –1.4; 2.0 11
Disturbed Seriation 8 − –2.8; 3.8 – 1 –1.4; 1.5 –
System Construction 7 − –3.0; 5.2 – 3 –1.7; 2.1 –

1For the first two subdivisions, Q2 was calculated; for the last subdivision into six subtests, R2

was calculated.

Similar results were found for the TIR-II data, but with the exception of nonsignificant R1 test
results for the three attribute subscales (Generalization, Discrimination, and Cross-Classification)
and the total Attribute subscale comprising these three subscales. In combination with the non-
significant Uj results, it was concluded that the assumptions of monotonicity and sufficiency were
valid here. However, Table 4 shows that the Uj results for the other subscales also were all within
the critical region and that, based on this, there was little evidence for rejecting the null hypothesis
of monotonicity and sufficiency.

Finally, with a few exceptions the R2 /Q2 test results indicated convincing rejections of the null
hypothesis of unidimensionality and local independence. This result corroborates the item selection
results for the MHM as reported in Table 3, where the authors did not find a clear-cut selection of
the items into subsets that ran neatly along the lines of the a priori subdivision followed in Tables
2 and 4, but which indicated multidimensionality that was difficult to interpret.
The OPLM. Table 5 gives the Type I error probability for R1c-RM (slopes of 1, which is the

RM) and R1c-Aj (user-specified slope indices Aj ). R1 (Table 4) and R1c-RM (Table 5) are the same
statistic, but Tables 4 and 5 give different Type I error probabilities due to somewhat different
groupings of restscore R used by RSP and OPLM for calculating the statistics. Table 5 also shows
the slope indices, Aj , which were suggested by OPLM on the basis of the misfit of the RM (slopes
of 1 for each IRF; for more details, see Verhelst, 1992).

In most cases, R1c could be improved substantially (in a few cases, due to computational prob-
lems, parameter estimates could not be obtained). For the Attribute subscale and the three attribute
subscales of the TIR-II, for which monotonicity and sufficiency were valid under the RM, slopes of
1 were accepted as final. In almost all other cases, adaptation of the slope indices led to high Type I
error probabilities. These probabilities suggested that the choice of the slope indices might have
capitalized on chance. The MHM results reported earlier suggested that the IRFs were increasing
with rather flat slopes (Table 2), but the OPLM analyses suggest that the slopes of different items
show some variation. The interpretation of these Ajs and their variation is relative, however, in the
sense that replacing each string of Ajs in Table 5 with another string of positive integers that is a
multiple of the original string would have yielded the same R1cs.
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Table 5
TIR-I and TIR-II Fit Results for the OPLM: R1c Probabilities of Exceedance (After

Multiplication by 0.0001) for Rasch Model (RM) and OPLMWith Imputed Item Slopes (Aj )

TIR-I TIR-II
J R1c-RM Aj R1c-Aj R1c-RM Aj R1c-Aj

Real-Life Objects 22 – 2 5 2 3 3 3 3 3 3581 − 3 3 2 2 3 2 4 2 3867
3 2 2 2 4 2 4 2 3 2 2 3 4 3
4 4 3 4 3 3 4 3 4 4 4 4 5 3

Geometric Objects 21 – 2 2 2 2 2 2 3 − − 1 2 3 2 3 2 3 955
3 3 3 3 4 3 3 4 5 3 6 6 5 5
3 4 1 5 4 5 4 4 5 2 6 6 6 5

Attributes 22 21 2 4 2 3 3 3 3 3 7293 2815 No adaptations
2 3 3 3 3 4 3
3 2 2 2 5 5 4

Relations 21 – 3 2 3 4 4 4 3 27 − 2 3 2 4 3 3 2 8909
3 1 3 3 3 4 1 3 3 3 3 2 5 1
2 3 3 5 5 5 4 4 3 3 5 5 4 3

Attributes
Generalization 9 31 2 4 3 2 3 5 4 2 2 9176 6316 No adaptations
Discrimination 7 12 3 2 3 3 3 4 4 3470 8701 No adaptations
Cross-Classification 6 – 2 2 2 5 4 4 No est. 1935 No adaptations

Relations
Seriation 6 4 3 1 3 5 4 4 3820 1 2 3 2 4 4 4 No est.
Disturbed Seriation 8 – 3 3 2 4 3 4 6 1 5078 5 2 3 3 3 3 2 6 2 5934
System Construction 7 – 1 2 3 5 5 4 4 2787 − 3 3 2 4 4 4 2 2057

Note. est. = estimate.

Discussion

The authors’ advice for researchers is to use several models for analyzing their data and not just
one model. They used four different IRT models that have different measurement properties and
different methods for data analysis. These models are like different glasses that one can wear to
look at the same phenomenon, one’s item response data, and that each offer a somewhat different
perspective. The four models used here could be supplemented or even replaced by others, such
as multidimensional IRT models or classical methods such as factor analysis or cluster analysis.
This depends on the goal of research but also on personal preferences. The basic attitude advocated
here is to use multiple methods. In general, the authors advise to start an item analysis with the
most liberal models, here the nonparametric MHM and DMM, and then to continue with the more
restrictive parametric models, here the RM and the OPLM. A fitting MHM implies an ordinal scale
for persons and a fitting DMM in addition implies an ordinal scale for items. The next step is to
fit the more restrictive parametric models, which give more profound information about scale and
item properties and enable advanced applications such as equating (de Koning et al., in press) and
adaptive testing (Hambleton & Swaminathan, 1985).

For this particular study, the simultaneous use of two nonparametric and two parametric IRT
models suggests the following conclusions. First, there are differences in the kinds of information
given by several statistics and these differences can be used next to each other so that more in-
formation can be obtained than would be possible if only one model were used for data analysis.
Within the nonparametric IRT context, a higher H coefficient means that more confidence can be
held in the ordering of the respondents on θ (Mokken et al., 1986) and a higher HT means that
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more confidence can be held in the nonintersection of the J IRFs (Sijtsma & Meijer, 1992). Under
the RM, nonsignificant R1 /Q1 and R2 /Q2 values indicate that the J items have logistic IRFs with
the same slopes and that the J items are unidimensional and locally independent, respectively. Of
course, the test information function (e.g., Hambleton & Swaminathan, 1985; Van der Linden &
Hambleton, 1997), not investigated here, gives local information on the accuracy of person mea-
surement, but H is a convenient and quick global measure of person ordering. Moreover,HT gives
a quick impression on nonintersection of the J IRFs when one is not particularly interested in the
logistic shape of these functions or when a nonparametric IRT analysis is done as a precursor for
a possible Rasch analysis.

Also at the local item level, statistics from different models give complementary information
about fit or misfit. For example, the Hj coefficients give an indication of the discrimination power
and relate this information to the total score variance. Under the MHM, a low Hj thus indicates a
rather flat IRF and a high Hj a rather steep IRF relative to the group under study. Under the RM,
the Uj statistic tells one whether the observed IRF matches the logistic IRF and a high negative
value indicates an IRF that is steeper than expected, whereas a high positive value indicates a
flatter IRF. Whether the discrimination power of the item is low, intermediate, or high relative to
the group under study cannot be derived from such results, however, because under the RM slope
parameters are set to 1 just to indicate equality, but any other positive constant would express the
same equality property. Thus, under the RM a slope parameter of 1 does not convey information
about the discrimination power of an item. Under the OPLM, the Ajs indicate the slopes of the
logistic IRFs but, as has been seen, these slope indices only have meaning relative to one another.
Any set of alternative integer slope indices that is a multiple of the Ajs leads to exactly the same
fit statistics. To summarize, the Hjs give information whether slopes are positive or negative and
whether they are flat or steep; the Ujs indicate whether IRFs are logistic and flatter or steeper than
the “unity” slopes of the RM, and the Ajs indicate the relative slopes of different logistic IRFs.

Second, unlike MSP (automated item selection procedure) and RSP (R2 /Q2 significance tests),
OPLM does not contain methods that allow for a direct evaluation of unidimensionality and local
independence. It may be noted that programs for nonparametric IRT analysis such as DIMTEST
(Stout, 1990; Stout et al., 1996) and DETECT (Kim, Zhang, & Stout, 1996) are focused on dimen-
sionality analysis by using statistics based on conditional covariances between items and thus could
be used supplementary to MSP (or MSP supplementary to DIMTEST and DETECT; this depends
largely on one’s preference for either method; also see Sijtsma, 1998). Verhelst (personal commu-
nication, 1999) explained the absence of a dimensionality statistic in OPLM by the mathematical
complexity of such a statistic when the IRF slopes are allowed to vary across the items. For binary
data with an unknown dimensionality, varying IRF slopes as indicated by varying Hjs, Ujs, and
Ajs may be indicative of multidimensionality as well, but the availability of the R2 /Q2 statistics in
RSP for the direct investigating of multidimensionality provides a good reason for the use of RSP
in addition to the use of MSP and OPLM. Another alternative would be to use a multidimensional
IRT model (e.g., Reckase, 1997).

Third, the data analyses made clear that the MHM and DMM models have several easy-to-
use statistics at the global (all J items) and local (individual items and pairs of items) analysis
levels. Moreover, these models provide indices of measurement quality, in particular theH andHT

coefficients, that concentrate on test and item characteristics in relation to the person distribution,
thus allowing statements about the usefulness of the test or an item for measurement in a particular
group. This study has illustrated that several statistics for the RM relate the item characteristics to
the logistic shape of the IRF (R1 and Uj ; also several item slope statistics used in OPLM but not
discussed here), but no information is contained on the strength of the relation between the item
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and θ . Also, the slope indices Aj from the OPLM give information on the relative slopes of logistic
IRFs, but no information on the discrimination power relative to the person distribution. At the
level of item analysis, nonparametric IRT thus provides excellent auxiliary information by relating
item properties to the person distribution.

Finally, the overall conclusion was that the four IRT models do not fit the complete test data,
but also that this misfit informed the authors well about the structure of the TIR tests. This infor-
mation can be used in at least two ways. First, although some meaningful subdivisions were found,
the conceptual distinction into different item types made in the relevant literature (Klauer, 1989)
and incorporated in the authors’ tests could not be retrieved very convincingly. However, several
analyses using different IRT models suggested some form of multidimensionality as being present
in the data. This would suggest that a careful conceptual re-analysis of the item types relevant to
the measurement of inductive reasoning could be useful to obtain a better understanding of how
the concept should be measured. Second, at the psychometric level, ignoring the subset structure
altogether and taking all items from the TIR-I and those from the TIR-II as a priori unidimensional
tests, it was found that items had low discrimination, meaning that individual items only weakly
separated persons with low and high latent traits. This was also found for several a priori identified
item subsets. These results would suggest that for measuring inductive reasoning reliably with the
types of items used here (which are highly representative of how inductive reasoning is measured
traditionally), long tests are needed to obtain sufficient reliability. Another study (de Koning et al.,
in press) addressed the equating of the two TIR scales after a few of the worst fitting items had been
removed, but most items were retained for having sufficient reliability. OPLM was used for this
purpose, because it estimates the metric θ parameters that are convenient for equating and because
it was more flexible than the RM.
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