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Trace-driven (or correlated inspection) simulation means that the simulated and the real
systems have some common inputs (say, historical arrival times) so the two systems’ outputs
are cross-correlated. To validate such a simulation, this paper focuses on the difference
between the average simulated and real responses. To evaluate this validation statistic, the
paper develops a novel bootstrap technique - based on replicated runs. This validation statistic
and the bootstrap technique are evaluated in extensive Monte Carlo experiments with specific
single-server queues. These experiments show acceptable type-I and type-II error probabilities.

(Keywords: TIME SERIES, DEPENDENCE, PAIRED OBSERVATIONS,
ERROR RATES, POWER)

1. Introduction

We define validation as assessing whether a specific simulation model is an acceptable repre-
sentation of the corresponding real system - given the goal of the simulation model (also see
the classic textbook on simulation, Law and Kelton 2000). Many types of validation are used
and proposed in practice and theory, but we focus on validation that uses mathematical
statistics. After all, simulation means experimentation (albeit with a model instead of the real
system), and experimentation calls for statistical analysis. Obviously, such an analysis is only
part of the whole validation process (other parts are graphical summaries, the Schruben-Turing
test on ‘face validity’, etc.; see Kleijnen 2000). However, when applying mathematical
statistics, correct statistics should be used.

In this paper we discuss the type of statistical validation that compares data on the real
and the simulated systems. Such a comparison makes more sense if both systems are observed
under similar scenarios; for example, a busy day at the real supermarket should be compared
with a busy day at the simulated store. Obviously, real data may pertain to input and output;
for example, inputs are customers’ arrival times and cashiers’ service times at the supermarket,
whereas outputs are customers’ waiting times.

The most powerful statistical validation is possible if both input and output of the real
system are measured. In so-called trace driven or correlated inspection simulation, analysts
feed real input data into the simulation program, in historical order (also see Law and Kelton
2000). After running the simulation program, these analysts compare some summary statistic
(namely, the average ) for the time series of simulated output with the same statistic (namely,

) for the historical time series of real output.
In practice, these statistics may be seriously nonnormal. Therefore we use

bootstrapping in this paper. Our main conclusion for a specific simulation that we use to
illustrate our method, will be: If a trace-driven simulation model is replicated more than twice,
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then bootstrapping a simple statistic (namely, ) gives statistically acceptable type-I
error probability, given the prespecified nominal " value. The power is acceptable, provided
the runlength is large  enough.

The remainder of the paper is organized as follows. §2 introduces some notation. §3
recapitulates EFRON’s bootstrapping of time series based on ‘blocks’, which we interpret as
simulation runs. §4 derives a bootstrap procedure for trace-driven simulations. §5 illustrates the
bootstrapped validation statistic: that section designs a Monte Carlo experiment with single-
server queueing models that generate 'real' and simulated sojourn times. §6 interprets the
results of this extensive Monte Carlo experiment. §7 presents conclusions and topics for future
research. The appendix provides a theoretical underpinning: it proves that as the number of
runs n tends to infinity, the estimated density function (EDF) of the bootstrap validation
statistic  tends uniformly to the EDF of the original statistic .

2. Notation and Bootstrapping in General 

Consider the following realistic simulation problem. In trace-driven simulation, the simulated
and the real systems have some common inputs A; for example, the simulated and the real
queueing systems use the same historical sequence of arrival times (we use capital letters for
random variables, and bold letters for matrices including vectors). The real system is so
complex that not all input variables are traced: the simulation model has at least one more input
variable (e.g., service time) that is sampled using a pseudorandom number stream R. There are
s simulation runs that use the same trace and non-overlapping streams , with integers r = 1,
..., s and s $ 1.

The real system generates a time series of (autocorrelated) outputs , whereas the
simulated system generates outputs  for run i = 1, ..., n and t = 1, 2, ..., k; for example,
sojourn time of job t on day i. For simplicity we assume that k is a constant: = k (but this
assumption does not affect the basic idea of our bootstrap method).

The real output time series is characterized through a single performance measure X ;i
an example is the average sojourn time on day i. A crucial assumption is that these X  arei

identically and independently distributed (IID). This assumption may hold if each run starts in
the empty state. Obviously, we focus on terminating simulations.

To validate the simulation model statistically, we compare the real and the simulated
performance measures X and (say) Y. One solution was given by Kleijnen, Bettonvil, and Van
Groenendaal (1998), assuming that ( , ) is bivariate normal. However, in case of short runs
(for example, k = 10) the performance measures may be seriously nonnormal. This
nonnormality is not well handled by conventional techniques, if n is small so that the central
limit theorem does not apply. Therefore we use bootstrapping in this paper.

 Bootstrapping enables estimating the distribution of any statistic, but different statistics
have different sensitivities to scales, and so on; see the seminal book on bootstrapping (outside
simulation) Efron and Tibshirani (1993, pp. 54-56, 162-177), next abbreviated to EFRON. For
the validation of trace-driven simulations Kleijnen, Cheng, and Bettonvil (2000) bootstrap six
statistics. We, however, focus on the simplest statistic that nevertheless gives good results,
namely the average deviation between the real and the simulated performance measures,  =

.
In general, bootstrapping takes a random sample of size n - with replacement - from the

original n IID observation. Bootstrapping has not yet been applied frequently in simulation.
Simulation yields (autocorrelated) time series, and EFRON (p. 396) warns: ‘... problems of
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dependence do not appear to be well understood and are an important area for further
research’.

Further, EFRON (pp. 115, 383) cautions: ‘bootstrapping is not a uniquely defined
concept [...] alternative bootstrap methods may coexist’. Indeed, we shall show that bootstrap
methods require the art of modeling; computer power does not suffice.

Moreover, we wish to test the hypothesis that the simulation model is ‘valid’, that is,
the null-hypothesis is that the real and the simulated systems have equal means. EFRON (pp.
220-236) does discuss hypothesis testing, but that discussion does not apply here since trace-
driven simulation does not give independent X and Y.

Our main discovery is: One simulation replicate is certainly a valid model for another
simulation replicate, so the hypothesis of a valid simulation model is guaranteed to hold! So if
we have more than a single simulation replication (s $ 2), we can obtain the bootstrap
distribution of any validation statistic under the null-hypothesis of a valid trace-driven
simulation model. This idea can be generally applied to any trace-driven simulation. 

3. EFRON’s Bootstrapping of Time Series
 
EFRON (p. 91) assumes a sample of n IID  observations  with i = 1, ..., n. The sample data
is summarized through a statistic  = ( , ...,  ). Bootstrapping means that the original
observations Z  are randomly resampled with replacement, n times. So, if the superscript *i

indicates bootstrapping, then the bootstrap observations are .
This bootstrap sample gives one observation on the bootstrap statistic

. To estimate the distribution of this statistic, the whole procedure is
repeated b times. Sorting these b observations on  gives the order statistics , ..., ,
and the estimated  quantile of its distribution, . This gives a two-sided 1- " confidence
interval for the original statistic T, ranging from the lower estimated "/2 quantile to the upper
1 - "/2 quantile.

For time series (which do not give IID sample observations), EFRON (pp. 99-102)
presents ‘moving blocks’. For simulation applications we interpret these blocks as runs. We
assume that these runs give IID performance measures. In the example of §5, each run starts in
the empty state and is of constant length k; we do not eliminate the transient phase. 

4. Bootstrapping of Validation Tests in Trace-driven Simulation

We assume a ‘reasonable’ number of IID runs, namely n = 10. Further, we assume a sensible
number of simulation replications, namely s = 10 (also see Schmeiser’s (1982) rule of thumb
for s).

In our  bootstrap application we define Z  = ( ) with r,  = 1, .., s and r … i

( denotes the performance measure calculated from run i with trace , in replicate r). So
we compare the s simulation replicates per run i (with trace ); that is, we condition or block
on the trace. This  results in the bootstrap validation statistic . Repeating b times gives a
two-sided (1 - ") confidence interval for , under the null-hypothesis of a valid trace-driven
simulation model.

We also have s observations on the original validation statistic that uses ( , ),
under the alternative hypothesis. We reject the simulation model if any of these s values (or
equivalently, the maximum) falls outside the (1 - /s) confidence interval: Bonferroni’s
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Â "̂

D̃

4

inequality.
In the appendix we prove that as n tends to infinity, the EDF of  tends uniformly to

the EDF of .

5. Example: Designing Monte Carlo Experiments with Queuing Simulations

We focus on an  = 0.10 type-I error rate of the validation test. For the bootstrap sample size
we take a classic value: b = 1,000; see EFRON (p. 275).

We investigate M/M/1 models that generate 'real' and simulated sojourn times W  andi; t

, resulting in average sojourn times per run,  and . These models have real and
simulated traffic loads (say)  and . To study the type I error of the validation tests, we use
simulated and real systems with equal traffic rates:  = . However, the simulation model is
imperfect: real and simulated service times use different pseudorandom numbers (arrival times
are traced). 

To study the type II error, we use unequal simulated and real rates:  …  (for specific
values see Table 1 in §6) Note that the traffic rates affect not only the means but also the
variances of the real and simulated performance measures; bootstrapping takes care of any
nuisance parameters.

We give results for k = 10 (short runs, so high nonnormality) versus k = 1,000. We set
n = 10 (higher n would give better convergence of the bootstrap distribution), and  = 1 (real
terminating system with very high traffic) and various .

We use 1,000 macro-replications; each macro-replication either rejects or accepts the
simulation model. We use a generator proposed by L’Ecuyer (1999), called  MRG32k3a, with
a cycle length of the order 2 . We select seeds randomly.191

6. Results of the Monte Carlo Experiments

For our validation statistic  with  = 0.10 we find Monte Carlo estimates of the type I error
probability (say)  of 0.028 for k = 10 and 0.088 for k = 1,000. So, bootstrapping our statistic
does give an acceptable - albeit conservative - : We do not reject  :  #  where

 denotes the Monte Carlo estimator with observed values . (Bonferroni implies
conservatism.)

Next we estimate the type II error probabilities $. Table 1 shows their complements, the
power 1 - $, for short and long runs respectively. Obviously, our statistic has more power as
the simulated traffic load  deviates more from the real load D = 1. However, at our high
traffic rates, the short run does not give estimated performance measures accurate enough to
detect serious non-validity (simulated traffic rate is up to 40% wrong): Throwing a coin has
more power! Our long runs, however, have more than 80% probability of detecting traffic rate
differences of only 4%.
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Table 1: Estimated Power 1 -  of Validation Statistic T for M/M/1 with Varying Simulated
Traffic Rate 
(Real Traffic Rate D = 1, Number of Simulation Replicates s = 10, Number of Runs n = 10,
Nominal " = 0.10, Bootstrap Sample Size b = 1000)

(A) Number of Customers per Run k = 10 (B) k = 1,000 

 1 - 1 - 

0.8 .394 0.96 .874

0.9 .149 0.98 .404

1.0 .028 1.00 .088

1.2 .072 1.01 .338

1.4 .353 1.04 .808

7. Conclusions and Future Research

In general, the bootstrap is a versatile tool that enables estimation of the distribution of any
statistic (say) , for any type of distribution for . However, this tool requires mastering
the art of modeling: The analysts still have to interpret their problems.

More specifically, for the validation of simulation models we focused on a statistical
test for trace-driven simulations with IID responses Y. We investigated a specific validation
statistic  with IID real response X; the trace makes X and Y cross-correlated. We
developed a bootstrap technique that uses runs, while conditioning on the trace.

We applied the classic bootstrap technique to a specific data set, namely Z =
( ) with  = 1, ..., s, and  . This gives an estimated 1- " confidence interval
for the bootstrapped statistic . Next the real performance measure X is used to compute

, and to test the null-hypothesis of equal means. That hypothesis is rejected if T falls
outside the bootstrapped confidence interval.

To illustrate this test, we used M/M/1 simulations. Whether our Monte Carlo results
also hold for other simulations, requires further research. In the mean time, the current results
might be seen as rules of thumb.

Our experiments gave the following main conclusion. The validation statistic gives an
acceptable - but conservative - type I error rate . It has good power if runs are long enough,
considering the traffic rate.

Kleijnen et al. (2000) gives many more details. For example, they discuss three cases for
the number of simulation replicates, each with different bootstrap techniques, namely s is 1, 2,
or more (we discussed only s = 10). They show that conditional resampling indeed yields more
powerful tests than nonconditional sampling does. They prove that the minimum value for the
bootstrap sample b is 2/  - 1; of course, this minimum b gives smaller power. They perform a
2  Monte Carlo experiment for the factors k, n, and D. They also examine M/G/1 simulation3

models where G stands for gamma distributed service times; the real system remains M/M/1.
Finally, they simulate other priority rules, namely shortest processing time (SPT) and longest
processing time (LPT).

In future research we might extend our bootstrapping to other terminating simulations
(e.g., random runlength K instead of constant k; queueing networks instead of single-server
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systems), steady-state simulations (with IID subruns), and non-stationary simulations
(conditioning on non-stationary trace variables A when bootstrapping).

Whereas we use runs, EFRON uses overlapping blocks. Such a sampling procedure has
also been explored in non-terminating, stationary simulation; see Sherman (1995).

We might also study a more general null-hypothesis: <  with  some
positive constant (instead of zero).

Since bootstrapping uses simulation (to resample the original values Z ), typicali

simulation problems may be further explored. For example, in quantile estimation we may save
computer time by using Wald’s sequential probability ratio test (SPRT); see Ghosh and Sen
(1991) (instead of taking a fixed bootstrap sample size b). Variance reduction techniques - such
as  antithetic and importance sampling - may also be applied; see Hall (1992).

Appendix

We give a theoretical justification for our proposed method by considering its asymptotic
behavior as n tends tot infinity.

The basic form of the result is most easily understood for the case s = 1. We discuss this
case first, and then show how it extends to s > 1. When s = 1, T  = ' Z /n is formed from a4 i

univariate random sample, {Z  = X  - Y ; i = 1, ..., n}. Denote a corresponding bootstrap samplei i i

by {Z = X  - Y ; i = 1, ..., n} and let T  = ' Z /n be the value of T  calculated from such ai i i 4 i 4
* * * * *

bootstrap sample. Then we have the following theorem.
Theorem 1.  If E(Z ) < 4, then2

E(T ) = T   6 E(T ), with probability 14 4 4
*

and

(1)

as n 6 4.

Proof: This result is proved as Theorem 6.7 in Hjorth (1994), where our Z is Hjorth’s X. The
key argument is that both T  and T  are asymptotically normally distributed, and that, with4 4

*

probability 1, both E(T ) (= T ) 6 E(T ) and Var(T ) 6 Var(T ) as n 6 4. The limiting4 4 4 4 4
* *

distribution of T  is thus exactly the same as that of T . See also Singh (1981) and Bickel and4 4
*

Freedman (1981). Q
The fact that the two limiting distributions of T  and T  are identical, is asymptotical4 4

*

justification for the construction of the confidence intervals described in the main text, to test if
E(Z) = 0; that is, if E(X) = E(Y).

The case s = 2 is almost identical to the case s = 1.  Thus we take our ‘original’ sample
as being {Z  = Y  - Y ; i = 1, ..., n}, and form bootstrap samples from this sample. Againi i i

(2)  (1)

Theorem 1 applies to show that the bootstrap distribution of T  tends to that of T . However,4 4
*

here T is being used to compare the outputs from two simulated samples both obtained from4 

the same simulation model. Thus its distribution is that obtained in the knowledge that both
samples {Y } with j = 1, 2 are drawn from the same distribution. The null hypothesis that thei

(j)

{X } have the same distribution as either of the simulated samples {Y } j = 1, 2 can then bei i
(j)
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(4)

(5)

tested. We simply take the two test statistics  =   where the real data
sample {X } is compared with each of the two simulated samples {Y }  j = 1, 2. These cani i

(j)

then be compared with quantiles of the bootstrap distribution of T , to see if they can be4
*

regarded as arising from the same distribution.
Consider now the case s > 2. Then (1) still applies if we can again show that T   and T4 4

*

are asymptotically normally distributed, and that, with probability 1, both E(T ) (= T )6 E(T )4 4 4
*

and Var(T ) 6 Var(T ) as n 6 4. There are two cases: unconditional and conditional4 4
*

respectively.
Case 1: The unconditional case is where the bootstrap sample has the form 

(2)

where the J(i), i = 1, 2, ..., n, are i.i.d. random variables uniformly distributed over the
subscripts {i = 1, 2, ..., n} and the (U (i), V (i)), i = 1, 2, ..., n are i.i.d. pairs of random values
selected from the s(s - 1) distinct pairs C = {(k, l); k, l = 1, 2, .., s, k … l}, with all pairs being
equally likely to be selected. The Z  are identically distributed and from the definition T  =i 4

* *

' /n, it follows that T  is asymptotically normal if it has finite mean and finite non-zero4
*

variance. Now

 

where

But for each fixed pair (u, L), the (Y  - Y ), i = 1, 2, ..., n are mutually independent. Thereforei i
u L

by the strong law of large numbers µ  (u, L) 6 E(T ) almost surely. This applies to each pair (u,n 4

L), and as  s is fixed it follows that E(T ) 6E(T ) with probability 1 also.4 4
*

An analogous argument also shows that Var(T ) 6 Var(T ) with probability 1.4 4
*

This completes the proof for the unconditional case, showing that Theorem 1 still
applies.

Case 2: Consider now the conditional case proposed in the main text. A bootstrap
sample in this case has the form

  (3)

where again (U (i), V (i)), i = 1, 2, ..., n are defined as below (2). We thus have

and
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and it follows that E(T ) and Var(T ) are exactly the same as in the unconditional case.4 4
* *

However, the form of the moments defined in (4) and (5) shows that the Z   are not identicallyi
*

distributed. Thus we need an additional assumption to guarantee that T  is asymptotically4
*

normal.
Theorem 2.  Let T  be calculated from the conditional bootstrap sample (3) where s >4

* 

2. Let J = E  [Z  - E(Z )]  < 4, and 6 = E  | Z  - E(Z )|  < 4, where the outer expectations areY Y
* * 2 * *  3

taken with respect to Y = (Y , Y , ..., Y ), the s observations simulated. Then with probability(1) (2) (s)

1,

Proof: Let , . Then by the strong law
of large numbers  with probability 1 as n 6 %. Thus  with
probability 1 as n 6 %. It follows from Lyapunov’s Theorem (given in Petrov (1995) as
Theorem 4.9, for example) that T  is asymptotically normally distributed with probability 1.4

*

As we have already shown, with probability 1, E(T ) 6 E(T ) and Var(T ) 6 Var(T ),4 4 4 4
* *

so the Theorem follows.  G 
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