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EMPIRICAL ISSUES IN VALUE-AT-RISK* 

BY 

D E N N I S  BAMS 1 AND JACCO L. W I E L H O U W E R  2 

ABSTRACT 

For the purpose of Value-at-Risk (VaR) analysis, a model for the return dis- 
tribution is important because it describes the potential behavior of a finan- 
cial security in the future. What is primarily, is the behavior in the tail of the 
distribution since VaR analysis deals with extreme market situations. We ana- 
lyze the extension of the normal distribution function to allow for fatter 
tails and for time-varying volatility. Equally important to the distribution 
function are the associated parameter values. We argue that parameter uncer- 
tainty leads to uncertainty in the reported VaR estimates. There is a trade- 
off between more complex tail-behavior and this uncertainty. The "best esti- 
mate"-VaR should be adjusted to take account of the uncertainty in the VaR. 
Finally, we consider the VaR forecast for a portfolio of securities. We propose 
a method to treat the modeling in a univariate, rather than a multivariate, 
framework. Such a choice allows us to reduce parameter uncertainty and to 
model directly the relevant variable. 

K E Y  W O R D S  

Value-at-Risk, Parameter Uncertainty, Time-varying volatility, Fat tails 

1. INTRODUCTION 

An important and popular risk-management tool for financial institutions 
nowadays is Value-at-Risk (VaR). (See, e.g., Jorion (2000) for a thorough 
overview). VaR analysis is not only a useful internal management tool to 
check whether traders are within their limits, but it is also a (by the Basle 
Committee prescribed) risk measure for the (international) supervisor. VaR is 
an estimate for the maximum value that can be lost over a certain period 

* We thank Johan van der Ende, two anonymous referees and participants of  the AFIR-2000 collo- 
quium for useful comments on an earlier draft. The usual disclaimer applies. 
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within a given confidence interval. The confidence level reflects extreme mar- 
ket conditions with a certain probability of, for example, 2.5% or 1%. 

Crucial for the determination of  the extreme future market value, and 
hence for the VaR, is the distribution function of the return on market value. 
As allowed by the Basle Committee, a normal or lognormal distribution has 
usually been assumed for the market return. Recently, alternative distribu- 
tions have been proposed that focus more on the tail behavior of the returns. 
See, for example, Embrechts, Kluppelberg and Mikosch (1997), McNeil and 
Frey (1999) and Lucas and Klaassen (1998) for a discussion. A normal distrib- 
ution supposedly underestimates the probability in the tail and hence the VaR 
result. Popular alternatives in the financial literature include GARCH-type 
models which allow for time-varying volatility, and the Student-t distribution, 
which allows for more probability mass in the tail than the normal distribution. 
For a review of (G)ARCH models, see Bollerslev, Engle and Nelson (1994). 

Other papers have focused on different risk measures and different VaR 
methods. See, for example, Drudi et al. (1997), Van Goorbergh and Vlaar 
(1999) and Jorion (1996). We focus here on portfolio treatment and the effect 
of parameter uncertainty on the reported Value-at-Risk estimates. 

The parameter values of a distribution function are unknown and are 
normally estimated using historical data. The usual approach is to plug the 
point estimates for the parameter values into the distribution function and 
treat them as given fixed figures. In fact, however, the parameter estimates 
incorporate uncertainty, which may be quantified by the standard errors of  
the parameter estimates. Uncertainty in the parameter estimates implies 
uncertainty about the underlying distribution function, and hence about the 
VaR estimate. We claim that parameter uncertainty is an important issue that 
should be taken into account as a VaR-model selection criterion. Parameter 
uncertainty affects the model choice in at least three ways. 

First, parameter uncertainty decreases with the number of  historical 
observations that have been used in order to arrive at parameter estimates. 
This implies that models with constant drift and volatility specifications 
are less attractive, since - implicitly - the assumption is made that these vari- 
ables have remained constant over a long period of time. The alternative of 
limiting the number of historical observations leads to enormous parameter 
uncertainty and hence to much uncertainty in the reported VaR estimates. 
This leads to a preference for time-varying volatility specifications. 

Next, distribution functions that allow for more complex tail-behavior also 
suffer from increased parameter uncertainty. Extreme historical observations 
determine the estimates for tail parameters. The explanation is that extreme 
events have a low frequency, which leads to more parameter uncertainty and 
hence to more uncertainty in the reported VaR estimates. There seems to be a 
trade-off between model complexity and parameter uncertainty. In the empir- 
ical part of the paper we make explicit the effect of parameter uncertainty 
by reporting not only a "best-estimate" VaR, but also a standard deviation of 
this VaR estimate. 

Finally, the calculation of VaR estimates for a portfolio of securities usu- 
ally requires a return specification for each security in the portfolio. Also the 
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interaction between the different securities has to be taken into account. This 
leads to multivariate models that include many parameters all of which are 
estimated with uncertainty. This suggests that a VaR estimate for a portfolio 
of securities is more uncertain. 

In this paper we propose a method to circumvent the adoption of multi- 
variate models for the calculation of a portfolio's VaR. Instead of considering 
each asset individually, we determine the "constant maturity"-value of the 
current portfolio at all times in history. The "constant maturity"-value is 
determined by evaluating the current portfolio against historical yields, 
exchange rates, stock prices and volatility smiles. This constant maturity value 
is dealt with in detail in section 2.3. The resulting time series of constant matu- 
rity returns may be modeled in a univariate time series framework. The result- 
ing model is used to provide a VaR estimate for the constant maturity value of 
the portfolio. 

We claim that the constant maturity value of a portfolio over short fore- 
casting horizons is (almost) equal to the actual value of the portfolio. The most 
pronounced examples of maturity-dependent securities are bonds and options. 
In case of bonds, the difference between the constant maturity value and the 
actual value arises because the discount yield with a different maturity has to be 
applied, and because the time-to-maturity is different. Since yields usually lie on 
a smooth curve, and the difference in maturity is small when the forecasting 
period is small, the difference will also be small. In case of options, the matu- 
rity of the contract affects the price through the time value of the option. 
Again, differences in time value are small when the difference in time-to- 
maturity is small. Moreover, the effect of the volatility of the underlying secu- 
rity is far more important than the time-value effect. The constant maturity 
assumption is in line with commonly used methods such as Risk Metrics. 

An advantage of this approach is that it focuses on the portfolio return 
directly and not on individual security returns. In the latter approach it will 
in general be more difficult to adopt the complex (non-linear) relationships 
that are present between the individual security returns. The transformation 
to the univariate constant maturity portfolio automatically includes the effect 
of these features on the portfolio level. A second advantage is that we can 
restrict ourselves to univariate models, which have the advantage of  less para- 
meter uncertainty than multivariate models have, simply because univariate 
models have fewer parameters to estimate. 

In the empirical analysis of this paper we consider an actual portfolio of 
securities that are affected by exchange rates and changes in the yield curve. 
We propose four different models for the constant maturity portfolio return. 
These models are the Student-t distribution with a GARCH(1,1) volatility 
specification and three special cases of this model. An in-sample comparison 
of the four models will be carried out to test which model best describes the 
historical data. We also analyse the out-of-sample implications for these mod- 
els including the uncertainty in the VaR estimates. 

The next section sets up the mathematical framework for the empirical 
analysis. Section 3 describes the data, section 4 reports on the empirical analy- 
sis, and section 5 concludes. 



302 DENNIS BAMS AND JACCO L. WIELHOUWER 

2. THE MATHEMATICAL FRAMEWORK 

Consider a portfolio with value Wt at time t. The value-at-risk is a statistical 
estimate of a portfolio loss with the property that, with a given (small) prob- 
ability a, we stand to incur that loss or more, over a given (typically short) 
holding period L. To reflect extreme market conditions, commonly selected 
values for a are 5% or 1%. Common time periods that are taken into consid- 
eration are L = 1, 10, 20 days. A formal definition for the VaR reads: 

Pr (Wt-Wt+ L _> Var~,L)=a (1) 

The probability that the decrease in value over a time period of L days 
exceeds the VaR estimate is t~. Econometric models are not usually stated 
in terms of values, but rather in terms of returns. Define the continuously 
compounded return at time t as follows: 

r,: lnI  1 
We discuss three elements that are crucial for the determination of Value- 
at-Risk estimates in this framework. First, a probability distribution for the 
future investment value is required. Second, parameter uncertainty has to be 
taken into account. Third, we have to consider changes in portfolio values, 
which are usually not available in historical data. 

2.1. Distribution Functions and Tests 

We propose and compare four distribution functions for future returns: 
(1) the unconditional model, which uses only unconditional estimates for both 
expected value and the volatility of normally distributed returns, (2) the AR(1) 
model, which assumes an auto-regressive relation for daily normally distrib- 
uted returns with constant volatility, expanding the first model with an auto- 
regressive part, (3) the N-GARCH(1,1) model for daily returns with normally 
distributed error terms and a GARCH(1,1) structure on the volatility, and 
(4) the t-GARCH(1,1) model for daily returns with Student-t distributed 
error terms and a GARCH(1,1) structure on the volatility. All models are 
nested into the fourth case, which we will describe in some detail below. 

In a GARCH(1,1) model, the volatility of the return is given by a time- 
varying process, where volatility at time t, a[, depends upon the volatility of 
the day before and upon the shock in the return in the previous period. For 
the return itself we assume that it can be represented by an AR(1) model. The 
complete GARCH(1,1) model with Student-t distributed error terms reads 

r, =/x +p O;_l-/X)+e, (3) 

. , -  o) (4) 
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2 + (5) 

The N-GARCH(1,1) model follows after we let the degrees of freedom, 0, 
go to infinity (0---> oo). The AR(1) model with constant volatility follows after 
0---) oo, 71 = 0 and 72 = 0. The unconditional model follows when we impose 
the restrictions 0 ---> oo, 71 = 0, 7'2 = 0 and p = 0. Intuitively, the model without 
restrictions is the most flexible since it allows for time-varying forecasts of 
return levels, time-varying volatility and fat tails in the return distribution. 

All models are estimated with maximum likelihood. In the most general 
case (in which the error terms follow a Student-t distribution) the log-likeli- 
hood is given by 

lnL=  TlnF  ( ~ - ~ ) - T l n F  (O) - 1  Tln[rc (0-2) ]  + 

~t__~lln(a~)-(0~--~l)t__~lln -~(0_2)azl°t | 

where F(') is the Gamma-function and T is the number of historical observa- 
tions. In the special case of normally distributed error terms, the log-likelihood 
function reduces to 

2 1 ~t lnL =-½ Tln(2r0-½ ~ , ln  ( a , ) - 7  ~ 
t=l 

(7) 

Parameter estimates follow after application of the Newton-Raphson algorithm. 
The covariance matrix that is associated with the parameter estimates follows 
from the negative of the inverse of the information matrix. The covariance 
matrix (C) is given by 

~)21nL (p) -l 
C = - E  3p3p' 

p= fi 

(8) 

where p is the vector that consists of  the parameters that have to be esti- 
mated, and/~ denotes the parameter values for which the log-likelihood is 
maximized. 

We compare the in-sample performance of the four models by testing the 
restrictions that are imposed by the unconditional model, the AR(1) model, 
the N-GARCH(1,1) model and the t-GARCH(1,1) model. Formally, this 
results in a likelihood ratio test, where the critical value, X, is defined by twice 
the difference in loglikelihood, which is distributed as a chi-squared distribu- 
tion in which the degree of freedom is determined as the difference in number 
of parameters. So 

X= 2 [ l nLu-  lnLR] - X 2 (nu-nR) (9) 
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where lnL v denotes the value of the loglikelihood function in the optimum 
for the unconstrained model, and lnL R denotes the value of the loglikelihood 
in the optimum for the constrained model. With n v and n R we denote the 
number of parameters in the unconstrained and the constrained model, 
respectively. 

We also set up an out-of-sample test in which one part of  the data is used 
to estimate a model for the return distribution. This model is applied to esti- 
mate the VaR for 20 days ahead (which resembles a one-month forecast) 1. 
The VaR estimate is then compared with the realized change in the position 
of  the bank over the same period. This procedure is repeated using many dif- 
ferent sub-periods, which are "moving windows" of  Te observations that are 
used to estimate the model. Let us denote T, for the total number of  com- 
parisons between the actual change with the predicted VaR. Suppose that the 
number of  violations is denoted by 7",.. The null-hypothesis is that the per- 
centage of  violations of the VaR estimates is equal to a. Under the null- 
hypothesis, the number of  violations follows a binomial distribution so a 
goodness-of-fit test exists. This z2-test leads to a confidence level for the per- 
centage of  violations. We cannot reject the null-hypothesis at a confidence 
level of  p that the percentage of violations of the VaR is equal to a if: 

z (1) L / oo) 
a - a ( 1 - a ) ~ < T < a +  a ( 1 - a )  T, 

where Tt' denotes the percentage of violations and Z~ (1) is the critical value of  

the chi-squared distribution with one degree-of-freedom at a probability level 
p. When the percentage of violations is below the lower bound, then the VaR 
overestimates the risk; when the percentage of violations is above the upper 
bound, then the VaR underestimates the risk in the portfolio. 

2.2. Parameter Uncertainty 

We want to stress the existence of statistical uncertainty with respect to the 
VaR estimate, since the parameter estimates for the underlying return distrib- 
ution are uncertain. This uncertainty is most easily reflected by a confidence 
interval for the reported VaR estimates. The co'¢ariance matrix of the para- 
meter estimates reflects the uncertainty in the parameters. We take a close 
look at the special cases of the unconditional model, since in this case the 
parameter estimates and standard errors can be expressed analytically and 
therefore illustrate the econometric properties of the parameters. For the 

t We chose this holding period, since the book under consideration contains large parts of  portfolios 
that can only be reported on a monthly  basis. This implies, furthermore, that we must  deal with 
time-aggregation. 
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unconditional model, the parameter estimates lead to the following easy closed 
forms for the expected value 

1 v 
/~ = T ~,r, ( l l )  

t=l 

and for the volatility 

^~ 1 T 
a [ =  Z ( r t - ~ t )  2 (12) 

T - 1  t=l 

To reflect the uncertainty in these parameter estimates, one usually calculates 
the covariance matrix of  the parameter estimates. In the unconditional model 
the covariance matrix of the parameter estimates is given by 

(13) 

An important observation from the covariance matrix of  the parameter 
estimates in equation (13) is that the variances of p and a 2 decrease with the 
number of observations T, and hence that a large sample of observations is 
required to arrive at efficient estimates. This is in conflict with approaches 
that incorporate only a recent sub-sample of the data to arrive at parameter 
estimates that conform to the most recent market developments. This motivates 
models that allow for time-varying expected returns and time-varying volatility 

Parameter uncertainty may be taken into account by the asymptotic dis- 
tribution of the parameter estimates. In a Bayesian framework we sample the 
parameters p from the following parameter distribution: 

p ~ N (/3, C) (14) 

Consider M samples of parameters, which are denoted by p(1), ...,p(M). Dif- 
ferent parameter values lead to different distribution functions of the future 
returns. For all these parameter values we calculate the VaR estimates follow- 
ing the procedure outlined earlier. This leads to M values for the VaR esti- 
mate, denoted by VaR~,L(p (J)) . . . . .  VaR~,L(p(M)). So, instead of arriving at one 
VaR estimate, we have come up with a sample of VaR estimates. The uncer- 
tainty in the VaR may be quantified by calculating the standard deviation of 
the estimates. 

2.3 .  Por t fo l i o  T r e a t m e n t  

Let W t denote the value of the portfolio at time t. The investment portfolio 
consists of N individual securities. The price of security i at time t is denoted 
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by p/0, and the number of  shares of  security i at time t in the portfolio is 
denoted by w~ i). The value of  the portfolio is thus 

N 
Wtt = Z "  (t) n(i) w~ r t t= 1,..., T. (15) 

i=1 

The price of  a security depends upon security-specific properties and market 
variables. We assume that there are K security-specific properties. The security- 
specific properties of security i at time t will be denoted by -~it" (i),..., x~t. Exam- 
ples of  security-specific properties include the maturity of  a bond and the 
exercise price and maturity of  an option. We assume P market variables, 
which will be denoted by Ylt, ..., Ypt. Examples of  market variables are stock 
prices, interest rates, exchange rates and volatility smiles. The price of  secu- 
rity i at time t may be written as a function of  the security-specific properties 
and the market variables: 

P t ( i ) _  z.i (0 . . . , X K t ,  Y l t  . . . . .  Y m )  i= 1,...,N; t =1 ..... T (16) - J ~ x l t  ' (i) . 

Let T be the current time, which will serve as the starting point for the VaR 
calculation. The number of shares in each security and the security-specific 
properties at time T will be kept fixed. We introduce the constant maturity 
prices that follow by changing only the market values and not the security 
specific properties: 

~t(o_ ~-[ .(i) .(i) . "" ,YPt)  i= 1 ..... N; t = l  .... , T (17) - J ~ x l v  . . . .  ,Xz~r, Ylt ,  

The constant maturity portfolio values follow as 

N 
l~t=~--],w~/~ 0 t= 1,...,T. (18) 

i=1 

It is possible to calculate a univariate time series of  constant maturity returns 
for these constant maturity portfolio prices: 

1 
These first stages have a lot in common with historical simulation, which is an 
alternative method to estimate the VaR. With historical simulation, these 
returns are seen as the "'empirical distribution function" for the returns, from 
which the a% worst case can be observed. This is the VaR estimate using 
historical simulation. In contrast to historical simulation, we interpret these 
returns as a time series instead of  as a distribution function. 

For these returns we adopt a time-series model that we apply afterwards 
to generate forecasts for future values of the constant maturity portfolio, 
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denoted by ~VT+ L. Although the forecast for the constant maturity portfolio is 
not equal to the forecast of the actual portfolio, for small values of L the dif- 
ference will typically be negligible. For example, a bond or an option that has 
an actual maturity r at time T + L will have a maturity r + L in the constant 
maturity portfolio. The effect on the price of a bond or option is small 
when the difference in maturity is small. Note that this is in line with the 
assumptions made in commonly used VaR estimation methods such as Risk 
Metrics.The classical approach adopts a multivariate time series model for all 
the market variables instead of creating the constant maturity portfolio. The 
advantage of the latter approach is that no parameters need to be estimated 
that are irrelevant in a generally implemented model. Moreover, a simple model 
for the constant maturity returns may be able to include the same information 
as a more complex model on the multivariate level. Also, note that some 
parameters that may not be finite for the separate underlying market factors 
may be finite for the constant maturity return as a whole. Finally, note that an 
important advantage of creating a constant maturity return model is that we 
focus exactly on what we are interested in. 

3. DATA 

The data over the observed period represent the market-value changes of a 
2 specific portfolio of ING Bank . The book consists of interest rate risks 

in both NLG and DM. Furthermore, there is, on average, a long position in 
the book (i.e. the downside risk was related to increases in interest rates). We 
apply the algorithm outlined in section 2.3 to arrive at a constant maturity 
portfolio. The position ultimo April 1998 is valued against historical yield 
curves. The curves used are the daily swap-curves from the 'period of January 
24, 1991 through April 30, 1998. 

Table 1 provides summary statistics of the daily returns of the constant 
maturity portfolio. The empirical distribution is a bit skewed and exhibits 
fat tails, given a kurtosis that exceeds 3, which sometimes leads to extreme 
positive or extreme negative daily returns. In figure 1 the daily returns are 
represented as a time series. From the figure we observe that there are some 
periods in which returns are more volatile than in others, which motivates a 
model that accounts for time-varying volatility. Figure 2 presents the daily 
returns in a histogram, which reveals quite a number of extreme observations 
in the left tail. This motivates a distribution function that has fatter tails than 
a normal distribution. 

The last observed value for the portfolio is the starting point from the out- 
of-sample VaR analysis. This value is equal to W T = 3000. 

Because of confidentiality, we have scaled the data so that the results do not represent the actual 
market value changes. The implications for the VaR estimates are the same as with the real 
data. 
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TABLE 1 

SUMMARY STATISTICS 

Mean -0.03% 
Standard Deviation 0.82% 
Min imum -4.31% 
Maximum 3.71% 
Skewness 0.24 
Kurtosis  5.32 

Notes. The table presents summary statistics of the returns sample, which consists of  daily observa- 
tions for the period of  Jan. 25, 1991 through April 30, 1998. 

4.5% 

Figure 1. Time Series Returns 
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Notes." This figure presents the daily returns for the period of  Jan. 25, 1991 through April 30, 1998 in 
the form of  a time series. 

Figure 2. Histogram Returns 
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Notes." This figure presents the daily returns for the period of  Jan. 25, 1991 through April 30, 1998 in 
the form of a histogram. 
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4. RESULTS 

This section describes the estimation results for the four models under consid- 
eration. We start with an in-sample description and formally test the alternative 
specifications against each other. We then present the implied VaR estimates 
under the alternative specifications and provide a measure of reliability. We end 
with an out-of-sample test of the models, in which we compare the reported 
VaR estimates with the realized changes in the position of the bank for differ- 
ent sub-periods. 

All models are estimated using the maximum likelihood principle. In case 
of  the t -GARCH model, the likelihood function is given in equation (6). The 
remaining three models are special cases of  the likelihood function in equa- 
tion (7). Table 2 gives the parameter estimates for the four models. The aver- 
age value in the unconditional model is not significantly different from zero; 
the variance is estimated precisely when a long data sample is incorporated. 
The parameter results of the AR(1) model show that there is a significant 
relationship between two consecutive daily returns, given the estimate for p. 
The parameter estimates for the N-GARCH(1,1) model show the same rela- 
tionship for consecutive returns as that found in the AR(1) model. Further- 
more, the representation of  the conditional volatility shows that volatility is 
time-varying. Volatility is persistent on a day-to-day basis (given the high 
value for 71), and the impact of an unexpected shock in the previous period is 
significant (given the parameter estimate and the associated standard error 
for )'2). The t-GARCH(1,1) model shows parameter results that are similar 
to those of  the N-GARCH(1,1) model, but now we also find a significant 
estimate for the degrees of freedom. The estimate for 0 implies that the distri- 
bution of  the returns has more probability mass in the tail than in the case of 
a normal distribution. 

A formal way to compare the in-sample performance of the three models 
is to perform a likelihood ratio test. To compare the unconditional model 
with the AR(1) model, we test the restriction that p = 0 holds. Twice the dif- 
ference in loglikelihood is compared with the critical value of a chi-squared 

2 distribution with one degree of freedom. Since 6 is greater than Z0.95 (1) --- 3.84, 
we reject the restriction (p = 0) and prefer the AR(1) model over the uncondi- 
tional model. The data thus suggest that a time-varying drift is preferred over 
a model that assumes that conditional means are constant. 

Comparing the N-GARCH(1,1) model with the AR(1) model boils down 
to comparing two times the difference in loglikelihood with the critical 
value of a chi-squared distribution with four degrees of  freedom. Since 332 

9 
is greater than Z~.95 (4) = 9.49, we reject the restriction of constant volatility, 
and prefer the N-GARCH(I ,1)  model, which allows volatility to vary over 
time. Testing the t-GARCH(1,1) model against the N-GARCH(1,1)  model 
results in a preference for the former, since 84 is greater than the critical 

9 
value of  Xo.95 (1) = 3.84. From the results in table 2 we conclude that, with res- 
pect to the in-sample behavior of the four models, the data favor the t -GARCH 
(1,1) model. 
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TABLE 2 

ESTIMATION RESULTS 

Parameters t-GARCH(1,1) N-GARCH(1,1) AR(1) Unconditional 

/t (× 10 +3) -0.440 ~0.400 -0.320 -0.300 
(0.140) (0.150) (0.190) (0.190) 

p -0.083 0.059 -0.060 "0" 
(0.023) (0.023) (0.024) (-) 

Yo (x 10+5) 0.025 0.033 6.57 6.59 
(0.011) (0.014) (0.220) (0.221) 

Yl (*) 0.950 0.946 "0 . . . .  0" 
(0.011) (0.010) (-) ( ) 

y, (*) 0.046 0.049 "0 . . . .  0" 
(O.OlO) (0.009) ( ) ( ) 

0 6.309 %0 . . . .  oo . . . .  oo"  

(0.766) (-) ( ) ( ) 
al (x 10 +2) 0.390 0.408 0.810 0.812 

(0.106) (0.096) (0.014) (0.014) 
LnL 6238 6196 6035 6032 

N o t e s :  This table gives the parameter estimates for the t-distribution model and special cases of  this 
model. Standard errors are given within parentheses, a 1 stands for the standard deviation at the first 
time period, and lnL denotes the value of  the loglikelihood function. The models are estimated using 
daily observations for the period of June 25, 1991 through April 30, 1998. 

TABLE 3 

RESIDUALS 

t-GARCH(1,1) N-GARCH(1,1) AR(1) Unconditional 

Skewness 0.178 0.169 0.254 0.225 
Kurtosis  4.54 4.51 5.38 5.30 

N o t e s :  This table reports the third and fourth moments of  the standardized residuals for the t- 
GARCH(1,1) model, the N-GARCH(1,1) model, the AR(1) model and the Unconditional model. The 
associated standard errors are 0.058 for skewness and 0.12 for kurtosis. 

Table 3 presents values for both the skewness and kurtosis of  the standardized 
in-sample residuals. The standardized residual at time t is obtained by divid- 
ing the residual by the associated standard deviation at time t. All models 

(*) The condition for a bounded fourth moment  is just violated. In order to conclude that the 
reported standard errors for the volatility do have a meaning, we also determined the estimates 
using bootstrapping (so by simulation). The results obtained by bootstrapping are nearly identical 
to the results above. Therefore we conclude that, when the condition for a bounded fourth 
moment is only just violated, the reported standard errors of the volatility as calculated in tradi- 
tional ways still have a meaning. 
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result in residuals that show extreme kurtosis. Furthermore, to see whether 
the t-GARCH(1,1) model is a good model, we performed some more residual 
analysis which is summarized in figure 3: the QQ-plot. The QQ-plot shows 
that only in the extreme part of the tail there is a deviation between the 
observed residuals and the modelled residuals, which could indicate even fat- 
ter tails than modelled with the t-distribution. Note that this may well be the 
result of parameter uncertainty. We explicitly take parameter uncertainty into 
account in this paper. The out-of-sample results to be discussed shortly show 
that this is exactly what needs to be done in order for the observed violations 
to be consistent with the implied violations. 

Figure 3. QQ-plot for residuals t-GARCH(1,1) 
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Notes: The figure displays a QQ-plot of  the observed and the modelled residuals for the t -GARCH 
( 1,1 ) model. 

The four models are used to generate scenarios for future daily returns for up 
to 20 periods ahead (which corresponds to a period of one month). The 20 
generated daily returns are added to arrive at the total return over the one- 
month period. Generating many different scenario-paths provides a distribution 
of possible future portfolio values. Given all these possible future portfolio 
values, we are able to calculate the VaR estimate. 

Since the parameter values that serve as input for the scenario model are 
uncertain, we take account of this uncertainty by repeatedly drawing values 
for the parameters as given in equation (14). This results in an expected VaR 
estimate, together with a standard error that reflects the uncertainty in this 
estimate. In table 4 these values are given for all models. The value of  the 
initial portfolio is equal to Wr = 3000, so the different models roughly imply 
a VaR of 8% to 10% for a one-month period. The expected VaRs that are 
given by the unconditional model and the AR(1) model are almost the same. 
The N-GARCH(1,1) model assumes a significantly higher value at risk, since 
it accounts for both the negative drift in expected returns and the higher 
volatility in the most recent period than on average in the historical sample. 
This contrasts with the previous two models in which it is assumed that 
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volatility is constant. Finally, the t-GARCH(1,1) model reports the highest 
VaR, taking account of  fat tails, which directly explains why the VaR estimate 
is higher in this case. The more realistic representation of the t-GARCH(1,1) 
model comes at a price, since the associated standard error of the reported 
VaR estimate is higher than in the other models. 

TABLE 4 

VALUE-AT-RISK RESULTS 

t-GARCH(1,1) N-GARCH(I,1) AR(1) Unconditional 

309 245 230 231 

(25) (9) (12) (13) 

Notes: This table presents the expected VaR together with the associated standard error (within paren- 
theses) for the position one month ahead. The underlying models have been estimated on daily returns 
for the period of Jan. 25, 1991 through April 30, 1998. 

Table 5 considers the out-of-sample performance of the different models 
described in section 2. We consider Tt = 1700 sub-samples, each consisting of 
Te = 200 observations. The sub-samples are related to each other, since they 
are constructed as moving windows. To arrive at a new sub-sample, we delete 
the first observation from the old sub-sample and add the next observation 
after the old sub-sample. From the sub-sample the parameters of the four 
models are estimated. The estimated models are used to generate VaR fore- 
casts for an out-of-sample period of L = 20 days. The reported VaR is then 
compared with the actual observed change in value over the out-of-sample 
period. We report the percentage of cases in which the actual change in the 
position of  the bank exceeds the reported VaR. Also the upper and lower 
bounds of  the 95 percent interval around the VaR are determined. Figures 4 
and 5 present the reported VaR estimate, the associated 95 percent confidence 
interval for the VaR estimate and the actual change in the position of the 
bank for the unconditional and the t-GARCH(1,1) model, respectively. 

TABLE 5 

OUT-OF-SAMPLE VIOLATIONS 

t-GARCH(1,1) N-GARCH(1,1) AR(1) Unconditional 

VaR (low) 5.42 6.82 10.92 11.06 

VaR 2.29 5.42 9.18 9.18 

VaR (high) 0.97 4.52 7.02 7.02 

Notes. The table reports the actual percentage of violations of the predicted VaR under alternative 
model specifications. An appropriate model should result in a violation of 1 percent. The uncertainty 
in the reported VaR is reflected by the 95 percent lower- and upperbounds. 
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Figure 4. Unconditional model 
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Notes: The figure displays the forecasted VaR values together with 95 percent upper- and lowerbounds. 
The realized change in position is also displayed. The entire period preceding the time of forecast is 
used to estimate the model. 
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Figure 5. Student-t Distribution GARCH(1,1) 
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Notes.  The figure displays the forecasted VaR values together with 95 percent upper- and lowerbounds. 
The realized change in position is also displayed. The entire period preceding the time of forecast is 
used to estimate the model. 

For each of the different models, we test whether the models that forecast 1% 
violations of the VaR estimates, indeed result in 1% violations (within a cer- 
tain confidence interval). According to equation (10), under the null-hypoth- 
esis of a = 1% at a confidence level of p=  5%, the number of violations 

L T,. should be in the confidence interval: 0.53% < T, < 1.47%. A model that 

adequately takes account of the behavior of the return distribution would 
show a percentage of violations of the VaR that is within this interval. The 
results show that the most restricted model performs the worst, and that 
the percentage of violations decrease as the model becomes more general. 
The t-GARCH(1,1) model still shows a violation of 2.29 percent for the 
reported VaR estimate. If, however, we take account of the uncertainty in 
the VaR by considering the 95 percent upperbound on the reported VaR 
estimate, we then find that the reported VaR estimate implies a number of 
violations that is inside the proposed interval. 
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5. CONCLUDING REMARKS 

In this paper we have compared four alternative models to calculate VaR 
estimates for the value of  a certain portfolio of the bank. Crucial for this cal- 
culation is the underlying return distribution, since it reflects the probability 
of extreme returns. A number of  issues are important. 

First, the underlying probability distribution should be able to reflect 
the behavior of  extreme returns. Hence, the tail of the distribution should be 
well modeled. We proposed adopting a Student-t distribution, since it allows 
for fatter tails than a normal distribution. 

Second, the VaR estimate is based on historical return observations. Recent 
market circumstances should be most informative on the implied future return 
distribution. This is accomplished with either a time-varying return distribu- 
tion (based on a large historical data sample) or with an unconditional distri- 
bution (based on most recent observations only). The first method is prefer- 
able since a lot of observations are required to arrive at reliable estimates. 

Third, since the parameters of  the underlying return distributions are 
unknown, they have to be estimated. The associated standard errors of the 
parameter estimates reflect uncertainty in the underlying distribution, which 
implies that the reported VaR estimates also incorporate uncertainty. We have 
reported the VaR estimates together with a standard error. The empirical 
implications are that a relatively long time series is required in order to arrive 
at a relatively reliable VaR estimate (i.e. with low associated standard errors). 
The preferred model is the t-GARCH(1,1) model, since it allows for time- 
varying drift and volatility to take account of the most recent market circum- 
stances, and since it allows for fat tails. 

Fourth, in order to model the VaR of a portfolio of  securities, we trans- 
form the data into a constant maturity portfolio. This results in a univariate 
time series that increases the reliability of  the VaR estimation. The alternative 
is to consider a multivariate time-series model that requires estimation of  
more parameters. This decreases the reliability of  the estimation results. 

Fifth, the out-of-sample tests show that, when comparing the realized 
change in value of the constant maturity portfolio with the VaR estimates, all 
models result in significantly more than 1% violations of the I%-VaR. The 
t-GARCH(1,1) model reports a VaR that shows the least number of viola- 
tions. Taking into account the uncertainty of  the reported VaR estimate, we 
cannot, in fact, reject the result that the t-GARCH(1,1) model adequately 
describes the VaR of a portfolio. 
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