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Abstract
This paper considers sequencing situations with due date criteria. Three different types of criteria are considered: the
weighted penalty criterion, the weighted tardiness criterion and the completion time criterion. The main focus is on

convexity of the associated cooperative games. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In one-machine sequencing situations a number of jobs have to be processed on a single machine. We
assume that associated to each job is an agent (player) who has a specific cost function which among other
things depends on the completion time of his job. Further, an initial order of the jobs of the agents is
assumed before the processing of the machine starts. The objective is to find a processing order of the jobs
that minimizes the aggregate cost function of all players.

Once this order has been obtained, a new question arises: how to allocate the corresponding cost savings
with respect to the initial order among the agents? Curiel et al. (1989) analyzed this problem by considering
corresponding cooperative sequencing games for the special class of sequencing situations in which all
H players use a weighted completion time criterion. It was shown that all sequencing games of this type are

convex games, so that allocation rules which always result in outcomes that are stable against coalitional
deviations (core elements) can be devised. The EGS-rule, which is based on an allocation procedure that
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follows the algorithm to proceed from the initial order to an optimal one, was proposed as a particular
choice of such a rule.

In Curiel et al. (1993) a more general class of sequencing situations is considered. For each agent,
the cost function is just assumed to be weakly monotonic in the completion time of his job. The
corresponding classes of sequencing games were called gg-component additive games, where oy repre-
sents the initial order of the jobs. These games are, in general, not convex but core elements do exist.
The f-rule was proposed as an extension of the EGS-rule, always yielding stable outcomes within the
core of the corresponding game.

Hamers (1995) and Hamers et al. (1995) considered sequencing situations where all agents use the
weighted completion time criterion but where also to each job a ready time is associated: the earliest time
the processing of this job can begin. It was shown that if in the initial order the jobs are arranged such that
the ready times are non-decreasing, the corresponding games are ag-component additive games. Moreover,
if all the jobs have equal processing times, then these games are convex.

In this paper we deal with sequencing situations where a due date is associated to each job: a time
moment before which the processing of the job should be finished. Moreover, for each agent the cost
criterion not only depends on the completion time but also on the due date of the corresponding job. We
will assume that all players will use the same type of criterion. Three types of criteria are considered:
¢ the weighted penalty criterion,

o the weighted tardiness criterion,
o the weighted completion time criterion.
In each of these cases, the associated sequencing game is gy-component additive.

Our aim is to analyze the convexity property for each of the three corresponding classes of cooperative
games. The convexity condition expresses that the incentives of an arbitrary agent for joining a certain
coalition increase as the coalition grows. In the context of cooperative games, the property of convexity has
drawn the interest of several researchers. The class of convex TU games has several nice properties. Shapley
(1971) and Ichiischi (1981) showed that the extreme points of the core are the marginal vectors of the game
if and only if the game is convex. Hence, convex games have a non-empty core. Moreover, with respect to
one-point game theoretical solution concepts, it holds that the Shapley value (Shapley, 1953), which is by
definition the average of the marginal vectors, is the barycenter of the core. Besides, the convexity property
has been also extended and applied to the class of NTU games (Vilkov, 1977; Sharkey, 1982) and to the
class of stochastic cooperative games (Suijs and Borm, 1999).

It turns out that convexity is not satisfied in general for the classes of games we deal with, It de-
pends on the different parameters of the model: the processing times, the due dates, and the exact
penalties for being late. We will show which classes of parameters do and do not necessarily lead to
convexity.

The organization of the paper is as follows. In Section 2, we describe the underlying sequencing
model and provide a characterization of the property of convexity for the class of og-component ad-
ditive games. In Sections 3 and 4, we analyze this property for the class of sequencing games that arise
from sequencing situations where the aggregate cost function is based on weighted penalty criteria and
weighted tardiness criteria, respectively. In each of these sections, we first describe a procedure that
leads to an optimal order. Several examples illustrate that not all games associated to these sequencing
situations are convex. Nevertheless, convexity holds by fixing some parameters in the model. In Section
5, we show that sequencing situations in which all jobs have equal processing times, the due date of
each job is a multiple of its processing time and the cost of each job is given by the weighted com-
pletion time function, yield the same class of convex games as the sequencing situations in which all
jobs have equal processing times. The ready time of each job is a multiple of its processing time and
the cost of each job is determined by a weighted completion time criterion, i.e., the class considered by
Hamers et al. (1995).
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2. Sequencing situations and games with due dates

A sequencing situation with due dates or briefly a d-sequencing situation is given by a S5-tuple
(N, a9, p,d, c), where N is the set of jobs to be processed on a machine, oy is the initial order® of the jobs,
P = (1) 1s @ vector specifying the processing times, d = (d;),y is a vector specifying the due dates such
that dy) < -+ <oy, and ¢ = (¢;),y specifies the cost function ¢; : [0, 00) — IR where ¢;(¢) is to be
interpreted as the cost incurred by agent 7 if his job is completed at time #. In this paper we consider three
types of cost functions:

(C1) “weighted penalty”

0 ifr<d,
1 _ Xy
(’)“{ai ift>d,

where o; > 0. So if job i € N is completed after its due date, it incurs a fixed cost ;.
(C2) “weighted tardiness” 2

ci(t) = ymax{t —d;,0} = w,(t — dy),

with ¢; > 0. Hence, job i incurs no costs if it is completed in time and a cost proportional to its tardiness if it
is completed after its due date.
(C3) “weighted completion time”

cl(t) = wt,

i

where «; > 0. The cost for job i is proportional to its completion time. There is, however, one obvious
restriction here. It is assumed that we only consider orders in which all jobs are on time.
If the jobs are arranged by an order ¢ € II(N), let ¢,; be the starting time of job i, i.e.,

ta',i = Z 13
keN:olk)<n{i)
and let C(o,S) be the time moment that all jobs in S are completed if the order is given by g, i.e.,

C(O', S) = Z Pk,
keNwo(k) < o(m)

where m € S is the last player in S according to the order given by o, i.e.,
om)zok) forallkes.

With minor abuse of notation we will write C(z, i) instead of C(a, {i}). Let ¢,(S) be the aggregate cost of S
in the order given by o,
eo(S) = ai(C(a,1).
€S
The (maximal) cost savings of a coalition S depend on the set of admissible rearrangements of this

coalition. We call a bijection ¢: N — {1,...,n} admissible for S if it satisfies P(c,7) = P(0y,i) for all
i €N\S, where

! Formally, gy is a bijection from N to {1,...,n} where ay(i) = s means that job 7 is in position s in the queue before the machine. We
will denote the class of all these bijections by II(N).
* Given ¢ € R, we will denote [1}, = max{t,0}.
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P(o,i)y={jeN|a(j) <a(i)}.

Hence, we consider an order to be admissible for S if each agent outside S has the same starting time as in
the initial order. Moreover, the agents of S are not allowed to jump over players outside S. The set of all
admissible rearrangements for a coalition S is denoted by Zs.

Given a d-sequencing situation (N, q,d,p,«) the corresponding sequencing game is defined in such a
way that the worth of a coalition S is equal to the maximal cost savings the coalition can achieve by means
of admissible rearrangements. Formally, we have

o(S) = max{es, (S) = ¢o(S)} = ¢,(S) = es(S),

where ¢ € Xy is an optimal order for the coalition S.

From the definition of admissible rearrangements it follows that the essential coalitions for sequencing
games are the connected ones. A coalition S is called connected with respect to op if foralli,j € Sandk € N
such that o¢(i) < go(k) < go(j) it holds that £ € S. For convenience, we use the following obvious notations
for the different types of connected coalitions:

(m, flgy = {k | o0(m) < ay(k) < oo(j)},
[m,)),, = {k | oo(m) < ao(k) < o)},
(m,)ey = 5| o0(m) < ou(8) < ou(i),
[m, J1,, = {k | ao(m) < ao(k) < 00(j)},

if m and j are jobs such that go(m) < ao(j).

A game (N,v) is called comvex if o(TU{i})—o(T) Zv(SU{i})—v(S) for all ie N and all
ScTrchN\{}

Curiel et al. (1993) introduced the class of oy-component additive games. Given oy € II(N), a cooperative
game (N, v) is called a ag-component additive game if the following three conditions are satisfied:
e u({i}) =0 foreach i € N;
¢ v is superadditive: for each S, 7 € 2V if SN T = 0, then v(SU T) = v(S) + v(T);
* 0(S) = Y resq, V(T), Where S/ay is the set of all maximally connected components of S.

Note that from the conditions on admissible rearrangements it follows that d-sequencing games are gy~
component additive games.

Given a set of players N and a coalition T C N, the T-unanimity game ur is defined by uy(S) = 1if T C §
and ur(S) = 0 for all other coalitions. Every game (N, v) can be expressed as a linear combination of the
T-unanimity games as follows:

V= Z AU(T)HT,
where
A(T) = (=1)TFly(s).
scr

These coefficients are called the dividends and their computation can be a hard task. Given is a og-com-
ponent additive game A,(T) = 0 for every non-connected coalition T as a direct consequence of Theorem 2
in Owen (1986). Then, in this class of games, only the dividends associated to the connected coalitions
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appear. In the following result we obtain a simple expression for the value of these coefficients for an
arbitrary go-component additive game.

Proposition 1. Let (N,v) be a ay-component additive game. Then the characteristic function v can be written
as
v= Z Elkllay Hlkidlay
[k,]l,,oCNlao(k)<du(l)

where

8ty =V{[k: 5,) = v([k, I)g,) — 0((k, 11,) + 0((K, 1), )-

Proof. W.o.l.g. we assume N = {1,...,n} and gy € II(N) such that go(i) = i for all i € N . We also omit the
subscripts. Define

Z 8k Uik

[kdJCNE<l

Let T =[i,j] C N be a connected coalition with i < j. Then

J-1 J=1 J
w(T) = = Zg[k,n—z > (e, ) — v(lk, 1)) = o((k, 1) + o((k, )]

[k, 1]C[i,j]-k<1 k=i I=k+1 k=i I=k+!

:j_ Ej: [v([k, 1)) = v([k, 1))] S i (&, 1]) — v((k, 1))]
k=i |=k+1 =i I=k+1
j—-1 Jj-1

=Y [o([k, /) = v({k})] - Zu((k,j]) = o([i, /]) = o(T).
k=i k=i

Now, let T C N be a coalition. Then using the op-component additivity and the proof above we find

o(Ty= Y oS =Y w(s).

SeT\6y SeT\ap
Moreover,
z w(S) = Z ( Z g[k,,]u[k,,](S))
SeT\og SeT\ay \ [kIJCN:k<!
= Z g[k’/]( Z u[k,l](S)> = Z g[k11]u[k,1](T) = W(T)
kJcNk<! Sel\oy [k |CN:k<]

Hence, we find w(T) = o(T). O
Remark. Note that we can write the coefficients in two ways:

gy = [v([k, 1) — o([k, )] = [o((k, ) — v((%, 1))]
= [o([k, 1) = o((&; 1] = [o((k, 1)) = (K, ).
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The first expression can be interpreted as follows: the first part, v([%, /]) — v([k, /)), measures the con-
tribution of player / (the last player of the coalition [k, /]) if he joins at the end of the ordered coalition [k, /),
and the second part, v((k, /]} — v((k, 7)) measures the contribution of player / if he joins at the end of the
ordered coalition (k, [). So, the difference specifies the role of player k to the marginal contribution of player
1. The second expression can be interpreted in a similar way.,

The following theorem is a direct consequence of the results above.

Theorem 2. Let (N,v) be a ag-component additive game. Then (N,v) is convex if and only if the coefficients
8k, are non-negative for all k,1 € N such that oy(k) < oo(/).

The following sections are devoted to the study of the convexity of the sequencing games arising from d-
sequencing situations. As a consequence of Theorem 2, in order to check whether a gy-component additive
game is convex, it suffices to check the non-negativity of all the coefficients gy, By . This fact implies a
significant reduction in the number of cond1t1ons that need to be checked for the convemty of these games.

n

We have to verify {(n—1)(n—2) conditions.’ This clearly improves the > _,(?)(5) conditions that
Zumsteg (1995) 1nd1cates for the general case.

3. Convexity of sequencing games arising from d-sequencing situations with cost criterion C1

In this section we study the convexity of the sequencing games that arise from d-sequencing situations
(N,00,p,d,c') when all players use a cost criterion fitting C1. These situations we call Cl-sequencing sit-
uations. The next example shows that, in general, the associated game need not be convex.

Example 1. Let us consider the following Cl-sequencing situation:
. N=1{1,2,3,4},
. cro()—-zforallzeN
= (300, 201,201, 100),
. d,-=500for allieN,
.o;=1forallieN.
Easy calculations show that

gua =L, 4 —v(1,4] - v[1,4)+0v(1,4)=1-1-1+0=-1<0.

Hence, the corresponding game is not convex.

due date

initial order

optimal [1,4]

optimal {1,4)

optimal (1,4]

optimal (1,4)

Optimal orders w.r.t. C1

3 When oo(/) = oo(k) + 1 » 8k, = v([k, 1)) and then, clearly gy, N, 2 0.
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The Cl-sequencing situation of Example 1 illustrates the fact that the associated cooperative games to
Cl-sequencing situations with equal unitary penalties or equal due dates, in general, need not be convex. If
we consider Cl-sequencing situations where all jobs having equal processing times, the associated se-
quencing game will be convex. In order to prove this result we only need to check the non-negativity of the
coefficients gy, ey for every connected coalition [k, l] . We will use the Lawler algorithm (Lawler, 1976) to
find an optimal order of every connected coalition w. 1.t. the initial order in the associated sequencing game,
and then we can easily compute the marginal contributions of each player who joins at the end of the
connected coalition.

Let usconsider gy € IT(N) and letm, j € N such that ay(m) < ay(j). We will denote %, Jl, S aset of players
which is in time in an optimal order ¢ of [m, j],, where every jobi € N \ [m, j],, is located in the position a5(i).
For each W, » Ginj,, is the set of jobs of [m, jl,, that cannot be completed in time in the optimal order &
associated to ¥}, Ty ie., Gp doy = [m, j]U0 \ Vi oy Moreover, aj, Jeg will be the difference between the corre-
sponding cost of an optimal order of [m, /], and the associated cost of an optimal order of [m, ),

For simplifying the notation, if oy is the identity permutation, we will denote ¥, =V, G[l Je = G
and ap, =a;. V; will be called a j-optimal set. * In Example 1, V; = {4, 2} Gy = {3, l} and
Ay = apg = (0(1 +o3) = (o + 064) 2-2=0.

Lawler (1976) gave an O(n logn) algorithm to find an n-optimal set to minimize the weighted number of
tardy jobs under one additional assumption (w.l.0.g. we will assume that ¢y is the identity permutation):

Given i,j € N such that p; < p;, then o; = o;

This means that if a job has a shorter processing time than another, its penalty is at least equal or larger.
This condition is trivially satisfied if all the processing times are equal.
Take p; = g for all i € N. Lawler (1976) set

%=®a

and, recursively,

o~

V.= 1 IU{]} if (67", V.) +q<d,
’ JU{H\{l} otherwise,

where @/~! represents an optimal order associated to the (= 1)-optimal set ¥, and / is the minimum
element w.r.t. the following relation between elements of ¥,_, U {/}:

R . . o < o, OT

i<k if and only if {06,' — o and 3-1(i) < 31 (k)" 1)
Next, we will carefully compute the gains @; and locate the jobs in a specific position step by step.
Let us consider the initial situation given by ¥y = 0, 7° = ay.

First step:

Consider the first job. If it can be processed in time, go to the second step. If not, label it as garbage and
go to the second step. That means
L4 prlﬁdl, V] {1} anda = gJy.
o« Ifpy>d, Vi =10, GI-—{l} and &' = ay.

In both cases @; = 0.

* An n-optimal set is formed by the jobs that are in time in an optimal order of N.
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j-th step:
« If no garbage jobs exist (G;-, = @), put job j behind job j — 1.
o If j is on time, proceed to the next step. That means V; = Voou{j}, G, =0, and @; = 0.
o If job jis not on time, take the job / determined by (1) and put it rlght behind J.
Then, V ( U { j}) \ {I}. One of the following two cases must happen:
l—j,lhen V= V I @ ={j}and @, = 0.

[ V] | 6+

EE E—
éj={j}
l Garbage Jobs

If1#j, V= (PP \ {1}, G, = {I} and in this case there is a positive gain &, = o; — a.

~

V.

-t

LU | 6
L i B | ¢

G, =10

V=0, VI

o If garbage jobs exist ( -1 # 0), put job j right in front of garbage jobs.
o If now job j is processed in time, there are two possibilities:
Job j was already in time before it was moved. Then, it is certainly in time now. Hence, the move-
ment causes no gain, @; = 0, since all garbage jobs ahead of j were late and now still are. All other
jobs are still on time.
Job j was not in time before it was moved, moving it ahead the garbage yields a positive gain
a; =

In bothcases V,=V_u{j}and G, = G,
V., c.
| l &
| i ]’
P G=6;,
Vi=Vi,v{j}

o If now job jis not processed in time, then it was certainly not in time behind the garbage jobs, hence
moving it ahead of them does not yield a gain. Now choose the job / to be removed from ’I?,- LU {j} to
the garbage can as in (1). Put this new garbage job right behind the old garbage that remains in place.
Hence, there are again two possibilities:

I=j. Job j was the job that was added to the garbage. Then @ =0, ¥, =¥, and
Gy =G U}
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é.,
| || g+
[ | | &
N

1 5 j. Job jwas not the job that was added to the garbage. We see that the job j must now be in time
and a gain was made, @; = o; — . In this case ¥, = (¥,_,U{j})\ {{} and G, = G,_, U {I}.
V.,

G

Y Ea
| |

— L G=6,u

V= (Vv D)

py

If there are still jobs behind the garbage, go to the next step. Otherwise stop.

Note that the final n-optimal set ¥, has been achieved by non-negative switches only, @; > 0 for all
je{l,2,...,n}.

We have just described how to obtain an n-optimal set. Of course with obvious modifications this
procedure can be applied to obtain an optimal order of the coalition [m, j] with m < 1.

The following lemma shows that given a Cl-sequencing situation where all processing times equal ¢, a
relation between the set V[k 1> and the set V(k ;) can be established.

Lemma 3. Let (N, 69,p,d,c!) be a Cl-sequencing situation where p; = q for all i € N. It is verified that for all
k,1 € N such that ay(k) < (1),

Pty € Vit (2)
0< 'a[k,l]ao - ”G\!(k.l]ao <1, (3)
), = A,y = 0- 4)

Proof. See Appendix A.

Example 2. This example shows that to have (2), (3), and (4) we really have to restrict to equal processing
times. In Example 1, it is easy to check that

’@[1,3]| — l@‘(m]‘ =1-2=-1 and 3[1,4] — 3(1,4] =0-1<0.
Moreover, in the Cl-sequencing situation with

1. N =1{1,2,3,4},
2. ao(i) =iforallieNn,
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=(2,2,3,3),
=(2,2,5,7),
5.0=(5553) R
one readily sees that V4 = {3} and V4 = {4}.

Theorem 4. Let (N,ao,p,d,c') be a Cl-sequencing situation where p; = q for all i € N. Then the corre-
sponding sequencing game (N,v) is a convex game.

Proof. Taking into account the result of Theorem 2, it suffices to prove | that g, oy =0 forall k,/ € N such
that og(k) < 69(/). And, this is derived from Lemma 3, since gy, ly = = ay, oy ~ ag, (Kl ]

In the following table we summarize the convexity results for sequencing games arising from Cl-se-
quencing situations.

so;=b,di=e,and p,=gforallieN : convex (Theorem 4)
s, =bandp,=qgforallieN : convex (Theorem 4)
s, =bandd,=eforallieN : not convex (Example 1)
sd=eandp,=qgforalieN : convex (Theorem 4)
sp,=qforallieN : convex (Theorem 4)
sd=ecforallieN : not convex (Example 1)
ea;=bforallieN : not convex (Example 1)

4, Convexity of sequencing games arising from d-sequencing situations with cost criterion C2

In this section we study the d-sequencing situations (N, a9, p, d, ¢?) where all players use a cost criterion
fitting C2. This means that the associated cost to each job is proportional to its tardiness. We refer to these
sequercing situations as C2-sequencing situations. The associated games need not be convex in general as
the following examples illustrate.

Example 3. Let us consider the following C2-sequencing situation:

1. N={1,2,3},

2. op(i)y =iforallieN,
3. p=1(2,3,1),

4. di=3forallieN,
5. a=(4,5,8).

Easy calculations give us the value of g3
gna =v[1,3] - o(1,3] — o[1,3) +v(1,3) = -2 < 0.
Thus, the associated game to this C2-sequencing situation is not convex.

Example 4. Let us consider the following C2-sequencing situation:
. N=1{1,2,3,4,5},

. og(iy=iforallieN,

p=(19,17,16,9,9),

. d =1(20,22,28,35,40),

o;=1forallieN.

NN I
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In this case, the value of g 5 is given by
gus = v[1, 5] —v(1,5] — o1, 5) +v(1,5) =21 =21 =11 +9=-2 < 0.

From Examples 3 and 4, one can derive that in order to guarantee the convexity of the associated se-
quencing game to a C2-sequencing situation, it is not enough to consider jobs with either the same due
dates or the same penalties for their tardiness. Nevertheless, convexity appears when all jobs have both
equal penalties for their tardiness and equal processing times, or both equal due dates and equal processing
times, or both equal due dates and equal penalties for their tardiness.

In the first case, the associated sequencing game is a zero game, since all jobs are arranged in a non-
decreasing way of their due dates in both the initial and an optimal order (Smith, 1956). In order to study
the two remaining cases, we proceed in the following way: first we state the gains attainable for player i and
jin case player i is directly in front of player j; then, we establish a result that gives us a way to find an
optimal order; and, finally, we prove the convexity results.

Lemma 5. Let (N, 0,p,d,c*) be a C2-sequencing situation where d; = e for all | € N. Let us take i, j € N such
that o(j) = o(i) + L.
@) If o) = b for all | € N, the gains of switching i and j are given by

8, = [min {[b(C(O', i) - e)]+) b(pi —pj) }]y (5)
(b) If pr = q for all | € N, the gains of switching i and j are given by
gid, = [ min {[(05 = )P0, )] +2)g — )], qleg — o) }] . (©)

Proof, See Appendix A.

Next we describe an optimal order for a C2-sequencing situation when all players have both equal due
dates and equal processing times, or both equal due dates and equal penalties for their tardiness. This result
is directly derived from Lemma 3.

Lemma 6. Let (N,aq,p,d,c*) be a C2-sequencing situation where d; = e for all i € N.
(@) Ifo; =b foralli € N, then 6 is an optimal ovder if

Doty € 0 S Pa1() SPe-1) S 00 S D1y (7)
®) If pr=q for alli € N, then & is an optimal order if

Asml(1) 2 000 Z Ul 2 Ugoteql) 2 700 2 Og-i() (8)

Remark. From the previous lemma a processing order in which all the jobs are processed in a non-de-
creasing way w.r.t. the urgency index, defined by w; = o;/p; for all i € N, maximizes the total gain. Nev-
ertheless, there are several optimal orders. In case (a), two optimal orders differ in the position where the
jobs in time or the jobs with equal processing times are placed on; in case (b), clearly, these differences are in
the position of the jobs in time or the jobs with equal penalties for their tardiness. Moreover, for any proper
connected coalition .S, we can obtain an optimal order just applying to the jobs in S the constraints (7) (case
(a)) or (8) (case (b)), respectively. On the other hand, given an optimal order, 6, for a coalition (i, /], , it is
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clear that we can find an optimal order for coalition [i, /], through switches of player i and any player
k € (i, jl,, such that oo(7) < 8¢, (k) < 00(/) and p; > p; (case () or oy < oy (case (b)). The aggregate gains,
which are obtained from these switches, equal the difference between v([i, j],,) and v((i, /,,)-

Theorem 7. Let (N,oq,p,d,c*) be a C2-sequencing situation such that d; = e for all i € N. The associated
sequencing game is convex when o; = b for allie N, orp,=q for alli € N.

Proof, We only prove the theorem for the case o; = b for all i € N,

Let (N,v) be the associated game to (N, gq,p,d, ¢?). Taking into account Theorem 2, we just have to
check that o([i, /1,,) — v((i, ]1,,) = v([i, /),,) — v((3,)),,) for all connected coalitions i, /],, €N with
oo(i) < oo(j).

W.Lo.g. we will suppose that gq is the identity permutation, [i,j] = [l,#] =N, and & € II(N) is an op-
timal order of N such that ¢(i;) = k (player iy is located in position k in an optimal order & of N). So, due to
the remark above, we can suppose that p;, <p, < - <p,.

Let 6(1) = s and 6(n) =1, where s,z € {1,2,...,n} and s # ¢. Two cases may be considered:

Case 1. t > 5. This means that player n is coming behind player 1 in the optimal order ¢. Then, as a
consequence of Lemma 6, player 1 switches positions with other players in (1, #) until he attains position s.
As a direct consequence of Lemma 5,

o[1,n] — v(l,n] = v[1,n) — v(1,n).
Case 2. t < s. In this case, player n is coming ahead of player 1 in the optimal order . Then, applying

Lemma 6, player 1 reaches position s in ¢ by switches with players iy, ..., i1 € (1,n]. Using Lemma 5, the
marginal contribution of player 1 to (1,n] is given by

s k—2
o[, 0] ~v(l,n] = Z [min { [b (C(ao, 1) + Zp,-, - e)jl ,b(p1 —p,-k_l)H . 9)

k=2

Meanwhile, player 1 reached position s — 1 in an optimal order of [1,n) by switches with players
By ool bigly vyl € (l,n) Then,

U[l,n) - D(l,n) = Xr: |:IT11D { |:b (C(GOa 1) + ipi, - e):l )b(pl “pfk—l)}:|
k=2 1=1 + +
mln{ b<C(O-0, 1) + ipﬁ —bi e)] ?b(pl _pik_|)}:} . (10)
= +

5
+3
F=r42 "

Easily, expressions (9) and (10) can be compared: all the terms in both expressions are non-negative;
each one of the ¢+ — 1 initial terms coincides in both expressions; and for each k =¢+2,...,s

b
I

[

E

(-2

Py = Py — Py

=1

\_
il
—

Therefore, v[1,n) — v(1,n) <v[1,n] — v(1,n].
Hence, we conclude that the associated game is convex. [J

In this section we discussed the convexity property of the games arising from C2-sequencing situations
according to the different parameters of the model. Nevertheless, one case is still unsolved. When all jobs
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have equal processing times, Slikker (1993) proved that if the job number is less than or equal to 4, the game
is convex. But, in case of a larger number of jobs, the convexity problem is still open.

In the following table we summarize the convexity results for sequencing games arising from C2-se-
quencing situations.

ed=eforallieN : not convex (Example 3)
ey, =bforallieN : not convex (Example 4)
ey, =bandd =eforalieN : convex (Theorem 7)
ep=gandd =eforallieN : convex (Theorem 7)
ey=bandp=gforallieN : convex (zero gaime)
ep=gforallie N tif |[N| £ 4, convex

. if [N| > 4, open problem

5. Convexity of sequencing games arising from d-sequencing situations with cost criterium C3

In this section we concentrate on d-sequencing situations that satisfy
(Al) de{l,...,n}and py=1forallieN.

Further, it is assumed that there is an initial bijection oo : N — {1,...,n} on the jobs of the players
before the processing of the machine starts with the properties

(A2) d;<d;foralli,jeN with 0y(i) < 00(j), and C(op,i) <d; forall i e N
and
(A3) oq(i) = C(oyg,i) for all i € N.

Note that assumptions (Al) and (A2) imply that in the initial bijection there is no time gap in the job
processing and that in particular the last job that is processed according to oy is completed at time ». In
spite of the conclusion that assumption (A3) is superfluous, we have added it here for the sake of conve-
nience and symmetry with ready time sequencing situations discussed later on. Moreover, the cost function
of each job is proportional to its completion time.

(A4) () =wt, forallieN.

H

These d-sequencing situations will be called C3-sequencing situations.

Since each job has to be completed before its due date, we will consider for each coalition S only those
orders ¢ € X5 such that satisfy C(o,i} <d;. Note that by the assumptions on the initial and admissible
bijections we have for any o € Zg that o(i) = C(0,i) for all i € N.

Next, we describe the special class of one-machine sequencing situations, in which all jobs have equal
processing times and the ready time of each job is a multiple of the processing time and the corresponding
class of games. The description of these sequencing games is identical to the d-sequencing situations. The
only difference is that there is no due date imposed on a agent but a ready time. The ready time #; of the job
of agent i is the earliest time that the job can be processed on the machine. We will concentrate on se-
quencing situations that satisfy

Bl) re{0,...,n—1}and py=1foralli e N.
The initial order ay has the properties

(B2) < foralli,j €N with oy(i) < gp(j) and C(ag,i) Zri+ 1 forallie N
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and
(B3) ay(i) = C(ay,i) forall i € N.

Note that assumptions (B1)~(B3) imply that in the initial bijection gy there are no time gaps in the job
processing and that the job that is processed last is completed at time #. Formulated in a different way it
means that jobs are identical with respect to processing times and that the machine is not idle before all jobs
are processed, 1.e. as soon one job is finished at least one job is available to be processed. The cost for agent
iis given by (A4). A sequencing situation as described above is denoted by (N, a9, r, p, o) and will be refered
to as an d-sequencing situation.

In d-sequencing situations we will only consider those bijections o: N — {I,...,n} that satisfy
C(o,i) 2 r;+1 for all i € N. The set of admissible rearrangements, denoted by &g, has the same restric-
tions with respect to interchanging positions between players of a coalition S as before. Hence, we may
again conclude that for any ¢ € /5 we have that o(i) = C(0,i). The corresponding sequencing game is
defined by

v(S) = max { Zoc,-C(ao,i) - Zoc,-C(cr, i)}.

ics ieS

Hamers et al. (1995) show that sequencing games arising from d-sequencing situations are convex by
establishing relations between optimal orders of sub-coalitions. These relations are obtained by analyzing
the procedure described in Rinnooy Kan (1976) that provides an optimal order. For the optimal order in d-
sequencing situations we can use the procedure of Smith (1956), which operates similar to the procedure of
Rinnooy Kan (1976). Both procedures aim for having the jobs with the largest cost coefficient o; as far as
possible at the front of the queue. The Smith-procedure has to take into account the due dates, whereas the
Rinnooy Kan-procedure has to take into account the ready times. For this reason the Smith-procedure
starts at the end of the queue, whereas the Rinnooy Kan-procedure starts at the front of the queue. In spite
of this difference it is possible for d-sequencing situations to establish similar relations between optimal
orders of various sub-coalitions as for d-sequencing situations. However, where in the Rinnooy Kan-
procedure these relations are established if a player is added at the end of a (sub)queue, in the Smith-
procedure these relations can be established if a player is added at the front of a (sub)queue. Following
exactly the same line of argument it can be inferred that sequencing games arising from d-sequencing
situations are convex games.

In fact, we will show even a stronger result: both classes of sequencing situations generate the same class
of sequencing games.

Theorem 8. Let R(N) and D(N) be the class of sequencing games that arise from r-sequencing situations and
C3-sequencing situations, respectively. Then R(N) = D(N).

Proof. We show that R(N) C D(N). Let (N,v) € R(N). Let (N, 0y, r,p,a) be a d-sequencing situation that
generates the game (IV,v). W.l.0.g. we can take og(i) = iforalli € N. Let S = {i,i + 1,...,/} be a connected
set w.r.t. oy. Then

i /
v(S) :max{Zakk—Zakxk |xe2rn+1VkesS, {x,... x}= {i,...,j}}. (11)

k=i k=i

Consider the d-sequencing situation (N, 7o, d,p, ) in which for all i€ N we define (i) =n+1—1,
d=n—r and B, =c+(a, —oy) with ¢ =maXyo. We first show that (N,7,d,p,p) satisfies the
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assumptions (A1)-(A3). Obviously, (A3) is a consequence of (B1), while (A1) follows immediately from the
definition of d and (BI). If 7¢() < to(m), then m < I which implies that r,, < ;. The definition of d yields
immediately that d; < d,,. Further, we have for any / € N that oq(]) = 2 r,+ 1 =n+ 1 — d;. This implies
that d) = n+ 1| — I = 14(l) = C(t0, [). Hence (A2) is satisfied.

Note that from the definition of 7q it follows that .S is also connected w.r.t. 7p. Then for the game (N,w)
corresponding to (N, 7o, d,p, f) it holds that

J i
W(S) :maX{Zﬁk(n"'_ 1 _k) _Zﬁkyk |yk<dk Vk € Sa {yia'--ayj}
k=i

k=i

:{n+l—j,...,n+1-—i}}. (12)

Let j be an optimal solution of (12). By defining £ by £, =n+1-j, for all k£ € {i,...j} we have

M-

J
w(S) =) Bln+1 _k)_Zﬂkﬁk
p

.
T

J
(c+a,—ap)(n+1—k)— Z(c—l—oc,, —o)(m+1—2%)
k=i

]
M-

bad
i

J J

= (c+0) S (& — k) + i‘ak(k —5) =3 ok — £) <o(S),

k=i k=i h=1{

where the first equality holds since y is optimal, the second equality by the definition of z;, § and %, the third
and fourth equalities by straightforward calculations. The inequality holds by (11) since
G=n+l-pzntl-di=n+l-(n—-n)=r+land {&... 5} ={i,...,/}

Let % be an optimal solution of (11). By defining $ by , = n+ 1 — % for all £ € S we can show in the
same way as above that v(S) < w(S), which completes the first part of this proof.

Obviously, the second part, D(N) C R(N), can be dealt with in an analogous way. O
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Appendix A

In this section we present the proofs that were omitted in Sections 3 and 4.

Proof of Lemma 3. We will prove the result by induction in the size of [k, /], with ay(k) < aq(7). W.Lo.g. we
will assume that ¢ = 1 and oy(/) = i for all i € N. Note that with this assumption the position of each job in
any order is its completion time.
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Let us suppose that / = & + 1. We distinguish two cases:
o k> d,. Clearly,

o If Vs = 0, then (2) holds. Moreover, |Ggsn] = 1 and dggin) = 0. Since k > di, |Gjgasy| > 1 and
&[k,k-(-l] = 0. So (3) and (4) hold. R

o If ’I;(k,k-l—l] = {k -+ ].}, then a(k,k.‘.l] =@ and &(k,k+]] = 0. Since k > dk, ’I}[k,k+l] = {k+ 1}, G[k,k+ll = {k},
and ) = 0. Then (2), (3), and (4) follow.

* k<d,. Clearly,

o If Vs =0, then (2) holds. Moreover, |Gpsn|=1,duiey =0, and |Fpuy| =1 since
k+1> dk+1 =d. =k So |G[L L+1]| =1 and (3) follows. Furthermorc e = 0 if oy <oy Or
Qpeprl] = Ot — o if gy > oy, In both cases dy rry) < dppq1) and (4) holds.

o If Vypsy) = {k+ 1}, then Ppun = {&, &k + 1}, G = 0, Gppry = 0, der) = 0 = dpgsrry. Thus (2),
(3), and (4) follow.

Let [ ]] be such that /> k+2. We may assume that Py, C V,0< [G[L,]| - |G(k,]| 1, and

Ak — Ay = 0 for all 7 such that k<r < 1. So, taking® r=1/—1

V(/.—,/) - V[k,/); (A1)
0< |G| ~ [Guen| <1, (A2)
Ay — dyny 2 0. (A3)
Three cases can happen in the algorithm in the step in which job / is added to [k, I) for getting a [k, /]

optimal set. R
o If V[k | = [A, then G[“ Gy U {!}. Taking into account (A.l1), (A.2), and the Lawler algorithm,
player [ will not be in time in a (k, /]-optimal set. Then

V}k,l] = /V(k,/), a(k,/] = AI U{l}, and @y = duy = 0.

Then (2), (3), and (4) hold. R
o If Vieyy = Viey U {1}, then Gy = Gy and @ = 0 if job [ is in time initially or @ = «; if job [is not in
time initially. We distinguish two cases:
o If|G[“ | = IG“ l then
Ve = Voo U1y, Gy = Gegy and @y = By
o If |Gyl = |G| + 1, then either
Vier = Vun U {1}, Gppy = G and Gy = G-
or
?(k,,] = (’I}(k.I) U{7})\ {m} and a(k,ll = CA?W) U {m}. Since / is not in time in the initial order and taking
into account the selection of the job m, then @y — @y = oy — (o — ) = &, = 0.
So, it is easy to check that (2), (3), and (4) hold. R R R
o If V[k = ( ey U {1} \ {m}, where m € V[“ with o, = min{e; | i € V). Then G,y = Gy U {m} and
@y = o — 0. Clearly, /is not in time in front of garbage jobs of G[“ or of G(A 5. Now, two cases must
be taken 1Bto account, R R R
o Ifme K(N)a then Z(/‘v’] = (Z(k'l) U {l}) \ {m}, G(k,I] = G(k,I) U {m}, and ?i(k,,] =) — Oy = 5[;“1].
o If m¢& Vi, then Vi = (W U{I}) \ {s} where

3 Let us notice that Py = V.
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se /V(k.l) u{l}c /I}lk,l) u{}

such that a,, < o = min{o; |i € Yy U {1}}.
Then Gy = Guy U {s} and Gy = @ — o5 <@gy Then (2), (3), and (4) hold.

Proof of Lemma 5. (a) Let (N, 0,p,d,c?) be a C2-sequencing situation where d; = e for all ] € N. Let us
take i,/ € N such that o(j) = o(i) + 1. Let us consider the ordering t to be defined by (/) = a(/) for all

1€ N\ {i,j}, t(i) = o(j) and ©(j) = o(i). The definition of g;; and 7 clearly implies that

g, = v(b7),) = lez(l6.4)) — e (B ,)],-
Then, in order to consider the cost saving between both orders, we must take into account the following

cases:
(A) e = C(0,1) and e = C(o, /). In this case players i and j are in time in the order g, and then they are

also in time when they switch their positions. So, gy, = 0 and

[min {[6(C(0,i) = &)}, b(p = p)) }], = [min {0,6(x: ~ p)) }], = 0.
(B) e = C(0,i) and e < C{a, ). In this case player i is in time in the order o, meanwhile player j is not in
time. It is trivial to check that gy, = O considering that «; = a; = b. Moreover,

[min {[6(C(0,1) — )}, bzr = p)}], = [min {0,b(ps = p)}], =0.
(C) e < C(o,i). In this case, player i is not in time in the order o and, hence, player j is not in time too.

We will distinguish two cases:
(C1) C(o,i) — p; + p; < e. If the players switch their positions, then player j will be in time and player i
will still be late. Thus, the gains are

8, = b( > mtn —e> = b(C(o,1) —e).

keP(o.i)

Clearly,
[ min {[6(C(o,i) — €)1, b(p: —-pj)}]+ = min {b(C(0,1) — €),b(p; — p;) } = b(C(0,i) — e).

(C2) C(o,i) — pi + p; > e. If the players switch their positions, both will still not be in time, and it is
trivial to check that

{b(Pi -p) if p>p;,
0

—

8y = otherwise.

In this case,

e if pi>pj,
[min {[6(C(a,1) — &)],, b(pi — ;) }], = min {6(C(a,i) ~ €),b(pi — 1))} = b(pi — p)).

b ifpigpj,
[min {[6(C(s,i) — €)],., b(; —pj)}]Jr = [b(p; —p,-)]+ =0,



P. Borm et al. | European Journal of Operational Research 136 (2002) 616-634 633

(b) Let (N, 0,p,d,c?) be a C2-sequencing situation where d; = e for all / € N. Let us take /,j € N such
that (j) = (i) + 1. Let us consider the ordering t defined by ©(I) = o(!) for all I e N\ {1, /}, (i) = o(j)
and 1(j) = ¢(i). The definition of g and t clearly implies that

g, = o(li /1) = lea(li 1) — e (1)) -

Then, in order to consider the cost saving between both orders, we must take into account the following
cases:

(A) e = C(a,i) and e > C(0, /). In this case players i and j are in time in the order o, and then they are
also in time when they switch their positions. So, gy, = 0 and

[min { (6 = ) ((1P(o, )] +2)g — )] aley = ) } | = [min {0,q(e = a)}], = 0.

(B) e = C(0,7) and e < C(o, f). In this case player i is in time in the order o, meanwhile player j is not in
time. It is trivial to check that

57D = e;([i, ) = (o — ) ((|P(0,1)] + 2)q — ).
Thus, g, = (& — &) ((|P(0, )| + 2)g — e)],. Moreover, since
Clo,i) = (|P(o,0)| + 1)g < e < (|P(0,1)| + 2)g = C(a,)),

it follows that

[min { (05 = ) (1P, )] +2)g = )] ey = @) } | = [(& = e)((1Po, )] +2)g =€),
(C) C(a,i) > e. In this situation, both players are not in time in the order ¢, then both will still be late
when they switch their positions. Then, g3 = [g(e; — )], . And, since (|P(a,)| + 1)g > e, we have:
o if a; > o, then

[min { (2 = ) ((1P(0, )| +2)g = &)] . a(ey — ) }| = alay — ).

e if oa; < a;, then

[min { [t - ) (((2, )] +2)q - &)] . gl — )} | =0.
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