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Event history analysis, unobserved heterogeneity

Jeroen K. Vermunt

Department of Methodology

Faculty of Social and Behavioral Sciences

Tilburg University

1 Introduction

The general purpose of the analysis of event history data is to explain why cer-
tain individuals are at a higher risk of experiencing the event(s) of interest than
others. This can be accomplished by using special types of methods which, de-
pending on the field in which they are applied, are called failure-time models,
life-time models, survival models, transition-rate models, response-time models,
event history models, duration models, or hazard models. Here, the terms event
history model and hazard model are used interchangeably.

In hazard models, the risk of experiencing an event within a short time interval
is regressed on a set of covariates. Two special features distinguish hazard models
from other types of regression models: they make it possible to include censored
observations in the analysis and to use time-varying explanatory variables. Cen-
soring is, in fact, a form of partially missing information: On the one hand, it
is known that the event did not occur during a given period of time, but, on
the other hand, the time at which the event occurred is unknown. Time-varying
covariates are covariates that may change their value during the observation pe-
riod. The possibility of including covariates which may change their value in the
regression model makes it possible to perform a truly dynamic analysis.

In the context of the analysis of survival and event history data, the problem
of unobserved heterogeneity, or the bias caused by not being able to include par-
ticular important explanatory variables in the regression model, has received a
great deal of attention. This is not surprising because this phenomenon, which
is also referred to as selectivity or frailty, may have a much larger impact in haz-
ard models than in other types of regression models: Unobserved heterogeneity
may introduce, among other things, downwards bias in the time effects, spurious
effects of time-varying covariates, spurious time-covariate interaction effects, as
well as dependence between competing risks and repeatable events. This may be
true even if the unobserved heterogeneity is uncorrelated with the values of the
observed covariates at the start of the process under study. Several model-based
approaches have been proposed to correct for unobserved heterogeneity.
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2 State, event, duration, and risk period

In order to understand the nature of event history data and the purpose of event
history analysis, it is important to understand the following four elementary
concepts: state, event, duration, and risk period. These concepts are illustrated
below using an example from the analyses of marital histories.

The first step in the analysis of event histories is to define the relevant states
which are distinguished. The states are the categories of the “dependent” variable
the dynamics of which we want to explain. At every particular point in time, each
person occupies exactly one state. In the analysis of marital histories, four states
are generally distinguished: never married, married, divorced, and widow(er).
The set of possible states is sometimes also called the state space.

An event is a transition from one state to another, that is, from an origin
state to a destination state. In this context, a possible event is “first marriage”,
which can be defined as the transition from the origin state, never married, to
the destination state, married. Other possible events are: a divorce, becoming a
widow(er), and a non-first marriage. It is important to note that the states which
are distinguished determine the definition of possible events. If only the states
married and not married were distinguished, none of the above-mentioned events
could have been defined. In that case, the only events that could be defined
would be marriage and marriage dissolution.

Another important concept is the risk period. Clearly, not all persons can
experience each of the events under study at every point in time. To be able to
experience a particular event, one must occupy the origin state defining the event,
that is, one must be at risk of the event concerned. The period that someone
is at risk of a particular event, or exposed to a particular risk, is called the risk
period. For example, someone can only experience a divorce when he or she is
married. Thus, only married persons are at risk of a divorce. Furthermore, the
risk period(s) for a divorce are the period(s) that a subject is married. A strongly
related concept is the risk set. The risk set at a particular point in time is formed
by all subjects who are at risk of experiencing the event concerned at that point
in time.

Using these concepts, event history analysis can be defined as the analysis of
the duration of the nonoccurrence of an event during the risk period. When the
event of interest is “first marriage”, the analysis concerns the duration of nonoc-
currence of a first marriage, in other words, the time that individuals remained
in the state of never being married. In practice, as will be demonstrated below,
the dependent variable in event history models is not duration or time itself but a
rate. Therefore, event history analysis can also be defined as the analysis of rates
of occurrence of the event during the risk period. In the first marriage example,
an event history model concerns a person’s marriage rate during the period that
he/she is in the state of never having been married.
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3 Basic statistical concepts

The manner in which the basic statistical concepts of event history models are
defined depends on whether the time variable T , indicating the duration of nonoc-
currence of an event, is assumed to be continuous or discrete. Even though it
seems logical to assume T to be a continuous variable, in many situations this
assumption is not realistic. Firstly, it may happen that T is not measured ac-
curately enough to be treated as strictly continuous. This occurs, for example,
when the duration variable in a study on the timing of the first birth is measured
in completed years instead of months or days. Secondly, the events of interest can
sometimes only occur at particular points in time. Such an intrinsically discrete
T occurs, for example, in studies on voting behavior.

Suppose that we are interested in explaining individual differences in women’s
timing of the first birth. In that case, the event is having a firth child, which can
be defined as the transition from the origin state no children to the destination
state one child. This is an example of what is called a single non-repeatable
event, where the term single reflects that the origin state no children can only
be left by one type of event, and the term non-repeatable indicates that the
event can occur only once. Below, situations in which there are several types of
events (multiple risks) and in which events may occur more than once (repeatable
events) are presented. In the first birth example, it seems most appropriate to
assume the time variable to be a continuous variable although it is, of course,
measured discrete, for instance, in days, months, or years after a woman’s 15th
birthday.

Suppose T is a continuous random variable indicating the duration of nonoc-
currence of the first birth. Let f(t) be the probability density function of T , and
F (t) the distribution function of T . As always, the following relationships exist
between these two quantities,

f(t) = lim
∆t→0

P (t ≤ T < t + ∆t)

∆t
=

∂F (t)

∂t
,

F (t) = P (T ≤ t) =
∫ t

0
f(u)d(u) .

The survival probability or survival function, indicating the probability of nonoc-
currence of an event until time t, is defined as

S(t) = 1− F (t) = P (T ≥ t) =
∫ ∞

t
f(u)d(u) .

Another important concept is the hazard rate or hazard function, h(t), expressing
the instantaneous risk of experiencing an event at T = t, given that the event
did not occur before t. The hazard rate is defined as

h(t) = lim
∆t→0

P (t ≤ T < t + ∆t|T ≥ t)

∆t
=

f(t)

S(t)
,
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in which P (t ≤ T < t + ∆t|T ≥ t) indicates the probability that the event will
occur during [t ≤ T < t + ∆t], given that the event did not occur before t. The
hazard rate is equal to the unconditional instantaneous probability of having an
event at T = t, f(t), divided by the probability of not having an event before
T = t, S(t). It should be noted that the hazard rate itself cannot be interpreted
as a conditional probability. Although its value is always non-negative, it can
take values greater than one. However, for small ∆t, the quantity h(t)∆t can be
interpreted as the approximate conditional probability that the event will occur
between t and t + ∆t.

Above h(t) was defined as a function of f(t) and S(t). It is also possible to
express S(t) and f(t) completely in terms of h(t), that is,

S(t) = exp
(
−

∫ t

0
h(u)d(u)

)
,

f(t) = h(t)S(t) = h(t) exp
(
−

∫ t

0
h(u)d(u)

)
.

This shows that the functions f(t), F (t), S(t), and h(t) give mathematically
equivalent specifications of the distribution of T .

4 Log-linear models for the hazard rate

When working within a continuous-time framework, the most appropriate method
for regressing the time variable T on a set of covariates is through the hazard rate.
This makes it straightforward to assess the effects of time-varying covariates –
including the time dependence itself and time-covariate interactions – and to deal
with censored observations. Censoring is a form of missing data that is explained
in more detail below.

Let h(t|xi) be the hazard rate at T = t for an individual with covariate vector
xi. Since the hazard rate can take on values between 0 and infinity, most hazard
models are based on a log transformation of the hazard rate, which yields a
regression model of the form

log h(t|xi) = log h(t) +
∑
j

βjxij . (1)

This hazard model is not only log-linear but also proportional. In proportional
hazard models, the time-dependence is multiplicative (additive after taking logs)
and independent of an individual’s covariate values. Below it will shown how
to specify non-proportional log-linear hazard models by including time-covariate
interactions.

The various types of continuous-time log-linear hazard models are defined by
the functional form that is chosen for the time dependence, that is, for the term
log h(t). In Cox’s semi-parametric model, the time dependence is left unspecified
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(Cox 1972). Exponential models assume the hazard rate to be constant over time,
while piecewise exponential model assume the hazard rate to be a step function of
T , that is, constant within time periods. Other examples of parametric log-linear
hazard models are Weibull, Gompertz, and polynomial models.

As was demonstrated by several authors (Laird and Oliver 1981; Vermunt
1997:106-117), log-linear hazard models can also be defined as log-linear Poisson
models, which are also known as log-rate models. Assume that we have – besides
the event history information – two categorical covariates denoted by A and B.
In addition, assume that the time axis is divided into a limited number of time-
intervals in which the hazard rate is postulated to be constant. In the first birth
example, this could be one-year intervals. The discretized time variable is denote
by Z. Let habz denote the constant hazard rate in the zth time interval for an
individual with A = a and B = b. To see the similarity with standard log-
linear models, it should be noted that the hazard rate, sometimes referred to as
occurrence-exposure rate, can also be defined as habz = mabz/Eabz. Here, mabz

denotes the expected number of occurrences of the event of interest and Eabz the
total exposure time in cell (a, b, z).

Using the notation of hierarchical log-linear models, the saturated log-linear
model for the hazard rate habz can now be written as

log habz = u + uA
a + uB

b + uZ
z + uAB

ab + uAZ
az + uBZ

bz + uABZ
abz , (2)

in which the u terms are log-linear parameters which are constrained in the
usual way, for instance, by means of ANOVA-like restrictions. Note that this is
a non-proportional model because of the presence of time-covariate interactions.
Restricted variants of model described in equation (2) can be obtained by omitting
some of the higher-order interaction terms. For example,

log habz = u + uA
a + uB

b + uZ
z

yields a model that is similar to the proportional log-linear hazard model de-
scribed in equation (1). In addition, different types of hazard models can be
obtained by the specification of the time-dependence. Setting the uZ

z terms equal
to zero yields an exponential model. Unrestricted uZ

z parameters yield a piecewise
exponential model. Other parametric models can be approximated by defining
the uZ

z terms to be some function of Z. And finally, if there are as many time
intervals as observed survival times and if the time dependence of the hazard rate
is not restricted, one obtains a Cox regression model. Log-rate models can be
estimated using standard programs for log-linear analysis using Eabz as a weight
vector (Vermunt 1997:112).

Unobserved heterogeneity or selectivity may bias the results obtained from the
hazard models discussed so far in various ways. The best-known implication is
the negative bias of the time dependence. Other implications are that covariate
effects may be biased (underestimated) and that one may find spurious time-
covariate interactions.
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[INSERT TABLE 1 ABOUT HERE]

We will illustrate the effects of unobserved heterogeneity with a small example.
Suppose that the population under study consists of two subgroups formed by
the two levels of an observed covariate A, where for an average individual with
A = 2 the hazard rate is twice as high as for someone with A = 1. In addition,
assume that within each of the levels of A there is (unobserved) heterogeneity in
the sense that there are two subgroups W = 1 and W = 2, where W = 2 has a 5
times higher hazard rate than W = 1. Table 1 shows the assumed hazard rates
for each of the possible A-W combinations at four time points. As can be seen,
the true hazard rates do not change over time given A and W . The reported
hazard rates in the columns labeled “observed”, which were obtained by setting
up a simple life table, show what happens if we do not observe W . Firstly, it
can be seen that both for A = 1 and A = 2 the observed hazard rates decline
over time while the true rates were time constant. This illustrates the fact that
unobserved heterogeneity biases the estimated time dependence in a negative
direction. Secondly, while the ratio between the hazard rates for A = 2 and
A = 1 equals the true value 2.00 at t = 0, it declines over time (see last column).
Thus, when estimating a hazard model with these observed hazard rates, we will
find a smaller effect of A than the true value of (log) 2.00. Thirdly, in order to
fully describe the pattern of observed hazard rates, we need to include a time-
covariate interaction in the hazard model: the covariate effect changes (declines)
over time or, equivalently, the (negative) time effect is smaller for A = 1 than for
A = 2.

5 Censoring

A subject that always receives a great amount of attention in discussions on event
history analysis is the problem of censoring. An observation is called censored if
it is known that is did not experience the event of interest during some time, but
it is not known when it experienced the event. In fact, censoring is a specific type
of missing data. In the first-birth example, a censored case could be a woman
which is 30 years of age at the time of interview (and has no follow-up interview)
and does not have children. For such a woman, it is known that she did not have
a child until age 30, but it is not known whether nor when she will have her first
child. This is, actually, an example of what is called right censoring. Another type
of censoring that is more difficult to deal with is left censoring. Left censoring
means that we do not have information on the duration of nonoccurrence of the
event before the start of the observation period.

As long as it can be assumed that the censoring mechanism is not related to
the process under study, dealing with right censored observations in maximum
likelihood estimation of the parameters of hazard models is straightforward. Let
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δi be a censoring indicator taking the value 0 if observation i is censored and 1
if it is not censored. The contribution of case i to the likelihood function that
must be maximized when there are censored observations is

Li = h(ti|xi)
δiS(ti|xi) = h(ti|xi)

δi exp
(
−

∫ ti

0
h(u|xi)du

)
.

This likelihood function is, however, only valid if the censoring mechanism can be
ignored for likelihood based inference. The presence of unobserved heterogeneity
that is shared by the process of interest and the censoring process will lead to a
violation of the assumption that censoring is ignorable.

6 Time-varying covariates

A strong point of hazard models is that one can use time-varying covariates.
These are covariates that may change their value over time. Examples of inter-
esting time-varying covariates in the first-birth example are a woman’s marital
and work status. It should be noted that, in fact, the time variable and interac-
tions between time and time-constant covariates are time-varying covariates as
well.

The saturated log-rate model described in equation (2), contains both time
effects and time-covariate interaction terms. Inclusion of ordinary time-varying
covariates does not change the structure of this hazard model. The only implica-
tion of, for instance, covariate B being time varying rather than time constant is
that in the computation of the matrix with exposure times Eabz it has to taken
into account that individuals can switch from one level of B to another.

The presence of unobserved heterogeneity may seriously bias the effects of
time-varying covariates. More precisely, the effects of time-varying covariates
may be partially spurious as a result of the presence of unobserved risk factors
influencing both the covariate process and the dependent process. An example
of an association that may be partially spurious is the association between a
woman’s labor participation and the first birth rate. In several studies, it has
been found that women who are not employed have higher first birth rates than
women who are employed. This association may, however, be partially the result
of unobserved causes that work and fertility behavior have in common, such as
certain gender role attitudes.

7 Multiple risks

Thus far, only hazard rate models for situations in which there is only one des-
tination state were considered. In many applications it may, however, prove
necessary to distinguish between different types of events or risks. In the analysis
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of the first-union formation, for instance, it may be relevant to make a distinc-
tion between marriage and cohabitation. In the analysis of death rates, one may
want to distinguish different causes of death. And in the analysis of the length of
employment spells, it may be of interest to make a distinction between the events
voluntary job change, involuntary job change, redundancy, and leaving the labor
force.

The standard method for dealing with situations where – as a result of the
fact that there is more than one possible destination state – individuals may
experience different types of events is the use of a multiple-risk or competing-risk
model. A multiple-risk variant of the hazard rate model described in equation
(1) is

log hd(t|xi) = log hd(t) +
∑
j

βjdxij .

Here, the index d indicates the destination state or the type of event. As can be
seen, the only thing that changes compared to the single type of event situation
is that we have a separate set of time and covariate effects for each type of event.

Again the presence of unobserved heterogeneity may distort the results ob-
tained from the hazard model. More precisely, if the different types of events
have shared unmeasured risks factors, the results for each of the types of events
is only valid under the observed hazard rates for the other risks. In fact, the
resulting dependence among risks is comparable to what in the field of discrete
choice modeling is known as the violation of the assumption of independence of
irrelevant alternatives.

8 Repeatable events and other types of multi-

variate event histories

Most events studied in social sciences are repeatable, and most event history data
contains information on repeatable events for each individual. This is in contrast
to biomedical research, where the event of greatest interest is death. Examples of
repeatable events are job changes, having children, arrests, accidents, promotions,
and residential moves.

Often events are not only repeatable but also of different types, that is, we
have a multiple-state situation. When people can move through a sequence of
states, events cannot only be characterized by their destination state, as in com-
peting risks models, but they may also differ with respect to their origin state. An
example is an individual’s employment history: an individual can move through
the states of employment, unemployment, and out of the labor force. In that
case, six different kinds of transitions can be distinguished which differ with re-
gard to their origin and destination states. Of course, all types of transitions
can occur more than once. Other examples are people’s union histories with
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the states living with parents, living alone, unmarried cohabitation, and married
cohabitation, or people’s residential histories with different regions as states.

Hazard models for analyzing data on repeatable events and multiple-state data
are special cases of the general family of multivariate hazard rate models. Another
application of these multivariate hazard models is the simultaneous analysis of
different life-course events. For instance, it can be of interest to investigate the
relationships between women’s reproductive, relational, and employment careers,
not only by means of the inclusion of time-varying covariates in the hazard model,
but also by explicitly modeling their mutual interdependence.

Another application of multivariate hazard models is the analysis of dependent
or clustered observations. Observations are clustered, or dependent, when there
are observations from individuals belonging to the same group or when there are
several similar observations per individual. Examples are the occupational careers
of spouses, educational careers of brothers, child mortality of children in the same
family, or in medical experiments, measures of the sense of sight of both eyes or
measures of the presence of cancer cells in different parts of the body. In fact,
data on repeatable events can also be classified under this type of multivariate
event history data, since in that case there is more than one observation of the
same type for each observational unit as well.

The hazard rate model can easily be generalized to situations in which there
are several origin and destination states and in which there may be more than
one event per observational unit. The only thing that changes is that we need
indices for the origin state (o), the destination state (d), and the rank number of
the event (m). A log-linear hazard rate model for such a situation is

log hm
od(t|xi) = log hm

od(t) +
∑
j

βm
jodxij .

The different types of multivariate event history data have in common that
there are dependencies among the observed survival times. These dependencies
may take several forms: the occurrence of one event may influence the occurrence
of another event; events may be dependent as a result of common antecedents;
and survival times may be correlated because they are the result of the same
causal process, with the same antecedents and the same parameters determining
the occurrence or nonoccurrence of an event. If these common risk factors are not
observed, the assumption of statistical independence of observation is violated,
which may seriously distort the results.

9 Model-based approaches to unobserved het-

erogeneity

As described in the previous sections, unobserved heterogeneity may have differ-
ent types of consequences in hazard modeling. The best-known phenomenon is
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the downwards bias of the duration dependence. In addition, it may bias covariate
effects, time-covariate interactions, and effects of time-varying covariates. Other
possible consequences are dependent censoring, dependent competing risks, and
dependent observations. This section presents two types of methods that have
been proposed for correcting for unobserved heterogeneity: random-effects and
fixed-effects methods.

9.1 Random-effects approach

The random-effects approach is based on the introduction of a time-constant
latent covariate in the hazard model (Vaupel, Manton and Stallard 1979). This
unobserved variable is assumed to have a multiplicative and proportional effect
on the hazard rate, i.e.,

log h(t|xi, θi) = log h(t) +
∑
j

βjxij + log θi

Here, θi denotes the value of the latent variable for subject i. In the parametric
random-effects approach, the latent variable is postulated to have a particular
distributional form. The amount of unobserved heterogeneity is determined by
the size of the standard deviation of this distribution: The larger the standard
deviation of θi or log θi, the more unobserved heterogeneity there is. Vaupel,
Manton, and Stallard (1979) proposed using a gamma distribution for θi, with
a mean of 1 and a variance of 1/γ, where γ is the unknown parameter to be
estimated. Another option would be to assume log θi to come from a normal
distribution with mean zero and standard deviation σ.

Heckman and Singer (1982) demonstrated that the results obtained from
continuous-time hazard models can be sensitive to the choice of the functional
form of the distribution of the random effect. Therefore, they advocated using
a non-parametric characterization of this distribution by means of a finite set of
mass points whose number, locations, and weights are empirically determined.
The non-parametric random-effects model proposed by Heckman and Singer is,
actually, a latent class or finite mixture model. As in latent class analysis, the
population is assumed to be composed of a finite number of exhaustive and mutu-
ally exclusive groups formed by the categories of an unobserved variable. Suppose
W is a categorical latent variable with W ∗ categories, and w is a particular value
of W . The model of Heckman and Singer can be formulated as follows:

log h(t|xi, θw) = log h(t) +
∑
j

βjxij + log θw

Here, θw denotes the (multiplicative) effect on the hazard rate for latent class
w. The contribution of the ith subject to the likelihood function in the case of a
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single non-repeatable event is

Li =
W ∗∑
w=1

πwh(ti|xi, θw)δiS(ti|xi, θw) ,

where πw is the proportion of the population belonging to latent class w. In the
terminology used by Heckman and Singer (1982), the number of latent classes
(W ∗), the latent proportions (πw), and the effects of W (θw) are called the number
of mass points, the weights, and the mass points locations, respectively.

The most important drawback of the parametric and non-parametric random-
effects approaches to unobserved heterogeneity is that the latent variable is as-
sumed to be independent of the observed covariates. This is, in fact, in con-
tradiction to the omitted variables argument that is often used to motivate the
use of these types of mixture models. If one assumes that particular important
variables are not included in the model, it is usually implausible to assume that
they are completely unrelated to the observed factors. In other words, by as-
suming independence among unobserved and observed factors, the omitted vari-
able bias, or selection bias, will generally remain (Chamberlain 1985; Yamaguchi
1986, 1991:132). To overcome the limitations of the standard random-effects
approaches, Vermunt (1997) proposed a more general non-parametric latent vari-
able approach to unobserved heterogeneity. It differs form Heckman and Singer’s
method in that different types of specifications can be used for the joint distribu-
tion of the observed covariates, the unobserved covariates, and the initial state.
This makes it possible to specify hazard models in which the unobserved factors
are related to the observed covariates and to the initial state.

9.2 Fixed-effects approach

A second method for dealing with unobserved heterogeneity involves adding
cluster-specific effects, or incidental parameters, to the model (Chamberlain 1985;
Yamaguchi 1986). In fact, a categorical variable is included in the hazard model
indicating to which cluster a particular observation belongs: observations belong-
ing to the same cluster have the same value for this “observed” variable while
observations belonging to different clusters have different values. This approach
to unobserved heterogeneity, which is called the fixed-effects approach, can only
be applied with multivariate survival data, that is, when there is more than one
observation for the largest part of the observational units. Note that actually the
unobserved heterogeneity is transformed into a form of observed heterogeneity
capturing the similarity among observations belonging to the same cluster.

The advantage of using fixed-effects methods to correct for unobserved het-
erogeneity is that they circumvent two objections against random-effects methods
presented above: No functional form needs to be specified for the distribution of
the unobserved heterogeneity and the unobserved heterogeneity is automatically
related to both the initial state and the time-constant covariates.
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The major limitation of the fixed-effects approach is that since each cluster
has its own incidental parameter, no parameter estimates can be obtained for the
effects of covariates having the same value for the different observations belonging
to the same cluster: Only the effects of observation-specific or of time-varying
covariates can be estimated. Another problem is that the incidental parameters
cannot be estimated consistently, since by definition they are based on a limited
number of observations regardless of the sample size. This inconsistency may be
carried over to the other parameters if the parameters are estimated by means of
maximum likelihood (Yamaguchi 1986).

Further reading

Allison (1984), Tuma and Hannan (1984), Lancaster (1990), Yamaguchi (1991),
Blossfeld and Rohwer (1995), and Vermunt (1997).
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Table 1: Hazard rates illustrating the effect of unobserved heterogeneity

time A = 1 A = 2 ratio between
point W = 1 W = 2 observed W = 1 W = 2 observed A = 2 and A = 1
0 .010 .050 .030 .020 .100 .060 2.00
10 .010 .050 .026 .020 .100 .045 1.73
20 .010 .050 .023 .020 .100 .034 1.50
30 .010 .050 .019 .020 .100 .027 1.39
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