
  

 

 

Tilburg University

A meta-algorithm for the generation of referring expressions

Krahmer, E.J.; Erk, S.; Verleg, A.

Published in:
Proceedings of the 8th European Workshop on Natural Language Generation (ENLG)

Publication date:
2001

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Krahmer, E. J., Erk, S., & Verleg, A. (2001). A meta-algorithm for the generation of referring expressions. In
Proceedings of the 8th European Workshop on Natural Language Generation (ENLG) (pp. 29-39). ACL/Morgan
Kaufman.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tilburg University Repository

https://core.ac.uk/display/420772616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.tilburguniversity.edu/en/publications/f14a9510-4d92-462c-a191-a7cc66daa7ee


AMeta-Algorithm for the Generation of Referring Expressions

Emiel Krahmer, Sebastiaan van Erk and André Verleg
TU/e, Eindhoven University of Technology,

The Netherlands
email: E.J.Krahmer@tue.nl

Abstract

This paper describes a new approach
to the generation of referring expres-
sions. We propose to formalize a scene
as a labeled directed graph and describe
content selection as a subgraph con-
struction problem. Cost functions are
used to guide the search process and
to give preference to some solutions
over others. The resulting graph al-
gorithmcan be seen as ameta-algorithm
in the sense that defining cost functions
in different ways allows us to mimic —
and even improve— a number of well-
known algorithms.

1 Introduction

The generation of referring expressions is one
of the most common tasks in natural language
generation, and has been addressed by many re-
searchers in the past two decades (including Ap-
pelt 1985, Dale 1992, Reiter 1990, Dale & Had-
dock 1991, Dale & Reiter 1995, Horacek 1997,
Stone & Webber 1998, Krahmer & Theune 1999
and van Deemter 2000). As a result, there are
many different algorithms for the generation of
referring expressions, each with its own object-
ives: some aim at producing the shortest possible
description, others focus on efficiency or realistic
output. The degree of detail in which the various
algorithms are described differs considerably, and
as a result it is often difficult to compare the vari-
ous proposals. In addition, most of the algorithms

are primarily concernedwith the generation of de-
scriptions only using properties of the target ob-
ject. Consequently, the problem of generating re-
lational descriptions (i.e., descriptions which in-
corporate references to other objects to single out
the target object) has not received the attention it
deserves.

In this paper, we describe a general, graph-
theoretic approach to the generation of referring
expressions. We propose to formalize a scene
(i.e., a domain of objects and their properties and
relations) as a labeled directed graph and describe
the content selection problem —which proper-
ties and relations to include in a description for
an object?— as a subgraph construction problem.
The graph perspective has three main advantages.
The first one is that there are many attractive al-
gorithms for dealing with graph structures. In
this paper, we describe a branch and bound al-
gorithm for finding the relevant subgraphs, where
we use cost functions to guide the search pro-
cess. Arguably, the proposed algorithm is a meta-
algorithm, in the sense that by defining the cost
function in different ways, we can mimic various
well-known algorithms for the generation of re-
ferring expressions. A second advantage of the
graph-theoretical framework is that it does not run
into problems with relational descriptions, due to
the fact that properties and relations are formal-
ized in the same way, namely as edges in a graph.
The third advantage is that the combined usage
of graphs and cost-functions paves the way for
a natural integration of traditional rule-based ap-
proaches to generation with more recent statist-
ical approaches (e.g., Langkilde & Knight 1998,

1



Malouf 2000) in a single algorithm.
The outline of this paper is as follows. In sec-

tion 2, we describe how scenes can be described as
labeled directed graphs and show how content se-
lection can be formalized as a subgraph construc-
tion problem. Section 3 contains a sketch of the
branch and bound algorithm, which is illustrated
with a worked example. In section 4 it is argued
that by defining cost functions in different ways,
we can mimic various well-known algorithms for
the generation of referring expressions. We end
with some concluding remarks in section 5.

2 Graphs

Consider the following scene:

Figure 1: An example scene

In this scene, as in any other scene, we see a
finite set of entities with properties and
relations . In this particular scene, the set

is the set of entities,
dog, chihuahua, doghouse, small, large, white,

brown is the set of properties and next to,
left of, right of, contain, in is the set of relations.
A scene can be represented in various ways. One
common representation is to build a database,
listing the properties of each element of :

: dog ( ), brown ( ), . . . , in ( , )
...

...
...

...
: doghouse ( ), white ( ), . . . , right of ( , )

Here we take a different approach and represent a
scene as a labeled directed graph. Let
be the set of labels (with and disjoint, i.e.,

). Then, a labeled directed graph
, where is the set of vertices

(or nodes) and is the set of labeled

directed arcs (or edges). The scene given in Fig-
ure 1 can be represented by the graph in Figure 2.
Keep in mind that the labels are only added to
ease reference to nodes. Notice also that proper-
ties (such as being a dog) are always modelled as
loops, i.e., edges which start and end in the same
node, while relations may (but need not) have dif-
ferent start and end nodes.
Now the content determination problem for re-

ferring expressions can be formulated as a graph
construction task. In order to decide which in-
formation to include in a referring expression for
an object , we construct a connected dir-
ected labeled graph over the set of labels and
an arbitrary set of nodes, but including . This
graph can be understood as the “meaning repres-
entation” from which a referring expression can
be generated by a linguistic realizer. Informally,
we say that a graph refers to a given entity iff
the graph can be “placed over” the scene graph
in such a way that the node being referred to is
“placed over” the given entity and each edge can
be “placed over” an edge labeledwith the same la-
bel. Furthermore, a graph is distinguishing iff it
refers to exactly one node in the scene graph.
Consider the three graphs in Figure 3. Here and

elsewhere circled nodes stand for the intended ref-
erent. Graph (i) refers to all nodes of the graph
in Figure 2 (every object in the scene is next to
some other object), graph (ii) can refer to both
and , and graph (iii) is distinguishing in that it
can only refer to . Notice that the three graphs
might be realized as something next to something
else, a chihuahua and the dog in the doghouse re-
spectively. In this paper, we will concentrate on
the generation of distinguishing graphs.
Formally, the notion that a graph

can be “placed over” another graph
corresponds to the notion of a sub-

graph isomorphism. can be “placed over” iff
there exists a subgraph of such
that is isomorphic to . is isomorphic to
iff there exists a bijection such that
for all nodes and all

In words: the bijective function maps all the
nodes in to corresponding nodes in , in such
a way that any edge with label between nodes

2



chihuahua

brown
small

dog

d1

chihuahua

dog
brown

small

d2

doghouse

large
white

d3

doghouse

white
large

d4

contains in

next_to

next_to

next_to

next_to

left_of

right_of

left_of

right_of

next_to
left_of

next_to
right_of

Figure 2: A graph representation of Figure 1.

next_to

(i)

chihuahua

dog
in doghouse

(iii)

(ii)

Figure 3: Some graphs for referring expressions,
with circles around the intended referent.

and in is matched by an edge with the same
label between the counterparts of and , i.e.,

and respectively. When is isomorphic
to some subgraph of by an isomorphism , we
write .
Given a graph and a node in , and a graph
and a node in , we define that the pair

refers to the pair iff is connected and

and . Furthermore,
uniquely refers to (i.e., is distin-
guishing) iff refers to and there is
no node in different from such that
refers to . The problem considered in this
paper can now be formalized as follows: given a
graph and a node in , find a pair such
that uniquely refers to .
Consider, for instance, the task of finding a pair

which uniquely refers to the node labeled
in Figure 2. It is easily seen that there are a

number of such pairs, three of which are depic-
ted in Figure 4. We would like to have a mechan-
ismwhich allows us to give certain solutions pref-
erence over other solutions. For this purpose we
shall use cost-functions. In general, a cost func-
tion is a function which assigns to each sub-
graph of a scene graph a positive number. As we
shall see, by defining cost functions in different
ways, we can mimic various algorithms for the
generation of referring expressions known from
the literature.

A note on problem complexity The basic de-
cision problem for subgraph isomorphism (i.e.,
testing whether a graph is isomorphic to a sub-
graph of ) is known to be NP complete (see
e.g., Garey & Johnson 1979). Here we are in-
terested in connected , but unfortunately that



in

dog
in doghouse

in

doghouse

large
whitebrown

small

(iii)

dog

(i)

(ii)

Figure 4: Three distinguishing node-graph pairs
referring to in Figure 2.

restriction does not reduce the theoretical com-
plexity. However, as soon as we define an up-
per bound on the number of edges in a distin-
guishing graph, the problem loses its intractability
and becomes solvable in polynomial time.
Such a restriction is rather harmless for our cur-
rent purposes, as it would only prohibit the gen-
eration of distinguishing descriptions with more
than properties, for an arbitrary large . In
general, there are various classes of graphs for
which the subgraph isomorphism problem can be
solved much more efficiently, without postulating
upper bounds. For instance, if and are planar
graphs the problem can be solved in time linear in
the number of nodes of (Eppstein 1999). Ba-
sically, a planar graph is one which can be drawn
on a plane in such a way that there are no cross-
ing edges (thus, for instance, the graph in Figure
2 is planar). It is worth investigating to what ex-
tent planar graphs suffice for the generation of re-
ferring expressions.

3 Outline of the algorithm

In this section we give a high-level sketch of
the algorithm. The algorithm (called make-
ReferringExpression) consists of two main
components, a subgraph construction algorithm
(called findGraph) and a subgraph isomorphism
testing algorithm (called matchGraphs). We

assume that a scene graph is given.
The algorithm systematically tries all relevant
subgraphs of the scene graph by starting with
the subgraph containing only the node (the
target object) and expanding it recursively by
trying to add edges from which are adjacent to
the subgraph constructed so far. In this way
we know that the results will be a connected sub-
graph. We refer to this set of adjacent edges as the
neighbors in (notation: .neighbors( )).

The algorithm returns the cheapest distinguishing
subgraph which refers to , if such a distin-
guishing graph exists, otherwise it returns the
empty graph .

3.1 Cost functions
We use cost functions to guide the search process
and to give preference to some solutions over oth-
ers. If is a subgraph of , then
the costs of , notation , are given by sum-
ming over the costs associated with the nodes and
edges of H. Formally:

We require the cost function to be monotonic.
That is, adding an edge to a (non-empty) graph can
never result in a cheaper graph. Formally:

edges:
cost cost

This assumption helps reducing the search space
substantially, since extensions of subgraphs with
a cost greater than the best subgraph found so far
can safely be ignored. The costs of the empty, un-
defined graph are infinite, i.e. .

3.2 Worked example
We now illustrate the algorithm with an example.
Suppose the scene graph is as given in Figure
2, and that we want to generate a referring expres-
sion for object in this graph. Let us assume
for the sake of illustration that the cost function
is defined in such a way that adding a node or an
edge always costs 1 point. Thus: for each
and for each : .

Here and elsewhere, we use the following notation. Let
be a graph and an edge, then is the graph

node1 node2 .



makeReferringExpression( )
bestGraph := ;
:= ;

return findGraph( , bestGraph, );

findGraph( , bestGraph, )
if (bestGraph.cost .cost) then return bestGraph fi;
distractors := nodes matchGraphs ;
if (distractors = ) then return fi;
for each edge .neighbors( ) do

findGraph( , bestGraph, );
if .cost bestGraph.cost then bestGraph := fi;

rof;
return bestGraph;

Figure 5: Sketch of themain function (makeReferringExpression) and the subgraph construction func-
tion (findGraph).

in

H =

H =

(i)

(ii)

(iii)

H =

chihuahua
left_of

brown

Figure 6: Three values for in the generation
process for .

(In the next section we describe a number of more
interesting cost functions and discuss the impact
these have on the output of the algorithm.) We
call the functionmakeReferringExpression (given
in Figure 5) with as parameter. In this function
the variable bestGraph (for the best solution found
so far) is initialized as the empty graph and the
variable (for the distinguishing subgraph un-
der construction) is initialized as the graph con-

taining only node ((i) in Figure 6). Then the
function findGraph (see also Figure 5) is called,
with parameters , bestGraph and . In this
function, first it is checked whether the costs of
(the graph under construction) are higher than

the costs of the bestGraph found so far. If that is
the case, it is not worth extending since, due
to the monotonicity constraint, it will never end
up being cheaper than the current bestGraph. The
initial value of bestGraph is the empty, undefined
graph, and since its costs are astronomically high,
we continue. Then the set of distractors (the ob-
jects from which the intended referent should be
distinguished, Dale & Reiter 1995) is calculated.
In terms of the graph perspective this is the set of
nodes in the scene graph (other then the target
node ) to which the graph refers. It is easily
seen that the initial value of , i.e., (i) in Figure
6, refers to every node in . Hence, as one would
expect, the initial set of distractors is nodes

. Next we check whether the current set of
distractors is empty. If so, we have managed to
find a distinguishing graph, which is subsequently
stored in the variable bestGraph. In this first iter-
ation, this is obviously not the case and we con-
tinue, recursively trying to extend by adding
adjacent (neighboring) edges until either a distin-
guishing graph has been constructed (all distract-



matchGraphs( , , , )
if .edges( , ) .edges( , ) then return false fi;
matching := ;
:= .neighbors( );

return matchHelper(matching, , );

matchHelper(matching, , )
if matching then return true fi;
if then return false fi;
choose a fresh, unmatched from ;

might be matched to ;
for each do
if is a valid extension of the mapping
then if matchHelper(matching , , ) then return true fi;
fi;

rof;
return false;

Figure 7: Sketch of the function testing for subgraph isomorphism (matchGraphs).

ors are ruled out) or the costs of exceed the costs
of the bestGraph found so far. While bestGraph
is still the empty set (i.e., no distinguishing graph
has been found yet), the algorithm continues un-
til is a distinguishing graph. Which is the first
distinguishing graph to be found (if one or more
exist) depends on the order in which the adjacent
edges are tried. Suppose for the sake of argument
that the first distinguishing graph to be found is (ii)
in Figure 6. This graph is returned and stored in
bestGraph. The costs associated with this graph
are 5 points (two nodes and three edges). At this
stage in the generation process only graphs with
lower costs are worth investigating,which yields a
drastic reduction of the search space. In fact, there
are only a few distinguishing graphs which cost
less. After a number of iterations the algorithm
will find the cheapest solution (given this particu-
lar, simple definition of the cost function), which
is (iii) in Figure 6.

3.3 Subgraph Isomorphism testing

Figure 7 contains a sketch of the part of the al-
gorithm which tests for subgraph isomorphism,
matchGraphs. This function is called each time
the distractor set is calculated. It tests whether the

pair can refer to , or put differently,
it checks whether there exists an isomorphism
such that with . The function
matchGraphs first determines whether the looping
edges starting from node (i.e., the properties of
) match those of . If not (e.g., is a dog and
is a doghouse), we can immediately discard the

matching. Otherwise we start with the matching
, and expand it recursively. Each recur-

sion step a fresh and as yet unmatched node from
is selected which is adjacent to one of the nodes

in the current matching. For each we calculate
the set of possible nodes in to which can
be matched. This set consist of all the nodes in
which have the same looping edges as and the
same edges to and from other nodes in the domain
of the current matching function :

nodes
edges edges

neighbors Dom
edges edges
edges edges

The matching can now be extended with ,
for . The algorithm then branches over all
these possibilities. Once a mapping has been



found which has exactly as much elements as
has nodes, we have found a subgraph isomorph-
ism. If there are still unmatched nodes in or
if all possible extensions with a node have been
checked and no matching could be found, the test
for subgraph isomorphism has failed.

3.4 A note on the implementation

The basic algorithm outlined in Figures 5 and 7
has been implemented in Java. Various optimiz-
ations increase the efficiency of the algorithm, as
certain calculations need not be repeated each iter-
ation (e.g., the set .neighbors( )). In addition,
the user has the possibility of specifying the cost
function in a way which he or she sees fit.

4 Search methods and cost functions

Arguably, the algorithm outlined above is a meta-
algorithm, since by formulating the cost func-
tion in certain ways we can simulate various al-
gorithms known from the generation literature.

4.1 Full (relational) Brevity Algorithm

The algorithm described in the previous section
can be seen as a generalization of Dale’s (1992)
Full Brevity algorithm, in the sense that there
is a guarantee that the algorithm will output the
shortest possible description, if one exists. It is
also an extension of the Full Brevity algorithm,
since it allows for relational descriptions, as does
the Dale & Haddock (1991) algorithm. The latter
algorithm has a problem with infinite recursions;
in principle their algorithm could output descrip-
tions like “the dog in the doghouse which con-
tains a dog which is in a doghouse which .. .etc.”
Dale & Haddock propose to solve this problem
by stipulating that a property or relation may only
be included once. In the graph-based model de-
scribed above the possibility of such infinite re-
cursions does not arise, since a particular edge is
either present in a graph or not.

Notice incidentally that Dale’s (1992) Greedy Heuristic
algorithm can also be cast in the graph framework, by sort-
ing edges on their descriptive power (measured as a count
of the number of occurrences of this particular edge in the
scene graph). The algorithm then adds the most discrimin-
ating edge first (or the cheapest, if there are various equally
distinguishing edges) and repeats this process until a distin-
guishing graph is found.

4.2 Incremental Algorithm
Dale & Reiter’s (1995) Incremental Algorithm,
generally considered the state of the art in this
field, has the following characteristic properties.
(1) It defines a list of preferred attributes, list-
ing the attributes which human speakers prefer
for a certain domain. For example, when dis-
cussing domestic animals, speakers usually first
describe the “type” of animal (dog, cat), before
absolute properties such as “color” are used. If
that still is not sufficient to produce a distin-
guishing description, relative properties such as
“size” can be included. Thus, the list of preferred
attributes for this particular domain could be
type, color, size . The Incremental Algorithm
now simply iterates through this list, adding a
property if it rules out any distractors not pre-
viously ruled out. (2) The algorithm always in-
cludes the “type” attribute, even if it is not distin-
guishing. And (3) the algorithm allows subsump-
tion hierarchies on certain attributes (most notably
for the “type” attribute) stating things like a fox ter-
rier is a dog, and a dog is an animal. In such a hier-
archy we can specify what the basic level value is
(in this case it is dog). Dale & Reiter claim that
there is a general preference for basic level values,
and hence their algorithm includes the basic level
value of an attribute, unless values subsumed by
the basic level value rule out more distractors.
These properties can be incorporated in the

graph framework in the following way. (1) The
list of preferred attributes can easily be modelled
using the cost function. All “type” edges should
be cheaper than all other edges (in fact, they could
be for free), and moreover, the edges correspond-
ing to absolute properties should cost less than
those corresponding to relative ones. This gives
us exactly the effect of having preferred attributes.
(2) It also implies that the “type” of an object is
always included if it is in any way distinguishing.
That by itself does not guarantee that type is al-
ways is included. The most principled and effi-
cient way to achieve that would be to reformu-
late the findGraph algorithm in such a way that
the “type” loop is always included. (Given such a
minormodification, the algorithm described in the
previous section would output (iii) from Figure 3
instead of (iii) from Figure 6 when applied to .)
Such a general modification might be undesirable



from an empirical point of view however, since
in various domains it is very common to not in-
clude type information, for instance when the do-
main contains only objects of the same type (see
van der Sluis&Krahmer 2001). (3) The subsump-
tion hierarchy can be modelled in the same way
as preferred attributes are: for a given attribute,
the basic level value should have the lowest costs
and the values farthest away from the basic level
value should have the highest costs. This implies
that adding an edge labeled dog is cheaper than
adding an edge labeled chihuahua, unless more
(or more expensive) edges are needed to build
a distinguishing graph including dog than are re-
quired for the graph including chihuahua. Assum-
ing that the scene representation is well-defined,
the algorithm never outputs a graph which con-
tains both dog and chihuahua, since there will al-
ways be a cheaper distinguishing graph omitting
one of the two edges.
So, we can recast the Incremental Algorithm

quite easily in terms of graphs. Note that the
original Incremental Algorithm only operates on
properties, looped edges in graph terminology. It
is worth stressing that when all edges in the scene
graph are of the looping variety, testing for sub-
graph isomorphism becomes trivial and we re-
gain polynomial complexity. However, the above
graph-theoretical formalization of the Incremental
Algorithm does not fully exploit the possibilities
offered by the graph framework and the use of cost
functions. First, from the graph-theoretical per-
spective the generation of relational descriptions
poses no problems whatsoever, while the incre-
mental generation of relational descriptions is by
no means trivial (see e.g., Theune 2000, Krahmer
& Theune 1999). In fact, while it could be argued
to some extent that incremental selection of prop-
erties is psychologically plausible, this somehow
seems less plausible for incremental generation of
relational extensions. Notice that the use of a

As Dale & Reiter (1995:248) point out, redundant prop-
erties are not uncommon. That is: in certain situations people
may describe an object as “the white bird” even though
the simpler “the bird” would have been sufficient (cf. Pech-
mann 1989, see also Krahmer & Theune 1999 for discus-
sion). However, a similar argument seems somewhat far-
fetched when applied to relations. It is unlikely that someone
would describe an object as “the dog next to the tree in front
of the garage” in a situation where “the dog in front of the
garage” would suffice.

cost function to simulate subsumption hierarch-
ies for properties carries over directly to relations;
for instance, the costs of adding a edge labeled
next to should be less than those of adding one
labeled left of or right of. Hence, next towill be pre-
ferred, unless using left of or right of has more dis-
criminative power. Another advantage of the way
the graph-based algorithm models the list of pre-
ferred attributes is that more fine-grained distinc-
tions can be made than can be done in the Incre-
mental Algorithm. In particular, we are not forced
to say that values of the attribute “type” are always
preferred over values of the attribute “color”. In-
stead we have the freedom to assign edges labeled
with a common type value (e.g., dog) a lower cost
than edges labeled with uncommon colors (such
as Vandyke-brown), while at the same time edges
labeled with obscure type values, such as polish
owczarek nizinny sheepdog, can be given a higher
cost than edges labeled with common colors such
as brown.

4.3 Stochastic cost functions

One of the important open questions in natural
language generation is how the common, rule-
based approaches to generation can be combined
with recent insights from statistical NLP (see e.g.,
Langkilde & Knight 1998, Malouf 2000 for par-
tial answers). Indeed, when looking at the Incre-
mental Algorithm, for instance, it is not directly
obvious how statistical information can be integ-
rated in the algorithm. Arguably, this is differ-
ent when we have cost functions. One can easily
imagine deriving a stochastic cost function from a
sufficiently large corpus and using it in the graph-
theoretical framework (the result looks like but is
not quite a Markov Model). As a first approxima-
tion, we could define the costs of adding an edge

in terms of the probability that oc-
curs in a distinguishing description (estimated by
counting occurrences):

log

Thus, properties which occur frequently are
cheap, properties which are relatively rare are
expensive. In this way, we would probably derive
that dog is indeed less expensive than Vandyke
brown and that brown is less expensive than polish
owczarek nizinny sheepdog.



5 Concluding remarks

In this paper, we have presented a general graph-
theoretical approach to content-determination for
referring expressions. The basic algorithm has
clear computational properties: it is NP com-
plete, but there exist various modifications (a
ban on non-looping edges, planar graphs, upper
bound to the number of edges in a distinguish-
ing graph) which make the algorithm polynomial.
The algorithm is fully implemented. The graph
perspective has a number of attractive proper-
ties. The generation of relational descriptions is
straightforward; the problems which plague some
other algorithms for the generation of relational
descriptions do not arise. The use of cost func-
tions allows us to model different search meth-
ods, each restricting the search space in its own
way. By defining cost functions in different ways,
we can model and extend various well-known al-
gorithms from the literature such as the Full Brev-
ity Algorithm and the Incremental Algorithm. In
addition, the use of cost functions paves the way
for integrating statistical information directly in
the generation process.
Various important ingredients of other genera-

tion algorithms can be captured in the algorithm
proposed here as well. For instance, Horacek
(1997) points out that an algorithm should not col-
lect a set of properties which cannot be realized
given the constraints of the grammar. This prob-
lem can be solved, following Horacek’s sugges-
tion, by slightly modifying the algorithm in such
a way that for each potential edge it is immedi-
ately investigated whether it can expressed by the
realizer. Van Deemter’s (2000) proposal to gener-
ate (distributional) distinguishing plural descrip-

A final advantage of the graph model certainly deserves
further investigation is the following. We can look at a graph
such as that in Figure 2 as a Kripke model. The advantage
of this way of looking at it, is that we can use tools from
modal logic to reason about these structures. For example,
we can reformulate the problem of determining the content
of a distinguishing description in terms of hybrid logic (see
e.g., Blackburn 2000) as follows:

A

In words: whenwe want to refer to node , we are looking for
that distinguishing formula which is true of (“at”) but not
of any different from . One advantage of this perspective
is that logical properties which are usually considered prob-
lematic from a generation perspective (such as not having a
certain property), fit in very well with the logical perspective.

tions (such as the dogs) can also bemodelled quite
easily. Van Deemter’s algorithm takes as input a
set of objects, which in our case, translates into a
set of nodes from the scene graph. The algorithm
should be reformulated in such away that it tries to
generate a subgraph which can refer to each of the
nodes in the set, but not to any of the nodes in the
scene graph outside this set. Krahmer & Theune
(1999) present an extension of the IncrementalAl-
gorithm which takes context into account. They
argue that an object which has been mentioned in
the recent context is somehow salient, and hence
can be referred to using fewer properties. This
is modelled by assigning salience weights to ob-
jects (basically using a version of Centering The-
ory (Grosz et al. 1995) augmented with a recency
effect), and by defining the set of distractors as
the set of objects with a salience weight higher or
equal than that of the target object. In terms of the
graph-theoretical framework, one can easily ima-
gine assigning salience weights to the nodes in the
scene graph, and restricting the distractor set es-
sentially as Krahmer & Theune do. In this way,
distinguishing graphs for salient objects will gen-
erally be smaller than those of non-salient objects.

Acknowledgements
Thanks are due to Alexander Koller, Kees van
Deemter, Paul Piwek, Mariët Theune and two an-
onymous referees for discussions and comments
on an earlier version of this paper.

References
Appelt, D. (1985), Planning English Referring Expres-
sions, Artificial Intelligence 26:1-33.

Blackburn, P. (2000), Representation, Reasoning, and
Relational Structure: A Hybrid Logic Manifesto,
Logic Journal of the IGPL 8(3):339-365.

Dale, R. (1992), Generating Referring Expressions:
Constructing Descriptions in a Domain of Objects
and Processes, MIT Press, Cambridge, Massachu-
setts.

Dale, R. & N. Haddock (1991), Generating Refer-
ring Expressions Involving Relations, Proceedings
of EACL, Berlin, 161-166.

Dale, R. & E. Reiter (1995), Computational Interpret-
ations of the Gricean Maxims in the Generation of
Referring Expressions, Cognitive Science 18: 233-
263.



van Deemter, K. (2000), Generating Vague Descrip-
tions, Proceedings INLG, Mitzpe Ramon.

Eppstein, D. (1999), Subgraph Isomorphism in Planar
Graphs and Related Problems, J. Graph Algorithms
and Applications 3(3):1-27.

Garey, M. & D. Johnson (1979), Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman.

Grosz, B., A. Joshi & S. Weinstein (1995), Centering:
A Framework for Modeling the Local Coherence
of Discourse,Computational Linguistics 21(2):203-
225.

Horacek, H. (1997), AnAlgorithm for Generating Ref-
erential Descriptions with Flexible Interfaces, Pro-
ceedings of the 35th ACL/EACL, Madrid, 206-213.

Krahmer, E.&M. Theune (1999), EfficientGeneration
of Descriptions in Context, Proceedings of Work-
shop on Generation of Nominals, R. Kibble and K.
van Deemter (eds.), Utrecht, The Netherlands.

Langkilde, I. & K. Knight (1998), The Practical Value
of -Grams in Generation, Proceedings INLG,
Niagara-on-the-lake, Ontario, 248-255.

Malouf, R., (2000), The Order of Prenominal Adject-
ives in Natural Language Generation, Proceedings
of the 38th ACL , Hong Kong.

Pechmann, T. (1989), Incremental Speech Produc-
tion and Referential Overspecification, Linguistics
27:98–110.

Reiter, E. (1990), The Computational Complexity of
AvoidingConversational Implicatures,Proceedings
of the 28th ACL , 97-104.

van der Sluis, I. & E. Krahmer (2001), Generating
Referring Expressions in a Multimodal Context:
An Empirically Motivated Approach, Proceedings
CLIN, W. Daelemans et al. (eds), Rodopi, Amster-
dam/Atlanta.

Stone, M. & B. Webber (1998), Textual Economy
Through Close Coupling of Syntax and Semantics,
Proceedings INLG, Niagara-on-the-lake, Ontario,
178-187.

Theune, M. (2000), From Data to Speech: Language
Generation in Context, Ph.D. dissertation, Eind-
hoven University of Technology.


