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Abstract

In this paper we present a survey on the various approaches that
can be used to test whether the mean-variance frontier of a set of
assets spans or intersects the frontier of a larger set of assets. We
analyze the restrictions on the return distribution that are needed to
have mean-variance spanning or intersection. The paper explores the
duality between mean-variance frontiers and volatility bounds, ana-
lyzes regression based test procedures for spanning and intersection,
and shows how these regression based tests are related to tests for
mean-variance e¢ciency, performance measurement, optimal portfo-
lio choice, and speci…cation error bounds.
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1 Introduction
In recent years the …nance literature has witnessed an increasing use of tests
for mean-variance spanning and intersection, as introduced by Huberman and
Kandel (1987). In this paper we will provide a survey of the literature on
testing for mean-variance spanning and intersection, as well as of its relation-
ships with volatility bounds, tests for mean-variance e¢ciency, performance
evaluation, and the speci…cation error bounds that have recently been pro-
posed by Hansen and Jagannathan (1997). There exists a vast literature
on most of these subjects and the intention here is not to give a complete
overview, but merely to illustrate that the concept of mean-variance span-
ning and intersection provides a framework in which many other results can
be understood.

The literature on mean-variance spanning and intersection analyzes the
e¤ect that the introduction of additional assets has on the mean-variance
frontier. If the mean-variance frontier of the benchmark assets and the fron-
tier of the benchmark plus the new assets have exactly one point in common,
this is known as intersection. This means that there is one mean-variance
utility function for which there is no bene…t from adding the new assets. If
the mean-variance frontier of the benchmark assets plus the new assets co-
incides with the frontier of the benchmark assets only, there is spanning. In
this case no mean-variance investor can bene…t from adding the new assets
to his (optimal) portfolio of the benchmark assets only. For instance, DeSan-
tis (1995) and Cumby and Glen (1990) consider the question whether US-
investors can bene…t from international diversi…cation. Taking the viewpoint
of a US-investor who initially only invests in the US, these authors study the
question whether they can enhance the mean-variance characteristics of their
portfolio by also investing in other (developed) markets. Similarly, taking the
perspective of a US-investor who invests in the US and (possibly) in other
developed markets such as Japan and Europe, DeSantis (1994), Bekaert and
Urias (1996), Errunza, Hogan and Hung (1998), and DeRoon, Nijman and
Werker (2001) e.g., investigate whether the investors can improve upon their
mean-variance portfolio by investing in emerging markets. As a …nal ex-
ample, Glen and Jorion (1993) investigate whether mean-variance investors
with a well-diversi…ed international portfolio of stocks and bonds should add
currency futures to their portfolio, i.e., whether or not they should hedge the
currency risk that arises from their positions in stocks and bonds.

As shown by DeSantis (1994), Ferson, Foerster, and Keim (1993), Ferson
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(1995) and Bekaert and Urias (1996), the hypothesis of mean-variance span-
ning and intersection can be reformulated in terms of the volatility bounds
introduced by Hansen and Jagannathan (1991). In that case, the interest is
in the question whether a set of additional assets contains information about
the volatility of the pricing kernel or the stochastic discount factor that is
not already present in the initial set of assets considered by the econometri-
cian. For instance, in the case of emerging markets, the question is whether
considering returns from the US-market together with returns from emerging
markets produces tighter volatility bounds on the stochastic discount factor
than returns from the US-market only.

The duality between mean-variance frontiers and volatility bounds for
the stochastic discount factors will be the subject of Section 2. The analy-
sis provided in that section will allow us to study mean-variance spanning
and intersection, both in terms of mean-variance frontiers and in terms of
volatility bounds. The concept of mean-variance spanning and intersection
will formally be introduced in Section 3. In that section it will be also be
shown how simple regression techniques can be used to test for mean-variance
spanning and intersection. In Section 4 we will consider how conditioning
information can be incorporated in the test procedures. In Section 5 we will
show how deviations from mean-variance intersection and spanning can be
interpreted in terms of performance measures like Jensen’s alpha and the
Sharpe ratio, and how the regression tests for intersection can be used to
derive the new optimal portfolio weights. In Section 6 we provide a brief
discussion of the speci…cation error bound introduced by Hansen and Ja-
gannathan (1997) and how this is related to mean-variance intersection. As
with the performance measures in Section 5, speci…cation error bounds are
especially of interest when there is no intersection. This paper will end with
a summary.

2 Volatility bounds and the duality with mean-
variance frontiers

The purpose of this section is to introduce volatility bounds and mean-
variance frontiers and to show the duality between these two frontiers. Be-
cause mean-variance spanning and intersection can be de…ned from volatility
bounds as well as from mean-variance frontiers, this section provides a basis
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for the analysis of mean-variance spanning and intersection in the remainder
of the paper.

2.1 Volatility bounds
Suppose an investor chooses his portfolio from a set of K assets, with current
prices given by the K-dimensional vector Pt and with payo¤s in the next
period given by the vector Pt+1 (including dividends and the like). Returns
Ri;t+1 are payo¤s with prices equal to one. Assuming there are no market
frictions such as short sales constraints and transaction costs and assuming
that the law of one price holds, there exists a stochastic discount factor or
pricing kernel, Mt+1, such that1

E[Mt+1Rt+1 j It] = ¶K ; (1)

where ¶K is aK-dimensional vector containing ones, and It is the information
set that is known to the investor at time t. In the sequel we will use Et[:] as
shorthand notation for E[: j It].

Apart from the law of one price, an alternative way to motivate (1) is to
look at the discrete time consumption and portfolio problem that an investor
solves:

max
fwt;Ctg

Et[
1P

j=0
½jU(Ct+j)]; (2)

s.t. Wt+1 = w0tRt+1(Wt ¡ Ct);
w0t¶K = 1; 8t

where Ct is consumption at time t, Wt is the wealth owned by the investor
at time t, ½ is the subjective discount factor of the investor, and wt is the
K-dimensional vector of portfolio weights that the investor chooses. The
function U(Ct;Ct+1; :::) =

P1
j=0 ½jU(Ct+j) is a strictly increasing and concave

time-separable utility function. The …rst order conditions of problem (2)
imply that

Mt+1 = ½
U 0(Ct+1)
U 0(Ct)

jCoptt ;woptt
;

is a valid stochastic discount factor with U 0(:) being the …rst derivative of
U. Thus, one way to think about the stochastic discount factor or pricing

1Replacing the law of one price with the stronger condition that there are no arbitrage
opportunities, we would also have that Mt+1 > 0.
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kernel is as the intertemporal marginal rate of substitution (IMRS). This
interpretation of the pricing kernel is more restrictive than the law of one
price though, since it also implies that Mt+1 > 0.

In many of the problems we consider in this paper, it is convenient to
look at a more simple portfolio problem. Usually we will restrict ourselves to
one-period portfolio problems, where the agent maximizes his indirect utility
of wealth function (see, e.g., Ingersoll (1987), p.66):

max
fwg

Et[u(Wt+1)];

s.t. Wt+1 = Wt w0Rt+1;
w0¶K = 1:

In this case a valid stochastic discount factor is Wt £ u0(Wt+1)=´, with u0(:)
being the …rst derivative of the indirect utility function evaluated at the
optimal portfolio choice, and ´ the Lagrange multiplier for the restriction
that w0¶K = 1.

The expectation of the stochastic discount factor will be denoted by vt,
i.e., vt ´ Et[Mt+1]. The name stochastic discount factor refers to the fact
that Mt+1 discounts payo¤s di¤erently in di¤erent states of the world. To
illustrate this, using the de…nition of covariance, (1) can be rewritten as

¶K = Et[Mt+1Rt+1] = vtEt[Rt+1] +Covt[Rt+1;Mt+1]: (3)

The …rst term in (3) uses vt to discount the expected future payo¤s, while
the second term is a risk adjustment (recall that ¶K is the price-vector of the
returns Rt+1). Accordingly, risk premia are determined by the covariance of
asset payo¤s with Mt+1. If one of the assets is a risk free asset with return
Rft , then it follows from the conditional expectation in (1) that Rft = 1=vt.
In the sequel we will usually not impose the presence of such a risk free asset.
If a risk free asset is available however, then we can always substitute 1=Rft
for vt.

Equation (1) is the starting point for most asset pricing models. In fact,
di¤erences in asset pricing models can be interpreted as di¤erences in the
function that each model assigns to Mt+1 (see, e.g., Cochrane (1997)). Since
each valid stochastic discount factor has to satisfy (1), observed asset returns
can be used to derive information about these discount factors. For instance,
following Hansen and Jagannathan (1991) it is possible to derive a lower
bound on the variance of Mt+1, that each valid stochastic discount factor
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has to satisfy, which is known as the volatility bound. To see this, we start
from the unconditional version of (1), and leave out the time subscripts
for the expectations and (co)variance operators, as well as for v. In this
paper, the expectation of the stochastic discount factor will usually be a free
parameter. We will denote all discount factors that satisfy (1) and that have
unconditional expectation v with M(v)t+1, and derive a lower bound for the
variance of each M(v)t+1.

Let the unconditional expectation and covariance matrix of the returns
Rt+1 be given by ¹R and §RR respectively, and assume that all returns are
independently and identically distributed (i.i.d.), so that the expectations
and covariances do not vary over time. This assumption will be relaxed in
Section 4 of this paper. Given the set of asset returns Rt+1, let mR(v)t+1
be a candidate stochastic discount factor that has expectation v and that is
linear in the asset returns:

mR(v)t+1 = v + '(v)0(Rt+1 ¡ ¹R); (4)

where we write '(v) to indicate that these coe¢cients are a function of the
expectation of M(v)t+1. Substituting (4) into (1), we obtain:

'(v) = §¡1RR(¶K ¡ v¹R): (5)

Since both M(v)t+1 and mR(v)t+1 satisfy (1) we have that E[(M(v)t+1 ¡
mR(v)t+1)Rt+1] = 0, so the di¤erence between any M(v)t+1 that satis…es (1)
and mR(v)t+1 is orthogonal to Rt+1 and therefore to mR(v)t+1 itself. This
implies for the variance of M(v)t+1 that:

V ar[M(v)t+1] = V ar[mR(v)t+1] + V ar[(M(v)t+1 ¡mR(v)t+1)] (6)
¸ V ar[mR(v)t+1];

which shows that mR(v)t+1 has the lowest variance of all valid stochastic
discount factors M(v)t+1. This minimum variance can be obtained by com-
bining (4) and (5):

V ar[mR(v)t+1] = (¶K ¡ v¹R)
0§¡1RR(¶K ¡ v¹R): (7)

Thus, any pricing model that aims to price the assets Rt+1 correctly, has to
yield a pricing kernel that, for a given v, has a variance at least as large as
(7). Equivalently, if we know that agents choose their optimal portfolio from
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the assets that are in Rt+1, then (7) gives the minimum amount of variation
of their IMRS that is needed to be consistent with the distribution of asset
returns. Luttmer (1996) extends this kind of analysis taking into account
market frictions such as short sales constraints and transaction costs. For the
frictionless markets setting, Snow (1991) provides a similar analysis to derive
bounds on other moments of the discount factor as well, and Bansal and
Lehmann (1997) provide a bound on the mean of the logarithm of the pricing
kernel, using growth optimal portfolios. Balduzzi and Kallal (1997) show how
additional knowledge about risk premia may lead to sharper bounds on the
volatility of the discount factor and Balduzzi and Robotti (2000) use the
minimum variance discount factor to estimate risk premia associated with
economic risk variables. Finally, Bekaert and Liu (1999) and Ferson and
Siegel (1997) study the use of conditioning information to derive optimally
scaled volatility bounds.

2.2 Duality between volatility bounds and mean-variance
frontiers

In the previous section we derived the minimum amount of variation in
stochastic discount factors that is needed to be consistent with the distri-
bution of asset returns. In this section we will show that there is a close
correspondence between these volatility bounds and mean-variance frontiers
and that stochastic discount factors that correspond to mean-variance opti-
mizing behavior are the stochastic discount factors with the lowest volatility.
Mean-variance optimizing behavior is a special case of the portfolio problem
considered before, where the problem the agent faces is maxfwg E[u(Wt+1)],
and where E[u(:)] is of the form f(w0¹R; w0§RRw), with f increasing in its
…rst argument and decreasing in its second argument.

For further reference it is useful to de…ne the e¢cient set variables (see,
e.g., Ingersoll (1987)):

A ´ ¶0K§
¡1
RR¶K ; B ´ ¹0R§

¡1
RR¶K ; and C ´ ¹0R§

¡1
RR¹R:

A mean-variance e¢cient portfolio w¤ is the solution to the problem

max
fwg

L = w0¹R ¡ °w0§RRw¡ ´(w0¶K ¡ 1);

where ° is the coe¢cient of risk aversion. From the …rst order conditions of
this problem it follows that a portfolio w¤ is mean-variance e¢cient if there
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exist scalars ° and ´ such that2

w¤ = °¡1§¡1RR(¹R ¡ ´¶K): (8)

Because of the restriction w0¶K = 1, it also follows that ° = B¡A´, implying
that each mean-variance e¢cient portfolio is uniquely determined when either
° or ´ is known, unless ´ = B=A. It is straightforward to show that for a
given mean-variance e¢cient portfolio w¤, the Lagrange multiplier ´ equals
the expected return on the zero-beta portfolio of w¤, i.e., the intercept of the
line tangent to the mean-variance frontier at w¤ (in mean-standard deviation
space). Since B=A, is the expected return on the global minimum variance
(GMV) portfolio, this is the intercept of the asymptotes of the mean-variance
frontier, but there are no lines tangent to the frontier originating at this point
(see, e.g., Ingersoll (1987, p.86)).

To show the duality between mean-variance frontiers and volatility bounds,
take '(v) for a given v, and choose a mean-variance e¢cient portfolio such
that ´ = 1=v. It follows from (8) and (5) that

w¤(v) =
§¡1RR(¹R ¡ 1

v ¶K)
B ¡ 1

vA
=
§¡1RR(¶K ¡ v¹R)

A¡ vB
=

'(v)
¶0K'(v)

; (9)

which shows that the vector '(v) is proportional to a mean-variance e¢-
cient portfolio with zero-beta return equal to 1=v. Thus, each point on the
volatility bound of stochastic discount factors, i.e., (v, Var[m(v)t+1]) corre-
sponds to a unique point on the mean-variance frontier, (¹¤p, ¾¤p), and each
coe¢cient vector '(v) corresponds to a unique w¤(v). The only exception to
this result is the case where ¶0K'(v) = 0, which is the case if v = A=B, or
equivalently, ´ = B=A. As already noted, this is the case where the zero-beta
return equals the expected return on the global minimum variance portfolio
(see also Hansen and Jagannathan (1991)). The duality between the mean-
variance frontier of Rt+1 and the volatility bound derived from Rt+1 can also
be seen directly from (5) and (8). Comparing the coe¢cients '(v) for the
minimum variance stochastic discount factor in (5) and the portfolio weights
w¤ in (8) for ´ = 1=v, it can be seen that the coe¢cients '(v) are proportional
to the portfolio weights w¤, where the coe¢cient of proportionality is equal

2More precisely, these are the minimum variance portolios, i.e., the portfolios that have
minimum variance for a given expected return. The mean-variance e¢cient portfolios, i.e.,
the portfolios that also have maximum expected return for a given variance, require in
addition that ° ¸ 0.
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to ¡´=°, i.e., w¤ = (¡´=°)'(v). In Appendix A we show graphically which
points on the volatility bound correspond to points on the mean-variance
frontier.

Summarizing, …nding stochastic discount factors that have the lowest
variance of all stochastic discount factors that price a set of asset returnsRt+1
correctly is tantamount to …nding mean-variance e¢cient portfolios for these
same assets Rt+1. In the remainder of this paper we will study the e¤ects of
adding new assets to the set of assets available to investors. Although most
of the results will be stated in terms of mean-variance frontiers and mean-
variance e¢cient portfolios, it should be kept in mind that there is always a
dual interpretation in terms of volatility bounds.

3 Mean-variance spanning and intersection
In the previous section we considered the volatility bounds and mean-variance
frontiers that can be derived from a given set of K assets with return vector
Rt+1. Suppose now that an investor takes an additional set of N assets with
return vector rt+1 into account in his portfolio problem. The question we
are interested in is under what conditions mean-variance e¢cient portfolios
derived from the set of returns Rt+1 are also mean-variance e¢cient for the
larger set of K + N assets (Rt+1; rt+1). This problem was addressed in the
seminal paper of Huberman and Kandel (1987). If there is only one value of °
or ´ for which mean-variance investors can not improve their mean-variance
e¢cient portfolio by including rt+1 in their investment set, the mean-variance
frontiers of Rt+1 and (Rt+1; rt+1) have exactly one point in common, which
is referred to as intersection. In this case we will say that the mean-variance
frontier of Rt+1 intersects the mean-variance frontier of (Rt+1; rt+1), or simply
that Rt+1 intersects (Rt+1; rt+1). If there is no mean-variance investor that
can improve his mean-variance e¢cient portfolio by including rt+1 in his
investment set, the mean-variance frontiers of Rt+1 and (Rt+1; rt+1) coincide,
which is referred to as spanning. In this case we will say that (the mean-
variance frontier of) Rt+1 spans (the mean-variance frontier of) (Rt+1; rt+1).

As suggested by the previous section, and as shown by Ferson, Foerster,
and Keim (1993), DeSantis (1994), Ferson (1995) and Bekaert and Urias
(1996), the concept of mean-variance spanning and intersection has a dual
interpretation in terms of volatility bounds. In terms of volatility bounds
mean-variance spanning means that the volatility bound derived from the
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returns Rt+1 is the same as the bound derived from (Rt+1; rt+1). Therefore,
the minimum variance stochastic discount factors forRt+1,mR(v)t+1, are also
the minimum variance stochastic discount factors for (Rt+1; rt+1), and the
asset returns rt+1 do not provide information about the necessary volatility
of stochastic discount factors that is not already present in Rt+1. As will
be shown formally below, mean-variance intersection is equivalent to saying
that the volatility bounds derived fromRt+1 and (Rt+1; rt+1) have exactly one
point in common. Thus, in case of intersection there is exactly one value of v
for which the minimum variance stochastic discount factor does not change,
whereas for all other values of v it does.

In …nite samples it will in general be the case that adding assets causes
a shift in the estimated mean-variance frontier and the estimated volatility
bound. This shift may very well be the result of estimation error however, and
the main question is whether the observed shift is too large to be attributed
to chance. Therefore, to answer the question whether or not the observed
shift in the mean-variance frontier is signi…cant in statistical terms, in this
section we will also show how regression analysis can be used to test for
spanning and intersection.

3.1 Spanning and intersection in terms of mean-variance
frontiers

To state the problem formally, the hypothesis of mean-variance intersection
means that there is a portfolio w¤ which is mean-variance e¢cient for the
smaller set Rt+1 and which is also mean-variance e¢cient for the larger set
(Rt+1; rt+1). In the sequel, variables that refer to the smaller set Rt+1 (rt+1)
will be referred to with a subscript R (r), or with their dimension K (N),
whereas variables that refer to the larger set (Rt+1; rt+1), will not have any
subscript or will have their dimension as subscript, K + N. Thus, wR is a
K-dimensional vector with portfolio weights for the assets in Rt+1, and w is a
(K+N)-dimensional vector with portfolio weights for all the available assets
(Rt+1; rt+1). The hypothesis of mean-variance intersection comes down to
the statement that there exists a mean-variance e¢cient portfolio w¤ of the
form

w¤ =
Ã
w¤R
0N

!

; (10)
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i.e., there exist scalars ° and ´, such that

¹¡ ´¶K+N = °§
Ã
w¤R
0N

!

: (11)

If such a portfolio w¤ exists, there is one point on the mean-variance frontier
of Rt+1 that also lies on the mean-variance frontier of (Rt+1; rt+1). Using
obvious notation, ¹ consists of two subvectors ¹R and ¹r, and § consists of
submatrices §RR, §Rr, §rR, and §rr. The …rst K rows of (11) imply that

¹R ¡ ´¶K = °§RRw¤R , w¤R = °
¡1§¡1RR(¹R ¡ ´¶K): (12)

Equation (12) simply says that w¤R is indeed mean-variance e¢cient for the
smaller set Rt+1.

The next step is to derive the restrictions on the distribution of Rt+1 and
rt+1 that are equivalent to mean-variance intersection. In order to do so,
substitute (12) in the last N rows of (11) to obtain:

¹r ¡ ´¶N = §rR§¡1RR(¹R ¡ ´¶K); ,
(¹r ¡ ¯¹R) + (¯¶K ¡ ¶N )´ = 0; (13)

with ¯ ´ §rR§¡1RR. Thus, if there is a portfolio that is mean-variance e¢cient
for the smaller set Rt+1 that is also mean-variance e¢cient for the larger set
(Rt+1; rt+1), there must exist an ´ such that the restriction in (13) holds. It
follows immediately from the derivation above that this ´ is the zero-beta
return that corresponds to the portfolio w¤R (and w¤).

If there is mean-variance spanning then all mean-variance e¢cient port-
folios w¤ must be of the form (10), i.e., (11) must be true for all values of ´
and the corresponding °’s. Going through the same steps, if (11) must hold
for any ´, (13) must hold for any ´, and this can only be the case if

¹r ¡ ¯¹R = 0 and ¯¶K ¡ ¶N = 0; (14)

which are the restrictions imposed by the hypothesis of spanning. If these re-
strictions on the distribution of Rt+1 and rt+1 hold, every point on the mean-
variance frontier of Rt+1 is also on the mean-variance frontier of (Rt+1; rt+1)
and the two frontiers coincide.
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3.2 Spanning and intersection in terms of volatility
bounds

In the previous section we de…ned mean-variance spanning and intersection
from the properties of mean-variance e¢cient portfolios and we derived the
equivalent restrictions on the distribution of asset returns, which have pre-
viously been derived by Huberman and Kandel (1987). In this section we
analyze mean-variance intersection and spanning from the properties of min-
imum variance stochastic discount factors that price the assets in Rt+1 and
in (Rt+1; rt+1) correctly and we show that this imposes the same restrictions
on the distribution of the asset returns. In terms of volatility bounds, the
hypothesis of intersection is that there is a value of v such that the minimum
variance stochastic discount factor for Rt+1, i.e., mR(v)t+1, is also the mini-
mum variance stochastic discount factor for the larger set (Rt+1; rt+1). The
discount factor mR(v)t+1 as de…ned by (4) and (5) is the minimum variance
stochastic discount factor for this larger set if it also prices rt+1 correctly. If
mR(v)t+1 prices bothRt+1 and rt+1 correctly, the di¤erence betweenmR(v)t+1
and any other M(v)t+1 that prices Rt+1 and rt+1 correctly is orthogonal to
Rt+1 and rt+1, implying that mR(v)t+1 must have the lowest variance among
all stochastic discount factors M(v)t+1, by the same reasoning that leads to
(6).

Thus, the hypothesis of intersection for volatility bounds can be stated
as:

9v s.t. E[rt+1mR(v)t+1] = ¶N : (15)

To show that this hypothesis imposes the same restrictions on the distribution
of Rt+1 and rt+1 as in (13), substitute (4) and (5) into (15):

E[rt+1(v + (Rt+1 ¡ ¹R)
0§¡1RR(¶K ¡ v¹R))] = ¶N ; ,

(¹r ¡ §rR§¡1RR¹R)v + (§rR§
¡1
RR¶K ¡ ¶N ) = 0;,

(¹r ¡ ¯¹R)v + (¯¶K ¡ ¶N ) = 0: (16)

Dividing both sides of (16) by v shows that the hypothesis of intersection
in terms of volatility bounds indeed implies the same restrictions as the
hypothesis of intersection in terms of mean-variance frontiers, if we choose
´ = 1=v. This could be expected beforehand, since from the duality between
mean-variance frontiers and volatility bounds in (9) we already knew that
the vector 'R(v) that de…nes mR(v)t+1, is proportional to a mean-variance
e¢cient portfolio with zero-beta return ´ = 1=v. The hypothesis that w¤ is
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of the form (w¤0R 00N )0 is therefore equivalent the hypothesis that '(v) is of
the form ('R(v)0 00N )0.

By the same logic, the hypothesis of spanning in terms of volatility
bounds, requires that mR(v)t+1 prices the returns rt+1 for all values of v:

E[rt+1mR(v)t+1] = ¶N ; 8v; (17)

since in that case the entire volatility bound derived from (Rt+1; rt+1) coin-
cides with the volatility bound derived from (Rt+1) only. This requirement
implies that (16) holds for all values of v, and this can only be the case if the
restrictions in (14) hold.

3.3 Intersection and mean-variance e¢ciency of a given
portfolio

A question that is of obvious interest both from a portfolio choice perspec-
tive and from an asset pricing perspective, is the question whether or not a
given portfolio wp is mean-variance e¢cient or not. From a portfolio choice
perspective, an investor will be interested in whether or not his portfolio has
the desired properties of a mean-variance e¢cient portfolio. From an asset
pricing perspective, the frequently analyzed question is, e.g., whether or not
the market portfolio is mean-variance e¢cient as the CAPM predicts. Al-
ternative asset pricing models may identify other portfolios as being mean-
variance e¢cient. For instance, in the Consumption-CAPM the portfolio
that mimics aggregate per-capita consumption is mean-variance e¢cient and
the Intertemporal-CAPM implies that a combination of the market portfo-
lio and the portfolios hedging changes in the investment-opportunity set is
mean-variance e¢cient.

Denote the return on some portfolio wp by Rpt+1 and its expectation by ¹p.
The question whether or not wp is mean-variance e¢cient with respect to the
N +1 assets (Rpt+1; rt+1), is obviously a special case of the question whether
or not there is mean-variance intersection withK = 1 and Rt+1 = Rpt+1, since
intersection in this case simply means that the portfolio wp is on the mean-
variance frontier of (Rpt+1; rt+1). Therefore, if wp is mean-variance e¢cient
for the set (Rpt+1; rt+1), the following restrictions on the distribution of Rpt+1
and rt+1 should hold:

¹r = ´¶N + ¯
p(¹p ¡ ´); (18)
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where ¯p is the N-dimensional vector Cov[rt+1; Rpt+1]=V ar[R
p
t+1], and ¹p =

E[Rpt+1]. When testing for mean-variance e¢ciency, Rpt+1 is usually the return
on a portfolio of rt+1.

What we want to establish in this section however, is that the hypothesis
that the mean-variance frontier of Rt+1 (K ¸ 1) intersects the frontier of
(Rt+1; rt+1) at a given value of ´ = 1=v, is tantamount to the hypothesis that
the portfolio w¤R that is mean-variance e¢cient for Rt+1 and that has ´ as
its zero-beta rate is also mean-variance e¢cient with respect to (Rt+1; rt+1).
Denote the return on w¤R as R¤t+1 and its expectation as ¹¤. Recall that the
portfolio w¤R is given by the …rst K rows of (11)

w¤R = °
¡1§¡1RR(¹R ¡ ´¶K);

from which

w¤0R(¹R ¡ ´¶K) = °w¤0R§RRw
¤
R , ° =

¹¤ ¡ ´
V ar[R¤t+1]

:

Substituting these relations into (11) and de…ning ¯¤ ´ Cov[rt+1; R¤t+1]=V ar[R¤t+1],
results in

0 = (¹r ¡ ¯¤¹) + (¯¤ ¡ ¶N )´: (19)

These are the same restrictions as (18) for wp = w¤. Thus, the hypothesis of
intersection indeed implies the same restrictions on the distribution of Rt+1
and rt+1 as the hypothesis that w¤R is mean-variance e¢cient with respect to
rt+1.

3.4 Testing for spanning and intersection
So far we derived the restrictions implied by the hypotheses of mean-variance
intersection and spanning for the distribution of Rt+1 and rt+1. Huberman
and Kandel (1987) showed how regression analysis can be used to test these
hypotheses. To see how regression analysis can be used to test for intersec-
tion, start from (13):

¹r ¡ ´¶N = ¯(¹R ¡ ´¶K):

Replacing the expected returns ¹r and ¹R with realized returns rt+1 and
Rt+1, gives the regression

rt+1 = ®+ ¯Rt+1 + "t+1, (20)
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with ® = ¹r ¡ ¯¹R, "t+1 = ur;t+1 ¡ ¯uR;t+1, ur;t+1 ´ rt+1 ¡ ¹r and uR;t+1 ´
Rt+1 ¡¹R. It can readily be checked that under the null hypotheses of span-
ning and intersection Cov["t+1; Rt+1] = 0. Notice that ® is an N-dimensional
vector of intercepts, ¯ is an N £K-dimensional matrix of slope coe¢cients,
and "t+1 is an N-dimensional vector of error terms. The restrictions imposed
by the hypothesis of intersection in (13) can now be stated as

®¡ ´(¶N ¡ ¯¶K) = 0: (21)

With intersection there are two cases of interest. First, we may be in-
terested in testing for intersection for a given value of the zero-beta rate ´.
In that case the restrictions in (21) should hold for this speci…c value of ´,
which is a set of linear restrictions. In the sequel we will mainly be interested
in this case. Second, the interest may be in the question whether there is
intersection at some unknown point of the frontier, i.e., for some unknown
value of ´. In that case the hypothesis is that there exists some ´ such that
the restrictions in (21) hold. This hypothesis can be stated as

®i=(1¡ ¯i¶K) = ®j=(1¡ ¯j¶K); i; j = 1; :::; N;

where ¯i is the ith row of ¯. Thus, the hypothesis that there is intersection
at some point of the frontier imposes a set of nonlinear restrictions on the
regression parameters in (20). Notice that given estimates of ®i and ¯i an
estimate of the zero-beta rate for which there is intersection can be obtained
from ®i=(1¡ ¯i¶K). Also note, that testing whether there is intersection at
some unknown point of the frontier only makes sense if N ¸ 2, since there is
always intersection if N = 1. (Because there is always one e¢cient portfolio
for which the weight in the new asset is zero.)

Recall that the hypothesis of spanning implies that (21) holds for all
values of ´. Therefore, going through the same steps, the restrictions imposed
by the hypothesis of spanning can be stated as

® = 0 and ¯¶K ¡ ¶N = 0. (22)

The restrictions in terms of the regression model in (20) are intuitively
very clear. For instance, the spanning restrictions in (22) state that if there
is spanning, then each return of the additional assets, ri;t+1, i = 1; 2; :::; N,
can be written as the return of a portfolio of the benchmark assets ¯iRt+1,
¯i¶K = 1, plus an error term "i;t+1 which has expectation zero and which
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is orthogonal to the returns Rt+1. Since such an asset can only add to the
variance of portfolios of Rt+1, and not to the expected return, mean-variance
optimizing agents will not include such an asset in their portfolio. A similar
interpretation holds for the intersection restrictions.

If the returns series Rt+1 and rt+1 are stationary and ergodic, consistent
estimates of the parameters ® and ¯ in (20) are easily obtained using OLS.
In writing down the test statistics for (21) and (22), it is convenient to use a
di¤erent speci…cation of (20), in which all the coe¢cients ® and ¯ are stacked
into one big vector:

rt+1 =
³
IN 

³
1 R0t+1

´´
b+ "t+1; (23)

where b = vec
µ³
® ¯

´0¶
, a (K + 1)N-dimensional vector. If bb is the OLS

estimate of b and bQ is a consistent estimate of the asymptotic covariance
matrix of bb, the hypotheses of intersection and spanning can be tested using
a standard Wald test. De…ning

H(´)int ´ IN 
³
1 ´¶0K

´
and (24a)

h(´)int ´ H(´)int bb¡ ´¶N , (24b)

the Wald test-statistic for intersection can be written as

»intW = h(´)0int
³
H(´)int bQH(´)0int

´¡1
h(´)int: (25)

Similarly, de…ning

Hspan ´ IN 
Ã
1 00K
0 ¶0K

!

and (26a)

hspan ´ Hspanbb¡ ¶N 
Ã
0
1

!

; (26b)

the Wald test-statistic for spanning can be written as

»spanW = h0span
³
Hspan bQH0

span

´¡1
hspan: (27)

Under the null hypotheses and standard regularity conditions, the limit dis-
tribution of »intW will be Â2N and the limit distribution of »spanW will be Â22N .
The test statistics in (25) and (27) have interesting economic interpretations
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in terms of performance measures. The relationship between tests for inter-
section and spanning and performance evaluation will be discussed in detail
in Section 5.3.

Chen and Knez (1996) and Hall and Knez (1995) propose a test for inter-
section that is based on (15). De…ne the deviation from the equality in (15)
to be ¸(v):

¸(v) ´ E[mR(v)trt]¡ ¶N : (28)

In Section 5.1 we will interpret ¸(v) scaled by v as a generalization of the
well-known Jensen measure. Given an estimate of the parameters 'R(v)
using the sample equivalent of (5):

b'R(v) =
Ã
1
T

TX

t=1
(Rt ¡R)(Rt ¡R)0

!¡1 ³
¶K ¡ vR

´
;

with R the sample mean of Rt, de…ne b̧(v)t as

b̧(v)t ´ rt(v + b'R(v)
0(Rt ¡R))¡ ¶N :

A test for the hypothesis of intersection, ¸(v) = 0, can now be based on

»intCK =
Ã
1
T

TX

t=1

b̧(v)t

!0 ³
dV ar[b̧(v)t]

´¡1
Ã
1
T

TX

t=1

b̧(v)t

!

; (29)

where the estimate dV ar[b̧(v)t] can for instance be obtained using the method
suggested by Newey and West (1987). The limit distribution of the test-
statistic »intCK is also Â2N . Since for ´ = 1=v,we have

Ã
1
T

TX

t=1

b̧(v)t

!

=v =
1
T

TX

t=1

µ
rt + rt

³
Rt ¡R

´0
b'R(v)´

¶
¡ ´¶N

= b®+
³

b̄¶K ¡ ¶N
´
´;

it follows that Ã
1
T

TX

t=1

b̧(v)t

!

=v = H(´)intbb¡ h(´)int;

and that the only di¤erence in the Wald test-statistic in (25) and the statistic
proposed in (29) is the way in which the covariance matrix is estimated.

A disadvantage of the test originally proposed by Chen and Knez (1996)
is that they test for intersection for a very speci…c stochastic discount factor,

17



which corresponds to the minimum second moment portfolio. This discount
factor can be found by projecting the kernel Mt+1 on the asset returns only,
excluding the constant. The corresponding portfolio on the mean-variance
frontier is the one with the minimum second moment among all portfolios on
the frontier, and can graphically be found as the tangency point between the
mean-variance frontier and a circle with its centre at the origin. The problem
with this portfolio is that it is located at the ine¢cient part of the frontier,
implying that the test used by Chen and Knez (1995) is for intersection at
an ine¢cient portfolio. Therefore it is economically not very interesting,
unless a risk free asset is included. Since in the test statistic in (29) the
discount factor mR(v)t+1 results from a projection of Mt+1 on Rt+1 plus a
constant, this test allows us to test for intersection at any mean-variance
e¢cient portfolio, so this test does not su¤er from the problem of the test
originally suggested by Chen and Knez. Dahlquist and Söderlind (1999),
who use the test proposed by Chen and Knez to evaluate the performance
of Swedish mutual funds, also acknowledge this problem and add a constant
to the set Rt+1 such that the conditional mean of mr(v)t+1, equals one over
the risk free rate, i.e., vt = 1=Rf;t.

The distinction between the Wald tests in (25) and (27) on the one hand
and the tests proposed by Chen and Knez in (29) is similar to the distinction
between tests based on the (traditional) regression methodology and on the
SDF methodology as discussed in Kan and Zhou (1999). Their simulations
suggest that in small samples tests based on the regression methodology have
better size and power properties than tests based on the SDF methodology,
which indicates that the test in (25) may be preferred to (29).

Alternative tests for the hypotheses of intersection and spanning are sug-
gested, e.g., by Huberman and Kandel (1987), who propose a likelihood ratio
test, and by Snow (1991) and DeSantis (1995), who propose a Generalized
Method of Moments (GMM) procedure. This latter procedure is also iden-
tical to the region subset test suggested by Hansen, Heaton and Luttmer
(1995) which is equivalent to a test for intersection. A comparison of the
small sample properties of various test-procedures can be found in Bekaert
and Urias (1996). Their small sample results suggest that the likelihood test
for spanning as proposed by Huberman and Kandel has better power prop-
erties than the GMM-based tests, while it also has a size distortion that is
in most cases not worse than for the GMM-based tests. The GMM-based
test or region subset test is based on the observation that under the null
hypotheses of spanning or intersection, the kernel that prices Rt+1 and rt+1
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correctly is of the form

m(v)t+1 = v + 'R(v)
0(Rt+1 ¡ ¹R) + 'r(v)

0(rt+1 ¡ ¹r),
with 'r(v) = 0.

Given that 'r(v) = 0, a GMM-estimate of the K parameters in 'R(v) can
be obtained by using the K +N sample moments

gT ('R(v)) =
1
T

TX

t=1

(Ã
Rt
rt

!

(v + 'R(v)
0(Rt ¡R)

)

¡¶K+N =
1
T

TX

t=1
gt('R(v)).

A consistent estimate of 'R(v) can therefore be obtained by solving

min
'R(v)

gT ('R(v))
0WTgT ('R(v)) = JT ('R(v)); (30)

where WT is a symmetric nonsingular weighting matrix. Notice that the
GMM-estimate of the K parameters 'R(v) obtained from (30) is based on
K +N moment restrictions. The N overidentifying restrictions are derived
from the hypothesis that mR(v)t+1 must also price the N additional assets
rt+1. Intersection for a given value of v can now be tested by using the
fact that under the null-hypothesis and regularity conditions TJT (aR(v)) is
asymptotically Â2N -distributed. Since spanning implies that (15) holds for (at
least) two di¤erent values of v, the GMM-based test can easily be extended
by estimating two vectors 'R(v1) and 'R(v2) simultaneously (v1 6= v2) using
(30). In this case there are 2K parameters to be estimated with 2(K +N)
moment conditions. The test for spanning is therefore a test for the 2N
overidentifying restrictions and will asymptotically be Â22N -distributed under
the null-hypothesis of spanning.

4 Testing for spanning and intersection with
conditioning information

The purpose of this section is to incorporate conditioning information in
tests for intersection and spanning. Until now we assumed that returns are
independently and identically distributed (i.i.d.). However, there is ample
evidence that asset returns are to some extent predictable. For instance,
stock and bond returns can be predicted from variables like lagged returns,
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dividend yields, short term interest rates, and default premiums (see, e.g.,
Ferson (1995)) and futures returns can be predicted from hedging pressure
variables (see e.g. DeRoon, Nijman and Veld (2000)) as well as from the
spread between spot and forward prices (see, e.g., Fama (1984)). Kirby
(1998) analyzes whether predictability of security returns is consistent with
rational asset pricing. He shows that the covariance between the pricing ker-
nel implied by an asset pricing model and conditioning variables, restricts the
slope coe¢cients in a regression of security returns on those same condition-
ing variables. In Section 4.1 we will show how conditional information can
be used in a straightforward way by using scaled returns (see, e.g., Cochrane
(1997) and Bekaert and Urias (1996)). Although this is a fairly general
and intuitive way of incorporating conditional information, a disadvantage
of this method is that the dimension of the estimation and testing problem
increases quickly. In Section 4.2 we show that this problem can be circum-
vented if it is assumed that variances and covariances are constant, while
expected returns are allowed to vary over time, although this assumption
is not in accordance with most equilibrium models and with the empirical
evidence regarding time-varying second moments. Using this simplifying as-
sumption however, it is shown that the conditioning variables can easily be
accounted for by using them as additional regressors. The restrictions for the
intersection and spanning hypotheses then become similar to the restrictions
in the i.i.d. case. This way of incorporating conditional variables also has
the additional advantage that the regression estimates indicate under what
economic circumstances, i.e., for what values of the conditioning variables,
intersection and spanning can or can not be rejected. Finally, in Section 4.3
we will discuss the use of conditioning variables as, e.g., in Shanken (1990)
and Ferson and Schadt (1996).

4.1 Incorporating conditional information using scaled
returns

Suppose that zt is an (L ¡ 1)-dimensional vector of instruments that has
predictive power for Rt+1 and rt+1, and de…ne the L-dimensional vector Zt
as Zt ´ (1 z0t)0. A common way to use these instruments is to look at scaled
returns: Zt Rt+1. If Mt+1 is a valid stochastic discount factor, then from
(1) we have:

E[Mt+1(Zt Rt+1) j It] = Zt  ¶K :
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Taking unconditional expectations, this yields

E[Mt+1(Zt Rt+1)] = E[Zt  ¶K ]: (31)

Thus, the scaled return Zi;tRj;t+1 has an average price equal to E[Zi;t]. The
scaled returns can be interpreted as the payo¤s of a strategy where each
period an amount equal to Zi;t dollars is invested in a security, yielding
a payo¤ equal to Zi;tRj;t+1. Therefore, we can also think of Zt  Rt+1 as
the returns on managed portfolios (see, e.g., Cochrane (1997)). By allowing
for such managed portfolios, we take into account that investors may use
dynamic strategies, based on the realized values of Zt. In e¤ect this increases
the set of available assets by a factor L (i.e., from K to K £L).

To simplify notation, denote the (L £ K)-dimensional vector Zt  Rt+1
by RZt+1. Also, denote the (L£K)-dimensional vector E[Zt ¶K ] by qK . For
further reference, rZt+1 and qN are de…ned in a completely analogous way and
we use a superscript Z for all variables and parameters that correspond to
RZt+1 and rZt+1. Valid stochastic discount factors MZ

t+1 now have to satisfy

E[MZ
t+1R

Z
t+1] = qK : (32)

As shown by Bekaert and Urias (1996), following the same line of reasoning
as in Sections 2.1 and 2.2, it is straightforward to show that the minimum
variance stochastic discount factor with expectation v is given by

mZ
R(v)t+1 = v + 'Z(v)0(RZt+1 ¡ ¹ZR); (33)
'Z(v) = (§ZRR)

¡1(qK ¡ v¹ZR):

This expression for the volatility bound is a straightforward generalization of
the one given in (4) and (5). The restrictions imposed by the hypotheses of
intersection and spanning also turn out to be very similar to the ones given
in previous sections, as we will see below.

Thus, conditioning information can be incorporated by including man-
aged portfolios, the returns of which depend on the conditioning variables. If
there is to be conditional intersection or spanning of rt+1 by Rt+1, the uncon-
ditional volatility bound (or mean-variance frontier) of RZt+1 must intersect
or span the volatility bound (or mean-variance frontier) of (RZt+1; rZt+1). The
interest is therefore in the returns Rt+1 and rt+1 themselves plus the returns
on all the managed portfolios. Intersection or spanning is equivalent to

E[rZt+1m
Z
R(v)t+1] = qN ; (34)
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for one value of v or for all values of v respectively. To see which restrictions
these hypotheses imply, substitute (33) into (34) to obtain

(¹Zr ¡ ¯Z¹ZR)v + (¯
ZqK ¡ qN) = 0; (35)

for intersection, and

(¹Zr ¡ ¯Z¹ZR) = 0; and (¯ZqK ¡ qN) = 0; (36)

for spanning. Here ¯Z = §ZrR
³
§ZRR

´¡1
is a (L£N)£ (L£K) matrix with

slope coe¢cients from a regression of rZt+1 on RZt+1 plus a constant. These
restrictions are also given in Bekaert and Urias (1996). Regressing rZt on
RZt to incorporate conditioning information is very similar to the approach
to be discussed in Section 4.3, where the regression parameters ® and ¯ are
time varying. In that section we will assume that the mean returns and the
(co)variances are functions of the instruments that can be linearized using a
Taylor series approximation, leading to a similar regresssion as in the case
discussed here. Therefore, the use of scaled returns can also be motivated as
a convenient way of dealing with time-varying means and variances.

The similarity with the case in which there was no conditioning informa-
tion is obvious. The only di¤erence in the restrictions is that in (35) and (36)
we have (¯ZqK¡qN) instead of (¯¶K¡¶N ). The fact that qK and qN enter the
restrictions re‡ects the fact that RZt+1 and rZt+1 are not really returns, in the
sense that their current prices are not necessarily equal to one. The average
prices of RZt+1 and rZt+1 are instead given by qK and qN . The average cost
of the managed portfolios with payo¤ vector rZt+1 is given by the vector qN ,
and the cost of the mimicking portfolios from RZt+1 is given by ¯ZqK . The
interpretation of the restrictions given in Section 3.4 is therefore still valid.

The main disadvantage of this way of incorporating conditioning informa-
tion is that the number of parameters to be estimated as well as the number
of restrictions to be tested grows rapidly with the number of instruments
L. The number of exogenous variables equals K £ L and the number of
restrictions to be tested equals N £L for the hypothesis of intersection, and
2N £ L for the hypothesis of spanning. This is the case because for each
new instrument there areK new managed portfolios to be considered for the
assets in Rt+1 and N additional managed portfolios for the assets in rt+1.

This problem can at least partially be circumvented if we are willing to
assume a more speci…c form of predictability. Speci…cally, in the next section
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we make the assumption that only the expected returns of Rt+1 and rt+1
depend linearly on the instruments zt, whereas all variances and covariances
are constants. In Section 4.3 the slope coe¢cients ¯ are assumed to depend
linearly on the instruments, which also allows for a straightforward way of
incorporating conditional information in the regression framework to test for
intersection and spanning.

4.2 Expected returns linear in the conditional vari-
ables

In this section we assume that there is a speci…c form of predictability, which
allows us to incorporate conditioning information in a straightforward way
in the regression framework for spanning and intersection. The assumption
made is that expected returns are linear in the conditional variables and
that returns are conditionally homoskedastic. This way of incorporating
conditioning information is used in Harvey (1989), as well as, for instance, in
Campbell and Viceira (1998) and DeRoon, Nijman and Werker (1998). The
assumption we make is that

Et[Rt+1] = c0RZt; (37)
Et[rt+1] = c0rZt;

and the variances and covariances of Rt+1 and rt+1 conditional on Zt are
given by V ar[Rt+1 j Zt] = RR, V ar[rt+1 j Zt] = rr, and Cov[rt+1;Rt+1 j
Zt] = rR. Starting from (1), the minimum variance stochastic discount
factor, conditional on Zt, is given by

mR(vt)t+1 = vt + '(vt)0t(Rt+1 ¡Et[Rt+1]); (38)
'(vt)t = ¡1RR(¶K ¡ vtEt[Rt+1]):

Notice that since the projection of the kernel on the asset returns is now
conditional on Zt, we explicitly allow for time variation in the coe¢cients
'(vt)t, as well as in vt, the conditional expectation of the stochastic discount
factor. Also note that in describing the conditional mean-variance frontier
or volatility bound we still can use vt as a free parameter.

If there is intersection, mR(vt)t+1 must price rt+1 correctly conditional on
Zt, which results in

¶N = Et[rt+1mR(vt)t+1] = vtc0rZt +rR
¡1
RR(¶K ¡ c0RZt)

, (c0r ¡ rR¡1RRc
0
R)Ztvt + (rR

¡1
RR¶K ¡ ¶N) = 0: (39)
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In case there is spanning this condition must again hold for every vt, implying

(c0r ¡ rR¡1RRc
0
R)Zt = 0 and (rR¡1RR¶K ¡ ¶N ) = 0: (40)

It turns out that the regression framework that we used to test for spanning
and intersection can be modi…ed to test the restrictions in (39) and (40).
Straightforward use of the algebra of partitioned matrices shows that in the
regression

rt+1 = cZt + dRt+1 + ut+1, (41)

with E[ut+1Zt] = 0, and E[ut+1Rt+1] = 0, the OLS-estimates of c and d are
consistent estimates of (c0r ¡ rR¡1RRc0R) and (rR¡1RR¶K ¡ ¶N) respectively,
which are the parameters of interest in the restrictions in (39) and (40)
(see DeRoon, Nijman, and Werker (1998)). The hypotheses of intersection
and spanning can therefore be based on the OLS-estimates of (41). The
hypothesis that there is intersection for a given value of vt and Zt can be
tested by testing the restrictions

cZtvt + (d¶K ¡ ¶N ) = 0; (42)

and the hypothesis of spanning by testing the restrictions

cZt = 0 and (d¶K ¡ ¶N) = 0: (43)

These restrictions are very similar to the restrictions implied by intersection
and spanning in the unconditional case, except that the intercept ® in (20)
is replaced by cZt.

It can easily be seen from (42) and (43) that the number of restrictions
to be tested for intersection and spanning is the same as in the unconditional
case, which makes this method of incorporating conditional information more
parsimonious than using scaled returns. Note that the hypotheses underlying
(42) and (43) are that there is intersection or spanning for a particular value
of Zt, i.e., for a particular state of the economy. This has the additional
advantage that the regression estimates of (41) make it possible to derive
con…dence intervals for the values of Zt for which there can be intersection
or spanning.

If the hypothesis of interest is whether there is spanning regardless of
the state of the economy, the restrictions in (43) should hold for all values
of zt, implying that each element of c should be equal to 0. In that case,
with L instruments and N assets in rt+1, there are L£N restrictions to be
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tested, which, although smaller than the 2£ L£N restrictions in (36), can
be a large number. Also, as follows readily from (42) and (43), in this case
the hypothesis of intersection and the hypothesis of spanning both imply the
same restrictions. This latter result is due to the fact that the value of vt
for which we test intersection is constant. Since the tangency point on the
mean-variance frontier that corresponds to vt is a function of Zt, the only
way to have intersection irrespective of the speci…c value of Zt is to have
spanning.

4.3 Regression coe¢cients linear in the conditional vari-
ables

An alternative way of incorporating conditional information in the regression
framework is suggested by Shanken (1990) and Ferson and Schadt (1996)
e.g., where the coe¢cients ® and ¯ are assumed to be a linear function of
the instruments. In the regression in (20), the ith row can be written as

ri;t+1 = ®i + ¯iRt+1 + "t+1:

Shanken (1990) simply assumes that

®i = ai0 + z0tai1; (44)
¯i = bi0 + z0tbi1;

where zt are now supposed to be L demeaned variables. Here ai0 is scalar,
ai1 is an L-vector, bi0 is a K row-vector, and bi1 is L £ K matrix. Ferson
and Schadt (1996) motivate (44) as a …rst order Taylor-series expansion for a
general dependence of ¯ on Zt = (1 z0t)0. Let Cov[rt+1; Rt+1 j Zt] = §rR(Zt),
and V ar[Rt+1 j Zt] = §RR(Zt), where §(:) indicates some functional form for
the covariance matrix. Starting from (13) intersection for a given zero-beta
rate ´t = 1=vt conditional on Zt means

E[rt+1 ¡ ´t¶N ] = ¯(Zt)E[Rt+1 ¡ ´t¶K ] ,
rt+1 ¡ ´t¶N = ¯(Zt)(Rt+1 ¡ ´t¶K) + ut+1;

with ¯(Zt) = §rR(Zt)§RR(Zt)¡1, ut+1 ´ (rt+1 ¡ ¯(Zt)Rt+1) ¡ (E[rt+1] ¡
¯(Zt)E[Rt+1]), and E[ut+1 j Zt] = 0. Ferson and Schadt (1996) suggest a
linear approximation of ¯i(Zt):

¯i(Zt) ¼ bi0 + z0tbi1; (45)
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from which

ri;t+1 = ai0 + z0tai1 + bi0Rt+1 + (z
0
tbi1)Rt+1 + "t+1; (46)

ai0 = ´t(1¡ bi0¶K);
ai1 = ¡´tbi1¶K ;

with "i;t+1 = ui;t+1 + (¯i(Zt) ¡ b0i0 ¡ (z0tbi1))(Rt+1 ¡ ´t¶K), for which it is
assumed that E["i;t+1 j Zt] = 0. This yields precisely the regression in (20)
where the regression parameters are linear in the instruments as assumed by
Shanken (1990).

Intersection for a given value of ´t = 1=vt and zt can now be tested by
testing the restrictions that

(ai0 + z0tai1) + f(b0 + z0tbi1)¶K ¡ 1g´t = 0: (47)

As in the previous section, these restrictions have the additional advantage
that statements can be made about in which state of the economy, (i.e.,
values of zt) there is intersection. If there is intersection for all values of zt,
this implies

ai0 + (bi0¶K ¡ 1)´t = 0; (48)
ai1 + bi1¶K´t = 0.

The regression in (46) can also be motivated from the scaled returns in Sec-
tion 4.1. Using the pricing kernel that is linear in RZt+1 and that is supposed
to price the returns rZt+1 as well, the restrictions implied by intersection are
very similar to the ones in (48). Thus, the use of managed returns is similar
to the coe¢cients in the spanning regression being linear in the instruments.3

Spanning for a given value of zt is equivalent to

ai0 + z0tai1 = 0; (49)
(bi0 + z0tbi1)¶K = 1:

Again, for a speci…c value of zt, i.e., for speci…c economic conditions, these
restrictions can easily be tested in the regression framework outlined above.
If there is to be spanning under all economic conditions the restrictions are

a10 = 0;
b10¶K = 1;
ai1 = 0;
bi1 = 0:

3We thank the referee for pointing this out to us.
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If there are L instruments (including a constant) with K benchmark assets
and N new assets, we now have (K+1)£N£L restrictions to test, which is
even larger than with the scaled returns in Section 4.1. Also, the numbers of
parameters to be estimated is (K+1)£N£L. Thus, in terms of the number
of parameters and the number of restrictions, this approach does not o¤er
additional bene…ts over the use of scaled returns. However, this approach
does have the bene…t that it shows under what economic circumstances there
may or may not be intersection or spanning.

Notice that this way of incorporating conditional information is very sim-
ilar to the one suggested in the previous section. The restrictions on the
regression parameters in (46) are analogous to the ones on the parameters in
(41). The main di¤erence arises because the slope coe¢cients for Rt+1 also
depend on the instruments, implying that the interaction term ztRt+1 should
also be included in the regression. It is easy to see that the approach in the
previous section can be interpreted as a special case of the approach outlined
here, where only the intercepts in (20) are a function of the instruments zt,
whereas the slope coe¢cients are constant.

Summarizing, we have shown that a number of approaches is available to
incorporate conditioning information in tests for intersection and spanning.
Using either scaled returns or regression coe¢cients that are linear functions
of the instruments, the regression approach outlined in Section 3 can easily
be extended to test for intersection or spanning. The restrictions implied
by the hypotheses of intersection and spanning are very similar to the case
where there is no conditioning information (i.e., where the only instrument
is a constant) and have very similar interpretations as well. Our methods
focus on speci…c functional forms of incorporating conditioning information.

5 The relation between spanning tests, per-
formance evaluation and optimal portfolio
weights

So far the focus has been on the restrictions that are implied by the hy-
potheses of intersection and spanning on the distribution of Rt+1 and rt+1
and on tests of these hypotheses. In this section the interest will be in the
deviations from the restrictions. We will show that the test statistics and
regression estimates have clear interpretations in terms of performance mea-
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sures like Jensen’s alpha and the Sharpe ratio as well as in terms of the new
optimal portfolio weights. Since it is natural to think about these perfor-
mance measures in terms of mean-variance e¢cient portfolios, most of the
analysis in this section will be in terms of mean-variance frontiers rather
than volatility bounds. Nonetheless, the duality between these two frontiers
also holds for these performance measures. These interpretations of tests for
mean-variance e¢ciency, intersection, and spanning in terms of performance
measures can also be found in Cochrane (1996), Dahlquist and Söderlind
(1999), Gibbons, Ross and Shanken (1989), Jobson and Korkie (1982, 1984,
1989), and Kandel and Stambaugh (1989).

5.1 Performance measures
To set the stage, de…ne the vector of Jensen’s alphas, or Jensen performance
measures, ®J (´), as the intercepts in a regression of the N excess returns
(rt+1 ¡ ´¶N ) on the excess returns of the K benchmark assets, (Rt+1 ¡ ´¶K):

rt+1 ¡ ´¶N = ®J(´) + ¯(Rt+1 ¡ ´¶K) + "t+1; (50)

with E["t+1] = E["t+1Rt+1] = 0. Since it is not assumed that there exists a
risk free asset, we de…ne excess returns as the return on an asset or portfolio
in excess of a given zero-beta rate ´. Alternatively, when regressing rt+1 on
Rt+1 as in (20), it follows that Jensen’s alpha is equal to

®J(´) = ®+ (¯¶K ¡ ¶N )´; (51)

where ® = ¹r ¡ ¯¹R and ¯ = §rR§¡1RR. Notice from this expression that the
hypothesis that there is intersection for a given value of ´ is equivalent to
the hypothesis that the Jensen performance measure is zero, i.e., ®J(´) = 0.
Similarly, the hypothesis of spanning is equivalent to the hypothesis that
®J (´) = 0, 8´. Recall from Section 3.3, that the regression in (50) produces
the same intercept ®J(´) as a regression of rt+1 ¡ ´¶N on the excess return
of a portfolio w¤R that is mean-variance e¢cient for Rt+1 and that has ´ as
its zero beta rate, i.e.,

rt+1 ¡ ´¶N = ®J (´) + ¯¤(R¤t+1 ¡ ´) + "t+1:

Following Jensen (1968), it is common in the literature to de…ne Jensen’s
alpha as the intercept of a regression of rt+1 in excess of the risk free rate on
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the return of the market portfolio in excess of the risk free rate. The de…nition
in (50) is more general and has this more traditional de…nition as a special
case if there exists a risk free asset (´ = Rft ) and if the market portfolio is
mean-variance e¢cient (R¤t+1 = Rmt+1). The Jensen measure in (50) is also
referred to as the generalized Jensen measure. Given the minimum variance
stochastic discount factor mR(v)t+1 as de…ned in (4) and (5), it can easily be
seen that the generalized Jensen measure is also equal to ¸(v)=v as de…ned
in (28). This is also discussed in Cochrane (1996) and in Dahlquist and
Söderlind (1999).

The Sharpe ratio of a portfolio with returnRpt+1 is de…ned as the expected
excess portfolio return, divided by the standard deviation of portfolio return,

Sh(Rpt+1; ´) ´
E[Rpt+1]¡ ´
¾(Rpt+1)

:

By de…nition, for a given expected portfolio return, or for a given standard
deviation of portfolio return, the maximum attainable (absolute) Sharpe ra-
tio is the Sharpe ratio of the minimum-variance e¢cient portfolio. For a
minimum-variance e¢cient portfolio w¤R of the K assets Rt+1 with zero-beta
rate ´, the Sharpe ratio is equal to the slope of the line tangent to the fron-
tier originating at (0; ´) in mean-standard deviation space, and is denoted
by µR(´):

µR(´) =
E[R¤t+1]¡ ´
¾(R¤t+1)

; (52)

where R¤t+1 ´ w¤0Rt+1.
Although both Jensen’s alpha and the Sharpe ratio are used as perfor-

mance measures, there is an important di¤erence between the two. Whereas
the Sharpe ratio is de…ned in terms of the characteristics of one portfolio (the
expected excess portfolio return and its standard deviation), Jensen’s alpha
is de…ned in terms of one asset or portfolio relative to another. Sharpe ratios
answer the question whether one portfolio is to be preferred over another,
whereas Jensen’s alpha answers the question whether investors can improve
the e¢ciency of their portfolio by investing in the new asset. However, there
is a close relation between the two measures, in that Jensen’s alphas together
with the covariance matrix of the error terms "t+1 in (20) (and (50)) deter-
mine the potential improvement in the maximum attainable Sharpe ratio
from adding the new assets rt+1. Recall from Section 2.2 that we de…ned the
variables A ´ ¶0§¡1¶, B ´ ¹0§¡1¶, and C ´ ¹0§¡1¹. For the set Rt+1 these
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variables will be denoted as AR, BR, and CR, whereas the absence of sub-
scripts implies that these variables refer to the larger set (Rt+1; rt+1). Using
partitioned inverses, notice that

§¡1 =
Ã
§RR §Rr
§rR §rr

!¡1
=

Ã
§¡1RR + ¯

0§¡1"" ¯ ¡¯0§¡1""
¡§¡1"" ¯ §¡1""

!

: (53)

From this, it follows that

A = ¶0K§
¡1
RR¶K + ¶

0
K¯

0§¡1"" ¯¶K ¡ 2¶0K¯
0§¡1"" ¶N + ¶

0
N§

¡1
"" ¶N

= AR + (¯¶K ¡ ¶N)0§¡1"" (¯¶K ¡ ¶N ); (54)

where ¯ = §rR§¡1RR and §"" is the covariance matrix of "t+1, the error term
in the regression in (20). In a similar way it can easily be shown that

B = BR + ®0§¡1"" (¶N ¡ ¯¶K); (55a)
C = CR + ®0§¡1"" ®; (55b)

where ® = ¹r ¡ ¯¹R, the intercept in the regression in (20).
It is easy to show that for a given ´, the Sharpe ratio of a mean-variance

e¢cient portfolio w¤R can be written as

µR(´) = (CR ¡ 2BR´ +AR´2)1=2: (56)

A similar expression holds of course for µ(´), the maximum attainable Sharpe
ratio of the larger set (Rt+1; rt+1). Using (54) and (55), we derive

µ(´)2 = C ¡ 2B´ +A´2

= (CR ¡ 2BR´ +AR´2)
+(®0§¡1"" ®¡ 2®0§¡1"" (¶N ¡ ¯¶K)´ + (¶N ¡ ¯¶K)0§¡1"" (¶N ¡ ¯¶K)´2)

= µR(´)2 + ®J(´)0§¡1"" ®J(´): (57)

Thus, the change in maximum attainable squared Sharpe ratios equals the
inner product of the vector of Jensen’s alphas, ®J (´), weighted by the inverse
of the covariance matrix of "t+1.4 If there is only one new asset, N = 1, the
term ®J (´)=¾(") is known as the adjusted Jensen measure or the appraisal
ratio (Treynor and Black (1973)). Notice once more that µR(´) and µ(´)

4This result can be found in Jobson and Korkie (1984) for instance.
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characterize portfolios of Rt+1 and (R0t+1; r0t+1)0, respectively, whereas ®J(´)
and §"" follow from a regression of rt+1 onRt+1, and measure the performance
of rt+1 relative to Rt+1. Stated di¤erently, whereas Sharpe ratios can be
used to compare the performance of di¤erent portfolios, Jensen’s alpha gives
the potential improvement in performance when the additional assets are
included in the portfolio. The hypotheses of intersection and spanning imply
that Jensen’s alpha, ®J(´), is zero for one or for all values of ´ respectively.
Therefore, if there is intersection (spanning) then there is no improvement
in the Sharpe measure possible by including the additional assets rt+1 in the
investors portfolio.

Cochrane and Saá-Requejo (1996) show how a bound on the maximum
Sharpe ratio can be used to price new assets in incomplete markets, which
is referred to as ”good deal” pricing. In the context of (57) this essentially
comes down to putting a bound on the maximum appraisal ratios of the
new asset. This kind of analysis is extended by Bernardo and Ledoit (1996),
who introduce the gain-loss ratio as an alternative performance measure by
which new assets can be priced if restrictions on the maximum gain-loss
ratio are imposed. This is similar to a bound on the maximum Sharpe
ratio as suggested by Cochrane and Saá-Requejo (1996), but the approach in
Bernardo and Ledoit (1996) is more general and allows for non-mean variance
utility functions as well.

5.2 Changes in optimal portfolio weights
The performance measures and the intersection regressions discussed above
can also be used to infer the changes in optimal portfolio holdings when
adding the assets rt+1. In this section we will show that given the ini-
tial mean-variance e¢cient portfolio of the benchmark assets and the OLS-
estimates of the regression parameters in (20), it is straightforward to de-
termine the new optimal portfolio weights. Some of the results presented in
this section are also presented in Stevens (1998). In order to derive the opti-
mal portfolio weights from the regression results, consider the mean-variance
e¢cient portfolio for the extended set (Rt+1; rt+1) for a given value of ´:

w¤ = °¡1§¡1 (¹¡ ´¶) :

Substituting the partitioned inverse as given in (53) in the expression for w¤
gives that the optimal portfolio weights for the new assets, w¤r , can be written
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as

w¤r = °¡1§¡1"" ((¹r ¡ ¯¹R)¡ (¶N ¡ ¯¶K)´)
= °¡1§¡1"" ®J (´): (58)

Thus, the optimal portfolio weights w¤r are determined by the vector of
Jensen’s alphas and the covariance matrix of the residuals of the OLS-
regression of rt+1 on Rt+1.5 This result is simply a generalization of the
well known result in Treynor and Black (1973) regarding the appraisal ratio.
The di¤erence with Treynor and Black is that these authors assume that the
error terms "i;t+1 for di¤erent securities are uncorrelated, i.e., they assume
the diagonal model (Sharpe (1963)), whereas the result in (58) allows for any
correlation structure between the securities.

In deriving the new optimal portfolio weights, a problem in (58) is that
the coe¢cient of risk aversion ° is present. Notice that this is a di¤erent
coe¢cient than the one that appears in the optimal portfolio ew¤R of the
smaller set Rt+1:

ew¤R = e°¡1R §
¡1
RR(¹R ¡ ´¶K);

where we now also add a ~ to indicate that a variable refers to the set of
benchmark assets Rt+1 only. It is only the zero-beta return ´ that is the
same in both problems, since we test whether there is intersection for a
…xed value of ´. Similarly, the expected returns on the portfolios ew¤R and
w¤ are di¤erent, and we indicate these with fmR and m respectively, i.e.,
fmR ´ ew¤0R¹R, and m ´ w¤0¹. In order to substitute out the risk aversion
parameter °, note that

° = B ¡ ´A = BR ¡ ´AR + ®J(´)0§¡1"" (¶N ¡ ¯¶K)
= e°R + ®J (´)

0§¡1"" (¶N ¡ ¯¶K);

and that
e°R =

fmR ¡ ´
ew¤0R§RR ew¤R

=
µR(´)2

fmR ¡ ´
:

5As an aside, in terms of volatility bounds, notice that w¤
r° = ¡'r(1=´), i.e., the

elements of '(v) in (5) that correspond to rt+1. Thus if we want to know the minimum
variance stochastic discount factor from (Rt+1;rt+1), rather than from Rt+1, the projection
coe¢cients corresponding to the additional assets rt+1 are given by ¡§¡1

"" ®J(´).
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Using these latter two expressions, the optimal portfolio weights w¤r can be
expressed as

w¤r =
Ã

fmR ¡ ´
µR(´)2 + (fmR ¡ ´)®J (´)0§¡1"" (¶N ¡ ¯¶K)

!

§¡1"" ®J(´): (59)

The advantage of (59) is that it contains only variables that either result
from the initial optimal portfolio ew¤R, or from a regression of rt+1 on Rt+1.

Along the same lines it is straightforward to show that the new optimal
weights w¤R are given by

w¤R =
Ã

µR(´)2

µR(´)2 + (fmR ¡ ´)®J(´)0§¡1"" (¶N ¡ ¯¶K)

!

ew¤R ¡ ¯0w¤r . (60)

Again, this expression only depends on characteristics of the old portfolio,
ew¤R, and the regression output. Therefore, given the initial mean-variance
e¢cient portfolio ew¤R of the benchmark assets and the OLS-estimates of the
regression in (20), equations (59) and (60) answer the question how to adjust
the portfolio in order to obtain the new mean-variance e¢cient portfolio w¤.

In order to give an interpretation of the new portfolio weights in (59) and
(60), it is useful to rewrite them in the following way:6

w¤r =
m¡ ´
µ(´)2

§¡1"" ®J(´); (61)

and
w¤R =

µR(´)2

µ(´)2
m¡ ´

fmR ¡ ´
ewR ¡ ¯0w¤r : (62)

If there is only one new asset, i.e., N = 1, Equation (61) …rst of all shows
that ®J(´) determines the sign of the new portfolio weight w¤r (given that
m ¡ ´ > 0): if Jensen’s alpha is positive (negative) the investor can im-
prove the performance of his portfolio by taking long (short) positions in
the new asset. When there is more than one new asset, the sign of the
portfolio weights is not only determined by the sign of Jensen’s alpha, but
also by the inverse of the covariance matrix of "t+1. If the mean-variance
frontier is not strongly a¤ected by the introduction of the new assets, then

6Here we use the fact that µR(´)2=(emR ¡ ´) = AR ¡ ´BR, and that AR ¡ ´BR +
®J(´)0§¡1

"" (¶N ¡ ¯¶K) = A ¡ ´B.
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(µR(´)2=µ(´)2)(m ¡ ´)=(fmR ¡ ´) ¼ 1, and the coe¢cients ¯ show which of
the old assets are replaced by the new assets.

Finally, notice that we did not consider a risk free asset. The portfolio
weights given above are for the tangency portfolio when the zero-beta rate is
´. If a risk free asset is available, we can replace ´ with Rf in (61) and (62)
and these equations still give the portfolio weights for the tangency portfolio.
The new tangency portfolio has an expected return equal to m, whereas the
old tangency portfolio has an expected return fmR. Notice though, that in
case a risk free asset is available it is easy to shift funds between the tangency
portfolio and the risk free asset and to let the expected portfolio return vary.
For practical purposes, the interest may be in the new portfolio w¤ that has
the same expected return as the old portfolio. Given that there is a risk free
asset available, this is easily achieved by letting m¡Rf = fmR ¡Rf . In this
case Equations (61) and (62) simplify to

w¤r =
m¡Rf

µ2
§¡1"" ®J (63)

and

w¤R =
µ2R
µ2

ewR ¡ ¯0w¤r : (64)

Notice that here it is not necessarily the case that the weights in w¤r and w¤R
sum to one. The investor will have to borrow or lend a fraction (1¡ ¶0Kw¤R ¡
¶0Nw¤r) to achieve an expected portfolio return equal to m.

5.3 Interpretation of spanning and intersection tests
in terms of performance measures

Finally, we want to relate the Wald test-statistics presented in Section 3 to
the performance measures discussed above. It will be shown that these test-
statistics can be expressed as changes in maximum Sharpe ratios of Rt+1 and
(Rt+1; rt+1) respectively. Therefore, they have a clear economic interpreta-
tion. In order to interpret the test-statistics for intersection and spanning in
terms of performance measures, recall the basic regression model in (20):

rt+1 = ®+ ¯Rt+1 + "t+1;

where intersection for a given value of ´ means that

®J(´) = ®+ (¯¶K ¡ ¶N )´ = 0:
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Thus, the restrictions on the regression coe¢cients that are imposed by the
hypothesis of intersection have a natural interpretation in terms of Jensen’s
alphas, and - as noted before - testing whether there is intersection for ´, is
equivalent to testing whether Jensen’s alpha is zero. Testing for spanning is
of course equivalent to testing whether the Jensen’s alphas are zero for all
values of ´.

It can be shown that the test statistics for intersection and spanning,
»intW and »spanW , presented in Section 3.4, can also be interpreted in terms of
Jensen’s alphas and Sharpe ratios. To see this, start again from the speci…-
cation of the regression equation in (23):

rt+1 =
³
IN 

³
1 R0t+1

´´
b+ "t+1:

Note that (using partitioned inverses) the asymptotic covariance matrix of
the OLS-estimates of b, bb in (23) is given by

§"" 
Ã
1 ¹0R
¹R E[RtR0t]

!¡1
(65)

= §"" 
Ã
1 + ¹0R§

¡1
RR¹R ¡¹0R§

¡1
RR

¡§¡1RR¹R §¡1RR

!

:

Straightforward algebra shows that premultiplying (65) with H(´)int and
postmultiplying with H(´)0int as de…ned in (25), yields

V ar[b®J (´)] = §""(1 + µR(´)2); (66)

where the Sharpe ratio µR(´) was de…ned in (56). Since from the analysis
above we know that the term h(´)int as de…ned in (25) equals ®J(´), (57)
can be used to rewrite the test statistic for intersection, »intW , as

»intW = T
b®J (´)0 b§¡1"" b®J(´)
1 + bµR(´)2

= T
Ã
1 + bµ(´)2

1 + bµR(´)2
¡ 1

!

; (67)

where bµR(´), bµ(´), and b®J(´) are the sample Sharpe ratios and Jensen’s
alpha respectively. Equation (67) is a well known result from, e.g., Jobson
and Korkie (1982) and Gibbons, Ross and Shanken (1989). It clearly shows
that the Wald test statistic for intersection can easily be interpreted as the
percentage increase in squared Sharpe ratios scaled by the sample size. Under
the null-hypothesis that there is intersection, µ(´) = µR(´) and the increase
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of the sample Sharpe ratios scaled by the sample size T (as in (67)) will
asymptotically have a Â2(N )-distribution.7

MacKinlay (1995) uses a similar interpretation of the Wald test-statistic
in case returns are normally distributed together with (57) to distinguish be-
tween risk-based alternatives for the CAPM and nonrisk-based alternatives.
His analysis suggests that for reasonable values of the maximum attainable
Sharpe ratios a multifactor model like the one proposed by Fama and French
(1996) can not explain the deviations from the CAPM that are found in the
cross section of asset returns.

For the spanning test-statistic, a similar interpretation can be given. Let
´0R denote the expected return on the global minimum variance portfolio of
Rt+1, i.e., ´0R = BR=AR, and let the variance of this portfolio be given by
(¾0R)2. Similarly, let (¾0)2 be the global minimum variance of (Rt+1; rt+1). It
is shown in Appendix B that the Wald test-statistic for spanning, »spanW , can
be written as

»spanW = T
Ã
1 + bµ(b́0R)2

1 + bµR(b́0R)2
¡ 1

!

+ T
Ã
(b¾0R)2

(b¾0)2
¡ 1

!

: (68)

This shows that the spanning test-statistic consists of two parts. The …rst
part is similar to the test-statistic for intersection in (67) and is determined
by a change in Sharpe ratios. The Sharpe ratios in (68) are for a zero-
beta rate equal to the (in-sample) expected return on the global minimum
variance portfolio however, and therefore are the slopes of the asymptotes of
the mean-variance frontier. Notice that the slope of the upper limb of the
frontier is simply the negative of the slope of the lower limb of the frontier,
and therefore, the squared Sharpe ratios for those two extremes are the same.
The …rst term of the spanning test-statistic in a sense measures whether there
is intersection at the most extreme points of the frontier (i.e., whether there is
a limiting form of intersection if we go su¢ciently far up or down the frontier).
The second term of the statistic in (68) is determined by the change in the
global minimum variance of the portfolios, and measures whether the point
most to the left on the frontier changes or not. Put di¤erently, the …rst
term measures whether there is intersection for a mean-variance investor

7Gibbons, Ross, and Shanken (1989) study the small sample properties of this test
statistic in case there is a risk free asset, as well as the distribution under the alternative
hypothesis. Kandel and Stambaugh (1987) and Shanken (1987) extend their results to the
case where the mean-variance e¢cient benchmark portfolio (or intersection portfolio) can
not be observed but has a given correlation with the observed proxy portfolio.
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with a very small risk aversion (° = 0), while the second term measures
whether there is intersection for a mean-variance investor with a very high
risk aversion (° ! 1). Note that in the second term the old global minimum
variance appears in the numerator and the new global minimum variance in
the denominator, since this variance can only decrease as assets are added to
the portfolio. Therefore, both terms in (68) are always larger than or equal
to one. Jobson and Korkie (1989) derive a similar result for a likelihood ratio
test for spanning.

6 Speci…cation error bounds and intersection
As in the previous section, in this section the focus will be on deviations from
intersection rather than on intersection itself. In a recent paper Hansen and
Jagannathan (1997) analyze speci…cation errors in stochastic discount factor
models which, in some special cases, can be interpreted as deviations from
intersection. They derive bounds on the magnitude of these speci…cation
errors.

Recall from the discussion in Section 2.1 that each asset pricing model
assigns a particular function to the pricing kernel Mt+1. Hansen and Jagan-
nathan (1997) note that the pricing kernels implied by most asset pricing
models do not yield correct asset prices, either because the asset pricing
model can only be viewed as an approximation, or because of measurement
error. Measurement errors are for instance often considered to be an im-
portant problem in measuring consumption and testing consumption based
asset pricing models. Therefore, the pricing kernel implied by an asset pric-
ing model will in general only serve as a proxy stochastic discount factor,
that will not yield the correct prices or expected payo¤s of the assets under
consideration. In a related paper Balduzzi and Robotti (2000) focus on the
estimation of risk premia as a separate problem from the testing of asset
pricing models. They estimate risk premia by looking at the prices assigned
by the minimum variance kernel to risk variables, or by the prices of hedge
portfolios that are the linear projections of risk variables on asset returns.

The interest of Hansen and Jagannathan is in the least squares distance
between a proxy stochastic discount factor and the set of valid stochastic dis-
count factors. They derive a lower bound on this distance, the speci…cation
error bound, as a measure of how well the model performs. These speci…ca-
tion error bounds will be derived formally below and it will also be shown
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that these bounds have a clear economic interpretation in terms of maximum
pricing errors or maximum expected payo¤ errors implied by the asset pricing
model. Hansen, Heaton, and Luttmer (1995) derive the limiting distribution
for the corresponding estimator of the speci…cation error bounds.

It turns out that if we take the minimum variance stochastic discount
factor for the subset Rt+1 as a proxy stochastic discount factor for the larger
set of assets (Rt+1; rt+1), we can interpret the speci…cation error bounds
in terms of mean-variance intersection and the performance measures dis-
cussed in the previous section. In particular, provided that both the proxy
stochastic discount factor and the discount factors that price Rt+1 and rt+1
correctly have the same expectation v, the squared speci…cation error bound
scaled by v turns out to be equal to the di¤erence between the maximum
squared Sharpe ratio implied by the set Rt+1 and the maximum squared
Sharpe ratio implied by (Rt+1; rt+1). This also allows us to interpret the
speci…cation errors in terms of mean-variance portfolio choice again. Given
that a mean-variance investor is aware of the fact that a portfolio chosen
from the subset Rt+1 is suboptimal relative to a portfolio chosen from the
larger set (Rt+1; rt+1), the speci…cation error bound gives an estimate of the
extent to which the portfolio is suboptimal in terms of Sharpe ratios.

6.1 Speci…cation error bounds
As noted above, in Hansen and Jagannathan (1997) the interest is in proxy
stochastic discount factors, denoted by yt+1, that assign approximate prices
to portfolio payo¤s. For instance, the CAPM implies that the proxy is of the
form a+ bRmt+1, with Rmt+1 the return on the market portfolio. As before, let
Rpt+1 be the return on some portfolio, not necessarily mean-variance e¢cient,
such that wp0¶K = 1. The expected price assigned to such a portfolio by a
proxy stochastic discount factor will be denoted by ¼a(Rpt+1):

E[yt+1Rpt+1] = ¼a(R
p
t+1): (69)

Of course, valid stochastic discount factorsMt+1 would assign a price ¼(Rpt+1) =
1 to any portfolio wp that satis…es wp0¶K = 1. Because the proxy yt+1 may
be derived from an asset pricing model that is strictly speaking not valid, or
because the proxy may be measured with error, the prices assigned by the
proxy, ¼a(Rpt+1), will in general not be equal to one. We only consider payo¤s
that are returns, i.e., payo¤s with (correct) prices equal to one. Hansen and

38



Jagannathan (1997) take more general payo¤s xt+1 with current prices qt.
Given that we want to establish the relation between speci…cation errors and
mean-variance intersection, the use of returns is not very restrictive however.
Moreover, the results derived below can easily be adjusted to the results of
Hansen and Jagannathan along the lines of Section 4.1, where we incorpo-
rated conditioning information by allowing for payo¤s ztRt+1 with current
prices qt.

A second way in which the results here are somewhat more restrictive than
the ones in Hansen and Jagannathan (1997) is that we will always consider
valid stochastic discount factors M(v)t+1 that have the same expectation as
the proxy yt+1, i.e., v = E[yt+1]. This may be considered as restrictive, since
this assumption in fact requires that the proxy assigns the correct price to
the risk free payo¤, if it exists. Once more, given that the interest here is
in the relation with mean-variance intersection in the absence of a risk free
asset, and given that we always de…ned intersection for a known value of v,
this is not restrictive for our purposes.

The problem addressed in Hansen and Jagannathan (1997) is to derive a
lower bound ± on the distance between yt+1 and the set of stochastic discount
factors that price Rt+1 correctly, which we denote as M:

± = min
fMR(v)t+12Mg

k yt+1 ¡MR(v)t+1 k ; (70)

where k xt+1 k ´ E[x2t+1]1=2. Because yt+1 and MR(v)t+1 have the same
expectation, the distance between yt+1 and MR(v)t+1 in (70) is equal to the
standard deviation of yt+1 ¡MR(v)t+1, i.e., k yt+1 ¡MR(v)t+1 k = ¾(yt+1 ¡
MR(v)t+1). We will denote the stochastic discount factor that solves (70) by
fmR(v)t+1. Thus, fmR(v)t+1 is the stochastic discount factor that prices Rt+1
correctly and that is closest to yt+1 in a least squares sense.

To solve the problem in (70), consider the least squares projections of
yt+1 and MR(v)t+1 on Rt+1 and a constant:

byt+1 = Proj(yt+1 j 1;Rt+1) = v + ³(v)0(Rt+1 ¡ ¹R); (71)
yt+1 = byt+1 + ut+1;

and

mR(v)t+1 = Proj(MR(v)t+1 j 1; Rt+1) = v + '(v)0(Rt+1 ¡ ¹R); (72)
MR(v)t+1 = mR(v)t+1 +wt+1;
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where mR(v)t+1 is the minimum variance stochastic discount factor derived
in Section 2.1, and '(v) is de…ned in (5).The projection coe¢cients in (71)
are given by §¡1RR§Ry, with §Ry theK£1-vector of covariances between Rt+1
and yt+1. Noting that k yt+1 ¡MR(v)t+1 k 2= V ar[yt+1 ¡MR(v)t+1], it easily
follows that

V ar[yt+1 ¡MR(v)t+1] = V ar[byt+1 ¡mR(v)t+1] + V ar[ut+1 ¡ wt+1]
¸ V ar[byt+1 ¡mR(v)t+1]:

Because byt+1 ¡mR(v)t+1 = yt+1 ¡ (mR(v)t+1 + ut+1) and ut+1 is orthogonal
to Rt+1, this lower bound on the variance of yt+1 ¡MR(v)t+1 is attainable
for the stochastic discount factor

fmR(v)t+1 = mR(v)t+1 + ut+1; (73)

and we have that
±2 = V ar[yt+1 ¡ fmR(v)t+1]: (74)

A more detailed characterization of fmR(v)t+1 and ± will be given in the fol-
lowing section. For this moment, note that subtracting the variable yt+1 ¡
fmR(v)t+1 from the proxy yt+1 yields a valid stochastic discount factor. There-
fore, as noted by Hansen and Jagannathan (1997), yt+1 ¡ fmR(v)t+1 is the
smallest adjustment in a least squares sense that is necessary to make yt+1 a
valid stochastic discount factor, and ± is a measure of the magnitude of this
adjustment.

Hansen and Jagannathan also show that ± can be interpreted as a max-
imum pricing error. In order to do so, let ! denote a position in Rt+1 that
does not necessarily satisfy the requirement !0¶K = 1, i.e., ! is in general not
a portfolio. Denote the payo¤ of such a position as R(!)t+1 = !0Rt+1 and
note that the correct price of such a position is

E[!0Rt+1MR(v)] = ¼(R(!)t+1) = !0¶K ;

whereas the price assigned by the proxy yt+1 is ¼a(R(!)t+1). The pricing
error of the proxy yt+1 is therefore ¼a(R(!)t+1) ¡ ¼(R(!)t+1), and Hansen
and Jagannathan show that ± provides an upper bound on the absolute value
of this pricing error, for positions that have a unit norm:

± = max
R(!)t+1;kR(!)t+1k =1

j ¼a(R(!)t+1)¡ ¼(R(!)t+1) j :
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Thus, by looking at a particular class of positions, i.e., positions with a unit
norm, ± can be interpreted as the maximum pricing error assigned by the
proxy to the payo¤s of those unit norm positions.

A more intuitive interpretation can be given if we consider errors in ex-
pected payo¤s, or expected returns, rather than pricing errors. Recall that a
valid stochastic discount factor assigns the correct expected return to a one-
dollar investment in portfolio wp (for which, by de…nition, wp0¶ = 1) which,
using equation (3), can be written as

E[Rpt+1] =
1
v

¡
Cov[MR(v)t+1; R

p
t+1]

v
,

i.e., as one over the expectation of the pricing kernel, which equals the risk
free rate if it exists, plus a risk term which is determined by the covari-
ance of the portfolio return and the pricing kernel. Observe that use of the
proxy, that also has expectation v, would give an approximate expected re-
turn Ea[Rpt+1] for a one-dollar investment in wp that in general di¤ers from
E[Rpt+1], because the covariance of the proxy with the portfolio return will
be di¤erent from the covariance of a valid stochastic discount factor with the
portfolio return, i.e.:

Ea[Rpt+1] =
1
v

¡
Cov[yt+1;R

p
t+1]

v
:

From these relations we de…ne the expected return error

Ea[Rpt+1]¡E[R
p
t+1] =

Cov[MR(v)t+1 ¡ yt+1;Rpt+1]
v

; (75)

for which the Cauchy-Schwarz inequality implies that

j Ea[Rpt+1]¡E[R
p
t+1] j �

¾(yt+1 ¡MR(v)t+1)¾(Rpt+1)
v

:

Since this inequality holds for all valid stochastic discount factors MR(v)t+1,
it also holds for the stochastic discount factor that solves (70), fmR(v)t+1,
implying

j Ea[Rpt+1]¡E[R
p
t+1] j �

±¾(Rpt+1)
v

:

Since for a given value of v, the Sharpe ratio is de…ned as Sh(Rpt+1) ´
(E[Rpt+1]¡1=v)=¾(R

p
t+1) , and the approximate Sharpe ratio, i.e., the Sharpe
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ratio according to the proxy yt+1, as Sha(Rpt+1) ´ (Ea[Rpt+1]¡ 1=v)=¾(R
p
t+1),

this can be rewritten as

j Sha(Rpt+1)¡ Sh(R
p
t+1) j �

±
v
: (76)

Thus, using errors in expected returns rather than errors in assigned prices,
the speci…cation error bound ± scaled by the expectation of the proxy has
a very clear interpretation in terms of Sharpe ratios. For any portfolio wp
formed from the assets in Rt+1, the absolute di¤erence between the approx-
imate Sharpe ratio assigned to the portfolio returns by yt+1 and the actual
Sharpe ratio of the portfolio can never exceed the scaled speci…cation error
bound ±=v. This interpretation is also somewhat easier than the one given
for the expected payo¤ error in Hansen and Jagannathan (1997), where they
focus on the maximum error in expected payo¤s for positions ! with unit
standard deviation.

6.2 The relation between speci…cation error bounds
and intersection

The purpose of this section is to show that there is a close relation between
intersection and a special case of the speci…cation error bounds. In par-
ticular, if the interest is in stochastic discount factors that price the returns
(Rt+1; rt+1) correctly and we choose for the proxy yt+1 the minimum variance
stochastic discount factor based on the subset Rt+1, mR(v)t+1, the speci…ca-
tion error bound can simply be expressed as a deviation from intersection,
as was the case with the performance measures discussed in Section 5. To
show this, let us …rst give a more precise characterization of fm(v)t+1 and ±
than given in (73) and (74).

Recall that fmR(v)t+1 is given bymR(v)t+1+ut+1, where ut+1 = yt+1¡byt+1.
Using (72) and (71), this implies for fmR(v)t+1:

fmR(v)t+1 = v + '(v)0(Rt+1 ¡ ¹R) + yt+1 ¡ fv + ³(v)0(Rt+1 ¡ ¹R)g
= yt+1 + ('(v)¡ ³(v))0(Rt+1 ¡ ¹R)
= yt+1 + f(¶K ¡ v¹R)¡§Ryg

0§¡1RR(Rt+1 ¡ ¹R); (77)

and for ±2:

±2 = f(¶K ¡ v¹R)¡ §Ryg
0§¡1RRf(¶K ¡ v¹R)¡ §Ryg: (78)

42



For further reference it is useful to de…ne the vector �(v) as

�(v) = '(v)¡ ³(v) = §¡1RRf(¶K ¡ v¹R)¡ §Ryg: (79)

Notice that the expressions for �(v) and ±2 given here di¤er slightly from the
ones given in Hansen and Jagannathan (1997) because we explicitly included
a constant in the projections of M(v)t+1 and yt+1 on Rt+1.

The expressions for fmR(v)t+1 and ±2 in (77) and (78) provide a basis to
relate the speci…cation error bounds to intersection. In case of intersection
the interest is in stochastic discount factors that price both Rt+1 and rt+1,
i.e., in M(v)t+1. Therefore, in the expressions (77) and (78) we should leave
out all the R-subscripts, replace Rt+1 with the vector (R0t+1 r0t+1)0, and note
that all vectors and matrices have dimension K + N rather than K. As
before, with intersection we want to know if the minimum variance stochastic
discount factor based on Rt+1 only, mR(v)t+1 can be used to price both Rt+1
and rt+1. In terms of speci…cation errors this means that we want to use
mR(v)t+1 as a proxy yt+1 for the stochastic discount factors M(v)t+1. Also,
in the spirit of the previous section, when using mR(v)t+1 as a proxy, we
recognize beforehand that mR(v)t+1 will not assign the correct prices to rt+1,
but the interest is in the extent to which the assigned prices are wrong, i.e.,
the extent to which there are deviations from intersection, as measured by ±.

Recall that the proxy yt+1 = mR(v)t+1 is now given by

yt+1 = mR(v)t+1 = v + 'R(v)
0(Rt+1 ¡ ¹R);

'R(v) = §¡1RR(¶K ¡ v¹R):

Substituting these expressions into (77) and (78), properly adjusted for the
fact that the interest is now in stochastic discount factors that price both
Rt+1 and rt+1, straightforward algebra shows that

±2 = f(¶N ¡ v¹r)¡ §rR§
¡1
RR(¶K ¡ v¹R)g

0§¡1"" f(¶N ¡ v¹r)¡ §rR§
¡1
RR(¶K ¡ v¹R)g

= v2®J (1=v)0§¡1"" ®J (1=v); (80)

or
±
v
= fµ(1=v)2 ¡ µR(1=v)2g1=2;

where §"" is the covariance matrix of the residuals "t+1 from a regression of
rt+1 on Rt+1 and a constant. Also, the stochastic discount factor closest to
yt+1 is now given by

fm(v)t+1 = mR(v)t+1 + v®J(1=v)0§¡1"" "t+1 = m(v)t+1. (81)
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Thus, if we want to use the stochastic discount factor that is on the volatil-
ity bound of Rt+1, as a proxy stochastic discount factor for the larger set
(Rt+1; rt+1), then the valid discount factor that is closest to mR(v)t+1 is the
discount factor with the same expectation v that is on the volatility bound of
(Rt+1; rt+1). Therefore, ± is the least squares distance between two stochastic
discount factors that are on the volatility bounds of (Rt+1; rt+1) and its sub-
set Rt+1 respectively, and is a straightforward measure of the deviation from
intersection, which shows the close relation between this special case of the
speci…cation error bound and intersection. This relationship also follows from
(80), which shows that ± is directly related to the change in the maximum
squared Sharpe ratios that can be attained with Rt+1 and (Rt+1; rt+1) respec-
tively. It also follows that ± measures the di¤erence between the variances of
the two minimum variance kernels: ± = V ar[m(v)t+1]¡ V ar[mR(v)t+1].

An estimate of ±2 can easily be obtained from the sample equivalent of
(78), which we will denote by b±

2
. If the interest is in whether or not there is

intersection, then we want to know whether or not ± = 0, and this hypothesis
can easily be tested as outlined in Section 3. From the expression in (80) and
the discussion in previous sections, it follows that under the null hypothesis
that ± = 0,

T
b±
2

v2(1 + bµR(1=v)2)
» Â2N : (82)

In case of speci…cation errors however, the interest is in the case where ± is
strictly positive rather than zero. For that case the limiting distribution of
b± is derived in Hansen, Heaton, and Luttmer (1995).

Once we concede that yt+1 = mR(v)t+1 is not a valid stochastic discount
factor for (Rt+1; rt+1), we want to have a measure of the di¤erence between
mR(v)t+1 and the valid stochastic discount factor that is closest to it,m(v)t+1.
The speci…cation error bound ± is one such measure, allowing us to make
statements about how good or how bad the proxy performs. The fact that
±2 is equal to the change in maximum Sharpe ratios, makes the measure
± also useful in terms of the optimal portfolio choice for a mean-variance
investor. Recall that a mean-variance investor that initially only invests in
Rt+1 can improve his Sharpe ratio from µR(1=v) to µ(1=v) by including rt+1 in
his portfolio. Given that there is no intersection between the mean-variance
frontiers of Rt+1 and (Rt+1; rt+1), b± provides an estimate for the potential
increase in Sharpe ratios. Notice though that such an estimate can also be
derived directly from the Wald test-statistic for intersection.
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7 Summary
The purpose of this paper is to analyze and illustrate the concept of mean-
variance spanning and intersection. We show that there is a duality between
mean-variance frontiers and volatility bounds and that mean-variance span-
ning and intersection can be understood both in terms of mean-variance
frontiers and volatility bounds. The paper shows how regression based tests
can be used to test for spanning and intersection and how these regression
based tests are related to tests for mean-variance e¢ciency, performance
measurement, optimal portfolio choice and speci…cation error bounds.

A The graphical relationship between mean-
variance frontiers and volatility bounds

In this appendix we will show some graphical relations between the volatility
bound and the mean-variance frontier for a set of asset returns Rt+1 with
expectation ¹ and covariance matrix §. We will start from a point on the
volatility bound where the expectation of the minimum variance pricing ker-
nel is v, i.e.,

E[m(v)t+1] = v: (83)

Using the e¢cient set variables A, B, and C, and the variance of m(v)t+1 as
given in (7), the variance of m(v)t+1 can be written as

V ar[m(v)t+1] = A¡ 2Bv +Cv2; (84)

which is a simple quadratic function of v that describes the volatility bound.
The second panel of Figure 1 gives a plot of V ar[m(v)t+1] as a function of v.

As shown in Section 2.2, each minimum variance pricing kernel m(v)t+1
corresponds to a mean-variance e¢cient portfolio that has a zero-beta rate
´ = 1=v. Recall that a mean-variance e¢cient portfolio satis…es

w = °¡1§¡1(¹¡ ´¶);

for a given risk aversion ° and associated zero-beta rate ´. Using ¶0w = 1 it
follos that

° = B ¡ ´A:
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Furthermore, the expected portfolio return ¹0w satis…es

¹0w = °¡1(C ¡ ´B) =
C ¡ ´B
B ¡ ´A

:

Denote the return on the mean-variance e¢cient portfolio with zero-beta
rate ´ = 1=v as R(v)t+1 and de…ne ¹(v) ´ E[R(v)t+1]. From the previous
relations ¹(v) can be written as a function of v:

¹(v) =
B ¡ Cv
A¡Bv

: (85)

Also, the variance w0§w for a mean-variance e¢cient portfolio w can be
written as a function of ¹(v):

V ar[R(v)t+1] =
A¹(v)2 ¡ 2B¹(v) +C

AC ¡B2
;

or as a function of v:

V ar[R(v)t+1] =
A¡ 2Bv +Cv2

(A¡Bv)2
: (86)

The …rst panel of Figure 1 shows the standard mean-variance e¢cient fron-
tier, where the expected portfolio return ¹(v) is plotted as a function of the
standard deviation of the portfolio return stdev[R(v)t+1] = V ar[R(v)t+1]

1
2 .

In this appendix we will restrict ourselves to characterizing the relation
between the volatility bound and the mean-variance frontier in terms of v
and ¹(v). Given the relations (84) to (86) above it is straightforward to
derive the variances of the pricing kernel and the associated mean-variance
e¢cient portfolio as well.

To see the relation between the two graphs, …rst of all notice that the
expected portfolio return ¹(v) is decreasing in v, since from (85) we have
that

@¹(v)
@v

=
B2 ¡AC
(A¡ vB)2

< 0;

and where the inequality follows from the fact that AC > B2, by the Cauchy-
Schwarz inequality (see also Ingersoll (1987, p.85)).

Next, from (85) it also follows that for v = 0 we have that ¹(v) = B=A,
which is the expected return on the Global Minimum Variance portfolio.
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Looking at the volatility of the pricing kernel we can of course also distinguish
the Global Minimum Variance Pricing Kernel, the expectation of which can
be found using (84):

0 =
@V ar[m(v)t+1]

@v
= ¡2B + 2Cv¤

, v¤ = B=C:

The second derivative 2C is always positive, which con…rms that this is indeed
a minimum. Using (85) again, v = B=C corresponds to ¹(v) = 0. Thus,
when the expectation of the kernel is zero; v = 0, this corresponds to the
Global Minimum Variance portfolio on the mean-variance frontier, whereas
a zero expected return for the mean-variance e¢cient portfolio, ¹(v) = 0, in
turn corresponds to the Global Minimum Variance kernel on the volatility
bound.

Having characterized the global minima of the two frontiers, the next step
is to look at the other extremes, i.e., where v ! §1 and where ¹(v)! §1.
Taking limits and using (85) we get that

lim
v!¡1

B ¡ Cv
A¡Bv

=
C
B
;

lim
v!+1

B ¡ Cv
A¡Bv

=
C
B
:

Thus, both extremes of the left and right limb of the volatility bound cor-
respond to the same single point on the mean-variance frontier, where the
expected portfolio return is ¹(v) = C=B. Since by the Cauchy-Schwarz in-
equality C=B > B=A if B > 0, the point where ¹(v) = C=B will plot on the
upper limb of the mean-variance frontier. B > 0 is the typical case, since this
implies that with positive interest rates or zero-beta returns, e¢cient port-
folios have positive expected returns. It is useful to note that ¹(v) = C=B
corresponds to the point where a straight line through the origin is tangent
to the mean-variance frontier (since v ! §1 corresponds to ´ = 0).

Finally, by rewriting (85) as

v =
B ¡A¹(v)
C ¡B¹(v)

;

we can …nd the point(s) on the volatility bound that correspond to the ex-
tremes of the mean-variance frontier, i.e., where ¹(v)! §1. Taking limits
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again, we get that

lim
¹(v)!¡1

B ¡A¹(v)
C ¡B¹(v)

=
A
B
;

lim
¹(v)!+1

B ¡A¹(v)
C ¡B¹(v)

=
A
B
:

Notice that we already discussed this result in Section 2 since v = A=B ,
´ = B=A, i.e. the case where the zero-beta return equals the expected
return on the Global Minimum Variance portfolio and where there are no
corresponding mean-variance e¢cient portfolios, since the asymptotes of the
mean-variance frontier cross the y-axis at B=A, but there is no line tangent to
the frontier starting at this point. Again, if B > 0, then the Cauchy-Schwarz
inequality implies that A=B > B=C, implying that this point will be located
on the right limb of the volatility bound. Finally, it is useful to note that if
we would plot the volatility bound as the standard deviation of the pricing
kernel, V ar[m(v)t+1]

1
2 , as a function of v, then v = A=B would correspond to

the point where a straight line through the origin is tangent to the volatility
bound, similar to the mean-variance frontier when ¹(v) = C=B.

B The spanning test-statistic in terms of Sharpe
ratios

In this appendix we show how the spanning test statistic can be interpreted
in terms of Sharpe ratios, a result that was presented in Section 5.3. Recall
from Section 5.3 that the covariance matrix of the OLS-estimates bb equals

§""  T¡1
Ã
1 + ¹0R§

¡1
RR¹R ¡¹0R§

¡1
RR

¡§¡1RR¹R §¡1RR

!

:

Premultiplying with Hspan and postmultiplying with Hspan as de…ned in (55)
yields

Hspan

Ã

§""  T¡1
Ã
1 + ¹0R§

¡1
RR¹R ¡¹0R§

¡1
RR

¡§¡1RR¹R §¡1RR

!!

H0
span

= §""  T¡1
Ã
1 +CR ¡BR
¡BR AR

!

; (87)
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the inverse of which is

§¡1"" 
T

AR(1 +CR)¡B2R

Ã
AR BR
BR 1 +CR

!

: (88)

Similarly, for hspan in (55) we have

Ã

IN 
Ã
1 00K
0 ¶0K

!!

b¡ IN 
Ã
0
¶

!

=

0

BBBBBBBBBBB
@

®1
¯1¶K ¡ 1
®2

¯2¶K ¡ 1
...
®N

¯N¶K ¡ 1

1

CCCCCCCCCCC
A

: (89)

Premultiplying (88) with hspan and postmultiplying with h0span, we get, after
replacing population moments by their sample equivalents:

»spanW = T
bARb®0 b§¡1"" b®¡ 2 bBRb®0 b§¡1"" (¶N ¡ b̄¶K) + (1 + bCR)(¶N ¡ b̄¶K)0 b§¡1"" (¶N ¡ b̄¶K)

bAR(1 + bCR)¡ bB2R
:

(90)
Next note that the maximum attainable Sharpe ratio from Rt+1, for ´ =

BR=AR, is equal to

µR
µBR
AR

¶2
= CR ¡

B2R
AR
:

For simplicity, write A = AR+¢A, B = BR+¢B, and C = CR+¢C, where
the de…nitions of ¢A, ¢B, and ¢C follow from (54) and (55). Evaluating
µ(´) in this same value of ´, we get

µ
µBR
AR

¶2
= C ¡ 2B

BR
AR

+A
B2R
A2R

= CR +¢C ¡ 2(BR +¢B)
BR
AR

+ (AR +¢A)
B2R
A2R

= µR
µBR
AR

¶2
+
1
AR

Ã

AR¢C ¡ 2BR¢B +
B2R
AR
¢A

!

Dividing by (1 +CR)¡B2R=AR = 1+ µR
³
BR
AR

´2
gives

µ
³
BR
AR

´2
¡ µR

³
BR
AR

´2

1 + µR
³
BR
AR

´2 =
AR¢C ¡ 2BR¢B +

B2R
AR
¢A

AR(1 +CR)¡B2R

49



=
AR¢C ¡ 2BR¢B +

µ
CR + 1¡ 1¡ µ

³
BR
AR

´2¶
¢A

AR(1 +CR)¡B2R

=
AR¢C ¡ 2BR¢B + (1 +CR)¢A

AR(1 +CR)¡B2R
¡
¢A
AR
:

Replacing all population moments with their sample equivalents again and
noting that 1=AR is the variance of the global minimum variance portfolio of
Rt+1, i.e., 1=AR = (¾0R)2, and similarly, 1=A = (¾0)2, we …nally obtain

»spanW = T
bµ

³
BR
AR

´2
¡ bµR

³
BR
AR

´2

1 + bµR
³
BR
AR

´2 + T
bA¡ bAR

bAR

= T
Ã
1 + bµ(´0R)2

1 + bµR(´0R)2
+
(b¾0R)2

(b¾0)2
¡ 2

!

:
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