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3.1 Introduction

Many researchers in the various sciences use questionnaires to measure prop-
erties that are of interest to them. Examples of properties include personality
traits such as introversion and anxiety (psychology), political efficacy and
motivational aspects of voter behavior (political science), attitude toward
religion or euthanasia (sociology), aspects of quality of life (medicine), and
preferences towards particular brands of products (marketing). Often, ques-
tionnaires consist of a number (k) of statements, each followed by a rating
scale with m + 1 ordered answer categories, and the respondent is asked to
mark the category that (s)he thinks applies most to his/her personality, opin-
1on, or preference. The rating scales are scored in such a way that the ordering
of the scores reflects the hypothesized ordering of the answer categories on
the measured properties (called latent traits).

Items are indexed 7 = 1,...,k, and item score random vaua,b]es are de-
noted by X;, with 1eahza,tlons z = 0...,m. Such items are known as polyto-
mous tems. Because individual ztems capture only one aspect of the latent
trait, researchers are more interested in the total performance 011 a set of k
items capturing various aspects than in individual items. A summary based
on the %k items more adequately reflects the latent trait, and the best known
summary is probably the unweighted total score, denoted by X , and defined

k
Xy = ZX%:- (3.1)

This total score is well known from classical test theory (Lord & Novick,
1968) and Likert (1932) scallng,, and is the test performance summary most
frequently used in practice. Data analysis of the scores obtained from a sam-
ple of N respondents, traditionally using methods from classical test theory,
may reveal whether X is reliable, and factor analysis may be used to inves-
tigate whether X, is based on a set of & items measuring various aspects of
predominantly the same property or maybe of a conglomerate of properties.

" Parts of this chapter are based on the unpublished doctoral dissertation of the
second author.
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Ttemn response theory (IRT) uses the pattern of scores on the k items to
estimate the latent trait value for each respondent (&), in an effort to obtain
o more accurate estimate of test performance than the simple X_.. For some
TRT models, known as Rasch models {e.g., Fischer & Molenaar, 1995), their
mathematical structure is simple enough to allow all statistical information
to be obtained from the total score X, thus making the pattern of scores
on the k items from the questionnaire superfluous for the estimation of 4.
Some advanced applications of Rasch models (and other IRT models not
relevant to this chapter), such as equating and adaptive testing, may still
be better off with measurement on the 8 scale than on the X, scale. Most
questionnaires could either use X4 or 8, as long as the ordering of respondents
is the only concern of the researcher, and provided that X, and 8 yield the
same respondent ordering.

This chapter concentrates on nonparametric IRT (NIRT) models for the
analysis of polytomous item scores. A typical aspect of NIRT models is that
they are based on weaker assumptions than most parametric IRT models
and, as a result, often fit empirical data better. Because their assumptions
are weaker, § cannot be estimated from the likelihood of the data, and the
issue of which summary score to use, X4 or 0, cannot come up here. Since a
simple count as in Equation 3.1 1s always possible, the following question is
useful: When a NIRT model fits the data, does X, order respondents on the
latent trait § that could be estimated from a parametric IRT model?

The purposes of this chapter are twofold. First, three NIRT models for the
analysis of polytomous item scores are discussed, and several well known IRT
models, each being a special case of one of the NIRT models, are mentioned.
The NIRT models are the nonparametric partial credit model (np-PCM), the
nonparameltric sequential model (np-SM), and the nonparametric graded re-
sponse model (np-GRM). Then, the hierarchical relationships between these
three NIRT models is proved. The issue of whether the ordering of respon-
dents on the observable total score X reflects in a stochastic way the ordering
of the respondents on the unobservable f is also discussed. The relevant order-
ing properties are monotone likelihood ratio of € in X, stochastic ordering
of 8 by X, and the ordering of the means of the conditional distributions
of @ given X, in X, . Second, an overview of statistical methods available
and accompanying software for the analysis of polytomous item scores from
questionnaires is provided. Also, the kind of information provided by each of
the statistical methods, and how this information might be used for drawing
conclusions about the quality of measurement on the basis of questionnaires
is explained.

3.2 Three Polytomous NIRT Models

Each of the three polytomous NIRT models belongs to a different class of IRT
models (Molenaar, 1983; Agresti, 1990; Hemker, Van der Ark, & Sijtsma, in



3 HIERARCHICALLY RELATED MODELS 43

press; Mellenbergh, 1995). These classes, called cumulative probability models,
continuation ratio models, and adjacent category models, have two assump-
tions in common and differ in a third assumption. The first common assump-
tion, called unidimensionelity (UD), is that the set of £ items measures one
scalar @ in common; that is, the questionnaire is unidimensional. The second
common assumption, called local independence (LI), is that the k item scores
are independent given a fixed value of #; that is, for a k-dimensional vector
of item scores X = X,

P(X =x|f) = (3.2)

LI implies, for example, that during test taking no learning or development
takes place on the first s items (s < k), that would obviously influence the per-
formance on the next k — s items. More general, the measurement procedure
itself must not influence the outcome of measurement. The third assumption
deals with the relationship between the 1tem score X; and the latent trait 8.
The probability of obtaining an item score z given 8, P(X; = z|6), is often
called the category characteristic curve (CCC) and denoted by ;. (8). If an
item has m + 1 ordered answer categories, then there are m so-called item
steps (Molenaar, 1983) to be passed in going from category 0 to category m.
It is assumed that, for each item step the probability of passing the item step
conditional on 8, called the item step response function (ISRF) is monotone
(nondecreasing) in #. The three classes of IRT models and, therefore, the
np-PCM, the np-SM, and the np-GRM differ in their definition of the ISRF.

3.2.1 Cumulative probability models and the np-GRM

In the class of cumulative pziob&bility models an ISRF is defined by
Ciz(0) = P(X; > z|0) = > "y (). (3.3)

By definition, Cio(8) = 1 and C;n331(0) = 0. Equation 3.3 implies that
passing the z-th item step yields an item score of at least = and failing the
z-th item step yields an item score less than z. Thus, if a subject has an
item score z, (s)he passed the first = item steps and failed the next m — z
item steps. The np—GRM assumes UD, LI, and ISRFs (Equation 3.3) that
are nondecreasing in §; for alliandallz =1,. , ™, without any restrictions
on their shape (Hemkel Sijtsma, Molenaar, & Junker 1996, 1997).

The CCC of the np GR"VI and also of the parametric cumulative proba-
bility models, equals =+ -
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The np-GRM is also known as the monotone homogeneity model for polyto-
mous items (Molenaar, 1997; Hemker, Sijtsma, 3‘1:.Molc—:na,art 1995).

A well known parametric cumulative probablhit;y model'xs the g:raded re-
sponse model {Samejima, 1969), where the ISRF in Equation 3.3 is defined

as a logistic function,
expla; (0 — Aiz)]

— 3 34
1+ exploy (€ — Aig)] (3.4)

Ciz(0)

for all z = 1,...,m. In Equation 3.4, Az 15 the _i{)cati-on parameter, with
M1 < Ain < € A, and oy (e; > 0, for all i) is the slope or discrimination
parameter. It may be noted that the slope parameters can only vary over
items but not over item steps, to assure that 7 (0) is nonnegative (Samejima,

1972).

A

399 (Continuation ratio models and the np-SM
In the class of continuation ratio models an ISRF is delined by

P(X; >z~ 1)

M;z(0) = (3.5)
By definition, M;p(8) = 1 and M; p,41(8) = 0. Equation 3.5 implies that
subjects that have passed the z-th item step have an item score of at least x.
Subjects that failed the z-th item step have an item score of x —~ 1. Subjects
with an item score less than z — 1 did not try the z-th item step and thus
did not fail it. The probability of obtaining a score z on item 7 in terms of
Equation 3.5 1s

My (8). (3.6)

miz(6) = (1 = M z41(0)]

The np-SM assumes UD, LI, and ISRFs (Eq. 3.5) that are nondecreasing in
& for all 7 and all z. Parametric continuation ratio models assume parametric
functions for the ISRF's in Equation 3.5. An example is the sequential model

(Tutz, 1990), where
| €2 g — iz}
1+ GXPW - ﬁi:::)
In Equation 3.7, 8;; is the location parameter. Tutz (1990) also presented a
rating scale version of this model, in which the location parameter is linearly
restricted. The sequential model can be generalized by adding a discrimina-
tion parameter a;; (Mellenbergh, 1995); oy, > 0 for all 7 and 2z, such that

| 3 e}:p[ﬁim(g — ﬁi:ﬁ)]
Mz () = T a0 = Bl

This model may be denoted the two-parameter sequential model (2p-SM).

(3.7)

(3.8)
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3.2.3 Adjacent-category models and the np-PCM
In the class of adjacent category models an ISRF is defined by

iz (0)
’JT?;};,;__..I_(@) + Tix (9) '

Aic(0) = (3.9)

By definition, A;(f) = 1 and A;;n41(0) = 0. Equation 3.9 implies that the
z-th item step is passed by subjects that have an item score equal to z,
but failed by subjects that have an item score equal to z — 1. None of the
other categories contains information about item step z. The probability of
obtaining a score = on item 2 In terms of Equation 3.9 is

I}D A;;(0) k—-—H 1 (1 — Air(0))]
iz (8) = —— ” - _mfn . (3.10)
> I A(8) T] [1— Aw(9)]
y=0 5=0 k=y+1

The np-PCM assumes UD, LI, and ISR¥s (Eq. 3.9) that are nondecreasing
in # for all ¢ and all 2 (see also Hemker et al., 1996, 1997).

A well known parametric adjacent category model is the partial credit
model {Masters, 1982), where the ISRF in Equation 3.9 is defined as a logistic
function,

4,.(6) = exp(f — 8;x) |
14 exp(@ — 511;)
for all z = 1,...,m, where ¢;, is the location parameter. The generalized
partial credit model {Muraki, 1992) is a more flexible parametric model,
which is obtained by adding a slope or discrimination parameter (cf. Eq. 3.4)
denoted ¢; that may vary across items. |

(3.11)

3.3 Relationships Between Polytomous NERT«-M@de}s

The three NIRT models have been introduced as three separate models, but it
can be shown that they are hierarchically related. Because the three models
have UD and LI in common, the investigation of the relationship between
the models is equivalent to the investigation of the relationships between the
three definitions of the ISRFs (Egs. 3.3, 3.5, and 3.9).

First, it may be noted that the ISRFs of the first item step in the np-SM
and the np-GRM are equivalent; that is, M;; = Cj;, and that the ISRFs
of the last item step in the np-SM and the np-PCM are equivalent; that 1s,
M;,, = A;m. For dichotomous items there is only one item step and the first
ISRF is also the last ISRF; therefore, C;i(8) = A;1(8) = M;1(8) = 7i1(8).
This case is referred toas the dichotomous NIRT model

Next, it is shown "-fﬁfh’éﬁ*:f-'i'-i'-fi:he np-PCM implies the np-SM and that the np-
SM implies the np-GRM; but that the reverse relationships are not true. As
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a consequence, the np-PCM implies the np-GRM, which was already proved
by Hemker et al. (1997).

TugoreM 1: The np-PCM is a special case of the np-SM.

ProoF: If the np-PCM holds, 4;;(8) (Eq. 3.9) is nondecreasing in ¢ for all
: and all z. This implies a monotone likelihood ratio of X; in 8 for all items
(Hemker et al., 1997; Proposition); that is, for all items and all 1tem scores ¢

and k, with 0 <c < £ <m,
ik (@)
‘FT{C(Q)
Letz >1,¢c=x—1, and k£ > z, then Equation 3.12 implies that the ratio
m1(8) /7 —1(0) is nondecreasing in 8, and also that > ik (8) /7 w1 (0)]
is nondecreasing in 6. This 1s identical to

is nondecreasing in 8. (3.12)

P(Xi 2 z19) nondecreasing in ¢,
Wi,m-—l(tg)
for all 1 and all =, and this implies that
T x—1(0) P(X; > z|6) _ P(X; >z —1|0) (3.13)

Pl > ald) T P(X: > alf) P> al0)

is nonsncreasing in 8. The reverse of the right-hand side of Equation 3.13,
P(X; > z-18)/P(X; > z|8), which is identical to M;;(0) (Eq. 3.5), thus is
nondecreasing for all ¢ and all z. This implies that all ISRFs of the np-SM
[M;,(8)] are nondecreasing. Thus, it is shown that if the np-PCM holds, the
np-SM also holds. The np-SM does not imply the np-PCM, however, because
nondecreasingness of Y - _[m(0)/7: »—1(6)] does not imply nondecreasing-
ness of each of the ratios in this sum; thus, it does not imply Equation 3.12.
Thus, the np-SM only restricts this sum, whereas the np-PCM also restricts
the individual ratios.

THEOREM 2: The np-SM is a special case of the np-GRM.

PROOF: From the definition of the ISRF in the np-GRM, C;.(8) (Eq. 3.3),
and the definition of the ISRF in the np-SM, A4;,(d) (Eq. 3.5), it follows, by
successive cancellation, that for all z

Cin(0) = H M, (8). (3.14)

From Equation 3.14 it follows that if all M;;(6) are nondecreasing, Ci(8) 1s
nondecreasing in ¢ for all . This implies that if the np-SM holds, the np-
GRM also holds. The np-GRM does not imply the np-SM, however, because
nondecreasingness of the product on the right-hand side of Equation 3.14
does not imply that each individual ratio M;;(6) is nondecreasing for all z.



3 HIERARCHICALLY RELATED MODELS 47

To summarize, the np-PCM, the np-SM, and the np-GRM can be united
into one hierarchical nonparametric framework, in which each model is de-
fined by a subset of five assumptions:

UD;

Li;

. Ciz(#) nondecreasing in 6, for all 4 and all z;
. M;.(0) nondecreasing in 6, for all 4 and all z;
Aix(f) nondecreasing in 8, for all 1 and all z.

G o Q0 BRI b

Note that Theorem 1 and Theorem 2 imply that Assumption 3 follows from
Assumption 4, and that Assumption 4 follows from Assumption 5. Assump-
tions 1, 2, and 3 define the np-GRM; Assumptions 1, 2, and 4 define the
np-SM; and Assumptions 1, 2, and 5 define the np- PCM. Th:as means that

np-PCM = np-SM = np-GRM.

Finally, parametric models can also be placed in this framework. A Venn-
diagram depicting the relationships graphically is given in Hemker et al. (in
press). Most important is that all well known parametric cumulative probabil-
ity models and parametric adjacent category models are a special case of the
np-PCM and, therefore, also of the np-SM and the np-GRM. All parametric
continuation ratio models are a special case of the np-SM and, therefore, of
the np-GRM, but not necessarily of the np-PCM. The proof that parametric
continuation ratio models need not be a special case of the np-PCM had not
been published thus far and is given here.

THEOREM 3: The 2p-SM is a special case of the np-PCM only if aip > ou 21,
for alli, z, and 8.
PROOF: Both the 2p-SM (Eq. 3.8) and the np-PCM (Eq. 3.9) assume UD and
LI, thus it has to be shown that the ISRFs of the 2p-SM imply that A4;. (6)
(Eq. 3.9) is nondecreasing in 8 only if ;. > a; z+1, but not vice versa.
First, A;z(0) is defined in terms of M;;(6). It can be shown, by applying
FEquation 3.6 to the rxght-hand side of Equation 3.9 a:ﬂd then domg some
algebra, that -
Mim_ (@) — Mz:}:(@)Mz,m—H(@)
— M (8) M +1(0) '
Next, applying Equation 3.8, the parametric definition of the ISRF of the
2p-SM, to Equation 3. 15 and again doing some algebra, gives

explaiz (6 — Biz)]
1 -+ exp[am(é‘ ﬁw)i + ERP[Gz,x+1(@ = ﬁi,m+l)§] |

Am(@) =

(3.15)

Aiz(0) = (3.16)
If the np-PCM holds, the first derivative of A, (6) with respect to 8 is non-

negative for all 7, z and 0. Let for notational convenience exp|o;, (8 — Bix)]
be denoted ew(ﬁ) and let exp[a; z+1(8 — Bi z41)] be denoted e; 541(8). Let



48 VAN DER ARK, HEMKER & SIJTSMA

the first derivative with respect to 6 be denoted by a prime. Then for Equa-

tion 3.16 the np-PCM holds if

; e U 11 + egm(é’) + €4,z 1(3)] - {'ﬁix(@)’ + ei,:ﬁ—%l(g)’}eim(g)
Aiz(0) = o] 1+ e.;(f?) + €; 241 (0)]? =

(3.17)
The denominator of the ratio in Equation 3.17 18 positive. Note that e;5(0)" =

izeiz(0); and e; s41(8) = Qizy1€iat1- Thus, from Equation 3.17 it follows
TL-t. ¥ ¥ 1 1

that the np-PCM holds if, for all g,
Oz + (Qiz — o o 1)€iz+1(0) 2 0. (3.18)

Equation 3.18 holds if ¢tz 2 G241 because in that case qis, (Giz — Q4 zr1),
and e; ;3 are all nonnegative. However, if a;p < oy i1, 16 follows from
Equation 3.18 that A;(8) decreases in 8 if

iy

e; rr1(0) > ,.
a1 (0) O g1 — Qi

Thus, if @ < Q4,z41, A;(6) decreases for

In oy gi1 — N )

g > ﬁi,:c—{-l + ( '

Ina; 241

This means that for oz < ojz+1, Bquation 3.18 does not hold for all 6.
Thus, the np-PCM need not hold if aiz < @i az41. Note that the reverse
implication is not true because nondecreasingness of A;, does not imply the
2p-SM (Eq. 3.8). For example, in the partial credit model (Eq. 3.11) A;, is
nondecreasing but the 2p-SM can not hold (Molenaar, 1983).

3.4 Ordering Properties of the Three NIRT models

The main objective of IRT models is to measure §. NIRT models are solely
defined by order restrictions, and only ordinal estimates of § are available.
Summary scores, such as X, may provide an ordering of the latent trait, and
it is important to know whether the ordering of the summary score gives a
stochastically correct ordering of the latent trait. Various ordering properties
relate the ordering of the summary score to the latent trait. First, the ordering
properties are introduced and, second, these properties for the NIRT models
both on the theoretical and the practical level are discussed.

3.4.1 Ordering properties

Stochastic ordering properties in an [RT context relate the ordering of the
examinees on a manifest variable, say Y, to the ordering of the examinees
on the latent trait #. Two manifest variables are considered, the item score,
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X4, and the unweighted total score, X ;. The ordering property of monotone
likelihood ratio (MLR,; see Hemker et al., 1996),

P(Y = K|)
P(Y = C|b)

nondecreasing in §; for all | K; C < K, (3.19)

1s a technical property which is only interesting here because it implies other
stochastic ordering properties (see Lehmann, 1986, p. 84). Two versions of
MLR. are distinguished: First, MLR of the item score (MLR-X;) means that
Equation 3.19 holds when Y = X;. Second, MLR of the total score (MLR-
X+ ) means that Equation 3.19 holds when ¥ = X .

The first ordering property implied by MLR is stochastic ordering of the
manifest variable (SOM; see Hemker et al., 1997). SOM means that the order
of the examinees on the latent trait gives a stochastically correct ordering of
the examinees on the manifest variable; that is,

P(Y > z|04) < P(Y > x|8g), for all z; for all 84 < 05. (3.20)

Here, also two versions of SOM are distinguished: SOM of the item score
(SOM-X;) means that Equation 3.20 holds for ¥ = X, and SOM of the
total score (SOM-X ) means that Equation 3.20 holds for ¥ = X . It may
be noted that SOM-X; is equivalent to P(X; > z|0) (Eq. 3.3) nondecreasing
in 6.

The second ordering property implied by MLR is stochastic ordering of
the latent trait (SOL; see, e.g., Hemker et al., 1997). SOL means that the
order of the examinees on the manifest variable gives a stochastically correct
ordering of the examinees on the latent trait; that is,

PO>slY =C)<P@>s]Y =K), foralls; forall C,K; C < K. (3.21)

SOL is more interesting than SOM because SOL allows to draw conclusions
about the unknown latent trait. SOL of the item score (SOL-X;) means that
Equation 3.21 holds for ¥ = X;, and SOL of the total score (SOL-X ) means
that Equation 3.21 holds for ¥ = X, . -

A less restrictive form of SOL, called ordering of the expected Eate__ni trait
(OEL) was investigated by Sijtsma and Van der Ark (2001). OEL means that

E(B)Y =C) < BO|Y = K), forall C,K; € < K. (3.22)

OEL has only been considered for ¥ = X..

3.4.2 Ordering prapertxes in theory

Table 3.1 gives an overview of the ordering properties implied by the np-
GRM, the np-SM, the np-PCM, and the dichotomous NIRT model. A “4”

mdicates that the ordering property is implied by the model, and a “—
indicates that the ordering property is not implied by the model.
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Table 3.1. Overview of Ordering Properties Implied by NIRT Models.

Ordering properties | |
MLR-X+ MLR-X; SOL-X, SOL-X; SOM-X4 SOM-X; OBL

Model

np-GRM — = - -~ + + —

np-SM - — - — + +- —

np-PCM — 1 - + + + -

Dich-NIRT + + + + + + -+
and “—" means

Note: The symbol “+” means “model implies property”,
“model does not imply property”. Dich-NIRT means dichotomous NIR'1

model.

Grayson (1988; see also Huynh, 1994) showed that the dichotomous NIRT
model implies MLR-X,, which implies that all other stochastic ordering
properties also hold, both for the total score and the item score. Fcar_ the
np-GRM and the np-PCM the proofs with respect to MLR, SOL, and SOM
are given by Hemker et al. (1996, 1997); and for the np-5M such proofs are
given by Hemker et al. (in press). The proofs regarding OEL can be found
in Sijtsma and Van der Ark (2001) and Van der Ark (2000). Overviews of
relationships between polytomous IRT models and ordering properties are
given in Sijtsma & Hemker (2000) and Van der Ark (2001).

3.4.3 Ordering properties in practice

In many practical testing situations X is used to estimate 4. It would have
been helpful if the NIRT models had implied the stochastic ordering prop-
erties, for then under the relatively mild conditions of UD, LI, and nonde-
creasing ISRFs, X would give a correct stochastic ordering of the latent
trait. The absence of MLR-X,, SOL-X,, and OEL for most polytomous
IRT models, including all NIRT models, may reduce the usefulness of these
models considerably. A legitimate question i1s whether or not the poiytomoug
NIRT models give a correct stochastic ordering in the vast majority of cases,
so that in practice under the polytomous NIRT models X, can safely be used
to order respondents on 8.

After a pilot study by Sijtsma and Van der Ark (2001), Van der Ark
(2000) conducted a large simulation study in which for six NIRT models
(including the np-GRM, the np-SM, and the np-PCM) and six parametric
IRT models the following two probabilities were investigated under various
settings. First, the probability that a model violates a stochastic ordering
property was mvestigated and, second, the probability that two randomly
drawn respondents have an incorrect stochastic ordering was investigated.
By investigating these probabilities under different circumstances (varying
shapes of the ISRFs, test lengths, numbers of ordered answer categories, and
distributions of 8) it was also possible to investigate which factors increased
and decreased the probabilities.
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The first result was that under many conditions the probability that MLR-
X4, SOL-X 4, and OEL are violated is typically large for all three NIRT
models. Therefore, it not safe to assume that a particular fitted NIRT model
will imply stochastic ordering given the estimated model parameters. Sec-
ondly, however, the probability that two respondents are imncorrectly ordered,
due to violations of OEL and SOL, is typically small. When tests of at least
five items were used for ordering respondents, less than 2% of the sample was
affected by violations of SOL or OEL. This means that, although the sto-
chastic ordering properties are often violated, only a very small proportion of
the sample is affected by this violation and, in general, this simulation study
thus indicated that X, can be used safely to order respondents on 4.

Factors that increased the probability of a correct stochastic ordering
were an mcrease of the number of items, a decrease of the number of answer
categories, and a normal or uniform distribution of 8 rather than a skewed
distribution. Moreover, the np-PCM had a noticeable lower probability of an
incorrect stochastic ordering than the np-SM and the np-GRM. The effect of
the shape of the ISRFs was different for the three NIRT models. For the np-
PCM and the np-SM similarly shaped ISRFs having lower asymptotes that
were greater than 0 and upper asymptotes that were less than 1 yielded the
best results. For the np-GRM the best results were obtained for ISRFs that
differed in shape and had lower asymptotes equal to 0 and upper asymptotes
equal to 1.

3.5 Three Approaches for Estimating Polytomous
NIRT Models

Generally three approaches for the analysis of data with NIRT models have
been proposed. The approaches are referred to as investigation of chserv-
able consequences, ordered latent class analysis, and kernel smoothing. The
difference between the approaches lies in the assumptions about § and the
estimation of the ISRF. Fach approach has its own software and uses its
own diagnostics for the goodness of fit mvestzgatxon Not every model can
be readily estimated with the available software. The software is discussed
using two simulated data sets that consist of the responses of 500 .simulees to
10 polytomous items with 4 ordered answer categories (these are reasonable
numbers in practical psychological research).

Data Set 1 was samulated using an adjacent category model (Eq. 3.9) with
ISRF --

P(X; = z|6) _explaiz (0 ~ Biz)]
P(X; = z|8) + P(X =T 118) 1+ explaiz (8 — Biz)]

(3.23)

In Equation 3.23 the parameters o, were.the exponent of random draws
from a normal distribution with mean 0.7 and variance 0.5; hence, ¢y, > 0.
The @ values of the 500 simulees and the parameters 3;; both were random
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draws from a standard normal distribution. Equation 3. 23 is a special case
of the np-PCM and, therefore, it is expected that all NIRT models will fit
Data Set 1. An adjacent category model was chosen because continuation
ratio models (Eq. 3.5) do not necessarily imply an np- PCM (see Theorem 3)
and cumulative probability models (Eq. 3.3) are not very flexible because the
ISRFs of the same item cannot intersect.

Data Set 2 was simulated using a two-dimensional adjacent category

model with ISRF

2
exp| ) iza(fq — Biza)]
P(..X-f = :31@3,92) - [d%;l
sz,; g PXl:“*—].g,@ 2 ;
P(X; = z|fy,62) + P(Xi = & — 1|01, 62) 1 +exp() iza(0d — Biza)]
d=1
(3.24)
In Equation 3.24, qup = —0.1 for i = 1,...,5, and ajz;; = —0.1 for i =

6,...,10. The remaining «;, parameters are the exponent of random draws
from a normal distribution with mean 0.7 and variance 0.5 and, therefore,
they are nonnegative. This means that the first five items have a small neg-
ative correlation with 8> and the last five items have a small negative corre-
lation with 8. Equation 3.24 is not unidimensional and, due to the negative
oizS, the ISRFs are decreasing in either ¢; or #;. Therefore, it is expected
that none of the models will fit Data Set 2. The 8 values of the 500 simulees
and the parameters J;; both were random draws from a standard normal
distribution, and 6y and #; were uncorrelated.

3.5.1 Investigation of cbservable consequences

This approach was proposed by Mokken (1971) for nonparametric scaling
of dichotomous items. The approach is primarily focused on model fitting
by means of the investigation of observable consequences of a NIRT model.
For polytomous items this approach was discussed by Molenaar 199?) The
rationale of the method is as follows:

1. Define the model assumptions;

2. Derive properties of the manifest variables that are implied by the model
assumptions (observable consequences);

3. Investigate whether or not these observable consequences hold in the
data; and .

4. Reject the model if the observable consequences do not hold; otherwise,
accept the model.

Software. The computer program MSP (Molenaar, Van Schuur, Sijtsma, &
Mokken, 2000; Molenaar & Sijtsma, 2000) is the only software encountered
that tests observable consequences for polytomous items. MSP has two main
purposes: The program can be used to test the observable consequences for
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a fixed set of items (dichotomous or polytomous) and to select sets of corre-
lating items from a multidimensional item pool. In the latter case, for each
clustered item set the observable consequences are investigated separately.
MSP can be used to investigate the following observable consequences:

— Scalability coefficient H;;. Molenaar (1991) introduced a weighted poly-
tomous version of the scalability coefficient H;;, originally introduced by
Mokken (1971) for dichotomous items. Coefficient H;; is the ratio of the
covariance of items z and j, and the maximum covariance given the mar-
ginals of the bivariate cross-classification table of the scores on items 7
and 7; that is,

. CG’U(X-E s XJ)

OOU(X:E y Xj)max .

If the np-GRM holds, then Cov(X;, X;) 2 0 and, asaresult, 0 < H;; <1
(see Hemker et al., 1995). MSP computes all H;; s and tests whether
values of H;; are significantly greater than zero. The idea is that items
with significant positive H;; s measure the same &, and MSP deletes
items that have a non-positive or non-significant positive relationship
with other items in the set.

~ Manifest monotonicity. Junker (1993) showed that if dichotomous items
are conditioned on a summary score that does not contain X;, for exam-
ple, the rest score

Hij

R(_i) — X.+. - Xi, (325)
then the dichotomous NIRT model implies manifest monétdnici?ty_; that
1S, | |

P(X; = 1{R(_;y) nondecreasing in R(_;. - {3.26)

However, Hemker (cited by Junker & Sijtsma, 2000) showed that a sim-
ilar manifest monotonicity property is not implied by polytomous NIRT
models; that is, P(X > z|R_;)) need not be nondecreasing in f_;). It is
not vet known whether this is a real problem for data analysis. MSP com-
putes P(X > z|R(_;y) and reports violations of manifest monotonicity,
although it is only an observable consequence of dichotomous items.

In search for sets of related items from a multidimensional item pool,
MSP uses H;; and the scalability coefficients H; (a scalability coefhicient for
item 7 with respect to the other items) and H (a scalability coefficient for
the entire test) as criteria. In general, for each scale found, H;; > 0, for all
i # 7, and H; > ¢ (which implies that H > ¢; see Hemker et al., 1995). The
constant ¢ is a user-specified criterion, that manipulates the strength of the
relationship of an item with 6.

Exaraple. It may be noted that the np-GRM implies 0 < H;; < 1, which
can be checked by MSP. Because the np-GRM is implied by the np-SM and
the np-PCM, MSP cannot distinguish these three models by only checking
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the property that H;; > 0, for all 4 7 j. So, either all tl}ree. NIRT mede.ls
are rejected when at least one H;; < 0, or none of the three NIRT models is
rejected, when all H;; > 0. |

MSP can handle up to 255 items. Thus analyzing Data Set 1 and Data
Set 2 was not a problem. For Data Set 1, which was simulated using a unidi-
mensional adjacent category model (Eq. 3.23), the ten items had a scalability
coefficient H = .54, which can be interpreted as a strong scale (see Hemker
et al., 1995). None of the H;; values were negative. Therefore, MSP correctly
did not reject the np-GRM for Data Set 1. Although manifest monotonic—-
ity is not decisive for rejecting the np-GRM, violations may heuristically
indicate non-increasing ISRFs. To investigate possible violations of manifest
monotonicity in Data Set 1, MSP checked 113 sample inequalities of the type
P(X > z|R-y =71) < P(X 2 T|R_y =7 — 1.); four significant viclations
were found, which seems a small number given 113 possible violations.

For Data Set 2, which was simulated using a two-dimensional adjacent cat-
egory model (Eq. 3.24), the ten items had a scalability coefficient of H = .13,
and many negative H;; values, so that the np-GRM was correctly rejected.
If a model is rejected, MSP’s search option may yield subsets of items for
which the np-GRM is not rejected. For Data Set 2, the default search option
yielded two scales: Scale 1 (H = .53) consisted of items 3, 4, and 5, and Scale
2 (H = .64) consisted of items 6, 7, 8, and 9. Thus, MSP correctly divided
seven ttems of Data Set 2 into two subscales, and three 1tems were excluded.
For item 1 and item 2, the H;; values with the remaining items of Scale 1
were positive but non-significant. Item 10 was not included because the scal-
ability coeflicient Hg 19 = —0.03. It may be argued that a more conventional
criterion for rejecting the np-GRM might be to test whether H;; < 0, for all
i = 9. This is not possible in MSP, but if the minimum acceptable H is set to
0 and the significance level 1s set to 0.9999, then testing for H;; > 0 becomes
trivial. In this case, items 1 and 2 were also included in Scale 1.

3.5.2 Ordered latent class analysis

Croon (1990, 1991) proposed to use latent class analysis (Lazarsfeld & Henry,
1968) as a method for the nonparametric scaling of dichotomous items. The
rationale is that the continuous latent trait # is replaced by a discrete latent
variable T' with q ordered categories. It is assumed that the item score pattern
is locally independent given the latent class, such that

. v
P(Xy,. .., X)) =) P(T=s)x]]
g==1 ]

with ineqguality restrictions

PlXi=1T=8)>P(X;=1T=5-1), fors=2,....q, (3.28)
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to satisly the monotonicity assumptions. If ¢ = 1, the independence model is
obtained.

It may be noted that the monotonicity assumption of the dichotomous
NIRT model [i.e., P(X; = 1]8) is nondecreasing in ] implies Equation 3.28
for all discrete combinations of successive & values collected in ordinal latent
classes. As concerns LI, it can be shown that LI in the dichotomous NIRT
model and LI in the ordinal latent class model (Eq. 3.28) are unrelated. This
means that mathematically, the ordinal latent class model and the dichoto-
mous NIRT model are unrelated. However, for a good fit to data an ordinal
latent class model should detect as many latent classes as there are distinct
8 values, and only 8s that yield similar response patterns are combined into
one latent class. Therefore, if LI holds in the dichotomous NIRT model, it
holds by approximation in the ordinal latent class model with the appropriate
number of latent classes.

Equation 3.28 was extended to the polytomous ordinal latent class model
by Van Onna (2000), who used the Gibbs-sampler, and Vermunt (2001), who
used maximum likelihood, to estimate the ordinal latent class probabilities.
Vermunt (2001) estimated Equation 3.28 with inequality restrictions

PX;i>zlT=s5)2PX;>2z[T=5-1), fors=2,...,q, (3.29)
and
PX;>2zlT=s8)2PX;>2z-1T=s), forz=2,...,m. (3.30)

Due to the restrictions in Equation 3.29, P(X; > z|T) is nondecreasing in T
icf. Eq. 3.5, where for the np-GRM probability P(X; > z|8) is nondecreasing
in 8]. Due to the restrictions in Equation 3.30, P(X; > z|T) and P(X; >
z — 1|T) are nonintersecting, which avoids negative response probabilities.
The latent class model subject to Equation 3.29 and Equation 3.30, can
be interpreted as an np-GRM with combined latent trait values. However,
as for the dichotomous NIRT model, LI in the np-GRM with a continuous
latent trait and LI in the np-GRM with combined latent trait values are
mathematically unrelated.

Vermunt (2001) also extended the ordered latent class approach to the
np-SM and the np-PCM, and estimated these models by means of maximum
likelihood. For ordinal latent class versions of the np-PCM and the np-SM
the restrictions in Equation 3.29 are changed into

P(X; = z|T = 3) S PX;=a|T =s—1)

- L fors=2,...
P(szﬂ:“].v:EiTmS)#P(thmwlvmi’r’:su_l)‘ or & ) »
(3.31)

and
P(X; > z|T = s) S P(X; z2z|T=35-1)
PXi>z-1T=3s) = P(X; >z —1T=5-1)
respectively. For the np-PCM and the np-SM the ISRFs may intersect and,
therefore, restrictionssuch as Equation 3.30 are no longer necessary.

L ford=2,...,q (3.32)
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Software. The computer program £EM (Vermunt, 1997} is available free of
charge from the world wide web. The program was not espemallyf designed
t0 estimate ordered latent class models, but more genem-]ly. .to estimate var-
ious types of models for categorical data via ma,xmmar’r% likelihood. The pro-
gram syntax allows many different models to be Speczﬁed’mther compactly,
which makes it a very flexible program, but considerable time must be spent
studying the manual and the various examples provide(:'i along with the pro-
gram. EM can estimate the ordinal latent class versions of the np-PCM,
the np-GRM, and the np-SM, although these options are not documented in
the manual. Vermunt (personal communication) indicated that the command
“or1” to specify ordinal latent classes should be changed into “orl(b)” for
the np-PCM, and “orl{c)” for the np-SM. For the np-GRM the command
“orl(a)” equals the original “orl”, and “orl{d)” estimates the ;13)-SM with a
reversed scale (Agresti, 1990; Hemker, 2001; Vermunt, 2001). In addition to
the NIRT models, EM can also estimate various parametric IRT models.
The program provides the estimates of P(7" = s} and P(X; = 2|T = s) for
all 4, z, and s, global likelihood based fit statistics such as L?, X? AIC, and
BIC (for an overview, see Agresti, 1990), and for each item five pseudo R’
measures, showing the percentage explained qualitative variance due to class

membership.

Example. For Data Set 1 and Data Set 2, the np-GRM, the np-SM and
the np-PCM with ¢ = 2, 3, and 4 ordered latent classes we estimated. The
independence model (g = 1) as a baseline model to compare the improvement
of fit was also estimated. Latent class analysis of Data Set 1 and Data Set
2 means analyzing a contingency table with 4*9 = 1,048,576 cells, of which
99.96% are empty. It is well known that in such sparse tables likelihood-based
fit statistics, such as X? and L?, need not have a chi-squared distribution.
It was found that the numerical values of X2 and L? were not only very
large (exceeding 10°) but also highly different (sometimes X2 > 1000L2?).
Therefore, X2 and L? could not be interpreted meaningfully, and instead the
following fit statistics are given in Table 3.2: loglikelihood (L), the departure
from independence (Dep. = [L(1)—L{g)]/L(1)) for the estimated models, and
the difference in loglikelihood between the ordinal latent class model and the
corresponding latent class model without order constraints (A). The latter
two statistics are nof available in £&5AM but can easily be computed. Often
the estimation procedure yielded local optima, especially for the np-GRM
(which was also estimated more slowly than the np-SM and the np-PCM)}.
Therefore, each model was estimated ten times and the best solution was
reported. For some models more than five different optima occurred: thisis
indicated by an asterisk m Table 3.2.

For all models the loglikelihood of Data Set 1 was greater than the log-
likelithood of Data Set 2. Also the departure from independence was greater
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Table 3.2. Goodness of Fit of the Estimated np-GRM, np-SM, and np-PCM With
LM .

np-GRM np-PCM np-SM

Data g LDep. A  LDep A L Dep. A

Data Set 11 -3576 .000 0 -3576 .000 0-3576 .000 0

2 -2849 175 14 -29B0 167 45 -2950 .175 15

3 -2853% 202 34 -2872 .197 53 -2833 .208 24

4 -2791" 220 34 -2818 .212 61-2778 .223 21

Data Set 21 -4110 .000 O -4110 .00C 0-4110 .000 0

2 -3868% .058 1 -3917 .047 54 -3869 .059 6

3-3761° .085 108 -3791 .078 138 -3767 .083 114

4 -3745 089 51 -3775° .092 181 -3763 .084 169

Note: L is the loglikelihood; Dep. is the departure of ilfld@p@]&*-

dence Iitquq%(l ); A is the difference between the loglikelihood

of the unconstrained latent class model with ¢ classes and the
ordinal latent class model with ¢ classes.

for the models of Data Set 1 than for the models of Data Set 2, which sug-
gests that modeling Data Set 1 by means of ordered latent class analysis was
superior to modeling Data Set 2. The difference between the loglikelihood of
the ordered latent class models and the unordered latent class models was
greater for Data Set 2, which may indicate that the ordering of the latent
classes was more natural for Data Set 1 than for Data Set 2. All these find-
ing were expected beforehand. However, without any reference to the real
model, it is hard to determine whether the NIRT models should be rejected
for Data Set 1, for Data Set 2, or for both. It is even harder to distinguish the
np-GRM, the np-SM, and the np-PCM. The fit statistics which are normally
used to reject a model, L? or X?, were not useful here. Based on the L? and
X2 statistics, only the independence model for Data Set 1 could have been
rejected.

3.5.3 Kernel smoothing

Smoothing of item response functions of dichotomous items was proposed by
Ramsay (1991) as an alternative to the Birnbaum (1968) three-parameter
logistic model,

explos (0 — 5;)]

T explan(0 — B2 (3-33)

mi1(0) = v + (1 = 7:)

where ; is a guessing parameter, ®; a slope parameter, and f; a location
parameter. Ramsay (1991) argued that the three-parameter logistic model
does not take nonmonotonic item response functions into account, that the
sampling covariances of the parameters are usually large, and that estimaftion
algorithms are slow and complex. Alternatively, in the monotone smoothing
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approach, continuous nonparametric item response functions are estimated
using kernel smoothing. The procedure 1s described as follows (see Ramsay,

2000, for more details):

1. Estimation of 8. A summary score (e.g., X.+) is computed for all respon-
dents, and all respondents are ranked on the basis of this summary score;

ranks within tied values are assigned randomly. The estimated 8 value (9)
of the n-th respondent in rank is the n-th quantile of the standard nor-
mal distribution, such that the area under the standard normal density
function to the left of this value is equal to n/(IN + 1).

9. Estimation of the CCC. The CCC, m:,.(8), is estimated by (kernel) smooth-
ing the relationship between the item category responses and the Os. 1f
desired the estimates of 8 can be refined after the smoothing. Douglas
(1997) showed that under certain regularity conditions the joint estimates
of § and the CCCs are consistent as the numbers of respondents and items
tend to infinity. Stout, Goodwin Froelich, and Gao (2001) argued that
in practice the kernel smoothing procedure yields positively biased esti-
mates at the low end of the 8 scale and negatively biased estimates at
the high end of the & scale.

Software. The computer program TestGraf98 and a manual are available
free of charge from the ftp site of the author (Ramsay, 2000). The program
estimates 8 as described above and estimates the CCCs for scales with either
dichotomous or polytomous items. The estimates of ¢ may be expressed as
standard normal scores or may be transformed monotonely to E (R_(__-g_).lé) (see
Equation 3.25) or E(X,|8). The program provides graphical rather than de-
scriptive information about the estimated curves. For each item the estimated
CCCs {ﬁw(ﬁ)} and the expected item score given 8 LB (X }ﬁ)} can be depicted.
For multiple-choice items with one correct alternative it is also possible to
depict the estimated CCCs of the incorrect alternatives. Furthermore, the
distribution of 4, the standard error of 8, the reliability of the unweighted
total score, and the test information function are shown. For each respondenit,
the probability of g given the response pattern, can be depicted.

Testing NIRT models with TestGraf98 is not straightforward because only
graphical information is provided. However, if the np-GRM holds, which im-
plies that P(X; > |6} is nondecreasing in ¢ (Eq. 3.5}, then E(X;]4) is also
nondecreasing in &, because

m

B(X,16) =

If a plot in TestGraf98 shows for item ¢ that E(X;|8) is not nondecreasing
in ¢, this may indicate a violation of the np-GRM and, by impilication, a
violation of the np-SM, and the np-PCM. Due to the lack of test statistics,
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TestGraf98 appears to be a device for an eyeball diagnosis, rather than a
method to test whether the NIRT models hold.

Example. For Data Set 1, visual inspection of the plots of F(X;]§) showed
that all expected item scores where nondecreasing in §. This means that
no violations of the np-GRM were detected. For Data Set 2, for three items

E(X;|6) was slightly decreasing in § over a narrow range of 6; E (X+]) showed

a severe decrease in 6. Moreover, three expected item score functions were
rather flat, and two expected item score functions were extremely flat. This
indicates that for Data Set 2, the np-GRM was (correctly) not supported by
TestGrafys.

3.6 Discussion

In this chapter three polytomous NIRT models were discussed, the np-PCM,
the np-SM, and the np-GRM. It was shown that the models are hierarchically
related; that is, the np-PCM implies the np-SM, and the np-SM implies the
np-GRM. It was also shown that the 2p-SM only implies the np-PCM if
for all items and all item steps the slope parameter of category z is less or
equal to the slope parameter of category = + 1. This final proof completes
the relationships in a hierarchical framework which includes many popular
polytomous IRT models (for overviews, see Hemker et al., in press).

NIRT models only assume order restrictions. Therefore, NIRT models
impose less stringent demands on the data and usually fit better than para-
metric IRT models. NIRT models estimate the latent trait at an ordinal level
rather than an interval level. Therefore, it is important that summary scores
such as Xy imply a stochastic ordering of 8. Although none of the. polyto-
mous NIRT models implies a stochastic ordering of the latent trait by X..,
this stochastic ordering will hold for many choices of ISRFs or CCCs in a
specific model,-and many distributions of #. The np-PCM implies stochastic
ordering of thelatent trait by the item score. In the kernel smoothing ap-
proach an interval level score of the latent trait is obtained by mapping an
ordinal summary statistic onto percentiles of the standard normal distribu-
tion. Alternatively, multidimensional latent variable models can be used if a
unidimensional parametric IRT model or a NIRT model do not have an ad-
equate fit. Multidimensional IRT models yield estimated latent trait values
at an interval level(e.g., Moustaki, 2000). Multidimensional IRT models are,
however, not very popular because parameter estimation is more complicated
and persons cannot be assigned a single latent trait score (for a discussion of
these arguments, see Van Abswoude, Van der Ark, & Sijtsma, 2001).

Three approaches | for fitting and estimating NIRT models were discussed.
The first approach;: ﬁvestzga,tmn of observable consequences, is the most for-
mal approach in: te{ms of fitting the NIRT models. For fitting a model based
on UD, LI, and M, the latent trait is not estimated but the total score is
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used as an ordinal proxy. The associated program MSP correctly found the

structure of the simulated data sets.

In the ordinal latent class approach the NIRT model 1s approximated
by an ordinal latent class model. The monotonicity assumption _oi the NIRT
models is transferred to the ordinal latent class models, but the LI assumption
is not. It is not known how this affects the relationship between NIRT mod-
els and ordinal latent class models. The latent trait is estimated by latent
classes, and the modal class membership probability P(T = t|X,y,..., X}
can be used to assign a latent trait score 0 persons. The associated software
¢EM is the only program that could estimate all NIRT models. £EM found
differences between the two simulated data sets indicating that the NIRT
models fitted Data Set 1 but not Data Set 2. It was difficult to make a formal
decision.

The kernel smoothing approach estimates a continuous CGC and a latent
trait score at the interval level. In this approach there are no formal tests
for accepting or rejecting NIRT models. T he associated software TestGraf98
gives graphical information. It is believed that the program is suited for a
quick diagnosis of the items, but the lack of test statistics prevents the use
for model fitting. Moreover, only a derivative of the np-GRM, E(X4|0), can
be examined. However, the graphs displayed by TestGraf98 supported the
correct decision about the fit of NIRT models.
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