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Progress in NIRT Analysis of
Polytomous Item Scores: Dilemmas
Practical Solutions

Klaas Sijtsma and L. Andries van der Ark?

ABSTRACT This chapter discusses several open problems In nonparamet-
ric polytomous item response theory: (1) theoretically, the latent trait @ is
not stochastically ordered by the observed total score X; (2} the models
do not imply an invariant item ordering; and (3) the regression of an item
score on the total score X or on the restscore K is not a monotone non-
decreasing function and, as a result, it cannot be used for investigating the
monotonicity of the item step response function. Tentative solutions for
these problems are discussed. The computer program MSP for nonpara-
metric IRT analysis is based on models that neither imply the stochastic
ordering property nor an invariant item ordering. Also, MSP uses item
restscore regression for investigating item step response functions. It is dis-
cussed whether computer programs may be based (temporarily) on models
that lack desirable properties and use methods that are not {yet) supported
by sound psychometric theory.

1 Mokken Scale Analysis for Polytomous ltem
Scores

Nonparametric item response theory (NIRT) for polytomous ordered item
scores is characterized by the combination of practical methods for the anal-
ysis of empirical questionnaire data and complex theoretical developments,
which have many pitfalls and several unsolved problems. The combination
of unfinished and sometimes seemingly unsolvable theoretical problems and
the need for practical solutions for data analysis problems poses an inter-
esting challenge to the applied statistician. We focus on the nonparametric
methods for scaling persons and items, initially proposed for dichotomous

'Both authors are at the Department MTO, Tilburg University, P.O.
Box 90153, 5000 LE Tilburg, The Netherlands; e-mail: k.sijisma@kub.nl and
a.vdark@kub.nl
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item scores by Mokken (1971) and extended to polytomous ordered item
scores by Molenaar (1982, 1986, 1997). In Section 1 we start by defining
the two NIRT models that are central in the work of Mokken and Molenaar
and then discuss the scaling procedures built into the computer program
M5PS for Windows {abbreviated throughout as MSP; Molenaar & Sijtsma,
2000). In Section 2 we discuss the state of the art for the theory under-
lying the two NIRT models and provide suggestions and results for open
problems. In Section 3 we discuss the methodological issue of whether it is
wise, desirable, or avoidable to implement as yet imperfect data analysis
methods into a computer program.

1.1 Definution of the Models

We assume that a test or questionnaire consists of k items, each of which has
m + 1 ordered answer categories, reflecting the ordering on an underlying
latent trait 8, such as an attitude or a personality trait. Scores are assigned
to answer categories such that the ordering of the scores corresponds with
the hypothesized ordering of the answer categories on 8. Let the items be
indexed I;, 7 = 1,...,k, and let the random variable giving the score on
item I; be denoted X;, with realizations z; = 0, ..., m. We assume that the
k items measure the same 8. An observable summary score based on the k
ltem scores is used to describe the respondent’s position on 6. Usually, this
summary score is the unweighted sum of & item scores, denoted X, and

15 defined as
2
X¢=> X

i=1

In addition to unidimensional measurement, we assume local indepen-
dence of the item scores. Let X = (X;,...,X;) and x = (z,..., 24)".
Furthermore, P(X; = 2|8) denotes the conditional probability that a score
of z has been obtained on item I;. The assumption of local independence
can be expressed as

k
PX=x|8)=]]P(Xi=2;]0).

1=1

Thus, 6 alone explains the relationships between items. An implication of
local independence is that the covariances between items conditional on
6 equal 0. By integrating over the distribution of @, denoted G(8), the
unconditional multivariate distribution of the k item scores is obtained,

1=1

ok
P(X =x) = /HP(Xg — 2,16)dG(8) .
g
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Suppes and Zanotti (1981) showed that, unless further restrictions are
placed upon the conditional probabilities P(X; = =z, | 8), the distribu-
tion of 8, or both, the multivariate distribution of the & item scores is not
restricted. Usually, item response models further restrict the conditional
probabilities by introducing additional assumptions.

With respect to the assumptions restricting the conditional probabilities,
first we consider three possibilities (see also Agresti, 1990; Akkermans,
1998; Hemker & Sijtsma, 1998; Mellenbergh, 1995; Molenaar, 1983; Van
Engelenburg, 1997) and then we concentrate on the model that is relevant
in the present NIRT context. In our discussion, we use both P(X; = ;| 8)
and P(X; > z;|0). These probabilities are related by two simple equations:

P(X;>z|0) =) P(X;=n|0),

n=r

and

To further restrict the conditional response probabilities, the cumulative
probability definition assumes that P(X; > z|8) is a monotone nondecreas-
ing function of 6,

P{X; > x| 8) nondecreasing in 8, for all z, 1, (16.2)

with z = 0 representing an uninteresting case; that is, P(X; > 0]8) = 1.
The adjacent category definition assumes that the conditional probability

of having a score of x given that either a score of x — 1 or a score of z has

been observed, and given 8, is a monotone nondecreasing function of 4,

P(Xz - T

X; =z — 1V 2;8) nondecreasing in 8, for all z, 1, (16.3)

where
P(X; *-—*.’1:—119)—5-}3(}{.,;:1:!@) :

PX,=z|Xi=xz—-1Vzx;0) =

with z = 0 producing a probability of 1.

Finally, the continuation ratio definition assumes that the conditional
probability of having at least an item score of z, given that we know that
at least a score of z — 1 was obtained, is a nondecreasing function of &,

P(X; > x| X; 2 x — 1;0) nondecreasing in 6, for all z,1, (16.4)

where
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P(X; > x|0)
P(_Xizil"—l'@)’

PX;i>z|X;>22-1,6) =

with = = 0 again producing a probability of 1.

By choosing parametric functions for the conditional probabilities, para-
metric 1tem response models for polytomous ordered item scores are ob-
tained (Mellenbergh, 1995; Molenaar, 1983). For example, Samejima’s
(1969) graded response model is readily seen to be a parametric special
case of (16.2),

e}{pﬁa’i(g - 5:1:)]
1 + exple (8 — Bin)]

PXizz|0)=

where «; denotes a nonnegative slope parameter and f;, denotes a location
parameter. Hemker and Sijtsma (1998) defined three NIRT models based
on the assumptions of unidimensionality, local independence, and the or-
der restrictions in {16.2), {(16.3), and (16.4), respectively. The hierarchical
relationships between the three classes of nonparametric and parametric
item response models for polytomous items were investigated by Hemker,
Sijtsma, Molenaar, and Junker {1996, 1997) and Hemker, Van der Ark,
and Sijtsma (2000). Van Engelenburg (1997) investigated the psychological
response processes underlying each type of model and Akkermans (1998)
studied the item scoring rules for these models.

Molenaar (1986) considered the cumulative probability definition to be
more plausible than the adjacent category definition, because the condi-
tioning only on 2 — 1 and z, thus isolating these two scores from their
natural item context, is relatively unrealistic. Also, he dismissed the con-
tinuation ratio definition because conclusions based on it depend on the
direction of the item scale whereas for most attitude items reversal of the
scale direction should not lead to conclusions other than those based on the
original scale direction (also, see Hemker, 2001; Hemker & Sijtsma, 1998).

Molenaar (1982, 1986, 1997) defined his model of monotene homogene-
ity (MH model) by assuming unidimensionality, local independence, and
monotonicity in the sense of the cumulative probability definition, hence-
forth simply called monotonicity. In the MH model a higher 8 implies a
higher expected item score X;, and also a higher expected unweighted to-
tal score X, (Hemker et al., 1997). In practice, however, the total score
X, is used for ordering respondents on 8, so the inference uses X, to say
something about 8. It has been shown (Hemker et al., 1997) that inference
about the ordering on 8 based on X is not implied by the MH model for
polytomous item scores. We thus run into the first theoretical problem of
polytomous NIRT modeling, to which we return in Section 2.

In this chapter, the conditional probability P(X; > x| 6) is called the
item step response function (ISRFE), because it describes the conditional
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FIGURE 16.1. Two items with two ISRIs each (solid for one item, dotted for
the other), satisfying monotonicity in the left panel, and double monotonicity in
the right panel.

probability of taking the imaginary step x between the answer categories
r —1 and z. Let Y;; denote the binary variable indicating whether (score 1)
or not (score 0) step = has been taken. Then we may write P(X; > z|0) =
P(Y.; = 1]0). In the MH model the ISRFs are nondecreasing functions by
definition.

Molenaar (1982) also defined the double monotonicity (DM) model which,
like the MH model, is based on unidimensionality, local independence, and
monotonicity, and adds the fourth assumption that the & x m ISRFs do
not intersect. That is, for any pair of ISRFs, say, g of item I; and A of item
I;, of which we know for one @y that P(X; > ¢ | ) < P(X; 2 h| o),
nonintersection means that

PX;>2¢l0)<P(X;=h|8), foralll,gh; i+ 7.

It may be noted thatthe ISRFs of the same item do not intersect by def-
inition. Nonintersection of & x m ISRFs means that the ISRFs have the
same ordering, with the exception of possible ties, for each value of 8. The
DM model thus implies an ordering of item steps, which is valid for all s
and thus within all possible subpopulations from the population of inter-
est. Monotonicity and double monotonicity are illustrated in Figure 16.1.
The left panel of Figure 16.1 depicts the ISRFs of two items, indicated
by a solid line for one item and a dotted line for the other, that satisfy
monotonicity but not double monotonicity. The right panel of Figure 16.1
depicts the ISRFs of two items that satisfy both monotonicity and double
monotonicity.
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1.2 Scaling Procedure

Several researchers (e.g., Hemker, Sijtsma, & Molenaar, 1995 Molenaar,
1932, 1986, 1991; Molenaar & Sijtsma, 1988, 2000; Sijtsma, Debets, &
Molenaar, 1990} discussed methods for determining the fit of the MH and
DM medels to polytomous item scores. These methods were implemented
in three consecutive versions of the computer program MSP (Debets &
Brouwer, 1989; Molenaar, Debets, Sijtsma, & Hemker, 1994: Molenaar &
Sijtsma, 2000). The following methods have been implemented.

Scalability coeflicients for pairs of items (denoted H;;), for individual
items with respect to the other £ — 1 items in the questionnaire (denoted
H;), and for a set of k items as a whole (denoted H) (Molenaar, 1991).
‘These scalability coefficients can be written as normed (sums of) covari-
ances between pairs of items. H;; is defined as the ratio of the covariance
of items [; and I, Cov(X;, X;), and the maximum covariance given the
marginals of the bivariate cross-classification table of scores on items J;
and Ij, COV’(.X.—'I', Xj);-ﬂax; that IS,

H.. = COV(Xi,Xj)
v COV(Xi: Xj)max |

The item scalability coefficient H; is defined as

> Cov(X;, X;)
H. = 7 e .
¢ Z COV(X;‘ 5 ){j)max
I

and the scalability coefficient H for k items is defined as

k—1 k
Z Z CDV(Xi,Xj)
t=1 7=1+41

= k=1 k& ]
Z Z COV(Xi»‘Xj)max

1==1 J=i4-1

Hembker et al. (1995) have shown that given the MH model,
0< Hy <1, foralli,j:isg,
0< H; €1, foralli,

and
O0< HLT .

Under the MH model, H-values of 0 mean that for at least £ — 1 items
the ISRFs are constant functions of § (Hemker et al., 1995). Higher H-
values mean that the slope of the ISRFs tends to be steeper, which implies
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that the item steps and the items discriminate better among values of 8.
Obviously, high H-values are desirable for a questionnaire and its items.
When constructing questionnaires, we require both

f‘_)Tij >0, for all 2, 75 1 %] , {165)

and
H; >c¢, ¢>0, foralls. (16.6)

Because H > min(H;), (16.6) implies that H > ¢. The usual choice is
¢ = 0.3. Other values have been discussed by Hemker et al. (1995).

An automated item selection procedure of which the H-coefficients
are the core. ‘The item selection procedure is a bottom-up algorithm, which
selects items from an item pool into subsets that satisfy (16.5) and (16.6).
The item selection starts with a kernel of items, usually the two items with
the highest f;; value which is significantly greater than 0 (using a standard
normal test; Molenaar & Sijtsma, 2000), and adds items from the remain-
ing items one-by-one, in each selection step maximizing H, until no more
items can be selected that satisfy (16.5) and (16.6). If there are items left
after the first scale has been selected, the algorithm tries to select a second
scale from the remaining items, a third, a fourth, and so on, until no more
scales can be formed or no more items remain.

Descriptive methods, graphical displays, and statistical tests for
investigating whether the data support the assumption that single ISRFs
are nondecreasing functions and whether several ISRFs are nonintersect-
ing. Among the methods for investigating intersection of the ISRFs are
two that directly address the estimation of two ISRF's, say, g and h of the
items [; and [;, respectively, through the regression of an item step score
on the total score on the k — 2 items excluding items I; and I,;. Another
method is an extension of the P(++) and P{——) matrices which Mokken
(1971, pp. 132-133) introduced for investigating the nonintersection of the
ltem response fimcﬁi_diié- (IRF's) of dichotomously scored items. For dichoto-
mous items, a method for investigating intersection of k ISRFs based on
H-coefficients is available (Sijtsma & Meijer, 1992).

Cemparatwe Scaiablhty results for several relevant subgroups from a
group, for example based on country, age, social-economic status, religion,
or gender. This énables the comparison of groups on important scalabil-
ity criteria, the assessment of the usefulness of a scale in different groups,
and a first evaluation of differential item functioning (DIF) between groups.

A method for est;n_j:_‘}_:atmg the reliability of the total score X, which as-
sumes that the ISRFs do not intersect (Molenaar & Sijtsma, 1988). Thus,

before mtelpretmﬂ the reliability estimate it should be checked whether
the DM model fits.
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2  Three Open Theoretical Problems in NIRT

For each of the three problems discussed here, we first provide the theory,
next we discuss current research aimed at solving the problem and, finally,
we discuss the method for investigating the problem in real data.

2.1  Ordering Persons on the Latent Scale

Theory. Typical of NIRT is that ISRF's are subject to order restrictions but
ISRF's are not parametrically defined. This means that the estimation of the
latent person parameter § by means of maximum likelihood methods, well
known from parametric models, is not feasible here. Thus, NIRT necessarily
resorts to observable person summary scores, such as the much used X, .
In an item response theory (IRT') context, one would expect the following
order relationship between X and 8: for higher values of X we expect
the conditional expected 8 to increase or remain equal. That is, for two
fixed values of X, say, s and ¢, we expect that

s<t=Ef|Xy=5)<E@|Xs=t). (16.7)

We call this property ordering of the expected latent trait (OEL). OEL
is implied by two better known properties. Hemker et al. (1996) investi-
gated the monotone likelihood ratio (MLR) of X given 8. MLR means
that under the assumptions of unidimensionality, local independence, and
monotenicity of the ISRFs, the ratio

P(X, =t|6)
P(X_§_$S|9)

is nondecreasing in 8 whenever s < {. MLR implies OEL. They showed
that none of the well-known polytomous IRT models from the class of
cumulative probability models, including the MH and DM models, implies
MLR. Of the popular models from the class of adjacent category models,
only the partial credit model (PCM; Masters, 1982) and special cases of this
model imply MLR. Hemker et al. (2000) showed that none of the known
continuation ratio IRT models implies MLR.

Hemker et al. (1997) investigated whether 8 was stochastically ordered
by X, . This property is called stochastic ordering of the latent trait (SOL).
MLR implies SOL, but SOL dées not imply MLR (Lehmann, 1959, p. 74).
SOL means that, for any fixed value of 8, say, 6,

PH>6p | Xy =8)<PB>20g| X, =1t), foralls<t. (16.8)

It may be noted that (16.8) expresses that with an increasing total score the
cumulative distribution of 8 is uniformly higher for s than for ¢ (also, see

Sijtsma & Hemker, in press). OEL (16.7) expresses the relationship between
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the means of these distributions. Hemker et al. (1997) showed that none of
the well-known cumulative probability models (including the MH and the
DM models) implies SOL, and from the class of adjacent category models
of the well-known models only the partial credit model (Masters, 1982) and
its special cases imply SOL. For continuation ratio models, Hemker et al.
(2000) showed that none of the known models implies SOL. Finally, it may
be noted that for dichotomous items, the MH model and, by implication,
the DM model imply MLR (see Grayson, 1988}, and thus SOL and OEL.

Present research. Current research addresses two topics. The first is
whether the MH and DM models theoretically imply the weaker OEL prop-
erty (16.7). With an example we show that they do not, so the second topic
is whether the MH model implies OEL in most practical situations.

The next example provides an answer to the first question. We use a nu-
merical example with one item (k = 1) and three ordered answer categories
(m = 2), and a discrete § with two values 8, and s, both with probability
0.5 and 8; < 8y, to show that the DM model does not imply OEL (16.7);
consequently, the more general MH model does not imply OEL either.

Example. The DM model does not imply OEL. Define P(X >x|6)as

| O 1 2
P(X > x| )1 1.0 88 .40 E
P(X > T | 9?_;) 1.0 .94 88 |

Next, P(X = x| ) is computed using (16.1) as

P(8| X = z) is obtained by P(X = 2| 8)P(8)/P(X = z) and results in

10 1 3
POH|X=2xz)]| .67 .8 .31
P(Qz I X = 3:) 33 11 .69

It we let ) = 0 and 6, = 1 then E(f|X) = P(8, | X = x}, and the last
table shows that £(6| X) is decreasing between X =0 and X = 1. It may
be readily checked that for all other choices of ¢y and 85 with 8, < 05,
E(8| X) decreases between X =0 and X = 1.
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Next, we used a simulation study to investigate whether the MH model
implies OEL in practical situations. The design of the simulation study
was the following. We used a parametric definition of an ISRF within the
context of the class of continuation ratio models {16.4), which was loosely
inspired by Samejima’s (1995} acceleration model, and which allowed us to
simulate with great Hexibility ISRFs within the context of the cumulative
probability model (16.2), by using
v PXi=n|0)

Pz = U saesn—tg

(16.9)

TE=—

Our definition of the continuation ratio ISRE uses five item parameters
for describing the lower and upper asymptotes of the ISRFs (v, and ~y,
respectively), the location () and the slope (a;,) of the ISRF, and the
acceleration parameter (£;;), which pushes down (&, > 1) or lifts up (0 <
£:z < 1) the entire ISRF. The continuation ratio ISRF is now defined as

explaiz (8 — Bia)] }Em (16.10)
o

I+ 8}{13[051':1:('9 - ﬁm:)

P(X; > z|6)
P(XTE‘LM}.I@

p = (1w “'}’L){

Inserting (16.10) into (16.9) does not produce an ISRF with a parameter
structure that has a sensible interpretation in the context of parametric
IRT, but the result is a monotone increasing function of § which, therefore,
can be used for the investigation of OEL in the context of Molenaar’s MH
model for polytomous item scores.

In each cell of our simulation design we simulated 1000 tests, and evalu-
ated for each test whether E(6] X, ) is nondecreasing in X . If E(6| X})
decreased for some increasing values of X, we determined the probability
that two randomly selected simulees are incorrectly ordered by X, given
their ordering on 8. For example, a simulated test may yield

ry P(Xy=2zy) FE(@|X,=z;) Nondecreasing
0 .08 —.83 -
1 21 .60 Yes

2 42 1.42 Yes

3 21 1.41 No

4 08 1.74 Yes

For this test we say that E(8] X) is not nondecreasing in X, and that
the probability of incorrectly ordering two randomly selected simulees is
2 X 42 x .21 = .1764. |

In our simulation study, five items had m + 1 ordered categories whose
ISRFs were determined by (16.9) and (16.10). Parameters a}, were inde-
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FIGURE 16.2. Typical ISRFs (simulation study, m = 3), each set based on
vL = .25 and yu = .9, and also jia+ =0, pe- = =3 (top left), pe+ = 1, pe = —3
(top right), pa+ = 0, pe- = 3 (bottom left), pa- = 1, pe- (bottom right).
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pendent draws from M (p4-,.2). To avoid negative values, the slope param-
eters in (16.10) were defined as o, = exp(af, ). The location parameters in
(16.10), Biz, were independent draws from A/(0,.5). Parameters ¢, were in-
dependent draws from A (ue., 1) and the acceleration parameters in (16.10)
were defined as £;; = exp(€%). The latent trait 6 was assumed to have a
standard normal distribution. Different types of tests (k = 5) were gen-
erated by varying m, pe-, pe-, and two combinations of vy and ~y. In
the first combination vy = 1/(m + 1) and vy was distributed uniformly,
U(.9,1); in the second -combination v, = 0 and vy = 1. The complete sim-
ulation design had order 3 (number of answer categories, m+1) x 2 (mean
Ha- Parameter) X 2 (mean pge- parameter) x 2 (combination of v; and
vu). It may be noted that within the class of continuation ratio models,
a;; can be interpreted as the slope parameter, and £;, as the accelera-
tlon parameter,-but the'a;, and £, parameters do not have a meaningful
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TABLE 16.1. Number of times 1000 tests vield £(0 | X4) nondecreasing in X .

YL/ —/~U(.9,1) 0/1
oo m+1 | pee =3 pee =3 | pee = -3 pge =3
0 3 530 791 629 977
4 316 793 383 887
5 245 702 209 770
1 3 698 784 747 835
4 546 674 448 486
5 423 514 228 9231

TABLE 16.2. Probability of correctly ordering two randomly selected simulees.

vw/w |/~ U91) 0/1

o+ M+ 1| pge = =3 g =3 | pee = =3 pge =3
0 3 9792 9875 9884  1.0000
4 9765 19683 9807 1.0000

5 9843 9596 9767 1.0000

1 3 9911 9912 19921 19999
4 19908 19833 9886 19998

5 99392 9765 0874 9997

interpretation due to the lr::igarithmic transformation. Within the class of
cumulative probability models, of which the MH model is a special case,
none of the parameters o,, &z, @i, and &7, can be interpreted meaning-
fully due to the transformation expressed by (16.9). The only objective of
different parameter choices is to obtain differently shaped ISRFs. Four ex-
amples of ISRFs resulting from inserting (16.10) into (16.9) are displayed
in Figure 16.2. e -

The results of the simulation study are summarized in Tables 16.1 and
16.2. Table 16.1 shows for each cell in the design that often F(# | X, ) was
decreasing in some adjacent values of X . Models with ps- = 0, prg. = 3,
v = 0, and vy = 1 produced the highest frequency of tests in which OEL
held, probably because the slopes of the ISRFs were more similar than
those in other design cells. Table 16.1 also shows that results became worse
as m + 1 increased.

‘The results inl'able16.2 show a much brighter picture. The model with
o+ = 0, m+1 =3, pe. =3, and v, = 0.2, and vy ~ U(.9,1), yielded
the lowest probability of ordering two randomly drawn simulees correctly,
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which was still as high as .9596, which is the mean of 1000 probabilities,
each based on two probabilities P(Xy = z,) calculated using (16.10).
Models with g = 3, and v, = 0 and vy = 1, produced the highest
probabilities, which were all at least .999. Overall, no serious violations of
OEL were found. Moreover, a visual inspection of the E(8] X, )s suggested
that if E(81 Xy =35) > E(6| X, =1t) when s < ¢, the numerical difference
between these expected values was very small. For example, a typical string
of E(| X, =z ) forzy =0,...,20 was

—.83, 90, 1.43, 1.73, 1.95, 2.24, 2.55,
2.74, 2.92, 3.12, 3.32, 3.46, 3.67, 3.93,
3.88, 4.18, 4.52, 4.93, 4.94, 4.95  4.97,

where the bold values indicate a reversal of the expected order. Results for
k = 10 and results for slope parameters in (16.10), which are the expo-
nential of independent draws from A (-, Uf}, = 1), were also investigated
for several cells of the design. These results were similar to the results for
k=5 and 0. = .2 and, therefore, are not presented here.

Based on these first results for the cumulative probability models, we
tentatively conclude that the probability of incorrectly ordering persons
on ¢ by means of X is sufficiently small to continue the practice of mea-
suring on the X, scale. Throughout this simulation study we assumed
that 6 had a standard normal distribution. It may be noted that OEL is
not invariant for monotone transformations of 8 (T.A.B. Snijders, personal
communication, 2000} and ordering results may be different for nonlinear
transformations of §. This simulation study was only a first step in the
investigation of OEL for polytomous IRT models. A more comprehensive
study including investigation of SOL, for all three classes of polytomous
IRT models, is presently being performed.

Method MSP provides the user with methods for analyzing item response
data (both dmhotomaus and polytomous) under the MH and DM models.
‘W hen a modei fits polytom(}us data the 1ese&xcher IS adwsed (Mo enaar &
on @ Om samulataon xesults tentatwely suggest ha%; in pr actme the use
of X.,i_ does not lead fo serious errors when ordering respondents on 6. For
dmhetmns:ms items, MLR and SOL hold; thus, X4 can be used safely for
orderi ing persons on §.

2.2 Ordering Items by Their Difficulty

Theory. Parametric IRT models for polytomous item scores have location
parameters on the # scale for each answer category. Verhelst and Verstralen
(1991) argued that these location parameters cannot be interpreted as dif-
ficulty parameters. For example, in the PCM (Masters, 1982) ;. gives the
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0 value at which the response curves of the adjacent answer categories r —1
and z intersect, but not the difficulty of answering in either one of these
categories. Sijtsma and Junker (1996) gave a definition of item difficulty for
parametric and nonparametric IRT models for dichotomous items, which
was used also for polytomous items by Sijtsma and Hemker (1998, based
on Chang & Mazzeo, 1994). The difficulty of an item with m + 1 ordered
answer categories is defined as E(X; | 0), for i = 1,..., k. By definition k
items have an invariant item ordering (I1O) if they can be ordered (and
numbered accordingly)} such that

E(X, |8 <. . . <EX|0), foralld. (16.11)

For dichotomous items, Rosenbaum (1987) said that items satisfying
(16.11) have a latent scale.

An I1O can be important in applications that assume that respondents or
subgroups of respondents have the same item ordering. For example, start-
ing and stopping rules in intelligence testing assume that for all respondents
the same items are easy and the same items are difficult. More specifically,
the use of such rules assumes the same item ordering of the k items across
6. with the exception of possible ties; see (16.11). Another example is DIF
which, for dichotomous items, assumes that the IRF P(X; = 1|8) is identi-
cal fm different subgroups from the population of interest. In a NIRT con-
text, one could require an I1O, both for dichotomous and polytomous items
(note that for dichotomous items with 0/1 scoring E(X;|0) = P(X; = 1|0)).
In a particular population an I1O is defined at the ¢ level; therefore, an I1O
implies the same item ordering i:ay mean scores for subﬂ*mups for example,
boys and girls, different ethnic groups, and different age groups. One way
to study DIF in a nonparametric context is by checking the item ordering
at the subgroup level. Other applications of 110 were discussed by Sijtsma
and Junker (1996); see also Hemker (2001).

Only a few polytomous IRT models imply an 1IO. Sijtsma and Hemker
(1998) found that of the popular IRT models from the classes of cumulative
probability models and adjacent category models, only the rating scale
model (Andrich, 1978) implies an ITO. The rating scale model is a special
case of the PCM with linear restrictions on the location parameters. ‘Hemker
et al. (2000) found that within the class of continuation ratio models on.ly
the sequential’ mtmg scale model (Tutz, 1990) implies an I1O.

Sijtsma and Hemker (1998) gave a sufficient condition for 110. First, uni-
dimensionality, local independence, monotonicity of the ISRFs, and non-
intersection of the ISRFs is assumed; that is, the DM model is assumed
Second, it is assumed that if for a given item score zg,

P{X, > x4|8) < P(Xa > :Lg;@) < ...< P(X. > x6l8), forallf, (16.12)
then for each item score '1: |

P(X,>z16) < P(Xg >z|0) <...<P(Xy>x|8), foralld (16.13)
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TABLE 16.3. Numerical example illustrating two methods of investigating 110.

Restgroup Subgroup First Second
Order Iltem Means Pooling Pooling

1 0.40 0.40 0.40

2 1.00 0.80 0.80

3 0.80 0.80 0.80

4 0.60 0.80 0.80

5 1.20 1.20 1.20

6 2.00 2.00 2.00

7 2.20 2.20 2.07

8 2.40 2.00 2.07

9 1.60 2.00 2.07

Again, the itern numbering follows the item ordering. In words, if we know
the ordering of conditional probabilities for one item score zg, then it follows
that the ordering for the other item scores is the same with the exception
of possible ties. Sijtsma and Hemker (1998) called the DM model with the
additional restrictions (16.12) and (16.13) the strong DM model and noted
that this is a highly restrictive model.

Present research. Here, we tentatively suggest a method for investigat-
ing whether a set of k£ polytomously scored items has an IIO, based on a
first attempt published by Verweij, Sijtsma, and Koops (1999). First, the
total group of interest is split into the relevant subgroups. Second, within
each subgroup w, w = 1,..., W, the item means are estimated using the
sample means X,y, ¢ = 1,..., k. Third, for all w, the item means are also
estimated within the total group with subgroup w excluded, say, the rest-
group. The restgroup means are denoted X;_,y, ¢ = 1,..., k. Fourth, for
each subgroup the items are placed in the ordering suggested by the cor-
responding restgroup item means _X_ﬂ_w) and it is checked whether there
are reversals-in:the. subgroup item order compared to the corresponding
restgroup item order, which thus serves as the criterion. It may be noted
that the item ordering may vary across restgroups, and that other ordering
criteria may be preferred. Fifth, when reversals of the criterion order are
found within the subgroup, the string of items involved is marked as in
Table 16.3, second column, where two strings are printed in boldface (the
example involves nine items). We suggest certain procedures for evaluating
reversals. .. .

‘T'he first procedure investigates whether reversals within a string are sig-
nificantly different from tied item means using the signed rank test. The
second procedure searches for the nearest ordering that matches the rest-
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group ordering according to the least-squares criterion. The principle is
illustrated in the third and fourth columns of Table 16.3, and is known as
the pool-adjacent-violators algorithm (Barlow, Bartholomew, Bremner, &
Brunk, 1972, pp. 13-18). The idea is to replace strings of decreasing sample
means (second column, boldface) by their mean (third column), and to re-
peat this routine until no more violations remain (fourth column). Sijtsma
(1988, p. 46) suggested using a discrepancy measure based on the mean
residual sum of squares as a descriptive statistic. These methods and vari-
ations are currently being subjected to more elaborate research.

Method. M5SP provides the opportunity to investigate the scalability of a
set of items within several groups, defined by means of a grouping variable.
The program does not contain methods that explicitly investigate whether
a set of items has an I10O. Because the MH and DM models do not imply
an 11O, and because researchers often like to know whether item difficulty
orderings are the same for different relevant subgroups, the inclusion of a
method for investigating the item ordering in relevant subgroups would be
an important new feature of MSP, or any other IRT program for models
not implying an I10.

2.8 FEstimation of Item Step Response Functions

Theory. The monotonicity assumption says that P(X; > z | #) is non-
decreasing in 8, for all z and all 7. For dichotomous items, Junker {1993)
showed that the MH model does not imply that the observable probability
P(X; = 1| X4) is nondecreasing in X . This means that this probability
cannob be used for investigating the monotonicity property of IREFs. Junker
(1993) "es';ls_o showed that if we condition on a summary score that does not
contain ;1_{, for example, the restscore

R=X, —-X;,
the MH model impﬁieg manifest monotonicity (MM),

© P{X; =1] R) nondecreasing in R.

Thus, MM can be used for investigating the monotonicity property of IRF%

For polymmous items, Junker and Sijtsma (2000) discussed an example
(due to B-T. Hemi\el personal communication, 1997) which shows that the
MH model does nat imply MM, thus, in general,

P(X > x| R) NOT nendeareasnw in R.

Mternacwely, Junker (1996) suggested conditioning on a restscore D
based on the k — 1 item scores all dichotomized at the same z, yielding
dichotomized item scores D; and D = ) i Dj (7 # 1), such that for consec-
utive fixed values z =1, ..., m,
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0 it X, <x _
D;: =4 1 R
J { 1, otherwise , (16.14)
and then investigating whether
P(X;>a| D), forallz, (16.15)

is nondecreasing in restscore D. Hemker (1996, Chap. §) proved that if all
k items are dichotomized as in (16.14)—thus including X; (in 16.15), where
X: > x is recoded as X, = 1—the MH model still holds. This means that
(16.15) has the property of MM and provides a valid means for investigating
nondecreasingness of the ISRFs. Junker (1996) noted that different items
can also be dichotomized at different values of x, but we refrain from this
possibility. Finally, let X be the binary N x k data matrix resulting from
dichotomization at item score x (16.14) and let X p be the polytomous data
matrix. Then, it is readily checked that

m
Xp =) Xp, .
=1

Thus, the m dichotomizations together contain all information from the
polytomous data, which would not be the case when fewer dichotomiza-
tions were considered.

Future research. We suggest three lines of research. The first is to in-
vestigate the practical usefulness of the voluminous results produced by
the method proposed by Junker (1996), based on the dichotomization of
polytomous item response data. [t may be noted that for each individual
ISRF m estimates have to be investigated (one for each dichotomization ot
the k — 1 items constituting the restscore D). The question then becomes
how to combine all sample results into one conclusion, in particular, when
for some butnot for all ISRF's violations are found.

The second research topic is to take the polytomous data as the starting
point and to-investigate other conditioning variables based on observable
data that are (1)-substitutes for X, or R; (2) useful estimates of §; and (3)
when inserted in+(16.:15) produce MM. Candidate conditioning variables
that are sum scores from the class of unweighted total scores X3 based on
1 <8 < k—1items can be excluded beforehand, because the subset of S
items can be defined to constitute a new test. We are currently investigating
alternative and viable item summaries.

The third research topic is the investigation of the practical usefulness
of P(X;> x| R) as an estimate of the ISRF by means of simulated polyto-
mous item scores. This research is currently taking place, but no definitive
results can be reported as yet.
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Method. MSP makes ample use of P(X; > x| R) for estimating the ISRFs.
These estimates are used for checking whether the ISRFs are monotone
nondecreasing and whether ISRFs are nonintersecting. Future research has
to (1) show whether for practical use these methods give valid information
about the ISRFs in the sense that errors are negligible; and (2) indicate
whether methods presently implemented should be replaced by theoreti-
cally sound methods as discussed above.

3 Discussion

3.1 Use Another Polytomous IRT Model?

Hemker et al. (1997) showed that the PCM (and special cases) is the only
known polytomous IRT model that implies SOL, and Van der Ark (2000)
showed that the PCM also is the only model that implies OEL. This means
that when the researcher requires SOL or the weaker OEL as a measure-
ment property, the PCM (or special cases) is the only option. Because the
PCM is a restrictive model, assuming equal discrimination for all £ items,
its use in practical data analysis will often lead to the rejection of many
items from the test. This is a sacrifice many researchers may not be pre-
pared to make. Thus, the PCM is a limited option as a practical alternative
for polytomous IRT models that do not imply SOL or OEL. This conclusion
underlines the need for robustness studies that show to what degree SOL
and OEL are violated under several models in practical testing situations.
The first robustness results presented here tentatively support the use of
X4 for ordering respondents under the MH model for polytomous items.
Sijtsma and Hemker (1998) showed that only highly restrictive poly-
tomous IRT models, such as their strong DM model and the parametric
rating scale model (Andrich, 1978} imply an IIO. The application of any
of these models to data probably leads to the rejection of many items.
The restrictiveness of these models supports the need for methods that can
be used for investigating IIO without the need for simultaneously fitting
a particular IRT model. An example of such a method may be one that
compares the item ordering by mean scores in each relevant subgroup with
an overall item-ordering found from the data or hypothesmed on: the basis
of a priori knowledge. | B S LA LE
Our simulation study gave some positive first results w1th respect to the
practical robustness of models against failure of SOL or OEL. Of course,
future research may show that there exist nontrivial situnations in which
SOL or OEL is not guaranteed: In those cases, new models have to be de-
veloped, for example, incorporating SOL as an assumption; and observable
consequences from such models have to be studied, which-can be used for
investigating model-data fit. Based on our present knowledge we expect
that methods for investigating [1O will be developed and applied success-
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fully and will become part of future versions of MSP. Also, we expect that
alternative methods for investigating properties of ISRFs as the one pro-
posed by Junker (1996; see Equation 16.15) will be further developed.

3.2 Progress Through Success and Failure

The situation described in this chapter, in which several practical data
analysis methods are supported by sound psychometric theory while others
are only partly supported by theory, is typical of scientific research. New
methods are developed and initially believed to be correct until someone
shows that they suffer from flaws or someone else proposes a better method.

The availability of user-friendly software provides the opportunity for
practical researchers to analyze their test and questionnaire data by means
of advanced methods. For psychometricians, a user-friendly program is the
only way in which they can effectively promote their newly developed meth-
ods among researchers. One could argue that programs be made available
only after their theoretical basis has been established completely, but we
have already seen that scientific knowledge develops rather through suc-
cesses and apparent successes, which after a while may be found to suffer
from flaws (or worse, turn out to be complete failures) and then are im-
proved or replaced by better methods.

Much of the progress in psychometric theory is stimulated by the ap-
plication of programs such as M5P to empirical data from various kinds
of applications. For example, after a developmental psychologist had ana-
lyzed his polytomous data with MSP and OPLM (Verhelst, 1992), he asked
whether the fit of the DM model and the generalized PCM implied that
the items had equal ordering by mean scores for different age groups. This
reasonable question could not be answered by most of the polytomous IRT
models, and this fact then became the basis for the IIO research (Sijtsma
& Junker, 1996; Sijtsma & Hemker, 1998). Although, looking back, their
originé_{%re less clear, without doubt the MLR, SOL, and item restscore
regression research was also stimulated by practical data analysis problems
and questions asked by researchers using MSP and other programs. It is
this mutual cross-fertilization between the theory and practice of psycho-
metrics that stimulates the progress in the development of polytomous IRT
modeling.
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