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THE PERSON RESPONSE FUNCTION AS A TOOL IN PERSON-FIT RESEARCH 

KLAAS SIJTSMA 

TILBURG UNIVERSITY 

ROB R. MEIJER 

UNIVERSITY OF TWENTE 

Item responses that do not fit an item response theory (IRT) model may cause the latent trait value 
to be inaccurately estimated. In the past two decades several statistics have been proposed that can be 
used to identify nonfitting item score patterns. These statistics all yield scalar values. Here, the use of 
the person response function (PRF) for identifying nonfitting item score patterns was investigated. The 
PRF is a function and can be used for diagnostic purposes. First, the PRF is defined in a class of IRT 
models that imply an invariant item ordering. Second, a person-fit method proposed by Trabin & Weiss 
(1983) is reformulated in a nonpaxametric IRT context assuming invariant item ordering, and statistical 
theory proposed by Rosenbaum (1987a) is adapted to test locally whether a PRF is nonincreasing. Third, 
a simulation study was conducted to compare the use of the PRF with the person-fit statistic ZU3. It is 
concluded that the PRF can be used as a diagnostic tool in person-fit research. 

Key words: appropriateness measurement, invariant item ordering, nonparametric item response theory, 
person-fit method, person response function 

Introduction 

Person-fit research uses methods to identify respondents whose pattern of scores on the 

items from a test or a questionnaire is unusual, given the expectation based on a particular item 

response theory (IRT) model, or given the item score patterns produced by the majority of  the 

respondents (e.g., Drasgow, Levine, & McLaughlin, 1987; Drasgow, Levine, & Zickar, 1996; 

Levine & Drasgow, 1982; Levine & Rubin, 1979; Meijer, 1996, 1998; Meijer & Sijtsma, 1995). 

A relatively rare approach to identifying aberrants is the use of  the person response function 

(PRF), first discussed by Weiss (1973) and Lumsden (1978), and later discussed and applied by 

Trabin and Weiss (1983), Klauer and Rettig (1990), and Nering and Meijer (1998). The PRF, 

to be defined in greater detail later on, defines the probability of  giving correct answers to di- 

chotomous items as a function of  an item difficulty scale. Trabin and Weiss chose the location 

parameter from the 3-parameter logistic model (3PLM; Lord, 1980); Klauer and Rettig discussed 

the PRF in the context of  the Rasch (1960) model or 1-parameter logistic model (1PLM); and 

Lumsden discussed the PRF in a general IRT context. In general, it is assumed that the PRF is a 

non increas ing  function of  item difficulty. 

This study consists of three parts. First, we specify the desired properties of the PRF and 

provide its definition in a general, nonparametric IRT framework. To define the PRF as a non- 

increasing function of  item difficulty, we assume that the items have an invariant item ordering 

(IIO; Sijtsma & Junker, 1996); that is, we assume that item response functions (IRFs) do not in- 

tersect. Given an IIO, in a nonparametric IRT context a convenient choice for the item difficulty 

is 1 minus the proportion-correct on an item, which is well known from classical test theory. 

The authors axe grateful to Coen A. Bernaaxds for preparing the figures used in this article, and to Wilco H.M. 
Emons for checking the calculations. 
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Next, we discuss problems thin arise when a nonparametric PRF is defined as a function of the 
latent IRT scale o1" when the PRF is defined in a logistic IRT context as a function of the latent 
item location parameter. 

Second, we discuss the estimation of the PRF from empirical data. A method is presented 
for testing whether local deviations from the expectation that the PRF is a nonincreasing function 
are significant. The test is conservative, meaning that deviations have to be relatively large to be 
significant. 

Third, a simulation study was conducted to compare the results of this local, conservative 
test with results of Van der Flier's (1982) ZU3 person-fit statistic, which evaluates the entire item 
score pattern. Unlike ZU3 and other person-fit methods, which only allow for a global evaluation 
of the item score pattern, our PRF method provides the opportunity for monitoring the PRF and 
thus for detecting local deviations. This may render our method better suited for the diagnosis of 
aberrant behavior. 

A Nonparametric Item Response Theory Framework 

We consider tests consisting of J items. Each item is characterized by a binary item score 
variable, denoted X, and indexed j = 1 . . . . .  , J, so that Xj = 0, 1. A 0 score reflects an incorrect 
answer, and a 1 score reflects a correct answer. We assume that one latent trait denoted 0 explains 
all dependencies between variables. The test thus is unidimensional. The conditional probability 
of obtaining a 1 score on item j is denoted Pj (0) =- P(Xj = 1 ] 0). This conditional probability 
is the IRF. Further, we define a vector X = (X1, . . . ,  X j)  and a realization x = (Xl . . . . .  x j). We 
assume that the item scores are locally independent, 

J 

P(X = x I 0) = VI  PJ (O)xj[1 - P J ( O ) ] l - x j "  
j= l  

(1) 

For any probability distribution of 0, denoted F(0), 0 call be integrated out of (1) which yields 
the joint marginal distribution of X, 

J 

P(X = x) = f U PJ (O)xj[1 - Pd (0)11-xi dF(O). 
j= l  

(2) 

Equation (2) does not restrict the distribution of X (see Suppes & Zanotti, 1981; also see Holland 
& Rosenbaum, 1986; and Junker, 1993). In order to have testable restrictions on the distribution 
of X, specific choices for the Pj (O)(j = 1 , . . . ,  J), for F(O), or for both have to be made. 

Nonparametric IRT models put order restrictions on the IRF, but refrain from a parametric 
definition of the IRF (Sijtsma, 1998). The first order restriction is that Pj (0) is a nondecreasing 
function of 0 (Ellis & van den Wollenberg, 1993; Junker, 1993; Mokken & Lewis, 1982; Stout, 
1990). More specifically, for two arbitrarily chosen values of the latent trait, say Oa < Oh, 

Pj (o~) ~ e j  (oh), j = 1 . . . . .  J. (3) 

The nonparametric IRT model based on (2) and (3) is the monotone homogeneity model (MHM; 
Mokken & Lewis, 1982; also see Ellis & van den Wollenberg, 1993; and Holland & Rosenbaum, 
1986). 

The practical importance of the MHM is that it implies (Hemker, Sijtsma, Molenaar, & 
Junker, 1997; based on a monotone likelihood ratio result by Grayson, 1988; and Huynh, 1994) 
that the latent trait 0 is stochastically ordered by the unweighted sum of the scores on the J items 
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from the test, X+ = NXj .  That is, for two values of X+, say s and t, and any value of 0, say c, 

P ( O > c l X + = s ) < _ P ( O > c l X + = t ) ,  forall  s < t .  (4) 

Equation (4) also holds for unweighted sum scores based on subsets of the J items for which the 
MHM holds. Equation (4) implies that groups with higher X+ scores have higher mean 0 s. 

The second order restriction is that the IRFs are nonintersecting (Mokken & Lewis, 1982; 
Rosenbanm, 1987a, 1987b; Sijtsma & Junker, 1996). For a finite set of J items, all measuring 
the same unidimensional latent trait 0, we assume that the items can be ordered and numbered 
such that 

PI(O) >_ P2(O) > - - .  > P~(O), forall 0. (5) 

Equation (5) is an order restriction on the J IRFs of the test. The IRFs do not intersect, which 
means that the ordering of the probabilities is the same, except for possible ties, for all values of 
0. If items have an ordering as in Equation (5), they have a latent scale (Rosenbanm, 1987a) or 
an IIO (Sijtsma & Junker, 1996). 

Unidimensionality, local independence, and nondecreasing and nonintersecting IRFs to- 
gether define the double monotonicity model (DMM; Mokken & Lewis, 1982), which is a special 
case of the isotonic ordinal probabilistic model (ISOP; Scheiblechner, 1995). Equation (5) also 
holds for the 1PLM, the 1-parameter normal ogive model (I,ord, 1952), and logistic and normal 
ogive models with all slope parameters fixed at the same value, and varying location and lower 
asymptote parameters which have opposite orderings (Sijtsma, 1998). 

The Person Response Function 

Properties of the PRF 

Weiss (1973) and Lumsden (1978) suggested m consider the PRF to be the probability that 
person i (i = 1 . . . . .  n) obtains a 1 score on an item (denoted by random variable Si = 1) as a 
function of some item difficulty scale. With respect to the PRF, we assume that: 

1. A continuous item location parameter 3' exists. Notation 3' is used to stress that 3' need not 
be equivalent with the location parameter 3 from the logistic IRT models. 

2. The probability that person i produces an item score of 1 is a function of a'; this function is 
the PRF. By analogy with the IRF, P(X j  = 1 I 0), and fixed function values, P(Xj  = 1 I Oi), 
we define the PRF, P(Si = 1 I a'), and fixed function values, P(Si = 1 I 3~). The PRF gives 
the probability that person i provides correct answers to items measuring the same latent trait 
0. For fixed item parameter a', the PRF gives the probability that person i gives the correct 
answer to item j with location aj. 

3. The PRF is nonincreasing in Y. This assumption seems to be reasonable given the inter- 
pretation of 3 ~ as an item difficulty parameter and given the assumption of unidimensional 
measm'ement. The assumption of a nonincreasing Pill:: can be unreasonable if aJ does not 
order the items identically for each 0 or if the items are multidimensional. The first possibil- 

/ ! 
ity is discussed later on. As regards the second assumption, assume a fixed Oi and a j < 3k, 

and an ordering of probabilities such that Pi (~ )  < P~ (~) ;  this means that the PRF is not a 
monotonely nonincreasing function. An explanation for this result is that the items measure 
different traits (see Trabin & Weiss, 1983, pp. 91-92). 

Summary. The PRF describes the probability that person i with Oi gives positive answers 
(scored Si = 1) to items measuring 0. The PRF is monotonically nonincreasing in an item 
location parameter Y (to be defined shortly) and is denoted Pi (3') =_ P(Si = 1 I 3'). 
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A Nonparametric PRF Definition Based on an Observable Scale 

The nonparametric IRT framework provides an opportunity for a useful PRF definition. 
Given that an IIO (Equation (5)) holds, a PRF can be defined as a function of  the observable item 
proportions 

7cj = foo Pj (0) dF(O). (6) 

The corresponding sample fraction is ~j = nj /n;  nj is the sample frequency with item j correct 
and n is the sample size. From Equations (5) and (6) it readily follows that 

a'i _> re2 _> . . .  _> a-j. (7) 

Moreover, Sijtsma and Molenaar (1987, Theorem 1) showed that under the DMM, of which IIO 
(Equation (5)) is an assumption, items have equal proportions rcj = rc if and only if the IRFs 
coincide: 

Pi(O) . . . . .  Pj(O) ,', > a-i . . . . .  a-j. (8) 

Corollary 1. Assume that J items have an IIO. Also, assume that whenever two IRFs do 
not coincide in a particular interval of  the 0 scale, the probability density f(O) > 0 for 0s from 
this interval. Then, if none of  the J IRFs coincides completely with any of  the other J - 1 IRFs, 
each item has a unique 7cj value, and the strict ordering of  7cs, 

~1 > ~2 > " '"  > ~ J ,  

uniquely describes the item ordering by Pj (0), except for 0s for which this ordering (i.e., by 
Pj (0)) contains ties (see (5)). 

Proof Suppose that two items j and k (j  < k) have an IIO, and that their IRFs coincide 
with the exception of  T arbitrarily narrow 0 intervals, enumerated [011, [0]2 . . . . .  [0]v. Note that 

= f [Pj(O) - Pk(O)] dF(O). (9) 7g j 

If  T = 0, then for all 0s the difference between brackets is 0, which means that a-j = a'k (Equa- 
tion (8)). If  T _> 1, then by notational convention in each of  the intervals [011, [0]2 . . . . .  [O]T the 
difference between brackets in (9) is positive; consequently, a-j > a'k. The generalization to any 
J follows trivially. [] 

We use a-j as a candidate for the item difficulty parameter generically denoted 3'. Thus, we 
may define the probability that person i (with Oi) has a 1 score on item j as Pi (To j) [instead of 
Pi (3})]. For J items having an IIO, we then have 

Pi(7Cl) > Pi(7c2) > " "  > Pi ( zc j ) .  (10) 

Because increasing 1 - 7cj means higher difficulty, we define 3' = 1 - 7c. 

Definition. For the continuous scale of  1 - rc with domain [0, 1], we define the PRF to be 
P(S/ = 1 I 1 - 7c), which is a nonincreasing function provided that an IIO holds. 

Figure 1 shows three theoretical PRFs satisfying the Definition. 
It may be noted that other IRT models, which assume unidimensionality, local indepen- 

dence, and nondecreasing IRFs, and which imply an IIO may give rise to useful PRF definitions. 
For example, in the 1PLM the ordering of  the location parameters 31 < 32 < • • • < 3j reflects 



p ( S = l l l -  ~') 

1 
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0 i - ~  I 

FIGURE 1. 
Three nonincreasing person response functions P(S = 1 I 1 - 7c) defined under models implying an invariant item 
ordering. 

the reverse item ordering by P1 (0) > P2(0) > • .. > P j  (0). This result is in the spirit of Corol- 
lary 1 and implies a nonincreasing PRF as a function of  3' -- 3. A similar result holds for the 
1-parameter normal-ogive model (Lord, 1952). 

IRT models not implying an IIO and other definitions of  the generic item difficulty 31 lead 
to PRFs which are either nonmonotonous or ill-defined (because for some items the parameter 3 I 
is undefined). Because this topic has not been explored in great depth in the literature, the next 
section gives some results illustrating these points. 

Problematic PRF Definitions 

In our discussion of  some of  the problems arising with other PRF definitions, we need the 
4-parameter logistic model (4PLM; Hambleton & Swaminathan, 1985, pp. 48-49) and its special 
cases, the 1-, 2-, and 3PLM. The 4PLM provides a general parametric definition of  the IRF. The 
4PLM has logistic IRFs, which vary in location 3, slope ce, lower asymptote y for 0 --+ - o o ,  
and upper asymptote ;v for 0 --+ oc (yj _< ;U -< 1). By including the upper asymptote parameter, 
the possibility is modeled that for some items the probability of  a correct answer is lower than 1 
even for the highest-ability respondents in a particular population. The 4PLM is defined as 

()vj - -  y j )  exp[ce j  (0 - -  3 j ) ]  
Pj(O) = Vj + (11) 

1 + exp[(~j (0 - 3j)] 

The 3PLM is obtained by fixing )vj = 1, for all j ;  the 2PLM is obtained by additionally fixing 
gj = 0, for all j ;  and the 1PLM is obtained by additionally fixing o~j = 1, for all j .  
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Problems When a Nonparametric PRF Definition Is Based on the Latent 0 Scale 

Suppose we adopt the definition of a t ~ 3 from the logistic IRT models (Equation (11)) 
in a nonparametric context. In logistic models, 3j is the value of 0 such that the probability 
Pj (3) lies exactly halfway tile lowest and the highest possible probabilities for item j .  For the 

1PLM and the 2PLM, Pj(aj) = ½; for the 3PLM, Pj(3j) = ½(yj + 1); and for the 4PLM, 

Pj (3j) = ½ (yj + )~j). Sijtsma and Junker (1996) showed that if this definition of 3 is adopted in 
the nonparametric framework, defined by (2), (3), and (5), in which any form of a nondecreasing 
function is allowed within the constraints of nondecreasingness and nonintersection, the ordering 
of the items by 3 may, for example, suggest that item 1 is more difficult than item 2 (31 > 32) 
although P1 (0) > P2(0), for all O, leads to the opposite conclusion (Figure 2). 

Alternatively, we may define a location parameter 3 ~ = 3* as the value of 0 for which 
Pj(3*) = d, where d is a constant. For example, for d = 0.5 Figure 3 shows that the item 
ordering by" 3* and the item ordering by Pj (0), for all 0, are opposite [3~ < 3~; P2(O) > P3(0)], 
thus suggesting the same difficulty ordering (also see Figure 2). However, the choice of d is not 
without problems. If d is low, say d = dL, 3'  is undefined for IRFs with a minimum value higher 
than dL; and if d is high, say d = d,t, 3 '  is undefined for IRFs with a maximum value lower than 
dH. Moreover, if the highest minimum (denoted Pmin(sup)) of all J IRFs is higher than the lowest 
maximum (denoted Pma_x(inf)), no choice of d exists such that 3 '  is defined for each IRF from the 
test. For J = 4, Figure 3 shows a situation where Pmin(sup) > Pmax(inf), and it is easily seen that 
no choice of d exists that yields values for all 3~, j = 1, . . . ,  J .  For example, if d = 0.5, only 3~ 
and 3~ are defined. 

Obviously, if Pmin(sup) _< Pmax(inf), values of  d such that 

1.00 

P j (0) 

(12) 

0.70 

0.55 
0.50 

0.40 

[ 

0.10 

0.0 

Pmin(sup) ~ d < Pmax(inf) 

j ~  

8 ~5 
1 2 2 1  

/2 

0 

FIGURE 2. 
Two item response functions with P1 (0) > P2(0) for all 0s, and 31 > 3 2 and 3~ < 3~. 
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1.0 

P j (0) 1 

- - - i i i i / i i i i i i i i i i i :  

Pmax (~n~) 

0.0 

(5 2 (5 ---> 0 

FIGURE 3. 
exists such that locations 3 are defined Four item response functions with Pmin(sup) > Pmax(in~) so that no choice of d * 

for all items. 

always yield parmneters 3 '  for each j = 1 . . . .  , J ;  other choices of d deprive one or more items 
of a location 3*. Given (1~), any choice of d leads to an ordering of items by 3'  that is opposite, 
except for possible ties, to the item ordering by Pj(O) in (5). This means that both orderings 
yield the same difficulty ordering, except for possible ties. Because (12) obviously restricts the 
definition of a PRF as a function of a latent item difficulty, and because we prefer a definition 
which is generally applicable, we refrain from further exploring the use of an item parameter 
defined on the latent 0 scale. 

Problems With the PRF Definition in Some Parametric Models 

In the 2PLM, the 3PLM, and the 4PILM, the definition of a PRF as a function of the location 
parameter 3 is problematic because IRFs from these models intersect. For example, unless oej = 
c~k in the 2PLM two IRFs intersect at 

~ j  ~j --  dk~k 
Ojk - 

d j  - -  a k 

Given that c~j ~ C~k, the ordering of 3j and 3k matches two orderings of probabilities: if c~j < c~k, 
then for 0 < Ojk we have Pj(0) > Pk(0), and for 0 > Ojk we have Pj(0) < Pk(0); and if 
dj > dk the orderings are opposite. In general, if all J items have different slope parameters, 
then their IRFs have 1 j ( j  _ 1) intersection points and define 1 j ( j  _ 1) + 1 different orderings 
of conditional probabilities. Clearly, the ordering of J items according to 3 represents only one 
of the orderings according to P (0). In general, under these models a PRF (defined for fixed 0) is 
not a nonincrcasing function of & 
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The PRF is only a nonincreasing function of  3 for nonintersecting subsets of  IRFs. For 
example, two 3PLM IRFs with slope parameters fixed at 1, lower asymptotes Fj > ~/k and 
locations 3j < 3k do not intersect. This is shown by first noting that they would intersect if roots 
exist for 

(Vj - Vk) + (Vj -- 1) exp(0 -- 3k) + (1 -- Vk) exp(0 -- 3j) = O. (13) 

For the parameter setup chosen here, we have 

Fj > Fk ~ 1 - - F k  > I F j - -  11; 

and 

3j < 3k > exp(0 - 3k) < exp(0 - 3j). 

It follows that the left-hand side of  (13) is positive. Second, if  yj = Yk and 3j = 3k, then 
Pj (0) = Pk(O), for all 0. As a result, we have shown that the IRFs do not intersect. In general, 
J 3PLM IRFs do not intersect if  (1) Cel = ce2 . . . . .  cej and (2) ~/1 > F2 > " "  > FJ and 
31 < 32 < • . .  < 3j .  Thus, for each value of  0, say Oi, Pi (3) is nonincreasing. Similarly, in the 
4PLM subsets of nonintersecting IRFs can be defined. Because we are interested in a generally 
useful PRF definition, the identification of  nonintersecting sets of IRFs under the 3PLM and the 
4PLM is not further pursued. 

A Nonparametric Person-Fit  Approach Based on IIO That Uses the PRF 

Estimation of the PRF 

Trabin and Weiss (1983; also see Nering & Meijer, 1998) defined a PRF in the context 
of  the 3PLM, using the 3 parameter. They discussed how the PRF may provide information 
about an individual 's  carelessness (too low success probabil i ty on easy items), guessing tendency 
(too high success probabil i ty on difficult items), and accuracy (steepest slope downward; cf. ce 
for the logistic IRF). We adapt the PRF definition proposed by Trabin and Weiss (1983) to the 
nonparametric context. 

Let  J items be ordered and numbered, such that 

1 -Ygl  ~ 1 - - ~ 2  ~ "'" ~ 1 - - ~ j .  (14) 

J is chosen such that G ordered classes Ag (g = 1 . . . . .  G) can be formed, each containing m 
items; thus, A1 = {1 . . . . .  m}, A2 = {m + 1 . . . . .  2m} . . . . .  AG = {J - m + 1 . . . . .  J}. Within 
each class, for Oi the expected proportion of  correct answers is obtained through 

zm-1 Pj(Oi), for g = 1 . . . . .  G. (15) 7gig 

j c A g  

By assuming IIO, for any pair of  IRFs from adjacent subsets g and g + 1 we have 

P;(Oi) >_ P;,(Oi), for j E Ag and j '  E Ag+l, (16) 

and, thus, 7gig > 7gi,g+l. Generalizing this result to G ordered item subsets we have 

2"gil > 2"gi2 > . . .  > 2"giG. (17) 

This is a discrete ( J  finite) approximation to the PRF. Equation (17) is estimated as follows. Since 
E(Xj  I O) = Pj (0), the score on item j is taken as a binary estimate of  the success probability. 



K L A A S  S I J T S M A  A N D  R O B  R.  M E I J E R  199 

For person i who has item s c o r e s  Xij  = xij ,  the sample fraction ~ig is 

^ z f/~/-1 Jrig Z X i j ,  for g = 1 . . . . .  G. (18) 
jEAg 

Given (17), a sample ordering 

Ygil > ~i2 > "'" > YgiG (19) 

definitely supports a nonincreasing PRF, but significant deviations from the expected ordering 
may give evidence of person-misfit. 

Testing for Nonincreasingness of the PRF 

Let 80 items be divided into G = 8 subsets of 10 items each, such that A1 contains the 10 
easiest items, A2 contains the next ten easiest items, and so on. As an example, consider A1 and 
A> and assume that person i has scores {(1010000100), (1111011011)}. Let X+ denote the total 
score on all items from A1 and A2; X+e the total score on the relatively easy subset (i.e., A1); 
J the number of items in A1 and A2; and Je the number of items in the easy subset. A useful 
question in person-fit analysis is whether X+e = 3 is exceptionally low, given that J = 20, 
Je = 10, and X+ = 11. 

To answer this question, we derive a corollary based on a theorem by Rosenbaum (1987a). 
More specifically, we derive a conservative bound for the local significance test that for item 
subsets Ag and Agl(g < gl) the total score X+e is exceptionally low, given J, Je, and X+. The 
theory developed here assumes scoring functions which are decreasing in transposition (DT; 
see Rosenbanm, 1987a, for the definition). Scoring functions such as X+ (and X+e) are DT 
functions. 

Our corollary is given for the subdivision of a test into three parts. Let J be the number of 
items in the entire test and let the J item scores be collected in X. We define X = (Y, Z) = 
(Ye, Yd, Z). Ye contains the Je easiest items from Y and Yd contains the Ja most difficult items; 
Je + Ja = Jr. We assume that the items in Y have an IIO (Equation (5)). Let f(Ye) = X+e be 
the unweighted number-correct score on the Je items from Ye; f(Ye) is DT. The items in Z can 
be used for selecting subgroups of respondents, for example, all respondents having fewer than 
X+z items correct. 

If  for each 0 all (x~) possible item score patterns with x+ 1 scores would have equal 
/ 

probability, then X+e would follow the hypergeometric distribution given Jr, Je, and X+, and 
P(X+e <_ X+e ] Jr, Je, X+) would be the probability of interest. Because we assumed that all 
item score patterns have equal probability, Y follows the exchangeable distribution (Lindgren, 
1993). 

Rosenbanm (1987a) compares the expectation of the DT function f(Y) given HO with 
the expectation of f(Y) given the exchangeable distribution. We define the indicator function 
I[f(Y)] = 1 if f(Y) _> c*(1 <_ c* <_ Jy - 1); and 0 otherwise. I[f(Y)] is DT whenever f(Y) is 
DT (see Rosenbaum, 1987a). Our corollary says that the probability that I[f(Y)] = 1 is higher 
under an IIO than under the exchangeable distribution. 

Corollary 2. If X = (Y, Z) has a latent variable representation (Equation (2)), and if the 
items in Y have an IIO, then for the indicator function I [f(Y)], and for any arbitrary function h(.), 

P{I[f(Y)] = 1 IX+ = x+,h(Z)} _> P{I[f(Q)] = 1}; (20) 

Q has Jr elements (0, 1); and Q has the exchangeable distribution; thus, 

p ( Q  = q) = ( j y ~ - i  

\ x + /  " 
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If Y = (Ye, Ya), then for f(Y) = X+e (20) implies that given IIO the probability of ob- 
taining at least X+e = c* ls is at least as high as under the exchangeable distribution. Re- 
versely, it follows that under an IIO the probability of obtaining at most X+e = c* l ' s  cannot 
be higher than under the exchangeable distribution. 'Ihus, the exchangeable distribution pro- 
vides a conservative bound on the probability P(X+e < x+e). This bound is obtained from 
P(X+e <_ X+e t Jr, Je, X+), which is found from the cumulative hypergeometric distribution. 

How can Corollary 2 be used for testing hypotheses about the PRF? Assume that all J 
item score variables are collected in Y (i.e., Z is empty). Let subsets Ag of m increasingly more 
difficult items be collected in exhaustive and mutually exclusive vectors Yg, such that Y = 
(Y1, Y2 . . . . .  Yc) .  Consider newly defined vectors Y(g), each of which contains two adjacent 
subsets Ag and Ag+l: Y(1) = (Y1, Y2), Y(2) = (Y2, Y3) . . . . .  Y(G-1) = (Yo-1,  Yo)- Corol- 
lary 2 separately applies to each pair in the Y(g)'S. Thus, for each pair a conservative bound based 
on the hypergeometric distribution can be calculated for the probability that a person has at most 
X+e = x+e ls  on the easiest item subset. If  for a particular pair this probability is lower than, say, 
0.05, then the conclusion is that the total score (or a lower score) on the first subset in this pair is 
unlikely, given that all items in the first subset are easier than the items in the second subset. 

The cumulative hypergeometric probability 79 has to be calculated bearing in mind that if 
X+ > Ja the minimum possible value of X+e is X+ - J j .  Thus, 

X÷e 

=-- P(X+e <_ X+e ] J, Je, X + )  = E P(X+e = w I J, J~, X+). 79 (21) 
w = m a x ( 0 ,  X +  - J , l)  

For the example given previously, based on X+e = 1, 2, 3, 79 = 0.035. By Corollary 2 the real 
probability is lower, implying that at a 5% significance level we have sufficient evidence that the 
PRF increases at the easy part of the item difficulty scale. At a 1% level, however, the evidence 
is insufficient because the real probability might be higher than 0.01. 

Simulation Study 

The main purpose of this simulation study was to explore the usefulness of the cumulative 
hypergeometric upper bound 79 (Equation (21)) for detecting abenant PRFs. Upper bound 79 
was used for determining the detection rate using the PRF approach, and was compared with 
the detection rate of the nonparametric ZU3 person-fit statistic (Van der Flier, 1982). ZU3 is a 
standardized person-fit statistic which is asymptotically standard normally distributed. 

We used the 4PLM for simulating data in agreement with IIO by choosing appropriate re- 
strictions on the item parameters c~, 3, Y, and )~ (Equation (11)). The 4 PLIVI provides more 
flexibility for simulating IIO than the other logistic IRT models. In the nonparametric context 
IRFs typically can be estimated using nonparanetric regression methods (e.g., Ramsay, 1991, 
1995), but for generating data these estimates do not easily provide us with the response prob- 
abilities needed for simulating 0's and l 's.  Thus, in the nonparametric context the 4PLM is a 
model with enough flexibility which also provides response probabilities for each simulee on 
each item. 

Method 

Independent Variables 

Earlier person-fit research (e.g., Klaner, 1991; Meijer, Molenaar, & Sijtsma, 1994; Molenaar 
& Hoijtink, 1990) showed that the detection rate of a person-fit statistic is a function of (a) the 
test length, (b) the model that describes the test data, (c) the way the item scores deviate from the 
model, (d) the nominal significance level, and (e) the way a test is subdivided into two or more 
subtests. A design including these factors was used to evaluate the usefulness of the cumulative 
hypergeometric 79 (Equation (21)) for detecting aben'ant PRFs. 
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Test length. Tests of  40 and 80 items were used. These numbers correspond to moderate and 
long tests, respectively. Meijer  et al. (1994) concluded that person-fit research is not recommend- 
able for shorter tests because of the low detection rate. Longer  unidimensional tests or subtests 
from test batteries seem to be relatively rare in practice. 

IRT model The models  used to describe the data were the 1PLM and the more complex 
4PLM with )~ and c~ both fixed at constant values, and oppositely ordered 9/ and 3 parameters 
(thus, 9/j > 9/k and 3j < 3k, for j < k). This configuration of  parameters implies an IIO. To 
generalize the findings beyond IIO, additional datasets were simulated under IRT models  that do 
not  imply an IIO (see below). 

Model violations. We simulated carelessness (see, e.g., 'I?abin & Weiss, 1983, p. 91). Care- 
lessness may  result in answering fewer items correct in the beginning of  the test than expected on 
the basis of  an examinee 's  abili ty level. Other forms of  aberrant behavior, for example,  cheating 
and guessing, may manifest  themselves in more unpredictable places in the test. In the present 
simulation study, it was convenient to know where aberrance could be expected. 

Nominal significance level The nominal significance levels were 0.10 and 0.05. 
Division into subtests. The dO-item test was divided into two, four, and eight subtests, each 

containing 20, 10, and 5 items, respectively. The 80-item test was divided into two, four, and eight 
subtests, each containing 40, 20, and 10 items, respectively. The division of  a test into two halves 
yields only two points for estimating the PRF. Obviously, this situation has to be considered as 
an extreme case. 

Simulation Procedure and Dependent Variables 

Itemsets having an HO. Item scores were generated as follows. The 1PLM and the 4PLM 
were used for generating item scores. For the 1PLM, datasets of  3000 model-fitting item score 
vectors were generated separately for 0 = - 2 ,  - 1 ,  0, 1, 2; and for each 0 using equidistant 3 
from U ( - 2 ,  2). This was done both for the 40-item test and the 80-item test. For 4PLM items 
having an IIO, two different configurations of  ce and 9/parameters  were used. For the do-i tem 
test: 

. 

. 

Datasets (N = 3000) were generated separately for 0 = - 2 ,  - 1 ,  0, 1, 2. For each 0, c~ = 1 
and )~ = 0.8 for all items; furthermore, 31 = - 2 . 0 ,  32 = - 1 . 9 ,  33 = - 1 . 8  . . . . .  34o = 2.0, 
with 3 = 0 excluded to obtain a symmetrical  distribution around 0; and gl = 0.40, Y2 = 

0.39, 9/3 = 0.38 . . . . .  9/39 = 0.02, 9/40 = 0.01; 
Datasets (N = 3000) were generated separately for each 0 = - 2 ,  - 1 ,  0, 1, 2. For  each 0, 
ce = 1 for all items; and three subsets of  items were distinguished, with L = 0.9 for all i tems 
in subset 1, )~ = 0.8 for all i tems in subset 2, and )~ = 0.7 for all i tems in subset 3. Subset 1 
consisted of  20 items with 31 = - 2 . 0 ,  32 = - 1 . 9 ,  . . . ,  32o = - 0 . 1 ;  and 9/1 = 0.40, ~ = 
0.39 . . . . .  9/2o = 0.21. Subset 2 consisted of  10 items with 321 = 0.1,322 = 0.2 . . . . .  33o = 
1.0; and }'21 = 0.20, 9/22 = 0.19 . . . . .  9/3o = 0.11. Subset 3 consisted of  10 items with 
331 = 1.1,332 = 1.2, . . . ,  34o = 2.0; and 9/31 = 0.10, 9/32 = 0.09 . . . . .  9/4o = 0.01. 

Compared to the do-i tem test, within the 80-item test for each item subset the number of  
items was doubled, and values for the 3's and 9/'s were chosen by keeping the range the same as 
for the 40-item test and halving the distance between adjacent parameter values. 

After data had been generated using the 1PI~M or the 4PLM, misfitting item score patterns 
were generated for all 0 's .  To simulate carelessness, the probabili ty of  correctly answering an 
item was set to 0.25 on the 5 easiest items of  the 40-item test and the 10 easiest items of  the 
80-item test. 

The complete i temset was then subdivided into two, four, or eight subtests of increasing 
difficulty, and for each simulee the cumulative hypergeometric T ~ was determined for pairs 
of  adjacent subtests. For example, for the do-i tem test and four increasingly difficult subtests 
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Y = (Y1, Y2, Y3, Y4), the probabilities of exceedence were determined for Y(1) = (Y1, Y2), 
Y(2) = (Y2, Y3), and Y(3) = (Y3, Y4). For the subtests under consideration, the detection rate 
was the percentage of simulees with 7 ~ values below nominal significance levels of 0.05 and 0.10, 
respectively. Since carelessness only took place on the easiest items in Y1, aberrant total scores 
were expected only when comparing Y1 and Y2. Furthermore, for each simulee ZU3 was deter- 
mined using all 40 or 80 items in the test, and the detection rate was the percentage of simulees 
with a ZU3 value higher than 1.65 (one-tailed 0.05 error rate) and 1.29 (one-tailed 0.10 error 
rate). 

Itemsets not having an HO. The robustness of the cumulative hypergeometric 7 ~ was investi- 
gated under mild violations of IIO for the 40- and 80-item test; 0 = - 2 ,  0, and 2; the 2PLM with 

drawn at random from U(.8, 1.2) and the 4PLM with ~ = 0.8 for all items, V's equidistant 
between 0.40 and 0.01 (40 V's for the 40-item test and 80 V's for the 80-item tes0, and a drawn 
at random from U(.8, 1.2). This choice of c~'s violated IIO. 

Resul~ 

Results for cumulative hypergeometric 7 ~, for 40 items. Table 1 gives the proportions of 
simulees with 7 ~ values (Equation (21)) lower than 0.05 and 0.10. These proportions are given 
for different 0 values, for: (a) the 1PLM and two configurations of the item parameters of the 
4PLM; (b) test length of 40 items; and (c) carelessness on the five easiest items. 

For the 1PLM (Table 1, left panel), the subdivision of the test into two subtests of 20 items 
each, for Y1 - Y2 resulted in detection rates equal to 0 or near 0 (0 = 2:.004 and .005). The 
division of the test into four subtests of 10 items each, for nominal significance level of 0.05 
resulted in detection rates ranging from .003 (0 = - 2 )  to .347 (0 = 2). For nominal significance 
level of 0.10, detection rates were somewhat higher. For other subtest groupings Y2 - Y3 and 
Y3 - Y 4  (not tabulated) detection rates were .001, which was expected based on how carelessness 
was implemented. The subdivision of the test into eight subtests of 5 items each, for Y1 - Y2 
and nominal significance level of 0.05 resulted in detection rates between .018 and .584. For 
the other adjacent groupings almost no significant differences were found (not tabulated). The 
subdivision of the test into eight subtests meant that all five item scores in Y1 were aberrant; this 
yielded higher detection rates than for the other subdivisions. For each subdivision, detection 
rates increased in 0, because the probability of correct answers increased in 0. Thus, deviations 
from the expected number-correct in Y1 tended to be larger for higher 0's. 

Compared with the 1PLM, the 4PLM with a fixed upper asymptote (L = 0.8; Table 1, 
middle panel) resulted in lower detection rates for subdivisions into four and eight subtests for 
0 = 0, 1, 2. The difference with the 1PLM was smaller for the subdivision into four subtests. 
The larger difference for the subdivision into eight subtests can be explained by the higher mean 
proportion-correct (Equation (6)) of the items in Y2 when using the 1PLM. For example, for 
the items in Y2, under the 1PLM for 0 = 1 these proportions ranged from 0.93 to 0.84 (with 
increasing 3), and for the 4PLM the corresponding proportions ranged from 0.77 to 0.75. As 
a result, in general the person number-correct score X+d in Y2 was higher under the 1PLM 
than under the 4PLM, and aberrant person number-correct scores X+e in Y1 were more likely 
under the 1PLM than under the 4PLM. For 0 = - 2 ,  - 1 ,  the detection rates under the 4PLM 
were somewhat higher than under the 1PLM due to the somewhat higher item proportion-correct 
score in Y2 under the 4PLM. For 0 = 0, 1, 2, the detection rates for the 4PLM with varying 
upper asymptotes (Table 1, right panel) for most cells often were in between the results for the 
1PLM and the 4PLM with a fixed upper asymptote for all items. For 0 = - 2 ,  - 1 ,  the results 
were comparable with the 4PLM with a fixed upper asymptote. 

Results for ZU3, for 40 items. For all three IRT models and for all five 0's and at both sig- 
nificance levels, for ZU3 detection rates were higher than for 7 ~. For example, for the 1PLM and 
0 = 0 the detection rate was 0.723 when ZU3 > 1.29 was used, and 0.626 when ZU3 > 1.65 
was used; corresponding highest detection rates using 7 ~ were 0.451 and 0.302, respectively. 
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Except for 0 = - 2  (both significance levels) and 0 : - 1  (nominal 0.10 significance level), the 
detection rate was highest for the 1PLM; and except tor 0 = - 2  (both significance levels), the 
detection rate was lowest for the 4PLM with upper asymptotes )~ = 0.8 for all items. 

Results for 79 and ZU3, for 80 items. I~br 80-item tests and using 7 ), for all three models 
a substantially higher detection rate was found for each subdivision (Table 2). Using the 4PLM 
with )~ = 0.8 for all items, the detection rate of ZU3 was rather sensitive to the closer spacing of 
the proportion-correct of the items. For example, at a nominal 0.05 significance level detection 
rates were 0.445 for the 4PLM (closer spacing), for 0 = 0; and 0.797 for the 1PLM (wider 
spacing), for 0 = 0. For the 4PLM with fixed )~'s and 0 : 0, 1, 2, for the subdivision into eight 
subtest of 10 items the use of 79 yielded higher detection rates than ZU3. For the 4PLM with 
varying ~.'s and for 0 = 1, 2, detection rates were higher for 79. For 0 = 0, detection rates also 
were higher for 79 at nominal 0.10 significance level, but not at the 0.05 level. 

Robustness results. For mild violations of IIO, detection rates (not tabulated) were similar 
(within a range of 0.01) to those discussed above. For example, for the 4PLM (L = 0.8 for all 
items) and 40 items (eight subtests), for 0 = 0 the detection rate at nominal significance level of 
0.05 was.  198 compared to.  193 (Table 1, middle panel) when IIO held. Our tentative conclusion 
is that the detection rates reported in the Tables 1 and 2 also apply when IIO is mildly violated. 

Discussion 

This study has presented new contributions to a relatively unexplored field in the analysis 
of item score patterns on a test. The concept of the PRF was studied extensively, and a new 
formal definition was given (Definition) that circumvents all problems with existing definitions. 
For finite test length, a discrete approximation of the PRF was given (Equation (17)), which can 
be estimated using (18). Deviations from the expected noninecmasingness of the PRF can be 
tested using a conservative cumulative hypergeometric test (Equation (21)). All developments 
presented here assume that the items have an IIO (Equation (5)). 

Common person-fit methods provide a scalar value for each respondent, indicating which 
respondents have produced aberrant score patterns and which respondents have produced normal 
score patterns. Since the PRF is a function, it is a potentially powerful tool for the diagnosis of 
aberrance. Our simulation study showed that the detection rate for the local, cumulative hyper- 
geometric 79 often was lower than that for the global, standard normal ZU3. This result does 
not discredit the PRF method: On the contrary, the 7~J3 and the PRF methods provide different 
information, which may be used in two different ways. 

First, when analyzing the score patterns on, for example, an achievement test a researcher 
may only be interested in detecting persons that have unusual score patterns on particular subsets 
of items because these patterns may be indicative of a particular kind of aberrant behavior. Ex- 
amples may be cheating (unusually high scores on the difficult subsets) and lack of concentration 
(unusually low scores toward the end of the test). Thus, a researcher who has a priori expectations 
can use the PRF approach to test these hypotheses. 

Second, the researcher may have no idea about the type of aberrance to be expected. First, 
a global person-fit statistic, such as ZU3, can be used for detecting aberrant item score patterns. 
Next, these aberrant patterns can be investigated using the PRF approach. Because the detection 
rate of the PRF method depends on the size of the item subset and because in an exploratory 
context the researcher may not know where the aberrance is to be expected, several sizes for item 
subsets should be tried. 

Another approach to studying the decreasingness of the PRF may be to apply a global 
test, such as the Cochran-Armitage trend test (e.g., Agmsti, 1990, pp. 100-102). When this test 
indicates that the PRF is not a decreasing function, the next step is to apply our local, cumulative 
hypergeometric test (Equation (21)). The Cochran-Armitage trend test tests the null hypothesis 
that a string of proportions does not decrease or increase against the alternative that the string 
decreases or increases. Acceptance of the null hypothesis means that the PRF is either a jumpy 
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curve or a horizontal line, and rejection means that the PRF is either decreasing or increasing, 
the appropriate option to be revealed by visual inspection. For example, let J = 80 and let eight 
10-item subtests have fractions correct of 0.2, 0.6, 0.3, 0.3, 0.3, 0.1, 0.2, and 0.4 (italics indicate 
violations of expected nonincreasing ordering). The Cochran-Armitage trend test yielded z 2 = 
0.4082, with df = 1, which obviously did not reject the null hypothesis. Thus, the conclusion is 
that the PRF is not a decreasing function and that there is evidence of aberrance. Current research 
addresses the usefulness of the Cochran-Armitage trend test in PRF research. 

A specific person-fit statistic such as ZU3 was designed to detect aberrance, and evidence for 
this is obtained each time a respondent answers a relatively easy item incorrect while answering 
a more difficult item correct. Trend tests were not designed for detecting such peculiarities of the 
data. Since the PRF is a function for which a decreasing trend is expected, the idea of starting 
with a general trend test remains appealing, however. The design of a suitable global trend test 
could be one of the topics for future research. 
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