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Nonparametric Item Response Theory in
Action: An Overview of the Special Issue

Brian W. Junker, Carnegie Mellon University

Klaas Sijtsma, Tilburg University

Although most item response theory (IRT) applications and related methodologies involve model
fitting within a single parametric IRT (PIRT) family [e.g., the Rasch (1960) model or the three-
parameter logistic model ( 3PLM; Lord, 1980)], nonparametric IRT (NIRT) research has been growing
in recent years. Three broad motivations for the development and continued interest in NIRT can
be identified:
1. To identify a commonality among PIRT and IRT-like models, model features [e.g., local inde-

pendence (LI), monotonicity of item response functions (IRFs), unidimensionality of the latent
variable] should be characterized, and it should be discovered what happens when models
satisfy only weakened versions of these features. Characterizing successful and unsuccessful
inferences under these broad model features can be attempted in order to understand how IRT

models aggregate information from data. All this can be done with NIRT.
2. Any model applied to data is likely to be incorrect. When a family of PIRT models has been

shown (or is suspected) to fit poorly, a more flexible family of NIRT models often is desired.
These NIRT models have been used to: (1) assess violations of LI due to nuisance traits (e.g.,
latent variable multidimensionality) or the testing context influencing test performance (e.g.,
speededness and question wording), (2) clarify questions about the sources and effects of
differential item functioning, (3) provide a flexible context in which to develop methodology
for establishing the most appropriate number of latent dimensions underlying a test, and (4)
serve as alternatives for PIRT models in tests of fit.

3. In psychological and sociological research, when it is necessary to develop a new questionnaire
or measurement instrument, there often are fewer examinees and items than are desired for
fitting PIRT models in large-scale educational testing. NIRT provides tools that are easy to use
in small samples. It can identify items that scale together well (follow a particular set of NIRT

assumptions). NIRT also identifies several subscales with simple structure among the scales,
if the items do not form a single unidimensional scale.

Basic Assumptions of NIRT

Each NIRT approach begins with a minimal set of assumptions necessary to obtain a falsifiable
model that allows for the measurement of persons and/or items, usually on a scale that has, at
most, ordinal measurement properties. These assumptions define a NIRT “model.” Researchers
accustomed to PIRT often think of these assumptions as defining a class containing many familiar
PIRT models.

Let X1, X2, . . . , XJ be dichotomous item response variables for J test items, with xj ∈ {0, 1}.
The basic assumptions of NIRT are then as follows:
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1. LI. A (possibly multidimensional) latent variable θ exists, such that the joint conditional prob-
ability of J item responses can be written as

P(X1 = x1, . . . , XJ = xJ |θ) =
J∏

j=1

P(Xj = 1|θ)xj
[
1 − P(Xj = 1|θ)

]1−xj . (1)

2. Monotonicity. The IRFs Pj (θ) = P(Xj = 1|θ) are nondecreasing as a function of θ (or its
coordinates, if θ is multidimensional).

3. Unidimensionality. θ takes values in (a subset of) real numbers.
The NIRT model satisfying only LI, monotonicity, and unidimensionality is known as the monotone
homogeneity (MH) model (also called the monotone unidimensional latent variable model; Holland
& Rosenbaum, 1986; Meredith, 1965; Mokken, 1971; Mokken & Lewis, 1982). The class of
IRT models that satisfies these three assumptions—the MH class—includes, for example, the normal
ogive models, the Rasch model, and the 3PLM. Defining the MH class in terms of LI, monotonicity, and
unidimensionality shows three of the properties that are common and essential to well-known PIRT

models (2001). Omnibus tests for MH and related models have recently been proposed (Bartolucci
& Forcina, 2000; Yuan & Clarke, 2001).

Much more along these lines is possible: assumptions can be weakened to a point that ordinal
measurement still is possible, or more assumptions can be added to produce more-restrictive models
with interesting measurement properties (e.g., Hemker, Sijtsma, Molenaar, & Junker, 1997; Junker
& Ellis, 1997; Sijtsma & Hemker, 1998). For example, no two of the three NIRT assumptions define
a restrictive model for observable data (e.g., Holland & Rosenbaum, 1986; Junker, 1993; Stout,
1990; Suppes & Zanotti, 1981). Although none of these assumptions can be completely eliminated,
they can be weakened considerably. Pursuing inference about persons or items under weakened
assumptions is a longstanding interest of both PIRT and NIRT research.

In NIRT research, Stout’s (1987,1990) concern was simultaneously weakening LI and mono-
tonicity while retaining enough structure to make ordinally consistent inferences about a dominant,
unidimensional θ . Retaining LI and unidimensionality, but replacing monotonicity with other
smoothness assumptions to obtain nonparametric regression estimates of nonmonotone IRFs also
has been studied (Ramsay, 1991). More recently, Zhang & Stout (1999) followed PIRT work (e.g.,
McDonald, 1997; Reckase, 1997; for more recent developments, see Béguin & Glas, 1998) by
defining a compensatory multidimensional class of NIRT models retaining LI and monotonicity, in
which various procedures for estimating the number of latent dimensions can be examined. Polyto-
mous generalizations also have been developed (e.g., Junker, 1991; Molenaar, 1997; Nandakumar,
Yu, Li, & Stout, 1998).

In North America, applied NIRT research has been inspired by the need for more flexible data
analysis and hypothesis testing tools when PIRT methods fail. In Europe (especially the Nether-
lands and Germany), inspiration has come from using summary statistics justified by NIRT models
to perform item scaling analyses in small samples typically encountered in psychological and so-
ciological research. In the former approach, the model is a filter through which item properties
become more transparent as inessential features are stripped away. In the latter approach, the model
is a criterion against which items are evaluated.

This difference in focus also is present within PIRT research. Early adherents of the Rasch model
(e.g., Andrich, 1988; Fischer, 1974; Wright & Stone, 1979) used the model as a criterion for useful
measurement and stressed model-data fit, rejecting items if the Rasch model did not fit them. In
contrast, adherents of the two-parameter logistic model and the 3PLM (e.g., Bock & Aitkin, 1981;
Hambleton, 1989; Lord, 1980) were more inclined to accept these weaker models for describing the
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characteristics of items that were not well fitted by the Rasch model, but still contributed positively
to measurement accuracy or a better reflection of the latent trait.

These approaches have much in common, however, and apparent differences are neither large
nor fundamental in nature. Growing collaboration across the Atlantic serves to further integrate
the approaches. For example, although much work on nonparametric estimates of item category
response functions and conditional covariances between items given a possibly incomplete latent
trait has been pursued by American and Canadian researchers (e.g., Douglas, 1997; Habing &
Donoghue, in press; Ramsay, 1991, 1997, 2000; Stout, 1987), European researchers (e.g., Bar-
tolucci & Forcina, 2000; Vermunt, 2001) brought new modeling insights to these problems. On the
other hand, although computationally modest methods for model fit and scale construction based
on probability inequalities derived under MH and related models have long been pursued in Europe
(e.g., Ellis & van den Wollenberg, 1993; Hemker, Sijtsma, & Molenaar, 1995; Mokken, 1971;
Molenaar, 1997), similar efforts have been made by Americans and Australians (e.g. Holland &
Rosenbaum, 1986; Huynh, 1994; Junker, 1993).

Exploratory Data Analysis and Item and Test Features

Two major themes in NIRT research—(1) nonparametric regression estimates of IRFs and (2)
the estimation of conditional covariances between items, given a θ that might or might not be
“complete” in the sense that LI holds—have provided a new repertoire of exploratory techniques
for situations in which standard PIRT models do not fit well. A PIRT model can be thought of as a
kind of “grid” that is stretched over the data. This grid characterizes the general features of item
responses so that predictions can be made from them. Model parameters estimated from the data
show how the grid bends to conform to the data, but it is only flexible in a limited number of ways.
For example, commonly used PIRT models impose a monotonicity assumption on IRFs so that dips
or bumps cannot be seen. Instead, they drive discrimination parameter estimates toward zero. NIRT

methods provide a grid that is more flexible, enabling assessment of the importance of potential
irregularities in the data-generating process.

Ramsay (1991, 1997, 2000) popularized nonparametric estimation of IRFs by proposing rela-
tively easy-to-implement nonparametric regression methods. Related work also has been pursued
(Drasgow, Levine, Tsien, Williams, & Mead, 1992; Samejima, 1998). Ramsay’s (2000) TEST-

GRAF98 program provides a straightforward use of nonparametric regression as an exploratory tool
for assessing IRF monotonicity for each item response variable Xj , using as a proxy for θ either
the total score, X+ = ∑

j Xj (Ramsay, 1991), or the rest-score, Rj = X+ − Xj (Junker & Sijtsma,
2000). This methodology could be used, for example, to explore deviations from parametric IRFs
when nonparametric tests (e.g., Molenaar & Sijtsma, 2000; Stout, 1990) confirm the MH model,
but a specific parametric form (e.g., the two-parameter logistic model) is rejected. Ramsay (1991)
applied this approach to identifying possibly defective test items from a large introductory psy-
chology course. Other applications demonstrated only moderate discriminability in two widely
used self-report instruments for screening major depressive disorders (Santor, Zuroff, Ramsay,
Cervantes, & Palacios, 1995).

In MH models, the conditional covariances Cov(Xi, Xj |θ) are all zero. However, LI never holds
exactly in practice. Substantial NIRT research effort has been devoted to determining when these
conditional covariances are far enough from zero to invalidate a simple monotone unidimensional
IRT model. Stout’s (1987, 1990) conception of essential independence allows conditional covari-
ances to be positive or negative and to vary considerably from one item pair to the next, yet be
controlled enough to allow for consistent ordinal measurement of persons. Conditional covariances
also play a role in all formal and informal tests and measures of unidimensionality (e.g., Stout et al.,
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1996; Stout, Nandakumar, & Habing, 1996). Estimating Cov(Xi, Xj |θ) as a function of θ can be a
useful exploratory device, because it can suggest explanations for multidimensionality by showing
where along θ local dependence occurs (Douglas, Kim, Habing, & Gao, 1998).

In this issue, Habing (2001) provides a review of the application of this methodology to the
estimation of the entire conditional covariance function, as well as nonparametric regression esti-
mation of IRFs. Conditional covariance estimates using the total score or the rest score as a proxy
for θ are subject to biases (e.g., Junker, 1993). Habing briefly reviews basic bootstrap ideas and
demonstrates an application of the parametric bootstrap to nonparametric conditional covariance
estimates. This application can be used to reduce or eliminate biases and to provide confidence
envelopes for the estimates.

Douglas & Cohen’s (2001) paper in this issue compares the fit of a parametric IRF model with
a nonparametric regression estimate of the same IRF. They use a parametric bootstrap based on
a carefully selected parametric approximation to the nonparametric IRF to generate a reference
distribution for testing the fit of the maximum likelihood parametric IRFs. Their bootstrapped
hypothesis test might be less biased in favor of the PIRT model than other parametric bootstrap
techniques (e.g., Gelman, Meng, & Stern, 1996; Stone, 2000). Douglas and Cohen show, using
two simulated and two real-testing examples, that the bootstrap provides a powerful adjunct to
graphical techniques.

Model-Data Fit and the Explanation of Data Structure

PIRT models typically specify whether one or more dimensions describe the data. To some
extent, these models allow the number of dimensions to be subjected to hypothesis testing (e.g.,
Bartholomew, 1987; Béguin & Glas, 1998; Bock, Gibbons, & Muraki, 1988; Glas & Verhelst,
1995; McDonald, 1997; Reckase, 1997). However, the greater flexibility of NIRT facilitates the
assessment of underlying trait dimensionality. When studying dimensionality within a PIRT family,
misfit to the shape of the response model can be misinterpreted as an increase in the number of
underlying dimensions. The classic example of this is the tendency for traditional linear factor
analysis to over-estimate the number of dimensions in dichotomous data (e.g., Miecskowski et al.,
1993). Dimensionality estimated apart from parametric features of the response model might be a
more fundamental characteristic of the data and less likely to have arisen as a consequence of some
other aspect of model-data misfit. This is the motivation for the item selection procedures in the
computer programs MSP5 (Mokken, 1971; Molenaar & Sijtsma, 2000), DIMTEST (Nandakumar &
Stout, 1993; Stout, 1990), and DETECT (Kim, Zhang, & Stout, 1995; Zhang & Stout, 1999).

Stout et al.’s (1996) conditional covariance-based methods for assessing latent trait dimension-
ality have been applied to a variety of data sources, including data from the LSAT/LSAC. They also
have been extended to the case of polytomous responses (Nandakumar et al., 1998). Stout et al.’s
ideas appear in work on dimensionality assessment (Gessaroli & de Champlain, 1996; Oshima &
Miller, 1992). Related considerations are also found in nonparametric detection of differential item
and subtest functioning (Bolt & Stout, 1996; Douglas, Stout, & DiBello, 1996; Li & Stout, 1996;
Shealy & Stout, 1993).

For dichotomous items (Xj = 0 or 1, for an incorrect or correct answer, respectively), a theory
of scale construction—selecting groups of items that are related in the sense that the MH model is
probably appropriate for them—has existed for quite some time (Mokken, 1971; Sijtsma, 1998).
The principal tools involved are easy-to-compute adaptations of Loevinger’s (1948; Mokken &
Lewis, 1982) H coefficient, comparing the marginal covariance, Cov(Xi, Xj ), of each item pair with
the maximum possible covariance [Covmax(Xi, Xj )]. This preserves the margins of the observed
Xi × Xj table. The bound Covmax(Xi, Xj ) is obtained by adjusting the table to remove Guttman
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errors (Mokken, 1997; Mokken & Lewis, 1982). These methods also have been extended to
polytomous items (Hemker et al., 1995; Molenaar, 1991; Sijtsma & Verweij, 1999).

In his paper in this issue, Bolt (2001) discusses a geometric approach to identifying the con-
tinuous multidimensional latent structure underlying observable dichotomous item response data,
based on Zhang & Stout (1999). Implementation of the method requires circular/spherical mul-
tidimensional scaling of average conditional covariances, given appropriate rest scores, in terms
of the angles of item discrimination vectors in the subspace perpendicular to a “dominant” latent
dimension.

Bolt (2001) compared the method with DIMTEST and related dimension-counting methods. A
broad range of simulated and real-data multidimensional latent structures were recovered, including
“simple structure” (items can be partitioned into groups that are unidimensional with respect to
different latent variables) and “fan” structures (items load to varying degrees on several latent
variables at once). Again, computational and graphical methods combine to give a complete data
analysis.

Within psychometrics, there is a growing interest in cognitive assessment models (i.e., testing
models that attempt to account for and measure the cognitive processes and solution strategies that
underlie dichotomous or polytomous item responses). This interest has resulted in the development
of many different parametric “componential” IRT models, including the linear logistic test model
(Fischer, 1974, 1995; Scheiblechner, 1972), multidimensional latent trait models (Adams, Wilson,
& Wang, 1997; Embretson, 1991; Kelderman & Rijkes, 1994), and a multicomponent latent trait
model (Embretson, 1985, 1997). Discrete latent structure approaches also have been proposed,
including the constrained latent class approach (Haertel & Wiley, 1993) and the general Bayesian
inference network approach (e.g., Mislevy, 1996). Various attempts have been made to blend
discrete and continuous methodologies (DiBello, Stout, & Roussos, 1995; Tatsuoka, 1995).

Related to this interest in cognitive modeling is person-fit research or appropriateness measure-
ment (e.g., Emons, Meijer, & Sijtsma, in press; Meijer, 1994; Sijtsma & Meijer, 2001). The main
interest is in understanding the psychological mechanisms (e.g., test anxiety, lack of concentration)
that produce a particular pattern of item scores. Respondents showing misfitting item score pat-
terns might be removed from the item analysis or the information about misfit might be used for
interpreting their latent trait estimates.

Junker & Sijtsma’s (2001) paper in this issue concerns the role of NIRT methodology in con-
structing and evaluating cognitive assessment models. They reanalyzed a dichotomized version of
“deductive strategy” transitive reasoning data (Sijtsma & Verweij, 1999) by estimating a discrete
latent-structure version of Embretson’s (1985, 1997) multicomponent model (see also DiBello et al.,
1995; Haertel & Wiley, 1993; Tatsuoka, 1995). Junker and Sijtsma show that appropriate versions
of monotonicity and LI plausibly hold for these data. They then speculate about whether simple
data summaries that are informative about latent attributes (cognitive components) were present or
absent in individual students, based on each pattern of responses to the set of transitive reasoning
items. Junker and Sijtsma also discuss the translation of useful stochastic-ordering properties from
unidimensional NIRT research to their cognitive assessment models.

Measurement of Person and Item Properties

For models assuming MH, it has been shown (Grayson, 1988; Huynh, 1994) that the latent trait
θ is stochastically ordered by the unweighted sum of item scores X+ for dichotomously scored
items. Assume two values of X+, 0 ≤ c < k ≤ J , and a fixed value of θ , t .

Then, the stochastic ordering of the latent variable (SOL) is
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P(θ > t |X+ = c) ≤ P(θ > t |X+ = k) , for all t . (2)

SOL implies that E[θ |X+ = k] also is nondecreasing in k. On average, the increasing total score
then is associated with increasing θ level, as it should be. SOL holds for all dichotomous response
models satisfying LI, monotonicity, and unidimensionality. This is surprising: although X+ is a
sufficient statistic for θ only in the Rasch model, it can be used for ordering θ in any MH model, no
matter how far the data deviate from the Rasch model. SOL is a useful measurement property for
test practitioners who can confidently use X+ instead of θ for ordering examinees.

Hemker et al. (1997) found that SOL holds for almost none of the familiar ordered polytomous
IRT models—parametric or nonparametric. Let X+ be the Likert score (i.e., the unweighted sum
across items of the item category scores). Then, a higher X+ does not always imply, for example,
a higher mean θ . The only known polytomous response models in which SOL is guaranteed to hold
are the partial-credit model (Masters, 1982) and special cases of this model, such as the rating scale
model (Andrich, 1978).

Thus, from a theoretical point of view, the use of the Likert score for ordering examinees on
θ is justified in almost none of the polytomous IRT models. Unless the partial-credit model fits
the data, SOL failure poses a serious potential problem for test practitioners who prefer X+ over
θ . Nevertheless, preliminary simulation results (Sijtsma & Van der Ark, 2001) suggest that, in
practice, the mismatch of the ordering of X+ and θ might not be very serious in data stemming
from typical choices of item parameters and a normal θ distribution.

Invariant item ordering (IIO) is an important measurement property for ordering items. Whenever
J IRFs do not intersect, they can be renumbered such that

P1(θ) ≤ P2(θ) ≤ . . . ≤ PJ (θ) , for all θ . (3)

In many testing situations (e.g., intelligence testing, analysis of differential item functioning,
person-fit analysis, exploring hypotheses about the order in which cognitive operations are ac-
quired by children), ordering items by difficulty can be helpful for analyzing test data. In each
situation, interpretation and analysis is made easier if the items are ordered by difficulty in the
same way for every individual taking the test—i.e., the IRFs do not cross. Sijtsma & Junker (1996)
developed methods for empirically investigating IIO for dichotomously scored NIRT models, and
Sijtsma & Hemker (1998) investigated methods for polytomously scored PIRT and NIRT models.
Sijtsma & Junker (1997) applied these methods to scale construction in developmental psychology.

In this issue, Van der Ark (2001) provides an overview of the most popular and relevant poly-
tomous PIRT and NIRT models and measurement properties (e.g., SOL and IIO). Scoring rules for
polytomous items (Akkermans, 1998; Van Engelenburg, 1997) also are addressed. Van der Ark
provides useful reference tables for finding the appropriate polytomous IRT model when certain
measurement properties are desired. His main points are illustrated with data from five polytomous
items measuring strategies for coping with industrial odors.

Vermunt (2001) focuses on testing monotonicity and other ordering properties of the MH model.
He fitted latent class models to data that incorporated the relevant order restrictions. Latent class
formulations for PIRT and NIRT models are not new (Croon, 1991; Hoijtink & Molenaar, 1997;
Lindsay, Clogg, & Grego, 1991), but Vermunt’s proposal accommodates a wider range of NIRT/PIRT

models and their specific properties than previously was possible. Vermunt provides parametric
bootstrap-based tests of fit for constrained latent class models. He then compares the fit of several
PIRT and NIRT models for four polytomous self-report items taken from a biopsychosocial survey.
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The Special Issue concludes with two discussions (Molenaar, 2001; Stout, 2001). Both authors
have devoted considerable energy to NIRT research and have also contributed to a variety of important
advances in PIRT and related methods.
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