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Chapter 1

Introduction

The issue of modelling consumer preferences and the choice processes they use is

fundamental to the marketing profession. Understanding consumer choice behaviour can lead

to significant changes in product or service design, pricing strategy, distribution channel and

communication strategy selection, as well as public welfare analysis (Louviere et al., 2000)
The most common method currently used for eliciting consumer preferences is the estimation

of multi-attribute choice models. Multi-attribute choice models have evolved into a major
research area in the marketing literature. The ability of these models to predict future choice

distributions and to provide diagnostic information which enables the researcher to better

understand the behavioural process underlying the choices makes attribute choice models a

topic of interest, not only for marketing, but to a wide range of disciplines. These include

psychology, economics, management and transportation.

Multi-attribute choice models come with diverse structural forms, purposes. and
underlying assumptions. Most of the current models assume a perfectly rational utility-
maximising decision-maker who determines the utility value of a product by evaluating all o f

the attributes associated with it simultaneously, weighing the relative worth of each attribute

in a compensatory manner. However, there is a lot of evidence to suggest that consumers
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frequently do not fit into this idealised framework. The aim of this thesis is to enhance our

understanding of the way people choose and explain any deviations from the behaviour

predicted by utility maximising models of choice. More specifically. models that allow and

test for behaviour characterised by bounded rationality rather than ttill rationality are

introduced and empirical evidence supporting these models is provided. The empirical work

iii this thesis is based upon two major surveys. conducted by CentERdata, and specifically
designed for the purpose of analysing consumer choice behaviour. To analyse these extensive

data sets modern econometric techniques are employed, refining existing methods.

In the next section of this introductory chapter we expand on the moti vation leading to

this research. The second section describes the four individual research topics in more detail

and discusses the specific contribution each of them provides.

1.1  Motivation

Suppose we are concerned with modelling a consumer who is faced with the problem of

choosing a single element from a set of multidimensional items. the dimensions representing

attributes of the items. Traditional economic theory would presuppose the decision-maker

knew his or her preferences, could observe all attributes of all items without costs, and could

effortlessly select the alternative that maximises the decision-maker's "utility function"

defined over the attributes of the item. An economic agent possessing these abilities is

referred to in the economics literature as "perfectly rational". Researchers have often been

apologetic about the assumption that decision-makers are perfectly rational and prefer to take

this assumption less literally. That such a perfectly rational model is inadequate, as a

representation of practical consumer behaviour,  has  long been recognised (Simon   1955).

Numerous empirical studies have provided evidence of systematic violations of the perfectly
rational man paradigm (e.g., Tversky and Kahneman 1986. Schoemaker 1982).

This dissatisfaction with models that adhere to the perfectly rational man assumptions,

has motivated the development of models assuming a more realistic alternative: the

boundedly rational decision-maker. It is with this individual that this thesis is mainly

concerned. Most models of bounded rationality are based. at least implicitly. on the notions

that information is costly and that the human capacity for processing information is neither
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unlitiiited nor effortless. So when faced with complex or unfamiliar choices individuals
frequently appear to employ simpler decision rules, which have lower requirements for
information processing than the fully conipensatory utility maximising decision strategy. Our

perception of the boundedly rational individual differs depending on the underlying beliefs as

to why we observe that agents use simplifying strategies. Sonic researchers propose theories

of strategy selection that are based on the idea that complex decision environments result in a

gap between the competence or cognitive ability of the decision-maker and the difficulty of
the decision. This suggests that the simpler alternatives are employed because individuals

sometimes cannot carry the fully compensatory utility maximising strategy. Another

perspective suggests that a boundedly rational decision-maker looks at strategy selection as a

function of both costs, primarily the effort required to use a nile, and benefits, primarily the
ability of a strategy to select the best alternative. A cost-benefit approach to strategy selection

maintains the concept of calculated rationality by including costs of executing the decision
process in the assessment of rationality. Therefore deviations from the behaviour predicted

for a perfectly rational utility maximising individual may be logically explained as the result

of optimising behaviour.

Whether boundedly rational behaviour can be explained as utility optimisation when

cognitive costs are incorporated into the utility function. or as resulting from a cognitive gap,
the implication is that decision complexity should play a role in determining the choice

process. Increased complexity should in general lead to a greater tendency to simplify choice
problems. Under the assumption that decision-makers are perfectly rational this is not tile
case, but rather complete processing of all information is always carried out.

Another observation suggesting individuals arc not perfectly rational is the existence
of framing effects. A framing effect occurs when different behaviour is observed due to
changes in the way a decision is framed, not in the content of the choice problem. That is.

under different task conditions, consumers exhibit different preferences. Other examples of

this kind of task effect are the differences between preferences estimated from revealed

preference and stated preference data, or the different preferences being elicited from choice

data. or ratings data. A ratings questionnaire differs from choice questions in that rather than

providing individuals with sets of goods and asking them to indicate a preferred option,
people are shown only one option. and asked to rate its value on some given scale.
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To analyse these different forms of bounded rationality and gain insight into
consumer choice behaviour it is often useful to collect inforniation other than standard choice

data and to model the information contained in the various data types jointly (Hensher

Louvicre and Swait  1999). A secondary theme  of tile thesis  is  therefore the provision  of

cconometric methods for combining various data types. The more extensive models that

result are useful not only for comparing estimated consumer preferences across various task

conditions, but also for examining the types of decision strategies individuals are using and

the determinants of strategy selection.

1.2 Overview

The following four chapters of the thesis are comprised of four self-contained yet closely

related pieces of research examining consumer choice behaviour and providing evidence for,

or incorporating elements of. boundedly rational behaviour. The empirical work in these

chapters is based upon two major surveys sent out to members of the CentERdata consumer

panel, consisting of a cross-section of households throughout The Netherlands. The panel is

administered through Tilburg University for the purpose of economic research. Both surveys

were designed using conjoint methods specifically for the current research. The next two

chapters use the first survey and concentrate on providing evidence of boundedly rational

behaviour. Chapters 4 and 5 employ the second survey and examine reasons why simplifying

strategies might be used. A theoretical niodel, which includes cognitive costs iii tile decision-

makers utility function, finds that the fully compensatory choice process is no longer optimal

in chapter 4. An explicit model for one alternative to the fully compensatory strategy is

suggested in chapter 5. A brief description of each chapter is now given.

Chapter 2: Complexity and Accuracy in Consumer Choice

In chapter two we begin by analysing the possibility that an individual's choice process niay

be affected by the complexity of the choice environment. As explained in section  1.1, the

assumption of perfect rationality implies that the decision-maker has the skill necessary to

make whatever complicated calculations are needed to discover his optimal course of action,
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and can do so costlessly. Under these conditions choice set complexity should play no role in

the choice process. However, under the alternative assumption of boundedly rational agents,

we may expect higher levels of complexity to be associated with less accurate decisions.

To analyse the relationship between choice complexity and choice accuracy we use

conjoint data on consumer yoghurt choice in The Netherlands for a large sample of
consumers. A mixed logit model is estimated via simulated maximum likelihood where

random coefficients capture unobserved heterogencity, while remaining error terms, assumed

to be independent over questions, are interpreted as choice errors. The variance of these error

terms is allowed to be question specific. to allow for an effect of choice set complexity on the

size of the error. Two new measures of choice accuracy are defined and computed on the

basis of these mixed logit estimates.

The paper also suggests measures for the complexity of a given choice situation that

make use of the mixed logit parameter estimates, following the seminal work of Shugan

(1980). The accuracy measures are regressed on the variables measuring choice complexity.

The accuracy is found to be significantly affected by context based complexity measures such

as attribute variability, within alternative attribute covariance, and the utility difference

between products. The directions of these effects arc in line with the predictions from the

literature. The paper thus provides clear evidence of complexity effects iii choice indicating

that decision-makers would be better described by a boundedly rational framework than by a

perfectly rational model.

Chapter 3: Combining and Comparing Consumers' Stated Preference Ratings  and
Choice Responses

The second essay considers tile question of how to combine two different types of data

sources for the same individuals. with the aim to estimate the sanie set of consumer

preferences. The survey upon which the empirical example is based is the same as is used for

chapter 2, however now, in addition to the choice data, preference ratings data for the same

individuals are also incorporated in the model. As the sanie consumers are analysed using

both types of preference data, the preference estimates elicited using either data source should

be compatible. On the other hand, evidence of framing effects in economic decision-making
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is well established (Tversky and Kahneman 1986) suggesting different task conditions may

affect an individual's preferences. In a similar manner we may expect task effects due to the

difference in task conditions between the ratings and choice questions.

To examine whether differences exist between the way individuals respond to

different preference elicitation procedures it is useful to analyse the data sets in a joint model.

For this purpose an econometric model for combining choice and preference ratings data

collected from the same set of individuals is developed and tested. Choice data are modelled

using a multinomial logit framework, while preference data are modelled using an ordered

response equation. A flexible monotonic transformation from utility to ratings is allowed for

by making the category bounds in the ordered probit free parameters to be estimated.

Individual heterogeneity is allowed for via random coefficients providing a link between the

choice and ratings data. Estimation and identification issues are discussed as well as potential

efficiency gains over models considering the two data sets separately.

Applying the model to the survey data, we find that ratings based preference estimates

differ significantly from choice based estimates suggesting task effects are occurring. While

the mean parameters for the preference distributions differ, the correlation between the

random coefficients driving the two data sets is very strong. This gives the model an

advantage over separate models explaining choice or ratings, and helps to improve

predictions.

Chapter 4: Optimal Effort in Consumer Choice

The focus of Chapter 4 is the development of a model for a boundedly rational consumer

who, while not satisfying the strict requirements of the perfect rationality assumption, is still

assumed to exhibit calculated rationality. The model considers ati individual who attaches a

cost to the effort involved with cognitive processing, and when deciding on which decision

strategy to use, includes the cost of executing the decision process in the utility function. This

cost-benefit perspective provides potential for explaining why decision strategies vary across

situations.

Based on the framework of a cost-benefit trade-off a theoretical model of optimal

effort in consumer choice is developed. The model extends previous consunier choice models
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in that the consumer not only chooses a product but first decides how much effort to apply to

a given choice problem. Rather than considering only the payoff of the chosen outcome, the

consumer's objective function also contains the costs of cognitive effort.

The optimal level of effort in any given choice situation is based on the consumer's

cost of effort, the expected utility gain of a correct choice and the complexity of the choice

set. To explore the empirical validity of the model a second survey was conducted by

CentERdata on their consumer panel in The Netherlands. The subject of the survey was

consumer restaurant choice. Response time was measured as a proxy for effort, while

consumer involvement measures were taken as proxies for individual differences in cost of
effort and perceived complexity. The response time for each choice question was explained

by the respondent specific consumer involvement measures, and from two choice task
specific variables: the (estimated) utility difference between alternatives. and the number of

elementary infurmation processes (EIP's)

The findings were consistent with the theoretical model suggesting that consumers

indeed do consider mental effort as being costly and adapt their choice processes accordingly.

Individual differences as explained by consumer involvement also supported this result. For

example, response time was found to increase with the consumer's interest and pleasure,

which is in line with the notion that for very interested consumers, the cost of effort

(compared to the expected utility gain of a correct choice) will be low. Effort was found to
increase with both the utility difference and the task complexity.

Chapter 5: Effort, Decision Strategy and Choice: How many attributes do consumers

consider?

In Chapter 5 we propose and implement a new model for the choice process of a boundedly

rational individual as an alternative to the fully compensatory model. The model allows for
the possibility that consumers may simplify the decision task by not considering all of the

attribute information provided for alternatives. There has been considerable evidence in the

literature on consumer choice to suggest that consumers frequently do not follow the fully
compensatory choice process preferring instead to employ simpler decision rules. Thc basic

premise underlying the model therefore is that consumers may base their choices on subsets
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of the attributes rather than all the attributes. This seenis particularly relevant for choice

situations with few alternatives characterised by niany attributes.

The model takes the mixed multinomial logit model as a starting point. but it

incorporates the possibility that individuals base their choice on a limited number of product

attributes only. To allow for heterogencity across individuals the attribute weights or

preferences are allowed to vary across the population of consumers. The decision-maker is

assumed to have a threshold value that determines which attributes arc important enough to

be considered in any given choice situation. If the difference between the utility contributions

of a given attribute across the products in the choice situation is below the threshold. the

attribute is not taken into account in the choice. The specification allows for systematic and

random heterogeneity in the threshold levels so that different decision-makers may vary in

the extensiveness of the decision process. We allow the threshold to vary systematically with

both response time and complexity. We find that higher response tinles (or higher effort) arc

associated with lower thresholds. This makes sense as a lower threshold leads to

consideration of more attributes. Wc also find individuals that increase the number of

attributes they consider (lower their thresholds) as choice complexity increases. With

inclusion of the individual-specific attribute weights and thresholds, different decision-

makers are then allowed to vary both in terms of which and how many attributes they

consider, incorporating a broad range of decision strategies.

The model is implemented on the same data set as was seen in Chapter 4. however.

additional attribute-specific information is now also incorporated. This supplementary data

includes information on which attributes were always used. which were never used, and an

importance rating for the attributes seen by each respondent. The inclusion of the additional

information helps to disentangle the various individual choice processes which enables us to

identify the model. A smooth simulated maximum likelihood procedure is introduced to

obtain estimates of the model parameters. The estimation results and, in particular, the

structural link between preference weights and whether or not attributes are considered in the

choice decisions, are illustrated by comparing posterior distributions of the random

coefficients given information on which attributes are and arc not considered. This is similar

to a recently developed method for obtaining the distributions of individual parameters

conditional on their observed choices developed by Revelt and Train (1999).
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The main results of the thesis arc sumniarized in C'hapter 6 and some general

conclusions are provided. Suggestions for future research in the area of boundedly rational

consumer choice are also given.



Chapter 2

Complexity and Accuracy in Consumer

Choice

In this chapter we analyse the relatic,nship between ch ,ice complexity und choice accuracy

using Conjoint choice data frc,m a large sample 01 ainsuniers. We estimate a mixed logit

framework where random coeflicients capture unobserved hetert,geneity, while remaining

errc,r terms. assumed to be independent over questions, are interpreted as choice errors. The

variance of these error terms is allowed tc, be question specific, to allow for an effect of

ch(,ice set complexity on the size Of the error. The mixed logit estimates are used to compute

twc, measures of ch(,ice accuracy for the average respondent fc,r each questic,n. They are also

used to define variouS measui·es of c hoice cc,mplexity 12,1  each question. We then regress the

accuracy measures on the complexity measures. We find that accuracy is significantly

affected by the context based complexity measures: attribute variability, within alternative

attribute covariance. and utility difference between alternatives. The signs of these effects are
in line #'ith the predictions in the literature. On the c,ther hand. we do not find a significant

ef ct of task coniplexity on choice accuracy.
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2.1   Introduction

How consumers respond to possible changes in product characteristics and price is one of the

central questions in marketing and the past success of consumer choice modelling is due

largely to its ability to predict such consumer responses. Most research on consumer choice

modelling has focused on consumers' structural responses, i.c.. each consumer's average

response to changes in product features. Recently, however, researchers also have begun to

investigate the impact and size of errors in consumers' preferences and choices. For example,

de Palma et al. (1994), analysed economic implications of consumers' imperfect ability to

choose, Dellaert et al. ( 1999) explored the effect of attribute variation on consumer choice

consistency, Fischer et al. (2000) investigated the impact of within alternative attribute

conflict on judgement time and error, and Haaijer et al. (2000) tested a choice model

specification that takes into account differences in choice response error between individuals.

Previous research has led to two important conclusions. First, the accuracy with which

consumers express their preferences and choices is not stable across contexts and tasks

(Fischer et al. 2000, Haaijer et al. 2000). Second, the implications of such variations for

consumer welfare and producer marketing effectiveness can be considerable (de Palma et al.

1994). A strong empirical finding with respect to variations in accuracy in consumer

judgement and choice is that such variations can be caused by changes in choice set

complexity (Dellaert et al. 1999, Fischer et al. 2000).

The premise that choice complexity may affect the accuracy of choice outcomes is not

new. For example, Johnson and Payne (1985) showed that the accuracy of different choice

rules depends on the complexity of the choice task. Bettnian et al. ( 1990) examined the

cognitive processing requirements associated with various decision rules and suggested that

individuals may switch to simpler, less accurate choice rules as choice task complexity

increases. However, only recently have researchers begun to incorporate variations in error in

models of consumer choice. In particular, random utility theory offers a conceptual

framework for modelling variations in consumer choice accuracy, because it introduces a

random error component in the consumer utility function that can capture unexplained

variations in consumer choice behaviour. Recent studies in marketing and economics have

acknowledged the role of random error variations in modelling consumer choice and have

allowed for differences in unexplained variance in consumer utility functions. This has led to
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the development and implementation of such models as the hetcroskedastic logit model

(Allenby and Ginter 1995) and parameterised versions of the hetcroskedastic multinomial

logit models (Dellaert et al. 1999, Haaijer et al. 2000). Still, iii this stream of research

relatively little effort has been directed at finding a behavioural basis for observed differences

in consumer choice accuracy.

In this study we investigate the impact of various psychological aspects of complexity

on choice accuracy in a formal model of accuracy and complexity. We distinguish between

task and context based aspects of complexity. We measure task based complexity by the

combined effect of the number of attributes and the number of alternatives in the choice set

(Johnson and Payne 1985). Context based complexity is measured by the variability of

attribute utilities (Shugan 1980, Fischer et al. 2000), the covariance between attribute utilities

(Shugan 1980, Johnson and Payne    1985)   and the difference in total utility   between

alternatives (Shugan 1980). In line with previous heteroskedastic logit modelling approaches,

we allow for a flexible specification of the error variance across different choice sets.

Furthermore, we add to this approach a mixed logit specification (Mcfadden and Train 2000)

that allows for variation in responses across individuals due to variation in preferences.

In  contrast to previous approaches (Dellacrt  et  at. 1999, Haaijer et  al.  2000),  we  do

not use the logit model estimates directly to model complexity effects, but rather use the

estimates as input for a regression model explaining specifically formulated choice accuracy

measures from the proposed choice complexity measures. The observations in this regression

model are based on all the different questions in the survey. The dependent and independent

variables are the accuracy measures and the task and context based complexity measures for

the average consumer respectively. Both the dependent and the independent variables are

constructed on the basis of the mixed logit results. This two-stage approach allows us to

investigate the relationship between choice complexity and choice accuracy more adequately

because the measures of accuracy are based on consumers' performance relative to optimal

and random behaviour. Therefore these measures can be generalised over choice sets of

different composition, something which is not possible for the error variance measure used by

Dellaert et al. ( 1999) and Haaijer et al. (2000).

Empirically, we investigate the impact of complexity on consumer choice accuracy

using consumer choices in experimentally manipulated choice sets with different levels of
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complexity. Our main conclusion from this empirical investigation is that variations in choice

accuracy are driven by variations in the three context effects but not by variations in task

effects. We observe shifts in accuracy similar in nature to those observed for consumer

judgenients by Fischer et al. (2000) and those suggested by Shugan (1980). This finding

suggests that consumers increase their effort in response to shifts in task effects, possibly

because they base their choice effort on task variables (number of alternatives and attributes).
On the other hand, they do not adjust their effort to changes in context variables enough to

keep accuracy constant. This finding is also in line with Johnson and Payne's (1985)
observation that the effort involved in following a certain choice strategy depends on task

variables only, while for given effort, the level ofaccuracy is driven by context effects.

In the remainder of this chapter we first discuss the theoretical and modelling basis for

our study (section 2.2). Section 2.3 covers our empirical study, describing the experimental

choice data, the estimates and their implications. In section 2.4, we present some conclusions,

a discussion, and suggestions for future research.

2.2 Theory and Model

Our discussion of the various aspects of the theory and the model is structured in four
subsections. First. we discuss the random coefficients heteroskedastic mixed logit model that

provides the estimates of preferences and error term variances, which are the basis for

constructing choice set complexity and choice accuracy measures (subsection   2.2.1 ).

Secondly, we develop the measures to describe choice set complexity (subsection 2.2.2).

These measures are based on previous research in psychology and marketing. Thirdly, two

choice accuracy measures are defined (subsection 2.2.3). Both the choice complexity and the

choice accuracy measures use the estimates from the consumer choice model as input.

Fourthly, the model describing the relationship between choice set complexity and consumer

choice accuracy is discussed, together with the hypotheses that we want to test empirically

(subsection 2.2.4). The structure as a whole, how it is discussed in the following sections and

how the underlying choice model is put to use. is presented graphically in figure 2.1.
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Figure 2.1: Model Structure

2.2.1 A Random Coefficients Heteroskedastic Logit Model Of

Consumer Choice

The model used to analyse the consumers' choice data and to obtain the preference

parameters required for the analysis of the relation between accuracy and complexity is based

on the well-known multinomial logit model. To accommodate heterogeneity across

respondents, we allow for random variation in the attribute coefficients, and use a random

coefficients specification. We use the following notation:

i respondent (i=L..,N), N is the total number of respondents

s choice situation (s=l... ..S), S is the total number of choice situations

k         attribute (k=1....,K), K is the total number of attributes considered in all

choice situations.
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i             alternative (j=0,1.....J(s)), J(s) is the number of alternatives in choice set s

X1   -  (X  1.....Xlk)'   vector of attribute values of alternative j.  Xi does  not  include  a

constant.

Attribute values of attributes that are not considered (in a given choice situation). are

set to zero (by normalisation).

Let the utility of alternative j to respondent i be given by:

(2.1) U,J = XJ'|1, j= 1,....J(s)

The vector of slope coefficients #-(11,1,...,D,K)' may vary across respondents. This will reflect

heterogeneity in preferences, i.e., in the marginal utilities of the attributes (sce (2.3) below).

McFadden and Train (2000) show that, if the distribution of 0, is flexible enough, the mixed

logit specification can be used to approximate the choice probabilities of a large class of

discrete choice models based on random utility maximisation.

The consumer choices to be modelled all contain the option of not choosing any of the

products offered, referred to as the 'none'-option. Let alternative j=0 be this 'none'-option,

and let its utility to respondent i be given by:

(2.2) Ult)   Bic)

The 'none'-option differs from the other alternatives in that it docs not have any attribute

values'

The Ilic, and 11, are treated as random coefficients, using the following specification:

(2.3) Ak =b k + U,k,    k=0,...,K,

(2.4) u, = (uit),uil.....u,K) - N(0.Q)

The unobserved characteristics of the respondent enter via ulk. It is assumed that the ulk are

drawn from a multivariate normal distribution with mean zero. Note that 13, is respondent

specific but not choice situation or alternative specific; respondent i's choices are all assumed

to  be  based  on  the  same  Bi. The parameters  in  the  (K+ 1)x(K+1 ) matrix,  11.  are  to  be

estimated. For computational convenience, it is assumed that fl is diagonal. so that only

(K+ 1 ) standard deviations w  need to be estimated. The random coefficients 11,0 and 11, (or the

  Equivalently. the utility of the 'none'-option could be normalised to 0. and a respondent specific base level
utility (not varying over choice sets or alternatives) could be added Io the utility values of the other alternatives.



2.2 Theory :ind Model                                                                                                                  17

il,A) vary neither with choice situations. nor with alternatives. and arc independent across

individuals. As a consequence, the variances of the random coefficients are identified by the
correlation structure of the choices across choice situations and alternatives. Similar to

Fischer et al. (2000). we interpret the differences in error not only in terms of model fit
differences between choice tasks but also in terms of differences in response error

( 'preference uncertainty'). We allow  the  error  to vary between choice tasks of different
composition because we are interested in the question whether responding to some choice

tasks may be more difficult than responding to others.

In constructing a choice probability model, we follow the Usual random utility
framework. Choices are based upon the sum of 'true' utilities U,j and error:

(2.5) Uli.* = U,1 + E,1. j=O,....JCs),s=l,...,S.

Respondent i chooses alternative c in choice situation s if and only if U,c.* 2 U,1.* for all
alternatives j in that choice situation.

There are two unobserved random variables in this model. with quite different
interpretations. The 24 reflect unobscrved heterogeneity across respondents. they are

respondent specific and do not vary across choice sets or alternatives. They thus reflect a part

of consumer preferences which is consistent across different choices. On the other hand. the

Ev, vary independently across all choice sets and all alternatives. We refer to them as "errors

In the terminology of Fischer et al. (2000), they could also be called preference uncertainty.

leading to inconsistent choice behaviour. The Ev.. allow for boundedly rational behaviour in

our setting capturing preference uncertainty, choice inconsistencies, evaluation errors,

optimisation errors, etc. One way to interpret this, is to see the multinomial logit framework

as a tool to approximate the choice probabilities obtained by some decision rule other than

perfect full information comparison of all utility values U,t. The size of the E,I. (i.e., the

variance of the Eil. relative to the variance of the Uv) then determines the extent to which the

actual decision strategy deviates from perfectly rational choice based on full information.
Simpler decision strategies then lead to a larger role for the errors.

In a standard multinomial logit framework the 4. are assumed to be iid GEVCI). They

have the same variance (i.e., are homoskedastic), which. by normalisation, is set equal to

7[3/6. The interpretation of the error terms given above, however, makes it plausible that
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different choice sets can have different levels of error variance. For example, different levels

of complexity may lead to different levels of consumer choice consistency for different
choice sets, since they lead to the use of different choice strategies. This is in line with what

the results of Fischer et al. (2000) would predict. They find that if evaluation of the

alternatives becomes more difficult, ratings require more effort but still become less

consistent. We expect the same result for choice consistency. To analyse this, we will

incorporate a specific form of hetcroskedasticity: the variance of the ElI, is allowed to be

choice set specific (i.e., may depend on s).

To do this in a flexible way, we will allow each choice set s to have a separate scale

parameter X. that is inversely related to the error variance in that choice set. For our purposes,

these scale parameters are auxiliary paranieters, which are used in the calculation of the

accuracy measures later on. We thus assume that:

1. £,Fis independent of exogenous variables (X) and random coefficients (Bi,Bio),

2.    all 41. arc independent of each other

3.     EiI./As  - GEV(i)

These assumptions imply that. conditional on the random coefficients A  and Ilt, the
choice probabilities are given byi

(2.6) Pi.(c i BIO, Bi) = P(i chooses alternative c in situation sl D,<3,BA

exp(X, U I: )
.It,)

I exp(X, u V)

This reduces to the familiar multinomial logit choice probabilities if X: =  1  for all choice sets

S=I,...,S:

(2.7) P„(CIB,11,1 ,)=
exp(U„)

JIll

Xexpcul )

Here the summation is over the J(s)+1 alternatives in the given choice situation s (including

the 'none'-option). Moreover. for different choice situations. the choices of individual i arc

2 Throughout. we also condition on the exogenous variables X, without mentioning this explicitly.
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independent conditional on Ilgi, 11,. Thus the conditional probability for individual i with
choice situationss=1...., S. given B,(i. B„ to choose J(i, 1 )...., J(i,S) is:

S

(2.8) LC,(11,0,11,) = Il P„(J(i.s)111,0,11„X.).
S: 1

To identify this model with multiple scale parameters, we set Xi =  1. The location parameters

of the utility function (1},0) are normalised by excluding a constant term from XI

Estimation

We use smooth simulated maximum likelihood to estimate the model. Conditional on Bwand
4, i.e., conditional on the Uij, the likelihood contribution of a given respondent is given by

(2.8). This is a product of multinomial logit probabilities that are easy to compute.  The

unconditional likelihood contribution is the expected value of the conditional contribution,
with the expectation taken over the (joint) density of Dic, and 11„ a (K+1)-dimensional integral

for which no analytical expression can be given. This integral is approximated by a simitlated

mean based upon draws of standard normal error terms which can be trans formed into 11,t, and

Di using (2.3) and (2.4). We use T independent draws for each observation, with independent
draws across observations. T is chosen prior to estimation; the results we present are based

upon T= 50. The likelihood contribution L, =E l LC,(11,#,.P,) 1  is thus approximated by

T

(2.9) LS, = 1/TE LC,(11,0,.11,t).
1=1

where the Biot.B,t are the parameter values corresponding to the draws.

The expected value is thus replaced by a simulated sample mean of T draws. The Law
of Large Numbers implies that for large T, LS, will approximate Lt. Instead of niaxiinising
the sum of the log likelihood contributions, the sum of the log of the approximated likelihood

contributions is maximised. It can be shown that the resulting simulated maximum likelihood
estimator is asymptotically equivalent to the ML estimator provided that T-*= fast enough

(sce Hajivassiliou and Ruud 1994, for example). This implies that standard ways of obtaining
ML estimates, standard errors, etc. can be used. Since the Eu, are not simulated, the simulated

likelihood function is a smooth (differentiable) function of the parameters to be estimated.
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This has several advantages over the carly, non-smooth, simulated maximum likelihood

methods (sce Hajivassiliou and Ruud 1994).

2.2.2 Measuring Choice Set Complexity

Various studies have found that the outcome of a choice task may be affected by the

complexity of the choice situation. Different means for determining the relative complexity

of different choice tasks have been suggested. Previous studies have identified several

variables that affect complexity: the numbers of attributes and alternatives (referred to as task

variables by Johnson and Payne 1985): the level of attribute variability within the alternatives

(Shugan 1980, Fischer et al. 2000), the amount of negative correlation between attributes in

the choice set (Shugan  1980, Bettnian et al.  1990,1993), the distance between the competing

products in utility terms ( Shugan 1980). Johnson and Payne ( 1985) refer to the latter three as

context variables. Wc follow their distinction and discuss task and context based measures of

complexity separately.

These two types of measures reflect different features of complexity. If two choice

sets liave the sanic nuniber of products and the saine niiniber of attributes per product, both

will have the same task based complexity, even if attribute values differ between the choice

sets. They do not allow complexity to vary with how 'easy' or 'difficult' it is to choose

between alternatives with the same number of attributes. On the other hand, context based

measures of complexity can differ across choice sets of the sallie size, since they are based on

how consumers value the attributes of the alternatives in the choice set. Context based

complexity may or may not increase with the size of the choice set and the number of

attributes per alternative. Therefore. both types ot' measures arc required to capture clioice set

complexity.

Task based comp/exin·

The idea of describing the complexity of a choice task in terms of a set of basic cognitive

processes that need to be followed to make a choice has been suggested by several authors

such as Huber (1980), Johnson and Payne (1985) and Bettman et al. (1993). Their work

draws on Newell and Simon (1972) who suggest that choice strategies can be constructed
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from a small set of elementary information processes (EIP's). A measure of decision effort
can then be measured in terms of the number of EIP's required to select a preferred

alternative from a given choice set. Some examples of the EIP's suggested by Newell and

Simon (1972) are 'Read', 'Compare', 'Add' and 'Eliminate'

An estimate of the overall effort required for choosing from a certain choice set is

obtained by firstly tallying the number of times each EIP is used for a particular decision

process given the choice problem and then summing the total number of operations required

to analyse a choice problem. For example, a utility maximising choice rule generally requires

more EIP's than simply choosing the cheapest available product.

In this study we follow an EIP based approach to calculate a measure of the task

variable based complexity of a choice set. For each choice set we calculate a number based

on the number of EIP's required to choose the best alternative based on a utility maximisation

rule. Thus. we assign a complexity measure to each choice set based on the minimum number

of elementary cognitive processes required to choose the best alternative in this choice set.

Different operations may receive different weights in this sum, due to differences in the time

required to perform them. Since previous research has suggested that the effort differences

between EIP's arc relatively small (Bettman et al. 1990), we assign equal weights to all EIP's

in summing up over all processes.

Cc,ntext liased c<,mplexity

Shugan (1980) distinguishes three choice set based measures of choice complexity'. The

basis is equation (2.1), stating that an alternative's utility value is the sum of contributions

from all the attributes, i.e.. of the "attribute utilities". Shugan's model is specified for the case

in which the Conslimer needs to compare only two alternatives. To make this comparison, the

consumer randomly selects a number of attributes and examines the corresponding attribute

utilities of the two alternatives. The number of attributes that need to be considered for the

individual to reach a minimum confidence level that the choice is optimal is driven by the

(context based) complexity of the choice. This number will increase with choice complexity
that depends positively on the variance of the difference between utilities of a randomly
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chosen attribute and is negatively related to the absolute value of the mean difference

between utilities of a randomly chosen attribute. The variance of the difference can be written

as the sum of the variances of the utility of a randomly chosen attribute for each of the two

alternatives, minus twice the covariance between the attribute utilities of the two alternatives.

Thus Shugan shows that context based complexity is driven by three factors:

1.         Variance of a randomly chosen attribute utility for each alternative (VAR),

2.           Covariance between the attribute utilities of the two alternatives (COV),

3. (Absolute value of) Difference in utility between alternatives (DIF).

The argument given above implies that increases in VAR make the choice more difficult and

thus increase complexity, while increases in COV or DIF reduce complexity.

According to our assumptions in the previous subsection, preferences are

heterogeneous across respondents, implying that the U,1k and the three context based

complexity measures will vary across respondents. We will work with the estimated values of

the Bik for the average respondent, i.e., we will replace the 13ik by bk in (2.3). Thus the choice

model in subsection 2.2.1 allows for unobserved heterogeneity via the mixed logit structure,

but the choice set specific complexity measures we use will be those for the average

respondent. Since we will focus on the relation between choice set complexity and choice

accuracy, our measures of choice set accuracy will also be those for the average respondent

(see below).

With

(2.10) UJk = Xjkbk (attribute utilities for the average respondent),

K

(2.11) Ul =  E U Jk (total utility of alternative j for the average respondent), and
k=1

K

(2.12) p   = (1/K)X U Ix (average attribute utility),

k=I

the three context based measures for the complexity of comparing alternatives j and j' can be

written as

' Shugan also discusses the consumer's desired level of accuracy as a factor that in fluences complexity.  In our
study we assume this variable to be constant within individuals over all choice sets in the experinient.
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(2.13)
VAR = C 1/K)E(U lk - ki   )1 + C 1/K)I(U ,.x - 11, )2 .

k l k-1

(2.14) COV  - ( 1 /K) 62 ( U lk - 1, 1 )( U 1.k - Bi 1. ) . and
/-1

(2.15) DIF =IU -U ·1.

In sonic of the choice situations considered in our survey, more than two alternatives

have to be compared. In these cases. the question is which comparisons between pairs of
products the consuiner needs to make. For a choice set with J alternatives. only J-1 binary

product comparisons will be required to determine the optimal product, which is less than the

total of all possible pair-wise comparisons. The difficulty of the choice will depend on which

comparisons are made. If consumers attempt to make the fewest and simplest possible

comparisons, using an average measure will overstate true decision difficulty (c.f. Shugan

1980). lf the individual could identity easy comparisons, the least costly conibination of
comparisons required to reach the individuals particular choice would be more appropriate.

Alternatively, some authors have suggested that consumers. when facing a decision task,
quickly narrow down the set of alternatives to the top M competing alternatives and invest a

lot of effort to compare only these M products (e.g., Gensch 1987). This would imply that in

choice sets with J>2 alternatives, the decision-maker reduces the choice set to the M<J
most preferred alternatives without much effort. and only once this sniall set of alternatives is

identified. the costly compensatory comparison process is carried out. This smaller set cannot

be observed directly by the researcher, but should contain at least the two most attractive

alternatives. The appropriate measure would then be the sum over the pair-wise comparisons

made between the M alternatives in the 'most preferred' set. However, it cannot be observed

which comparisons the consumer makes. Therefore, in this study we calculate the context

based complexity measures using the two most attractive alternatives in the 'most preferred'

set (M = 2) because those two should always be compared by the respondent. In our
empirical analysis we checked the sensitivity of our results to this assumption and calculated

measures based on the average and sum of all possible comparisons as well as the minimiim
required number of comparisons for choice sets with more than two alternatives. We found

that the results were robust with respect to our choice of measure complexity (Appendix 2.A).
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2.2.3 Measuring Choice Accuracy

When an individual is faced with a choice between J products we assume that he or she will

attempt to choose the product that provides the highest utility. If this particular product is in

fact chosen, then it seems clear that this choice could be referred to as 'accurate'. Likewise.

choosing a sub-optinial good could be referred to as 'inaccurate'. However. rather than a

binary measure ot whether or not the product with the highest utility was chosen, we prefer a

continuous measure that in the case of an incorrect choice captures additional infurmation

about how close the chosen product was to the optimal product.

Johnson and Payne  ( 1985) study  the  relation  between  EIP's and accuracy  in  a

simulation study of different choice rilles. For a given choice problem, they find that decision

processes requiring more EIP's will lead to higher choice accuracy. To measure the

performance of tile various decision processes used iii their simulations, they define several

measures of accuracy of choice heuristics, two of which we adapt for our purposes:

ACC: The expected value (EV) gain of the chosen product following the chosen decision

strategy. over random choice. relative to the EV gain of the optimal choice over

random choice.

PCC:   The gain in the percentage of correct choices following the chosen decision strategy

over random choice. relative to the gain in this percentage of the optimal choice over
·1random choice

Both these measures allow for different choice set sizes by comparing the EV of the chosen

product and the optimal product with the probability under completely random choice. Using

the model assumptions and the notation in the previous subsections. the first measure is

expressed as follows.

EV -EV
(2.5) ACC - 11   lel I.Illl| ) n

EV -EV
IIi..,1 r iii,6 ,iii

where

(2.5) EVrandom = (1/J)SUI (average utility).

1=l
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E\/,iptimal = maxj \/1, (optimal ittility), and

EV„,i,del =X   iexp(k'U     U I   (probability weighted mean utility).

-1    X eNP(k, U   )

The second measure is defined as:

(2.5) PCC =   PCC ,„„,    -
PCC

randurn

PCC - PCC"Fll.11 E-&..'

where

(2.5) PCC,Indoni = \ill

PCCoptimal =  I. and

exp{max, 1 (XU 1 }}
PCCmodel =

t exp(k. U,)

The accuracy measures ACC and PCC depend on the utility values U) of the
alternatives in the choice set. The model in subsection 2.2.1 implies that preferences are

heterogeneous. implying that different respondents have different UF Wc will work with the
estimated U  for the average respondent. This is in line with the complexity measures
introduced in the previous subsection, which are also based on the preferences of the average

respondent. This two-stage approach allows us to investigate the relationship between choice

complexity and choice accuracy based on measures that express consumers' performance

relative to optimal and random behaviour. Therefore these measures can bc gencralised over

choice sets of different composition, something which is not possible for the error variance

measure theoretically suggested  by de Palma  et  al.  ( 1994)  and empirically estimated  by

Dellaert et al. ( 1999) and Haaijer et al. (2000).

Johnson and Payne (1985) use the percentage of correct choices directly as a proxy for accuracy. Our
definition seems more in line with the other accuracy 111easure
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2.2.4 The Relationship Between Choice Set Complexity and

Consumer Choice Accuracy

Based on previous results in related research, we expect that choice accuracy depends on

choice complexity and more specifically, that the higher choice complexity. the lower choice

accuracy. In particular, Fischer et al. (2000) find that consumer preference responses become

less accurate (as well as taking more effort) as preference judgement tasks become more

complex and Dellaert et al. (1999) find that logit model error increases when price based

utility differences increase. Although Haaijer et al. (2000) find conflicting results regarding

the relationship between effort and accuracy their findings may potentially be explained by

differences in strategies between respondents because they do not distinguish between

respondent and task based variations in effort. Specifically, Fischer et al. (2000) show that

between respondents and for a given task. effort is positively correlated with higher

judgement accuracy (i.e., respondents who take more time to respond, also respond more

accurately). On the other hand, for a given respondent and for tasks of varying complexity.

effort is negatively correlated with judgement accuracy (i.c., the more complex tasks require

more effort but still lead to less accurate choices). Since our focus is on within consumer

relationships between choice complexity and accuracy, we expect negative effects of

complexity on accuracy.

The expected effect of the complexity measures on accuracy then depends on the

direction of their relationship with complexity. Increases in EIP's and VAR are expected to

increase complexity. A higher EIP value implies that greater effort is required because of the

increased number of comparisons necessary to get to the best option (Bettman et al.  1993),

therefore complexity increases with EIP's. Similarly, if the variance between the utilities of

the different attributes of an alternative increases. the complexity of the choice also increases

(Shugan 1980, Fischer  et  al..  2000).  Increases  in  COV  and  DIF  on the other hand  are

inversely related to complexity. The higher the covariance between the attribute utilities of

different alternatives in the choice set. and, the further apart the utilities of the alternatives in

the choice set, the easier it is to determine the alternative with the highest utility (Shugan

1980). Thus, based on the complexity effects of the different measures we expect choice

accuracy to decrease with increases in EIP's and VAR and to increase with increases in COV

and DIFF.
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To investigate the empirical validity of these hypothesised relationships, least squares

regressions arc performed. The units of observation are the 56 separate questions in the

survey. The dependent variables are the accuracy measures for the average respondent,

discussed in subsection 2.2.3. The independent variables arc the complexity measures for the

average respondent. as discussed in subsection 2.2.2.

2.3 Empirical Analysis

2.3.1 Data

A conjoint choice survey was designed to empirically examine the impact of shifts in

complexity on consumer choice accuracy. Consumers were asked to choose between various

hypothetical yoghurt products. each described by up to 7 attributes: Price, Percentage of fruit,

Biological cultures (yes/no), Fat content (percentage), Crcamy flavour (yes/no), Recyclable
Packaging (yes/no). and All natural ingredients (yes/no). The survey varied the level of
complexity by introducing several different versions. The preamble to the survey asked

respondents to imagine that they were having lunch in a self-service restaurant and deciding

which yoghurt to buy for dessert. They were instructed that yoghurts were identical on all

attributes not mentioned in the alternatives and that they were available in all their favourite

fruit-flavours. Respondents also had the base option of not choosing any of the yoghurt

products in the choice set.

The survey was divided into 2 parts of 8 choice sets each. The first part consisted of 8

choice sets of two alternatives and the base of not buying either of the alternatives. The

alternatives of the choice sets were constructed based on a randomised main effects design

using only 23 fraction of a 27 full factorial design with its fold-over (see Louviere and

Woodworth  1983). This first  part  of the survey  was  identical  for all respondents.  For  the

second part of the survey respondents were randomly assigned to one of 6 treatment

conditions. Respondents in each of the 6 groups were presented with a further 8 choice sets.

Choice sets in the different conditions were constructed so as to vary systematically their EIP,

VAR, COV and DIFF scores. In particular, differences in complexity were created by altering

the number of attributes (condition 1 ), the number of alternatives (conditions 2 and 3), both
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the tiumber of altei natives and covariance between alternatives (condition 4), and the relative

difference iii attribute levels in the choice sets (condition 5). One control condition (condition

6) identical in structure to the choices in the first part of the survey was included also. Table

2.1  summarises this structure, while table 2.2 provides the attributes and their levels in the

different conditions.

Table 2.1: Description of choice task per experimental condition

Nttmhe,· 0/ Number (4 Ntimber (4 11 ihz,te 191,<4 Nitmher 01

Chc,ic·e sets atti·ihittes alteriiatires rariati(}11 (,hse,·vations

Base                 8              7              2 Base level 909 (all)

Condition 1          8              3              2             Base level 153

Condition 2           8                7                4 Base level 163

Condition 3          8               7               6 Base level 137

Condition 4            8                 7                 3 Base level 164

Condition 5            8                 7                 2 High difference 145

Condition 6           8                7                2 Base level 147

(control)

Choice sets in condition I of the second part were constructed on the basis of a 23 full

factorial design in 4 profiles with its fold-over. This 4-profile design was repeated once in a

different order to construct 8 choice sets. Choice sets in conditions 2 and 3 were constructed

starting from the same 23 fraction of a 27 full factorial as used in part one. Additional

alternatives (3 and 5) were added to the choice sets by randomly assigning alternatives from

this same design. Strictly dominated alternatives were swapped with alternatives assigned to

other choice sets. Condition 4 differed from the previous two in that one dominated

alternative was added to the choice sets used in part 1. These alternatives differed from one of

the alternatives in the choice set in terms of only one of the 7 attributes, which was set at the

less attractive level. Choice sets in conditions 5 and 6 were constructed identically to those in

part J.

Respondents in the survey were participants in the CentERclata panel, an ongoing

consumer panel in The Netherlands run through Tilburg University. The panel consists of

approximately 2000 individuals and is largely representative of the Dutch population in terms

of age, sex, income, education and geographical location.  It runs on a weekly basis and
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respondents participate voluntarily. Respondents were screened on being yoghurt consumers.
Of the 978 members of this subgroup a total of 909 completed the survey successfully.

Table 2.2: Attributes and levels used in the experiment

Des,·ri),timi ot le,·els

.4111-ihiite Present in Base c·<,liclitioil High cliffi,i·ence coitilitic,n

C'()11 Littic),IS

Price 1-6 NLG 1.9() NLG 2.10

NLG 1.5() N LG  1.30

Fruit content 1-6 10% fruit 15%  truit

5% fruit 5'M, fruit

Biological 2-6 Contains biological cultures Contains biological cultures

cultures

Contains no biological Contains no biological
cultures ailtiires

Artificial 2-6 Contains artificial flavout ing Contains artificial

flavouring flavoitring

Contains no artificial Contains no artificial
flavouring Ilavouring

(all natural) (all natural)

Crearny taste 2-6 Creamy taste Creamy taste

Regular taste Regular taste

Fat content 1-6 1).5% fat content 0.5% fat content

3.5% fat content 7.5'7, tat content

Recyclable 2-6 Yoghurt container is Yoghurt container is

packaging recyclable recyclable

Yoghurt container not Yoghd container not
recyclable recyclable

2.3.2 Results

To calculate the appropriate measures of choice accuracy and complexity. first the
heteroskedastic random coefficients model (subsection 2.2.1) was estimated using data from
all conditions in parts 1 and 2. The model allowed for heterogeneity in taste between
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respondents as well as different random error scales (X) for all choice sets. The estimates of

the main effects and the standard deviations of the random coefficients are presented in table

2.3. All main effects were significant at the 95% confidence level and had signs as expected.

The standard deviations of all random coefficients were rather accurately determined, with

their confidence intervals bounded away from zero, thus indicating significant heterogencity

across respondents.

Table 2.3: Choice model estimates*

Pwonde Estinlate t-\ allie

Intercept -2.611 -11.982
Price -0.974 -11.288
Fruit content 0.154 11.794

Biological cultures ().292 9.028
Attificial flavoiti'ing -().889 -11.866

Creamy taste ().365 1().411
Fat content -().385 -12.762

Recyclable packaging 0.568 11.015

Standard cle,·iatic),is cit
random coeflicients

SD intercept -1.670 -12.629
SD price -0.444 -8.684
SD fruit content ().074 8.655
SD biological cultures 0.113 3.230

SD artificial flavouring -().575 -11.618

SD creamy taste ().469 11.041

SD fat content -0.286 -12.847
SD recyclable packaging -0.123 -4.102
*Results for heteroskedastic random coefficients model. for estimates
of error scale differences between choice sets (2.8) sce values of X in
table 2.4, log-likelihood - -11831.56, BIC = 1 1616.97.

The error scale differences over all choice sets were also estimated and are presented

in table 2.4. A likelihood ratio test of the model with and without these error scale estimates

showed that the effect of the error scale estimates was highly significant (a Chi-squared test

value of 388.72 at 55 degrees of freedom), implying that there were indeed differences in

error between choice sets. This result is in  line with earlier results by  Dellaert et al.  (1999)

and Haaijer et al. (2000) who also observed significant variations in error scales over choice

sets of different complexity.
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Table 2.4 also presents the values of the different complexity measures calculated for

each choice set in the different choice conditions. There is considerable variation in the value

of these measures as was intended through the structure of the choice experiments in the

survey. The correlations between the measures were all below 0.40 except for the correlation

between VAR and ('OV, which was 0.66.

Table 2.4: Complexity measures and scale parameter estimates

Cite,ice set EIP's         J K K4R COV DIFF           X

& Oziestio„

Base 1        41      3 7 2.352 ().816 ().()07 1.000'

Base 2           41         3 7 2.356 (). 814 0.001 1.104

Base 3        41      3 7 2.354 ().815 0.003 1.140

Base 4        41      3 7 2.308 (). 838 0.()97 1.148

Base 5        41      3 7 2.349 0.817 0.013 1.13

Base 6                 4 1             3 7 2.141 0.921 t).430 0.910
Base 7        41      3 7 2.216 0.884 0.279 0.972

Base 8        41      3 7 2.355 0.814 0.002 1.208

1.1           17     3 3 4.247 1.807 ().378 1.509

1.2          17     3 3 4.004 1.928 ().863 1.603

L3          17     3 3 4.436 1.713 0.000 1.528

1.4                        17            3           3 4.383 1.739 0.106 1.563

1.5 17     3 3 2.167 0.797 ().087 1.383

1.6 17     3 3 2.211 0.776 0.000 1.811

1.7 17 3 3 2.109 ().827 ().205 1.260

1.8 17     3 3 1.917 0.922 0.587 1.569

2.1 83      5 7 2.460 1.193 ().()02 1.604

2.2                     83           5          7 2.178 ().771 0.017 1.704
2.3            83      5      7 2.676 1.224 0.043 1.374

2.4 83     5 7 1.433 0.587 0.013 1.662

2.5 83     5 7 2.278 1.103 ().004 1.316

2.6 83      5 7 2.115 0.732 ().()00 1.881

2.7 83      5 7 2.062 0.945 0.099 1.141

2.8                       83            5           7 2.860 1.294 0.000 1.919

3.1 125 7          7 2.959 1.286 0.001 1.596

3.2 125     7 7 1.894 0.833 0.012 1.540

3.3 125 7      7 2.292 0.990 ().089 1.355

3.4 125     7 7 1.610 0.714 ().()30 1.523

3.5 125     7 7 2.676 1.224 0.043 1.288

3.6 125     7 7 2.214 ().987 0.000 1.611

3.7 125 7           7 2.278 1.103 0.004 1.521

3.8 125     7 7 1.433 0.587 0.()13 1.198

4.1            62      4      7 2.105 0.901 0.245 1.198

4.2 62     4 7 1.547 0.651 0.041 1.692

' Not estimated. but normalized to 1.
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4.3 62     4 7 2.355 0.814 ().()()2 1.576

4.4 62 4 7 2.544 1.262 ().()03 1.212

4.5 62     4 7 2.356 0.814 0.001 1.622

4.6                     62          4 7 2.354 0.815 0.003 2.265

4.7                   62         4         7 2.629 1.237 0.026 1.407

4.8 62     4 7 2.352 0.816 0.007 1.698

5.1                     41           3 7 4.271 0.959 0.085 1.204

5.2                       4 1             3 7 4.194 0.997 0.240 0.616
5.3                   41          3         7 4.314 ().937 0.0()0 1.154

5.4                    41           3          7 4.179 1.004 0.269 1.114

5.5                     41           3          7 4.215 0.987 0.198 ().564
5.6                     41           3          7 3.686 1.251 1.256 ().686

5.7                     41           3          7 3.945 1.122 0.739 0.298

5.8                   41          3         7 4.313 0.937 0.001 1.165

6.1                     41           3 7 2.141 0.921 0.430 0.94()
6.2                     41           3 7 2.308 ().838 0.097 1.026

6.3                     41           3          7 2.355 0.814 0.0()2 1.182

6.4                       4 1             3 7 2.216 ().884 ().279 0.992
6.5                     41           3 7 2.356 0.814 0.001 1.342

6.6                     41           3          7 2.354 0.815 0.003 0.849
6.7                       4 1            3 7 2.349 0.817 ().013 1.060
6.8 41 3 7 2.352 0.816 0.007 1.226

The complexity measures were then regressed on the ACC and PCC scores calculated

for each choice set. These scores were also based on the logit model estimates in table 2.3

and the values of X in table 2.4 (sce figure 2.1  for a summary of the model and measurement

structure). The results of these two regression analyses are presented in table 2.5.  For the

ACC measure all parameters for the context based complexity measures were significant and

had signs as expected. Accuracy decreased with VAR (variance of the attribute Utilities in the

choice set alternatives) and increased with COV (covariance between the attribute utilities in

the choice set alternatives) and DIF (difference in utility between the alternatives in the

choice set). The EIP complexity measure however, was not significantly different from zero.

For the PCC measure the estimates for the context based complexity measures also had signs

as expected but only the parameter for DIF was significant. EIP again was not significant.

To test the sensitivity of the results to the definition of our proposed measures of

VAR, COV and DIF, we also ran regressions using some alternative specifications for these

measures. In particular, we calculated measures based on the average and sum of all possible

comparisons as well as the minimum required number of comparisons per choice set. The

results were identical in sign and similar in terms of significance for all measures (Appendix

2.A).
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Table 2.5: Accuracy niodel estimates: ACC and PC'C'*

C  (,/ls/(i/,t F./P's VAR ('01 DIF .Adi. Rl

ACC 0.55 ().()() -0.07 ().24 0.32 0.408

(7.47) (0.89) (-2.69) (3.24) (4.54)

PCC 0.47 ().()0 -0.06 0.10 0.7() 0.437

(3.92) (0.()7) (-1.42) (0.82) (6.14)

* OLS regressions based upon 56 observations: 1-\·alues in parentheses.

Thus across the two measures we observe that context based complexity affects

accuracy in a similar way to the effects observed for consumer judgements by Fischer et al.

(2000) and to those suggested by Shugan (1980) These two studies also stressed the effects

of context based aspects of complexity. The expected effects of task based complexity on

accuracy are not supported by our study.

More generally, our findings suggest that consumers adapt their decision strategy in

response to shifts iii task variables. but not in response to shifts iii context variables. Tliey

may base their decision on how much effort to put into the choice process on task variables

(number of alternatives and attributes) rather than on context variables.  If consumers increase

their effort sufficiently to keep the accuracy level constant when task based complexity is

increased but not if context based complexity is increased, this behaviour can explain the fact

that accuracy is affected by context variables but not by task variables. This explanation is

also in line with Johnson and Payne's (1985) observation that the effort involved in following

a certain choice strategy depends on task variables only, while given effort, level of accuracy

is driven by context effects.

2.4 Discussion and Conclusion

We have investigated the relation between choice set complexity and choice accuracy. using

conjoint choice data that varied in terms of choice context. To distinguish choice inaccuracy

from consumer heterogeneity, we have used a mixed logit framework. We have assumed that

heterogeneous preferences are respondent specific and thus do not vary over the questions for
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a given respondent. while choice errors are independent over the questions. Thus our

definition of choice errors also includes inconsistencies due to choice uncertainty. By

including question specific variances of the choice errors, we allow for accuracy variation in

a flexible way. To our knowledge. we are the first to integrate these complexity measures in

an empirical mixed logit framework of conjoint choice responses. On the other hand, there

have been several simulation studies on the relation between complexity, effort and accuracy,

and there is some recent empirical work on inaccuracy or preference tincertainty in

judgement ratings data, but not in choice.

Both our main results are in line with the existing literature. We find that context

based complexity measures significantly relate to choice accuracy with the expected signs.

On the other hand, we find no effect of task based complexity on choice accuracy. An

interpretation of this result is that larger task based complexity is fully compensated by

increased effort, while larger context based complexity is not. The current data do not allow

for a direct test of this. Future work could Lise data on effort (such as the time to make the

choices) to extend the empirical analysis (sce chapters 4 and 5).

A potential implication of our findings for marketing management may be that brands

that are positioned closely to one another (DIF is small) and for which product attribute

utilities arc not strongly correlated (VAR is large and/or COV is small) may be less well
equipped to benefit from product or price improvements. The reason is that consumers'

choice responses to those changes are found to be less 'accurate'. i.e., they arc less well in

line with consumers' underlying preferences. These inaccuracies may be of benefit to other

brands which do not improve and which may find that they can maintain a more stable

market share than if consumer choices were fully accurate expressions of their preferences.

On the other hand brands which can distinguish themselves in terms of utility (DIF is large)

and that have a consistent set of attributes (VAR is small) can gain additional leverage on

their preferential position, because consumers choose these brands more accurately.
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Appendix

2.A: Alternative Complexity Calculations

Table 2.6: Accuracy model variations: ACC and PCC*

Coniparisons Used fi,r Dependent Constant Elp'x VAR Col'  DIF  Adl Q
Conit}lerity Calculations Vurial,le

Comparison of top two ACC 0.55 0.00 -0.07 0.24 0.32 ().4()8

goods (7.47) (0.89) (-2.69) (3.24)  (4.54)

PCC 0.47 0.00 -().06 0.10 ().7() 0.437

(3.92) (0.07) (- 1.42) (0.82) (6.14)

Sum of comparisons ACC 0.67 -0.()() -().06 ( } .1 2 0.29 ().524

with best good (19.95) (-0.47) (-2.16) (1.81) (6.06)
PCC 0.51 -().00 -().03 -().01 0.57 0.578

(9.75) (-0.35) (-0.76) (-0.12) (7.73)

Aveiageof comparisons ACC 0.51 0.()() -().()7 0.27 ().36 ().499

with the best good
(5.71) (1.00) (-2.58) (2.34) (5.08)

PCC 0.46 -0.00 -().05 -0.01 0.8() ().562

(3.36) (-0.18) (-1.11) (-0.05) (7.28)
Sum over all ACC 0.64 0.()() -0.10 0.21 0.44 0.503

comparisons (14.20) (0.58) (-2.02) (1.78) (5.43)

PCC 0.53 -0.00 -(}.01 -0.00 0.77 0.393

(6.36) (-0.63) (-0.14) (-0.00) (5.14)
Average of all ACC 0.51 0.00 -().13 ().45 0.73 0.469

coillparisons
(6.10) (1.25) (-2.39) (3.00) (5.31)

PCC ().41 -C).(}0 -0.09 ().22 1.40 0.451

(2.88) (-0.05) (-1.02) (().89) (6.10)

(Average of all ACC 0.64 -().00 -0.13 ().29 0.76        ().575

comparisons)x(j- 1 ) (19.81) (-0.08) (-2.62) (2.63) (7.3(J)

PCC 0.47 -0.00 -0.08 0.12 1.31 (). 514

(8.27) (-0.16) (-(}.94) (0.64) (7.13)

* 0LS regressions based upon 56 observations, t-values in parentheses.



Chapter 3

Combining and Comparing Consumers'

Stated Preference Ratings and Choice

Responses

In this chapter we develop and test an ecc,nometric mc,del fc,r i·imibining choice and

pref&rence ratings data collected from the same set of individitals. Choice data are modelled

lising a multinomial logit ffamework. while preference data are nic,delled using an ordered

response equation.  Individual heterc,geneity is allowed for via random coellicients providing
a link between the choice and ratings data. Parameters are estimated by simillated maximum

likelihc,od. An application of the model to consumer yc,ghurt choke in The Netherlands found

that ratings based pref ,rence estimates difier significantly from choice based estimates. but

the correlation between random coefficients driving the two is very strong.
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3.1   Introduction

When modelling consumer preferences in the random utility framework a researcher has a

number of econometric techniques available. With revealed preference (RP) data, i.c., actual

consumer purchase data, the techniques arc often determined by the nature of the available

data. However, if stated preference (SP) data, which represent consumer decisions in
hypothetical market situations, are to be collected, the researcher has the flexibility to choose

which modelling approach to apply and to design choice experiments in line with this

approach. In the marketing and transportation research literature, conjoint analysis is a

frequently applied SP research technique, which encompasses analysis of three types of

consumer preference data: ratings, rankings and choice data (e.g., Ben-Akiva et al. 1992,

Bradley and Daley 1994, Haaijer  et  al. 1998, Louvicre  et  al. 1993, Louviere  1994).  The

models used to estimate preferences for these data types range from OLS to ordered probit or

ordered logit for ratings and multinomial probit or logit for the data on choices and rankings.

Other SP methods of preference elicitation. more commonly found iii the field of
environmental economics, are contingent valuation (CV) methods that address individuals'

willingness to pay (WTP) for certain environmental policy changes (c.g., Adaniowizc et al.

1994, Carson et al. 1996) Again there are a number of different models that Support

estimation of preference models based on CV type response data which may be implemented

depending on the type of data collected, for example, single-bounded, multiple-bounded and

open-ended approaches to measuring WTP.

Although the approaches differ considerably. they are generally wiclded for the same

purpose of eliciting consumer pre ferences, and, whilst methodology changes, for the same set

of underlying preferences, utility estimates based on any of these models would ideally be

statistically indistinguishable (after possible correction for task based biases). Therefore, if

two differing types of data sets relating to the same consumers' preferences are available, an

efficient use of the available data suggests that we should be able to estimate the same

preference parameters from both sets simultaneously. Herein lies the concern of the current

work:  providing a model enabling estimation of the same consumers' utility functions from

different types of stated preference data and to analyse the differences in utilities between

response modes if they occur. In particular, we examine two of the most commonly used SP

responses: preference ratings and choice data.
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Research interest in combining sources of preference data has recently increased (e.g.,
Hensher et al. 1999). There are various potential advantages to this, such as the opportunity to
exploit the various strengths and weaknesses associated with each data type and the
possibility to test whether the decision processes underlying responses to the data types are

the same. If this hypothesis is rejected, a joint model can be used to analyse where partial

differences between consumer utilities driving ratings and choice come from, and to trace

question specific psychological factors that bias the utility indexes. Data pooling may also be

required for implementation of new and more complex models recently developed in
consumer research, such as niodels for examining the dynamic aspects of constinier

processes, where panel data may be required (Louviere et al. 1999).

Furthermore, if different data sets arise from identical underlying consumer utilities,
joint estimation will provide more efficient results. Another goal ofjoint estimation therefore

is an efficiency gain. If both ratings and choice data contain useful information on the
underlying preferences of respondents, using both of them will help to get more accurate
estimates of the parameters driving the utility function. Specifically, when comparing ratings

and choice data, ati advantage of ratings data is that it enables unbiased estimation of
parameters at the individual level through the use of ordinary least squares. Disaggregate

estimation is less desirable with choice data, as the most commonly used inultinomial logit

(MNL) model is biased for a small number of questions per respondent and estimates may
even be infinite (Bunch and Batsell 1989). Thus cost-reduction may also be achieved in data

collection if fewer ratings than choice questions are required to get to the same level of
statistical reliability, and if respondents find it easier to respond to additional ratings

questions than additional choice questions.

The aim of this chapter is to provide a model, consistent with random utility theory,

for combining data on SP ratings and choice responses for the same individuals. In doing so,

we do not treat the data sets as independent, but allow for correlation between the choices and

the ratings of the same respondents. We model the ratings data with an ordered probit
equation and the choice data via the multinomial logit model. Our modelling approach allows

for heterogeneity across preferences in the population of consumers through random

coefficients. This is advantageous because it allows for correlations between the choices and

ratings for the same individual. According to random Utility theory, the same consumer utility



40                                                                                             C'oinbinifie Ratines and Choices

function should determine the outcomes in both data sets, and thus the preference parameters

driving choice and ratings data should be identical. This leads to testable restrictions on the

parameters iii the ratings and choice parts of the model.

We test the validity of this assertion. using data on yoghurt choices and ratings from a

large consumer panel. We find that although consumers' preference ratings and choices arc

significantly correlated, there arc significant differences in the standard deviations and some

of the nieans of the random coefficients. Possible explanations for the observed differences

drawn from the economic and psychological literatures are tested and discussed.

The remainder of the chapter is organised as follows. Section 3.2 provides a brief

review of the literature. Section 3.3 introduces the model. Data and results arc given in

section 3.4. Some potential psychological and economic explanations for our findings arc

presented in section 3.5. Section 3.6 concludes.

3.2. Literature Review

Previous research on comparing SP ratings and choices has focused mainly on the predictive

performance of models estimated on the different types of responses.   In particular, Elrod et

al.  ( 1992) found  that  ratings and choice data generally  perform  equally  well iii terms  of

prediction at the aggregate level.   The few studies examining the equivalence of the estimated

preference parameters were predominantly done in the area of environmental economics. For

example. Boxall et al. (1996) compared estimation results from choice data to those based on

a CV WTP data set. They compare the welfare estimates based on the two data sets and find

that the CV WTP estimate is over 20 times higher than the alternative SP choice experiment

suggests. The authors suggest the draniatic difference could be due to respondents

misunderstanding the scenario. or a bias due to 'yea-saying: but believe that it is more

probably a result of the respondents ignoring substitution possibilities in the CV

questionnaire. Another study comparing data based on different elicitation methods is

Cameron et al. (1999) who combine data arising froni one RP choice, three SP choice tasks.

one SP rating task and two WTP tasks. administered to Seven independent samples. Their

results indicate that once scale differences are allowed for. the hypothesis of equivalence of

underlying utilities cannot be rejected across the choice and rating data sets, but do differ
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between the willingness to pay responses and the other responses. Likewise, Boyle et al.
(1996) compare SP choice with WTP responses using three independent samples and find

differences iii scale between all data sets and differences iii (relative) mean parameter

estimates between two of their three data sets.

Other comparisons of preference elicitation methods have focused on the comparison

of choice based models. A distinction can be made between papers that combine RP with RP

or SP with SP (Morikawa 1989. Hensher and Bradley 1993, Swait et al. 1994) and those

combining RP and SP (Louvicre et al. 1993. Adamowicz et al. 1994. Bradley and Daley

1994). Both streams examine the hypothesis  that consumer utilities underlying the pooled

choice data sets are identical. The majority of these studies have found that after correcting

for scale differences in error variance, the hypothesis of coninion preferences is not rejected.

In summary, the empirical evidence to date suggests that within a given response

format, consumer utilities arc mostly stable, but that there may be biases associated with

different survey response formats causing differences in response and/or utilities. especially

between WTP and choice data responses. Thc difference between SP ratings and choices

however, is not as well explored. Predictions on hold out consumer choice tasks based on SP

ratings and choices do not seem to bc seriously affected by response differences (Elrod et al.

1992). Also, after correcting for scale differences Cameron et al. ( 1999) could not reject tlie

hypothesis of equal parameters underlying SP ratings and choice.

However, to date no cconometric model has been proposed to combine and compare

consumer ratings and choice data that allows for correlation between observations from tlic

same individual. This limits the interpretation and testing of utility estimates based on SP

ratings and choice, because individuals' responses to the two types of SP tasks cannot be

integrated.  it also limits possible efficiency gains both in terms of statistical CS ti matioil

efficiency and in terms of data collection.  Furthermore, developing insights into complex

consumer behaviour may require collection of multiple data types of the same individual iii

which case models allowing for individual responses to be correlated will be useful also.
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3.3 Modelling Consumer Stated Preference Ratings and

Choice Responses

In this section we present the econometric model to analyse consumers' SP ratings and choice

data. We address issues of identification and scaling between models based on ratings and the

choice data (cf Swait and Louviere 1993). For clarity of exposition, we first discuss the

(more intuitive) model of consumer choice and then extend our model to include rating

responses. We use the following notation:

i               respondent (i=1,...,N); N  is the total number of respondents

k             attribute (k=l,...,K); K is the total number of attributes

s choice situation (s=1,...,S); S is the total number of choice situations

J            alternative (j=0,1....,J(s)); J(s) is the number of alternatives in choice situation

S

J total number of different alternatives across all choice situations

Xj = (Xll,···,XjK)' vector of attributes of alternative j; Xi does not include a constant.

3.3.1 Model for Choice

Let the utility of alternative j  for respondent i be given by:

(3.1) Uij= XJ'Iii j=1,...,J

The  vector of slope coefficients Bi=(Bil,· · ·,BiK)'  may vary across respondents. It reflects

unobserved heterogeneity in the marginal utilities of the attributes. Let alternative j=0 be the

so called 'none'-option of not choosing any of the alternatives j. Its utility to respondent i is

given by

(3.2) Uio = Bio

The 'none'-option differs from the other alternatives in the sense that it does not have any

attribute values. An equivalent way of modelling this utility would be to normalise the utility

of the numeraire to 0, and add a respondent specific base level utility (which does not vary

over attributes or alternatives) to the utility values of all the other alternatives.
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The 11, and Dic, are treated as random coefficients, using the following specification:

(3.3) Bik =bk + u,k, k=0....,K,

(3.4) U, = (Uit),Uil,·..,U,K) - N(O,fl)

The unobserved characteristics of respondent i enter through u,k. We assume that the ulk are

drawn  from  a (K+ 1)-variate normal distribution  with  mean zero.  Note that  11,  is  respondent

specific but not choice situation or alternative specific. lt is thus assumed that the same 11, is

used by respondent i in all choice situations. The parameters in the (K+1)x(K+1) matrix fl

are to be estimated. For computational convenience, we will assume that fl is diagonal, so

that only (K+1) standard deviations (ek) need to be estimated. Since the random coefficients

Bio and B, (or the u,k) do not vary with choice situations or alternatives, and since they are

independent across individuals, the correlation structure of choices across individuals, choice

situations, and alternatives identifies the variances of the random coefficients.

In constructing a model for choice probabilities, we follow the usual multinomial

choice framework in that choices are based upon the sum of utility values lIli and errors E,I.:

(3.5) Up*=U +E j=0.....J(s). s=l,...,S/1         9

Respondent i chooses alternative c in choice situation s if and only if U,c.* 2 Uti.* for all j  in

the given choice situation. We assume that:

1.        41: is independent of exogenous variables (X) and random coefficients (Bi.B,(1 ).

2.        41, - GEV(I), and

3.        All E,j. are independent of each other.

These assumptions imply that, conditional  on the parameters B,t, and  11, 1, we get the familiar

multinomial logit choice probabilities:

(3.6) P„(CIB,C),11,) = P(i chooses alternative c in situation sl B,ti.11,) =
exp(U.)

1(h)

I exp(u ")

Here the summation is over the J(s)+1 alternatives in the given choice situation s (including

the 'none'-option). Moreover, for different choice situations, the choices of individual i are

1 Throughout. we also condition on the exogenous variables X, without mentioning this explicitly.
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independent conditional on B,t),11,. Thus the conditional probability for individual i with choice

situations s = 1...., S, given B,t'.B'. to choose J(i, 1 )..... J(i,S) is:

(3.7)                               LC : (11 1<, '11,) =  ][ I  P:.(J (i,s)    D #,, [1,)

Nornialisation and identificatic,n

As usual. the scale of the utility function is normalised by a specific choice of the scale of £4,

This is the same as in a standard logit or multinomial logit model. The location parameters of

the utility function (Dc ) are normalised by excluding the constant from Xi. As a consequence,

all parameters determining the distribution of the random coefficients are identificdl

3.3.2 Model for Ratings

We refer to a task as a SP ratings task i f an individual assigns a score on a scale (graphically

or numerically) to a product, indicating the individual's preference for that product. SP

ratings tasks differ from choice tasks in several respects. From the modeller's perspective,

two important differences are that ratings responses are numerical or ordinal in nature,

whereas choices are nominal, and that ratings are asked separately for each product, while

choices often involve trade-offs between multiple products. To make the theoretical link

between SP choices and ratings responses we assume that the ratings answer is based upon

comparing the utility value of product j, (UU)' to the utility of the numerairc (i.c: not buying

the product) (Uic)). We will show below that this assumption is plausible given the wording of

the ratings questions in our survey. Thus, we assume that an error free rating would be based

upon U,j - U,0. Analogously to the error terms £,1. in the choice model, we allow for a random

error term, v,i, and assume that the observed ratings are based upon

(3.8) UU lum+ VIJ

We assume that the error terms LS  are mutually independent. independent of the exogenous

variables. and independent of all other error terms in the model. Moreover, we assume they

2 It would also be possible to add alternative specific error terms which are independent across alternatives and
individuals. but remain the same for a given individual and alternative across choice sets  In our empirical
work. we included these effects. but found that they did not play a significant role.
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are all drawn from the same normal distribution' with nieati 0 and variance 6,2  The v,1 can be

seen as evaluation errors on the ratings. Consumer heterogeneity enters through U,1. i.e..

througli the random coefficients 11,0 and B, Correlation between choices and ratings comes in

through these random coefficients. It therefore seems reasonable to assume that the v,  are
independent of the GEV(1) errors Eli. in the choice evaluations.

Often, rating responses are grouped in classes, either due to a categorical response

scale introduced by the researcher or by the respondents' natural tendency to prefer certain

numbers over others (c.g., 10,20,30, etc). In what follows, we treat the observed ratings as

an ordered categorical variable with R possible outcomes. say r-1, . . . ,R.I f the  original

ratings variable in the data is continuous, we first summarise it into a categorical variable
before applying our model. We will come back to this below in discussing our data. We thus

use an ordered response specification to model in which category the ratings are. similar to an

ordered probit model. There is no reason why the scale of the utility function in the choice

part (which is determined by normalising the variance of the error terms in the choice part)

would be the same as the scale of the ratings. Instead. it seems reasonable to allow for an

unknown monotonic (possibly non-linear) transformation that transforms a utility index into a

rating. This can be achieved iii a flexible and simple way, by allowing for unknown bounds
of the categories in the ordered response model.

To be precise, we assume that the ratings on a continuous scale underlying the

categorical ratings are based upon the following unknown strictly increasing function g of the

index in (3.8).

(3.9) R,1* - g(U,1-U,t,+vII)

We assume that g is the same for all respondents. As will be shown below, the assumption is

needed to get the tractable ordered response niodel with fixed category thresholds. The

assumption of fixed category thresholds is fairly standard in the ordered response models

literature.

To transform the continuous (unobserved) variable R,1* into an observed categorical

variable R,1 with R possible outcomes. we follow the same procedure as in a standard ordered

' Alternatively. a GEV( 1) distribution could have been used which would have been somewhat more in line with
the choice part of the model.  In the literature on ratings. however. the normal distribution is more common.  We
do not expect any substantial differences for the results.
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response model.   We  partition  the  real   line   into R ordered categories, bounded   by   R- 1

thresholds, and follow the standard assumption that these thresholds are common to all

respondents. For notational convenience,  the thresholds are denoted by g(mi),  .....  g(mR-1 ).

The link between Ri * and the observed categorical ratings, is now given by

(3.10) Rti = r if and only if g(mr.i) < Ru* S g(nir)  Cr= 1,. ., R)

Using (3.9) and the fact that g is strictly increasing, this can be rewritten as

(3.11) R,  = r if and only if m,-1 < Uu-U,c  + vil S In,

The thresholds (-- = mo <) mi <  . . < mil.1  (< mit = - ) are unobscrved parameters

which can be estimated. Note that this procedure allows for an unknown strictly increasing

transformation g, but g itself does not need to be estimated. This is the advantage of treating

the  ratings  as an ordered categorical variable. Allowing for arbitrary values  mi....,  mR-1

corresponds to using a flexible function g. To attain the same flexibility with a regression

model for ratings observed on a continuous scale. it would be necessary to estimate g non-

parametrically. We avoid this, and, instead, only need the R-1 threshold values mi,..., mR. I·

These values are estimated as separate (ancillary) parameters.

Normalisation and identification

If a model for the ratings only would be estimated, sonic normalisation of scale and location

would be necessary. One way to achieve this would be to fix U,ci and c,2 a priori. If.
however, we simultaneously use the choice data (and use the same utility values in (3.8) as in

(3.5)), the nornialisation is already imposed in the choice part of the model: the scale of Ui  is

determined by the normalisation of the variance of E,1.. The constant term in the ratings

corresponds to 11,0 in the choice model. and is also identified (because the constant term is

excluded from the other U ). In other words: there is no need for further normalisation to

identify the joint model for choice and ratings. and all the thresholds m, (r =  1,   .., R-1) can

be estimated without imposing further restrictions.
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3.3.3 Estimation and Testing

in the joint estimation of the two parts of the model, using both choice and ratings data, the

link between choice and ratings comes in through the random coefficients. For a given

respondent, 11,c, and 11, enter both the choice and the ratings parts of the model. This

distinguishes the estimation problem from the problem of estimating parameters using two or

more independent samples, which is the more common situation in this literature (e.g., Boyle

et al. 1996, Cameron et al. 1999).

We use smooth simulated maximum likelihood to estimate the model and to do

inference. The likelihood is described below. A discussion of the estimation procedure and

how it relates to standard estimation procedures is given in Appendix  1.

Likelihood contributions

Conditional on Bio and Bi, i.e., conditional on the U,i, the probability that respondent i gives a

specific series of M categorical ratings, can be written as the product of univariate normal

probabilities (as in an ordered probit model). Moreover, conditional on 1 ,c, and Ili the ratings

are independent of the choices, so the conditional probabilities of the observed categorical

ratings and the observed choices, given 11,<, and 1 „ arc the product of choice and ratings

contributions. Conditional on B.c, and B.. the likelihood contribution of a given respondent is

therefore a product of MNL probabilities (choices) and univariate normal probabilities

(ratings). The unconditional likelihood is the expected value of the conditional contribution,

with the expectation taken over the (joint) density of 11,<, and B„ a (K+1)-dimensional integral

for which no analytical expression can be given.

A test fi,r pref :rence stability

There arc several strategies for constructing tests of whether ratings and choice are indeed

driven by the same preferences. A test which does not require a specific alternative model

would be a Hausman test (see Hausman 1978), comparing the estimates using ratings as well

as choice data (efficient under the null) with the estimates based upon the choice data only

(inefficient under the null, consistent under the alternative). A problem with the standard way
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of performing the test is that the estimated difference of the two covariance matrices is not

always positive definite - although it should asymptotically be positive definite under the

null. Moreover. the power of this test could be limited. Since we do have particular

alternatives in mind here. a more natural way to go is to formulate a more general model

which nests the joint model introduced above but has separate utility indexes underlying

ratings and choices, and perform a Likelihood Ratio (LR) or a Lagrange multiplier test. We
will use the LR test, since the estimates of the more general model are of some interest by

themselves, possibly indicating why the joint model is rejected.

A more general model can be formulated as follows. The natural generalisation of the

joint model is that the ratings are not generated by (3.8) but by a separate utility index

(3.12) V,i = -040 + Xi'Ot,

(3.13) aik=ak + Tl,k, k=0....,K.

Similar assumptions are made on the distribution of nt = (17,0,17,1,· ··,1111<) as on ut (but

with potentially different parameters). It seems reasonable to allow for an arbitrary

correlation coefficient between 11, and ui. A parsimonious way to achieve this, is the

following specification ofnlk

(3.14) Tlik =Ok[XU,k + (1 -X)W,k].

with wik - N(0,1), mutually independent and independent of other error terms and of

exogenous variables. If X=,0 in (3.14) this implies that random coefficients in ratings and

choice are independent, and the model partitions into independent models for ratings and

choice. Without restrictions on the parameters across the two parts of the model, ML (or

simulated ML) estimates for this model with X-0 will be the same as ML estimates for

separate ratings and choice models. If X=1, the n:k are perfectly correlated to the litk, though

they still may have different variances, and the random coefficients may still have different

ineans and variances.

In the general model, two constraints have to be imposed on the ratings part of the

model, since scale and location of this part of the model are not identified without imposing

restrictions across the ratings and the choice parts. We set c,=1 and m,=bti. The joint model

discussed above results i f we impose the restrictions
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(3.15) 1=1. ak=bk (k=0.....K). Ok= 1  (k--0.....K).

These are  1 +2(K+1) restrictions, but this is partly compensated by the two restrictions

needed to identify tlie general model. Thus the Likelihood Ratio teSt statistic will, linder the

null that the joint model is valid. asymptotically follow a chi-squared distribution with

2(K+1)-1 degrees of freedom.

3.4 Empirical analysis

3.4.1 Data

The survey analysed in this study was concerned with the evaluation of hypothetical yoghurt

products, a commonly consumed commodity in the market that was studied. Data were

collected using a survey distributed to respondents participating in the CentERdata consumer

panel. This panel consists of consumers throughout The Netherlands and has been

administered by Tilburg University since   1998.   Respondents were screened for regular

yoghurt consumption, and of the 977 respondents surveyed, 909 remained after incomplete

and incorrect responses were removed.

1n the survey, respondents were asked to imagine having lunch in a cafeteria and

having to decide whether or not to purchase a 200ml container of yoghurt with their meal.

The attributes considered in the survey and their levels are summarised in table 3.1.

Attributes and their levels were selected after a thorough examination of yoghurt products in

local supermarkets, and discussions with regular yoghurt consumers. A total of 7 attributes,

each presented at 2 levels, were used in the presentation of products:  3 continuous variables

(price, fruit content, fat content) and 4 binary variables (biological Cultures, artificial

flavouring, creamy taste, recyclable packaging).

To control for the possible effect of attributes not included in the study. respondents

were instructed to assume that the yoghurts were identical with respect to all characteristics

not presented in the survey and were available in their favourite flavour. Furthermore, they

were advised to assume there were no other yoghurts available in the cafeteria when

considering each separate question.



50                                                                                                     C'ombining Ratinis and Choices

Table 3.1: Attributes and levels used in the experiment

Attribute Description of levels Coding in
estimation

Price NLG 1.90 1.9

NLG 1.50                                                   1.5

Fruit content 1 0%  fru i t                                                                                                1 0

5% fruit                                        5

Biological cultures Contains biological cultures                 1

Contains no biological cultures               0
Artificial flavouring Contains artificial flavouring                 1

Contains no artificial flavouring              0

(all natural)

Creamy taste Creamy taste                                   I

Regular taste                                     0

Fat content 0.5% fat content 0.5

3.5% fat content 3.5

Recyclable packaging Yoghurt container is recyclable                 1

Yoghurt container not recyclable               0

Statistical design methods, following Louvicre and Woodworth ( 1983). were used to

construct product profiles and choice sets in which attributes were orthogonal. To calibrate

the attribute levels a small survey was conducted from which preliminary marginal utility

contributions were estimated for each attribute. Using this information, the levels of the

continuous attributes were adjusted so that the predicted change in utility between the two

levels considered was approximately equal to the average change in marginal utility
associated with the binary attributes. Maintaining utility balance across attributes is important

for improving the efficiency of statistical designs (Huber and Zwerina 1996)

Each participant in the survey was first asked to rate eight yoghurt products and then

to complete a series of eight choice questions.  Half of the respondents were also given eight

hold-out choice questions that were used for further model validity testing (see subsection

3.4.3). The design of the rating and choice tasks is as follows.
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Ratings task

With seven attributes each described at two levels, 27 - 128 distinct product profiles can be

created, which if all combined in the same survey questionnaire would result in an orthogonal

array of attribute levels. The fact that the total number of possible combinations increases so

rapidly,  has  led  to  increased  use of fractional factorial designs (see Green 1974), which
greatly reduce the number of product profiles to be presented whilst maintaining
orthogonality between the main effects of the attributes. The use of such orthogonal arrays

presents one of the major advantages of SP data over RP data, as the latter is often found to
exhibit collinearity between attributes, hampering identification of the marginal contribution
of different attributes. Using a 1/16 fraction main effects design produced eight mutually

orthogonal product profiles.

All subjects were presented with each of the eight product profiles and asked to

separately indicate for each product, on a scale of 0 - 100. the probability that they would
purchase the yoghurt if there were no other yoghurts available in the cafeteria. Probability
ratings tend to have a good rationale for predicting choice compared to other forms of ratings

data  (Elrod  et  al. 1992, Wittink and Cattin 1989). Moreover, phrasing the question  as  a

probability of purchase makes it reasonable to assume that the rating scores are based upon

comparing the utility of each alternative with the utility of the 'none'-option of not buying

any yoghurt product. This assumption is made in the modelling section. The same 'none'-

option is also incorporated in the SP choice sets (see below).

As explained in the previous section, we do not use the exact ratings on the
continuous scale 0 - 100, but first transform them into categorical levels. Since the
frequencies in the data show clear peaks at multiples of 10, we used eleven categories: 1 if
the rating is less than  10,2 i f the rating is greater than or equal  to  10 and  less than 20. and so

on with category 11 representing ratings of 100.

Choice task

After the eight ratings questions. each respondent answered eight choice questions. In each of

these, respondents were asked to choose one option from a hypothetical choice set including

yoghurt products and the 'none'-option. The choice sets contained two products, which were
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again described by bundles of the attributes introduced above. One option in each choice

question was constructed based upon the same eight profiles that were used to ConStrlict the

ratings questions. The other option was its so-called 'foldover' profile, which in the case of

binary attributes is the product with the exact opposite attribute lepels. This approach

guaranteed orthogonality within and between the two yoghurt options iii the different choice

sets. Moreover, having a constant reference alternative (the  tione'-option) in each choice set

guarantees that the choice sets exhibit orthogonality not only in attributes but also in attribute

diflerences. Orthogonality in attribute differences is statistically more important than

orthogonality in attribute levels for identification of main effects in 'difference-in-utility'
models such as the MNL model (Louviere 1994, Louvicre and Woodworth  1983).

3.4.2 Estimation Results

Table 3.2 presents the results of the joint model estimated on the ratings questions and the

eight choices for each respondent4. The means of the random coefficients all have the

expected sign and arc strongly significant. The confidence intervals for the standard

deviations of the random coefficients never contain the value zero, indicating the existence of

significant heterogencity in preferences between respondents.

To test the joint model formally. we also estimated the more general model usitig

(3.12) to (3.14). The estimation results are presented in table 3.3. As in table 3.2, all

parameters have the correct sign and are significant at the 5% level. Estimated means of the

random coefficients for ratings and choices are of the same order of relative magnitude, with

sonic notable exceptions. In particular. the price effect in the ratings estimates is about 20%

larger than in the choice estimates, suggesting that the ratings arc more sensitive to price than

the choices. Furthermore. 'biological cultures' and 'recyclable packaging' also are relatively

larger in the ratings estimates. Most of the estimated standard deviations for ratings and

choice parameters arc similar in magnitude.

4 All results are based upon T=40 draws in the simulated maximum likelihood procedure for each respondent.
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Table 3.2: Estimation results: Joint model

Parameter Estiniate Standcird errc,1

Mean coefficients
(11,(i) - None Constant -3.037 0.122
(11,1) - Price - 1.285 0.064
(B,2) - Fruit 0.141 0.005
(11 1) - Biological Cultures 0.412 0.025
(11,4) - Artificial Flavouring -0.793 0.032
(11,4) - Creamy Taste 0.476 0.025
(Bit,) - Fat Content -0.355 0.011
(B,7) - Recyclable Packaging 0.564 ().026

Standard deviations of
Random coefficients
((oo) - None Constant 1.053 0.035

(coi ) - Price 0.473 0.018
(col) - Fruit 0.076 0.004
(wi) - Biological Cultures 0.144 0.029
(w4) - Artificial Flavouring 0.727 0.030
((05) - Creamy Taste 0.418 0.029
((oc,) - Fat Content 0.373 0.011
(u)7) - Recyclable Packaging 0.071 0.035

Category Thresholds
m  -1.243 0.061

1112 -0.579 0.048
Ill i (). 122 0.037
1114 0.592 ().035
1115 1.124 0.037

mc, 2.106 0.048
m7 2.725 0.060

1118 3.625 0.079

nig 4.535 0.101

mic) 5.442 0.126

Ratings error 1.540 0.042
standard deviation (a,)
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Table 3.3: Estimation results: General model

Choice part Ratings part
Puritmeter Estmlate Standard Estimate Standard

error errc,r

Mean coefficients
(Bio) - None Constant -3.248 0.167                    -                         -

(11,1)
- Price -1.186 0.091 -1.402 0.123

(11,2) - Fruit 0.139 0.008 0.133 0.009

(B,3) - Biological Cultures 0.360 0.042 0.477 0.045

CBM)- Artificial Flavouring -0.870 0.044 -0.752 0.051

(Bi5) - Creamy Taste G.429 0.038 0.532 0.044

(11,6) - Fat Content -0.403 0.015 -0.331 0.016

(11,7) - Recyclable Packaging 0.478 0.042 0.694 0.047

Standard deviations of
Random coefficients
(0)0) - None Constant 1.539 0.075 1.246 0.025

(coi) - Price 0.388 0.032 0.238 0.014

(0)2) - Fruit 0.096 0.007 0.077 0.004

((01) - Biological Cultures 0.053 0.059 0.132 0.043

(0)4) - Artificial Flavouring 0.767 0.057 0.707 0.042
((05) - Creamy Taste 0.452 0.048 0.309 0.041

((06)- Fat Content 0.392 0.019 0.377 0.01 i

(O)·,) - Recyclable Packaging 0.003 0.055 0.114 0.046

Category Thresholds
mi -0.935 0.321

m2 -0.280 0.320

nil 0.411 0.320

m4 0.874 0.320

ms 1.399 0.319

mci 2.365 0.318

mi 2.974 0.317

mg 3.859 0.316

nig 4.761 0.314
I'liz <) 5.659 0.313

X 0.937 0.023

f For normalization purposes, B,t, in the ratings part of the niodel is set equal 10 13,n from the choice part.
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The estimated value of k was 0.937 with standard error 0.023. Thus X is significantly

different from zero as well as from  1. (The latter result is also obtained using a Likelihood

Ratio test.) The model with X=0 is the same as the combination of two separate independent

models for ratings and choice. Thus the result that X is significantly different from 0 implies

that ratings and choice data cannot be treated as independent samples. The result that the

estimate of X is close to  1 implies that knowledge of a specific respondent's utility function

based on their ratings, would also be informative about their choice probabilities. Although

the coefficients differ in mean and dispersion, they are strongly correlated. Thus. combining

the two data sources can be expected to provide a more stable basis for segmenting consunier

populations in terms of their preferences.

Considering the small standard errors, the difference in parameters between ratings

and choice can be expected to be significant. suggesting that the joint model will statistically

be rejected against the more flexible model. To test this observation formally. a Likelihood

Ratio test was conducted comparing the joitit model to the general model. This test rejected

the null hypothesis that ratings and choice are based upon the same utility indices. Soine

further tests of hybrid models allowing for more flexibility in the joint model were also
conducted. All hybrid models were rejected against the general model. The log-likelihood

values of these models and the successive differences are reported in table 3.4.

The fact that ratings and choices are far from independent can also be confirmed in

another way. Separate estimations of the choice model and the ratings model (after adding an

appropriate normalisation to the latter) give log-likelihood values summing up to -20864.8.

This sum is the log-likelihood of a combined model that imposes independence of randoni

coefficients in ratings and choice (X=O in (3.13)) According to a Likelihood Ratio test, this
model is rejected against the general model. It is interesting to note that the likelihood of the

model imposing independence is also much lower than the likelihood of the much more
parsimonious joint model. Although the two models arc non-nested so that a standard

Likelihood Ratio test cannot be performed, this shows that the joint model performs much

better than a model imposing independence (although even the joint model is rejected against

the general model with dependence).
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Table 3.4: Likelihood ratio test results

Likelihc,c,d Diflerence d.ft diflerence
Model specification 1,·ith prel·tolls #1'ith pre\'i(,lts

niodel niodel
Joint model -20607.4                    -                            -

Standard deviations differ -20563.2 44.2                       8

Standard deviations and price -20559.4 3.8*                1

parameter differ

Standard deviations and -20544.8 14.6                       2

price, biological cultures and
recyclable packaging differ
Standard deviations and all -20532.6 12.2              4

coefficients differ

Standard deviations and all -20530.6 2.0                 1

coefficients differ and X is
estimated

Independent models for -20864.8 11.a. 11.a.

ratings and choice

significantly different from the previous (more parsimonious) model at the 95% confidence level

3.4.3 Predictive Tests on Hold-out Choices

Although an efficiency gain is obtained in estimating the parameters of the choice model

using the ratings data. the question seems justified whether using the ratings data affects

predictions of consumer choice. And if so. if the more parsimonious joint model or even a

choice only niodel might not predict equally well as the flexible general model. We address

this question by looking at some predictions for three alternative choice situations. For this

purpose, we use the hold out choice questions answered by the respondents.

The difference between the hold-out groups was only in terms of the number of

alternatives that were presented in each choice set. For hold-out group  1, the new choice sets

are of the same type as the old ones (two products and the 'none'-option). In hold-out group

2, respondents evaluated four alternatives (plus the 'none'-option), none of which was
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dominated by one of the others. Respondents in hold-out groiip 3 evaluated choice sets with

six non-dominated alternatives and the 'none'-option.

Predictions for the joint and general model arc generated in the following way. For

each respondent, 20 values of the random coefficients are generated using the estimated

parameters. In case of the general model only the choice parameter estimates were used.

Based upon these coefficients, the utility values of each of the alternatives in each of the eight

new choice situations are predicted. This gives choice probabilities for all the alternatives6,

and we have computed the averages of these probabilities in each hold-out group.

The predicted shares arc compared to the actual shares in the hold out data. We have

summarised the results in terms of mean absolute deviation, where the mean is taken over the

alternatives in each choice set and over the eight choice sets. This is done for the parameter

estimates of the choice only model, the joint model and the general model.   Results arc given

in table 3.5.

All models performed quite well.  It can be seen that all three models performed very

similarly in terms of predictive accuracy, with a small advantage for the joint model. The

improvement in predictive performance of the joint model over the choice only model was

only small.  This was especially so for the two hold-out groups where more alternatives per

choice set were evaluated than in the original choice sets.

Table 3.5: Mean absolute deviations from actual choice shares

Hc,ld-(mt group Choice only J(,int model Geneicil nic,del
model

I identical choices
(n = 147) 0.092 0.071 0.077
2 four alternatives
(n = 164) 0.050 0.047 0.051
3 six alternatives
(n = 153) 0.044 0.044 0.045

' The 'none'-option is treated in the saiiie way as the other alternatives.
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3.5 Discussion

Various theoretical approaches can be taken to explain the observed differences iii ratings and

choice estimates. In reviewing the relevant literature, the more psychologically oriented set of

potential explanations can be distinguished from the more economically oriented set. Olsen et

al. ( 1995) give a good review of the former, while Carson et al. ( 1999) review the latter. The

different explanations that are suggested are now briefly reviewed and tested on our findings.

3.5.1 Psychological Explanations

A first possible explanation found within the psychological literature is the pi·onzinence effect

(e.g., Tversky et al.  1988). This effect occurs if the most important piece of information in the

description of an alternative receives greater weight in a choice task than in a judgement task

such as a rating. The underlying explanation is that in judgement tasks respondents tend to

use more compensatory evaluation processes than in choice, taking into account more aspects

of the alternatives. As a consequence, choice based estimates would have higher values for

the most important attributes. Our results may perhaps be explained in part by this effect.

After correcting for coding differences (multiplying with ranges for each attribute), the most

important attributes in terms of utility both in the ratings and choice responses were fat

content and artificial tlavouring (see table 3.6) Although the difference was not large. the

relative value of these two parameters compared to all other parameters except for fruit was

higher in the choice estimates than in the ratings estimates, providing some support for the

prominence effect.

A related explanation that has been suggested is that ifjudgement tasks lead to more

compensatory evaluations (Billings and Scherer 1988, Einhorn et al. 1979) more attributes

should be of importance and/or significance in the ratings estimates, while fewer parameters

should be so in the choice estimates. This effect occurred only to a minor degree in our

findings. All attributes were significant in the estimates for both response types. Also, the

relative size of the attributes was largely similar over response modes, possibly with the

exception of recyclable packaging, which was relatively more important in the ratings

responses (sce table 3.6)
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Table 3.6: Comparison of ratings and choice based estimates
*

Estimate corrected Iiiiportance Relative size
for coding ranking
differences

Parameters Choice Ratings Choice Ratings Choice Ratings

part part part part part part

Price -0.474 -0.561       4         5 0.13 0.16

Fritit 0.695 0.665            3              4 0.39 0.36
Biological cultures 0.360 0.477            7              7 0.00 0.00
Artificial flavouring -0.870 -0.752           2              2 0.60 0.53
Ci caniy Taste 0.439 0.532            5              6 0.08 0.11
Fat content -1.209 -0.993           1               1 1.00 1.00

Recyclable packaging 0.403 0.694           6              3 0.05 0.42

B k 1 -IF i.n '

Relative size  is calculated as  iii -    i_·Ii     i   where 134  is the relevant parameter aiid # ... and B,- are the
1118       1111 1

parameters with the lowest and highest absolute value respectively Call corrected for coding differences).

A sccond possible psychological explanation can bc found in the ct,nipatibility eflvct
(e.g., Montgomery et al. 1994). This effect indicates that product information that is

presented in a format that is more similar to the response format will receive greater weight in

the evaluations. The underlying explanation for the effect is that cognitive switching costs are

lower between similar types of information, making it easier to include information that

matches with the response task in the evaluation. On the basis of this effect one would expect

the attributes price. fruit and fat content to have a greater relative importance in the ratings

estimates, while the (dichotonious) other attributes should have greater importance in the

choice estimates. This effect is rejected by our results (sce table 3.6).

3.5.2 Economic Explanations

The economic literature in this area stresses the potential for st,y,tegic· behavic,zir on the part

of the respondent (Carson et al.  1999). It is assumed that the respondents act rationally in

choosing which information they wish to provide to manufacturers. Therefore. different

response formats and different assumptions that consumers may make with respect to
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manufacturers' intentions are expected to lead to different strategic incentives for

respondents.

in our study. the two response formats have the following relevant aspects. In the

ratings task, consumers are asked to evaluate an alternative over the option of not buying. In

the choice task, a comparison is made between two alternatives, while the option of not
buying is included also. In both cases. the likely assumptions with respect to the

manufacturer's intentions that consumers may make are that on the basis of the consumer's

responses the manufacturer may: 1. Decide on the optimal price and promotions level to set

for its yoghurt products, and 2. Decide on whether or not to introduce a new yoghurt product
in the market, and if so, which new products to introduce.

In response, the rational consumer will choose an answering strategy that strategically

speaking should lead to lower manufacturer pricing and more new product introductions,

especially introduction of products that are liked by the consumer. This behaviour is rational

because it reduces consumer costs and increases the number of consumer choice options at no

additional cost.

To achieve this type of desirable manufacturer response, the strategically optimal

consumer response strategy differs for the two response formats. In the ratings responses,

consumers should indicate a relatively low willingness to pay for existing products and a
relatively high willingness to pay for new products. Note that this strategy is not in line with

revealing the consumer's true preferences for different attributes. In particular, the observed

price sensitivity can be expected to be higher than the consumer's true price sensitivity

(leading to lower manufacturer pricing), and the consumer's utility for new product features

can be expected to be higher than the consumer's trile utility (leading to more new product

introductions).  In the case of choice responses, the strategically optimal consumer response is

more aligned with responding according to their actual preference. lf in comparing the two

alternatives, the consumer makes the assumption that only one of the alternatives will be

introduced in the market, it is in the consumer's interest that only his or her most preferred

product is introduced. Therefore, in the trade off between the two products it is in the

consumer's interest to reveal their true preference and price sensitivity. In the comparison

with the 'none'-option, similar considerations exist as in the ratings task. so that even the

choice based estimates may not be fully in line with the consumer preferences.
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Based on the differences in strategic incentives between the two response formats, one

would expect to find higher price sensitivity in the ratings task and higher utility estimates for

possible new attributes in the ratings task. Because the attributes biological cultures and

recyclable packaging currently are not offered in most cafeterias, consumers could regard

these as possible product innovations. Thus it can be expected that these attributes should

receive relatively higher utility estimates in the ratings parameters. These expectations are

supported by our results. The relative size of the price parameter and the estimate for

recyclable packaging are higher for the ratings responses, thus providing support for the

economic explanation. Because the parameter for biological cultures was used as a minimum

benchmark for both response types, its relative size could not be established.

3.6 Conclusion

We have developed a model to combine and compare consumer utility estimates based on

stated preference ratings and choice responses. The modelling approach combined two

components: a random coefficients ordered probit to model consumers' rating responses and

a random coefficients logit to model consumers' choices. Correlation between the two

components was introduced through the random coefficients in the model. An empirical

application of the proposed model illustrated its flexibility in comparing and combining

parameter estimates based on consumer ratings and choice data.

In our empirical results we found significant differences between ratings based and

choice based utility estimates. Iii particular, respondents were relatively more price sensitive
in the ratings tasks as well as more positive about possible new product extensions (i.e.,

recyclable packaging). These observed effects were in line with possible strategic behaviour

by consumers in responding to the survey questions. Some support was found also for the

prominence effect indicating that the most important attribute received greater weight in the

choice task. No support was found for the compatibility effect.

Despite these differences in parameters it was found that the predictive ability of the

different models was very similar. This finding may seem surprising, but is in line with
earlier results by Dawes (1979) who showed that linear models perform very well in
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predicting the outcome of choice tasks even if the linear models arc only directionally correct

and tlie parameter values have incorrect values. Empirical results by Elrod et al. (1992) also

illustrate a similar predictive ability of different model specifications based on consumer

ratings and choice responses, further supporting the view that aggregate predictions are

robust over utility measurement approaches.

Given that strategic response behaviour can explain part of the observed differences

between ratings and choices in our estimates and the fact that choice tasks are less prone to

strategic respondent behaviour, the results suggest that choice responses may be more

suitable if one wishes to understand consumer preference structures. Carefully designed

choice experiments can be used to avoid potential biases due to strategic behaviour. Further

research in this area could explore consumers' inclinations to respond stratcgically under

different conditions (c.g.. by changing the context presented in the study). Based on our

findings future research also may address the possible value of combining ratings and choice

responses iii consumer segmentation research. For example, segmentation may be more

successful if one takes into account the correlation in individuals' ratings and choice

responses. The cost efficiency of collecting these two types of responses simultaneously may

also be studied, trading off the costs of additional data collection per respondent against the

costs of collecting data from more respondents. lf the prediction of market shares is the

objective however, collecting data in one response format may bc equally suitable.
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Appendix
3.A Smooth Simulated Maximum Likelihood
To estimate the joint mode17 by simulated ML. the multi-dimensional integral in the

unconditional likelihood is approximated by a simulated mean. This simulated mean is based

upon draws of standard normal error terms which can be transformed into 11, t and Ilt. Let T

denote the number of independent draws of all random variables that will bc used per

individual. T has to be chosen prior to estimation. Smooth simulated ML is then based upon

the following steps:

1. Before starting the ML algorithm, draw (K+1 )NT independent standard normal variables

 ikt

2. During a specific ML iteration, for given values of the parameters, the means and

variances of Bic, and Bl are given by bk. and (Dkl (k=0...,K. i=l .....N). Now set B,kt = bk .

(1)1,4ikt· Thus the B,kt can be seen as independent draws from N(blk.,(Dk2), the correct

distribution of the random variables 11,c, and 11, which should be drawn). Stack them

into (K+1)N vectors of length T:  13,1-(Bit)1• ···,1 ict)'
T

3.   Instead of maximising L log L,. maximise L log LS„ where: LS, = 1/TS L,(131,). Thus
1=1

the expected value is replaced by a simulated sample mean of T draws. The Law of

Large Numbers implies that for large T. LS, will approximate L,.

It can be shown that this procedure is asymptotically equivalent to maximum

likelihood provided that T»- fast enough (c.g., Hajivassiliou and Ruud 1994). This implies

that standard ways of obtaining ML estimates, standard errors, etc. can be used. The
approximated likelihood L log LS, can be treated as the real likelihood. Since the £,1, in (3.5)

and the v,i in (3.8) arc not simulated. the simulated likelihood function is a smooth
(differentiable) function of the parameters to be estimated. This has several advantages over

sonic of the early, non-smooth. simulated maximum likelihood methods (sce Hajivassiliou

and Ruud 1994).

' The other models can be estimated in a similar way.



Chapter 4

Optimal Effort in Consumer Choice

This paper develops a theoretical model of optimal effbrt in consumer choice. The model

extends previous consumer choice models in that the consumer not only chooses a product.

but first decides  how much effort to apply to a given choice problem.  Rather than considering

only the payoff of the chosen outcome. the consumer's objective function also contains the

costs of cognitive effort.  In our model, the optimal  level  of effort  is based on the consumer's

cost of effort. the expected utility gain of a correct choice and  the complexity of the choice

set. To explore the empirical validity of the model. a survey of hypothetical consumer
restaurant choices Lt'aS conducted. Response time M'as measured as a proxy for effort. "·hile

consumer involvement measures were taken as proxies for individual differences in cost of

effort and perceived complexity. Response time on each choice question is explained by the

respondent specific consumer involvement measures. and two choice task specific variables.

the (estimated) utility difference between alternatives, and the number of elementary

information  processes  (EIP 's)  of  the  choice  problem.  The  jindings  are consistent ,i·ith the

theoretical model. For eyample. response time is found to increase with the consumer's

interest and pleasure. which is in line with the notion that for very interested consumers, the

cost of effort (compared to the expected utility gain of a correct choice) will be lo,v. Effort is

found to increase with both the utility difference and task complexity.
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4.1 Introduction

Economic models of choice have traditionally been developed under the assumption that

consumers are rational utility maximisers. This assumption has been popular in consumer

choice modelling because in the random utility theory framework. it provides tractable

estimable models of consumer choice (e.g., McFadden 1986). In these models. observed

inconsistencies in choice behaviour. or "errors". are typically taken to be the result of

observational deficiencies on the part of the analyst (Ben-Akiva and Lerman 1985). The

traditional model presuines that decision-makers have the skills that are necessary to make

whatever complicated calculations are required to discover the optimal product. with the

implication that neither complexity nor consumer effort should play a role in the consumer

decision.

More behaviourally oriented research on consumer decision-making on the other hand

tends to acknowledge that consumers do not always behave in a perfectly rational manner. In

particular, consumers have been found to employ simplifying strategies to reduce cognitive

requirements (Bettman et al. 1993a.b) and to vary in the accuracy with which they make their

choices (Haaijer et al. 2000) and provide preference evaluations (Fischer et al. 2000). In
response, it has been proposed that consumers should be modelled as being boundedly

rational (see Rubinstein 1998 for a recent review).

An approach to consumer rationality that recognises the constraints on the decision

process arising from the limitations of human beings as problem solvers with limited

information-processing capabilities, is to assume that consumers rationally take into account

their limitations when making their decisions (Tversky 1969. Johnson and Payne 1985).

Thus. rather than considering only the payoff of the chosen outcome, the consumer's

objective function may also contain the costs of the effort required for making the choice.

This is the approach taken in this chapter: we develop a model in which effort is required to

acquire information and thus reduce the probability of a sub-optimal choice. Effort comes at a

cost, and thus the consunier inakes a trade-off between the costs of effort and the expected

utility loss due to sub-optimal choice. Our focus is on explaining how much effort consumers

put into choosing between two products i f they rationally include the cost of effort in their

objective function. We allow the choice of effort to depend on the expected payoff from a

correct choice (the utility difference between the products), the complexity of the choice
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problem. and the cost of effort. Behavioural implications of the theoretical model are
analysed to provide insight into how choices are affected by shifts in the model's parameters.

We show that the model can explain various well-accepted empirical relationships between

effort and choice set and consumer characteristics. lt provides a unifying framework in which
these relationships are not only identified but also explained as the result of optimising

behaviour.

We explore the validity of this model with an empirical analysis. In a survey of

consumers' hypothetical restaurant choices, response time was used as a proxy for the effort

consumers put into their decision. Consumer involvement measures were taken as proxies for

individuals' cost of effort and perceived complexity. Furthermore, choice sets were varied in

composition to allow for an analysis of the impact of product utility differences and choice

set task complexity on effort. Least squares regressions are used to explain response time

from the consumer involvement measures and from the product utility difference and choice

task complexity. Results are found to be consistent with the behaviour implied by the
theoretical model. They imply that effort decreases with the cost of effort and with product

utility difference, and both perceived and objectively measured choice complexity.

The remainder of the chapter is organised as follows. In section 4.2 we discuss the

components of our model and their relation to the existing literature. The econoinic model is

presented in section 4.3. Section 4.4 discusses our empirical analysis and section 4.5

concludes the chapter.

4.2 Effort and Consumer Choice

In this section we first discuss the issue of how to measure choice effort in consumer decision

making. Next, we discuss how differences in effort between choices can be related to

differences in costs of effort, product utility differences and perceived choice set complexity.
We also discuss previous research relating consumer involvement to consumer decision

effort.



68 Optimal Effort in Consumer Choice

Measuring choice effort

Choice effort cannot be measured directly and recourse to a proxy variable is required for any

empirical investigations. The proxy most commonly used in previous research is response

time (e.g., Haaijer et al. 2000). In the literature on response times, distinctions have been

made between various components of the time required to make a choice. For example, Stone

(1960) considers the existence of three distinct parts: illptlt time, decision titne and niotor

time. During the period referred to as input time, the information in the choice set is

processed. This is then followed by the decision stage where the information is used to

identify the preferred alternative. The motor time refers to the time taken to actually make the

choice. In the current analysis, we are interested in obtaining an indicator of the level of

cognitive processing time preceding the choice as a proxy for effort. The relevant

components of total time are thus the input time and the decision time. As discussed in

Haaijer et al. (2000), motor time is only a very minor part of total response time. We ignore

motor time and assume that response time is approximately the sum of the time required for

processing information and identification of the optimal good. Thus for our purposes

response time is considered to be measuring the amount of time spent on cognitive processing

which is increasing with the level of mental effort.

In previous research, several choice set and individual characteristics have been

demonstrated empirically to influence the effort consumers put into the decision making

process. In psychology, several researchers have analysed response time and its determinants

(e.g., Busemeyer and Townsend 1993, Link 1975, Pollay 197Oa,b, Sergent and Takane 1987,

Takane and Sergent 1983). These studies yield several proposed antecedents of response

times, including choice set structure, choice complexity, and situational and personal

influences (Tyebjee  1979). Also recognised  are the opportunity costs of processing  time

(Busemeyer and Townsend 1993, Payne et al. 1992, Shugan 1980). Researchers in marketing

have also considered response latencies as providing useful information about the consumer's

choice of decision process (see Hutchison et al. 1994, Shugan 1980, Tyebjee 1979, Haaijer et

al. 2000).
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The effects of cost of effort and product Ittih t.1 diflzrence

When effort is costless the goal of the utility maximising consumer will be to choose the best

good no matter how di fficult the choice may be. lf effort is costly. however, choices may be

made on the basis of a more limited type of comparison and personal characteristics may

have an impact on the quality of the decision process. Consumers who are more interested in

the product category may have lower cognitive costs per unit of effort when comparing

products. As a consequence, they may spend more effort on their decision leading to more

accurate choices. For example, Mittal and Lee (1989) observed that more involved consumers

use more information and go through more brand comparisons when choosing a product.

Similar differences in consumer choice effort can arise from differences in expected
product utility differences. The effect of such differences on choice effort is twofold. First,
the utility difference between two products affects the pay-off of consumer choice effort

directly. Putting effort into choosing between an excellent alternative and a poor alternative
has a higher pay-off than applying effort to choose between two alternatives that differ by
only a little in utility terms. This would lead to a positive relation between utility difference

and effort. On the other hand, the returns to effort in the sense of how much the probability of
correct choice increases with an additional unit of effort, will typically depend negatively on

the utility difference. When two goods differ a lot in utility terms and the choice is already

relatively obvious, additional effort will have very little payoff This may explain why it has
been found that the time taken to compare two goods is inversely related to the difference in

utility between the alternatives (Bettman et al. 1993a, Bockenholt et al. 1991, Espinoza-Varas

and Watson 1994, Tyebjee  1979). The basic premise is that the closer the alternatives are  in

terms of utility, the more conflict a choice evokes, requiring deeper analysis by the decision-

maker.'

' As in most past research, conflict here refers to between-alternative conflict. which results i f two competing
alternatives have a small difference in utility terms (e.g., Shugan 1980). This differs from the approach of

Fischer et al. (2000), where a distinction is made between conflict between and within alternatives. The latter is
relevant for scenarios where single products are rated individually, rather than for the choice scenarios that we
consider.
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Choice task complexity

Choice task complexity may affect the decision process used in a particular choice situation

(Bettman et al 1993b, Bettman et al. 1990. Espinoza-Varas and Watson 1994. Hendrick et al.

1968, Pollay 197Oa,b, Shugan 1980, Swait and Adamowicz 2000. Tyebjee 1979). Differing
levels of task complexity could induce the decision-maker to vary the decision process in two

ways. First, as complexity varies, the individual may utilise the same decision strategy but

may vary the amount of effort spent on it. For example, as complexity changes, a consuiner

using a compensatory choice process might vary the amount of effort spent evaluating each

attribute. Secondly, the decision-maker may switch to a different decision strategy altogether.

This would occur if the consumer used for example a compensatory choice process in one

choice environment and a lexicographic method in another. However, in whichever way
consumers respond to increases in complexity, a common finding in the literature is that

effort has an inverted U-shaped relationship with complexity (Hendrick, et al. 1968, Kiesler

1966,  Pollay 1970a,b, Swait and Adamowicz 2000).  That is, initially, effort or decision-time

increases with difficulty up until a point where the decision becomes too difficult and effort

decreases again.

Research in behavioural decision theory has suggested several aspects of choice sets

that have the potential to increase the effort required for choosing the product with the

highest utility (e.g., Bettman et al. 1993a). The number of alternatives and the number of

attributes describing the alternatives are found to be key drivers of this effort. One approach

to incorporate these and other cognitive processing influences on complexity, is to count the

number of elementary information processes (EIP's) required for performing the choice task.

This idea of decomposing choice strategies into a set of components has been suggested for

example by Huber (1980) and Johnson (1979), and was implemented in a set of Monte Carlo

experiments by Johnson and Payne (1985). These studies draw on ideas of Newell and Simon

(1972) who suggested that heuristic strategies could be constructed from a small set of

elementary information processes. Examples of EIP's suggested by Newell and Simon are

'READ' (read an alternative's value for a specific attribute), 'COMPARE' (compare two

alternatives on an attribute), 'ADD' (add the utility values of different attributes), etc. In
previous research, it was emphasised that EIP's depend on the nature of the choice problem

as well as the decision strategy. For example, Johnson and Payne (1985) compare the number

of EIP's required by different decision processes for a fixed choice task (i.e., keeping
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complexity constant) and find that more accurate decision strategies typically require a

greater number of EIP's. We will use EIP's as a measure of choice set complexity, keeping
the decision strategy constant.

Consumer Involvement

In our empirical analysis, we employ consumer involvement measures to explain how

consumers may differ in terms of cost of effort or perceived choice set complexity. The

consumer involvement construct is well known in the marketing literature and has received a

broad range o f definitions. It appears to be multidimensional and multi faceted  in  nature:  see

the comprehensive reviews and discussions in Andrews et al. (1990) and Poiesz and De Bont

(1995). In spite of the lack of an unambiguous definition of the term, involvement has long

been considered to be a crucial determinant of consumer choice behaviour. More involved

consumers are more willing to process information about the product characteristics and

marketing strategies (Andrews   et   al. 1990, Celsi and Olsen   1988).   They   use   a   more

compensatory choice process (Gensch and Javalgi   1987).  They  have a higher awareness  of

product features through greater pre-purchase search effort (Beatty and Smith 1987. Bloch  et

al. 1986, Clark and Belk 1979, Moore and Lehmann 1980), as well as increased levels of

ongoing search (Bloch et al. 1986, Bloch and Richins 1983). More involved consumers use

more  information  and more brand comparisons (Mittal  and  Lee  1989), have greater attention

(Pratkanis and Greenwald  1993), and apply more cognitive effort (Petty and Cacioppo  1986).

A major theme in this literature is that further empirical work is needed to test the

various theories of involvement. However, with the availability of so many definitions the

researcher is left in a quandary as to which particular usage to apply. Depending on the

various antecedents of involvement, consequences for consumer behaviour may differ.  The

effect of involvement on response time is better captured when all its antecedent facets are

considered. We therefore investigate the influence of involvement on consumer behaviour

using the Consumer Involvement Profile (CIP) developed by Laurent and Kapferer (1985).

This explicitly identifies specific components o f involvement. Moreover, in many studies, the

CIP construct was generally found to be consistent and reliable across different applications

and contexts (Rodgers and Schneider 1993, Dimanche  et  al. 1991, Goldsmith and Emmert

1991, Mittal 1995, Celuch and Evans 1989). The CIP scale distinguishes five potential
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components of consumer involvement: the level of product interest, the level o f pleasure the

consumer derives from the product, the product's sign or symbolic value to the consumer, the

importance the consumer assigns to making the wrong choice, and the probability the

consumer assigns to making the wrong choice. How we expect these components to be

related to choice effort is discussed in section 4.4 where we propose relationships between

consumer involvement, perceived complexity and the cost of effort. First, we introduce the

theoretical model underlying these expectations in section 4.3.

4.3. A Model for Optimal Effort in Discrete Static

Choice

This section presents a model that describes the behaviour of a utility maximising consumer

whose choice of how much effort to apply to a particular choice problem depends upon

personal characteristics and choice set characteristics. Firstly, the theoretical model is

described (subsection 4.3.1). In subsection 4.3.2, we present the comparative statics for the

general model, and analyse how optimal effort changes with the relative cost of effort, with

choice complexity, and with the utility difference. It appears that we cannot draw

unambiguous conclusions on the directions of the effects of changes in complexity or utility

difference on the optimal effort level. We therefore add specific distributional and functional

form assumptions, and numerically analyse how effort changes with cost of effort,

complexity, and utility difference for this special case (subsection 4.3.3).

4.3.1 The Model

The model explains two things: how much effort does a consumer apply to acquire

information relevant to the choice decision, and which choice does he make. In practice,

these decisions will be intertwined: some effort is applied, some information is collected; this

is used to decide whether or not more effort will be applied. etc. Such an iterative model

would be hard to formalise and impossible to validate with existing data. Instead, we work

with a stylised non-iterative model in which, based upon a prior, effort is decided upon, then

products are evaluated and the choice is made.
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The model considers a consuiner faced with a choice between two products, say 0 and

1, with utilities Uo and Ut. We assume that the consumer's decision process consists of

several stages:

1)        The consumer takes a first glance at the two alternatives. On the basis of this,

he constructs some prior distribution of Uo - Ui.

2)       On the basis of the prior distribution, the complexity of the choice problem,

I and the costs of effort, the consumer chooses the optimal effort level for
evaluating the two alternatives.

3)       The consumer puts effort in evaluating the two alternatives, leading to proxies

Uo* and Ut * of Uo and Ui. respectively.

4)         The consumer chooses on the basis of Uo* and Ut*: Product 0 is chosen i f and

onlyifUo*>Ui*.

Stage 1: Prior distribution

We can give this the following interpretation. The consumer considers the utility values of
the two goods as random draws from some population o f utilities (or goods). A global glance

at the question gives the consumer some idea about the distribution o f the values from which

the two utilities are drawn, such as its dispersion. In order to choose between the two
products, the consumer will then put effort into studying the two products more carefully.

Thus we can say that, before studying the alternatives in detail. the consumer has some

(subjective) prior distribution  in  mind  for the utility values  Uo  and  Ui. The consumer,  a

priori, has no idea which of the two is better. Thus the prior satisfies

(4.1) E{UE - Uot = 0.

We define the expected absolute difference in utility between the two goods D by

(4.2) D = E{IUi - Uol} = E{Usup- Uinfi·

Here Usup = max(Uo,Ui) and Uinf = min(Uo,Ui). If D increases, the expected payoff of
correctly choosing the superior good over the inferior good will increase. If, for example, the
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respondent sees at first glance that all attributes are very similar for the two goods, D will be

small.

The standardised prior for the consumer is given by:

z=(4-UA
D

Thus  E {Z}   =  0  and, by construction,  E {IZI}   =   1.  We will assume  that  Z  has a symmetric

continuous distribution:

(4.3) Z has density g(z), which is symmetric around 0.

In the comparative statics and the empirical analysis below, we will assume that the

distribution of Z is the same for all consumers and choice situations, implying that D is a

scale parameter of the prior distribution of Ui  - Uo.

Effort and Utility Proxies

Before making a choice, the respondent puts a certain amount of effort into studying the two

products.  In this way he obtains proxies Ui* and Uo*  of the utilities Ut  and  Uo. The accuracy

a(E;C) of these proxies depends on the level of effort E and on the complexity of the choice

C:

El
(4.4) U:* = Ul +

a(E;C)

Uo* = Uo + Eo

aCE;C)

where

(4.5) Eo, Et are iid with mean zero, independent of Uo, U i, and Z,

a(E;C) is a scale parameter of Eo, Ei reflecting "accuracy".

A semicolon is used to distinguish between, E, chosen by the decision-maker, and the

exogenous variables (in this case C). This notation is used throughout the remainder of the

chapter. The value of a(E;C) determines the importance of the errors, 4 and £0, in the
formation of the proxies Ui * and Uo*. The value of this scale parameter is inversely related to
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the variance of the errors. Thus if a(E;C) increases, the consumers' proxies move closer to the

true utility values of the goods, Ui and Uo.

We will assume:

Da(E:C) Da(E C)
(4.6) > 0 and

'

<0.
DE OC

The function a(E,C) is where effort enters the analysis and is really the essence of the

model. An increase in effort by the decision-maker, will lead to an increase in the accuracy of

the utility proxies. We do not explicitly specify which choice strategy the consumer uses.

Thus an increase in effort may mean that the consumer spends more time evaluating each

attribute of each alternative, or (in a non-compensatory strategy) that the consumer evaluates

more attributes. This could also mean that the consumer changes from a less effort-intensive

to a more effort-intensive decision strategy. According to Johnson and Payne (1985), there

appears to be a strong positive relationship between the effort required and expected accuracy

across different decision processes, keeping constant the complexity C of the choice problem.

The negative sign for the first derivative of a(E;C) with respect to complexity irnplies

that complexity increases the variance of the error terms, making it more difficult to
distinguish the superior from the inferior good. As complexity increases the decision-maker's

proxies for the true utilities Ut and Uo become less reliable. Thus in a more complex

situation, more effort must be applied to achieve the same level of certainty as in a less
complex choice. We will assume that the accuracy function satisfies

(4.7) "non-increasing returns to effort": 3 110 (NIRE)
D a(EC)

OE-

We will need this condition below to guarantee that the second order condition for
optimality of effort is satisfied. It implies that the marginal increase in accuracy from an

additional unit of effort falls with each additional unit of effort invested.

Effort and expected utility

Given the proxies Ut * and Uo*,the choice between the two products will be based upon the

difference Ui* - Uo*. With the symmetric set up, the optimal choice rule (Stage 4) will be:
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Choose 1 if Ui* > Uo*, choose 0 otherwise.

The expected pay-off or return from the choice is given by

E{1(Ui* > Uo*)Ui + 1(Uo* > Ui*)Uot

Due to the law of iterated expectations, this can be rewritten as

E{P(Ut*> Uo *  Uo. U ) Ut + P(Uo*> UI *1 Ut,, U)) Uo},

where the expectation is taken over Uo and Ui. Working out the inner part of this for both

Uo > Ui and Ui > Uo gives

E<I'(correct choice  U o.U 1 )U.,p + P incorrect choice  Uo, U: )U,„r }

Or, equivalently

E{U,t + P(correct choice  Uo,Ut )1 U I - Uo I },

which, due to symmetry of £O - El and Z, is the same as

E{Uinf} + E (go -4> Uo - U:| Uo.Ul)><IUI- Uo I   Ui > Uo}.

With Z = , this becomes(Ul-Uo)
D

E{Uinf} + E P(g  -ga >-DI Z la(E:C)| Z)><DI ZI 

Thus we have shown that the expected return (R) is given by

(4.8) R(aCE:C); D) =E{Uint'j + E.[P(£0 -81 >-DIZIa(E:C)  Z)xDIZI}.

Defining E- £0 - Ei, equation (4.8) becomes

(4.9) R(a(E;C); D)
=
E{Uinfl + E{P(£>-DIZ la(E:C)  Z)x DIZI}.

The assumption that Eo and El are iid implies that E is symmetric around zero. In addition, it

seems plausible to assume that E is unimodal, and thus has unique mode at 0. For

convenience, we will also assume that E has a continuous distribution with differentiable

density G. These assumptions together imply.
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' '

(4.10) f, (x)> 0 for x<0 and f, (x)< 0 for x>0.(USYM)

Together with the non-increasing returns to effort assumption in (4.7), condition (4.10) will
be sufficient to guarantee that the second-order condition for a unique maximum (see (4.14)

below) is satisfied.

Optimal choice of effort level E (Stage 2)

Equation (4.9) gives the expected return from the choice in utility terms, given the parameters

D and C, and given the effort level E. If effort had no cost, individuals could apply a large
level of effort to minimise the probability of choosing the inferior product. This would

capture behaviour of a perfectly rational individual (see section 4.2) who optimises perfectly.
As mentioned in section 4.2, we assume in the current work that consumers are boundedly

rational and have the ability to optimise, but this requires effort which comes at a cost. Cost

considerations are introduced into our model by assuming there is a fixed marginal disutility,

y, per unit of effort.

Thus, for a given choice question, the consumer has to decide on the effort level E,

knowing y, D, C, the distributions of Z and E, and the function  a(E;C). The choice of E  will

be based on the expected return minus the cost of effort, i.e., the consumer solves the problem

(4.11) MaxE>0 R(a(E;C), D) - yE.

The term E {Uinf}  in (4.9) does not depend on E and can be removed, so that the maximisation

problem is equivalent to

(4.12) MaxE>0 E{P(g>-DIZI a(E; C)  Z)x DIZI - YE

The optimal level of effort will satisfy the first order condition

(4.13) y= -  [E{P(E > -D I Z I a(E;C)  Z)x D I Z I}         (FOC).
d E

This simply states that the individual equates the marginal benefits (in utility units) of an
increase in R with the marginal cost (in utility units) of effort.

The second order condition required to ensure that the solution to (4.13) is a utility

maximum is
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d-fri
(4.14) .[EiP<£>-DIZIa(E.C)|Z)x DIZI} < 0   (SOC).d E-

In words, this means that the marginal revenues of effort must decrease with effort. In
Appendix 3.A, it is shown that (4.14) will hold if both (4.7) and (4.10) are satisfied.

4.3.2 Comparative Statics: General Case

We now examine how shifts in the model parameters affect the optimal level of effort. The

first order condition (4.13) can be rewritten as

[d,,
y= EK-(Pl £ > -D I Z I a(E:C) | Z x D I Z I ) [d E

1 Oal

=E<<(-DIZI a(E:C))x (DIZ I)- x- 6DE]'

or, in other words,

.1 Oa
(4.15) y= E  (-D  Z   E,C))x(D I Z  )-j>(-.0E

The left-hand side gives marginal costs (MC) of effort (in utility units), the right hand side
gives the marginal revenues (MR).

Coniparative statics with respect to Y

An increase in y implies an increase in MC. To restore the equality, MR must rise as well.

Due to SOC, this means that E will fall. Thus we have:

0E
-<0.
BY

An increase in the cost of effort leads to a fall in the optimal level of effort.



4.4 Empirical Analvsis                                                                                         79

Comparative statics with respect to C

The complexity of the choice problem affects MR in two ways:

Cl  (Effect  of Accitracy  on  Probability of correct  choice) W C increases. a(E;C) will fall, and
due to (4.10), FE(-DIZIa(E:C)) will rise. This implies that the marginal effect of a

change in aCE:C) on the probability of a correct choice will rise, so that the marginal

impact of E on the probability of correct choice will rise. This increases MR and thus

(due to SOC) increases the optimal level of E.

Cl (Effect of Effort on Accuracy) On the other hand, an increase in C will also affect the
0asensitivity of a(E,C) for E, that is,  -. This effect will depend on sign of the cross
0E

82aderivative . Both signs are possible. With the plausible functional form
DEKC

discussed in the next subsection, we get

3.a
Assumption REDC: < 0 : returns to effort decrease with complexity.

BEDC

However the sign could also be positive:

ala
Assumption REIC: > 0 : returns to effort increase with complexity.

DEOC

DaUnder REDC an increase in C leads to a fall in - and a fall in MR and the optimal effort
0E

level. Thus effects  C 1  and  C2 have opposite signs  and  the net effect  o f complexity on  MR

and E will depend on which o f the two dominates. I f Cl dominates, E will increase with C; i f

C2 dominates, E will decrease with C. Since in general, we cannot say which of the two is the

case, we have

DE-                is not unambiguously determined under REDC.
0C

On the other hand, if REIC holds, the sign of £2 is the same as the sign of C 1, and the overall

effect ofan increase in C is an increase in MR and E. Thus we have

8E
->0 under REIC.
DC
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Comparative statics with respect to D

A change in D affects MR in two ways:

Dl  (Effect of accuracy on the probability of correct choice) if D increases, due to (4.10).

fEI-DIZIa(E,C)] will fall. This reduces MR and thus E is reduced to restore the equality

MR=MC (this is similar to C 1 above).

02 (Direct effect) if D increases, (DIZI)2 rises: there is more to be gained by changing the

probability of correct choice, due to the larger expected utility difference. Thus MR

increases and E increases.

The total effect of the expected utility difference on the optimal effort level is ambiguous.

A change in D versus a change in y

In our framework. a change in what we have called the utility difference D, affects both the

utility gain (leading to  D2) and the probability of correct choice (leading  to  D I), keeping

accuracy constant. This may lead to some confusion. For example, a change in preferences

will have a direct effect (D2), without affecting the probability of correct choice. In our

framework, such a change can be captured not through D, but through a change in the cost of

effort y in the opposite direction: increasing the pay-off to a correct choice (without changing

the probability of correct choice) has the same effect on effort as reducing the cost of effort,

since the (joint) scale of utility and costs is irrelevant. This has to be kept in mind when

discussing how consumer involvement affects the parameters y. D or C, as we will see below.

4.3.3 A Parametric Specification

The comparative statics derived in the previous subsection do not lead to unambiguous

conclusions on how the expected utility difference D and choice complexity C affect the

optimal level of effort. In this subsection, we analyse the same relationships for more specific
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model assumptions, taking a plausible functional form for a(E,C) and assuming normality of

the random variables £, - Eo and Z. Specifically, we assume-

(4.16) E -Ei -Eo-N(0,1),

and Z - N(0,7[/2).

The variance of 112 is chosen so that Z satisfies the condition  E {IZI 1  = 1. These assumptions

imply (4.10), one of the conditions needed for the second order condition.

We specify the accuracy function a(E,C) as'

(4.17) a(E;C)=   for E, C > 0.

This specification satisfies (4.6):

(4.18) =->0 and =- '<0.
da(E,C) 1 da(E,C) E

d E C d C    C-

It also satisfies (4.7), which, together with (4.10), is needed for the second order condition:

(4.19) = -1-1=0 5 0.dia(E,C)    d  [1 1
d El   d E [C]

Moreover, this choice of a(E,C) implies that returns of effort decrease with complexity:

(4.20) .<0 (REDC).028(E:C) 1
DE8C =-C-

With these assumptions it can be shown (see Appendix 4.B) that the consumer maximisation

problem can be expressed as

(4.21) MaxE»0 ·,/ST-D l[zi >0,21 >0]-:f(zi.zz)dzidzl - YE.

where f(zi,zi) is the density of the bivariate normal distribution with means (0,0), variances

(1,1) and correlation coefficient

Da(E, C) I-2-(4.22) P=
· 1+ (Da(E;C))31[ 2

2 The qualitative results do not change if E -N(0, 02) with a- t l.
1 The qualitative results do not change ifaCE.C) =k Eu/CB for k>0.0<a f  1.1 3>0.
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The  function   1 [...]  in  (4.19)  is an indicator function that takes the value unity  if  both

conditions in the square brackets are satisfied, and zero otherwise.

Comparative statics

The model can be analysed numerically to derive the partial relationships between the

optimal level of effort and the parameters y, C, and D. The optimal level of effort can be

calculated for specific values of the model parameters y, C, and D. The partial relationships
between optimal effort and each of these parameters were derived by allowing each

parameter to vary individually. holding the remaining parameters constant.4 The results are

depicted in figures 4.1,4.2, and 4.3, respectively.

Marginal Cost Ch

In figure 4.1, the relationship between optimal effort and y, the marginal cost of effort, is
depicted. The curve is downward sloping, consistent with the general comparative static

results in section 4.3.2.

Complexity (C)
In the previous section we saw that an increase in C could in general have two opposing

impacts on the optimal level of effort, leaving the sign of the relation undetermined. The

relationship between optimal effort and complexity for the parametric specification is

illustrated in figure 4.2. The graph is in line with the suggestions from the literature discussed

in section 4.2: we find an inverted U-shaped relationship between complexity and effort.

Effort initially increases with complexity up until the choice becomes too difficult and effort

starts decreasing. Thus figure 4.2 clearly illustrates that the model can explain the inverted U-

shaped relationship suspected to exist between effort and complexity. Of course, other

functional forms or other distributions of E   and Z may give a different pattern. For example,

under REIC rather than REDC, a positive relationship results across the entire range.

4 The chosen benchmark values are y=0.1 5 2, D=I  and C=  1. The basic shapes ofthe curves do not change
with the benchmark values.
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Figure 4.1: Optimal Effort vs. Marginal Cost
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Utility Difference (D)

The relationship between effort  and  D  for our specification is shown in figure 4.3. Effort  is

decreasing in D for high values of D, consistent with the earlier studies. For low values of D,

however, the direct effect (D 1) dominates and the optimal effort level increases with  D.

1.2

1.

r 0.8
W

  06-
i
O 04

0.2  

0

0              0.5 1 1 5 2         2.5 3 3 5 4 4 5

Expected Absolute Difference (D)

Figure 4.3: Optimal Effort vs. Expected Absolute Differene

4.4 Empirical Analysis
The theoretical model suggests the existence of relationships between the level of effort

applied to a given choice task and the parameters y (the marginal cost of effort), D (expected

utility difference) and C (choice complexity). To provide external validity for the theoretical

model, these relationships are investigated in an empirical study of hypothetical consumer

choices of restaurants. In this section, we first discuss the nature of these data (subsection

4.4.1). Next, we discuss the relationships between K D and C, and both the observable
consumer involvement measures and choice set characteristics (subsection 4.4.2). We will
then regress response time on the involvement measures and choice set characteristics, and
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will discuss the implications of the regression results for the validity of the model discussed

in the previous section (subsection 4.4.3).

4.4.1 Data

A survey was conducted to analyse the relationships between response time, consumer

involvement measures, product utility differences and choice complexity. The survey
consisted of a conjoint choice experiment involving choices between restaurants described by
up to 12 attributes (restaurant type, price, menu, style. number of guests, dessert menu.

independent bar, opening times, available methods of payment, distance from available
parking, available seating places, and level of service). Table 4.1 presents the attributes and

their levels.

The preamble to the survey instructed respondents to imagine that they were on a
short weekend break in an unfamiliar small town and were deciding on a restaurant to eat at

on a Saturday night. Respondents were faced with choice sets containing 2 potential

restaurants described by attributes from the aforementioned list, and were asked to choose

their preferred option. Respondents to the survey were members of a representative consumer
panel of households  in The Netherlands, the CentERdata Panel. Surveys are administered via

modems and the Internet. To avoid selection bias, respondents who don't own a PC receive

one  from the panel organisation.  Of the 1535 respondents  who were approached  for our

study, 1465 usable questionnaires were returned.

To elicit information regarding the respondents' degree of involvement with dining

out in restaurants, respondents were asked the questions of Laurent and Kapferer's (1985)

CIP measure that we already discussed in section 4.2, tailored to restaurant choice. Because

part of the sample for our study also participated in another survey and respondent burden per
week is restricted by the panel organisation, involvement questions were administered to only

1052 respondents. Appendix 4.C provides details of the construction of the CIP measures.
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Table 4.1: Attributes and levels used in the experiment

Attribute Base Levell Level 2 Extra

Level

Restaurant type Small Restaurant Hotel- Hotel-
Restaurant Restaurant Restaurant

Average entrde price         $8 $1 0 $ 15 $ 20

Menu Basic Menu Occasionally Extensive Very
altered extensive

Style Business Modern Old- Very old-
fashioned fashioned

Number of guests Reasonably Quiet Reasonably Very busy
busy busy

Dessert menu Only Occasionally Extensive \/ery

Ice-cream altered extensive

Separate bar area Yes Yes No        -

Closing time 9 pm 10.30 pm 9 pm       -

Methods of Payment Cash only Cash, debit or Cash only
credit card

Parking 100 m away In front of 300 m away          -
restaurant

Seating available Near Near window                                    -
entrance and inside

Personnel Only owner A lot of Only a few
working personnel personnel

For the purpose of the conjoint choice experiment, the sample was divided into 5

groups. Within each group, respondents received identical questions. Between groups,

choices differed in several ways: the number of questions, the number of attributes and the

difference in levels between attributes. These different treatments provide a range in the

levels of product utility differences and complexity. A summary of the choice questions

asked to each group is provided in table 4.2.
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Table 4.2: Description of choice sets per group
Number of Number of Number qf Number of EIP's
clioice sets attributes alternatives observations

Group  l                         9                                       6                                       2                                    3 1 4                          3 5

Group 2           9                  6                  2                323            35

Group 3          5               3               2              221           17

Group 4          9                12                2               207           71
Group 5           9                 12                 2                206            71

Each attribute was presented at two levels in every group. Orthogonal fractional
factorial designs were used to create hypothetical restaurant profiles (Green 1974, Louviere
and  Woodworth 1983). Orthogonal arrays provide a parsimonious means for constructing
product profiles while ensuring that main-effect parameters can be estimated independently.

Each choice set contained one restaurant from the experimental design and one "base-

alternative" which was constant across all choice sets for each group. In addition to the
chosen alternative, response times were recorded for all choice questions separately.

Response time is the dependent variable in our regressions. The explanatory variables are
based on the (respondent specific) involvement measures, and some choice question specific

variables that serve as proxies for utility difference and complexity. As in several other

studies, we found no evidence of separate effects of the involvement factors interest and
pleasure, and we therefore combine these into one factor. Thus the involvement factors lead

to four explanatory variables: Interest/pleasure. Svmbolic value, Risk iniportance, and

Probability ofmispurchase.

To obtain a measure of the variation in utility difference between the products in
different choice sets, a multinomial logit model was used to estimate consumer preferences

for each attribute (Ben-Akiva and Lerman 1985). These estimates  were then  used to obtain
predictions of the utility of each product in each choice set. The absolute values of the
differences in these predicted utilities between the two products in each choice set were then

calculated and taken as a choice question specific proxy for variation in D: Since the

' This procedure is somewhat ad hoc since the multinomial logit model ignores preference heterogeneity across
respondents. Still, using the mean preference parameters in a mixed logit model with heterogeneous consumers
gives almost identical results.
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theoretical model does not predict the sign of the relationship between D and the optimal

level of effort, we have no prior expectation of the sign of the effect of this regressor on

response time.

As a measure of choice complexity across choice sets we use EIP's: the larger the

number of EIP's, the more complex the choice problem. To calculate the number of EIP's,

we assume that respondents evaluate all the attributes o f all the
alternatives and calculate the                    I

required number of cognitive steps to determine which product in the choice set has the             
highest utility. Note that even i f respondents do not use a compensatory decision strategy, the

number of EIP's computed in this way will serve as a reasonable proxy o f choice complexity.

It is always increasing in both the number of alternatives and the number of attributes

describing each alternative, two well-recognised components of choice complexity, and will

be strongly correlated with the number of EIP's required for other decision rules (Johnson

and Payne 1985). Since EIP's proxy complexity but the effect of complexity on effort is not

determined, the theoretical model does not lead to an expected sign of the
effect of EIP's on                  I

response time.

Finally, we also include a dummy for the first question ( 1 for the first question, 0 for

other questions). The reason is obvious: the first question will take more time since the

consumer has to become familiar with the nature of the questions. Including additional

dummies for questions other than the first did not change any of the results.

4.4.2 Relationships between Involvement Components and Model

Parameters

Interest/Pleasure component

Individuals who find a product more interesting or receive more pleasure from a product may

find the choice task more relevant and enjoyable. We therefore expect that they have lower

opportunity costs of the processing time spent on the choice task. In tenns of our model, this

implies that they have a lower marginal cost (y) for each additional unit of effort. Since the
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effect of y on E is negative (see section 4.3), this implies that we expect that response time

will increase with interest/pleasure.

Symbolic value component

We expect the symbolic or sign value of the product to be positively associated with the pay-

off to a correct choice, without directly affecting the probability of correct choice. As
explained at the end of subsection 4.3.2, this means in our framework that symbolic value  is

inversely related to y, the relative cost of effort. As in the previous case, this implies that we

expect response time to increase with symbolic value.

Risk Iniportance component

The risk importance component measures how the consumer weighs the negative

consequences of making the wrong choice. Higher risk importance means attaching more

weight to the utility gain compared to the cost of effort. Risk importance has no direct effect

on the probability of mispurchase. Thus, as in the previous case. in our framework, a higher

score on risk importance means a lower y. Thus we expect that response time will rise with

risk importance.

Probability of Mispurchase component

The consumer's evaluation of the probability of mispurchase can be regarded as a measure of

the level of uncertainty the individual feels with respect to purchases in the particular product

class, and can be seen as a subjective measure of the respondent's perception of choice

complexity. We thus expect that the probability of mispurchase is positively related to C. The

results in subsection 4.3.2 then imply that the sign of the relationship between response time

and probability of mispurchase is not detennined by the theoretical model. According to

subsection 4.3.3. the relationship could be hump-shaped (figure 4.2). We can say, however,
that this regressor is expected to have the same sign as the EIP's, since both are positively
related to complexity. lf the relation between E and C is positive, both regressors should have

a positive coefficient, etc.
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4.4.3 Results

Two OLS regressions were conducted to analyse the relationships between consumer

response time as a proxy of choice effort, and our explanatory variables. The first estimation

regressed the individual CIP consumer involvement measures against response time while the

second regressed estimated product utility differences and EIP's across choice sets against

response time.6

Table 4.3: Response time vs. involvement components*

Variable Estiniate t-value

Constant 11.427 10.058

Interest/Pleasure 0.121 2.424

Symbolic 0.043 0.582

Risk Importance 0.267 2.369

Prob. of Mispurchase 0.198 4.005

*N = 1052 observations, Rl = .020

Table 4.3 describes the relationships between these involvement components and

response time. Three of the four components are significant, only the Symbolic value

component is not significant. The signs for Interest and pleasure, Risk importance, and

Symbolic value are as expected (see subsection 4.4.2). The positive sign of Probability of

mispurchase implies that effort increases with complexity. Because figures 4.2 and 4.3

suggest non-linear patterns, we also tested if including squares of the involvement variables

would improve the fit of the regressions. None of the square terms were found to be

significant.

The second equation explains response time from choice question specific variables.

The results are presented in table 4.4. The estimates show that across choice tasks, consumer

6 The units of observation are all respondent/question combinations. Qualitatively similar results are obtained if,
in the first regression, response times are averaged over ali questions and each respondent is one unit of
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choice effort falls significantly with product utility difference and increases with higher task

complexity. The latter is in line with the positive effect of complexity on effort, which we
already derived from table 4.3. Some non-linear effects were also evaluated in further
regressions (quadratic, cubic, log's) but did not indicate that the sign of these effects changed

as product utility or complexity increased.

Table 4.4: Response time vs. expected utility difference D and EIP's*

Variable Estimate t-Vallie

Constant 4.450 9.36

Question 1 dummy 21.784 45.61

D (expected product utility difference) -3.390 -9.97

EIP's (choice task complexity) 0.365 42.01

*N=1271 observations, Rl = 0.263

Summarising, the empirical results support the theoretical model. Where the
theoretical model predicts an unambiguous sign, this sign is always found. In all cases but

one (symbolic value), it is also significant. Moreover, the signs of EIP's and Probability of

mispurchase are the same, and this is also what the theoretical model predicts.

4.5 Discussion and Conclusion

The purpose of this chapter was to develop and test a model that relates the effort applied in a

particular choice situation to choice set complexity, the utility difference between the

products or the degree of conflict, and personal characteristics captured here by the level of
consumer involvement. A theoretical model was introduced, and its implied relationships

were derived for the general case as well as a specific functional form. The model is not only

observation, or in the second regression. response times are averaged over consumers and each question is one
unit ofobservation. The same regressors remain significant, though t-values become smaller.
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consistent with many observations in the existing literature on consumer choice, but also
provides insight into the underlying trade-offs that influence the decision process. In

particular, the derived relationships between the level of effort applied in a choice situation

and choice environment variables such as choice complexity and conflict are in line with

prior research.

The influence of personal characteristics is analysed using consumer involvement.

After discussing how various components of involvement may influence the parameters of
the model, hypotheses were formed regarding the expected overall influence on consumer

effort. An empirical application to restaurant choice in The Netherlands showed strong

support for the model: basically all hypotheses were confirmed and none were conclusively

rejected.

Although these results are encouraging and suggest that the model is able to capture

important aspects of consumer decision strategies, there are also some clear limitations. The

model has only been developed for the simple case of a choice between two products. A

valuable extension would be to augment the range of choice situations for which the model is

applicable by allowing consideration of choices between multiple products. In addition, the

relationship between response time and various social demographics could provide insightful

results. For example, the level of education may have an impact on the marginal cost of

effort. The degree to which the results found here can be generalised to different product

categories is also unknown. Finally, it would be interesting to examine to what extent the

functional form assumptions influence the model's behaviour and to test competing

functional forms against real-world data.
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Appendices

4.A Proof that (NIRE) and (USYM) imply (SOC)

As seen in section 4.3 ofthe chapter, the consumer faces the following maximisation problem

(4.12) MaxE>0 E{P(g > -D I Z I a(E.C)  Z)x D I Z I - Y E

with first order condition

11 ha
(4.15) y=E , (-DIZI a(E,C))x (DIZ I)- jx-

DE

-                          Da
(4.23) =j f( -D I Z I a (E ; C ))x ( D I Z 1 )2 fz (Z )dz x -

8E--

or, equivalently

p                      ha
(4.24) y = 2<f,(-DZa(E: C))x (DZ)3fz (Z)dZ x-DE

The second order condition requires

d[G Dal
(4.25)

  2J f, (- DZa(E;C))x (DZ)3 fz (Z)dZ x 3- -   9 0

and differentiating the expression in brackets yields:

C la )3 alal
(4.26)    2<

f,'(- DZa(E;C))xl -  1  DZ + f, (- DZa(E;C))x      2- 1 (DZ)- fz (Z)dZ 5 0laE '1 DE 1
        2 0 all Z

C 0 for all Z 10 forall Z
(USYM) (NIRE)

and it can be seen from (4.26) that the (USYM) and (NIRE) conditions are sufficient to

ensure the second order condition holds.
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4.B Proof of (4.21) and (4.22)
Consider the consumer maximisation problem given in equation (4.12) in section 4.3:

(4.12) MaxEK E{PG > -D I Z I a(E:C)  Z)x D I Z I -YE.

Taking expectations over the ranges of both £ and Z this becomes

(4.27) MaxE»0 H lIE > -DI Z I a (E, C ))D   Z I f(E, Z)dE dZ -y IE,

where RE.Z) is the joint density function for £ and Z. The distribution of Z is symmetric, so

this may be rewritten as

(4.28) MaxE>O 2  1[g+ D Za(E. C)> 0, Z > O]DZ f(E,Z)dgdZ -yE
The distributional assumptions for the variables E and Z imposed in section 4.3 are:

E- N(0,1), and,

(4.16) Z - N(0,7[/2)

Thus f(E,Z) is a bivariate normal density with means (0,0), variances (1,7[/2) and correlation

zero. Noting that

(4.29) E{E + DZa(E;C)} = E{El + E { DZa(E.C)} = 0 +Da(E;C) x E{Z 1 = 0,

since E{£}= E{Z}= 0 from (4.10) and (4.3), and further, with E and Z are independent, we
have

(4.30) Var{E + DZa(E:C) 1 = E{El} + (Da(E;C))2E{Zi} = 1 +(Da(E;C))21[/2.

Substituting the standardised normal variables

(E+DZa(E,C))                    Z(4.31) ZI
=

, and Z. =-
 1+ (Da(E:C))1 ir 2

into (4.28), and further, after noting that with both denominators in (4.31) positive  1 [zi  > 0,

22 , 0] implies I [E + DZa(E:C) > 0, Z > 01, the optimisation problem becomes

(4.21) MaxE»0 43";ID  l[zI > o.z. >O]zlf(zt.z,)1zidz, -yE.

where f(zi,z2), the joint density of the transformed variables zi and zi. is a standardised

bivariate normal with means (0,0), variances ( 1,1) and correlation coefficient:
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COV(Zi,Z ) E+DZa(E:C) Z
(4.22) P= 2       = E{z zl}= E.

  V a r (z 1 )V a r (z 1 )
-  1 + (Da(E: C))1 1[  2     Ii--2

EGZ+DZla(E,C)) 12(EZ)+Da(E:C)xE ZI)

JA 2(1 +(Da(E;C))1 A 2) = JA 41 +(Da(E;C)Y A 2)

0+Da(E.C)xx 2 Da(E, C) -2
 i[ 2 1+(Da(12.C))3 m 2 =  1+(Da(E.C))3 A 2

as seen in the text.

4.C Results of Principal Component Analysis

fnvolvement Construct

Respondents  to the survey were asked 16 questions on their involvement  with the product

category 'restaurants'. Each question related to one of the five facets of involvement

identified by Laurent and Kapferer (1985) and was drawn from the CIP measure developed

by these authors. A principal component analysis was conducted reducing the measured

responses into orthogonal components. The results are presented in, table 4.5. It can be seen

that only four underlying components are found. It is not uncommon for the principal

component analysis to identi fy fewer than all five separate facets of the CIP measure, due to

the high level of correlation between the facets. Laurent and Kapferer also found that only

four components were required as two facets loaded onto a single component. The table

indicates the loading of each question  from each facet on each component.  The most  relevant
loadings for the involvement constructs are shaded to provide a visual representation of the

makeup of each component.  Ideally, were the data to demonstrate "trait" validity, each facet

should load onto only one component. Apart from the Symbolic value facet which has a

Significant loading on both components 1 and 3, the components generally exhibit trait

validity. The discriminant validity of each component represents the degree to which each

component can be considered as measuring different concepts. With all facets being related to

the same concept of involvement it is likely that a significant amount of correlation exists

between the facets reducing discriminant validity. Thus several facets may be found to load
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onto the one component. This is the case for the facets Interest and Pleasure and to a lesser

extent the Symbolic value facet. The loading patterns indicate that all of these facets are

Significant determinants of component 1.

Table 4.5: Principal component analysis

Component

Question Facet 1 2 3 4
1 Interest .613 .085 .046 .089

2 Interest .720 166 .162 .030

3 Interest .603 .281 .212 .038

4 Pleasure .735 .264 .410 .115

5 Pleasure .587 .026 .233 .030

6 Pleasure .736 .268 .386 .052

7 Symbolic .561 .257 .573 .139

8 Symbolic .526 .311 .609 .103

9 Symbolic .568 .249 .540 .013

10 Risk Importance .053 .117 .113 .797

11 Risk Importance .111 .347 .114 .410

12 Risk Importance .187 .505 .060 .450

13             Prob of Mispurchase .054 .679 .278 .111

14            Prob of Mispurchase .017 .576 .299 .280

15                   Prob of Mispurchase .072 .746 .223 .026

16                 Prob of Mispurchase .079 .720 .303 .255

Although each facet loads on each component to some degree. considering only the

more significant and/or discriminating loadings, we conclude for this study that the four

components relate mostly to the following four distinct facets:

Component 1: Interest and Pleasure

Component 2: Probability of mispurchase

Component 3: Symbolic value
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Component 4: Risk iniportance

The first component is labelled as relating to only /nterest and Pleasure, even though

the Symbolic value facet also played a significant role in its calculation because the symbolic

facet shows a high discriminant validity with component 3. Even though it lacks some trait

validity through its strong association with component 1, component I is likely to pick up the

part of the Synibolic value facet which is correlated to /nterest and Pleasure. Due to the

orthogonality of the components. only those dimensions of the Si·niholic va/tie facet which

are independent of Interest and Pleasure are being picked up by coinponent 3.



Chapter 5

Effort, Decision Strategy and Choice:

How many attributes do consumers consider?

In choice situations with few products and many attributes the standard fully compensatory

assumption that all attributes are used to compare the alternatives is unrealistic. We use

stated preference data with additional information on the importance ratings of attributes.

and which attributes were always or never used in the choice decisions. The raw data suggest

that less than half of the attributes are always used. while more than one third are never

used. We develop a two-stage model in which consumers first decide which attributes to

incorporate in their decision process, and then use a compensatory choice strategy using
only these attributes.  The main feature of the model is the link between the preference weight
given to an attribute and the probability it is used in the actual choice process. KVe then

formulate an empirical model that jointly explains choices. answers to importance ratings

questions. and answers to questions on whether attributes were always or never used. The

model is estimated with simulated maximum likelihood. We find. for example.  that price is

only considered  in about 59% of all choice problems.  We also find that  the probability that

an attribute is  considered  increases with  the respondent's response time,  con-firming that

more involved consumers who spend more time on their choices. are using strategies that

come closer to fully compensatory decision making.



100 Effort, Decision Strateey and Choice

5.1  Introduction

The study of the decision processes used by consumers when faced with a choice task is

important for understanding consumer behaviour. Models of consumer choice have achieved

popularity across a range of disciplines, due to their ability to provide valuable insight into

the market behaviour of consumers. In particular, marketing researchers have used models of

consumer choice for market segmentation, product positioning and predictions of consumer

choice. Our objective in this chapter is to gain an understanding o f which attributes as well as

how many attributes consumers consider in a multi-attribute decision task and to see how

these outcomes relate to consumer preferences.

To this end we develop a model for choosing between two or more products that

generalises the mixed multinomial logit model (McFadden and Train 2000) and incorporates

the possibility that respondents base their choice on a limited number of product attributes

only. The starting point is the random utility framework, where the utility of a product is the

sum of contributions from all attributes. The weights of the attributes vary actoss respondents

and are thus treated as random coefficients. The well-known mixed multinomial logit model

uses this framework. It assumes that products are compared on the basis of all attributes in a

fully compensatory fashion.

The existing literature provides evidence that respondents do not always make their

decisions in a fully compensatory manner, but instead often use simplifying strategies not

requiring comparisons of all products on all attributes.  In this chapter, we look at the choices

between a few products with many attributes. Here not considering certain alternatives at all

is not an issue, but not taking into account all of the attributes is. We generalise the mixed

logit model by including threshold values.  If the difference between the utility contributions

of a certain attribute across the products in the choice situation is below the threshold, the

attribute is not taken into account in the choice decision. Thus our model is characterised by a

direct link between the strength of preference an individual has for an attribute, and whether

an attribute is considered or not. We allow for heterogeneity across respondents in
preferences (through random preference coefficients) as well as choice strategies (through

random thresholds). Moreover, the thresholds in our model vary with the nature of the choice

sets (i.e., choice complexity) as well as the amount of effort the respondent has put in (i.e.,

response time). The framework we provide encompasses a range of strategies including the
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fully compensatory decision rule as a special case.

1n order to estimate this model, we use a data set that contains additional information

that is usually not provided in data on consumer choice. We have a large survey of

respondents who not only provide stated preference (SP) choice data, but also provide
importance ratings on all the attributes, and supplementary information on which attributes

they used in all their choices, and which attributes they never used. Particularly the latter data

allow us to directly infer how often attributes were used. With the help of the additional

information we are able to disentangle the various strategies individuals use, so that both
consumers' preferences and strategies can be jointly modelled. With choice data only, the

broad range of decision rules encompassed by a model such as the one we present would lead

to a non- or very weakly identified model. Finally, response times for the choice questions

are recorded in this data set as well, and these will be used as a proxy for cognitive effort. We

will include response time as an explanatory variable for the thresholds, which determine

whether attributes are used or not. The model is estimated using a simulated maximum

likelihood technique. Our empirical findings confirm that people who spend less effort follow
decision strategies that involve fewer attributes.

The chapter is structured as follows. In the next section, we position our study in the

existing literature on compensatory and non-compensatory decision strategies. In section 5.3,

we present formally the model, characterised by a two-stage decision strategy. We discuss an

econometric model for implementing this decision strategy, and we discuss how this model

can be estimated, using both the SP choice data and the extra information on individual

response times and use of attributes. In section 5.4, we focus on the empirical application. We

first describe the data and the main relationships between the variables in the model. We then

discuss the estimates and do some additional calculations, employing new techniques

developed by Revelt and Train (1999). to illustrate how the model works and its implied

relation between preferences and the attributes people consider. Section 5.5 concludes.

5.2 Models of Consumer Choice

Many choice modelling applications in the marketing literature assume individuals use a fully

compensatory utility maximising decision process. This assumes that in determining the
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value of any particular product, consumers consider the levels of all attributes for that product

simultaneously, weighing up the relative importance of each attribute to obtain the overall

utility of the product. This process is termed fully compensatory (or simultaneous) because a

product that is deemed deficient on one particular attribute can still be selected if this
deficiency is compensated by high scores on other attributes. The consumer repeats this

process for each product in the choice and then chooses the product providing maximal

utility. The well-known (multinomial) Logit, and Probit models are based upon this decision

strategy (see Ben-Akiva and Lerman  1985).

Increasing evidence in the literature on consumer choice suggests that consumers

frequently do not follow a fully compensatory choice process, but rather prefer to employ

simpler decision rules (Wright 1975, Gensch and Javalgi 1987, Chaiken 1980, Johnson et al.

1989,  Fader  and  McAlister 1990, Russo and Dosher 1983, Payne  et  al.   1993). The model

introduced in the current chapter allows for simplification of the decision task by permitting

individuals to consider only a subset of product attributes rather than the complete set of

information available. Few researchers would refute the concept that alternatives to the fully

compensatory choice process are often much closer to the actual choice process decision-

makers use to make choices. Individuals may employ a variety of simpler choice strategies,

which ignore potentially relevant problem information, to reduce the level of cognitive effort

or mental processing required for making choice decisions (Abelson and Levi 1985, Payne et

al. 1988). Examples of well-documented alternative strategies requiring less effort on behal f

of the decision-maker  are the satisficing model (Simon 1955), elimination by aspects

(Tversky  1972),  and the lexicographic or conjunctive procedure (Dawes   1964).  The  main

justification for the use of simplifying strategies is the desire of consumers to reduce the

required level of mental effort involved  in the decision process (Shugan 1980, Swait  2000,

Swait and Adamowicz 2001). When selecting a decision strategy, consumers trade-off the

costs of this required mental effort with the benefits, primarily the ability of a decision

process to select  the best alternative (Russo and Dosher 1983, Johnson and Payne   1985,

Payne et al. 1988, Bettman et al. 1988, Bettman et al. 1990).

Several previous attempts to model simplifying strategies mostly focus on hierarchical

attribute processing models. These assume that product attribute information is processed in a

contingent way as in the lexicographic and elimination by aspects choice processes. In these

models the decision-maker is assumed to have a pre-specified order of importance across the
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various attributes and considers each in turn according to this order. In these types o f models,
for the particular attribute being considered, products are eliminated if they either do not
possess the highest level for an attribute or fail to meet a set criteria or cut-off. After all but
one product has been eliminated, the remaining product is chosen. Exainples include the
HIARC model (Gensch and Svestka  1979), its probabilistic version, the maximum  likelihood

hierarchical (MLH) model (Gensch and Svestka 1984), Tversky and Sattah's (1979)
PRETREE  and its' extensions (Gensch and Ghose 1992, Gensch and Ghose   1997),  the

'elimination by cut-offs' model of Manrai and Sinha (1989). Currim, Meyer and Le (1988)
infer hierarchical models without requiring prior specification of a particular decision

strategy. Other papers assuming the hierarchical framework with ordered attribute selection

and attribute cut-offs are Grether and Wilde (1984), Klein and Bither (1987), Huber and

Klein (1991), and Sethuraman et al. (1994) These latter studies have concentrated on

examining how and why attribute cut-offs are formed.

It is well accepted in the literature on consumer choice that consumers may reduce the

extensiveness of their decision process by not necessarily considering all attributes (Gensch

and Javalgi 1987, Park and Parker Lessig 1981. Swait and Adamowicz 2001, Moore and

Lehmann 1980, Shugan  1980).  In the model we introduce  in this chapter, consumers  make

choices based on a subset o f the attributes. The attributes they consider are then evaluated in

a compensatory manner. The model may be seen as consisting o f two stages:  in the first stage

consumers screen the number of attributes to be considered down to a smaller number, and in
the second stage the remaining attributes are considered simultaneously, allowing for
compensatory tradeoffs among the attributes. This is somewhat reminiscent of the work of

Gensch (1987) who proposes a two-stage model of choice where consumers initially use a

non-compensatory process to screen down the number of alternatives to a manageable
number via attribute processing and then consider the remaining attributes in a compensatory

fashion. In both models consumers use a simplifying process to reduce the magnitude of the

choice problem and, following this, a more rigorous (and mentally demanding) compensatory

process is carried out. For a similar reason our model can be compared to models of
consumer consideration sets which model how the number of alternatives in the choice set is

reduced by consumers (Swait and Ben-Akiva 1987a,b, Roberts and Lattin  I 991, Andrews and

Srinivasan 1995, Ben-Akiva and Boccara 1995, Allenby and Ginter 1995, Chiang et al.
1999). These have concentrated on consideration sets with respect to alternatives. A parallel
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may be drawn with our model of choice based on a considered set of attributes. In choice

situations where many products with few attributes have to be considered, simplifying

strategies will be used to reduce the set of alternatives to a manageable size. On the other

hand, we focus on choice situations where only few alternatives are considered, but all these

products have many attributes. In such a situation, a fully compensatory strategy requires

adding up the utility differences due to all the separate attributes. It seems quite natural that

respondents then compare the alternatives using what they consider the most relevant

attributes only. It is this idea that we incorporate in a formal model and then investigate

empirically.

5.3 Theory and Econometric Model

This section presents the theoretical and econometric model, used to analyse consumers' SP

choice data while simultaneously incorporating individuals' reported information on the use

and importance of the respective attributes as well as consumer response times. As discussed

in the previous section we do not assume that the consumers' decision is necessarily based on

the full range of attributes presented for each product as in a standard fully compensatory

model. Rather only those attributes that are deemed to have a large enough impact on utility

(above a certain threshold level) are considered. We first describe the formation of this

consideration set. Next, the decision process given the consideration set is modelled. In the

third subsection, we explain how the empirical model incorporates the additional attribute-

specific information provided by the respondents, based upon questions on whether the

respondent used the respective attributes always or never, and on importance ratings of the

attributes. This subsection also presents distributional assumptions and discusses scaling and

identification issues. Finally, an explanation of the procedure used to estimate the model is

given in subection 5.3.4.

Throughout. we will use the following notation:

i        respondent(i=1,...,N)

k            attribute (k=1,..., K); K is the total number of attributes

s choice situation (s=l... .,S); S is the total number of choice situations
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j          alternative (j= 1.....J(s)); J(s) is the number o f alternatives in choice situation s

XJ = (XJI,···,XIK)' vector of attributes of alternative j. X, does not include a constant.

We will follow the standard assumptions on preferences, and assume that the utility of
each product is given by the sum of utility contributions of all the attributes. Thus we do not

allow for interactions between the various attributes. Let the utility derived from the k-th
attribute of alternative j for respondent i be given by:

(5.1) U,Jk = Xik ik

where Xjk is the value of the k-th attribute of alternative j. and 11,1, is the individual-specific

slope coefficient for this attribute.

5.3.1 The Decision Rule, Stage  1: The Set of Considered Attributes

The motivation behind this chapter is the proposal that individuals, when faced with a choice

between few products, characterised by a reasonably large number of attributes, may not
necessarily evaluate each product on all attributes, but instead may select only a few of the

more salient attributes for consideration. Thus the respondent is assumed to form a
consideration set o f attributes and to make a choice based exclusively on the attributes in that

set. Whether an attribute k is used in a given choice situation s depends on the contribution

(in absolute value) of that attribute to the utility difference between the alternatives in the set.

For a choice s between two alternatives (j and j'), this difference is given by'

(5.2) Auil,(S) = 1Xj·k - Xlkl|13ik|

For a choice situation with more than two alternatives, we will assume that the same

attributes are used in comparing all pairs of alternatives. It therefore seeins reasonable to

assume that the utility difference relevant for whether or not an attribute is considered, is the

maximum ofall pair-wise differences:

(5.3) AU,k(s)=max{ Ixj·k -xikll'3'kl; jj'€{l.....J(s)1 }

' For some of the attributes in our data, the possible values are unordered, and a somewhat different expression
for AUIL(s) applies (using dummy variables for the possible outcomes). This extension is straightforward. though
it complicates notation.
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The criterion for inclusion in the consideration set is that Auik(s) exceed some

threshold value. We denote the threshold value for individual i in choice situation s by Tis·

The decision on whether an attribute is in the consideration set for choice situation s is

determined by

(5.4) Attribute k is used ifand only if AUik(s) > Tis

Applying this criterion to all attributes gives the consideration set for individual i in choice

set s, denoted by C(i,s):

(5.5) C(i,s) =  {kE {1,...,K}; AU,1,(S) - Tis > 0}

From (5.4) it is clear that the higher the value for AU,k(s) is, the more likely the k-th

attribute will be considered. Thus when either the difference in the levels of attribute k

between products increases, or the individual's (absolute) preference weight for the attribute

increases, the probability that the attribute is considered will rise. This creates a link between

consideration set and preferences: the more important attributes have the largest chance to be

included in the consideration set.

The AUik(s) terms will not only vary across individuals (through preferences) but also

with choice contexts (through the attribute levels xjk). Thus the set of considered may vary

across both individuals and choice tasks.

Additional variation in the set of considered attributes is introduced through variation

in thresholds. We assume that the threshold is constant across all attributes but may vary

across both respondents and choice situations. The reason that the threshold varies across

respondents is that respondents are heterogeneous with respect to their choice of decision

strategy. For example, a very involved consumer will typically put a lot of effort in each

choice and thus will have a lower threshold, bringing him closer to a fully compensatory

decision strategy.

Furthermore, consumers will probably compensate for additional complexity by

putting in more effort. Thus if choice problems become more complex, we would expect

lower thresholds and less simplification. This explains why we also allow the thresholds to

depend on the complexity of the choice situation.

To model such threshold heterogeneity we use the following specification:
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(5.6) T,5 = Z,SY + E„

where Z„ is a vector of explanatory variables. including a constant tenn, and Et: reflects

unobserved heterogeneity in thresholds.

As mentioned in the previous section, one special feature of the data set we use to

implement the model is the availability of response latencies measuring the time taken for
respondents to answer each choice question. The worth of recording response times has

previously been recognised as providing valuable information about the extensiveness of a

consumers' decision process. The reader is referred to Haaijer. Kamakura. and Wedel (2000)
for a comprehensive summary of the use in both psychology and marketing. We expect that

individuals who spend more time on their choices, consider a larger number of attributes.

Accordingly we include individual response times in Z„, expecting higher response times to

be associated with lower threshold levels T. Moreover, as discussed above, we expect choice

set complexity to play a role. Our sample consists of six groups of respondents who were
given choice problems of different complexity (see section 5.4). To account for these shifts in

complexity between groups, we include dummy variables for these groups in Zt:.

5.3.2 The Decision Rule, Stage 2: Compensatory Evaluation of

Considered Attributes

In the second stage o f the decision process, we assume the decision-maker analyses the set o f

considered attributes determined in stage 1 in a simultaneous compensatory manner to form
approximate values of the overall utility associated with each alternative. The framework we

use is the same as in a fully compensatory choice rule however, the utility values now only

contain the contributions of the attributes that are included in the consideration set of the
given choice situation. For choice situation s the utility of alternative j to respondent i is

given by:

(5.7) V)(s) - Ixlk B,k U-1,··· •Jcs))
kel Ii.. 1

Accounting for errors in the same way as in models using the random utility framework (such
as the multinomial logit), we assume that respondents base their choice on an unobservable

latent variable, V,(s); composed of the structural utility in (5.7) and a random component:
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(5.8) V,JCS)* = Vij(S) + e,J»

The decision rule is then

(5.9) Choose c if V„(s)* 2 V,j(s)*   for all j =  1.....J(s)

Thus the product is chosen which is judged to provide the highest utility, after compensatory

evaluation o f the attributes in the consideration  set.

5.3.3 Econometric Model

To implement the choice model presented in the previous section on a SP data set, we first

need some distributional assumptions. We also need to specify how the additional attribute

importance ratings and information on which attributes are always or never used. are

incorporated in the model.

Distributional Assumptions

To allow for heterogeneity in preferences across individuals, the vector of attribute slope

coefficients Bi =(Bil,···,Ak,···,BiK)' in (5.1) are treated as a vector of random coefficients,

using the following specification:

(5.10) Bik=bl,+Uik,  k=l:.-,K,

(5.11) Ui = Cuil,·..,U,K) -N(O,n).

It is assumed that the same  , is used by respondent i in all choice situations.

Unobserved characteristics of respondent i enter through the uik· We assume that the uik are

drawn from a K-variate normal distribution with mean zero. The paraineters in the KxK

matrix Q need to be estimated. For computational convenience, we assume that Q is

diagonal, so that only K standard deviations (Ox) need to be estimated.2 Since the random

coefficients  ik (or the u,k) do not vary with choice situations or alternatives, and since they

are independent across individuals, the correlation structure of choices across individuals,

choice situations, and alternatives, identifies the variances o f the random coefficients.
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Similarly, the unobserved heterogeneity in the thresholds term in (5.6), E„. is assumed

to be normally distributed:

(5.12) Eis - N(O,aff),

Eis is independent of other random variables in the model (such as 0,).

Furthermore, we assume that the random components. eus. in (5.8) follow independent

GEV(I) distributions. This gives the familiar multinomial logit form for the choice

probabilities, conditional on the parameters  , and the threshold Ti,

(5.13) Pis(cIDi.T,s) = P(i chooses alternative c in situation sl ,.T„) =
exp(Vt,(s))

lexp(vil (s))
J=1

Thus the only difference with the standard mixed logit framework is the fact that only the

attributes in the consideration set are used to construct the product utilities, rather than all the

attributes.

Additional Information

After having answered all the choice questions, respondents were asked to indicate the

attributes they had always used and the attributes they had never used. Following this they

were asked to rate each attribute's importance on a scale of 1 to 7. We incorporate these

additional data in a manner consistent with our construction o f attribute consideration sets.

Attribute Consideration - Always/Never Used

The framework already developed for determining the consideration set suggests an obvious

approach for incorporating the information on whether attributes were always or never used.

The answer to the question: "did you always use this attribute?" is driven by the minimum

value of Aulk(s) over all choice problems s=1,...,S faced by the respondent. If the minimum

value lies above the individual's threshold value. the attribute should always be present in the

individual's consideration set. We allow for reporting error as follows:

- The assumption that random coefficients are normally distributed could easily replaced by another assumption.
For example, a discrete distribution where each mass point represents a market segment, is an interesting
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(5.14) The respondent reports that he has always used the attribute if

Min{ AUlk(s)Is=l ....,S 1 - Tis + v,k > 0

Here v,k - 3(0,0- ) represents the possibility that someone gives the wrong answer. It is

assumed that the v,k are mutually independent and independent of the u,k, EA. and the eus

Similarly, the answer to the question "did you never use this attribute?" is driven by

the maximum of AUil,(s) over all choice problems s=1.....S the respondent faces:

(5.15) The respondent reports that he has never used the attribute if

Max{AU,k(s) -Tisis-1.....SH +Wik<0

with wik -N(O,awi) representing another reporting error. The wik are assumed to be mutually

independent as well as independent of the uik, Eis. eus, and the v,k.

Attribute Iniportance Ratings

The attribute importance ratings refer to scores provided on a scale of 1 (indicating the

attribute was not important) to 7 (very important). Thus the observed ratings are an ordered

categorical variable with R=7 possible outcomes, which we label r =  1,...,R. The ratings data

indicate the overall importance of each attribute. as viewed by the respondent after evaluating

all the choice sets. Therefore it seems plausible that the ratings should be driven by the

average of the utility difference in (5.3) over all choice sets s=L. .,S.  Allowing for some
noise in the answers to the importance ratings, we thus specify the following ordered probit

equation:

(5.16) R,k* = 1/SEAU,k(s) + Ak
,=1

R,k = r if mr.t < R,k* 5 mr

(1)ik - N(0,(02)

Thus respondent i reports a rating of R,k = r for attribute k if the latent variable Rik* lies

within the categorical boundaries mr., and mr. Rik* is interpreted as the (unobservable) true

importance ofattribute k for consumer i. The bounds ( - = =m o< )m i< . .   < mit.1   (<mil =00)

alternative. There seems to be no common view in the literature which assumptions give the best fit to the data.
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are unobserved parameters which can be estimated. It is assumed that the random error tenns,

(1),k, are mutually independent and independent of u,k, Eis, eiis. viI, and w,k.

Normalisation and Identification

As for the standard multinomial logit model the scale of the utility function is normalised via

a specific choice of the scale of the errors eits Therefore the scale parameter of the GEV(I)

variables is set to unity. The location of the utility function is identified by excluding a

constant term from Xj, and as a consequence the distributions of the random coefficients 13i

are identified. With Di fixed, the vector of parameters, 7, from the threshold equation (5.6),

and the scale of the respondent specific terms Eis, are also identified. In addition the scale of

the error terms viI, and wik in (5.14) and (5.15) respectively are now identified. The only

remaining parameters  to be discussed  are the category boundaries mi,...,mR-1 arising  in  the

specification of the ordered probit model in (5.16)  for the attribute ratings data. Normally,  in

a model for the ratings only, some normalisation of scale and location would be necessary.

However,  from the normalisation already imposed on the choice part o f the model the scales

of the random coefficients are identified, which determines the scale of the ratings error. ce,
only the location remains to be fixed. The location is identified by not including a constant

term in the equation determining R,k*, the importance of attribute k to individual i, in (5.16).

5.3.4 Estimation

Across the different choice situations, the choices of individual i are independent conditional

on  i and Tis. Thus the conditional probability to choose 1(i. 1),...,1(LS) for individual i with

choice situations s=l,. ..,S, given B, and T,s, is:

S

(5.17) LC, (p„T,. )= rip„(J(i,s) 111,.T„)

with the choice probabilities as given in (5.13).

Moreover, conditional on 13, (or ui) and Tis (or E,s), the answers to the choice questions,

the attribute consideration questions, and the attribute rating questions are independent of

each other. Thus the likelihood L,(09.Tis) of the responses to all of the questions faced by
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individual i. conditional on  , and T„. can be written as the product of the conditional

likelihood contribution of each separate question:

(5.18) L,(Bi,T 1. ) = LC,(1 ,.T,s) G,(D,.Tis)

where G,(13„Ti,) is the contribution of the individuals ratings and consideration sets

information, which is a product of univariate normal probabilities (due to the independence,

conditional on  i and T,s)·

Li(01.Tis) is straightforward to compute. The unconditional likelihood is the expected

value of this function over B, and Tis. which can be approximated using simulations. This

suggests that the model can be estimated with simulated maximum likelihood.3 However, a
problem arises from the fact that LC,(13„T,<) is not a continuous function of the parameters,

due to jumps in the choice probabilities where the consideration set changes. The

discontinuities would greatly complicate the numerical procedure for finding the maximum.

To circumvent this problem, we should avoid conditioning on T,s4. To see how this works,

write the likelihood contribution o f respondent i as

(5.19) L, = E{Li(P,.Eis)} = E{LC,( „E,s) G,(Di,E,s) 1 = E{E{LC,(Di.Ei,) G,(P„E,s)1 P, ; 1

Conditioning on Tis is equivalent to conditioning on Eis. Thus L,(13„Eis) = L,(Pi,Tis),

LC,(Di,Eis) = LC,(131.Tis) and G,(Pi,E,s) = G,( i,T„). For given Bl, the function LC,(Bi,EN) is

piecewise constant as a function of E,s· The number of different values is at most  (SxK),

since, for given 11, the AU,k(s) terms are also given, and the value of LC,(P„Eis) only changes i f

Ei. crosses one of the (SxK) terms AU,1,(s)-Zy Denote the intervals on which LC,(13,.Ets) is

constant by Iq, q =  l....,Q and the corresponding values of LC,( 3„Ei,) as LC,(q). (All this will

depend ·in  , (and y); we do not explicitly mention that in the notation.) We can write the

inner expectation as

(5.20) E{LC,(Bi,Eis) G,(13„Eis)113,1 =  LC,(q) P(Eive Iq 1131) E {Gi(Bi.Ei,)1 fi„E,se Iqi

The probabilities P(Eise Iq 'Bi) are simple univariate normal probabilities. The expected values

E{G(13„E,s)IP„Eis€ Iq} can be estimated by a simulated mean, using draws from the conditional

3 See. for example. the survey o f Hajivassiliou and Ruud ( 1994) for properties of simulated maximum likelihood
estimators.
4 The procedure is similar to the way to tackle the same problem in a multinomial probit model. where a crude
frequency simulator would lead to discontinuities.
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distribution of E,s given that Ei: E  Iq. The result is a simulation-based approximation that  is

continuous in the parameters. since G,(0,.E„) is continuous in the parameters. Drawing from

the conditional (normal) distribution works as follows:

- denote the distribution function o f the conditional distribution of E,: given Et. E  [q by

Fq. Denote the inverse of Fq by Fq-1: (0.1) -* Iq.  If Iq is the interval [a.b], then

for t E Iq, Fq(t) is given by Fq(t) = (Fe(b)-Fe(a))- (Fe(t)-F,(a)), where FE(t) is the

(unconditional) distribution function of E„.

- draw d from U(0,1) (the uniform distribution)

- Eis = Fq-1(d) is a draw from the conditional distribution of Ei, given Ei, E Iq.

The outer expectation in the likelihood can be approximated by a simulated mean by

drawing 13,. Thus the simulated likelihood approximation consists o f draws of 1 i as well as E,s.

but the two are separated and play a different role. As long as the distribution of Et, is

continuous. this procedure will lead to a continuous approximate likelihood. As the number

of draws of both B, and Eis approach infinity the approximate likelihood approaches the true

unconditional likelihood. In practice, this procedure will be more time consuming than other,

more standard, simulated maximum likelihood estimators, since we need draws of£  for each»

draw of  3,. To keep computing time within acceptable limits, we have worked with 20 draws

for Di and 20 draws for Ets, leading to 400 draws for each respondent.

5.4 Empirical Analysis

5.4.1 Data Description

The survey used for the empirical application was designed to examine whether consumers

use all attribute information when making choices, and, if not, to enable ilentification of

which attributes are employed. The main subject of the survey was a choice between

restaurants each described by up  to 12 attributes (restaurant type, price.  menu, style, number

of guests, dessert menu, independent bar, opening times. available methods of payment,

distance from available parking, available seating places, and level of service). In the
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introduction to the survey, respondents were asked to imagine that they were having a

weekend holiday in The Netherlands. The town they were visiting was unfamiliar to them
and they had to decide where to eat in the town on a Saturday night. The survey was sent out

to members of the CentERdata consumer panel, consisting of a cross-section of households

throughout The Netherlands. The panel is administered through Tilburg University for
research purposes.   From   the 1535 people surveyed, 1465 usable questionnaires   were

obtained.

Table 5.1: Attributes and levels used in the experiment

Attribute Base Level J Level 2 Extra

Level

Restaurant type Small Restaurant Hotel- Hotel-
Restaurant Restaurant Restaurant

Average price of               58 510 $ 15 $ 20
entree

Menu Basic Menu Occasionally Extensive Very
altered extensive

Style Business Modern Old- Very old-
fashioned fashioned

Number ofguests Reasonably Quiet Reasonably Very busy
busy busy

Desert mum Only Occasionally Extensive Very
Ice-cream altered extensive

Separate bar area Yes Yes No        -

Closing time 9 Pm 10.30 pm 9 Pm

Methods ofPayment Cash only Cash, debit or Cash only           -
credit card

Parking 100 m away In front of 300 in away          -
restaurant

Seating available Near Near window                                 -
entrance and inside

Only owner A lot of Only a few           -
Personnel working personnel personnel
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The sample was divided into 6 groups with members o f the same group receiving the

same questionnaire, and different groups facing different sets of questions. The survey began
with participants being presented a sequence of choice sets each containing 2 or 3 potential
restaurants each described by a set of attributes. from the aforementioned list, and asked to

indicate their preferred option. Each attribute was presented at a maximum of two levels in

any one group. Table 5.1 presents the attributes and their levels. The choice profiles were

designed using orthogonal fractional factorial designs following Green (1974). Orthogonal
arrays offer a parsimonious method to assign the differing levels for each attribute to products

while ensuring main-effect parameter estimation. All choice sets included a "base-
alternative" which was constant across all choice sets for that group. Within each group all

choice sets had identical dimensions. The choice sets presented to different groups differed in
a number of ways; the number of restaurants  in each choice set, the number o f attributes, and

the levels per attribute ('regular' difference, 'high' difference). The time taken to answer each

choice set was recorded for all respondents. A summary o f the choice questions asked of each

group is provided in table 5.2.

Table 5.2: Description of choice sets per group

Group No.                                       1         2         3         4         5         6

No.  of Products                                                              2                 2                 2                 2                 2                 3

No. of Attributes                                                            6                 6                 3                  12               12              6

No. of Choice Sets Faced                         9          9          5          9          9          9
No. of Observations 100 100 100 100 100 100

Average Median Time per Question (sec) 11.43 12.63 10.28 21.44 19.40 17.24

Average No. of Attributes "Always Used" 2.60 2.62 1.77 4.52 4.50 2.79

" 2.21 1.91 1.12 4.13 4.31 2.12Average No. of Attributes "Never Used

Average Attribute Rating 4.39 4.49 4.79 4.18 4.10 4.52

As can be seen in table 5.2, group 6 was the only group that had a choice set with 3

alternatives with the remaining groups having 2 alternatives to choose between. The

restaurants in the choice sets for group 3, were described by 3 attributes. Groups  1,2 and 6,

were provided information on 6 attributes, while groups 4 and 5 faced choice sets in which
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alternatives were described by the  full set of 12 attributes. All respondents had a total  of 9

choice questions to answer, except for the members of group 3 who had only 5. For use in our

empirical application 100 respondents were randomly selected from each group. The reason

for not using the complete sample is that estimating the model described in section 5.3 would

then require a prohibitive amount of computer time.

As a proxy for cognitive effort per individual, we use median response time per

individual. The median tillie is used rather than all separate response times or the mean

response time to remove any bias caused by effects such as learning and fatigue, which would

be expected to respectively shorten and lengthen the decision time. The averages of the

individual median response times were taken across all members within each group and are

also presented in table 5.2. These averages are clearly related to the number of attributes and

the number of products faced. The shortest average median  time  of 10.28 seconds  was

recorded for members of group 3 with only 3 attributes, while the longest times were

recorded for groups 4 and 5  (21.44 and 19.40 seconds respectively) who faced 12 attributes.

Although alternatives  seen by groups  1,  2.  and  6  were all described  by 6 attributes,  a

Significant drop can be seen between the average recorded for group 6 (17.24 seconds) and

those recorded for groups  1  and 2 (11.43 and 12.63 seconds respectively). This drop comes as

a consequence of the reduction in alternatives per choice set from 3 to 2.

As can be seen in table 5.1. while most attributes take on ordered values, some of the

attributes can have three unordered values. For example, style can be business, modern or

old-fashioned. In this case, the utility contribution of the attribute is not given by (5.1), but by

a linear combination of two dummies for two of the three possible levels, with corresponding

random coefficients. Thus preference for this type of attribute will be described by two

random coe fficients instead o f one.

Attribute Specific Information

After the choice questions, respondents were firstly asked to indicate attributes they had used

in every choice situation (referred to as "always used"). Following this they were asked to

point out attributes that they did not consider in any choice situation (referred to as "never

used"). The last task asked of the survey participants was to rate the importance of each of the

attributes they had seen in their choice sets on a scale of 1 to 7. For each group separately, the
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average number of attributes individuals indicated they had "always used" and "never used"

are shown in table 5.2. as well as the average rating received by the various attributes in each

group. The number o f attributes seen by the different groups had a clear impact on the scores

of all three types of questions. As expected, if the number of attributes faced by a group

increases, the number of attributes reported as either "always used" or "never used" also

increases. The increase for "never used" tends to be larger than the increase for "always

used". This is in line with the idea that people turn to simpler decision strategies when

problems become more complex. Finally, the average tinportance rating across all attributes

for each group falls as the number of attributes increases.

To illustrate how this additional attribute information and the consumer response

times can provide insight into the consumer choice process the results of three ordinary least

squares regressions are provided in table 5.3. The dependent variables for the three

regressions are the number of attributes "always used", the number of attributes "never used",

and the average attribute importance rating, respectively. The three regressions all have as the

independent variables the median response time per individual, a constant term, and three

dummy variables: one for group 3, the second for groups 4 and 5 together, and the third for
group 6. The dummy variables are included to remove any bias caused by changes in choice

set dimensions (see table 5.2).

In the first equation in table 5.3, the coefficient of the median response time per

individual is positive and significant at the 5% level of significance. with a t-value of 2.24.

This suggests that a positive relationship exists between response time and using more

attributes. The negative sign of response time in the equation for the number of attributes
"never used" supports this, although, this coefficient is not significant. The final regression in

table 5.3 shows that an increase in median response time is positively related to the
importance attribute ratings. The estimated coefficient is significant, with a t-value of 2.55.

Again this is in line with the idea that more involved respondents who spend more time on

their choices, tend to find it more important to use many attributes in their decision process.

These results help to us understand the working of the model in section 5.3. In the

threshold equation (5.6) of the previous section. we expect a negative effect of response time.

Thus an increase in response time should reduce the threshold value. Equations (5.14) and

(5.15) imply that this should increase the probability of an attribute being "always used" and
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decrease the chance of it being "never used"  This is in agreement with the findings of table

5.3. Moreover, equation (5.16) implies that a higher average attribute rating means that. on

average, the AU,1,(s) terms will be higher. This will mean that more attributes are in the

individual's consideration set for any particular choice situation. Considering more attributes

means spending more time. This is confirmed by the third regression of table 5.3.  We do not

give this a structural interpretation in our model: we assume that response time does not enter

the ratings in equation (5.16), SO the correlation between response time and ratings is driven

by preference heterogeneity in our model. Explicitly incorporating response time in (5.16)

might be an interesting extension.

Table 5.3: Regressions of attribute information variables

VS. median response time per individual*

"Always Used" "Never Used" Average Attribute Rating
Variable Estimates Variable Estimates Variable Estimates
Constant 2.41 Constant 2.14 Constant 4.32

(17.48) (19.76) (56.66)
Group 3 -0.81   Group 3 -0.95  Group 3 0.37

(-4.37) (-5.55) (3.62)

Groups 4&5 1.16   Groups 4&5 1.11   Groups 4&5 -0.38
(10.82) (17.34) (-4.32)

Group 6 0.10  Group 6 0.030.09  Group 6
(0.50) (0.52) (0.289)

Median 0.02 Median -0.01 Median 0.01
Response Time (2.24) Response Time (-1.10) Response Time (2.55)
N = 600 Observations N = 600 Observations N = 600 Observations
R2 = 0.321 R2 = 0.498 R  = 0.079

*t-values placed in parentheses under the estimated coefficients

5.4.2 Estimation Results

The estimation results for the complete model discussed in section 5.3 are presented in table

5.4. Parameter estimates as well as their respective t-values are presented. The top hal f of the

table contains the estimates of the means of the distributions of random attribute coefficients

in the left column, and the standard deviations associated with these (normal) distributions in

the right column.  Only one of the  16 mean parameters is not significantly different from zero.

Confidence intervals for the standard deviations would exclude a zero standard deviation in
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12 out o f 16 cases, suggesting that unobserved heterogeneity plays a significant role for most

of the attributes. The relative size of the standard deviations compared to the means. suggests

Table 5.4: Estimation results

Parclmeter Estimate t-value Parameter Estimate t-value

Means  ofRandom RC Standard
Coe#icients (RC) Deviations

3, i  - Restaurant type I -0.723 -16.401        wi 0.170 4.707
3,2 - Restaurant type II -0.740 -15.433 02 0.261 7.702

3 3 - Price -0.051 -17.487 0)3 0.062 21.903

3,4 - Menu 0.778 27.020 (04 0.172 12.271

3,5 - Style I 0.761 18.337         0)5 0.126 2.944
3i6 - Style II 0.284 6.243 (06 0.713 15.952
30 - Style III 0.123 1.410 0)7 0.960 9.175

3,8 - No. of guests I 1.156 26.585         com 0.038 1.228

3,9 - No. of guests II -0.546 -5.905 (09 i.200 10.170

3,io - Dessert Menu 0.308 19.582 (1)to 0.181 13.259
3, i t  - Independent Bar -0.549 -10.755 eli 0.059 0.924

3,0 - Opening Times -1.022 -15.757 CO12 0.002 0.034

3,13 - Methods of Payment -0.873 -16.159 0)13 0.233 4.037

3*14 - Distance to Parking 0.004 17.522 (014 0.001 3.685

3i15 - Available Seating 0.572 23.136 (015 0.060 1.311

3116 - Available Seating 0.056 2.138 (016 0.600 19.720

Category Bounds Error Standard
Deviations (SD)

mi 0.167 17.643 c* - SD Ratings 0.361 23.306

mi 0.329 23.271 Error

n13 0.494 26.368 av - SD "Always 0.802 14.174

m4 0.724 27.426 Used" Error

m5 1.026 27.810 aw - SD "Never 0.751 16.762

m6 1.390 27.440 Used" Error

Threshold Equation

yi Constant Term 0.426 7.972 CE - SD Threshold 0.545 9.999
72 Dummy for Group 3 0.014 5.517 Error
73 Dummy for Groups 4&5 -0.045 -6.207
74 Dummy for Group 6 -0.009 -7.156
75 Time Coefficient -0.002 -2.972
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that heterogeneity is also economically relevant. For instance, the mean price coefficient is

significantly negative, but the results still imply that a substantial number of people attach

little or no value to prices.5 The middle panel of table 5.4 contains, on the left-hand side, the

estimated category bounds for the attribute ratings. These are auxiliary parameters for the

importance ratings and require no further interpretation. On the right hand side are the

standard deviations of the errors associated with each type of reported supplementary

attribute-specific information. These suggest that there is much more idiosyncratic noise in

the answers to the questions on which attributes were "always used" and "never used" than in

the importance ratings. All three standard deviations are quite precisely determined.

Finally, estimates for the threshold equation are presented in the bottom panel of the

table. The coefficient on response time is negative, confirming our hypothesis that an

increase in response time is associated with a lower threshold and a more effort-intensive

choice strategy with more considered attributes. The constant term and the dummy variables

are all significant suggesting that there are clear differences in thresholds between choice sets

of different sizes that is not simply picked up by shifts in response time alone. The standard

deviation for the random component in the threshold equation is estimated rather precisely,

and bounded away from zero at any conventional significance level.  It is of the same order of

magnitude as the idiosyncratic reporting errors, and relatively large compared to the

coefficients on the group dummies, indicating a high degree of unobserved heterogeneity in

thresholds.

5.4.3 Interpreting the model

From table 5.4 it can be seen that the estimated parameters are in general significant and have

the expected signs. Still, these numbers alone do not give us a great deal of insight into how

the various components of the model interrelate. To interpret the working of the model, we

have therefore performed some additional calculations.

Due to our normality assumption. positive price effects are not excluded. and our estimates would imply that
some  15%  of all respondents  have a positive price coefficient. It would be straightforward to change  the
distributional assumptions to exclude this. Revelt and Train   ( 1999), for example, assume  that the price
coefficient is deterministic.
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Table 5.5 contains some simple statistics concerning utility differentials due to some

selected attributes. The results are based on the preference parameters in table 5.4. for the

choice problems presented to group  1. The table includes the minimum AU,k, the maximum

Aulk and the average AU,k for each attribute. This information determines whether an

attribute was "always used" or "never used" and the attribute ratings, respectively (see

equations (5.14), (5.15) and (5.16)). The final column gives the probability that an attribute is

in the consideration set for the average choice problem, based upon the average utility

difference. Of the attributes presented here, the type of menu offered by the restaurant on

average gives the highest contribution to the utility difference between products.

Accordingly, it has the highest probability to be included in the consideration set. The

"average" probability for this attribute is 0.88. On the other hand, price typically has a more

modest contribution to the utility differential between products. Accordingly, price is

included in the consideration set less often: the average probability is only 0.59. This result

will be specific to the price differentials used in the survey questions, but the point we want

to make here is the relation between preferences and consideration set. In contrast to, for
example. many hierarchical models or Shugan's  ( 1980) model,  our model implies  that  the

most important attributes in terms of contribution to utility difference between products, are

also the attributes that are most often included in the consideration sets.

Table 5.5: Summary statistics for attributes seen by group I
Attribute .4verage AU,k Maximitm AU,k Mi,zimum AU,k Probability used

in 'average'
clioice set

Type 0.73 0.74 0.72 0.71

Price 0.48 0.76 0.25 0.59

Menu 1.12 1.56 0.78 0.88

Style 0.55 0.76 0.28 0.68

No. ofguests 0.64 1.16 0.00 0.66

Dessert Menu 0.44 0.62 0.31 0.52

Another way to gain a better feel for how the information on the use of attributes

interacts with individuals' preference parameters is to look at the posterior distribution of the
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random coefficient for some attribute, given that the attribute is "always used" or "never

used". This is similar to a procedure recently suggested by Revelt and Train ( 1999). who look

at posteriors given certain choices. Unconditional (prior) distributions of the preference

weights are updated to form conditional (posterior) distributions by incorporating the new

information in a Bayesian manner.

To explain how the method works, imagine we wish to obtain the density of a

particular random coefficient. say Bk, conditional on observed information y (on choice, use

of attributes, importance of attributes, etc.), and the population parameters of the model, 0.

Let h(Bk ly,e) denote this conditional density. then by Bayes' rule,

(5.21) h(ilk| he -
   || ki  Xg k |0 

P(Y 1 0)

Here g(131,10) is the unconditional distribution of 131,• PCY| k.e) is the probability of observing y

conditional on  k, and P(y10) is the marginal probability of observing y, not knowing Bk· In

our case, g(Bl,10) is the density function for a normal random variable and is thus easily

obtained. Moreover, P(YI k.0) and P(y,10) are also relatively simple to calculate: P(YIP,k.0)

follows immediately from equations such as (5.14), (5.15) or (5.16) (depending on the type of

information contained in y). A simulation procedure very similar to the one discussed in

subsection 5.3.4 can then be used to calculate P(Ylljk.0) or P(y'10), which are both expected

values of P(y10,0), with the expectation taken over a subset or all of the components of B

We use this method to illustrate how the supplementary attribute-specific information

incorporated in our model influences the distributions of the attribute coefficients. We take a

respondent from group 1  with a response tiine of 11.43 seconds (the average of the median

response times for group 1 ) (Other respondents give qualitatively similar results). In figure

5.1,three distributions for the coefficient of 'menu' are provided. an attribute that tends to be

quite important compared to other attributes as we saw in table 5.5. The middle distribution is

the unconditional (normal) distribution for the menu attribute coefficient. For virtually

everyone, the coefficient is positive. To the left of this is the distribution of the same

coefficient for respondents who stated that they "never used" this attribute for any of the

group 1 choice questions. For such people, the restaurant menu is less important than for the

average respondent. On the other hand, if the individual said that the menu attribute was

"always used" the predicted distribution shifts to the right. Since menu is ati attribute that
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often tends to be used, the information that it is "always used" is not as strong as the

information that it is "never used". This explains why the shift to the left in the latter case is

larger than the shift to the right in the former case.
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Figure 5.1: Distributions for the menu coefficient
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Figure 5.2: Distributions for the price coefficient
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In figure 5.2, we present the same set of distributions for the price coefficient. The

prior indicates 'hat a substantial number of respondents would have a negative price

coefficient, as discussed in the previous subsection. The conditional distributions move in

opposite directions to those in figure 5.1 because the most of the density now lies below the

origin. The information that price is "always used" moves the distribution further from zero,

while the information that it is "never used" moves it closer to zero. In figure 5.2, the shift

due to the information that the attribute is "always used", is larger than in figure 5.1. This

corresponds to what we saw in table 5.5: price is less often used than menu, so that the fact

that price is "always used" is more informative than the fact that menu is "always used".

Both conditional distributions exhibit a kink when they cross the origin. This is

because the model works with the absolute change in utility, so it is the absolute value of the

coefficient that matters in terms of it being considered or not. The unconditional distribution

does not exhibit this kink because of its assumed normality
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Figure 5.3: Distributions for the price coefficient given ratings are below a certain value

Figures 5.3 and 5.4 show what the attribute importance ratings for price say about the

distribution of the price coefficient. The graphs shows the unconditional distribution of the
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price coefficient along with a series of distributions conditional on the knowledge that price

received a rating below (figure 5.3) or above (figure 5.4) any given value between 1 and 7.

Figure 5.3 shows how that the density shifts toward the origin if the information that price is

unimportant becomes stronger, that is, as the information goes from "received a rating less

than 7" to "received a rating less than 2". Conversely in figure 5.4, the conditional

distributions move further away from the origin as we increase the observed lower limit for

the introduced rating information, that is, as we provide stronger information that price is

important.

12

10

8

6

4

2

-0.3 -0.3 -0.2 -0.2 -0.1 -0.1 0.0 0.1 0 1 02 0.2

Figure 5.4: Distributions for the price coefficient given ratings are above a certain value

As a final illustration ofhow the model works we examine the conditional distribution

of the threshold errors conditional on information on which attributes are used. Figure 5.5

shows the unconditional distribution for the threshold errors as well as the distributions

conditional on two events: the individual stated that he/she used all attributes in the choice

task, or the individual claimed to have used no attributes in the choice task. The

unconditional distribution is the assumed mean zero normal distribution (see (5.12)). If the

individual states that all attributes were used in making the choice decisions, the distribution
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for the threshold errors shifts to the left. In this case, the threshold for attribute consideration

is much lower than for the population as a whole, implying that more attributes will be used.

A shift in the opposite direction occurs when the information incorporated is that no attributes

were used. Individuals providing this information will in general have higher thresholds than

the average individual, implying that their choice strategy uses fewer attributes.

1.2

0.8
All Attributes All Attributes
Never Used Always Used

06

I

0

0                                     ,
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Figure 5.5: Threshold error distributions when all attributes are "always" or "never" used

5.5 Conclusion

This chapter has discussed an alternative to the standard fully compensatory model of
consumer choice. Rather than assuming consumers have the ability or the desire to use all

available information, this new specification incorporates the possibility that decision-makers

do not consider all attributes. The standard fully compensatory model is nested within this
framework which has consumers employing an attribute's information only if the difference
in utility across the products in a choice set based on that particular attribute is above a

threshold level. The model links the probability of an attribute being considered to both the
preference weight an individual has for that attribute and the difference in attribute values
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seen for that attribute in the given choice context. A random coefficient specification is used,

and along with the inclusion of heterogeneity in the thresholds, this allows for a wide variety

of possible decision strategies.

With the incorporation of additional attribute specific information, the model was

estimated on a set of consumer responses to a study of restaurant choice in The Netherlands,
using a variant of the simulated maximum likelihood procedure. The results suggest there is

significant heterogeneity across the population both in terms of individual attribute

preferences as well as the individual threshold levels determining whether attributes are used.

This heterogeneity suggests that there are significant differences across consumers in both

which and how many attributes they consider in a given choice situation. Moreover, the
thresholds in the model vary with both the complexity of the choice task, and the level of
effort the respondent has put into the choice, measured by the individuals response time. We

find that the probability that an attribute is considered increases with the individual's

response time, confirming that consumers who spend more time on choices are using

strategies closer to the fully compensatory decision process.

The model can be used to predict the probability that different attributes are used (see

table 5.5) and the link between the change in utility for a given attribute can be seen to be

clearly related to the predicted change in utility of that attribute. For example price which had

an average utility difference of 0.48 is considered in about 59% of the choice sets, whereas

the attribute menu with an average utility difference of 1.12 is predicted to have been used in

about 88%.

The model is illustrated using a recent technique, developed by Revelt and Train

(1999). for obtaining the distributions of model parameters conditional on certain

in formation. This technique is used to demonstrate how the posterior distributions of random

coefficients are affected by individual-specific information that the attributes were "always

used" or "never used", or the importance rating of the attributes. Another illustration shows

how the distribution for the threshold errors is altered by the information that all attributes

were either "always used" or "never used", where it was shown that lower thresholds are

expected in the former case and higher thresholds for the latter.

In summary, the proposal that individuals may not use a fully compensatory decision

strategy. but rather may simplify choice tasks by considering only a limited number of



attributes, is supported empirically. We find consumers typically do not use all attributes and

that the number of attributes used is directly related to the response time or level of choice

effort.



Chapter 6

Conclusion

This thesis has examined how consumers behave when making choice decisions. In

particular, the research concentrates on examining the validity of the standard modelling

assumption of a perfectly rational  individual who evaluates products in a fully compensatory

manner. Evidence suggesting that this assumption is inappropriate was presented and more

behaviourally realistic models were proposed. In this final chapter of the thesis the main

results o f the research are summarised and suggestions for future research provided.

In chapter 2 the possibility that the complexity of a choice situation may affect the

choice outcome is considered. The study analysed responses to a conjoint choice survey

carried out by CentERdata on consumer yoghurt choice in The Netherlands. In the survey

complexity was deliberately manipulated so as to vary across the respondents. The survey

was designed so that choice set complexity varied across the different questions. Initially a

mixed logit model was employed to estimate consumer preferences for yoghurt while

incorporating consumer heterogeneity. The underlying error tenn assumptions for this model,

however, differed from those used in the standard models of discrete choice. Rather than
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assuming the unobserved inconsistencies were solely due to observational errors on behal f o f

the analyst, we now assumed that inconsistencies may also be due to mistakes on behalf of
the respondent. To correct for the effect that differences in choice set complexity may have

on choice accuracy the scale values of the generalised extreme value errors were allowed to

differ across choice questions.

These estimates were then used to construct newly developed measures of choice set

complexity following suggestions from the previous literature on consumer choice. The

question of how to quantify the accuracy of an individual's choice response was also

considered in this chapter and measures proposed. The basic hypothesis of the chapter was

that if consumers are not perfectly rational utility maximisers, but rather come under the

definition of boundedly rational individuals, increased task complexity should result in less

accurate responses. This decrease in accuracy as complexity increases may come about in

two ways. Firstly, it could be due to individuals making more errors as complexity increases

while maintaining the same decision strategy, or alternatively, may be the result of consumers

switching to simpler, though less accurate, decision rules in more difficult choice scenarios.

The relationship between choice accuracy and choice set complexity was then estimated and

found to be consistent with the idea that the accuracy of an individual's choice response has

an inverse relationship with the complexity of the choice task. This result is consistent with

the view of decision-makers as boundedly rational individuals. contradicting the standard

modelling assumptions of a perfectly rational individual who has the ability to calculate

completely and costlessly.

Future research in this area could examine how the complexity effects identified here

vary across different segments of the population. For example. consumers who are more

involved in the product class being analysed may be less prone to complexity effects. A
similar result might be expected for more educated or intelligent people or for members of

society who are more experienced in making such choices.

Chapter 3 developed a model to combine and compare consumer utility estimates

based on stated preference ratings and choice responses. The same consumers were analysed
using both types of preference data, thus if the models correctly captured consumer

preferences, the preference estimates elicited using either data source should have been

compatible. On the other hand, evidence of framing effects in economic decision-making is
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well established (Tversky and Kahneman, 1986) suggesting different task conditions may
affect an individual's preferences. In a similar manner we expect task effects due to the
difference in task conditions between the ratings and choice questions. To estimate consumer
preferences from both data types simultaneously a new econometric model was provided

where consumers' rating responses were modelled with a random coefficient ordered probit
specification and a random coefficient logit framework was used to analyse the consumers'

choices. In addition to allowing for preference heterogeneity across the population, the
random coefficient specification introduced correlation between an individual's responses to

both types of data. We allowed for a flexible monotonic transformation of utility between the

choice and ratings contexts, by making the category bounds in the ordered probit free

parameters to be estimated. Estimation and identification issues were discussed as well as
potential efficiency gains over models considering the two data sets separately.

The basis for the empirical work in the chapter is the yoghurt survey analysed in

chapter 2, however, now consumer ratings data were also incorporated. In our empirical
results significant differences between ratings based and choice based utility estimates were
found. In particular, respondents were relatively more price sensitive in the ratings tasks as

well as more positive about possible new product extensions (i.e., recyclable packaging).
These observed effects were in line with possible strategic behaviour by consumers in
responding to the survey questions. Some support was found also for the prominence effect
indicating that the most important attribute received greater weight in the choice task. While
the mean parameters for the preference distributions differ, the correlation between random

coefficients driving the two data sets was very strong.

Despite these differences in parameters it was found that the predictive ability of the
different models were very similar. This finding may seem surprising, but is in line with
earlier results by Dawes (1979) who showed that linear models perform very well in
predicting the outcome of choice tasks even if the linear models are only directionally correct

and the parameter values have incorrect values. Empirical results by Elrod et al. (1992) also
illustrate a similar predictive ability of different model specifications based on consumer
ratings and choice responses, further supporting the view that aggregate predictions are
robust over utility measurement approaches.
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Given that strategic response behaviour can explain part of the observed differences

between ratings and choices in our estimates and the fact that choice tasks are less prone to

strategic respondent behaviour, the results suggested that choice responses may be more

suitable if one wishes to understand consumer preference structures. Carefully designed

choice experiments can be used to avoid potential biases due to strategic behaviour. Further

research in this area could explore consumers' inclination to respond strategically under

different conditions (e.g.. by changing the context presented in the study). Based on our

findings future research may also address the possible value of combining ratings and choice

responses in consumer segmentation research. For example, segmentation may be more

successful if one takes into account the correlation in individuals' ratings and choice

responses. The cost efficiency of collecting these two types of responses simultaneously may

also be studied, trading off the costs of additional data collection per respondent against the

costs of collecting data from more respondents. If the prediction of market shares is the

objective however, collecting data in one response format may be equally suitable.

The evidence provided in chapters 2 and 3 suggested that the standard fully

compensatory framework, which assumes a perfectly rational decision-maker, is inadequate

as a description of the consumer choice process. The fourth chapter therefore provided a

theoretical model of choice for a consumer who associates a positive cost with cognitive

effort and trades-off the benefits and costs of employing mental resources when making a

decision. This cost-benefit perspective provided potential for explaining why decision

strategies vary across situations. The model extended previous consumer choice models in

that the consumer not only chooses a product. but first decides how much effort to apply to a

given choice problem. In the model, the optimal level of effort was determined by the

consumer's cost of effort. the expected utility gain of a correct choice and the complexity of

the choice set. The implications of the model were derived for the general case and were

demonstrated numerically for a specific functional form. The model is not only consistent

with many observations in the existing literature on consumer choice, but also provides

insight into the underlying trade-offs that influence the decision process. In particular, the

derived relationships between the level of effort applied in a choice situation and choice

environment variables such as choice complexity and conflict were in line with prior
research.
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The empirical validity of the theoretical model Was then explored with the use of a

second survey that investigates hypothetical consumer restaurant choices in The Netherlands,

and was also conducted by CentERdata. In this survey response times were recorded for use

as a proxy for consumer effort while consumer involvement measures were taken as proxies

for individual. differences in cost of effort and perceived complexity. Response time on each

choice question was explained from the respondent specific consumer involvement measures,

and from two choice task specific variables: the (estimated) utility difference between

alternatives, and the number of elementary information processes (EIP's) of the choice

problem. The results were found to be consistent with the theoretical model. For example,

response time was found to increase with the consumer's interest and pleasure, which is in
line with the notion that for very interested consumers, the cost of effort (compared to the

expected utility gain of a correct choice) will be low. Effort was found to increase with both

the utility difference and task complexity.

The results are encouraging and suggest that the model is able to capture important

aspects of consumer decision strategies, however, there are also some clear limitations. The
model has only been developed for the simple case of a choice between two products. A

valuable extension would be to augment the range o f choice situations for which the model  is

applicable by allowing consideration of choices between multiple products. In addition, the
relationship between response time and various social demographics could provide insightful

results. For example, the level of education may have an impact on the marginal cost of
effort. The degree to which the results found here can be generalised to different product

categories is also unknown. Finally, it would be interesting to examine to what extent

functional form assumptions influence the model's behaviour and to test competing

functional forms against real-world data.

In Chapter 5 a model was presented for the choice process of a boundedly rational

individual. The model was based on the premise that rather than being perfectly rational with

a perfect ability to calculate without cost, individuals are cognitive misers who prefer to use

simplifying decision rules to avoid the complex fully compensatory decision rule. The
strategy assumed the decision-maker processes the information in the choice set in two
stages. In the initial stage the consumer decides upon which attributes are important enough

to consider and in the second stage, alternatives are evaluated in a compensatory manner on

these attributes alone. The model nests the fully compensatory choice process as a special
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case occurring only when an individual's consideration set of attributes is identical to the

complete set ofattributes available.

The mixed multinomial logit model formed the foundation of the model, however, we
now incorporated the possibility that individuals base their choice on a limited number of
product attributes only. Membership of the considered set of attributes was determined by

whether the importance of an attribute in any particular choice situation lies above an

individual's threshold level. An attnbute's importance was determined by the absolute

difference in utility between products  in a choice situation due to that particular attribute.

Thus, if there were higher differences in levels on that attribute, or the attribute has a higher

worth to the individual, it will be more likely that the attribute was considered. The model

allowed for heterogeneity in both individual preferences through random coefficients and for

both structural and unobserved heterogeneity in the individual threshold values. Allowing for

differences between individuals in this way allowed different individuals to employ many

different choice processes (different attributes may have been considered as well as a
different number of attributes).

The same data set as seen in the empirical analysis of Chapter 4 was used to
implement the model, however, additional attribute-specific information was now also
incorporated. This supplementary information was used to help identify individual choice

strategies. An econometric model that incorporated both the choice data and the additional

attribute-specific information was presented and a smooth simulated maximum likelihood
procedure was introduced to obtain estimates of the model parameters. The estimation results

suggest that higher response times (or higher effort) were associated with lower thresholds.

This made sense as a lower threshold leads to consideration of more attributes. We also found

that as choice complexity increased individuals increased the number of attributes they

considered (lowered their thresholds). The estimation results and, in particular, the structural

link between preference weights and whether or not attributes were considered in the choice

decisions, were illustrated by comparing posterior distributions of the random coefficients
given information on which attributes were and were not considered. This was similar to a
recently developed method for obtaining the distributions of individual parameters

conditional on their observed choices developed by Revelt and Train (1999).
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It may be interesting to conduct further research to examine how social demographics

or consumer involvement affect the choice process, the preference weights, and the threshold

level. For example we may expect that more educated people and more involved consumers

have lower thresholds so that they consider more attributes. Such individual characteristics

might also affect the attribute ratings and the number of products always or never used. It

would also be interesting to see whether the model is more applicable in choice sets with a

small number of products described by a large number of attributes  than in situations with a

large number of choices described by a small number of attributes.

More generally this thesis has provided empirical evidence of bounded rationality as

well as explaining and modelling such behaviour. The empirical work seen in the previous

chapters, however, all relies on two stated preference or conjoint choice questionnaires, one

for consumer yoghurt choice and one for choice of restaurants. Whether the results of this

thesis are specific to the particular product categories chosen for the analysis or maybe be

generalised to a wider range of choice contexts is yet to be examined. Furthermore, stated

preference choice surveys are hypothetical in nature and thus may not adequately recreate the

feeling of a real choice environment for a consumer. This may o f course introduce a bias into

the outcomes of the study. Therefore it would be worthwhile to see if the models can be

estimated on revealed preference data sets which use real market data.
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Samenvatting

(Summary in Dutch)

Een belangrijk onderzoeksterrein binnen de marketing is onderzoek naar de voorkeuren van

consumenten en welke keuzeprocessen consumenten gebruiken. Een goed begrip van
consumentenkeuzegedrag kan namelijk leiden tot significante verbeteringen in produkt of

service design, prijsstrategie, distributiekanalen, de selectie van communicatiestrategieen, en

kan ook van invloed zijn op de uitkomsten van maatschappelijke welvaartanalyses. De meest

gebruikte methode om consumentenvoorkeur in beeld te brengen is het multi-attribuut

keuzemodel. Het vermogen van deze modellen om keuzeverdelingen te voorspellen en

diagnostische informatie te verschaffen stelt de onderzoeker in staat om de gedragsprocessen,

die ten grondslag liggen aan de keuzen beter te begrijpen. Hierdoor vonnen multi-attribuut

keuzemodellen niet alleen voor marketing een relevante benadering maar ook voor een breed

scala aan andere disciplines zoals psychologie, economie, management en verkeerskunde.

Multi-attribuut keuzemodellen kunnen gebaseerd zijn op verschillende structurele

modellen, kunnen voor verschillende doeleinden worden gebruikt en ook op verschillende

veronderstellingen zijn gebaseerd. De meeste huidige modellen gaan uit van een volledig
rationeel nutmaximalizerend individu dat het economisch nut van een produkt bepaalt door

gelijktijdig alle produktattributen te evalueren. Hierbij wordt het relatieve nut van ieder
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attribuut gewogen en opgeteld tot een totaal produktnut zodanig dat de attributen elkaar

kunnen compenseren. Er bestaan echter onderzoeksresultaten die suggereren dat het gedrag
van consumenten vaak niet binnnen dit geidealiseerde raamwerk past. Het doel van dit
proefschrift is daarom om ons vermogen om keuzegedrag van mensen te begrijpen verder uit

te bouwen door afwijkingen van rationeel nutmaximaliserend gedrag te modelleren en
verklaren. In het bijzonder worden modellen ontwikkeld die het mogelijk maken om gedrag
gekarakteriseerd door beperkte rationaliteit op te nemen. Deze modellen worden getoetst en

er wordt empirisch bewijs aangedragen dat de voorgestelde modellen ondersteunt.

In hoofdstuk 2 beginnen we met een analyse van de mogelijkheid dat individuele

keuzeprocessen worden beinvloed door de complexiteit van de keuzetaak. De

veronderstelling van perfecte rationaliteit impliceert dat de beslisser over de benodigde
vaardigheden beschikt om elke gewenste complexe calculatie uit te voeren om zijn of haar

optimale keuzealternatief te bepalen, en dat deze calculaties zonder enige kosten of moeite

kunnen worden verricht. In een dergelijke situatie zou de complexiteit van de keuzeset geen
rol moeten spelen in het keuzeproces. Rekening houdend met de mogelijkheid van beperkte

rationaliteit bij de consumenten zouden we echter verwachten dat hogere niveaus van

complexiteit samenhangen met meer fouten in de consumentenbeslissingen.

Om deze relatie tussen keuzetaakcomplexiteit en de nauwkeurigheid van keuzes te
analyseren maken we gebruik van een conjuncte keuzeanalyse ten aanzien van

yoghurtprodukten. Deze gegevens zijn verzameld door CentERdata bij een groot Nederlands

consumentenpanel. We schatten een mixed logit model met behulp van de Simulated

Maximum Likelihood benadering, waarin random coefficienten de niet geobserveerde
heterogeniteit opvangen, terwijl de resterende fouttermen worden gernterpreteerd als

keuzefouten. Van deze laatste fouttermen word verondersteld dat ze onafhankelijk en identiek

zijn verdeeld. De variantie van deze fouttermen is vraagspecificiek gemodelleerd, zodat

mogelijk effecten van keuzetaakcomplexiteit op de omvang van de foutterm kunnen worden

meegenomen. Twee nieuwe maten voor keuzenauwkeurigheid worden gedefinieerd en

vervolgens berekend op basis van de schattingen uit deze mixed logit benadering.

Hoofdstuk 2 stelt ook een aanpak voor om de complexiteit van een gegeven
keuzesituatie te meten op basis van dezelfde mixed logit parameter schattingen. In een
regressie-analyse worden vervolgens de nauwkeurigheidsmaten uitgezet tegen de
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keuzecomplexiteitsvariabelen. Het blijkt dat de keuzenauwkeurigheid significant wordt
bernvloed door complexiteit gemeten in telmen van attribuut variatie binnen alternatieven, de
covariantie van de attributen tussen alternatieven en het verschil in nut tussen produkten. De

richting van de geschatte effecten komt overeen met eerdere voorspellingen in de literatuur.

Het hoofdstuk biedt hiermee een duidelijk bewijs voor complexiteiteffecten in het
keuzegedrag van consumenten. Ons resultaat wijst erop dat beslissers beter beschreven

kunnen worden met een model voor beperkt rationeel gedrag dan door een model gebaseerd

op volledige rationaliteit.

Het tweede essay (hoofdstuk 3) onderzoekt de vraag hoe twee verschillende typen

gegevens (keuzes en preferenties) verzameld bij dezelfde individuen gecombineerd kunnen

worden in dEn model, met als doel de voorkeuren van deze personen te bepaten. De

gegevensverzameling waarop de empirische analyse is gebaseerd is dezelfde als die welke in

hoofdstuk twee is gebruikt. In het hoofdstuk 3 zijn echter in aanvulling op de gegevens over

keuzes, ook preferentiegegevens van dezelfde individuen meegenomen. Aangezien de
voorkeuren van de consumenten die geanalyseerd worden stabiel kunnen worden

verondersteld is de verwachting dat de schattingen verkregen op basis van elk van de beide

type gegevens met elkaar verenigbaar zouden moeten zijn. Aan de andere kant zijn er echter

ook aanwijzingen in de literatuur dat contexteffecten (zoals het type antwoordtaak)
verschillende voorkeuren bij een individu kunnen oproepen. Dergelijke taakeffecten zouden

ook kunnen optreden bij het beantwoorden van preferentie vs. keuzetaken en mogelijke
verschillen in schattingen kunnen opleveren tussen de twee typen gegevens.

Om te onderzoeken of dergelijke verschillen inderdaad bestaan is het nuttig om de
gegevens in een gecombineerd model te analyseren. Met dit doel is een econometrisch model

ontwikkeld dat het schatten en toetsen van verschillen tussen de twee typen gegevens (keuzes
en preferenties) mogelijk maakt. De keuzegegevens worden gemodelleerd met een
multinomiaal logit model, terwijl de preferentiegegevens met een geordend respons model

(ordered probit) worden beschreven. Een flexibele monotone transformatie van de

preferentiescores op de onderliggende consumentenvoorkeuren is in het preferentiemodel

mogelijk omdat antwoordcategorie-grenzen worden geschat in plaats van vooraf vastgelegd.
Ook heterogeniteit tussen individuen is opgenomen en wel door random coefficienten. Deze

coefficienten bepalen tevens (een deel van) de relatie tussen het keuze- en preferentiemodel.

Hoofdstuk 3 bespeekt de schatting en identificatie van het gecombineerde model en ook de
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mogelijk grotere efficientie van een gecombineerd model ten opzichte van afzonderlijke

modellen voor de twee typen gegevens.

Uit de toepassing van het model op de enqubegegevens blijkt dat de modelschatting

gebaseerd op de preferentiegegevens significant verschilt van het model gebaseerd op de

keuzegegevens. Dit resultaat wijst erop dat er inderdaad taakeffecten optreden. Tegelijkertijd

vinden we echter ook een sterke correlatie tussen de random coefficienten bij de twee typen

gegevens. Dit resultaat veroorzaakt dat het gecombineerde model met verschillende

structurele parameters voor elk type gegevens en correlaties tussen de random coefficienten.

de keuzes en preferenties beter kan verklaren en voorspellen dan de twee afzonderlijke

modellen voor elk van de gegevenstypen.

Hoofdstuk 4 beschrijft vervolgens een model voor een beperkt rationeel individu dat,

hoewel niet volledig rationeel, toch een zekere vorm van berekenende rationaliteit hanteert.

In dit model houdt de consument rekening met de kosten en moeite die verbonden zijn aan

het cognitieve proces. Op basis van een berekening van de verwachte cognitieve kosten en de

uitkomsten van verschillende mogelijke keuzeprocessen kiest de consument een

keuzestrategie. De nutsfunctie van consument omvat in dit model zowel de verwachte koster,

van het maken van de keuze als de uitkomst van de keuze. Dit kosten-baten perspectief maakt

het mogelijk om te verklaren waarom keuzeprocessen varieren tussen verschillende

keuzesituaties.

We ontwikkelen een theoretisch model van optimale inspanning in

consumentenkeuzes. Het model bouwt voort op eerdere consumentenkeuzemodellen waarin

alleen de produktkeuze wordt gemodelleerd. Deze eerdere modellen worden uitgebreid met

een fase waarin consumenten eerst beslissen hoeveel moeite ze in een keuzeprobleem willen

steken. Deze moeite wordt in het model afgewogen tegen de verwachte opbrengst van de

keuze. De optimale inspanning in een keuzesituatie hangt af van de de inspanningskosten van

de individuele consument, het verwachte nut van de gemaakt keuze en de complexiteit van de

keuzetaak.

Om de empirische validiteit van het model te onderzoeken is een tweede enqube

gehouden onder een consumentenpanel in Nederland en uitgevoerd door CentERdata.

Consumenten beantwoorden conjuncte keuzetaken over restaurants. Als maat voor de

keuzeinspanning is bij elke vraag de antwoordtijd gemeten. Daarnaast is een produkt-
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betrokkenheidschaal afgenomen bij consumenten op basis waarvan individuele maten voor de

inspanningskosten (belangstelling voor het produkt) en de gepercipieerde complexiteit zijn

berekend. Daarnaast is per keuzetaak het geschatte nutsverschil tussen de produkten en het

aantal benodigde elementaire cognitieve informatieverwerkingsstappen berekend.

De inspanning (antwoordtijd) is in een regressiemodel uitgezet tegen de individuele

betrokkenheidscore, de produktnutsverschillen en de elementaire cognitieve stappen. De
resultaten zijn consistent met het theoretisch model en bevestigen de gedachte dat
consumenten hun keuzestrategie aanpassen aan de verwachte kosten en opbrengsten van hun

keuzeproces. De antwoordtijd was bijvoorbeeld hoger voor meer gernteresseerde

consumenten (met lagere inspanningskosten) en in keuzesituaties met grotere verschillen in

nut tussen alternatieven of met een grotere complexiteit.

In hoofdstuk 5 tenslotte introduceren en toetsen we een nieuw model voor beperkt

rationele keuzeprocessen. Het model staat toe dat consumenten hun keuzeproces

vereenvoudigen door niet alle attributen in hun keuze te betrekken. Deze modelvorm sluit aan

bij eerdere bevindingen in de literatuur die laten zien dat consumenten veelal geen volledige
vergelijking maken tussen alle attributen van produkten. De belangrijkste aanname in dit

model is dat dergelijke vereenvoudigingen gebaseerd zijn op een keuze van een aantal

attributen dat wordt vergeleken. Dergelijke keuzeprocessen zijn waarschijnlijk het meest

relevant voor situaties waarin gekozen moet worden tussen een relatief klein aantal

alternatieven met relatief veel attributen.

Het model is gebaseerd op het mixed logit model waarin het produktnut in de keuze

gebaseerd is op een beperkt aantal attributen. Heterogeniteit tussen individuen is opgenomen

in de vorm van preferentieverdelingen voor elk attribuut. Een interne drempelwaarde voor
een minimaal nutsverschil tussen attribuutniveaus bepaalt of een attribuut weI of niet in de
keuze wordt meegenomen. Als het nutsverschil tussen attribuutniveaus te klein is wordt het

niet in de keuze betrokken. Deze drempelwaardes zijn als random coefficienten gemodelleerd
om verdere heterogeniteit in keuzeprocessen mogelijk te maken. Verschillende consumenten

kunnen meer of minder uitgebreide keuzeprocessen doorlopen. Door random coefficienten

voor de preferenties te schatten zijn ook variaties mogelijk in welke attributen een consument

vergelijkt.
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Het model wordt toegepast op de dezelfde gegevens als gebruikt in hoofdstuk 4. Er

wordt echter ook gebruik gemaakt van aanvullende gegevens. Deze gegevens beschrijven
welke attributen een consument zegt wel en welke niet te hebben gebruikt. Daarnaast is voor

elke attribuut een belangrijkheidscore beschikbaar. Door deze aanvullende informatie toe te

voegen kunnen de verschillende individuele keuzeprocessen worden ontrafeld en is het model

get'dentificeerd. De modelschattingen worden verricht met behulp van Smooth Maximum

Simulated Likelihood.

Onze resultaten laten zien dat respondenten met een hogere antwoordtijd lagere

drempelwaardes hebben en dus meer attributen vergelijken. We vinden ook dat naarmate de

complexiteit van de keuzetaak toeneemt, respondenten meer attributen beschouwen. Het

structurele verband tussen preferenties en of een bepaald attribuut wel of niet wordt

meegenomen in de keuze wordt geillustreerd door de verdelingen te berekenen van de

random coefficienten gegeven de informatie over attribuut gebruik. Deze benadering is

vergelijkbaar met de recent ontwikkelde aanpak van Revelt en Train (1999) om individuele

preferentieparameters te bepalen gegeven een bepaaid keuzepatroon bij de consument

Samenvattend kan worden gesteld dat dit proefschrift empirisch bewijs levert voor

beperkt rationeel gedrag bij consumenten en modellen introduceert die dergelijk gedrag

kunnen beschrijven en verklaren. Het onderzoek laat zien dat dergelijke modellen gebaseerd

op beperkt rationeel gedrag realistisch, en bovendien optimaal kunnen zijn als consumenten

rekening houden met cognitieve kosten. In de verschillende hoofdstukken worden

verschillende mogelijke modellen voorgesteld als alternatief voor het traditionele rationele

nutsmaximaliserende keuzemodel.
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