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Centrality in Policy Network Drawings
(Extended Abstract)
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Abstract. We report on first results of a cooperation aiming at the usageof graph
drawing techniques to convey domain-specific information contained in policy or,
more general, social networks.
Policy network analysis is an approach to study policy making processes, struc-
tures and outcomes, thereby concentrating on the analysis of relations between
policy actors. An important operational concept for the analysis of policy net-
works is centrality, i.e. the distinction of actors according to their importance in a
relational structure. Matching structural with geometriccentrality we incorporate
the aggregated values of centrality measures into a layout model of the network.

1 Introduction

Given a graph from some area of application, utilization of general graph layout meth-
ods often yields drawings that are readable, but typically fail to communicate the im-
portant domain-specific information represented in the graph. Dependingon the back-
ground, the same structure can clearly mean very different things, and different layouts
can lead to different interpretations. To adhere to a fundamental principle of graphical
excellence, that is to tell the truth about the data [16, p. 51], substancemust therefore
be considered already in the layout model.

We here report on a case study in which prominent domain-specific information
contained in graphs from a sub-discipline of the social sciences is identified, and known
layout models designed for readability of abstract graphs are adapted to accountfor
substance. Complementary rendering rules are devised to contextually display further
relevant information.

The case study presented originates from the field of public policy analysis. In the
last decade, the policy network approach has become particularly prominent inthe
analysis of public policies. In contrast to other policy analysis approaches, the policy
network approach has a much more realistic perspective of how policies develop, and
considers policies principally as a result of a collaboration of a differentiated set of ac-
tors (public and private, local, regional and national, etc.). A policy network approach
conceptualizes policy-making as the result of interactions between policy-actors, and
assumes that the structure of these interactions explains policy outcomes [9]. A large
number of structural characteristics is taken into account in the analysis and explana-
tion of policy networks, but the most prominent one is certainly the notion of centrality.



The reason being that public policy analysis is a sub-discipline of political science in
which traditionally the principal question has been: “who has the power?”. Centrality
is considered a fairly good indicator for power in networks, and formalizations of the
centrality concept are typically based on degree, shortest paths, or eigenvectors of graph
related matrices [17].

Except for an isolated historical example [13], we know of no attempt to visualize
centrality, or, for that matter, any other structural variable of a network, and the under-
lying network at the same time. This is despite the fact that empirical studies stress the
effect of layout on the perception of structural characteristics [11]. Note that structural
centrality has an immediate geometric pendant. Though layout methods used for social
networks in general, like multidimensional scaling and spring embedder variants [10,
1], occasionally do a fairly good job of placing central actors close to the center, they
are by no means reliable in this respect, but often misleading. We here showhow to
exactly represent the aggregated values together with the underlying network data.

In Sect. 2, we provide some background on the area of application, and develop a
layout model and rendering rules in Sect. 3. Suitability of the resulting drawing model
was established in an exploratory data analysis from which examples are presented in
Sect. 4.

2 Policy Networks and Centrality

Centrality is considered a fundamental characteristic of policy networks since it gives
an indication of the most important, the important and the unimportant actors in the
network. The question is particularly relevant for mainly two reasons:first it tells us
something about the social or political structure of policy making andsecondly it helps
understanding the outcomes that policy networks produce. The social orpolitical struc-
ture of a network indicates which type of actor is involved in which way inthe policy-
making process. Who has access and control over resources and who has a brokerage
position? From this perspective it makes considerable difference whetherthere is a most
important actor in a network and, if this is the case, what type of actor it is. In terms
of legitimacy, accountability, justice, etc. it makes a difference whether inthe health
policy field, for example, the most important actor is a state or a private actor and how
important the actor is relative to the others. Moreover, there is evidence that the cen-
trality structure of the network explains why a network was particularly successful in
producing certain outcomes, or why policies have failed to come about.

A number of approaches have been devised to operationalize “importance”, all of
which are equally accepted because they address different dimensions of the intuitive
notion (for an overview see [6, 7]). We limit our exposition to three exemplary measures
that are used widely: degree, closeness, and betweenness centrality.

Thedegree centrality, CD(v), of a vertexv is simply the degree of that vertex, the
idea being that the degree to which actors are active in relating to other actors is relevant.
The actors with a high degree centrality are where the action in the network is. In policy
networks these actors are highly visible for the other actors and are recognized by the
others as a major channel of relational information.



This very local measure can be extended in several ways to take into account the
whole graph. One is by taking thecloseness, i.e. the sum of the distances to all other
vertices, as a basis.Closeness centrality, defined as the inverse closeness,CC(v) =(∑u2V dG(u;v))�1, focuses on how close an actor is to all the other actors in the net-
work. If we consider a policy network where a certain actor has information which is
crucial to all other actors one would expect this actor to have a high closeness centrality
for the network to function effectively.

Finally, betweenness centrality is defined as the sum of the ratios of shortest paths
between other actors that an actor sits on,CB(v) = ∑u 6=v6=w jPv(u;w)j=jP(u;w)j, where
P(u;w) andPv(u;w) are the sets of all shortest paths between verticesu andw, and those
shortest paths passing throughv, respectively. It indicates which other actors have con-
trol over the interaction between two non-adjacent actors. An actor with highbetween-
ness centrality is between many actors in terms of shortest paths. In policynetworks
these actors are considered important because they control the spread of information
between actors or sets of actors and thus can influence decision-making processes.

A framework to obtain normalized and network level centrality measures froma
given actor level measure is described in [6]. Any centrality measureC is normalized
to lie between zero and one by dividing its values by the maximum possible score in
any graph with the same number of vertices. The above three measures thus yield nor-
malized measures C0

D(v) = CD(v)
n�1 , C0

C(v) = CC(v)
1=(n�1) , andC0

B(v) = CB(v)(n�1)(n�2)=2. Network
centralization on the other hand quantifies the range of variability of the individualactor
indices. A low network centralization in a policy network is thus an indication that there
is not a clear center of action. Centralization is formalized as the cumulated differences
between actor centralities and the maximum score attained in the present network, nor-
malized by the maximum possible such sum. For all of the above measures, the star is
a maximally centralized graph, whereas cliques and circles are not centralized at all.

The network in Fig. 1 shows that these measures actually differ. Each identifies a
different set of maximally central vertices, marked by corresponding labels.

3 Centrality Drawings

Drawings of policy networks are to aid the exploration and communication of substan-
tive content. Since centrality is such an important concept in policy network analysis,
we want to devise means to make it visible in a graphical presentation of the policy
network, rather than listing scores in a table (as is common).

Following [2], we think of graphical presentations as composed of graphical prim-
itives, calledgraphical features (points, lines, areas, volumes), that represent data el-
ements. These features have properties, calledgraphical variables (size, shape, color,
etc.), that are either fixed according to a chosen form of representation, or varied accord-
ing to the data. To produce an effective graph visualization, three main aspects have to
be taken into account [3]:

– The graph’s substance, i.e. the syntactic (intrinsic) and semantic (extrinsic) domain-
specific information that is to be represented.



– The graphical design specifying which graphical features are to represent which
data elements (representation), and how values shall be assigned to positional (lay-
out) and retinal (rendering) graphical variables.

– The algorithm used to determine the layout, since many criteria of goodgraphi-
cal design are only approximately satisfiable and a particular algorithm may thus
introduce particular artifacts.

Our representation of choice is the traditionalsociogram [12]. In an attempt to make
substance visible, our layout model maps structural to geometric centrality. We thus
constrain each vertex to lie on a circle centered at the center of the diagram. The radius
r(v) of the circle for vertexv is determined from the structural centralityC(v) of v. After
experimenting with several other mappings, we decided to use radii

r(v) = 1� C0(v)�minu2V C0(u)
maxu2V C0(v)�minu2V C0(u)+ c(G)

wherec(G) is an offset used to avoid overlap if there is more than one vertex of max-
imum centrality. Showing levels as thin circles allows to compare centrality scores ex-
actly, so that an accompanying tabular presentation is no longer needed.

The remaining degrees of freedom in the layout model should be used to ensure
readability of the diagram. Unfortunately, the barycentric technique used for ring dia-
grams of hierarchies [14] is not suited for our problem, because transitive edges (not
present in a hierarchy) may result in edge overlap.

The circular layering is also reminiscent of layered drawings of directed graphs (as
in [15]), and a small number of edge crossing is a natural requirement is both cases.
However, the number of crossings even between two centrality levels in a radial layout
is not uniquely determined by the cyclic orderings of vertices on these levels. This
observation still holds, if positions in one layer are fixed. By necessity, radial differences
between centrality levels are fixed. Note that this is different from the usual approach
to layered drawings of directed graphs, where layer distances are computed only after
determining the orderings of vertices on each level. Fixed level differences suggest to
impose the additional constraint that edges between two levels may not passthrough
the inner circle (outward drawing). Crossing minimization is then easily reduced to two-
layer crossing minimization with one fixed layer, which isN P -complete [5]. Moreover,
bend edges (necessarily introduced by two-layer methods) tend to be rather confusing
in radial layouts. We thus decided not to try adaptations of methods devised for layered
layouts.

To try out the effectiveness of different designs, we instead exploited the flexibility
of energy-based placement approaches. Our prevailing objective function usesthe pair-
wise spring potentials of [8], where preferred distances are determined from shortest
paths in the underlying graph, where edge lengths are redefined according tolevel span
and number of actors on similar levels. Additionally, we used vertex-edge repulsion
and crossing counts similar to those in [4]. To achieve better overall organization, the
layout procedure employs three stages working on different subgraphs,and the various
penalties are dependent on the annealing temperature. Details appear in the full paper.

While the layout is designed to organize the network in a readable way thatexactly
represents actor centralities, we can use the remaining graphical variables to convey
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Fig. 1. Layouts showing degree, closeness, and betweenness centrality, respectively

further substance. Due to space limitations we briefly skim over them. Inthe examples
below we have coded legal status and attitudes towards the issue by shapeand color
of vertices, respectively. Confirmed relations are drawn as thick black lines,whereas
unconfirmed relations are drawn as grey lines with an arrow indicating whomentioned
whom (see below). In the directed network of claimed relationships, the ratio of the
in- and outdegree of each vertex measures the reciprocation of an actor’s claims.We
therefore vary the size of point features representing actors so that the ratio of height
and width equals the ratio of in- and outdegree, while the area is proportional to the
combined degree.

4 Analyzing Local Drug Policies

In this final part the usefulness of the graph drawing techniques presented above will
be demonstrated. The demonstration is based on data from a project studying the inci-
dence of HIV-preventive measures for IV-drug users in 9 German municipalities. The
research question underlying the project is: why differ these municipalities so much in
the provision of HIV-preventive measures (such as methadone substitution and needle
exchange) given the fact that the problem load (i.e. the number of IV drug users and the
HIV epidemiological situation) are very similar? The study tests the hypothesis whether
the difference in the provision in HIV-preventive measures can best be explained by the
structure of the policy networks. Given the amount of controversy and complexity in-
volved in the provision of such measures the hypotheses is that they arecontingent on
types of relations between the different policy actors. The policy networks studied here
include all local organizations directly or indirectly involved in the provision of such
measures.

To sketch how a drawing can elucidate structural aspects of a network, we first take a
look at the network of informal communication in the city of Stuttgart(Fig. 2). Informal
communication is in principle an undirected relationship: ifA talks toB, you assume
that B also talks toA. What you see very often in empirical investigations, however,
is that many undirected relationships are not reciprocated: althoughA mentionedB as
a communication partner,B did not mentionA. Consequently, policy network analysts
often make a principal decision and either decide to calculate centrality on the basis
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Fig. 2. Organizations involved in local drug policy making in Stuttgart

of only confirmed or of both confirmed and unconfirmed relationships. In contrast, an
analysis of this phenomenon on the basis of the drawing presented tellsa number of
additional stories. While the unconfirmed network appears fairly integrated, the con-
firmed network is sparse. The drawing however reveals that there is a crucial separation
due to actors 1, 2, and 11, who are peripheral only because they seem reluctant to name
others. Actors 7 and 17 (small non-profit organizations) are also interesting since they
claim a huge number of relationships, none of which are reciprocated. Consequently,
on the sole basis of these drawings a lot of additional facts are provided which help to
come to an adequate evaluation of who actually the most important actor is.

As a second example we demonstrate the use of imaging in the analysis ofthe
relationship between network structure and network outcome (i.e. in thepresent case the
provision of HIV-preventive measures). The three networks presentedin Fig. 3 (Essen,
Köln, and Ahlen) differ a lot in their outcome effectiveness (Essen beingthe most and
Ahlen being the least effective) but also differ a lot in their structural characteristics
with respect to different measures of centrality.

On the basis of the drawings a number of additional relationships become visible
which can be further developed regarding the effectiveness of networks: the number of
rather active actors (i.e. with high degree centrality); the degree of discrepancy between
confirmed and unconfirmed links; the fact whether a mixture of different types of ac-
tors (public and private, and repressive and supportive) are found close the center of
the network; the fact whether there is one clearly central actor in the network, a couple
of central actors, or no clearly central actors in the network. It is this typeof inductive
observations, which are a direct result of the graph drawing techniques and which con-
tribute substantially to the analysis of the questions “who has the power?” and “what
are the consequences of the power structure?”.
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Fig. 3. Networks of informal communication. Centralities are according to confirmed networks,
while vertex size codes normalized in- and outdegree centrality in unconfirmed networks and is
comparable across drawings
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