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Abstract. We report on first results of a cooperation aiming at the usageaph
drawing techniques to convey domain-specific informatiamtained in policy or,
more general, social networks.

Policy network analysis is an approach to study policy mgldrocesses, struc-
tures and outcomes, thereby concentrating on the analfys&ations between
policy actors. An important operational concept for thelgsia of policy net-
works is centrality, i.e. the distinction of actors accagito their importance in a
relational structure. Matching structural with geometentrality we incorporate
the aggregated values of centrality measures into a layodehof the network.

1 Introduction

Given a graph from some area of application, utilization of general graplulayeth-
ods often yields drawings that are readable, but typically fail to comeatmithe im-
portant domain-specific information represented in the graph. Depeadittte back-
ground, the same structure can clearly mean very different things, aededifiayouts
can lead to different interpretations. To adhere to a fundamental prindiglaphical
excellence, that is to tell the truth about the data [16, p. 51], substansetherefore
be considered already in the layout model.

We here report on a case study in which prominent domain-specific iafam
contained in graphs from a sub-discipline of the social sciences isfiéenind known
layout models designed for readability of abstract graphs are adapted to afmount
substance. Complementary rendering rules are devised to contextupliydigrther
relevant information.

The case study presented originates from the field of public policy sisaly the
last decade, the policy network approach has become particularly promingr in
analysis of public policies. In contrast to other policy analysis apgnes, the policy
network approach has a much more realistic perspective of how policieogeaed
considers policies principally as a result of a collaboration of a difteatsd set of ac-
tors (public and private, local, regional and national, etc.). A poliegwork approach
conceptualizes policy-making as the result of interactions between padtoys, and
assumes that the structure of these interactions explains policynoesd®]. A large
number of structural characteristics is taken into account in the analysisxplzcha-
tion of policy networks, but the most prominent one is certaingribtion of centrality.



The reason being that public policy analysis is a sub-disciplineotifigal science in
which traditionally the principal question has been: “who has the powegtitr@lity
is considered a fairly good indicator for power in networks, and forratitins of the
centrality concept are typically based on degree, shortest paths, or eigese¢gi@ph
related matrices [17].

Except for an isolated historical example [13], we know of no attemptsoalize
centrality, or, for that matter, any other structural variable of a netyall the under-
lying network at the same time. This is despite the fact that empiricdiestistress the
effect of layout on the perception of structural characteristics [11]. Natestructural
centrality has an immediate geometric pendant. Though layout methodsonsedial
networks in general, like multidimensional scaling and spring embeddé&nts [10,
1], occasionally do a fairly good job of placing central actors close to theegehey
are by no means reliable in this respect, but often misleading. We herelsivowo
exactly represent the aggregated values together with the underlyingkelmia.

In Sect. 2, we provide some background on the area of application, artbpev
layout model and rendering rules in Sect. 3. Suitability of the reguttiawing model
was established in an exploratory data analysis from which examples aeafgei
Sect. 4.

2 Policy Networks and Centrality

Centrality is considered a fundamental characteristic of policy netwanke & gives
an indication of the most important, the important and the uninapbractors in the
network. The question is particularly relevant for mainly two reaséirst: it tells us
something about the social or political structure of policy makingsewbndly it helps
understanding the outcomes that policy networks produce. The sogialitical struc-
ture of a network indicates which type of actor is involved in which wathipolicy-
making process. Who has access and control over resources and who has a brokerage
position? From this perspective it makes considerable difference wthibéreris a most
important actor in a network and, if this is the case, what type of acter Ihiterms
of legitimacy, accountability, justice, etc. it makes a difference whethénarhealth
policy field, for example, the most important actor is a state or a#iactor and how
important the actor is relative to the others. Moreover, there is ev@l#rat the cen-
trality structure of the network explains why a network was partidyilsuiccessful in
producing certain outcomes, or why policies have failed to come about.

A number of approaches have been devised to operationalize “importance”, all of
which are equally accepted because they address different dimensions ofittieeint
notion (for an overview see [6, 7]). We limit our exposition togth exemplary measures
that are used widely: degree, closeness, and betweenness centrality.

Thedegree centrality, Cp(v), of a vertexv is simply the degree of that vertex, the
idea being that the degree to which actors are active in relating to othes exxtelevant.
The actors with a high degree centrality are where the action in the reisvam policy
networks these actors are highly visible for the other actors and arenieeddyy the
others as a major channel of relational information.



This very local measure can be extended in several ways to take into account the
whole graph. One is by taking theboseness, i.e. the sum of the distances to all other
vertices, as a basi€loseness centrality, defined as the inverse closeneSg(v) =
(S uev d(u,v)) "2, focuses on how close an actor is to all the other actors in the net-
work. If we consider a policy network where a certain actor has informatioich is
crucial to all other actors one would expect this actor to have a high clcseaesality
for the network to function effectively.

Finally, betweenness centrality is defined as the sum of the ratios of shortest paths
between other actors that an actor sits@#(V) = ¥ yzv2w [P/ (U, W)|/|P(u,w)|, where
P(u,w) andR,(u,w) are the sets of all shortest paths between vertieeslw, and those
shortest paths passing throughrespectively. It indicates which other actors have con-
trol over the interaction between two non-adjacent actors. An actor withid@tyheen-
ness centrality is between many actors in terms of shortest paths. In pelbieyprks
these actors are considered important because they control the spreaatofitidgn
between actors or sets of actors and thus can influence decision-making processes.

A framework to obtain normalized and network level centrality measures &om
given actor level measure is described in [6]. Any centrality meaSusenormalized
to lie between zero and one by dividing its values by the maximum pessdalre in
any graph with the same number of vertices. The above three measuresidumny
malized measures Ch(v) = 24, CL(v) = 1785, andCh(v) = r=pBiyrs. Network
centralization on the other hand quantifies the range of variability of the individatdr
indices. A low network centralization in a policy network is thus andgatibn that there
is not a clear center of action. Centralization is formalized as the cumulatedatiffes
between actor centralities and the maximum score attained in the present netwverk
malized by the maximum possible such sum. For all of the above meaheesat is
a maximally centralized graph, whereas cliques and circles are not centralized at all.

The network in Fig. 1 shows that these measures actually differ. Eachfidgati
different set of maximally central vertices, marked by corresponding labels.

3 Centrality Drawings

Drawings of policy networks are to aid the exploration and commuisicatf substan-
tive content. Since centrality is such an important concept in policy nmktesalysis,
we want to devise means to make it visible in a graphical presentatidreqgidlicy
network, rather than listing scores in a table (as is common).

Following [2], we think of graphical presentations as composed of geapprim-
itives, calledgraphical features (points, lines, areas, volumes), that represent data el-
ements. These features have properties, callaphical variables (size, shape, color,
etc.), that are either fixed according to a chosen form of representation,exnl sadord-
ing to the data. To produce an effective graph visualization, three main aseet to
be taken into account [3]:

— The graph’s substance, i.e. the syntactic (intrinsic) and semantim@sj domain-
specific information that is to be represented.



— The graphical design specifying which graphical features are to represent which
data elementg€presentation), and how values shall be assigned to positiolagt(
out) and retinal {endering) graphical variables.

— The algorithm used to determine the layout, since many criteria of goaghi-
cal design are only approximately satisfiable and a particular algorithm imay t
introduce particular artifacts.

Our representation of choice is the traditiosadiogram[12]. In an attempt to make
substance visible, our layout model maps structural to geometric centkéé thus
constrain each vertex to lie on a circle centered at the center of the diagranadibe r
r(v) of the circle for vertex is determined from the structural central@v) of v. After
experimenting with several other mappings, we decided to use radii

C'(v) — minyey C'(u)
~ maxyey C' (V) — minyey C'(U) 4 ¢(G)

r(v)=

wherec(G) is an offset used to avoid overlap if there is more than one vertex of max-
imum centrality. Showing levels as thin circles allows to compare centisaires ex-
actly, so that an accompanying tabular presentation is no longer needed.

The remaining degrees of freedom in the layout model should be usedueens
readability of the diagram. Unfortunately, the barycentric techniqee 6@ ring dia-
grams of hierarchies [14] is not suited for our problem, because transitiges (not
present in a hierarchy) may result in edge overlap.

The circular layering is also reminiscent of layered drawings of directechgrégs
in [15]), and a small number of edge crossing is a natural requiremewothsdases.
However, the number of crossings even between two centrality levelsaiia fayout
is not uniquely determined by the cyclic orderings of vertices on thessld. This
observation still holds, if positions in one layer are fixed. By netgsaidial differences
between centrality levels are fixed. Note that this is different from th@luspproach
to layered drawings of directed graphs, where layer distances are computeaftenl
determining the orderings of vertices on each level. Fixed level differencggest to
impose the additional constraint that edges between two levels may nathpaisgh
the inner circle (outward drawing). Crossing minimization is theilyesduced to two-
layer crossing minimization with one fixed layer, whicknise -complete [5]. Moreover,
bend edges (necessarily introduced by two-layer methods) tend to be rathesiicgn
in radial layouts. We thus decided not to try adaptations of methodsetefor layered
layouts.

To try out the effectiveness of different designs, we instead expldie@idxibility
of energy-based placement approaches. Our prevailing objective functiotie gesr-
wise spring potentials of [8], where preferred distances are determiosddinortest
paths in the underlying graph, where edge lengths are redefined accortéingltspan
and number of actors on similar levels. Additionally, we used vertgeedpulsion
and crossing counts similar to those in [4]. To achieve better ovegdinization, the
layout procedure employs three stages working on different subgrapdshe various
penalties are dependent on the annealing temperature. Details appear in tapdull p

While the layout is designed to organize the network in a readable wag»thatly
represents actor centralities, we can use the remaining graphical variables/éy con



Fig. 1. Layouts showing degree, closeness, and betweennessdlitgreapectively

further substance. Due to space limitations we briefly skim over thethelexamples
below we have coded legal status and attitudes towards the issue byastthpelor
of vertices, respectively. Confirmed relations are drawn as thick black lviesreas
unconfirmed relations are drawn as grey lines with an arrow indicatingmdmaioned
whom (see below). In the directed network of claimed relationships,atie of the
in- and outdegree of each vertex measures the reciprocation of an actor's &ms.
therefore vary the size of point features representing actors so thatithefraeight
and width equals the ratio of in- and outdegree, while the area is pfopakto the
combined degree.

4 Analyzing Local Drug Policies

In this final part the usefulness of the graph drawing techniques pessahbve will
be demonstrated. The demonstration is based on data from a projecéngttiayinci-
dence of HIV-preventive measures for IV-drug users in 9 German muriggsall he
research question underlying the project is: why differ these munitigsto much in
the provision of HIV-preventive measures (such as methadone sitiostiand needle
exchange) given the fact that the problem load (i.e. the number of IV dreig and the
HIV epidemiological situation) are very similar? The study tests thpothesis whether
the difference in the provision in HIV-preventive measures can bestflaired by the
structure of the policy networks. Given the amount of controversyamplexity in-
volved in the provision of such measures the hypotheses is that thegrtiagent on
types of relations between the different policy actors. The policy mdds\studied here
include all local organizations directly or indirectly involved in theysion of such
measures.

To sketch how a drawing can elucidate structural aspects of a network, itekies
look at the network of informal communication in the city of Stuttd&ig. 2). Informal
communication is in principle an undirected relationshipA ifalks toB, you assume
that B also talks toA. What you see very often in empirical investigations, however,
is that many undirected relationships are not reciprocated: althaugblntioned as
a communication partneg did not mentionA. Consequently, policy network analysts
often make a principal decision and either decide to calculate centrality oratiie b



Fig. 2. Organizations involved in local drug policy making in Sttt

of only confirmed or of both confirmed and unconfirmed relationships. htrast, an
analysis of this phenomenon on the basis of the drawing presented tlisiber of
additional stories. While the unconfirmed network appears fairly rated, the con-
firmed network is sparse. The drawing however reveals that there is algeparation
due to actors 1, 2, and 11, who are peripheral only because they seem retuntmnet
others. Actors 7 and 17 (small non-profit organizations) are also ititegesnce they
claim a huge number of relationships, none of which are reciprocatedeGoaistly,
on the sole basis of these drawings a lot of additional facts aregadwihich help to
come to an adequate evaluation of who actually the most important actor is.

As a second example we demonstrate the use of imaging in the analytkie of
relationship between network structure and network outcome (i.e. présent case the
provision of HIV-preventive measures). The three networks presémféd. 3 (Essen,
Kdln, and Ahlen) differ a lot in their outcome effectiveness (Essen bisiegnost and
Ahlen being the least effective) but also differ a lot in their structural atteristics
with respect to different measures of centrality.

On the basis of the drawings a number of additional relationshipsieetisible
which can be further developed regarding the effectiveness of netwoeksuthber of
rather active actors (i.e. with high degree centrality); the degree afiancy between
confirmed and unconfirmed links; the fact whether a mixture of differguegyof ac-
tors (public and private, and repressive and supportive) are found ttiescenter of
the network; the fact whether there is one clearly central actor in the netavoduple
of central actors, or no clearly central actors in the network. It is this éfjreductive
observations, which are a direct result of the graph drawing techniqdestsoh con-
tribute substantially to the analysis of the questions “who has ¢ and “what
are the consequences of the power structure?”.



betweenness centrality closeness centrality

- Essen

Koln

Ahlen

Fig. 3. Networks of informal communication. Centralities are adaag to confirmed networks,
while vertex size codes normalized in- and outdegree déwtiia unconfirmed networks and is
comparable across drawings
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