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Influence of Imputation and EM Methods
on Factor Analysis when Item Nonresponse in
Questionnaire Data is Nonignorable

Coen A. Bernaards
Department of Methodology and Statistics FSW
Utrecht University

Klaas Sijtsma
Department of Research Methodology FSW
Tilburg University

This study deals with the influence of each of twelve imputation methods and two methods
using the EM algorithm on the results of maximum likelihood factor analysis as compared
with results obtained from the complete data factor analysis (no missing scores). Complete
guestionnaire rating scale data were simulated and, next, missing item scores were create
under both ignorable and nonignorable nonresponse mechanisms. Next, imputation
methods were used to fill the gaps and factor analysis was applied to both the original
complete data and to the data sets including imputed scores. Each imputation method was
implemented once with residual error and once without residual error. Also, one EM
method estimated the factor loadings directly and the other estimated the complete data
covariance matrix, which subsequently was factor analyzed. A design was analyzed with
design factors Latent Trait Structure (technically called Mixing Configuration), Correlation
Between Latent Traits, Nonresponse Mechanism, Percentage of Missingness, Sample Size
and Imputation Method. We found that, in general, methods that impute a score based on
a respondent’s mean score obtained from his/her observed item scores best recovered th
factor loadings structure from the complete data. Moreover, for unidimensional data
person mean methods with a residual error gave better results than the other imputation
methods, either with or without a residual error component. For the EM methods a smaller
design was analyzed. The conclusion was that both EM methods better recovered the
complete data factor loadings than the imputation methods.

Introduction

Factor analysis is often used to study the structure of the item set in tests
and questionnaires. A well known and difficult problem in data collection by
means of tests and questionnaires is item nonresponse. Item nonrespons
occurs if respondents are unable or reluctant to provide answers to one ot
more items or if they accidentally skip items, but at the same time produce
answers to other items. In this article, we are concerned in particular with
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item nonresponse for which the probability of not responding depends on the
missing item score and cannot be explained by means of the completely
observed variables (e.g. covariates). An example of such a phenomenon is
when a respondent refuses to give an answer because a question is
considered menacing to privacy (questions about one’s sexual habits or
income) or embarrassing (questions about the relationship with one’s parents
or children) and these opinions are not typical of the whole population or of
particular subgroups. Nonresponse due to such a response mechanism is
nonignorable

Nonignorable item nonresponse may lead to a dataset which no longer is
representative for the population of interest. For example, when people who
earn high salaries more often do not answer a question about theirincome than
people with lower salaries, the mean income based on the available data will
be biased. Also, people who have a problematic relationship with their children
may be inclined more than other people to skip questions in a questionnaire
asking them about aspects of their interaction with their children; for example,
frequency of reading to them before sleeping, helping them with their
homework, and accompanying them to their sports events. These questions
may induce nonresponse because they may be considered menacing. The
statistical consequence again is biased estimates.

In other forms of nonresponse the missing responses may be a
completely random phenomenon in the population at hand. In this first case,
responses are missing completely at random (MCAR; Rubin, 1976). An
example of MCAR is that respondents accidentally skip questions.
Missingness may also occur as a random phenomenon within particular well-
defined subgroups of the population but may be varying in degree between
such subgroups. In this second case, responses are missing at random
(MAR; Rubin, 1976). An example of MAR is that older respondents tend to
accidentally skip more questions than younger respondents. Here, age is a
covariate that explains differences between meaningful subgroups. The
response mechanisms MCAR and MAR prodigreorable nonresponse.

The consequence of ignorable item nonresponse is that the sample of
complete data cases is smaller than the original sample and, as a result,
statistical estimates are less accurate but unbiased. Thus, one may argue that,
all other things being equal (like sample size, percentage of missingness, etc.),
ignorable nonresponse is less of a problem than nonignorable nonresponse
because the latter problem in addition produces biased estimates. A practical
problem in distinguishing between the two conditions is that the mechanism
producing the nonresponse often is unknown (Huisman, 1998).

Only when the mechanism is known can the missingness be modeled
adequately. In this study, we are dealing with data containing missing item
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scores, in some datasets ignorable but in most datasets nonignorable, whicl
was not modeled explicitly. Alternatively, for missing scores values were
imputed according to simple methods and the resulting complete data were
factor analyzed. Also, two versions of the EM algorithm were implemented.
One was used for estimating factor loadings directly (henceforth, to be
denoted EM-loadings) and the other for estimating a complete data
covariance matrix (henceforth, to be denoted EM-covariances), after which
the covariance matrix was factor analyzed. Because we knew the original
complete data, it was possible to compare factor analysis results based or
imputed data or based on the application of the EM methods with factor
analysis results based on the complete data.

Item nonresponse does not include refusal of respondents to take part in
the investigation, known as unit nonresponse, or attrition due to illness,
moving to another city, and so on, known as experimental mortality. Thus,
we consider the case when all respondents produced answers to at leas
some of the items, but not all respondents gave answers to all items.

Bernaards and Sijtsma (1999) discussed seven missing data methods it
the context of factor analysis of rating scale data suffering from ignorable
nonresponse (MCAR and MAR). Among these seven methods were five
imputation methods, EM-loadings (Rubin & Thayer, 1982), and listwise
deletion. It was found that the EM algorithm was superior to other missing
data methods in the sense that the sum of squared differences between th
factor loadings based on the complete data and the factor loadings based ol
the data with missing values imputed, was the smallest for EM. Listwise
deletion was the worst method. Person mean (PM) was the best imputation
method. Bernaards and Sijtsma (1999) noted that the existing literature
(Cattell, 1978; Finkbeiner, 1979; Brown, 1983; Lee, 1986; Muthén, Kaplan
& Hollis, 1987; also, see Liu & Rubin, 1998) on missing data methods in the
context of factor analysis was much oriented towards dealing with
missingness through maximum likelihood estimation rather than simple
imputation. Moreover, methods based on regression analysis and principal
components analysis were used. Huisman (1998) discussed several
imputation methods in the context of scale construction and investigated the
influence of these methods on the scale score, the reliability, and the
scalability, but he did not deal with influence on factor analysis results.

In this article, we study the performance of twelve imputation methods
for dealing mainly with nonignorable missing item scores in questionnaire
data. For simulated questionnaire data containing missing item scores, the
guestion was how well the use of these methods for producing complete date
can lead to the reconstruction of the factors that resulted from the original
complete data. This led to recommendations concerning the use of
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imputation methods in practical questionnaire research where factor
analysis of the data is envisaged but several item scores are missing. Also,
results for ignorable item nonresponse were obtained. The EM methods
(i.e., EM-loadings and EM-covariances) were used in a limited number of
design cells so that results obtained by these relatively complex methods
could be compared with results obtained by the simpler imputation methods.

The simulated data were the scores on a test or questionnaire consisting
of ordered five-point rating scales (Likert items; Likert, 1932) and, for each
simulee, scores on two covariates. Covariates were included because they are
part of most practical studies and because covariate groups often
systematically differ in their mean scores on the relevant variables. Thus, we
used mean differences between covariate groups for generating our data.
Knowledge of covariates was used in one imputation method although this was
irrelevant for MCAR and insufficient for nonignorable missingness studied
here. The rationale was that researchers often do not know which mechanism
caused the missingness in their investigation and will use knowledge of
covariates anyway. We used two binary covariates, which can be thought to
represent, for example, gender and age group (say, young versus old).

Although many statistical models for analyzing questionnaire data assume that
all items measure the same latent trait or underlying factor (unidimensionality), in
practice responses frequently are the result of a combination of latent traits or
underlying factors (multidimensionality). For example, responses to an item on
introversion could partly be determined by language skills. Bernaards and Sijtsma
(1999) found that data of higher dimensionality (more specifically, four-
dimensional data) led to the same conclusions about the usefulness of missing data
methods in factor analysis than two-dimensional data. Thus, in the present study
only one- and two-dimensional data sets were simulated.

Complete simulated data matrices were generated by means of a
multidimensional polytomous item response theory (IRT) model (Kelderman
& Rijkes, 1994) and, next, subjected to factor analysis. Takane and De
Leeuw (1987), Muraki and Carlson (1995), and McDonald (1997) discussed
the relation between multidimensional IRT and factor analysis. Maximum
likelihood factor analysis assumes normally distributed variables. Dolan
(1994) and Muthén and Kaplan (1985, 1992) demonstrated that even with
five-point rating scale data, factor analysis is not seriously affected by
deviations from normality of the distributions of the variables.

Next, item scores were deleted both under MCAR and nonignorable
missing data mechanisms (to be discussed later on in detail), and the resulting
incomplete data matrix was then treated by subsequently applying one of the
twelve imputation methods, which yielded twelve reconstructed data matrices.
In a limited number of design cells, the two EM-based methods were applied
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to the missing data problem. For each of the twelve imputed data matrices the
same number of factors was extracted as for the complete data matrix. The
number of factors equalled the number of latent traits used to generate the
data. Bernaards and Sijtsma (1999) found that use of the exploratory
eigenvalue-higher-than-1 criterion led to retention of the same number of
factors, and concluded that using the prior knowledge of the number of factors
was justified. Factor analysis results based on a complete data matrix could
be compared with the results obtained under each of the imputation methods
and the EM algorithms, and conclusions could be drawn with respect to the
effectiveness of these methods for producing the correct results.

Method
Generating the Data

Item response theory was used for modeling the data generation
process. We used IRT for defining the characteristidsitdfims from an
imaginary questionnaire. We also chose a fixed number of latent traits (this
is IRT terminology; using factor analysis terminology we would call them
latent factors) and a multivariate distribution of these latent traits. Based on
the item characteristics and the distribution of the latent traits, an IRT model
(discussed in more detail later on) determined for each simulee his/her
probabilities of responding in each of the categories of the rating scale of a
particular item, and this was done for each item. This procedure generated
a complete data matrix fof simulees and items. Next, this data matrix
was factor analyzed. The resultifegctor structurewas assumed to reflect
the latent trait structure

A doubly stochastic process (cf. Lord & Novick, 1968, pp. 29-30) was
used for generating rating scale data. FirstN@imulees two latent trait
scores (or, equivalently, underlying factor scores) were randomly drawn from
a bivariate normal distribution. Each simulee belonged to one of four covariate
classes, which had different latent trait means. Second, for each simulee the
scores ork rating scale items were drawn from a propensity distribution
described by a multidimensional item response model (the number of
dimensions equaled the number of latent traits; here this number was 2).

The generation of the latent traits used two binary covariates with scores
for each person. Inthe population, the four possible combinations of covariate
scores defined four equally large groups. When simulating data, for each of
theN persons a combination of covariate scores was drawn with probability
1/4. Covariate class (0,0) had latent trait means (0,0); covariate classes (1,0
and (0,1) both had latent trait means (1,1); and covariate class (1,1) had laten

MULTIVARIATE BEHAVIORAL RESEARCH 325



Downloaded By: [Universiteit van Tilburg] At: 12:25 25 April 2008

C. Bernaards and K. Sijtsma

trait means (2,2). Covariates were only related to the latent trait means. The
latent trait covariances were the same for each covariate group.

The multidimensional polytomous latent trait (MPLT) model (Kelderman
& Rijkes, 1994) was used to generate the polytomous item scores. Items are
indexedj (j = 1, ...,k) and each item has+ 1 ordered answer categories
with scorex=0, ...,r; herer =4. The items measure a combination of latent
traits according to some a priori known ratio per item. For example, ten items
may measure latent trait A and latent trait B with weights 1 and 3,
respectively, and the next ten items may measure these traits with weights
3 and 1, respectively. Latent traits are denotef agd scores b9iq with
indicesi (i = 1, ...,N) for identifying persons and indicggq = 1, ...,s) for
identifying traits; heres=2.

The scoring weights associated with the response categories are
contained in the three-way arr8ywith entriesquX. The scoring weights
reflect the ratio by which itejnmeasures the latent traits, and also can be
interpreted as discrimination indices. Following Kelderman and Rijkes
(1994), we maintain the terminology of scoring weights. The separation
parameters for the categories associated Bjtlare contained in the three-
way array W with indices¥ . By choosing the scoring weigh®
appropriately, different models can be defined.

The MPLT model is of the form

(1) P(X; =X0,,,...05)= : eXF{zq:{eiq _quX)qux] .
Zy:o{exr{zFl(qu _q’iqy)Biqy]}

The MPLT model requires thath‘qy =0, therﬂ'qu= 0, to ensure uniqueness
of the parameters.

Since the scoring weight arr®yin model 1 and the array of separation
parameterdV were specified a priori, for each item the probabilities of
response in each answer category could be calculated for each &ector
drawn from the bivariate normal distribution. Next, for given ve@tfor
each of th& items an outcome was drawn from a multinomial distribution
with response probabilities (Equation 1) as calculated for the answer
categories, resulting ik item responses for each of tNepersons.
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Defining and “Generating” Missings
Types of Item Nonresponse

Two types of nonignorable item nonresponse were defined. First, in a
guestionnaire with Likert (1932) scales scores may be missing especially in
the higher answer categories. For example, an item testing preference
towards the extreme political rightwing could have answer categories: no
preference at all, no explicit dislike, weak preference, positive affection, and
strong preference. Missings may occur in particular in the higher answer
categories which represent socially the least desirable and the least
politically correct answers.

Following this rationale, we generated missings such that higher answer
categories had higher probabilities of nonresponse. Table 1 (upper panel,
REF-HIGH) shows for each of the four covariate classes relative expected
frequencies (REF’s; 0 means never missing) which exhibit the trend that
nonresponse is more likely for the higher answer categories. Because the
literature did not reveal which REF’s are the most realistic, we chose values
that seemed reasonable.

Two aspects of the REF’s are noteworthy. First, within a covariate class
the trend of the REF’s reflects that the probability of nonresponse increases
toward the higher answer categories. Since the different covariate classes
show different patterns of REF's of nonresponse, covariate classes explain
some of the nonresponse but not all. Thus, within each covariate class, the
probability of missingness is still related to the response category, and hence
missingness and response category are not conditionally independent, a:
required by MAR. Second, for each covariate class the last column of Table
1 gives the expected percentage of missingness. To summarize, covariate
classes differ in the percentage of missingness and in the pattern of
missingness across the answer categories of a rating scale.

Moreover, as was discussed earlier covariance classes also define thre
different latent trait means, but these means do not completely coincide with
the covariance classes [classes (1,0) and (0,1) have the same mean]. Thu
these different means also influence the data generation process, but the pai
of the nonresponse explained by the covariance classes is not exactly the
same as the part explained by the latent trait means.

Second, missings also may arise especially in the extreme positive and
the extreme negative answer categories. Again consider a five-point rating
scale. The possible answers to the question “What is your annual income?”
may be: low, below average, average, above average, and high. Both the
categories “low” and “high” may tend to show missingness more often than
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Table 1
Relative Expected Frequency (REF) of Nonresponse for Two Binary
Covariates

Response
Categories
Name Covariates 0 1 2 3 4 % Missing
(0,0) 0 0 1 3 5 14
REF- 0,1) 0 1 3 5 5 22
HIGH (2,0) 0 0 1 5 10 25
(1,1) 0 1 5 10 10 40
(0,0) 5 1 0 1 5 16
REF- (0,1) 5 3 0 3 5 21
LOWHIGH (2,0) 10 1 0 1 10 29
(1,1) 10 3 0 3 10 34
(0,0) 1 1 1 1 1 25
REF- (0,1) 1 1 1 1 1 25
MCAR (2,0) 1 1 1 1 1 25
(1,1) 1 1 1 1 1 25

Note The % Missing was obtained by adding, for each covariate class, the relative
frequencies, and dividing this sum by the total sum across all four classes. For example,
14 =100 x (0 + 0 + 1 + 3 + 5)/65 (first entry).

the three middle categories, because respondents with low or high incomes
may be more secretive about this than other respondents.

We used this example to generate missingness with relatively high
probability in the two extreme answer categories. The middle panel of
Table 1 (REF-LOWHIGH) shows the REF’s representing this type of
missingness. The trends of the numbers in Table 1 reflect that the probability
of nonresponse increases toward both extremes of the rating scale. The
percentage of missingness varies across covariate classes. Also, covariate
classes explain some but not all of the missingness and the amount explained
does not exactly coincide with that explained by the latent trait mean. Asin
the previous case missingness is nonignorable.

328 MULTIVARIATE BEHAVIORAL RESEARCH



Downloaded By: [Universiteit van Tilburg] At: 12:25 25 April 2008

C. Bernaards and K. Sijtsma

Finally, as a benchmark for the other two cases the lower panel of Table
1 (REF-MCAR) shows REF’s typical of MCAR: The REF’'s have norelation
to covariate class (if they would, we would have MAR) and, moreover, no
relation to answer category (if they would, missingness would be
nonignorable).

Generating Missing Item Scores

Next, we illustrate the procedure of creating missings and keeping the
percentage of missingness in a sample at a preset level of, say, 20 percen
The artificial data matrix in panel A of Table 2 shows for 15 simulees scores
ranging from 0 to 4 on six five-point rating scales, generated using the MPLT
model and & with normal distribution having mean 0 and variance 2%.
Assume that these data stem from covariate class (0,0) (#sezr0) and
that missingness occurs on each of the items according to relative frequency
00135 (upper panel of Table 1). We used SPlus (Becker, Chambers, &
Wilks, 1988) for simulating this missingness pattern for the data in panel A
of Table 2 which resulted in the data matrix in panel D.

Panel B in Table 2 shows the matrix which has for each score from panel
Athe corresponding relative frequency (thus, panel B has entries 0, 1, 3, and
5). Each of these entries is divided by the sum of the 90 entries in panel B
(this sum equals 128) and this yields the probabilities in panel C. A missing
is created by sampling (without replacement) 18 times (20 percent out of 90
scores) from a multinomial distribution with 90 categories and the
probabilities in panel C. This way, exactly 20 percent missings are created,;
the end result is shown in panel D.

Imputation Methods and EM Methods
Imputation Methods

Imputation methods estimate the missing score and then impute this
estimate. The advantage of imputation over other missing data procedures
is that standard complete-data methods can be used for further data analysic

The following imputation methods were implemented.

1. Overall Mean Imputation (OMdeplaces the missing values by the
mean across all observed item responses in the data matrix.

2. Person Mean Imputation (PMYor each person separately
calculates the mean across all of his/her available item reponses, and impute
this mean for each missing value for that particular person.
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Table 2 8
Example of Generatifg Missings

E Panel
A: Complete Data 3 B: REF C: Probabilities D: Incomplete Dat
211 21 15100100 1128 0 0 1/128 0 0 211211
2 2 2 11 1 g:j’ 1110 0 0 1/128 1/128 1/128 0 0 0 2 2 111
3 4 4 34 45 355 355 3/128 5128 5128 3/128 5/128 5/128 3 4 4 3
3 21 23 2§ 310131 3128 1/128 0 1/128 3/128 1/128 321232
01 2 01 2 0 01001 0 0 1/128 0 0 1/128 012012
3 3 2 23 3 3 3 1 1 3 3 3/128 3/128 1/128 1/128 3/128 3/128 3 2 2
3 2 3 22 2 3131 1 1 3128 1/128 3/128 1/128 1/128 1/128 2 2 22
3 2 2 12 3 3110 1 3 3/128 1/128 1/128 0 1/128 3/128 32212
2 3 2 33 1 1 3 1 3 3 0 1/128 3/128 1/128 3/128 3/128 0 3 2 1
2 1 2 2 2 2 101 11 1 1/128 0 1/128 1/128 1/128 1/128 21 2 22
0O 00 010 0 00 O0OO 0 0 0 0 0 0 0 00010
2 2 3 32 2 1 1 3 3 1 1 1/128 1/128 3/128 3/128 1/128 1/128 2 3 322
2 1 2 2 2 2 1 01 11 1 1/128 0 1/128 1/128 1/128 1/128 212 22
3 3 4 43 2 3 3 5 5 3 1 3/128 3/128 5/128 5/128 3/128 1/128 3 3 4 3
11 2 12 1 001010 0 0 1/128 0 1/128 0 11 12
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3. Conditional Mean Imputation (CMjalculates the mean across all
available item scores of all persons within the same covariate class, and
imputes this value for all missing scores within the same covariate class.

4. Item Mean Imputation (IMkalculates for each item the mean
across all available scores, and imputes this mean for that particular item.

5. Two-Way Imputation (TWgalculates across available scores the
overall mean, the mean for itgnand the mean for persorand imputes IM
+ PM - OM for missing observation, ().

6. Corrected Item Mean Substitution (CIM§Huisman, 1998)
imputes for an unobserved itemscore in rioand columrj the following
value,xij, based on available scores,

(2) ) = —Zm’bﬁ“)&j X, = PM, IM

XIJ - . ] 1 i’
Zitbbs(i)x-j #obs(i) Zijbs(i)lMi

wherex . is the mean across all observed scores onjiteinsi) is the set

of all observed scores for respondeiaind #bqg(i) is the number of observed
scores for respondentPM is the person mean for respondeand M is

the item mean for iten). The ratio between brackets thus estimates a
multiplication factor for respondenas PMdivided by the mean of the item
means across all observed items for responid€rttis scalar is higher than

1 for respondents scoring higher than average and lower than 1 for
respondents scoring lower than average. Each missing item score of
respondentis then replaced by the mean of itetimes the multiplication
factor. CIMS thus takes the ‘ability’ of the respondent into account by
imputing a higher score the higher the scores on the completed items.

Based on the incomplete data matrix in panel D of Table 2, Table 3
contains for each of the six imputation methods the imputed data matrix. It
may be noted that for only one group (one covariate class) methods OM and
CM produce the same imputed scores.

For all six imputation methods a second version was implemented which
adds arandom draw from a normal distribution with mean zero and residual
variance. The reason for adding a residual normal deviate to the imputed
values was to include sampling fluctuation. Thus, results may be more
realistic compared with results based on imputing an error-free mean. For
example, for method OM the difference is calculated between the data
matrix and a matrix which consists completely of imputed values (all
elements equal to OM). Next, the sample residual variance is calculated

MULTIVARIATE BEHAVIORAL RESEARCH 331



w
w

HOHVY3S3Y TVHOIAVHIL FLVIHVAILTNN

Table 3 % o
Imputed Data Matrices for %ix Imputation Methods (OM, CM, PM, IM, TW, CIMS) Based on Panel D from Table 2 S
OM = CM ° PM IM TW CIMS S
s PM PM PM DEN' o
2 a
2 1.1 2 2_% 11 2 1 1 13 211211 211 2 11 13 2 11 2 1 1 13 1.82
2 2181 zg 2141 1 1 1.4 2 2211 1 1 2 2171 1 1 1.4 2 2171 1 1 14 17 F
3 4 4 31818 354 4 33535 35 3 4 4 31814 3 4 4 33531 35 3 4 4 33426 35 19 g
3 2 1 2 35‘ 2 1 2 3 2 22 3 2 1 2 3 2 3 21 2 3 2 22 3 21 2 3 2 2.2 1.8
o1 2 0 1 2 0% 1 2 0 1 2 1.0 0O 1 2 0 1 2 o1 2 0 1 2 1.0 01 2 0 1 2 1.0 1.8
3182 21818 3 %.3 2 22323 23 3182 21814 3232 22419 2.3 3222 22217 2.3 1.9
182182 2 2 2.002 202 2 2 20 202212 2 2 222232 2 2 20 242252 2 2 20 1.7
3 2 2 1 218 3 2 2 1 220 2.0 3 2 2 1 214 3 2 2 1 216 2.0 3 2 2 1 215 20 1.9
1.83 218181 203 220201 20 203 216181 223 218201 20 233 218211 20 1.8
2 1182 2 2 2 1182 2 2 1.8 2 1212 2 2 2 1212 2 2 1.8 2 1222 2 2 1.8 1.7
0O 0 0 01 0 0O 0 0 01 0 0.2 0O 0 0 0 1 0 0 0 0 01 0 0.2 0 00 0O1 O 0.2 1.8
2183 3 2 2 2243 3 2 2 2.4 2183 3 2 2 2243 3 2 2 24 2243 3 2 2 2.4 1.8
2 1 2 2 218 2 1 2 2 218 1.8 2 1 2 2 214 2 1 2 2 214 1.8 2 1 2 2 214 18 1.9
3 3 41831.8 3 3 433333 33 3 3 416314 3 3 431329 33 3 3 4273 24 3.3 1.9
11181 2 1 1 1121 2 1 1.2 1 1211 2 1 1 1151 2 1 1.2 1 1151 2 1 1.2 1.7
Overall Mean Item Means Iltem Means oM Item Means
1.8 2.01.82.11.61.81.4 2.01.82.11.61.81.4 1.8 2.01.82.11.61.81.4

2DEN is the denominator of Equation 2 for person
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across all available differences (cells containing missing item scores are
omitted). Finally, each missing item response in the observed data matrix is
substituted by the sum of OM and a draw from a normal distribution with
mean zero and residual variance. The imputation methods with residual
variance are denoted by OM-E, PM-E, CM-E, IM-E, TW-E, and CIMS-E.
Thus, in total 12 imputation methods were implemented.

An advantage of most imputation methods over other missing data
methods, for example, the EM algorithm, is their simplicity. OM is probably
the simplest method, yet the most naieve because the mean is taken over a
latent traits and all classes of covariates. CM partly alleviates this drawback
by taking the mean within classes of covariates. However, as with OM
multidimensionality of the data is ignored. Method IM corrects for
multidimensionality but not for classes of covariates. Thus, it is difficult to
predict whether IM performs better than CM.

PM takes the mean over the smallest meaningful group of item
responses. Thus, PM may lead to the most meaningful imputed score of all
methods, because each respondent is treated uniquely and an imputed valu
is based on correlated items. Hence we expect (see also Bernaards an
Sijtsma, 1999) that in unidimensional data PM will give better results than IM,
CM, and OM. In two-dimensional data, the advantage of using correlated
items is lostto some degree, because the item weights of 1 used in calculatin
the person mean clearly are less appropriate than when unidimensionality
applies. It may be noted that items weights of 1 would even be more
inappropriate when some of the inter-itemcorrelations were negative (this
does not happen in the present research). Thus, for two-dimensional data the
relative performance of PM is more difficult to predict. Moreover, in all
cases the imputed PM score may be subject to higher uncertainty than
imputed scores based on other methods because PM uses the smallest subs
of available scores.

TW is based on the two-way layout used in ANOVA models by imputing
a row-effect plus a column-effect minus the overall effect. This method was
suggested to us by D.B. Rubin (personal communication, November 21,
1997). TW corrects for multidimensionality via IM, for ability per person via
PM, and for the overall effect via OM. Hence, TW may be expected to better
recover the matrix of factor loadings based on the complete data than IM, PM,
and OM separately. CIMS, like TW, corrects for multidimensionality via IM
and for ability per person via PM.

Usually, calculation of a mean will not generate an integer. The imputed
mean values thus are not “valid” scores as would have been observed hac
these scores not been missing. Reals rather than integers were usec
however, because the present study was concerned only with results from
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factor analysis and not with the imputed scores themselves. Moreover,
rounding of imputed scores to the nearest integer would introduce
undesirable additional error into the data.

EM Methods

Bernaards and Sijtsma (1999) found that the EM algorithm (version EM-
loadings) recovered the complete data factor loadings considerably better
than simple imputation methods. Thus, it was expected that EM-loadings
would also perform better in the present study. Although the relatively
complex algorithm may not be easily accessible to many practical
researchers and, moreover, this study concentrated on imputation methods,
EM-loadings was implemented in a limited part of the design. This way, it
could be checked whether EM-loadings also performed better than other
methods when missingness is nonignorable. In addition, EM-covariances
was implemented both as a competitor to EM-loadings and also for
comparison with the simpler imputation methods. Since Bernaards and
Sijtsma (1999) found that listwise deletion by far gave the worst results, this
method was left out of the present study.

EM-loadings handles the factor scores from factor analysis as missing.
Initially, random values are substituted for the missing data. In the E step,
the missing values are updated given the factor scores, and the expected
value of the covariance matrix given the factor loadings is calculated. Inthe
M step the factor loadings and factor scores are updated based on the current
estimate of the covariance matrix. These two steps are re-iterated until
convergence of the likelihood occurs. The EM implementation used here is
described in detail in the Appendix of Bernaards and Sijtsma (1999).

Assuming that the sample originates from a multivariate normal
distribution, EM-covariances estimates the population covariance matrix
based on the data including missing item scores (Little & Rubin, 1987;
Schafer, 1997). Initially, parameters are estimated using listwise deletion. In
the E step, expectations and (co)variances are calculated for the missing
data given the observed values and the current parameter estimates. In the
M step, the parameter estimates are updated based on the current
expectations and (co)variances of the data including missing item scores.
Iteration between the E step and the M step continues until convergence of
the parameters. This implementation is described in detail in the Appendix.

Theoretically, EM-loadings is expected to better estimate the loadings
than EM-covariances because EM-loadings directly estimates the loadings
and EM-covariances uses one additional estimation step (which is the
estimation of the complete data covariance matrix) prior to factor analysis.
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This estimation step may introduce additional error in the estimates of the
loadings.

Summary

To summarize, this study differed from the study by Bernaards and
Sijtsma (1999) because: (a) listwise deletion was left out; (b) two versions
of EM were studied to check whether they also were the best methods when
missingness was nonignorable; (c) methods TW and CIMS were added as
new and promising imputation methods; and (d) for each imputation method
a version with a residual error was considered.

Other methods, such as multiple imputation (Rubin, 1987) and computer-
intensive methods as described by Tanner (1996), are more difficult to
implement and to understand for practical researchers and were not
considered here. Acock (1997) gives an elementary introduction to missing
data methods used with social science data. Also see Little and Rubin (1987)
for an elaborate treatment of missing data methods. Other sources on
missing data methods are, for example, Little and Rubin (1989), Rubin
(1991), Little and Schenker (1995), Rubin (1996), and Schafer (1997).

Performance of Methods

Bernaards and Sijtsma (1999) used the statistics TuckeaisdD? for
evaluating the discrepancy between a factor loadings matrix based on the
complete data and a factor loadings matrix based on the data to which a
missing data method had been applied. Tuck&mseasures similarity of
direction within pairs of vectors. For exampdeis calculated between the
first vector of loadings based on the complete data and the first vector of
loadings based on the data including imputed values; between the seconc
vector of loadings based on the complete data and the second vector of
loadings based on the data with imputed scores; and sé bes between
0 and 1, where 1 means that two vectors point in exactly the same direction.
For & > 0.85 two vectors of loadings have the same interpretation (Ten
Berge, 1977; Niesing, 1997). Bernaards and Sijtsma (1999) found that in
their study alkps were higher than 0.98, and concluded that the direction of
the loadings was not influenced by the application of the missing data
methods. Thus, we will not considérin the present article.

The second statistic used by Bernaards and Sijtsma (1999) for evaluating
discrepancy between matrices of loadinB$, was the sum of squared
differences between the two matrices of factor loadings, both based on all
retained factors, and corrected for the number of retained factors. The
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smallerD?, the more similar the two loadings matrices. From loadings
matricesX andY, D? can be calculated through

D2 =t (X-Y) (X -Y)]/m=tr[g =¥ )~ )"]/m,

wherem s the number of factors retaine®? will be used in the present
article, with X representing the complete data loadings matrix ¥nd
representing the loadings matrix based on the data including imputed scores.
For EM-loadingsY was the direct EM estimate of the loadings and for EM-
covariancesY was the loadings matrix based on the EM estimated
covariance matrix.

The second method used to monitor performance is based on testing the
equality of two covariance matrices. LEt denote thek-dimensional,
unknown, true covariance matrix of the complete data. AnalogoBsly,
(subscripti for "imputed"; not for indexing persons) denotes the
dimensional true covariance matrix of the imputed data resulting from a
particular missing data method. Since we are concerned with the recovery
of complete data factor loadings from data to which a missing data method
has been applied, we first calculate the estimetedriance matrlceE and
E as follows. LeiZ A A’ +\p whereA is the matrix of estimated factor
Ioadlngs based on the complete data and vvﬂgermtalns the corresponding
uniguenesses. AnalogousE/ A A’ +\If denotes the estimated covariance
matrix based on the data W|th |mputed scores using a particular missing data
method.

Test statistics for the null hypothesk = X, are based on the
eigenvaluey,, ...,y, of the equation (Anderson, 1984, pp. 422-424)

3 x=3yx

3) - $7% x=yx,

wherex is the eigenvector off.jii corresponding to eigenvalue When

factor analysis of the data with imputed scores perfectly recovers the
loadings from complete data factor analysis, the proBg&t results in all
eigenvalues equal to 1. In practice, however, the eigenvalues tend to be
scattered around 1. The magnitude of this spread indicates how much the
two matrices differ from one another. To determine this spread, several test
statistics have been proposed in the literature, see Anderson (1984) and
Stevens (1992) for overviews. We prefered to use “simple” descriptive
functions over complicated statistical tests in order to determine the spread
of the eigenvalues. Examples of such descriptive functions are the mean of
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the eigenvalues, the product of the eigenvalligs which equals the matrix
determinant, and the ratio m@iny of the eigenvalues.

How should these functions be interpreted? The product of the
eigenvalues based on data obtained fkitems equals the volume of the
k-dimensionahyperparallelepiped spanned by the columns of the matrix
3'3. The mean of the eigenvalues is the squared length of the interior
diagonal of the hyperparallelepiped. The ratio fieniny does not have a
clear geometrical interpretation.

Unfortunately, it is unclear which measure of similarity should be used.
For example, consider the similarity of 3 x 3 correlation matRcesidR .
Because a correlation matrix has a trace equal to its dimension (here 3), the
mean of the eigenvalues is equal to 1. This renders the mean useless. Nex
assume that Imputation Method 1 results in eigenvalues 1.5, 0.75, and 0.75
and that Imputation Method 2 results in eigenvalues 1.4, 0.95, and 0.65. Then
the volume of the parallelepiped (product of eigenvalues) based on
Imputation Method 1 equals 0.84 and the volume based on Imputation
Method 2 equals 0.86. However, mdminy based on Imputation Method
1is 2 and may/miny based on Imputation Method 2 is 2.15. When the two
correlation matrices are equilly = maxy/miny = 1. Thus, itis difficult to
decide which method to use because the results from the two measures o
similarity can be contradictory. If both methods would always yield the same
ordering of imputation methods, then one might decide to use only one.

The eigenvalues approach has two advantages over the squared distanc
between loading®®. The eigenvalues approach (a) is invariant under affine
linear transformations, that is, transformations of the A/ECe+ B whereA
is ak x k non-zero matrix an@® is anyk x k matrix; and (b) takes the
uniqguenesses (errors of the variances) into account.

In addition toD?, in this study the measures mdminy andIly were
used. When an imputation method performs well, the ratioymairy and
the productly both are close to 1. The ratio méminy and the produdfly
together indicate the deformation of the unithypercube which would be the
result oflﬂ?jﬁi in the case of perfect reconstruction of the complete data
correlation matrix by the matrix based on data including imputed scores.

Design of Simulation Study
Choices relevant to the simulation design are summarized in Table 4.
The upper panel has the design factors with varying levels and the lower

panel has the design characteristics which were fixed throughout the
investigation. This section discusses the design in more detail.
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Latent Traits

The two latent trait®, and6, (Table 4) were assumed to be bivariate
normally distributed (Table 4) with mean varying across covariate classes,
as described earlier. Following Bernaards and Sijtsma (1999), correlations
between traits were 0, 0.24, and 0.5, respectively (Table 4). Equation 4
provides the covariance matrices corresponding with the correlations
between the traits.

25 0) (25 06\ (25 12
(4) 0 25) |06 25 |125 25
Item Characteristics

Across the design, the number of items was fixek at20 (Table 4),
divided into two groups of ten items each. Allitems had five answer categories
(Likert scales; Likert, 1932), scorad-0, ..., 4 (Table 4). Each group of ten
items consisted of three items with high score mode, four items with medium
score mode, and three items with low score mode. Specifically, the separation
parameters (MPLT model; see Equation 1) of the items were fixed (Table 4)
such that for the first three items in a group of ten the mode was 3; for the next
four items the mode was 2; and for the last three items the mode was 1.

In the two-dimensional datasets, each item measured both traits in a
given ratio (or mixture; henceforth, abbreviated Mix; see Table 4). In
configuration Mix 3:1, the first ten items measured the latent traits in the ratio 3:1,
and the last ten items measured the latent traits in the reversed ratio 1:3. The
interpretation of these ratio’s is the following. The scoring wei@ﬂ;mf
the MPLT model (Equation 1) depend on item scareSpecifically, for
higherx a higher welghB indicates a stronger dependence on latent trait
0 (KeIderman&lekes 1994) Thus, if an item measures datido with
ratio 1: 3, for a particulaxthis is reflected by the ratio of the welg&qs for
0,ando,. For example, in Table 5 (first panel, third and fourth rows, foreach
itemj (j =1, ..., 10) for score 0B, = 1 andB,,, = 3; for score 1B, , =
andB,, = 6; and so on.

In Mix 1:0, the first ten items exclusively measured the first latent trait
(Table 5, second panel; fdr,all Bs are zero), and the last ten items
exclusively measured the second latent trait (Table 5, second pang|; for
all Bs are zero). Unidimensionality was represented by Mix 1:1, in which all
items measured both latent traits with the same pairwise weights (Table 5,
third panel).
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Table 4

Design Factors and Design Characteristics Relevant to the Simulation Study
(First Panel Contains Design Factors with Varying Levels. Second Panel
Contains Design Characteristics Fixed Throughout the Design.)

Design Factor Levels

Correlation between latent traits 0,0.24,0.5

Scoring weight$ Mix 3:1, Mix 1:1, Mix 1:0
Percentage missingness 5,10, 20
Missing Data Methods Overall Mean (+error)

Conditional Mean (+error)
Item Mean (+error)

Person Mean (+error)
Two-Way imputation (+error)
CIMS (+error)

EM algorithm (two versions)

Sample size 100, 500

Relative expected frequency REF-HIGH, REF-LOWHIGH, MCAR
of nonresponse (see Table 1)

Performance of Method D2, ITy, maxy/miny

Design Characteristics Fixed

Number of latent traits 2: bivariate normal, variance 2.5
Number of items 20

Number of answer categories 5 (ordered scores 0, ..., 4)
Separation parametetl fixed per item

Extraction method Maximum likelihood

Method of rotation Varimax

Simulation of Data Matrices

The final step in generating item scores was determining for each
combination of a simulee (defined by thealues) and each item (defined
by its parameter® and weight®) the probabilities of responding in each
of the five answer categories. Comparison of these probabilities with draws
from a uniform distribution led to an actual item score. FoMNahk k
combinations together this yielded a complete data matrix.
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Table 5

Scoring Weight®8 for MPLT Model

Mix Latent Trait [tem Numbers B

31 0, 1,...,10 3,6,9,12,15
0, 1,...,10 1,2,3,4,5
0, 11, ..., 20 1,2,3,4,5
0, 11, ..., 20 3,6,9,12, 15

1.0 0, 1,...,10 1,2,3,4,5
0, 1,...,10 0,0,0,0,0
0, 11, ..., 20 0,0,0,0,0
0, 11, ..., 20 1,2,3,4,5

11 0, 1,...,20 1,2,3,4,5
] 1,...,20 1,2,3,4,5

Generating Missings

The procedure of creating missings in the complete data matrices was
described in the section entitled “Defining and ‘Generating’ Missings” and
Table 1. Following Bernaards and Sijtsma (1999), the percentages of
missingness in the datamatrices were 5, 10, and 20, respectively (Table 4).

Imputation Methods

Twelve imputation methods were implemented; see the section entitled
“Imputation Methods and EM Methods” and Table 4. Each method was used
separately for imputing scores in the empty spaces of each data matrix. For
each data matrix this yielded twelve different versions with imputed scores.

EM-Algorithms

Using maximum likelihood factor analysis, the EM-algorithm was used
for handling the missing scores (Table 4). EM-loadings was described in
detail by Bernaards and Sijtsma (1999). EM-covariances is described in
detail in the Appendix.
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Maximum Likelihood Factor Analysis

Bernaards and Sijtsma (1999) found ti#tbetween complete and
incomplete loadings based on principal components factor analysis was
almost indistinguishable froD? between complete and incomplete loadings
based on maximum likelihood factor analysis. Because from a mathematical
point of view, maximum likelihood extraction is to be preferred over principal
components factor analysis, the former method was used here (Table 4).

Sample Size

The sample sizes were fixed at 100 and 500 (Table 4). This seems to be
well in agreement with studies of factor analysis performed on simulated
data. Dolan (1994) used 200, 300, and 400 simulated respondents; Muthér
and Kaplan (1985) were interested in large sample properties and used ¢
sample size of 1000. Muthén and Kaplan (1992) extended their 1985 study
by using sample sizes of 500 and 1000.

Varimax Rotation

All two-dimensional factor solutions were subjected to varimax rotation
(Table 4). Varimax rotation is the most popular rotation method among
practical researchers (it also is the default in SPSS, 1989); factor solutions
are rotated to simple structure to facilitate interpretation; see, for example,
Stevens (1992, p.380). One might argue that when latent traits are
correlated, oblique rotation is more appropriate. We argued, however, that
practical researchers often do not know whether factors are correlated and
generally will use orthogonal rotation to simple structure.

It is not obvious whether the factor loadings based on a data matrix
including imputed scores have the same alignment as factor loadings basec
on the complete data. Bernaards and Sijtsma (1999) performed orthogonal
procrustes rotation of the loadings matrix based on the data including imputed
scores towards the complete data factor loadings. They concluddaPthat
was not affected by this additional rotation, and hence the factor loadings
based on the data including imputed scores could not be distinguished from
the complete data target. Thus, the problem of alignment was not
investigated any further here.

The number of factors retained depended on the number of latent traits
used to generate the data. For the two-dimensional cases, Mix 3:1 and Mix
1:0, two factors were extracted. For the unidimensional case Mix 1:1, one
factor was extracted.

MULTIVARIATE BEHAVIORAL RESEARCH 341



Downloaded By: [Universiteit van Tilburg] At: 12:25 25 April 2008

C. Bernaards and K. Sijtsma

Nonresponse Mechanism

As described earlier, three cases of missingness were studied (Table 4):
missingness in higher categories of arating scale (REF-HIGH; see Table 1);
missingness in both low and high answer categories (REF-LOWHIGH; see
Table 1); and missing completely at random (REF-MCAR; see Table 1).

Further Decisions

Performance of the imputation methods and the EM algorithms was
evaluated using statistié¥, IIy, and max/miny (Table 4). Finally, 50
replications were carried out in each cell.

Design

For imputation methods, the design thus had 3 (mixing configurations) x
2 (sample size) x 3 (percentage missingness) x 3 (nonresponse mechanism)
x 3 (correlation between traits) = 162 cells. For EM methods, due to long
computation time and because Bernaards and Sijtsma (1999) found that,
compared with imputation methods, EM-loadings always performed better,
only part of the design was analyzed here. We chose a limited design
consisting of the design factors mixing configuration (Mix 3:1, Mix 1:0, and
Mix 1:1), percentage missingness (5, 20), nonresponse mechanism (REF-
HIGH and REF-LOWHIGH), and correlation between traits (0, 0.24, 0.5).
This yielded a design with 36 cells. Sample size was fixed at 100.

Results
Imputation Methods

We start this section with some preliminary decisions that serve to
simplify the discussion of the results. Next, the results are discussed for each
of the relevant factors from the design. For each design factor, first results
for two-dimensional datasets are discussed, followed by results for
unidimensional datasets.

In general, the ratio maxminy only changed substantially with the
percentage of missingness and the sample size. For each imputation method
separately, may¥miny was approximately constant across all nonresponse
mechanisms, correlations between traits, and mixing configurations. Thus,
the ratio max/miny was not informative about possible discrepancies
between loadings matrices for different imputation methods and,
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consequently, may miss important results. Therefore, we confined the
discussion of the results @7 andIly.

In almost all ceIIs,_the imputation methods IM-E, CM-E, and OM-E had
the highestIly and D? (mean) values. Because of this clearcut result,
these methods were left out of further discussion of the results.

We now discuss the results for the imputation methods TW, CIMS, PM,
IM, CM, OM, TW-E, CIMS-E, and PM-E with respect to correlation between
traits, nonresponse mechanism (see Table 1), mixing configuration of the latent
traits (see Table 5), and sample size, respectively. The Tables 6 through 8 give
results forH_yand D?. To save space, standard deviatis(idy) and
s(D?)were not tabulated but the results are discussed along with the results for

[Iyand D? . Entries “>>"in the columns labelddy were higher than 20, and
entries “<<” were lower than 1/20. The exact numerical values were too
extreme to be of much importance and thus were left out. The imputation
methods IM, CM, and OM had the highest number of extreme valuébyor

Correlation Between Traits

For two-dimensional datasets (Mix 1:0 and Mix 3:1), for all imputation
methods higher correlation between traits led to closer correspondé#ce (
closer to 1) between loadings matrices for complete data and imputed data,
respectively. Also, all imputation methods showed smaller spetHe)]
as the correlation increased (not tabulated). This is illustrated in Figure 1,
which contains for imputation method TW histograms of all 20 eigenvalues
over 50 replications, for correlation O (upper panel), correlation 0.24 (middle
panel) and correlation 0.5 (lower panel); and keeping other design factors
fixed at Mix 3:1; sample size 100, REF-LOWHIGH, and 20 percent missings.

For two-dimensional datasets (Mix 1:0 and Mix 3:1), methods TW,
CIMS, PM, TW-E, CIMS-E, and PM-E always showed a decreagg?in
ands(D?) [i.e., closer correspondence between loadings matig(@9; not
tabulated] when the correlation increased. For the other methods (IM, CM,
OM), D? ands(D?) did not change as the correlation increased. The six

imputation methods that showed a decreas®inands(D?) all used the
person mean whereas the other three methods did not. Since latent trait:
were more similar when the correlation increased, the estimates of imputed
scores based on methods using the person mean tended to be less biased al
therefore, the methods using the person mean gave better results.

For unidimensional datasets (Mix1: 1),y did not change for any of the
methods as the correlation increased. The accompanying standard erro
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Correlations betweeﬁ Traits and Different Percentages of Nonresponse, Fixed at Sample Size 500 and REF HIGH

(Entries in columns Iqbeleﬁ)2 are result of multiplication by 1000) %{
9] n
z; Correlation Between Traits 5
3 0 0.24 0.5
g Percentage of Nonresponse
5 20 5 20 5 20
Mix Method Iy D? 1IIy D? Iy D? Iy D? Iy D? Iy D?
1.0 TW 1.57 6 3.82 101 1.18 5 1.38 83 0.92 4 0.5 65
CIMS 1.56 8 3.25 131 1.19 7 1.2 107 0.92 6 0.42 86
PM 1.89 7 6.84 113 1.42 6 2.55 91 1.11 5 0.99 70
IM 6.83 11 >> 150 6.65 11 >> 157 6.76 11 >> 155
CM 4.61 9 >> 132 4.45 8 >> 132 4.54 9 >> 135
oM 8.02 15 >> 204 7.72 14 >> 208 7.86 15 >> 209
TW-E 352 10 >> 147 2.54 8 >> 109 1.84 6 7.57 77
CIMS-E 361 12 >> 169 262 10 >> 128 1.87 7 6.61 93
PM-E 5.02 15 >> 198 3.52 11 >> 152 2.58 9 >> 110
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Table 7 ¢ont)

Correlation Between Traits

£ 0.24 0.5
;’ Percentage of Nonresponse
55 20 5 20 5 20

MixMethod TIy £ D®> Ty D2 My D? My D? My D? Iy D?

31 TW 1.033 4 0.65 55 0.8 3 0.23 39 0.62 2 0.09 26
CIMS 153% 6 1.31 83 1.2 4 0.62 56 0.99 3 0.3 37
PM 3.88% 8 >> 96 2.84 6 7.97 65 2.08 4 321 43
IM >> 11 >> 146 > 11 >> 149 >> 11 >> 156
CM >> 16 >> 242 >> 16 >> 226 >> 16 >> 231
oM >> 30 >> 404 >> 29 >> 375 >> 27 >> 367
TW-E 336 4 >> 61 2.43 4 17.51 41 1.64 2 5.02 26
CIMS-E 6.21 7 > 01 4,76 6 >> 61 3.57 3 >> 39
PM-E >> 15 >> 166 1955 11 >> 112 12.69 8 >> 82

11 TW 051 1 0.05 16 0.5 1 0.05 13 0.49 1 << 129
CIMS 053 2 << 26 053 1 << 21 0.52 1 < 178
PM 092 1 049 9 091 1 0.42 7 087 0 036 53
IM 11.35 14 >> 217 1457 14 >> 219 18.89 14 >> 2228
CM 6.38 12 >> 209 859 13 >> 216 11.19 13 >>  233p
oM 18.6 29 >> 456 >> 29 >> 430 >> 26 >> 414 ;
TW-E 1 0 1.01 1 0.99 0 0.95 1 0.98 0 094 17
CIMS-E 1.1 1 1.04 9 1.13 1 1.15 8 1.15 1 1.25 6
PM-E 283 5 >> 61 2.93 4 >> 49 2.86 3 >> 39 3
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Table 8

t: 12:25 25 April 2008

spreeusag ‘D

Mean ony(Hy) an@i Mean oD% D2) Across 50 Replications, for Different Mixing Configurations, D|fferent

Correlations betweelj Traits and Different Percentages of Nonresponse, Fixed at Sample Size 500 and REP—MCAR

(Entries in columns I@belefi)2 are result of multiplication by 1000) %,’
S 3
3 Correlation Between Traits g
g 0 0.24 0.5
§ Percentage of Nonresponse
5 20 5 20 5 20
Mix Method Iy D? 1IIy D? My D? Iy D’ Iy D? Iy D?
1.0 TW 1.28 6 1.79 96 1.00 5 0.71 82 0.78 4 0.28 62
CIMS 1.3 6 1.94 100 1.03 6 0.78 85 0.81 5 0.32 64
PM 1.47 6 2.93 99 1.16 5 1.17 83 0.91 5 0.49 61
IM 3.94 6 >> 78 4.04 6 >> 78 3.93 6 >> 77
CM 3.25 5 >> 62 3.26 5 >> 58 3.2 5 >> 56
oM 4.41 7 >> 92 4.50 7 >> 91 4.43 7 >> 90
TW-E 294 10 >> 128 2.19 7 13.19 99 1.57 6 4.78 69
CIMS-E 3.03 10 >> 134 2.26 8 1493 105 1.68 6 5.59 72
PM-E 3.96 12 >> 152 297 10 >> 122 2.15 7 12.25 80
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Correlation Between Traits

[Universiteitjvan Tilburg] At: 12:25 25 April 2008

0.24 0.5
Percentage of Nonresponse
5 20 5 20 5 20

Mix Method  TIy £ D Iy D? Iy D? Iy D? Iy D* Iy D?

31 TW 101z 4 0.56 55 0.76 3 0.22 39 0.62 2 0.1
CIMS 135% 5 1.6 58 1.08 3 0.79 41 0.91 2 0.39
PM 3.29 § 6 19.98 63 2.45 4 8.43 43 1.96 3 3.86
IM >> 27 >> 100 >> 7 >> 102 >> 7 >> 104
CM >> 8 >> 87 >> 8 >> 87 >> 8 >> 88
oM >> 11 >> 154 >> 11 >> 150 >> 11 >> 148
TW-E 3.37 5 >> 62 2.27 3 17.83 42 1.7 2 6.02
CIMS-E 5.77 6 >> 71 4.43 4 >> 50 3.49 3 >> 32
PM-E >> 10 >> 110 >> 8 >> 78 16.06 6 >> 54

1.1 TW 0.47 1 << 18 0.47 1 << 15 0.46 1 << 13 O
CIMS 0.52 1 0.06 17 0.52 1 0.05 14 0.52 1 0.05
PM 0.84 1 0.31 6 0.83 0 0.29 5 0.81 0 0.27 2
IM 7.12 10 >> 165 10.37 11 >> 165 13.64 11 >> 176w
CM 5.4 8 >> 98 7.78 9 >> 112 10.72 10 >> 131 S
oM 10.97 16 >> 239 15.86 16 >> 236 >> 16 >> 241=
TW-E 0.91 0 0.7 1 0.91 0 0.73 1 0.92 0 0.74 ~
CIMS-E 1.08 1 1.31 7 1.12 1 1.37 5 1.17 0 1.62
PM-E 2.65 3 >> 30 2.69 3 >> 25 2.74 2 >> 2
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Figure 1

Histograms of 20 Eigenvalues across 50 Replications of Imputation Method TW, for Correlation
0 (Upper Panel); Correlation 0.24 (Middle Panel); and Correlation 0.5 (Lower Panel); and
keeping Other Design Factors Fixed at Mix 3:1, Sample Size 100, REF-LOWHIGH, and 20
Percent Missings.

remained approximately equa? decreased for TW, CIMS, PM, TW-E,
CIMS-E, and PM-E as the correlation between the traits increased.

Nonresponse Mechanisms

For two-dimensional datasets (Mix 1:0 and Mix 31y was closestto 1
for REF-MCAR. IIy was largest for REF-LOWHIGH. Thus,
correspondence between loadings matrices based on complete data and
loadings matrices based on imputed data was closest for REF-MCAR and most
discrepant for REF-LOWHIGH. This was true for each imputation method.
For all nonresponse mechanisms, of all imputation methods, TW had the

lowest D? , and TW-E had the second lowest . Also, for both TW and
TW-E, D2 did not vary substantially across nonresponse mechanisms. The
other ten imputation methods had their lowB&t for REF-MCAR. For all
nonresponse mechanisms method OM had the higFést
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For unidimensional datasets (Mix 1:I)ly of REF-MCAR and REF-
HIGH were both close to 1 for all imputation methods. For REF-
LOWHIGH, IIy was largest.

TW-E had the lowesD? and the lowes$(D?) under all nonresponse

mechanisms. OM had the higheBt and the highesi(D?).

The results for the nonresponse mechanisms across the varying desigr
cells show that the relative performance of imputation methods did not differ
dramatically for different nonresponse mechanisms. Hence, the decision
which imputation method to use in practice does not seem to heavily depend
on the nonresponse mechanism. These are indications that researchers ne«
not identify the nonresponse mechanism in detail but can use simple
indicators, such as the underlying latent trait structure (mixing
configuration), for deciding which imputation method to use. For example,
if the data are unidimensional method TW-E is a good choice whereas for
multidimensional data method TW may be a better option.

Latent Trait Configuration

In general, for all imputation methods, compared with the two-
dimensional cases Mix 1:0 and Mix 3:1, the unidimensional case Mix 1:1 had

IIyclosestto 1 and the lowe®? . In particular, under Mix 3:1 imputation

methods hadly furthest bounded away from 1 and the high@st. All
imputation methods performed best when the data were unidimensional.

Sample Size

Under each of the three nonresponse mechanisms, for all imputation
methodsIIy varied little across both sample sizes. However, the standard
error oflly at least halved in all cells when sample size increased from 100

to 500. D? and s(D? decreased for all imputation methods as the sample

size increased. For larger sample size there was less capitalization on
chance; this gave better results for sample size 500 than for sample size 100

EM Algorithms

Tables 9 and 10 show results for EM-loadings, EM-covariances and
imputation methods using the person mean. In general, the resulls for

and D? showed that EM-covariances and EM-loadings better recover the
complete data factor loadings matrix than the imputation methods.
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Table 9

12:25 25 April 2008

pleeusag "D

Mean ony(H_y), an%i Mean 01D2(F) Across 50 Replications, for Different Mixing Configurations, Differe§t

Correlations betweert Traits and Different Percenta

ges of Nonresponse, Fixed at Sample Size 100 and REF-L(;WHIGH

it var

el

R

(Entries in columns |gbeleB?

are result of multiplication by 1000)

Downloaded By: [Unjve

Correlation Between Traits

ewsilis

0.24 0.5
Percentage of Nonresponse
5 20 5 20 5 20

Mix Method Iy D? 1IIy D? My D? Iy D’ Iy D? Iy D?

1.0 TW 235 16 >> 143 166 13 6.83 119 1.18 11 1.99 84
CIMS 233 16 18.73 149 1.69 13 5.91 124 1.20 11 1.77 87
PM 3.20 19 >> 166 218 15 16.49 140 1.57 13 4.69 97
EM cova 1.33 5 4.75 42 1.34 5 451 39 1.38 6 4.89 44
EMload 0.70 4 0.20 31 0.70 5 0.21 31 0.72 6 0.22 33
TW-E 498 26 >> 225 3.38 20 >> 183 2.31 17 >> 125
CIMS-E 5.20 27 >> 241 332 21 >> 186 2.40 17 >> 133
PM-E 766 36 >> 312 537 31 >> 235 3.50 25 >> 183
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Correlation Between Traits

Z 0.24 0.5
g Percentage of Nonresponse
5: 20 5 20 5 20
MixMethod Tly £¢D? Ily D Iy D? Iy D? Iy D* Iy D?
31 TW 1.605 7 16.24 70 1.16 5 3.35 45 0.75 4 1.08 30
CIMS 2.15 § 9 8.69 80 1.62 7 2.70 52 1.16 5 1.06 34
PM 11.425 15 >> 142 7.06 11 >> 91 4.04 8 >> 62
EMcova 1.12° 2 2.26 14 1.14 1 2.37 9 1.13 1 >> 11
EMload 0.45 2 << 13 0.45 2 << 11 0.44 2 << 12
TW-E 554 10 >> 100 3.45 8 >> 62 2.10 5 >> 41
CIMS-E 8.06 13 >> 109 6.18 10 >> 70 4.10 7 >> 48
PM-E >> 29 >> 286 >> 20 >> 166 >> 16 >> 115
1.1 TW 0.65 1 0.38 9 0.61 1 0.27 8 0.60 1 0.25 6
CIMS 0.69 2 0.23 15 0.66 2 0.18 12 0.66 1 0.17 119
PM 1.70 3 7.54 25 1.52 2 4.86 16 1.44 1 4.23 120
EM cova 1.30 1 4.86 15 1.24 1 3.85 11 1.28 1 4,12 9§
EMload 0.62 1 0.15 13 0.57 2 0.10 13 0.56 1 0.10 102
TW-E 1.25 2 6.46 17 1.19 2 5.34 12 1.21 1 5.43 102
CIMS-E 1.43 3 4.26 20 1.45 3 4.04 17 1.45 2 4,53 16=
PM-E 451 11 >> 124 4.47 10 >> 88 4.06 7 >> 73
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Table 10

t: 12:25 25 April 2008

spreeusag ‘D

Mean of ITy(ITy), an@l Mean oD% D2) Across 50 Replications, for Different Mixing Configurations, D|ffereat
Correlations betwee@ Traits and Different Percentages of Nonresponse, Fixed at Sample Size 100 and RE‘F HIGH

(Entries in columns Iabeleﬂ)2 are result of multiplication by 1000) %,’
S 3
3 Correlation Between Traits g
g 0 0.24 0.5
§ Percentage of Nonresponse
5 20 5 20 5 20
Mix Method Iy D? 1IIy D? My D? Iy D’ Iy D? Iy D?
1.0 TW 1.78 12 5.08 128 121 11 1.61 109 0.89 9 0.49 91
CIMS 1.81 14 4.48 162 1.23 13 1.39 134 0.91 12 0.43 112
PM 211 14 8.74 141 1.47 13 3.02 119 1.08 11 0.95 99
EM cova 1.16 4 1.70 32 1.09 5 1.69 30 1.07 5 1.81 35
EMload 0.59 4 0.08 35 0.57 5 0.07 34 0.56 5 0.08 38
TW-E 393 20 >> 194 251 17 >> 147 1.84 15 755 114
CIMS-E 418 23 >> 217 272 20 >> 169 1.93 17 730 134
PM-E 565 30 >> 254 3.73 27 >> 202 2.58 23 >> 168
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Correlation Between Traits
0.24 0.5

Percentage of Nonresponse
20 5 20 5

(€2

Iy D2 Iy D2 Iy D?

Mix Method Ty

O
N
=
2
O

: [Universiteitjvan Tilburg] At: 12:25 25 April 2008
o

31 TW 1106 7 074 67 080 5 032 49 064 4
CIMS 158% 10 183 94 119 7 086 69 1.06 6
PM 4315 12 >> 110 307 9 1120 84 229 8
EMcova 1.07° 2 139 11 104 1 149 9 1.05 2
EMload 043 2 < 13 041 2 < 1 041 2
TW-E 379 10 > 78 238 7 >> 57 176 5
CIMS-E 6.70 14 > 112 451 10 > 8l 394 8
PM-E >> 26 >> 194 1874 19 >> 150 1492 16

11 TW 054 2 005 20 049 2 005 15 050 1
CIMS 055 3 005 3 052 2 005 23 056 2
PM 100 1 052 12 090 1 046 10 089 1
EMcova 113 1 159 7 105 1 155 4 112 0
EMload 054 2 005 21 049 2 < 17 051 1
TW-E 106 1 105 6 101 1 104 5 102 1
CIMS-E 113 2 118 17 115 2 148 13 128 2
PM-E 318 10 > 76 288 6 >> 63 295 6
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Percentage of Missing Item Scores

For 5 and 20 percent of missing item scores the order of the missing data
methods according tbly and D?> was the same, with both EM methods
performing best.

Correlation Between Traits

For the three correlations between latent traits the EM methods showed
the same performance. It may be noted that the performance of the
imputation methods varied across correlations between traits.

Latent Trait Configuration

For each of the three latent trait configurations, EM-loadings and EM-
covariances performed similarly accordingltie andg2 . For both EM

methods, D? was lower for Mix 3:1 than for Mix 1:0D? was lowest for
the unidimensional case Mix 1:1.

Nonresponse Mechanism

___Ingeneral, for nonresponse mechanism REFHIGH EM-covariances had
Iy closer to 1 than EM-loadings. Also, EM-covariances had the lowest

D2. The results were reversed for nonresponse mec@nism REF-
LOWHIGH. Here, EM-loadings hadly closer to 1 and lowep? than

EM-covariances. It may be noted that all differences between methods
were modest.

EM-Loadings Versus EM-Covariances

In approximately half of all cells, EM-loadings had a hig@rthan EM-
covariances. This difference was small for two-dimensional cases and
greater for the unidimensional case (Mix 1:1) and nonresponse mechanism

REF-HIGH. Probably this difference iD? may be attributed to technical
differences between the convergence criteria used.

Discussion

For imputation methods, two main results were found. First, methods
using the person mean (thatis, TW, CIMS, and PM) in general yielded factor
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loadings closer to the complete data factor loadings than methods not using
the person mean (that is, IM, CM, and OM). Second, for unidimensional
data, methods using the person mean plus a residual error (that is, TW-E an
CIMS-E) often performed better than corresponding methods without error.
PM-E, however, in general performed worse than PM.

Of the methods not using the person mean, IM gave the best results anc
will therefore be compared with PM in an effort to better understand the
success of methods using the person mean. Unlike IM, PM (and other
methods using the person mean) imputes scores based on the observe
scores on thetheritems. Since all items are correlated due to a common
latent trait structure, PM estimates an imputed score (without error) using
information on the latent traits. In contrast, IM imputes a score by taking the
mean of the observed scores of the other respondents @anthgtem.

Thus, no information about the latent trait structure other than through this
particular item is used. This means that for a particular respondent with a
missing value on an item, PM uses predictive information about the
respondent’s latent trait position, whereas IM only uses the group mean on
one particular item and thus lacks the predictive power of PM.
Consequently, PM and other methods using the person mean yield better
estimates than methods not using the person mean and, as a result, th
complete data factor loadings are better recovered.

For the unidimensional case we will next explain why TW-E and
CIMS-E, which both use the person mean, often yielded factor loadings
that were closer to complete data factor loadings than corresponding
methods without error (TW and CIMS). Compared with correlations
between items based on the complete data, correlations based on dat:
with scores imputed by TW or CIMS tend to be higher because these
imputed scores are based on the other items sharing the latent trait
structure with the item on which a missing score was observed. This
mutual dependence artificially creates stronger association when item
scores are imputed than when item scores are all observed. Thus,
correlations are too high. Compared with this situation, the addition of a
random error component score to the TW or CIMS score has the opposite
effect of lowering the correlations in the direction of the complete data
correlations. This means that the factor loadings of the complete data
and the factor loadings of the data with score-plus-error imputed by
means of TW-E or CIMS-E are more similar than the factor loadings of
the complete data and the factor loadings of the data with score-without-
error imputed by means of TW or CIMS.

Interestingly, PM-E performed worse than PM. It may be noted that PM
uses less information for estimating missing scores than TW and CIMS. Method
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TW adds to method PM information on the item mean and the grand mean, and
method CIMS adds information on all item means. Thus, TW and CIMS may
be seen as extensions of PM and are expected to perform better than PM. The
reason why adding error has the effect of weakening the performance of PM
but not the performance of TW and CIMS is not clear to us.

The goal of imputation is to substitute the missing score by a plausible
value. If the imputation method describes the data well, the residual
standard error will be small. This means that the imputation is not
dominated by its corresponding error. Figure 2 contains six histograms
of standard errors for the imputation methods TW, CIMS, PM, IM, CM,
and OM, keeping design factors fixed at Mix 3:1, sample size 100, 10
percent missingness, REF-MCAR, and correlation 0 between latent
traits. From the histograms it follows that standard errors from
imputation methods using the person mean (TW, CIMS, and PM) are the
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Histograms of Residual Standard Errors for Six Imputation Methods Across 50 Replications of
Mix 3:1, Sample Size 100, 10 Percent Missingness, REF-MCAR, and Correlation 0 Between
Latent Traits; Residual Standard Errer @xis) Versus Couny/(- axis).
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smallest among the imputation methods considered. If an error is added
to the imputed score, the methods with the smallest error will give the best
results with respect to the measures of discrepancey used here.

For EM methods it can be concluded that both recovered the complete
data factor loadings approximately equally well. From a statistical point of
view we thus recommend the use of either EM-loadings or EM-covariances
for estimating a factor loadings matrix when the rating scale data contain
missing scores. Researchers who feel confident to use these relatively
complex methods thus are advised to use one of them. From a practical poin
of view, however, for unidimensional or near unidimensional data, we advise
clients who have Likert scale data suffering from item score missingness to
use an imputation method depending on the person mean, in particular
method TW or method CIMS, and to add a draw from a normal distribution
with mean zero and residual variance. For multidimensional data, person
mean methods without a draw from the residual error, in particular method
TW, give better results with respect to the measures of discrepancy used
here because the mean is taken across more than one trait. If these trait
are highly correlated, the researcher can proceed as if the data were
unidimensional and thus impute scores using method TW-E.
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Appendix

The EM algorithm for estimating a covariance matrix suffering from
non-response under multivariate normality is described in detail in Little and
Rubin (1987) and Schafer (1997). We briefly outline the procedure followed
by Splus routines to carry out the actual calculations. The EM algorithm
relies on the following results from multivariate analysis. For a proof we
refer to Anderson (1984, p. 37).

Theorem

Let the components of be divided into two groups composing the
subvectorsX, and X,. Suppose the meguis similarly divided intop, and
I,, and suppose the covariance matof X is divided intoX, , % ., and
3, the covariance matrices &f, of X, andX,, and ofX, respectively.
Then the distribution aX, givenX, =x, is normal with meag, +2 3 ~
! (x, - p,) and covariance matrix,, - % % 13

Suppose that the item responsesN@ersons areY(, ....,Y ). For each
respondent, subdivide the scores into an observed part and a part with
missings, thusy, = (Y .Y . ). Letp' and X' denote the parameter
estimates for the mean and the covariance matrix, respectively, attcycle

The EM algorithm consists of two steps. In tih cycle of the E step,
for each person separately, the mean and covariance matyix ofre
calculated giveny .=y .and the parameter estimates at cytl& hus,
using the theorem above wiy substituted byY . .andX, substituted by
Y .. the unobserved valués . are replaced by their expectations,

— -1
E(Ym|5||YobS| - y obs,ivl'l't !Et ) - M':nis+ :nis,ob obs, ct)bs(Yobs_Mtobs) .

The covariance matrix of . .is calculated as follows,

(5) Var(Ymis,ilYobs,i : obsum S ) = Snls mis $h|sobs§bs obs S, Mis

The (co)variances of .=y, ., and the covariances betwe¥n,  and

Y oei = Yoo @re equal to zero. Note that Equation 5 only depends on the
pattern of nonresponse for respondetttus calculation of the variances for

all patterns of nonresponse and then choosing the right one, would suffice.
However, for 20 items, there would be
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possible patterns. Therefore, to ease programming, we prefer to calculate
the variance for each person separately, even though that could result in
calculation of the variance across the same pattern of missingness more than
once.

The M step consists of updating the parameter estimatgs fordX!.
First, wt is updated tqu'*? by calculating the mean across all persons
including the updated values fér . Next,X'is updated t&'**as follows,

Ztl'+1 Nz[(Y mHl)( i mE+l)+Var(Ymisi|Yobsi:y obsi'mt’2t>jl:|'

The iterations continue until convergence. We based convergence on
the maximum relative change of the parameters. Convergence was obtained
when the relative change of all parameters did not exceed .0001. We used
as starting values the parameter estimatespfaand 3 under listwise
deletion.

The following Splus programs produce an EM estimated covariance
matrix. The main routine is called EMcov and needs a data nfa{riot a
data frame) and a convergence criterion (standardly set at 0.0001) as input.
Two subroutines, condivar and rel.change, are called by EMcov. The output
is the EM estimated covariance matrix, $sigmatl, a corresponding mean
vector, $mutl, and the number of iterations, $iterations, needed by the
algorithm before convergence. The algorithms have been tested thoroughly
but the authors accept no liability whatsoever for the actual use of the
routines. Disclaimer: the authors accept no responsibility for the correctness
or usability of the results of this software.

EMcov<-function(A,max.tol = 0.0001){

m <- is.na(A)

k <- sum(m)

dA <- dim(A)

if(k == O)return(A)

nam <- names(A)

if[is.null(nam)]{
nam<-as.character(1:length(A))
names(A)<-nam
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Bnew <- apply(A,2,impute,mean)
toler <- 1
mutl <- apply [na.omit(A),2,mean]
sigmatl <- var[na.omit(A)]
iterations <- 0
while(toler > max.tol){
iterations <- iterations + 1
B <- Bnew
out <- condivar(B,m,mutl,sigmatl)
Bnew <- out$x
sigmat <- out$sigmat
sigmaold <- sigmatl
muold <- mutl
mutl <- apply(Bnew,2,mean)
Bminmu <- sweep(Bnew,2,mutl,”-")
sigmatl <- (t(Bminmu)
apply(sigmat,c(1,2),sum))/dA[1]
toler<- rel.change(muold,mutl,sigmaold,sigmatl
}
return(sigmatl,mutl,iterations)
}
condivar < -function(x,m,mu,sigma){
Xrow <- nrow(x)
xcol <- ncol(x)
sigmat <- array(0,c(xcol,xcol,xrow))
for(iinl:xrow){
if(sum(m[i,])>0X
miss<-seq(xcol)[m[i,]]
obs <- seq(xcol)[!'m[i,]]
sigmaobs <- as.matrixginversesigma
[obs,0bs]))
sigmal2 <- t(as.matrix(sigma[obs,miss]))
if(length(obs) == 1)
sigmal2 <- t(sigmal2)
sigmamiss <- sigma[miss,miss]
x1 <- mu[miss]
x2 <- X[i,obs]
mu2 <- mu[obs]
X[i,miss] <- x1+sigmal2
sigmat[miss,miss,i] <- sigmamiss-
sigmal2
sigmaobs
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}

return(x,sigmat)

rel.change <- function(x1,x2,y1,y2){

364

m <- (abs(x2-x1)>1e-05)

chl <- max(abs((x2[m]-x1[m])/x1[m]))

m <- (abs(y2-y1)>1e-05)

ch2 <- max(abs((y2[m]-y1[m])*(1/y1[m])))
change <- max(chl,ch2)
if(is.na(change))

change <- 0

change
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