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This study deals with the influence of each of twelve imputation methods and two methods
using the EM algorithm on the results of maximum likelihood factor analysis as compared
with results obtained from the complete data factor analysis (no missing scores).  Complete
questionnaire rating scale data were simulated and, next, missing item scores were created
under both ignorable and nonignorable nonresponse mechanisms.  Next, imputation
methods were used to fill the gaps and factor analysis was applied to both the original
complete data and to the data sets including imputed scores.  Each imputation method was
implemented once with residual error and once without residual error.  Also, one EM
method estimated the factor loadings directly and the other estimated the complete data
covariance matrix, which subsequently was factor analyzed.  A design was analyzed with
design factors Latent Trait Structure (technically called Mixing Configuration), Correlation
Between Latent Traits, Nonresponse Mechanism, Percentage of Missingness, Sample Size,
and Imputation Method.  We found that, in general, methods that impute a score based on
a respondent’s mean score obtained from his/her observed item scores best recovered the
factor loadings structure from the complete data.  Moreover, for unidimensional data
person mean methods with a residual error gave better results than the other imputation
methods, either with or without a residual error component.  For the EM methods a smaller
design was analyzed.  The conclusion was that both EM methods better recovered the
complete data factor loadings than the imputation methods.

Introduction

Factor analysis is often used to study the structure of the item set in tests
and questionnaires.  A well known and difficult problem in data collection by
means of tests and questionnaires is item nonresponse.  Item nonresponse
occurs if respondents are unable or reluctant to provide answers to one or
more items or if they accidentally skip items, but at the same time produce
answers to other items.  In this article, we are concerned in particular with
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item nonresponse for which the probability of not responding depends on the
missing item score and cannot be explained by means of the completely
observed variables (e.g.  covariates).  An example of such a phenomenon is
when a respondent refuses to give an answer because a question is
considered menacing to privacy (questions about one’s sexual habits or
income) or embarrassing (questions about the relationship with one’s parents
or children) and these opinions are not typical of the whole population or of
particular subgroups.  Nonresponse due to such a response mechanism is
nonignorable.

Nonignorable item nonresponse may lead to a dataset which no longer is
representative for the population of interest.  For example, when people who
earn high salaries more often do not answer a question about their income than
people with lower salaries, the mean income based on the available data will
be biased.  Also, people who have a problematic relationship with their children
may be inclined more than other people to skip questions in a questionnaire
asking them about aspects of their interaction with their children; for example,
frequency of reading to them before sleeping, helping them with their
homework, and accompanying them to their sports events.  These questions
may induce nonresponse because they may be considered menacing.  The
statistical consequence again is biased estimates.

In other forms of nonresponse the missing responses may be a
completely random phenomenon in the population at hand.  In this first case,
responses are missing completely at random (MCAR; Rubin, 1976).  An
example of MCAR is that respondents accidentally skip questions.
Missingness may also occur as a random phenomenon within particular well-
defined subgroups of the population but may be varying in degree between
such subgroups.  In this second case, responses are missing at random
(MAR; Rubin, 1976).  An example of MAR is that older respondents tend to
accidentally skip more questions than younger respondents.  Here, age is a
covariate that explains differences between meaningful subgroups.  The
response mechanisms MCAR and MAR produce ignorable nonresponse.

The consequence of ignorable item nonresponse is that the sample of
complete data cases is smaller than the original sample and, as a result,
statistical estimates are less accurate but unbiased.  Thus, one may argue that,
all other things being equal (like sample size, percentage of missingness, etc.),
ignorable nonresponse is less of a problem than nonignorable nonresponse
because the latter problem in addition produces biased estimates.  A practical
problem in distinguishing between the two conditions is that the mechanism
producing the nonresponse often is unknown (Huisman, 1998).

Only when the mechanism is known can the missingness be modeled
adequately.  In this study, we are dealing with data containing missing item
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scores, in some datasets ignorable but in most datasets nonignorable, which
was not modeled explicitly.  Alternatively, for missing scores values were
imputed according to simple methods and the resulting complete data were
factor analyzed.  Also, two versions of the EM algorithm were implemented.
One was used for estimating factor loadings directly (henceforth, to be
denoted EM-loadings) and the other for estimating a complete data
covariance matrix (henceforth, to be denoted EM-covariances), after which
the covariance matrix was factor analyzed.  Because we knew the original
complete data, it was possible to compare factor analysis results based on
imputed data or based on the application of the EM methods with factor
analysis results based on the complete data.

Item nonresponse does not include refusal of respondents to take part in
the investigation, known as unit nonresponse, or attrition due to illness,
moving to another city, and so on, known as experimental mortality.  Thus,
we consider the case when all respondents produced answers to at least
some of the items, but not all respondents gave answers to all items.

Bernaards and Sijtsma (1999) discussed seven missing data methods in
the context of factor analysis of rating scale data suffering from ignorable
nonresponse (MCAR and MAR).  Among these seven methods were five
imputation methods, EM-loadings (Rubin & Thayer, 1982), and listwise
deletion.  It was found that the EM algorithm was superior to other missing
data methods in the sense that the sum of squared differences between the
factor loadings based on the complete data and the factor loadings based on
the data with missing values imputed, was the smallest for EM.  Listwise
deletion was the worst method.  Person mean (PM) was the best imputation
method.  Bernaards and Sijtsma (1999) noted that the existing literature
(Cattell, 1978; Finkbeiner, 1979; Brown, 1983; Lee, 1986; Muthén, Kaplan
& Hollis, 1987; also, see Liu & Rubin, 1998) on missing data methods in the
context of factor analysis was much oriented towards dealing with
missingness through maximum likelihood estimation rather than simple
imputation.  Moreover, methods based on regression analysis and principal
components analysis were used.  Huisman (1998) discussed several
imputation methods in the context of scale construction and investigated the
influence of these methods on the scale score, the reliability, and the
scalability, but he did not deal with influence on factor analysis results.

In this article, we study the performance of twelve imputation methods
for dealing mainly with nonignorable missing item scores in questionnaire
data.  For simulated questionnaire data containing missing item scores, the
question was how well the use of these methods for producing complete data
can lead to the reconstruction of the factors that resulted from the original
complete data.  This led to recommendations concerning the use of
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imputation methods in practical questionnaire research where factor
analysis of the data is envisaged but several item scores are missing.  Also,
results for ignorable item nonresponse were obtained.  The EM methods
(i.e., EM-loadings and EM-covariances) were used in a limited number of
design cells so that results obtained by these relatively complex methods
could be compared with results obtained by the simpler imputation methods.

The simulated data were the scores on a test or questionnaire consisting
of ordered five-point rating scales (Likert items; Likert, 1932) and, for each
simulee, scores on two covariates.  Covariates were included because they are
part of most practical studies and because covariate groups often
systematically differ in their mean scores on the relevant variables.  Thus, we
used mean differences between covariate groups for generating our data.
Knowledge of covariates was used in one imputation method although this was
irrelevant for MCAR and insufficient for nonignorable missingness studied
here.  The rationale was that researchers often do not know which mechanism
caused the missingness in their investigation and will use knowledge of
covariates anyway.  We used two binary covariates, which can be thought to
represent, for example, gender and age group (say, young versus old).

Although many statistical models for analyzing questionnaire data assume that
all items measure the same latent trait or underlying factor (unidimensionality), in
practice responses frequently are the result of a combination of latent traits or
underlying factors (multidimensionality).  For example, responses to an item on
introversion could partly be determined by language skills.  Bernaards and Sijtsma
(1999) found that data of higher dimensionality (more specifically, four-
dimensional data) led to the same conclusions about the usefulness of missing data
methods in factor analysis than two-dimensional data.  Thus, in the present study
only one- and two-dimensional data sets were simulated.

Complete simulated data matrices were generated by means of a
multidimensional polytomous item response theory (IRT) model (Kelderman
& Rijkes, 1994) and, next, subjected to factor analysis.  Takane and De
Leeuw (1987), Muraki and Carlson (1995), and McDonald (1997) discussed
the relation between multidimensional IRT and factor analysis.  Maximum
likelihood factor analysis assumes normally distributed variables.  Dolan
(1994) and Muthén and Kaplan (1985, 1992) demonstrated that even with
five-point rating scale data, factor analysis is not seriously affected by
deviations from normality of the distributions of the variables.

Next, item scores were deleted both under MCAR and nonignorable
missing data mechanisms (to be discussed later on in detail), and the resulting
incomplete data matrix was then treated by subsequently applying one of the
twelve imputation methods, which yielded twelve reconstructed data matrices.
In a limited number of design cells, the two EM-based methods were applied
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to the missing data problem.  For each of the twelve imputed data matrices the
same number of factors was extracted as for the complete data matrix.  The
number of factors equalled the number of latent traits used to generate the
data.  Bernaards and Sijtsma (1999) found that use of the exploratory
eigenvalue-higher-than-1 criterion led to retention of the same number of
factors, and concluded that using the prior knowledge of the number of factors
was justified.  Factor analysis results based on a complete data matrix could
be compared with the results obtained under each of the imputation methods
and the EM algorithms, and conclusions could be drawn with respect to the
effectiveness of these methods for producing the correct results.

Method

Generating the Data

Item response theory was used for modeling the data generation
process.  We used IRT for defining the characteristics of k items from an
imaginary questionnaire.  We also chose a fixed number of latent traits (this
is IRT terminology; using factor analysis terminology we would call them
latent factors) and a multivariate distribution of these latent traits.  Based on
the item characteristics and the distribution of the latent traits, an IRT model
(discussed in more detail later on) determined for each simulee his/her
probabilities of responding in each of the categories of the rating scale of a
particular item, and this was done for each item.  This procedure generated
a complete data matrix for N simulees and k items.  Next, this data matrix
was factor analyzed.  The resulting factor structure was assumed to reflect
the latent trait structure.

A doubly stochastic process (cf. Lord & Novick, 1968, pp. 29-30) was
used for generating rating scale data.  First, for N simulees two latent trait
scores (or, equivalently, underlying factor scores) were randomly drawn from
a bivariate normal distribution.  Each simulee belonged to one of four covariate
classes, which had different latent trait means.  Second, for each simulee the
scores on k rating scale items were drawn from a propensity distribution
described by a multidimensional item response model (the number of
dimensions equaled the number of latent traits; here this number was 2).

The generation of the latent traits used two binary covariates with scores
for each person.  In the population, the four possible combinations of covariate
scores defined four equally large groups.  When simulating data, for each of
the N persons a combination of covariate scores was drawn with probability
1/4.  Covariate class (0,0) had latent trait means (0,0); covariate classes (1,0)
and (0,1) both had latent trait means (1,1); and covariate class (1,1) had latent
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trait means (2,2).  Covariates were only related to the latent trait means.  The
latent trait covariances were the same for each covariate group.

The multidimensional polytomous latent trait (MPLT) model (Kelderman
& Rijkes, 1994) was used to generate the polytomous item scores.  Items are
indexed j (j = 1, ..., k) and each item has r + 1 ordered answer categories
with scores x = 0, ..., r; here r = 4.  The items measure a combination of latent
traits according to some a priori known ratio per item.  For example, ten items
may measure latent trait A and latent trait B with weights 1 and 3,
respectively, and the next ten items may measure these traits with weights
3 and 1, respectively.  Latent traits are denoted by u and scores by u

iq
 with

indices i (i = 1, ..., N) for identifying persons and indices q (q = 1, ..., s) for
identifying traits; here, s = 2.

The scoring weights associated with the response categories are
contained in the three-way array B with entries B

jqx
.  The scoring weights

reflect the ratio by which item j measures the latent traits, and also can be
interpreted as discrimination indices.  Following Kelderman and Rijkes
(1994), we maintain the terminology of scoring weights.  The separation
parameters for the categories associated with B

jqx
 are contained in the three-

way array C with indices C
jqx

.  By choosing the scoring weights B
appropriately, different models can be defined.

The MPLT model is of the form

(1) P X x
B

B
ij i is

iq jqx jqxq

s

iq jqyq

s
jqyy

r
( ,..., )

exp

exp
.= =

−

−

=

==

∑
∑∑

u u
u

u
1

1

10

C

C

d i
d i{ }

The MPLT model requires that if B
jqy

 = 0, then C
jqy

 = 0, to ensure uniqueness
of the parameters.

Since the scoring weight array B in model 1 and the array of separation
parameters C were specified a priori, for each item the probabilities of
response in each answer category could be calculated for each vector u
drawn from the bivariate normal distribution.  Next, for given vector u for
each of the k items an outcome was drawn from a multinomial distribution
with response probabilities (Equation 1) as calculated for the answer
categories, resulting in k item responses for each of the N persons.
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Defining and “Generating” Missings

Types of Item Nonresponse

Two types of nonignorable item nonresponse were defined.  First, in a
questionnaire with Likert (1932) scales scores may be missing especially in
the higher answer categories.  For example, an item testing preference
towards the extreme political rightwing could have answer categories: no
preference at all, no explicit dislike, weak preference, positive affection, and
strong preference.  Missings may occur in particular in the higher answer
categories which represent socially the least desirable and the least
politically correct answers.

Following this rationale, we generated missings such that higher answer
categories had higher probabilities of nonresponse.  Table 1 (upper panel,
REF-HIGH) shows for each of the four covariate classes relative expected
frequencies (REF’s; 0 means never missing) which exhibit the trend that
nonresponse is more likely for the higher answer categories.  Because the
literature did not reveal which REF’s are the most realistic, we chose values
that seemed reasonable.

Two aspects of the REF’s are noteworthy.  First, within a covariate class
the trend of the REF’s reflects that the probability of nonresponse increases
toward the higher answer categories.  Since the different covariate classes
show different patterns of REF’s of nonresponse, covariate classes explain
some of the nonresponse but not all.  Thus, within each covariate class, the
probability of missingness is still related to the response category, and hence
missingness and response category are not conditionally independent, as
required by MAR.  Second, for each covariate class the last column of Table
1 gives the expected percentage of missingness.  To summarize, covariate
classes differ in the percentage of missingness and in the pattern of
missingness across the answer categories of a rating scale.

Moreover, as was discussed earlier covariance classes also define three
different latent trait means, but these means do not completely coincide with
the covariance classes [classes (1,0) and (0,1) have the same mean].  Thus,
these different means also influence the data generation process, but the part
of the nonresponse explained by the covariance classes is not exactly the
same as the part explained by the latent trait means.

Second, missings also may arise especially in the extreme positive and
the extreme negative answer categories.  Again consider a five-point rating
scale.  The possible answers to the question “What is your annual income?”
may be: low, below average, average, above average, and high.  Both the
categories “low” and “high” may tend to show missingness more often than
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the three middle categories, because respondents with low or high incomes
may be more secretive about this than other respondents.

We used this example to generate missingness with relatively high
probability in the two extreme answer categories.  The middle panel of
Table 1 (REF-LOWHIGH) shows the REF’s representing this type of
missingness.  The trends of the numbers in Table 1 reflect that the probability
of nonresponse increases toward both extremes of the rating scale.  The
percentage of missingness varies across covariate classes.  Also, covariate
classes explain some but not all of the missingness and the amount explained
does not exactly coincide with that explained by the latent trait mean.  As in
the previous case missingness is nonignorable.

Table 1
Relative Expected Frequency (REF) of Nonresponse for Two Binary
Covariates

Response
Categories

Name Covariates 0 1 2 3 4 % Missing

(0,0) 0 0 1 3 5 14
REF- (0,1) 0 1 3 5 5 22
HIGH (1,0) 0 0 1 5 10 25

(1,1) 0 1 5 10 10 40

(0,0) 5 1 0 1 5 16
REF- (0,1) 5 3 0 3 5 21
LOWHIGH (1,0) 10 1 0 1 10 29

(1,1) 10 3 0 3 10 34

(0,0) 1 1 1 1 1 25
REF- (0,1) 1 1 1 1 1 25
MCAR (1,0) 1 1 1 1 1 25

(1,1) 1 1 1 1 1 25

Note: The % Missing was obtained by adding, for each covariate class, the relative
frequencies, and dividing this sum by the total sum across all four classes.  For example,
14 = 100 × (0 + 0 + 1 + 3 + 5)/65 (first entry).
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Finally, as a benchmark for the other two cases the lower panel of Table
1 (REF-MCAR) shows REF’s typical of MCAR: The REF’s have no relation
to covariate class (if they would, we would have MAR) and, moreover, no
relation to answer category (if they would, missingness would be
nonignorable).

Generating Missing Item Scores

Next, we illustrate the procedure of creating missings and keeping the
percentage of missingness in a sample at a preset level of, say, 20 percent.
The artificial data matrix in panel A of Table 2 shows for 15 simulees scores
ranging from 0 to 4 on six five-point rating scales, generated using the MPLT
model and a u with normal distribution having mean 0 and variance 2½.
Assume that these data stem from covariate class (0,0) (mean us of 0) and
that missingness occurs on each of the items according to relative frequency
00135 (upper panel of Table 1).  We used SPlus (Becker, Chambers, &
Wilks, 1988) for simulating this missingness pattern for the data in panel A
of Table 2 which resulted in the data matrix in panel D.

Panel B in Table 2 shows the matrix which has for each score from panel
A the corresponding relative frequency (thus, panel B has entries 0, 1, 3, and
5).  Each of these entries is divided by the sum of the 90 entries in panel B
(this sum equals 128) and this yields the probabilities in panel C.  A missing
is created by sampling (without replacement) 18 times (20 percent out of 90
scores) from a multinomial distribution with 90 categories and the
probabilities in panel C.  This way, exactly 20 percent missings are created;
the end result is shown in panel D.

Imputation Methods and EM Methods

Imputation Methods

Imputation methods estimate the missing score and then impute this
estimate.  The advantage of imputation over other missing data procedures
is that standard complete-data methods can be used for further data analysis.

The following imputation methods were implemented.
1. Overall Mean Imputation (OM) replaces the missing values by the

mean across all observed item responses in the data matrix.
2. Person Mean Imputation (PM) for each person separately

calculates the mean across all of his/her available item reponses, and imputes
this mean for each missing value for that particular person.
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Table 2
Example of Generating Missings

Panel
A: Complete Data B: REF C:  Probabilities D: Incomplete Data

2 1 1 2 1 1 1 0 0 1 0 0 1/128 0 0 1/128 0 0 2 1 1 2 1 1
2 2 2 1 1 1 1 1 1 0 0 0 1/128 1/128 1/128 0 0 0 2 2 1 1 1
3 4 4 3 4 4 3 5 5 3 5 5 3/128 5/128 5/128 3/128 5/128 5/128 3 4 4 3
3 2 1 2 3 2 3 1 0 1 3 1 3/128 1/128 0 1/128 3/128 1/128 3 2 1 2 3 2
0 1 2 0 1 2 0 0 1 0 0 1 0 0 1/128 0 0 1/128 0 1 2 0 1 2
3 3 2 2 3 3 3 3 1 1 3 3 3/128 3/128 1/128 1/128 3/128 3/128 3 2 2
3 2 3 2 2 2 3 1 3 1 1 1 3/128 1/128 3/128 1/128 1/128 1/128 2 2 2 2
3 2 2 1 2 3 3 1 1 0 1 3 3/128 1/128 1/128 0 1/128 3/128 3 2 2 1 2
2 3 2 3 3 1 1 3 1 3 3 0 1/128 3/128 1/128 3/128 3/128 0 3 2 1
2 1 2 2 2 2 1 0 1 1 1 1 1/128 0 1/128 1/128 1/128 1/128 2 1 2 2 2
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
2 2 3 3 2 2 1 1 3 3 1 1 1/128 1/128 3/128 3/128 1/128 1/128 2 3 3 2 2
2 1 2 2 2 2 1 0 1 1 1 1 1/128 0 1/128 1/128 1/128 1/128 2 1 2 2 2
3 3 4 4 3 2 3 3 5 5 3 1 3/128 3/128 5/128 5/128 3/128 1/128 3 3 4 3
1 1 2 1 2 1 0 0 1 0 1 0 0 0 1/128 0 1/128 0 1 1 1 2 1
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3. Conditional Mean Imputation (CM) calculates the mean across all
available item scores of all persons within the same covariate class, and
imputes this value for all missing scores within the same covariate class.

4. Item Mean Imputation (IM) calculates for each item the mean
across all available scores, and imputes this mean for that particular item.

5. Two-Way Imputation (TW) calculates across available scores the
overall mean, the mean for item j and the mean for person i, and imputes IM
+ PM - OM for missing observation (i, j).

6. Corrected Item Mean Substitution (CIMS) (Huisman, 1998)
imputes for an unobserved itemscore in row i and column j the following
value, x

ij
, based on available scores,

(2) x
x

x
xij

ijj obs i

jj obs i

j
i

obs i jj obs i

j=
F

H
GG

I

K
JJ =

F

H

G
G
GG

I

K

J
J
JJ

∈

∈ ∈

∑
∑ ∑

( )

.( )

.

# ( ) ( )

PM

IM
IM1

,

where x̄ .
j
 is the mean across all observed scores on item j, obs(i) is the set

of all observed scores for respondent i, and #obs(i) is the number of observed
scores for respondent i; PM

i
 is the person mean for respondent i and IM

j
 is

the item mean for item j.  The ratio between brackets thus estimates a
multiplication factor for respondent i as PM

i
 divided by the mean of the item

means across all observed items for respondent i.  This scalar is higher than
1 for respondents scoring higher than average and lower than 1 for
respondents scoring lower than average.  Each missing item score of
respondent i is then replaced by the mean of item j times the multiplication
factor.  CIMS thus takes the ‘ability’ of the respondent into account by
imputing a higher score the higher the scores on the completed items.

Based on the incomplete data matrix in panel D of Table 2, Table 3
contains for each of the six imputation methods the imputed data matrix.  It
may be noted that for only one group (one covariate class) methods OM and
CM produce the same imputed scores.

For all six imputation methods a second version was implemented which
adds a random draw from a normal distribution with mean zero and residual
variance.  The reason for adding a residual normal deviate to the imputed
values was to include sampling fluctuation.  Thus, results may be more
realistic compared with results based on imputing an error-free mean.  For
example, for method OM the difference is calculated between the data
matrix and a matrix which consists completely of imputed values (all
elements equal to OM).  Next, the sample residual variance is calculated
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Table 3

Imputed Data Matrices for Six Imputation Methods (OM, CM, PM, IM, TW, CIMS) Based on Panel D from Table 2

OM = CM P M IM TW CIMS

P M P M P M DEN
i
a

2 1 1 2 1 1 2 1 1 2 1 1 1.3 2 1 1 2 1 1 2 1 1 2 1 1 1.3 2 1 1 2 1 1 1.3 1.8

2 2 1.8 1 1 1 2 2 1.4 1 1 1 1.4 2 2 2.1 1 1 1 2 2 1.7 1 1 1 1.4 2 2 1.7 1 1 1 1.4 1.7

3 4 4 3 1.8 1.8 3 4 4 3 3.5 3.5 3.5 3 4 4 3 1.8 1.4 3 4 4 3 3.5 3.1 3.5 3 4 4 3 3.4 2.6 3.5 1.9

3 2 1 2 3 2 3 2 1 2 3 2 2.2 3 2 1 2 3 2 3 2 1 2 3 2 2.2 3 2 1 2 3 2 2.2 1.8

0 1 2 0 1 2 0 1 2 0 1 2 1.0 0 1 2 0 1 2 0 1 2 0 1 2 1.0 0 1 2 0 1 2 1.0 1.8

3 1.8 2 2 1.8 1.8 3 2.3 2 2 2.3 2.3 2.3 3 1.8 2 2 1.8 1.4 3 2.3 2 2 2.4 1.9 2.3 3 2.2 2 2 2.2 1.7 2.3 1.9

1.8 2 1.8 2 2 2 2.0 2 2.0 2 2 2 2.0 2.0 2 2.1 2 2 2 2.2 2 2.3 2 2 2 2.0 2.4 2 2.5 2 2 2 2.0 1.7

3 2 2 1 2 1.8 3 2 2 1 2 2.0 2.0 3 2 2 1 2 1.4 3 2 2 1 2 1.6 2.0 3 2 2 1 2 1.5 2.0 1.9

1.8 3 2 1.8 1.8 1 2.0 3 2 2.0 2.0 1 2.0 2.0 3 2 1.6 1.8 1 2.2 3 2 1.8 2.0 1 2.0 2.3 3 2 1.8 2.1 1 2.0 1.8

2 1 1.8 2 2 2 2 1 1.8 2 2 2 1.8 2 1 2.1 2 2 2 2 1 2.1 2 2 2 1.8 2 1 2.2 2 2 2 1.8 1.7

0 0 0 0 1 0 0 0 0 0 1 0 0.2 0 0 0 0 1 0 0 0 0 0 1 0 0.2 0 0 0 0 1 0 0.2 1.8

2 1.8 3 3 2 2 2 2.4 3 3 2 2 2.4 2 1.8 3 3 2 2 2 2.4 3 3 2 2 2.4 2 2.4 3 3 2 2 2.4 1.8

2 1 2 2 2 1.8 2 1 2 2 2 1.8 1.8 2 1 2 2 2 1.4 2 1 2 2 2 1.4 1.8 2 1 2 2 2 1.4 1.8 1.9

3 3 4 1.8 3 1.8 3 3 4 3.3 3 3.3 3.3 3 3 4 1.6 3 1.4 3 3 4 3.1 3 2.9 3.3 3 3 4 2.7 3 2.4 3.3 1.9

1 1 1.8 1 2 1 1 1 1.2 1 2 1 1.2 1 1 2.1 1 2 1 1 1 1.5 1 2 1 1.2 1 1 1.5 1 2 1 1.2 1.7

Overall Mean Item Means Item Means OM Item Means

1.8 2.0 1.8 2.1 1.6 1.8 1.4 2.0 1.8 2.1 1.6 1.8 1.4 1.8 2.0 1.8 2.1 1.6 1.8 1.4

a DEN
i
 is the denominator of Equation 2 for person i.
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across all available differences (cells containing missing item scores are
omitted).  Finally, each missing item response in the observed data matrix is
substituted by the sum of OM and a draw from a normal distribution with
mean zero and residual variance.  The imputation methods with residual
variance are denoted by OM-E, PM-E, CM-E, IM-E, TW-E, and CIMS-E.
Thus, in total 12 imputation methods were implemented.

An advantage of most imputation methods over other missing data
methods, for example, the EM algorithm, is their simplicity.  OM is probably
the simplest method, yet the most naieve because the mean is taken over all
latent traits and all classes of covariates.  CM partly alleviates this drawback
by taking the mean within classes of covariates.  However, as with OM
multidimensionality of the data is ignored.  Method IM corrects for
multidimensionality but not for classes of covariates.  Thus, it is difficult to
predict whether IM performs better than CM.

PM takes the mean over the smallest meaningful group of item
responses.  Thus, PM may lead to the most meaningful imputed score of all
methods, because each respondent is treated uniquely and an imputed value
is based on correlated items.  Hence we expect (see also Bernaards and
Sijtsma, 1999) that in unidimensional data PM will give better results than IM,
CM, and OM.  In two-dimensional data, the advantage of using correlated
items is lost to some degree, because the item weights of 1 used in calculating
the person mean clearly are less appropriate than when unidimensionality
applies.  It may be noted that items weights of 1 would even be more
inappropriate when some of the inter-itemcorrelations were negative (this
does not happen in the present research).  Thus, for two-dimensional data the
relative performance of PM is more difficult to predict.  Moreover, in all
cases the imputed PM score may be subject to higher uncertainty than
imputed scores based on other methods because PM uses the smallest subset
of available scores.

TW is based on the two-way layout used in ANOVA models by imputing
a row-effect plus a column-effect minus the overall effect.  This method was
suggested to us by D.B. Rubin (personal communication, November 21,
1997).  TW corrects for multidimensionality via IM, for ability per person via
PM, and for the overall effect via OM.  Hence, TW may be expected to better
recover the matrix of factor loadings based on the complete data than IM, PM,
and OM separately.  CIMS, like TW, corrects for multidimensionality via IM
and for ability per person via PM.

Usually, calculation of a mean will not generate an integer.  The imputed
mean values thus are not “valid” scores as would have been observed had
these scores not been missing.  Reals rather than integers were used,
however, because the present study was concerned only with results from
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factor analysis and not with the imputed scores themselves.  Moreover,
rounding of imputed scores to the nearest integer would introduce
undesirable additional error into the data.

EM Methods

Bernaards and Sijtsma (1999) found that the EM algorithm (version EM-
loadings) recovered the complete data factor loadings considerably better
than simple imputation methods.  Thus, it was expected that EM-loadings
would also perform better in the present study.  Although the relatively
complex algorithm may not be easily accessible to many practical
researchers and, moreover, this study concentrated on imputation methods,
EM-loadings was implemented in a limited part of the design.  This way, it
could be checked whether EM-loadings also performed better than other
methods when missingness is nonignorable.  In addition, EM-covariances
was implemented both as a competitor to EM-loadings and also for
comparison with the simpler imputation methods.  Since Bernaards and
Sijtsma (1999) found that listwise deletion by far gave the worst results, this
method was left out of the present study.

EM-loadings handles the factor scores from factor analysis as missing.
Initially, random values are substituted for the missing data.  In the E step,
the missing values are updated given the factor scores, and the expected
value of the covariance matrix given the factor loadings is calculated.  In the
M step the factor loadings and factor scores are updated based on the current
estimate of the covariance matrix.  These two steps are re-iterated until
convergence of the likelihood occurs.  The EM implementation used here is
described in detail in the Appendix of Bernaards and Sijtsma (1999).

Assuming that the sample originates from a multivariate normal
distribution, EM-covariances estimates the population covariance matrix
based on the data including missing item scores (Little & Rubin, 1987;
Schafer, 1997).  Initially, parameters are estimated using listwise deletion.  In
the E step, expectations and (co)variances are calculated for the missing
data given the observed values and the current parameter estimates.  In the
M step, the parameter estimates are updated based on the current
expectations and (co)variances of the data including missing item scores.
Iteration between the E step and the M step continues until convergence of
the parameters.  This implementation is described in detail in the Appendix.

Theoretically, EM-loadings is expected to better estimate the loadings
than EM-covariances because EM-loadings directly estimates the loadings
and EM-covariances uses one additional estimation step (which is the
estimation of the complete data covariance matrix) prior to factor analysis.
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This estimation step may introduce additional error in the estimates of the
loadings.

Summary

To summarize, this study differed from the study by Bernaards and
Sijtsma (1999) because: (a) listwise deletion was left out; (b) two versions
of EM were studied to check whether they also were the best methods when
missingness was nonignorable; (c) methods TW and CIMS were added as
new and promising imputation methods; and (d) for each imputation method
a version with a residual error was considered.

Other methods, such as multiple imputation (Rubin, 1987) and computer-
intensive methods as described by Tanner (1996), are more difficult to
implement and to understand for practical researchers and were not
considered here.  Acock (1997) gives an elementary introduction to missing
data methods used with social science data.  Also see Little and Rubin (1987)
for an elaborate treatment of missing data methods.  Other sources on
missing data methods are, for example, Little and Rubin (1989), Rubin
(1991), Little and Schenker (1995), Rubin (1996), and Schafer (1997).

Performance of Methods

Bernaards and Sijtsma (1999) used the statistics Tucker’s f and D2 for
evaluating the discrepancy between a factor loadings matrix based on the
complete data and a factor loadings matrix based on the data to which a
missing data method had been applied.  Tucker’s f measures similarity of
direction within pairs of vectors.  For example, f is calculated between the
first vector of loadings based on the complete data and the first vector of
loadings based on the data including imputed values; between the second
vector of loadings based on the complete data and the second vector of
loadings based on the data with imputed scores; and so on.  f lies between
0 and 1, where 1 means that two vectors point in exactly the same direction.
For f > 0.85 two vectors of loadings have the same interpretation (Ten
Berge, 1977; Niesing, 1997).  Bernaards and Sijtsma (1999) found that in
their study all fs were higher than 0.98, and concluded that the direction of
the loadings was not influenced by the application of the missing data
methods.  Thus, we will not consider f in the present article.

The second statistic used by Bernaards and Sijtsma (1999) for evaluating
discrepancy between matrices of loadings, D2, was the sum of squared
differences between the two matrices of factor loadings, both based on all
retained factors, and corrected for the number of retained factors.  The
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smaller D2, the more similar the two loadings matrices.  From loadings
matrices X  and Y , D2 can be calculated through

D tr m tr m
T T2 = − − = − −X Y X Y X Y X Yb g b g b gb g/ / ,

where m is the number of factors retained.  D2 will be used in the present
article, with X  representing the complete data loadings matrix and Y
representing the loadings matrix based on the data including imputed scores.
For EM-loadings, Y  was the direct EM estimate of the loadings and for EM-
covariances Y was the loadings matrix based on the EM estimated
covariance matrix.

The second method used to monitor performance is based on testing the
equality of two covariance matrices.  Let S

c
 denote the k-dimensional,

unknown, true covariance matrix of the complete data.  Analogously, S
i

(subscript i for "imputed"; not for indexing persons) denotes the k-
dimensional true covariance matrix of the imputed data resulting from a
particular missing data method.  Since we are concerned with the recovery
of complete data factor loadings from data to which a missing data method
has been applied, we first calculate the estimated covariance matrices S

^

c
 and

S
^

i
 as follows.  Let S

^

c
 = L

^

c 
 L

^

c
9 + C 

^

       c
,  where L 

^

  c
 is the matrix of estimated factor

loadings based on the complete data and where C 
^

    c
 contains the corresponding

uniquenesses.  Analogously, S
^

i
 = L

^

i
 L

^

i
9 + C

^

i 
denotes the estimated covariance

matrix based on the data with imputed scores using a particular missing data
method.

Test statistics for the null hypothesis S
c 

=
 
S

i
  are based on the

eigenvalues g
1
, ..., g

k
 of the equation (Anderson, 1984, pp. 422-424)

(3)

$ $

$ $

S S

S S

i c

c i

x x

x x

=

= ,

g

g⇔ −1

where x is the eigenvector of S
^

c
-1S

^

i
 corresponding to eigenvalue g.  When

factor analysis of the data with imputed scores perfectly recovers the
loadings from complete data factor analysis, the product S

^

c
-1S

^

i
 results in all

eigenvalues equal to 1.  In practice, however, the eigenvalues tend to be
scattered around 1.  The magnitude of this spread indicates how much the
two matrices differ from one another.  To determine this spread, several test
statistics have been proposed in the literature, see Anderson (1984) and
Stevens (1992) for overviews.  We prefered to use “simple” descriptive
functions over complicated statistical tests in order to determine the spread
of the eigenvalues.  Examples of such descriptive functions are the mean of
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the eigenvalues, the product of the eigenvalues, Pg, which equals the matrix
determinant, and the ratio maxg/ming of the eigenvalues.

How should these functions be interpreted?  The product of the
eigenvalues based on data obtained from k items equals the volume of the
k-dimensional hyperparallelepiped spanned by the columns of the matrix
S
^

c
-1S

^

i
.  The mean of the eigenvalues is the squared length of the interior

diagonal of the hyperparallelepiped.  The ratio maxg/ming does not have a
clear geometrical interpretation.

Unfortunately, it is unclear which measure of similarity should be used.
For example, consider the similarity of 3 × 3 correlation matrices R

i
 and R

c
.

Because a correlation matrix has a trace equal to its dimension (here 3), the
mean of the eigenvalues is equal to 1.  This renders the mean useless.  Next,
assume that Imputation Method 1 results in eigenvalues 1.5, 0.75, and 0.75,
and that Imputation Method 2 results in eigenvalues 1.4, 0.95, and 0.65.  Then
the volume of the parallelepiped (product of eigenvalues) based on
Imputation Method 1 equals 0.84 and the volume based on Imputation
Method 2 equals 0.86.  However, maxg/ming based on Imputation Method
1 is 2 and maxg/ming based on Imputation Method 2 is 2.15.  When the two
correlation matrices are equal, Pg = maxg/ming = 1.  Thus, it is difficult to
decide which method to use because the results from the two measures of
similarity can be contradictory.  If both methods would always yield the same
ordering of imputation methods, then one might decide to use only one.

The eigenvalues approach has two advantages over the squared distance
between loadings D2.  The eigenvalues approach (a) is invariant under affine
linear transformations, that is, transformations of the type AS

^

c
 + B where A

is a k × k non-zero matrix and B is any k × k matrix; and (b) takes the
uniquenesses (errors of the variances) into account.

In addition to D2, in this study the measures maxg/ming and Pg were
used.  When an imputation method performs well, the ratio maxg/ming and
the product Pg both are close to 1.  The ratio maxg/ming and the product Pg
together indicate the deformation of the unithypercube which would be the
result of R^

c
-1R^

i
 in the case of perfect reconstruction of the complete data

correlation matrix by the matrix based on data including imputed scores.

Design of Simulation Study

Choices relevant to the simulation design are summarized in Table 4.
The upper panel has the design factors with varying levels and the lower
panel has the design characteristics which were fixed throughout the
investigation.  This section discusses the design in more detail.
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Latent Traits

The two latent traits u
1
 and u

2 
(Table 4) were assumed to be bivariate

normally distributed (Table 4) with mean varying across covariate classes,
as described earlier.  Following Bernaards and Sijtsma (1999), correlations
between traits were 0, 0.24, and 0.5, respectively (Table 4).  Equation 4
provides the covariance matrices corresponding with the correlations
between the traits.

(4)
2 5 0

0 2 5

2 5 0 6

0 6 2 5

2 5 125

125 2 5

.

.

. .

. .

. .

. .

F
HG

I
KJ
F
HG

I
KJ
F
HG

I
KJ

Item Characteristics

Across the design, the number of items was fixed at k = 20 (Table 4),
divided into two groups of ten items each.  All items had five answer categories
(Likert scales; Likert, 1932), scored x = 0, ..., 4 (Table 4).  Each group of ten
items consisted of three items with high score mode, four items with medium
score mode, and three items with low score mode.  Specifically, the separation
parameters (MPLT model; see Equation 1) of the items were fixed (Table 4)
such that for the first three items in a group of ten the mode was 3; for the next
four items the mode was 2; and for the last three items the mode was 1.

In the two-dimensional datasets, each item measured both traits in a
given ratio (or mixture; henceforth, abbreviated Mix; see Table 4).  In
configuration Mix 3:1, the first ten items measured the latent traits in the ratio 3:1,
and the last ten items measured the latent traits in the reversed ratio 1:3.  The
interpretation of these ratio’s is the following.  The scoring weights B

jqx
 of

the MPLT model (Equation 1) depend on item score x.  Specifically, for
higher x a higher weight B

jqx
 indicates a stronger dependence on latent trait

u
q
 (Kelderman & Rijkes, 1994).  Thus, if an item measures both u

1
and u

2
with

ratio 1:3, for a particular x this is reflected by the ratio of the weights B
jqx

 for
u

1
and u

2
.  For example, in Table 5 (first panel, third and fourth row), for each

item j (j = 1, ..., 10) for score 0, B
j10

 = 1 and B
j20

 = 3; for score 1, B
j11

 = 2
and B

j21
 = 6; and so on.

In Mix 1:0, the first ten items exclusively measured the first latent trait
(Table 5, second panel; for u

2 
all Bs are zero), and the last ten items

exclusively measured the second latent trait (Table 5, second panel; for u
1

all Bs are zero).  Unidimensionality was represented by Mix 1:1, in which all
items measured both latent traits with the same pairwise weights (Table 5,
third panel).
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Simulation of Data Matrices

The final step in generating item scores was determining for each
combination of a simulee (defined by the u-values) and each item (defined
by its parameters C and weights B) the probabilities of responding in each
of the five answer categories.  Comparison of these probabilities with draws
from a uniform distribution led to an actual item score.  For all N × k
combinations together this yielded a complete data matrix.

Table 4
Design Factors and Design Characteristics Relevant to the Simulation Study
(First Panel Contains Design Factors with Varying Levels.  Second Panel
Contains Design Characteristics Fixed Throughout the Design.)

Design Factor Levels

Correlation between latent traits 0, 0.24, 0.5
Scoring weights B Mix 3:1, Mix 1:1, Mix 1:0
Percentage missingness 5, 10, 20
Missing Data Methods Overall Mean (+error)

Conditional Mean (+error)
Item Mean (+error)
Person Mean (+error)
Two-Way imputation (+error)
CIMS (+error)
EM algorithm (two versions)

Sample size 100, 500
Relative expected frequency REF-HIGH, REF-LOWHIGH, MCAR
of nonresponse (see Table 1)
Performance of Method D2, Pg, maxg/ming

Design Characteristics Fixed

Number of latent traits 2; bivariate normal, variance 2.5
Number of items 20
Number of answer categories 5 (ordered scores 0, ..., 4)
Separation parameters C fixed per item
Extraction method Maximum likelihood
Method of rotation Varimax
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Generating Missings

The procedure of creating missings in the complete data matrices was
described in the section entitled “Defining and ‘Generating’ Missings” and
Table 1.  Following Bernaards and Sijtsma (1999), the percentages of
missingness in the datamatrices were 5, 10, and 20, respectively (Table 4).

Imputation Methods

Twelve imputation methods were implemented; see the section entitled
“Imputation Methods and EM Methods” and Table 4.  Each method was used
separately for imputing scores in the empty spaces of each data matrix.  For
each data matrix this yielded twelve different versions with imputed scores.

EM-Algorithms

Using maximum likelihood factor analysis, the EM-algorithm was used
for handling the missing scores (Table 4).  EM-loadings was described in
detail by Bernaards and Sijtsma (1999).  EM-covariances is described in
detail in the Appendix.

Table 5
Scoring Weights B for MPLT Model

Mix Latent Trait Item Numbers B

3:1 u
1

1, ..., 10 3, 6, 9, 12, 15
u

2
1, ..., 10 1, 2, 3, 4, 5

u
1

11, ..., 20 1, 2, 3, 4, 5
u

2
11, ..., 20 3, 6, 9, 12, 15

1:0 u
1

1, ..., 10 1, 2, 3, 4, 5
u

2
1, ..., 10 0, 0, 0, 0, 0

u
1

11, ..., 20 0, 0, 0, 0, 0
u

2
11, ..., 20 1, 2, 3, 4, 5

1:1 u
1

1, ..., 20 1, 2, 3, 4, 5
u

2
1, ..., 20 1, 2, 3, 4, 5
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Maximum Likelihood Factor Analysis

Bernaards and Sijtsma (1999) found that D2 between complete and
incomplete loadings based on principal components factor analysis was
almost indistinguishable from D2 between complete and incomplete loadings
based on maximum likelihood factor analysis.  Because from a mathematical
point of view, maximum likelihood extraction is to be preferred over principal
components factor analysis, the former method was used here (Table 4).

Sample Size

The sample sizes were fixed at 100 and 500 (Table 4).  This seems to be
well in agreement with studies of factor analysis performed on simulated
data.  Dolan (1994) used 200, 300, and 400 simulated respondents; Muthén
and Kaplan (1985) were interested in large sample properties and used a
sample size of 1000.  Muthén and Kaplan (1992) extended their 1985 study
by using sample sizes of 500 and 1000.

Varimax Rotation

All two-dimensional factor solutions were subjected to varimax rotation
(Table 4).  Varimax rotation is the most popular rotation method among
practical researchers (it also is the default in SPSS, 1989); factor solutions
are rotated to simple structure to facilitate interpretation; see, for example,
Stevens (1992, p.380).  One might argue that when latent traits are
correlated, oblique rotation is more appropriate.  We argued, however, that
practical researchers often do not know whether factors are correlated and
generally will use orthogonal rotation to simple structure.

It is not obvious whether the factor loadings based on a data matrix
including imputed scores have the same alignment as factor loadings based
on the complete data.  Bernaards and Sijtsma (1999) performed orthogonal
procrustes rotation of the loadings matrix based on the data including imputed
scores towards the complete data factor loadings.  They concluded that D2

was not affected by this additional rotation, and hence the factor loadings
based on the data including imputed scores could not be distinguished from
the complete data target.  Thus, the problem of alignment was not
investigated any further here.

The number of factors retained depended on the number of latent traits
used to generate the data.  For the two-dimensional cases, Mix 3:1 and Mix
1:0, two factors were extracted.  For the unidimensional case Mix 1:1, one
factor was extracted.
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Nonresponse Mechanism

As described earlier, three cases of missingness were studied (Table 4):
missingness in higher categories of a rating scale (REF-HIGH; see Table 1);
missingness in both low and high answer categories (REF-LOWHIGH; see
Table 1); and missing completely at random (REF-MCAR; see Table 1).

Further Decisions

Performance of the imputation methods and the EM algorithms was
evaluated using statistics D2, Pg, and  maxg/ming (Table 4).  Finally, 50
replications were carried out in each cell.

Design

For imputation methods, the design thus had 3 (mixing configurations) ×
2 (sample size) × 3 (percentage missingness) × 3 (nonresponse mechanism)
× 3 (correlation between traits) = 162 cells.  For EM methods, due to long
computation time and because Bernaards and Sijtsma (1999) found that,
compared with imputation methods, EM-loadings always performed better,
only part of the design was analyzed here.  We chose a limited design
consisting of the design factors mixing configuration (Mix 3:1, Mix 1:0, and
Mix 1:1), percentage missingness (5, 20), nonresponse mechanism (REF-
HIGH and REF-LOWHIGH), and correlation between traits (0, 0.24, 0.5).
This yielded a design with 36 cells.  Sample size was fixed at 100.

Results

Imputation Methods

We start this section with some preliminary decisions that serve to
simplify the discussion of the results.  Next, the results are discussed for each
of the relevant factors from the design.  For each design factor, first results
for two-dimensional datasets are discussed, followed by results for
unidimensional datasets.

In general, the ratio maxg/ming only changed substantially with the
percentage of missingness and the sample size.  For each imputation method
separately, maxg/ming was approximately constant across all nonresponse
mechanisms, correlations between traits, and mixing configurations.  Thus,
the ratio maxg/ming was not informative about possible discrepancies
between loadings matrices for different imputation methods and,
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consequently, may miss important results.  Therefore, we confined the
discussion of the results to D2 and Pg.

In almost all cells, the imputation methods IM-E, CM-E, and OM-E had
the highest Pg  and D2  (mean) values.  Because of this clearcut result,
these methods were left out of further discussion of the results.

We now discuss the results for the imputation methods TW, CIMS, PM,
IM, CM, OM, TW-E, CIMS-E, and PM-E with respect to correlation between
traits, nonresponse mechanism (see Table 1), mixing configuration of the latent
traits (see Table 5), and sample size, respectively.  The Tables 6 through 8 give

results for Pg and D2 .  To save space, standard deviations s(Pg) and

s(D2)were not tabulated but the results are discussed along with the results for

Pg and D2 .  Entries “>>” in the columns labeled Pg were higher than 20, and
entries “<<” were lower than 1/20.  The exact numerical values were too
extreme to be of much importance and thus were left out.  The imputation
methods IM, CM, and OM had the highest number of extreme values for Pg .

Correlation Between Traits

For two-dimensional datasets (Mix 1:0 and Mix 3:1), for all imputation
methods higher correlation between traits led to closer correspondence (Pg
closer to 1) between loadings matrices for complete data and imputed data,
respectively.  Also, all imputation methods showed smaller spread [s(Pg)]
as the correlation increased (not tabulated).  This is illustrated in Figure 1,
which contains for imputation method TW histograms of all 20 eigenvalues
over 50 replications, for correlation 0 (upper panel), correlation 0.24 (middle
panel) and correlation 0.5 (lower panel); and keeping other design factors
fixed at Mix 3:1; sample size 100, REF-LOWHIGH, and 20 percent missings.

For two-dimensional datasets (Mix 1:0 and Mix 3:1), methods TW,
CIMS, PM, TW-E, CIMS-E, and PM-E always showed a decrease in D2

and s(D2) [i.e., closer correspondence between loadings matrices; s(D2) not
tabulated] when the correlation increased.  For the other methods (IM, CM,
OM), D2  and s(D2) did not change as the correlation increased.   The six

imputation methods that showed a decrease in D2  and s(D2) all used the
person mean whereas the other three methods did not.  Since latent traits
were more similar when the correlation increased, the estimates of imputed
scores based on methods using the person mean tended to be less biased and,
therefore, the methods using the person mean gave better results.

For unidimensional datasets (Mix1:1), Pg  did not change for any of the
methods as the correlation increased.  The accompanying standard error
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Table 6

Mean of Pg( Pg ), and Mean of D2( D2 ) Across 50 Replications, for Different Mixing Configurations, Different
Correlations between Traits and Different Percentages of Nonresponse, Fixed at Sample Size 100 and REF-LOWHIGH

(Entries in columns labeled D2  are result of multiplication by 1000)

Correlation Between Traits
0 0.24 0.5

Percentage of Nonresponse
5 20 5 20 5 20

Mix Method Pg D2 Pg D2 Pg D2 Pg D2 Pg D2 Pg D2

1:0 TW 2.18 16 19.17 140 1.58 13 6.49 129 1.2 11 2.35 92
CIMS 2.21 16 17.34 141 1.6 14 5.94 131 1.22 12 2.12 96
PM 2.93 19 >> 168 2.11 17 15.19 149 1.6 14 5.57 108
IM 10.33 29 >> 278 11.03 29 >> 287 11.18 30 >> 283
CM 8.71 28 >> 248 8.53 28 >> 252 8.69 28 >> 241
OM 14.03 37 >> 355 14.85 37 >> 360 15.2 38 >> 359
TW-E 4.67 26 >> 218 3.34 22 >> 193 2.32 18 >> 133
CIMS-E 5.07 28 >> 236 3.31 21 >> 198 2.54 18 >> 145
PM-E 8.01 40 >> 310 4.98 30 >> 258 3.47 24 >> 186
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3:1 TW 1.5 7 12.27 61 1.07 5 4.45 48 0.76 4 0.81 28
CIMS 2.07 9 6.94 72 1.61 6 3.3 57 1.17 4 0.76 34
PM 10.68 15 >> 127 6.43 10 >> 98 4.24 8 >> 57
IM >> 32 >> 362 >> 30 >> 370 >> 33 >> 387
CM >> 43 >> 446 >> 38 >> 469 >> 42 >> 483
OM >> 71 >> 756 >> 61 >> 753 >> 63 >> 837
TW-E 4.63 9 >> 88 3.3 6 >> 67 2.08 5 >> 37
CIMS-E 8.8 13 >> 98 7.37 9 >> 74 4.15 7 >> 46
PM-E >> 28 >> 227 >> 19 >> 181 >> 16 >> 124

1:1 TW 0.64 2 0.34 8 0.66 1 0.26 8 0.63 1 0.23 7
CIMS 0.67 2 0.2 15 0.71 2 0.18 13 0.69 1 0.15 11
PM 1.66 3 6.37 21 1.68 2 4.45 15 1.49 1 3.91 11
IM >> 42 >> 559 >> 43 >> 556 >> 42 >> 571
CM >> 43 >> 495 >> 47 >> 530 >> 45 >> 528
OM >> 85 >> 1002 >> 83 >> 942 >> 75 >> 923
TW-E 1.2 2 5.3 14 1.26 2 5.18 12 1.23 1 4.53 9
CIMS-E 1.45 3 3.77 19 1.57 3 4.13 17 1.47 2 3.97 16
PM-E 4.41 12 >> 111 4.69 10 >> 91 4.39 8 >> 69

Table 6 (cont.)
Correlation Between Traits

0 0.24 0.5
Percentage of Nonresponse

5 20 5 20 5 20

Mix Method Pg D2 Pg D2 Pg D2 Pg D2 Pg D2 Pg D2
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Table 7

Mean of Pg( Pg ), and Mean of D2( D2 ) Across 50 Replications, for Different Mixing Configurations, Different
Correlations between Traits and Different Percentages of Nonresponse, Fixed at Sample Size 500 and REF-HIGH

(Entries in columns labeled D2  are result of multiplication by 1000)

Correlation Between Traits
0 0.24 0.5

Percentage of Nonresponse
5 20 5 20 5 20

Mix Method Pg D2 Pg D2 Pg D2 Pg D2 Pg D2 Pg D2

1:0 TW 1.57 6 3.82 101 1.18 5 1.38 83 0.92 4 0.5 65
CIMS 1.56 8 3.25 131 1.19 7 1.2 107 0.92 6 0.42 86
PM 1.89 7 6.84 113 1.42 6 2.55 91 1.11 5 0.99 70
IM 6.83 11 >> 150 6.65 11 >> 157 6.76 11 >> 155
CM 4.61 9 >> 132 4.45 8 >> 132 4.54 9 >> 135
OM 8.02 15 >> 204 7.72 14 >> 208 7.86 15 >> 209
TW-E 3.52 10 >> 147 2.54 8 >> 109 1.84 6 7.57 77
CIMS-E 3.61 12 >> 169 2.62 10 >> 128 1.87 7 6.61 93
PM-E 5.02 15 >> 198 3.52 11 >> 152 2.58 9 >> 110
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3:1 TW 1.03 4 0.65 55 0.8 3 0.23 39 0.62 2 0.09 26
CIMS 1.53 6 1.31 83 1.2 4 0.62 56 0.99 3 0.3 37
PM 3.88 8 >> 96 2.84 6 7.97 65 2.08 4 3.21 43
IM >> 11 >> 146 >> 11 >> 149 >> 11 >> 156
CM >> 16 >> 242 >> 16 >> 226 >> 16 >> 231
OM >> 30 >> 404 >> 29 >> 375 >> 27 >> 367
TW-E 3.36 4 >> 61 2.43 4 17.51 41 1.64 2 5.02 26
CIMS-E 6.21 7 >> 91 4.76 6 >> 61 3.57 3 >> 39
PM-E >> 15 >> 166 19.55 11 >> 112 12.69 8 >> 82

1:1 TW 0.51 1 0.05 16 0.5 1 0.05 13 0.49 1 << 12
CIMS 0.53 2 << 26 0.53 1 << 21 0.52 1 << 17
PM 0.92 1 0.49 9 0.91 1 0.42 7 0.87 0 0.36 5
IM 11.35 14 >> 217 14.57 14 >> 219 18.89 14 >> 222
CM 6.38 12 >> 209 8.59 13 >> 216 11.19 13 >> 233
OM 18.6 29 >> 456 >> 29 >> 430 >> 26 >> 414
TW-E 1 0 1.01 1 0.99 0 0.95 1 0.98 0 0.94 1
CIMS-E 1.1 1 1.04 9 1.13 1 1.15 8 1.15 1 1.25 6
PM-E 2.83 5 >> 61 2.93 4 >> 49 2.86 3 >> 39

Table 7 (cont.)
Correlation Between Traits

0 0.24 0.5
Percentage of Nonresponse

5 20 5 20 5 20

Mix Method Pg D2 Pg D2 Pg D2 Pg D2 Pg D2 Pg D2
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Table 8

Mean of Pg( Pg ), and Mean of D2( D2 ) Across 50 Replications, for Different Mixing Configurations, Different
Correlations between Traits and Different Percentages of Nonresponse, Fixed at Sample Size 500 and REF-MCAR

(Entries in columns labeled D2  are result of multiplication by 1000)

Correlation Between Traits
0 0.24 0.5

Percentage of Nonresponse
5 20 5 20 5 20

Mix Method Pg D2 Pg D2 Pg D2 Pg D2 Pg D2 Pg D2

1:0 TW 1.28 6 1.79 96 1.00 5 0.71 82 0.78 4 0.28 62
CIMS 1.3 6 1.94 100 1.03 6 0.78 85 0.81 5 0.32 64
PM 1.47 6 2.93 99 1.16 5 1.17 83 0.91 5 0.49 61
IM 3.94 6 >> 78 4.04 6 >> 78 3.93 6 >> 77
CM 3.25 5 >> 62 3.26 5 >> 58 3.2 5 >> 56
OM 4.41 7 >> 92 4.50 7 >> 91 4.43 7 >> 90
TW-E 2.94 10 >> 128 2.19 7 13.19 99 1.57 6 4.78 69
CIMS-E 3.03 10 >> 134 2.26 8 14.93 105 1.68 6 5.59 72
PM-E 3.96 12 >> 152 2.97 10 >> 122 2.15 7 12.25 80
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3:1 TW 1.01 4 0.56 55 0.76 3 0.22 39 0.62 2 0.1 26
CIMS 1.35 5 1.6 58 1.08 3 0.79 41 0.91 2 0.39 26
PM 3.29 6 19.98 63 2.45 4 8.43 43 1.96 3 3.86 29
IM >> 7 >> 100 >> 7 >> 102 >> 7 >> 104
CM >> 8 >> 87 >> 8 >> 87 >> 8 >> 88
OM >> 11 >> 154 >> 11 >> 150 >> 11 >> 148
TW-E 3.37 5 >> 62 2.27 3 17.83 42 1.7 2 6.02 26
CIMS-E 5.77 6 >> 71 4.43 4 >> 50 3.49 3 >> 32
PM-E >> 10 >> 110 >> 8 >> 78 16.06 6 >> 54

1:1 TW 0.47 1 << 18 0.47 1 << 15 0.46 1 << 13
CIMS 0.52 1 0.06 17 0.52 1 0.05 14 0.52 1 0.05 11
PM 0.84 1 0.31 6 0.83 0 0.29 5 0.81 0 0.27 4
IM 7.12 10 >> 165 10.37 11 >> 165 13.64 11 >> 176
CM 5.4 8 >> 98 7.78 9 >> 112 10.72 10 >> 131
OM 10.97 16 >> 239 15.86 16 >> 236 >> 16 >> 241
TW-E 0.91 0 0.7 1 0.91 0 0.73 1 0.92 0 0.74 1
CIMS-E 1.08 1 1.31 7 1.12 1 1.37 5 1.17 0 1.62 5
PM-E 2.65 3 >> 30 2.69 3 >> 25 2.74 2 >> 21

Table 8 (cont.)
Correlation Between Traits

0 0.24 0.5
Percentage of Nonresponse

5 20 5 20 5 20

Mix Method Pg D2 Pg D2 Pg D2 Pg D2 Pg D2 Pg D2
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remained approximately equal.  D2  decreased for TW, CIMS, PM, TW-E,
CIMS-E, and PM-E as the correlation between the traits increased.

Nonresponse Mechanisms

For two-dimensional datasets (Mix 1:0 and Mix 3:1), Pg  was closest to 1
for REF-MCAR.  Pg  was largest for REF-LOWHIGH.  Thus,
correspondence between loadings matrices based on complete data and
loadings matrices based on imputed data was closest for REF-MCAR and most
discrepant for REF-LOWHIGH.  This was true for each imputation method.

For all nonresponse mechanisms, of all imputation methods, TW had the
lowest D2 , and TW-E had the second lowest D2 .  Also, for both TW and

TW-E, D2  did not vary substantially across nonresponse mechanisms.  The

other ten imputation methods had their lowest D2  for REF-MCAR.  For all

nonresponse mechanisms method OM had the highest D2 .

Figure 1
Histograms of 20 Eigenvalues across 50 Replications of Imputation Method TW, for Correlation
0 (Upper Panel); Correlation 0.24 (Middle Panel); and Correlation 0.5 (Lower Panel); and
keeping Other Design Factors Fixed at Mix 3:1, Sample Size 100, REF-LOWHIGH, and 20
Percent Missings.
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For unidimensional datasets (Mix 1:1), Pg  of REF-MCAR and REF-
HIGH were both close to 1 for all imputation methods.  For REF-
LOWHIGH, Pg  was largest.

TW-E had the lowest D2  and the lowest s(D2) under all nonresponse

mechanisms.  OM had the highest D2  and the highest s(D2).
The results for the nonresponse mechanisms across the varying design

cells show that the relative performance of imputation methods did not differ
dramatically for different nonresponse mechanisms.  Hence, the decision
which imputation method to use in practice does not seem to heavily depend
on the nonresponse mechanism.  These are indications that researchers need
not identify the nonresponse mechanism in detail but can use simple
indicators, such as the underlying latent trait structure (mixing
configuration), for deciding which imputation method to use.  For example,
if the data are unidimensional method TW-E is a good choice whereas for
multidimensional data method TW may be a better option.

Latent Trait Configuration

 In general, for all imputation methods, compared with the two-
dimensional cases Mix 1:0 and Mix 3:1, the unidimensional case Mix 1:1 had
Pg closest to 1 and the lowest  D2 .  In particular, under Mix 3:1 imputation

methods had Pg  furthest bounded away from 1 and the highest  D2 .  All
imputation methods performed best when the data were unidimensional.

Sample Size

Under each of the three nonresponse mechanisms, for all imputation
methods  Pg  varied little across both sample sizes.  However, the standard
error of Pg at least halved in all cells when sample size increased from 100
to 500.  D2  and  s(D2) decreased for all imputation methods as the sample
size increased.  For larger sample size there was less capitalization on
chance; this gave better results for sample size 500 than for sample size 100.

EM Algorithms

Tables 9 and 10 show results for EM-loadings, EM-covariances and
imputation methods using the person mean.  In general, the results for Pg

and D2  showed that EM-covariances and EM-loadings better recover the
complete data factor loadings matrix than the imputation methods.
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Table 9

Mean of Pg( Pg ), and Mean of D2( D2 ) Across 50 Replications, for Different Mixing Configurations, Different
Correlations between Traits and Different Percentages of Nonresponse, Fixed at Sample Size 100 and REF-LOWHIGH

(Entries in columns labeled D2  are result of multiplication by 1000)

Correlation Between Traits
0 0.24 0.5

Percentage of Nonresponse
5 20 5 20 5 20

Mix Method Pg D2 Pg D2 Pg D2 Pg D2 Pg D2 Pg D2

1:0 TW 2.35 16 >> 143 1.66 13 6.83 119 1.18 11 1.99 84
CIMS 2.33 16 18.73 149 1.69 13 5.91 124 1.20 11 1.77 87
PM 3.20 19 >> 166 2.18 15 16.49 140 1.57 13 4.69 97
EM cova 1.33 5 4.75 42 1.34 5 4.51 39 1.38 6 4.89 44
EM load 0.70 4 0.20 31 0.70 5 0.21 31 0.72 6 0.22 33
TW-E 4.98 26 >> 225 3.38 20 >> 183 2.31 17 >> 125
CIMS-E 5.20 27 >> 241 3.32 21 >> 186 2.40 17 >> 133
PM-E 7.66 36 >> 312 5.37 31 >> 235 3.50 25 >> 183
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3:1 TW 1.60 7 16.24 70 1.16 5 3.35 45 0.75 4 1.08 30
CIMS 2.15 9 8.69 80 1.62 7 2.70 52 1.16 5 1.06 34
PM 11.42 15 >> 142 7.06 11 >> 91 4.04 8 >> 62
EM cova 1.12 2 2.26 14 1.14 1 2.37 9 1.13 1 >> 11
EM load 0.45 2 << 13 0.45 2 << 11 0.44 2 << 12
TW-E 5.54 10 >> 100 3.45 8 >> 62 2.10 5 >> 41
CIMS-E 8.06 13 >> 109 6.18 10 >> 70 4.10 7 >> 48
PM-E >> 29 >> 286 >> 20 >> 166 >> 16 >> 115

1:1 TW 0.65 1 0.38 9 0.61 1 0.27 8 0.60 1 0.25 6
CIMS 0.69 2 0.23 15 0.66 2 0.18 12 0.66 1 0.17 11
PM 1.70 3 7.54 25 1.52 2 4.86 16 1.44 1 4.23 12
EM cova 1.30 1 4.86 15 1.24 1 3.85 11 1.28 1 4.12 9
EM load 0.62 1 0.15 13 0.57 2 0.10 13 0.56 1 0.10 10
TW-E 1.25 2 6.46 17 1.19 2 5.34 12 1.21 1 5.43 10
CIMS-E 1.43 3 4.26 20 1.45 3 4.04 17 1.45 2 4.53 16
PM-E 4.51 11 >> 124 4.47 10 >> 88 4.06 7 >> 73

Table 9 (cont.)
Correlation Between Traits

0 0.24 0.5
Percentage of Nonresponse

5 20 5 20 5 20

Mix Method Pg D2 Pg D2 Pg D2 Pg D2 Pg D2 Pg D2
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Table 10

Mean of Pg( Pg ), and Mean of D2( D2 ) Across 50 Replications, for Different Mixing Configurations, Different
Correlations between Traits and Different Percentages of Nonresponse, Fixed at Sample Size 100 and REF-HIGH

(Entries in columns labeled D2  are result of multiplication by 1000)

Correlation Between Traits
0 0.24 0.5

Percentage of Nonresponse
5 20 5 20 5 20

Mix Method Pg D2 Pg D2 Pg D2 Pg D2 Pg D2 Pg D2

1:0 TW 1.78 12 5.08 128 1.21 11 1.61 109 0.89 9 0.49 91
CIMS 1.81 14 4.48 162 1.23 13 1.39 134 0.91 12 0.43 112
PM 2.11 14 8.74 141 1.47 13 3.02 119 1.08 11 0.95 99
EM cova 1.16 4 1.70 32 1.09 5 1.69 30 1.07 5 1.81 35
EM load 0.59 4 0.08 35 0.57 5 0.07 34 0.56 5 0.08 38
TW-E 3.93 20 >> 194 2.51 17 >> 147 1.84 15 7.55 114
CIMS-E 4.18 23 >> 217 2.72 20 >> 169 1.93 17 7.30 134
PM-E 5.65 30 >> 254 3.73 27 >> 202 2.58 23 >> 168
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3:1 TW 1.10 7 0.74 67 0.80 5 0.32 49 0.64 4 0.12 35
CIMS 1.58 10 1.83 94 1.19 7 0.86 69 1.06 6 0.46 48
PM 4.31 12 >> 110 3.07 9 11.20 84 2.29 8 4.51 60
EM cova 1.07 2 1.39 11 1.04 1 1.49 9 1.05 2 1.34 9
EM load 0.43 2 << 13 0.41 2 << 11 0.41 2 << 12
TW-E 3.79 10 >> 78 2.38 7 >> 57 1.76 5 7.49 41
CIMS-E 6.70 14 >> 112 4.51 10 >> 81 3.94 8 >> 56
PM-E >> 26 >> 194 18.74 19 >> 150 14.92 16 >> 117

1:1 TW 0.54 2 0.05 20 0.49 2 0.05 15 0.50 1 << 14
CIMS 0.55 3 0.05 31 0.52 2 0.05 23 0.56 2 0.05 19
PM 1.00 1 0.52 12 0.90 1 0.46 10 0.89 1 0.35 8
EM cova 1.13 1 1.59 7 1.05 1 1.55 4 1.12 0 2.09 4
EM load 0.54 2 0.05 21 0.49 2 << 17 0.51 1 << 15
TW-E 1.06 1 1.05 6 1.01 1 1.04 5 1.02 1 0.93 5
CIMS-E 1.13 2 1.18 17 1.15 2 1.48 13 1.28 2 1.43 10
PM-E 3.18 10 >> 76 2.88 6 >> 63 2.95 6 >> 47

Table 10 (cont.)
Correlation Between Traits

0 0.24 0.5
Percentage of Nonresponse

5 20 5 20 5 20

Mix Method Pg D2 Pg D2 Pg D2 Pg D2 Pg D2 Pg D2
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Percentage of Missing Item Scores

For 5 and 20 percent of missing item scores the order of the missing data
methods according to Pg  and D2  was the same, with both EM methods
performing best.

Correlation Between Traits

For the three correlations between latent traits the EM methods showed
the same performance.  It may be noted that the performance of the
imputation methods varied across correlations between traits.

Latent Trait Configuration

For each of the three latent trait configurations, EM-loadings and EM-
covariances performed similarly according to Pg  and D2 .  For both EM

methods,  D2  was lower for Mix 3:1 than for Mix 1:0.  D2  was lowest for
the unidimensional case Mix 1:1.

Nonresponse Mechanism

In general, for nonresponse mechanism REFHIGH EM-covariances had
Pg  closer to 1 than EM-loadings.  Also, EM-covariances had the lowest

D2 .  The results were reversed for nonresponse mechanism REF-

LOWHIGH.  Here, EM-loadings had Pg  closer to 1 and lower D2  than
EM-covariances.  It may be noted that all differences between methods
were modest.

EM-Loadings Versus EM-Covariances

In approximately half of all cells, EM-loadings had a higher D2  than EM-
covariances.  This difference was small for two-dimensional cases and
greater for the unidimensional case (Mix 1:1) and nonresponse mechanism
REF-HIGH.  Probably this difference in  D2  may be attributed to technical
differences between the convergence criteria used.

Discussion

For imputation methods, two main results were found.  First, methods
using the person mean (that is, TW, CIMS, and PM) in general yielded factor
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loadings closer to the complete data factor loadings than methods not using
the person mean (that is, IM, CM, and OM).  Second, for unidimensional
data, methods using the person mean plus a residual error (that is, TW-E and
CIMS-E) often performed better than corresponding methods without error.
PM-E, however, in general performed worse than PM.

Of the methods not using the person mean, IM gave the best results and
will therefore be compared with PM in an effort to better understand the
success of methods using the person mean.  Unlike IM, PM (and other
methods using the person mean) imputes scores based on the observed
scores on the other items.  Since all items are correlated due to a common
latent trait structure, PM estimates an imputed score (without error) using
information on the latent traits.  In contrast, IM imputes a score by taking the
mean of the observed scores of the other respondents on the same item.
Thus, no information about the latent trait structure other than through this
particular item is used.  This means that for a particular respondent with a
missing value on an item, PM uses predictive information about the
respondent’s latent trait position, whereas IM only uses the group mean on
one particular item and thus lacks the predictive power of PM.
Consequently, PM and other methods using the person mean yield better
estimates than methods not using the person mean and, as a result, the
complete data factor loadings are better recovered.

For the unidimensional case we will next explain why TW-E and
CIMS-E, which both use the person mean, often yielded factor loadings
that were closer to complete data factor loadings than corresponding
methods without error (TW and CIMS).  Compared with correlations
between items based on the complete data,  correlations based on data
with scores imputed by TW or CIMS tend to be higher because these
imputed scores are based on the other items sharing the latent trait
structure with the item on which a missing score was observed.  This
mutual dependence artificially creates stronger association when item
scores are imputed than when item scores are all observed.  Thus,
correlations are too high.  Compared with this situation, the addition of a
random error component score to the TW or CIMS score has the opposite
effect of lowering the correlations in the direction of the complete data
correlations.  This means that the factor loadings of the complete data
and the factor loadings of the data with score-plus-error imputed by
means of TW-E or CIMS-E are more similar than the factor loadings of
the complete data and the factor loadings of the data with score-without-
error imputed by means of TW or CIMS.

Interestingly, PM-E performed worse than PM.  It may be noted that PM
uses less information for estimating missing scores than TW and CIMS.  Method
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TW adds to method PM information on the item mean and the grand mean, and
method CIMS adds information on all item means.  Thus, TW and CIMS may
be seen as extensions of PM and are expected to perform better than PM.  The
reason why adding error has the effect of weakening the performance of PM
but not the performance of TW and CIMS is not clear to us.

The goal of imputation is to substitute the missing score by a plausible
value.  If the imputation method describes the data well, the residual
standard error will be small.  This means that the imputation is not
dominated by its corresponding error.  Figure 2 contains six histograms
of standard errors for the imputation methods TW, CIMS, PM, IM, CM,
and OM, keeping design factors fixed at Mix 3:1, sample size 100, 10
percent missingness, REF-MCAR, and correlation 0 between latent
traits.  From the histograms it follows that standard errors from
imputation methods using the person mean (TW, CIMS, and PM) are the
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Figure 2
Histograms of Residual Standard Errors for Six Imputation Methods Across 50 Replications of
Mix 3:1, Sample Size 100, 10 Percent Missingness, REF-MCAR, and Correlation 0 Between
Latent Traits; Residual Standard Error (x - axis) Versus Count (y - axis).
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smallest among the imputation methods considered.  If an error is added
to the imputed score, the methods with the smallest error will give the best
results with respect to the measures of discrepancey used here.

For EM methods it can be concluded that both recovered the complete
data factor loadings approximately equally well.  From a statistical point of
view we thus recommend the use of either EM-loadings or EM-covariances
for estimating a factor loadings matrix when the rating scale data contain
missing scores.  Researchers who feel confident to use these relatively
complex methods thus are advised to use one of them.  From a practical point
of view, however, for unidimensional or near unidimensional data, we advise
clients who have Likert scale data suffering from item score missingness to
use an imputation method depending on the person mean, in particular
method TW or method CIMS, and to add a draw from a normal distribution
with mean zero and residual variance.  For multidimensional data, person
mean methods without a draw from the residual error, in particular method
TW, give better results with respect to the measures of discrepancy used
here because the mean is taken across more than one trait.  If these traits
are highly correlated, the researcher can proceed as if the data were
unidimensional and thus impute scores using method TW-E.
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Appendix

The EM algorithm for estimating a covariance matrix suffering from
non-response under multivariate normality is described in detail in Little and
Rubin (1987) and Schafer (1997).  We briefly outline the procedure followed
by Splus routines to carry out the actual calculations.  The EM algorithm
relies on the following results from multivariate analysis.  For a proof we
refer to Anderson (1984, p. 37).

Theorem

Let the components of X be divided into two groups composing the
subvectors  X

1
 and  X

2
.  Suppose the mean  m is similarly divided into  m

1
 and

m
2
, and suppose the covariance matrix  S of  X  is divided into S

11
, S

12
, and

S
22

, the covariance matrices of X
1
, of X

1
 and X

2
, and of X

2
 respectively.

Then the distribution of X
1
 given X

2
 = x

2
 is normal with mean m

1
 + S

12
 S

22
-

1 (x
2
 - m

2
) and covariance matrix S

11
 - S

12
 S

22
-1 S

21

Suppose that the item responses for N persons are (Y
1
, ...,Y

N
).  For each

respondent, subdivide the scores into an observed part and a part with
missings, thus Y

i
 = (Y

obs,i
;Y

mis,i
).  Let mt and St denote the parameter

estimates for the mean and the covariance matrix, respectively, at cycle  t.
The EM algorithm consists of two steps.  In the t-th cycle of the E step,

for each person separately, the mean and covariance matrix of Y
mis,i

 are
calculated given  Y

obs,i
 = y

obs,i
 and the parameter estimates at cycle  t.  Thus,

using the theorem above with X
1
 substituted by  Y

mis,i
 and X

2
 substituted by

Y
obs,i

, the unobserved values Y
mis,i

 are replaced by their expectations,

E( |  =  , , ) =  Y Y y Ymis,i obs,i obs,i
t t

mis
t

mis obs
t

obs obs
t

obs obs
tm S m S S m+ −−

, , ( )1 .

The covariance matrix of Y
mis,i

 is calculated as follows,

(5) Var( |  =  , , ) =  Y Y ymis,i obs,i obs,i
t t

mis mis
t

mis obs
t

obs obs
t

obs mis
tm S S S S S, , , , .− −1

The (co)variances of Y
obs,i

 = y
obs,i

, and the covariances between Y
mis,i

 and
Y

obs,i
 = y

obs,i
, are equal to zero.  Note that Equation 5 only depends on the

pattern of nonresponse for respondent i; thus calculation of the variances for
all patterns of nonresponse and then choosing the right one, would suffice.
However, for 20 items, there would be
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20
2 1048576

0

20
20

ii

F
HG

I
KJ = =

=
∑

possible patterns.  Therefore, to ease programming, we prefer to calculate
the variance for each person separately, even though that could result in
calculation of the variance across the same pattern of missingness more than
once.

The M step consists of updating the parameter estimates for mt and St.
First, mt is updated to mt + 1 by calculating the mean across all persons
including the updated values for Y

mis
.  Next, St is updated to St + 1 as follows,

= − − + =L
NM

O
QP

+ +

=

+ ∑∑ 1 1 1

1

1

N
Varij j

t
il j

t
mis i obs i obs i

t t

jl
i

N

jl

t
Y Y Y Y ym m md id i d i, , ,| , , .S

The iterations continue until convergence.  We based convergence on
the maximum relative change of the parameters.  Convergence was obtained
when the relative change of all parameters did not exceed .0001.  We used
as starting values the parameter estimates for m and S under listwise
deletion.

The following Splus programs produce an EM estimated covariance
matrix.  The main routine is called EMcov and needs a data matrix A (not a
data frame) and a convergence criterion (standardly set at 0.0001) as input.
Two subroutines, condivar and rel.change, are called by EMcov.  The output
is the EM estimated covariance matrix, $sigmat1, a corresponding mean
vector, $mut1, and the number of iterations, $iterations, needed by the
algorithm before convergence.  The algorithms have been tested thoroughly
but the authors accept no liability whatsoever for the actual use of the
routines.  Disclaimer: the authors accept no responsibility for the correctness
or usability of the results of this software.

EMcov<-function(A,max.tol = 0.0001){
m <- is.na(A)
k <- sum(m)
dA <- dim(A)
if(k == 0)return(A)
nam <- names(A)
if[is.null(nam)]{

nam<-as.character(1:length(A))
names(A)<-nam

}
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Bnew <- apply(A,2,impute,mean)
toler <- 1
mut1 <- apply [na.omit(A),2,mean]
sigmat1 <- var[na.omit(A)]
iterations <- 0
while(toler > max.tol){

iterations <- iterations + 1
B <- Bnew
out <- condivar(B,m,mut1,sigmat1)
Bnew <- out$x
sigmat <- out$sigmat
sigmaold <- sigmat1
muold <- mut1
mut1 <- apply(Bnew,2,mean)
Bminmu <- sweep(Bnew,2,mut1,”-”)
sigmat1 <- (t(Bminmu)
apply(sigmat,c(1,2),sum))/dA[1]
toler<- rel.change(muold,mut1,sigmaold,sigmat1

}
return(sigmat1,mut1,iterations)

}
condivar < -function(x,m,mu,sigma){

xrow <- nrow(x)
xcol <- ncol(x)
sigmat <- array(0,c(xcol,xcol,xrow))
for(iin1:xrow){

if(sum(m[i,])>0){
miss<-seq(xcol)[m[i,]]
obs <- seq(xcol)[!m[i,]]
sigmaobs <- as.matrixginversesigma
[obs,obs]))
sigma12 <- t(as.matrix(sigma[obs,miss]))
if(length(obs) == 1)

sigma12 <- t(sigma12)
sigmamiss <- sigma[miss,miss]
x1 <- mu[miss]
x2 <- x[i,obs]
mu2 <- mu[obs]
x[i,miss] <- x1+sigma12
sigmat[miss,miss,i] <- sigmamiss-
sigma12

sigmaobs
}

}
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return(x,sigmat)
}
rel.change <- function(x1,x2,y1,y2){

m <- (abs(x2-x1)>1e-05)
ch1 <- max(abs((x2[m]-x1[m])/x1[m]))
m <- (abs(y2-y1)>1e-05)
ch2 <- max(abs((y2[m]-y1[m])*(1/y1[m])))
change <- max(ch1,ch2)
if(is.na(change))
change <- 0
change

}


