

Tilburg University

Analysis and Design Advanced Access Functionality

Hoppenbrouwers, J.J.A.C.

Publication date:
1998

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Hoppenbrouwers, J. J. A. C. (1998). Analysis and Design Advanced Access Functionality. European
Commission.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 31. Jul. 2022

https://research.tilburguniversity.edu/en/publications/ec084ca6-8825-4dc4-94aa-05a43044d6c6

Tilburg University
The Netherlands

SilverPlatter Information Ltd
United Kingdom

European University Institute
Italy

Universitat Aut̀onoma de Barcelona
Spain

London School of Economics and Political Science
United Kingdom

DECOMATE-II
LIB-5672/B

Developing the European Digital Library for Economics

Analysis and Design Advanced Access Functionality

Editor/Author(s) Jeroen Hoppenbrouwers
Document Number TU-1998-3
Date December 14, 1998
Scheduled November 30, 1998
Task 4.1.4
Deliverable 4.1
Status Final
Version 1.0
Keywords Information Space Browser, Lexicon, De-duplication, Doc-

ument Tracer
Abstract This document describes the various modules that provide

the Advanced Access facilities to the Decomate-II system.
It contains the argumentation for the design and the imple-
mentation intentions as far as currently can be decided.

Confidentiality Public
Copyright c TU/Infolab; December 14, 1998

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Contents

1 Executive Summary 1

2 State of the Art in Information Retrieval 2
2.1 The Keyword Barrier . 2
2.2 Conceptual Queries and Knowledge Navigation 3

2.2.1 Terminology Navigation 4

3 The Decomate II Architecture 6
3.1 Advanced Access in Decomate II 6
3.2 User View of the Advanced Access Modules 8
3.3 Implementation Considerations 10

3.3.1 Attractiveness. 10

4 The Concept Browser 12
4.1 Restrictions for Decomate II . 12
4.2 Design Intentions . 13
4.3 Concept Browser Design . 14

4.3.1 Initial Positioning . .. 14
4.3.2 Basic Network Layout and Navigation 15
4.3.3 Advanced Network Navigation 16
4.3.4 Multiqueries . 18
4.3.5 Query Compilation .. 19
4.3.6 Network Distribution. 20

5 The Lexicon 22
5.1 Project Terminology . 22
5.2 Lexicon Content . 24

5.2.1 Structure . .. 24
5.2.2 Re-using existing resources 24
5.2.3 Maintenance. 25
5.2.4 Navigation .. 27

Deliverable 4.1 Final/ 1.0 i

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

5.2.5 Mapping . .. 28
5.3 Lexicon Platform Design . 30

5.3.1 Performance Considerations 31
5.3.2 LMS Architecture .. 32
5.3.3 The Lexicon Maintenance Interface 34
5.3.4 Annotations .. 34
5.3.5 Implementation 35

6 The Concept Mapper 40
6.1 Identifying Duplicate Results . 40

6.1.1 Place in the System Architecture 41
6.2 Document Location Discovery 42
6.3 Result Ranking . 43

6.3.1 Relevance Ranking .. 43
6.4 Mapping Query Results into the Browser 44
6.5 Relevance Feedback . 45

7 Implementation Schedule 47

Bibliography 48

Deliverable 4.1 Final/ 1.0 ii

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Chapter 1

Executive Summary

The Advanced Information Space Browser (ISB) provides for ‘conceptual’ ac-
cess to the bibliographical databases, as opposed to the traditional keyword-based
‘search engine’ approach supported by the rest of the Decomate II system. Con-
ceptual browsing promises to help users in transparently building database queries
that are more effective in both document retrieval precision and recall.

The design includes a user front-end, containing the graphical interface, which
runs in a standard Web browser using a Java applet, plus a back-end which con-
tains a large conceptual database and some Decomate-specific optimizations. To-
gether these modules deliver a single access point for both conceptual browsing
and query result presentation, including relevance feedback and relevance rank-
ing. The conceptual database is structured in such a way that it can be distributed
over the various cooperating libraries in the project, to enable each library to build
(parts) of the conceptual network independent of the others. When required, the
resulting partial networks can still be reconnected to form a single, federated con-
ceptual space, without the need for careful mutual tuning.

Due to the inherent innovative character of Workpackage 4, it is difficult to
design theISB in the same detail as the rest of the Decomate II system at this
moment in the project. We have a fair overview of what we want to have ac-
complished at the end of the project, but cannot exactly point out the implications
of all design decisions yet. The research involved with this workpackage will
have consequences for the design and the implementation of theISB that only will
surface further down the project. However, care has been taken to isolate these
possible consequences from the rest of the Decomate II system—theISB is for the
largest part an independent moduleon topof the Decomate II system, and back-
tracking some phases of the design will not influence work in progress in other
workpackages.

Deliverable 4.1 Final/ 1.0 1

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Chapter 2

State of the Art in Information
Retrieval

Much work in the area of indexing and retrieval concentrates on constructing ef-
fective and efficient algorithms to find a set of ‘interesting’ documents in a large
collection, given a user query of some sort. So-calledfull text query enginesare
used to mechanically select documents out of a collection, either by Boolean key-
word matching or according to statistical computations (mainly clustering tech-
niques). Boolean engines usually return all and only documents that exactly match
the query. The statistic retrieval engines use various combinations of text metrics
in order to predict the document’s value in terms of the user query (Salton and
McGill, 1983; Salton, 1991). This is calledrelevance ranking. Usually only a
limited amount of documents (e.g., the top 100 best matches) is returned to the
user.

2.1 The Keyword Barrier

Because most relevance ranking algorithms are based ontextualdata, i.e., actual
word forms (strings) without any sense interpretation, they tend to perform gen-
erally mediocre (Woods, 1997; Shaw et al., 1997; Blair and Maron, 1985). The
same problem appears in Boolean engines. Blair and Maron list many problems
with keyword-based searches, and most of their findings fall into two categories:

� Phraseology: synonyms, slang, and jargon terms obscure the meaning of
the text, making it very difficult to locate by keyword approaches.

� Granularity: as database size increases, increasingly fine-grained searches
are necessary. Retrieval techniques that only consider the presence or ab-
sence of words cannot distinguish different relationships between the same

Deliverable 4.1 Final/ 1.0 2

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

words, and retrieve far more documents than the user considers relevant
(Carbonell and Thomason, 1986).

The crucial problem of current information retrieval technology is that systems
relying solely on the presence or absence of a word are inherently limited in their
ability to distinguish relevant and irrelevant texts. Word-based systems that cannot
deal with synonymy, polysemy, metaphor, and the other complications of natural
(uncontrolled) language must have some upper bound on retrieval performance,
thekeyword barrier(Maulding, 1991).

One way of breaking the keyword barrier would be to add semantic knowl-
edge about the document content to the database, so that the above (mostly syn-
tactic and lexical) problems are avoided. Unfortunately, this is not feasible in
the context of the Decomate II project, since the databases and query engines are
given. Our only chance to break the barrier is to enrich the query that is sent to
the database back ends, using a ‘knowledgeable’ intermediary thatdoespossess
semantic knowledge, and treat the returned results with a comparable device for
additional filtering, to provide relevance feedback, and to add relevance ranking.

The usage of so-calledsearch intermediaries, either human (librarians or doc-
umentalists) or mechanical, has been proposed both to shield the user from the
technical aspects of the query engine and to provide extra background informa-
tion about the document’s domain (Wiesman, 1998). The objective of these sys-
tems is to be helpfully responsive to a spontaneous description of the information
required, minimizing the need for an information seeker to engage in repeated
query reformulation in order to discover the exact terminology that will retrieve
the information required (Hoppenbrouwers, 1998; Woods, 1997, p.12).

Therefore our work focuses on various difficulties in applying such a search
intermediary to anexistinglibrary system, based on Boolean keyword retrieval
from an uncontrolled vocabulary.

2.2 Conceptual Queries and Knowledge Navigation

Parsayeet al. (1989, Ch.6) distinguish five kinds of knowledge that users need
to have in order to successfully compose conceptual queries for information re-
trieval systems: procedural system knowledge, strategic search request formula-
tion knowledge, indexing policy knowledge, search strategy knowledge, and do-
main knowledge. Of these five, the first four types of knowledge can be leveraged
by suitable user training and system manuals. Domain knowledge, however, is
typically not suitable to be presented in a manual or through simple training, and
when extensive education is not an option, some form of extra help must be sup-
plied by the system. Additionally, extra domain knowledge is required to formu-

Deliverable 4.1 Final/ 1.0 3

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

late good queries, especially with complex information needs (Hoppenbrouwers,
1998; Bodner and Song, 1996; Howard, 1992).

Conceptual queries involveknowledge navigation. There are two basic types
of knowledge navigation:searchingandbrowsing(Wiesman, 1998, p.7). Since
searching implies that the user already knows what to look for, this is no solu-
tion to the lack of domain knowledge. In such a situation, completetopic-level
concept browsingis required (Hoppenbrouwers, 1998; Papazoglou, 1997). Inter-
active term suggestion, where the system suggests terms for the user to choose,
can also significantly enhance retrieval effectiveness (Schatz et al., 1996; Papa-
zoglou et al., 1998).

Basic idea behind such a system is to provide the user with an ‘information
space’ (IS) through which (s)he can freely browse, and which gives a fair indi-
cation of thedistribution of concept terminologyover the domain. Although the
IS should have a reasonable overlap with the actual database, it only serves as a
guide: actual queries still are served by the underlying original databases. This
means that the concept space browser is allowed to be slightly out of date without
significantly affecting the final query result.

In an extreme case, the conceptual space could be very extensive with a very
limited document database, a situation comparable with an experienced librarian
or documentalist who starts up a new, therefore small, library. The other extreme,
a small conceptual space with a large collection of documents, represents a well-
stocked library with few support people who know what the documents actually
are about.

2.2.1 Terminology Navigation

Placing the user somewhere in the conceptual network to start browsing is not
trivial. A common way of finding a suitable starting place in keyword systems is
by having the user enter an initial query. However, as argued above, there usually
are more places in the same network that warrant attention. Moreover, it is not
a good idea to restrict database queries to only the controlled terminology in the
network. After all, most entries in the database consist of free natural language,
especially if the database contains abstracts and/or full text.1 When queries are
only allowed on keywords from the restricted network, they will in many cases
miss important documents. On top, the initial user suggestion itself might contain
important terms that are not obvious in the domain. This implies that a good con-
ceptual network should contain as many terms as possible, and be not restricted
to ‘preferred’ terminology (although some concepts certainly may be flagged as

1We assume that the database is indexed using a full-text engine, not by manually assigning
keywords from a restricted vocabulary.

Deliverable 4.1 Final/ 1.0 4

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

‘preferred’ for explicit keyword assignments to database entries). Even words not
traditionally associated with a given semantic field should be included to enable
intuitive associations to be made.

For example, a user looking for generic ‘changes in the deficit’ would expect a
document to turn up which contains ‘Last year’s reductions in tax rates are part of
the reason for the deficits, as are the administration’s plans for a sustained military
buildup.’ While the query and the passage convey similar ideas, the wording in
each is different, a typical case of the paraphrase problem. ‘Change’ is a more
generic variant of both ‘reduction’ and ‘increase,’ but neither of the three would
be expected in any pure economics thesaurus. Without these terms, either far too
many documents would show up, or none at all (Woods, 1997).

This means that the network presentation in the user interface must be dy-
namic, and must allow navigation in several places at the same time, ‘connecting’
parts of the network that are not connected by default (Cooper and Byrd, 1997).
Additionally, there are technologies which can map a user-provided term into
the thesaurus even if the thesaurus does not contain that term explicitly (Woods,
1997). This can help to position the user on the semantic map in several promising
starting places, plus to modify the map itself when there is need to do so.

Deliverable 4.1 Final/ 1.0 5

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Chapter 3

The Decomate II Architecture

The Decomate II Library System aims at a Web-based, single-point, uniform user
interface to a multitude of (possibly distributed) databases. A single user query,
usually a set of keywords, is transparently mapped to all connected databases,
each with its own query language, data schema, and content. The individual query
results are merged together by the system, ordered, and presented to the user in a
suitable format.

See Figure 3.1 for an illustration of the Decomate II abstract architecture. The
standard query system is directly from a user’s browser to the Broker which acts
as a Web server. The Broker channels and coordinates all user requests. This
is necessary since the Web protocol (HTTP) is stateless and does not allow for
session memory. It would be very difficult to implement good user identification
and a proper navigation interface without session memory.

Part of the Broker is theMulti Protocol Server, or MPS, the module that speaks
several protocols to a diversity of underlying databases (de Cock, 1998). The ac-
cess to multiple distributed databases is managed by software produced in Work-
package 3, which also details the internal structure of theMPS; see Deliverable 3.1
for more information. For the purpose of the current discussion, it suffices to view
the MPS plus all related software as a complete module with a single interface,
and I will simply call itBroker.

3.1 Advanced Access in Decomate II

Workpackage 4, described in this document, conceptually adds three modules to
the standard Decomate II system, two of which are clearly marked in Figure 3.1.
The third module is the Lexicon (Chapter 5), which is not visible directly (being
one of the databases), but which is accessed frequently by both visible modules. In
order to maintain clarity, Figure 3.1 does not show thetechnicalplace of the vari-

Deliverable 4.1 Final/ 1.0 6

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Lexicon

NN N

Concept
Browser

Distributed, heterogeneous databases

Mapper
Concept

Users’ Web Browsers

Decomate Broker

Figure 3.1: Abstract Decomate II Architecture

ous modules. Section 3.2 presents a user view of the Information Space Browser,
which appears more integrated than Figure 3.1 suggests.

Instead of doing direct queries to the Broker, a user can select to use theCon-
cept Browser(Chapter 4), which will present him or her with a conceptual map of
the relevant domain (in Decomate II, Economics). The user can then navigate the
domain, while the Concept Browser collects information about chosen paths and
nodes. Eventually the Concept Browser generates a normal query which is passed
to the Broker.

Broker results can be directly passed back to the user, or be post-processed
through theConcept Mapper(Chapter 6). This module will be able to augment
the query results with semantic information and offers document de-duplication,
relevance ranking, relevance feedback (Fitzpatrick and Dent, 1997; Salton and
Buckley, 1990), and electronic document tracing. It is our intention to make the
Concept Mapper also available for direct queries to the Broker, i.e., without first
going through the Concept Browser. However, the amount of extra information
available after a Concept Browser session might significantly increase the effec-
tiveness of the Concept Mapper, especially in the area of relevance ranking. Note

Deliverable 4.1 Final/ 1.0 7

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Broker

Boolean Queries

Concept Browser Concept Mapper

User
SelectingBrowsing

Pla
in

 Q
ue

ry
 R

es
ul

ts

Information Space Browser

Browse Info

Figure 3.2: AbstractISB Architecture

that the database engines themselves do not necessarily provide relevance rank-
ing, if any ranking at all, and that the ranking results of separate databases are
very difficult to compare and merge (Section 6.3).

3.2 User View of the Advanced Access Modules

Although technically the Concept Browser and Concept Mapper are two separate
modules, each with clearly defined tasks, the user will see only the Advanced In-
formation Space Browser (ISB)—actually a combination of the Concept Browser
and Concept Mapper in one user interface. ThisISB is offered to the user as a
normal option in the standard Decomate II interface, and can be selected instead
of the plain keyword search interface.

When a user selects the advanced interface, a graphical application1 will be

1Actually, a Java applet running in his/her Web browser.

Deliverable 4.1 Final/ 1.0 8

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

started that takes over all interaction with the Decomate II system from then on.
However, the application will not offer standard Decomate II options such as vol-
ume reservation and interaction with the Current Awareness Server. TheISB is
intended for information space browsing only. Of course, the user might select to
open multiple instances of the Web browser—there is no technical reason why the
system could not support anISB next to a standard session, since theISB acts as a
limited standard session as far as the Broker is concerned.

The ‘advanced’ way of working in Decomate II is as follows (see Figure 3.2).
The Concept Browser part of theISB presents a part of the semantic field as-
sociated with the library (in Decomate II, Economics). By means of the user’s
initial (traditional) keyword query, theCB makes an educated guess which con-
cepts might be of interest to the user, presents them in the graphical interface,
and then surrounds these concepts with related other concepts. The user initially
browses through the Information Space (containing only concepts, no terminology
or documents), marking specific concepts and linking them up to compile an ab-
stract representation of his/her information need. The number of concepts on the
screen, their relative positions, and the concepts themselves will be dynamically
adjusted according to user input.

Whenever the user sees fit, usually after a reasonable model of his/her in-
formation need has been completed, the Concept Browser converts the conceptual
representation into a plain Boolean query that is sent off to the Broker. The Broker
(actually the rest of Decomate II) processes this query in the normal way and sends
back an unordered list of document index records. De-duplication will likely be
done by the back-end as well (see Section 6.1), although the de-duplicator orga-
nizationally is part of the Advanced Functionality Workpackage 4.

The unordered list of search results is post-processed by the Concept Mapper
using both stateless code and conceptual information coming from the Concept
Browser. A combination of a plain result list and a mapping of the results into
the already present conceptual model is expected to produce the best feedback as
to which documents were matched by which concepts. The user then is offered
the possibility to either ‘drill down’ to a record and view the associated document
information,2 or to explicitly mark this record as ‘relevant’ or ‘irrelevant,’ thereby
adding information to conceptual model already available in the Concept Browser,
a process calledrelevance feedback.

Naturally the conceptual model itself might also be modified by adding or
removing concepts. The retrieved document records at least suggest in which
ways the user should expand or shrink his/her query. A subsequent Boolean query
generated by the Concept Browser will then, hopefully, be more on target. See
Section 6.5 for a discussion of Relevance Feedback.

2Or the document itself, supposing that the document is electronically available.

Deliverable 4.1 Final/ 1.0 9

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

It is not decided yet if such a tuned conceptual model, containing both con-
cepts and document records, can be saved for later reuse. If it can be saved, there
is the question whether this will be a personal model or a shared model. The basic
Lexicon is able to accommodate annotations, and a superconcept such as the final
conceptual model might be proposed as a new, higher-order concept. Chapter 5
contains more details about this annotation mechanism.

3.3 Implementation Considerations

For various reasons, explained in the chapters 4, 5, and 6, theISB will not be
built into the Broker but will be uploaded to the user’s Web browser in the form
of a Java applet. This will give us much more flexibility in the user interface, a
requirement for successful network navigation, while significantly offloading the
server back-end.

Java applets have the advantage above standard programs that they are
architecture-independent and can be maintained centrally. They do not exhibit the
installation and maintenance problems usually associated with platform-specific
software that must be installed on thePC where the browser runs. Furthermore,
they enable remote access to the Decomate II system from every browser that
has Java capability, including non-PC platforms such as Unix workstations and
dedicated Web browsing machines. Especially in library environments, the zero
maintenance ‘Network Computers’ such as Sun Microsystems’ JavaStations most
likely will play an important role in the near future.

However, Java is a relatively low-level language, and building a goodGUI in
Java takes considerable effort. For experimental purposes, we might decide to do
a quick prototype implementation in Tcl/Tk. This is a higher-level scripting lan-
guage which has the same cross-platform capabilities as Java, but which needs to
be installed separately as a plug-in (no known browsers come with Tcl/Tk stan-
dard, while they all come with Java). When the prototype stabilizes, a re-coding
effort in Java should work out much faster.

The distributed architecture with Java applets and Lexicon Server has success-
fully been used in comparable systems, such asIBMs Lexical Navigation(Cooper
and Byrd, 1997), and should be flexible and scalable enough for large-scale pro-
duction work.

3.3.1 Attractiveness

A great deal of effort must be put into an attractive user environment, which makes
users sufficiently comfortable to spend some time on query refinement. This is so
important because numerous research projects (Lesk, 1998; Jansen et al., 1998;

Deliverable 4.1 Final/ 1.0 10

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Fitzpatrick and Dent, 1997) indicate that typical query engine users heavily prefer
extremely short queries (1.5 word on average).3 People are lazy and rarely try
feedback on raw queries (More Like This) or read the instructions, even if this
would give them huge improvements on their query’s success. They do not use
many Boolean operators either and rarely understand them, and have a tendency
to use a limited amount of only ‘standard’ terms in their queries.

As Jansen et al. conclude, the limited use of advanced search techniques
would seem to support the continued research into new types of user interfaces,
intelligent user interfaces, or the use of software agents to aid users in a much
simplified and transparent manner. This is exactly what Decomate II’s Concept
Browser attempts. The Concept Mapper (Chapter 6) will attempt to improve
usage of relevance feedback in much the same way.

The rest of this document will discuss the Concept Browser, the Lexicon, and the
Concept Mapper in greater detail.

3These numbers are based on typical Web search engine queries. But since the Decomate II
system will be Web-based, it seems prudent to assume that people will treat it as a standard Web
query engine.

Deliverable 4.1 Final/ 1.0 11

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Chapter 4

The Concept Browser

The Concept Browser (CB) is the main item of the complete Information Space
Browser that the end-users will see and work with. Running in the user’s Web
browser, theCB presents a two-dimensional graphical picture of (a part of) the
terminology field associated with the subject the user has selected. As the user
browses through the field, theCB dynamically loads in more terminology from a
Lexicon Server (see Chapter 5). The end result of a browsing session is a specific
query, compiled by theCB, that is sent off to the Broker to be processed. The
returned results (bibliographical references) are mapped back into the conceptual
network by the Concept Mapper (CM, see Chapter 6), and the user can use this
modified map for both document retrieval and relevance feedback.

4.1 Restrictions for Decomate II

TheCB architecture as outlined above was inspired by several practical consider-
ations. Unlike many research systems, where a concept browser of some sort is
directly driven by the underlying documents from a dedicated, newly constructed
database (Cooper and Byrd, 1997), ourCB must function in an existing library
environment. Several implementation and operational restrictions complicate the
addition of concept browsing and mapping modules to Decomate II (Hoppen-
brouwers, 1998):

� Wide variation in underlying databases (query language, available informa-
tion, level of detail, result ranking. . .).

� Need to integrate with existing system components, even when they are
not 100% suitable. This holds especially for the various databases, some of
which are outside library control (e.g.,CD-ROM databases provided by third
parties).

Deliverable 4.1 Final/ 1.0 12

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

� Availability of Boolean keyword queries only; no statistical (e.g., vector,
cluster, or frequency) data on the databases is or will become available, and
even stemming or truncating options are not guaranteed.

� Restrictions on available system capacity, in particular processing and net-
work bandwidth, with firm limits on allowable response time (taking into
account that database queries may already take up lots of time).

� Limited conceptual network creation and maintenance capacity by librari-
ans and documentalists.

� Possibly distributed conceptual networks which should be connected in a
federated way, or duplicated and merged.

Especially the given database structure sets this project apart from earlier at-
tempts; we do not have the possibility to create a well-tuned, dedicated database
engine with state-of-the-art index and search techniques. Furthermore we empha-
size the usage ofpurpose-made conceptual networksfor the Browser Interface,
while other projects (Cooper and Byrd, 1997) often use machine-generated lexi-
cal networks. We believe that it is more likely to get satisfying results by keeping
the network in the hands of qualified professionals. In a sense, we do not aim to
produce a virtual library, but a virtuallibrarian. Lastly, there should be provisions
to partition the conceptual networks to facilitate load balancing, knowledge bal-
ancing (specialized networks), and maintenance balancing. Linking conceptual
networks in a federated manner is not trivial.

4.2 Design Intentions

What we are going to create is an interface where a user can browse the complete
semantic field in an intuitive way, while the system follows his/her traces in or-
der to compile a good query for the actual library database. This involves using
both implicit and explicit user signals in order to collect the required knowledge.
For example, taking certain ‘turns’ in the network, circling around a concept,
and other implicit navigational actions give clues to the underlying ‘knowledge
snooper’ what the user might be interested in. Explicit cues, e.g., by marking
certain concepts as being of special interest, then provide stronger input to the
snooper and can be used to actively propose certain new pathways.

The browser interface in this way assumes almost the role of anagent, a semi-
intelligent piece of software that plays the role of avirtual librarian, guiding
the user through the massive amount of knowledge available in the conceptual
network (and eventually in the underlying library).

Deliverable 4.1 Final/ 1.0 13

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Research has suggested some other ways to enhance users’ queries. Inter-
esting developments are history extrapolation through machine learning (Chen,
1995), specifically-linked example documents, interactive term and field sugges-
tions (based on previous queries from other people (Fitzpatrick and Dent, 1997),
but reviewed by a documentalist), and direct user-machine dialog to create ‘pre-
query relevance feedback’ (Cooper and Byrd, 1997). It is not likely that the cur-
rent Decomate II project can use many of these suggestions, so in this report
we will not pay attention to them. However, for future enhancements these ap-
proaches should be reconsidered.

4.3 Concept Browser Design

This section presents the design such as it can be made at this moment in the
project. The inherent innovative approach will likely call for design changes later
on, but care has been taken that their impact will not have consequences for any
other software module in Decomate II. Especially the communication protocols
between the various modules will not need to be changed at all; the Concept
Browser acts as a normal Decomate II client to the Broker, using the standard
Decomate protocol (HTML).

4.3.1 Initial Positioning

Constructing the initial network to start browsing is difficult, since the expected
user input here is the common 1.5-word keyword query (Lesk, 1998; Jansen et al.,
1998). With only one or two terms to start with, we need to completely rely on
the Lexicon to provide us with a meaningful partial network. Using the standard
concept expansion mechanism as outlined in Section 4.3.2, the Concept Browser
will call up adjacent concepts from the Lexicon and link them up following the
Lexicon-supplied links only. What is displayed is quite comparable to the results
acquired by a traditional thesaurus query.

Various ideas to enhance the initial keywords are available, but since the Con-
cept Browser is not at all meant for simple one-shot searches, we will not go
beyond the straightforward Lexicon expansion before the other parts of the Con-
cept Browser are firmly in place. After all, the basic idea of the Concept Browser
is that the user refines his/her query by browsing—it is not a magic box to ‘guess’
what the user wants to find.

Care must be taken to not display the actualterm that the user entered as ini-
tial query, but the associatedconcept. This involves lexical (verb, noun, adjective),
morphologic (singular, plural) or even syntactic (adjective and noun together) pro-
cessing of the query. It would be wasted effort to try to include semantic parsing;

Deliverable 4.1 Final/ 1.0 14

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Figure 4.1: Concept Browser Initial Situation

very few users would actually enter syntactically correct phrases, and natural lan-
guage processing still is not robust enough.

Based on Lexicon contents, concepts closely related to the directly retrieved
ones should also be presented to help the user in drawing the border line around
the relevant part of the network, see Section 4.3.3. However, these concepts should
not be included as positively relevant; their only function is to trigger the user in
defining the border of relevancy in the network.

The result of the initial query is displayed as pictured in Figure 4.1. Assume
that the center concept is the one triggered by the user query, and that the sur-
rounding concepts are the ones retrieved through Lexicon references. Links are
indicated by lines. The figure shows no text because it is not an exact representa-
tion of the actual Concept BrowserGUI. The final system will present much more
information than just nodes and edges, with many configurable options.

4.3.2 Basic Network Layout and Navigation

Given an initial network, either produced by the initial position algorithm (Sec-
tion 4.3.1) or by the Concept Mapper (Chapter 6), the Concept Browser must
produce a two-dimensional layout that visualizes the relationships between the
concepts. Since the network itself is highly dynamic, a layout algorithm must
be used that can position the concepts on the map in quasi real time. Variants
on the ‘gravity’ or ‘magnetic’ minimal-entropy algorithms, that drift the concepts
into positions where the average distances are as large as possible, seem a good
choice.

Figure 4.2 illustrates the principle of gravity drift. From the initial configura-
tion, extra concepts are added on top of the existing concepts depending on the
connections. The algorithm then drifts the concepts apart to form a new configura-
tion where node distances, edge lengths, and edge angles are equalized. Generally
this leads to a proper distribution of the concepts over the available display area.

Manual manipulations by the user must take precedence over automatic lay-

Deliverable 4.1 Final/ 1.0 15

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Initial StabilizedNew Concepts

Figure 4.2: Gravity Drift

out; by simply dragging a concept to another place, the automatically layouted
concepts must make room for the displaced concept. If we write the ‘gravity drift
algorithm’ in such a way that concepts do not cross links, the generic layout of the
network will be maintained unless the user manually displaces concepts.

The layout algorithm must be damped sufficiently to not cause continuous os-
cillation of concepts between instable positions, an effect that plagued previous
implementations. It would be best if the new layout is visually established in one
smooth movement from initial to stabilized configuration that takes between two
and three seconds, after which the layout engine is shut down to saveCPU cycles.
In case of performance problems, e.g., with large networks on display, the visual
movement of concepts on the screen should be suppressed or the jump distance
should be enlarged. For smaller networks, the smooth movement to new posi-
tions will help the user to maintain situational awareness. It also is a great visual
attractor, well in line with the user attractiveness design guidelines described in
Section 3.3.1.

The user can navigate the network by clicking on concepts to expand the net-
work with related concepts, or by deleting concepts. Established user interface
guidelines suggest to use a left-click for concept expansion and a right-click to
pop up a ‘concept menu.’ This menu allows further interaction with the concept,
such as deleting it from the (browser) network, adding annotations, adding explicit
relevant/irrelevant markings, etc. The whole design of the network navigator must
be aimed at easy, attractive network browsing and editing. Getting a graphical de-
signer involved later in the project might be worth the effort.

4.3.3 Advanced Network Navigation

Concepts can be presented as eitherrelevantor irrelevant. When they initially
appear in the network, all concepts are assumed to be relevant. Relevant concepts
can be marked irrelevant by the user, or they can be completely removed from the
network (deleted).

Deliverable 4.1 Final/ 1.0 16

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Figure 4.3: Concept Browser after Concept Deletion

There is a distinction between concepts that are not part of the network (in-
visible) and concepts that are marked irrelevant. Invisible concepts (either deleted
or not yet retrieved) are not included in any generated query, while irrelevant
concepts are used to create ‘not’ keywords in the query. This makes irrelevant
conceptsimportantnonetheless.

A difficulty is that intuitively, deleting a concept probably will be assumed
to have the same ‘meaning’ as marking it as irrelevant. From the user’s point of
view, irrelevant concepts shouldnot bein the network, while for the system, it
is essential tokeepthem in the network. It will likely be effective to consider
explicitly deleted concepts to be actually marked as irrelevant, and keep a list
of deleted concepts internally for this purpose. This would mean that there is a
distinction between concepts which are not in the network yet, of which we do not
know anything, and concepts which have been removed from the visible network,
of which we know that they are irrelevant, yet to the user both of them are not
visible.

A compromise would be to lump both deletion and marking irrelevant together
in one action, ‘delete,’ but always keep the concept in the network, but dimmed
out to a light shade of gray (Figure 4.3). This way, deleted concepts are clearly set
apart from current concepts, yet they still indicate where the user decided to ‘draw
the border line’ in relevancy. The major advantage of this approach is that it now
becomes feasible tovisibly introduce the much-neglected ‘not’ Boolean operator
with almost no effort for the user.

If we encourage users to create a partial network of accepted relevant concepts
surrounded by deleted irrelevant concepts,1 we effectively have a good source for
negative keywords and also clearly outline the relevant part of the network—much

1It will not always be feasible to keep the deleted concepts on the edge, but the interface will
try to move them there.

Deliverable 4.1 Final/ 1.0 17

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

better than when just stopping at the edge without visible irrelevant concepts.
This ‘border line’ gives a clear reference where the user has explicitly stopped
expanding the network, while a group of relevant concepts that suddenly ends
leaves him/her wondering ‘what else is available over there.’

In case this way of working proves to be too abstract for the user, we can intro-
duce a switch that selects all deleted concepts to be visible or invisible. However,
the notion of ‘not’ is extremely important for the underlying Boolean retrieval
engine, and efforts to hide this from the users might turn out less fruitful despite
their complaints. The result of the whole operation should be an increase in pre-
cision, since the system can compile much better queries if it has the whole range
of Boolean operators (AND, OR, andNOT) available.

We are aware of the danger of using ‘not’ operators. Just as with the ‘and’
operator, having one ‘not’ too many can be disastrous for recall while not notice-
ably improving precision. However, in the proposed system it is not the user who
explicitly adds operators and terms—it is the system itself, using pre-determined
‘terminology buckets’ from the Lexicon. These buckets are carefully designed to
match a specific concept, and when such a match requires a selective use of ‘and’
and ‘not’ operators next to the ‘or,’ this should not be dangerous at all. In case
of doubt, it will always be possible to decrease the effectiveness of the irrelevant
concepts on the final result list. Another method would be to displace ‘and’ and
‘not’ filtering to the Concept Mapper, see also Section 4.3.5.

4.3.4 Multiqueries

Aside from the manipulations of the network that increase precision, a user might
want to divide the network into several parts that individually specify a single
field of interest (asuperconcept) as tightly as possible, but that together specify
several fields. By providing several ‘instances’ of the same network that can be
individually modified, but are linked together at query time, users can build up
extensive queries that ‘add up’ without individual recall and precision degradation.

We selected this option instead of the traditional ‘or’ link between concepts,
because most users do not fully understand the impact of Boolean operators, es-
pecially not when multiple phrases and nested parentheses come into play (Lesk,
1998; Jansen et al., 1998; Fitzpatrick and Dent, 1997). The Concept Browser
should be used to specify individual superconcepts (networked basic concepts),
which then can be stacked up for essentially individual queries.

The Concept Browser interface should provide for easy access to these
multiple networks, and basic operations such as partial network copying. Local
saving and reloading of networks might be supported in the future; however,
it seems better to use the Lexicon annotation function for this (Section 5.3.4),
because a well-tuned partial network (superconcept) should be upgraded to a new

Deliverable 4.1 Final/ 1.0 18

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

concept and made available to other users.

The Concept Mapper (Chapter 6) also has a function that directly influences the
GUI; refer to Figure 6.1 on page 46 for more information about this.

4.3.5 Query Compilation

The Query Compiler has the task to find a way from visible network concepts
and related concepts not yet visible to a plain Decomate II keyword query. The
obvious mappings are from concepts that are called up and retained (they become
‘and’s) and those that are called up and rejected (they become ‘not’s). Having
only ‘and’ and ‘not’ clauses in the Boolean query means that the precision could
be alright, but several things must be considered to prevent huge loss of recall.

The main instrument to improve recall is the Boolean ‘or,’ which lets the De-
comate II back-end select multiple matches. The user interface gives explicit cues
for ‘and’ and ‘not’ clauses; the ‘or’ clauses, however, have to be implicitly added
without user intervention.2 This is made possible because the Lexicon is acon-
ceptualdatabase and not a terminology database or thesaurus.

Each concept is attached to several terms (words), which together share a
well-confined meaning. Ideally, the terms under one concept should be complete
synonyms—they should be able to replace each other in all linguistic situations.
In practice, a somewhat less restricted selection can be made, since we are not
building a translation device where minor linguistic features are all-important.
The WordNet lexical database (Miller et al., 1993) contains numerous examples
of ‘synonym sets’ that serve as good suggestions for how large a concept can
become.

The concepts are linked together by semantic links, such as ‘broader term,’
‘narrower term,’ and other meaningful connectors described in Chapter 5. Some
of these links will be useful in attaching some more concepts to the query if the
user has not explicitly denied their relevance already. Such additional concepts
might be positive (‘or’) or negative (‘not’) depending on the link type. Situations
can occur where additional concepts as a group are ‘or’-ed, while the group is
‘and’-ed within itself to exclude synonymous words.

Even when the Lexicon provides the Concept Browser with an abstract view
on the terminology (the concept/term separation), simply using the plain underly-
ing terms of a concept will not work. Care must be taken that various morpholog-
ical forms of the same concept will exist in the document index records, such as
singular and plural, the various inflections of nouns, and the many forms verbs can

2Note that a user does specify ‘or’s when creating multiple superconcepts, but these individual
concept networks are considered separate queries.

Deliverable 4.1 Final/ 1.0 19

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

appear in. Although it is possible to build a generative Lexicon that contains all
of these morphological variants of the words (Hoppenbrouwers, 1997), using the
full expansion in the query would result in up to fifteen forms of the same word
‘or’-ed together—and that is still only one word. With synonyms and related con-
cepts, queries of over one hundred separate items would occur, and it is not at all
certain that the Decomate II back-end could cope with this.

Traditional approaches solve this problem by usingstemming algorithms, that
essentially truncate words so that the word endings (which usually contain the
bulk of the morphological variance) are removed. Some Decomate II databases
support truncating (with the� operator), but many do not. It is not yet clear how
we are going to work around this limitation. A possibility might be to include
carefully selected morphological variants only, such as plural and singular for
nouns, but restrict the verb inflections. A helpful factor is that the mainstay of
Economic literature is in English, a language with a rather sparse morphology.

Externalizing Recall Limiters

The precision-improving operators ‘and’ and ‘not’ can have a disastrous effect on
recall when they are used too often and with the wrong terms. Instead of the hard
Boolean rules, a somewhat relaxed rule might be more useful here, i.e., irrelevant
concepts do not completely shut out documents but merely cause a lower ranking
on the results list.

For this approach to work, the actual database (Broker) query should not be
limited at all (should only contain ‘or’ operators), while the Concept Mapper takes
care of the subsequent relevance ranking using the ‘soft and’ and ‘soft not’ oper-
ators on the records itself. Obviously this will be an expensive approach if the
database back-end returns several hundred or thousand records because the ‘or’
query gets out of hand.

We propose to use explicit ‘and’ and ‘not’ terms contained in the Lexicon
terminology buckets directly on the database back-end, because these operators
are explicitly added by Lexicon maintenance people. The user-marked irrelevant
concepts then carry their terminology buckets over to the Concept Mapper, where
they are used to adjust the document index record relevance ranking. In this way,
we keep tight control over the way in which the dangerous operators influence the
result, while not sacrificing any form of recall limiting.

4.3.6 Network Distribution

A large part of the Concept Browser’s usefulness is in its ability to combine sev-
eral Lexicons into one single interface. This opens up the possibility to maintain

Deliverable 4.1 Final/ 1.0 20

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

distinct Lexicons for distinct semantic fields, such as Economics and Informa-
tion Technology, which can be linked up afterwards without explicit cues being
put in by the maintainers. Naturally, linking two Economics fields from different
universities would also be possible.

The Lexicons themselves have no specific functionality to make this dis-
tributed conceptual network possible. Each Lexicon is an independent collection
of concepts and terminology, although it would be technically feasible to store
several Lexicons on the same Lexicon Server. The complete merging of Lexicons
is done on demand by the Concept Browser, running in the user’s Web browser.

When a person using the Concept Browser selects more than one Lexicon as
a source for the conceptual network, theCB will use the underlying terminology
(actual words) to ‘guess’ which concepts in both Lexicons might overlap. It will
be impossible toguaranteethat the found concepts indeed are synonymous, but
the more terminology overlaps, the higher the probability that the match is valid.
More advanced methods of mapping will use the available semantic links between
concepts, to see if concepts that are expected to overlap for terminology reasons
also have the same basic type of connections to other concepts. One step further
then, obviously, is to compare adjacent concepts on terminology to get a further
confirmation of overlap.

This unregulated way of Lexicon matching, although fuzzy, has one big advan-
tage: Lexicons that have not been built with matching in mind can still be linked
up, providing interesting comparisons between semantic fields that are tradition-
ally unrelated, such as with Economics and Information Technology that meet in
Electronic Commerce.

However, if certain core concepts emerge in various Lexicons which describe
the same generic field, it will be advantageous to standardize some concepts and
give them a unique identification code. This might be a word, but with the specific
connotation that this isno simple term; it functions only as a mnemonic identifier
for a more complex concept. If Lexicons have enough of these universally ac-
cepted and identified concepts available, a situation that is not feasible in the near
future, matching them would be greatly simplified. The same is true for cross-
lingual Lexicon matching, although this problem can also be tackled by putting
multi-lingual terms in the same concept within one Lexicon. In this way, a single
multi-lingual Lexicon can support several monolingual Lexicons to ‘find’ each
other.

Various ways of presentation can be used, ranging from a completely invisible
merging of all available Lexicons to giving each concept a distinct color depend-
ing on its Lexicon of origin. Experiments will have to make clear what method, if
any, will be most effecting in library practice.

Deliverable 4.1 Final/ 1.0 21

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Chapter 5

The Lexicon

Central in the Advanced Access module, although not directly visible to the users,
is the Lexicon. This is a database that contains a part of the conceptual model
of the relevant scientific field (in Decomate II, Economics), both the semantic
structure and the terminology. The Concept Browser accesses the Lexicon in real-
time every time a new concept is required.

The Lexicon has two separate aspects that both must be dealt with: the con-
tents aspect and the system aspect. Comparable to a database system, a Lexicon
has an underlying engine (the Lexicon Management System), a schema, and data.
For our purpose, the engine and the schema can be considered static and together
form the Lexicon Platform, while the data is formed by the conceptual and termi-
nological contents. See also (Hoppenbrouwers, 1997).

In order to define the conceptual model and restrict the working definition of
the Lexicon, we present several definitions such as used in various scientific fields
(computer science, artificial intelligence, library science, linguistics) and select
the appropriate one for our purpose.

5.1 Project Terminology

There are several descriptions and definitions of conceptual networks, sometimes
calledontologies, thesauri, lexicons, or semantic fields(Hoppenbrouwers, 1997).
Traditionally the difference between these and other related terms is the following.

The vocabulary provides the official list of correct forms of words, presents
only syntactical features, and gives idiomatic patterns of usage if necessary
(Weigand, 1990, p.77).

A thesaurus provides the official survey of correct terminology for concepts,
presents only basic semantic features, structures the terms in a semantic

Deliverable 4.1 Final/ 1.0 22

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

net, and adds to the vocabulary special patterns of usage appropriate to the
special concepts (Weigand, 1990, p.77). Alternatively, a thesaurus is the
vocabulary of a controlled indexing language, formally organized so that
a priori relationships between concepts are made explicit (Aitchison and
Gilchrist, 1987).

A dictionary presents the definitions of terms from the thesaurus, gives humans
the understanding of specialized words, helps shape the growth of the the-
saurus, and helps authorities in deciding on the admission of new terms
(Weigand, 1990, p.77).

An ontology is ‘a systematic account of Existence,’ a description of the mini-
mal set of concepts that a language needs to express all its other concepts
(Kaminsky, 1969). Pragmatically, an ontology defines the vocabulary with
which queries and assertions are exchanged among agents (Gruber, 1993).

A lexicon combines the vocabulary and the thesaurus and integrates them in a
machine-readable format so that it can be managed and queried by compu-
tation engines (Hoppenbrouwers, 1997).

A semantic field or domainis a more or less clearly outlined subsection of the
real world. It can often be related to a group of people who live and work in
the same environment, asemantic community(Robinson and Bannon, 1991;
Ulijn and Strother, 1995). Some authors claim that within any semantic
field, there must be no ambiguous terminology (Wiederhold, 1995), thereby
putting a very hard constraint on the semantic field up to the point that only
one single person can live in such a field at the same time.

A conceptual network is a collection of semantic nodes with links between
them, in such a way that many relationships are captured. Covering a se-
mantic field, it is usually much more extensive than a typical thesaurus, e.g.,
containing semantic roles and part-of relationships (Miller et al., 1993).
However, newer thesauri contain more and more information and can be
assumed to be conceptual networks as well (Miller, 1997).

Throughout this document we use the term ‘Conceptual Network’ to refer
to the abstract network of concepts that is used to describe the semantic field
of Economics, and ‘Lexicon’ for the actual implementation of this conceptual
network in data. The machine containing this data and its management software
is called ‘Lexicon Server.’ Since concepts usually have more than one associated
term, the Lexicon also contains the actual vocabulary of the semantic field, plus
the part of the thesaurus that defines preferred terminology.

Deliverable 4.1 Final/ 1.0 23

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

5.2 Lexicon Content

The Lexicon is a highly dynamic database, not comparable to the traditional semi-
fixed classification schemes that have been used to index documents for decennia.
Not only will the Lexicon evolve over time more rapidly, it also contains much
more information, both on the conceptual level (relationships) and on the lexical
level (actual terminology, spanning multiple scientific fields and languages).

5.2.1 Structure

Most ‘strict’ ontologies or thesauri that propose one single hierarchical organi-
zation of terminology are not sufficient to serve as a conceptual network (Sowa,
1983, p.15); no linguistic or psychological evidence has uncovered a truly univer-
sal set of primitives, and often it is difficult if not impossible to assign concepts
to only one category (Woods, 1997). Likewise, because the vocabulary of each
living language grows with approximately 6000 lemmas per year, especially in the
technical-scientific register (Ulijn and Strother, 1995, p.101), it will be very hard
to claim thatanythesaurus is ever complete. Regular updates must be applied to a
thesaurus to keep it in synchronization with the evolving semantic field (Aitchison
and Gilchrist, 1987).

The dynamic nature of thesauri and conceptual networks means that mostly
static, hierarchically organized classifications such as theUDC tree1 or the classi-
fication of the Journal of Economic Literature (JEL)2 are not sufficient to serve as
a complete conceptual network. Besides, they do not aim at covering the termi-
nology of the semantic field—they want to identify specific subfields (subjects)
within the larger fields. Of course theirsubject headingscan be used as a starting
point for thesaurus construction, and they can be included as generic ‘see also’
pointers in a conceptual network.

Summarizing, a true conceptual network must be organized as, indeed, anet-
work, with multiple parents per node and a substantial number of link types cap-
turing as many relevant semantics as possible.3 For examples of link types and
a generic theoretical overview of Lexicon organization, see (Hoppenbrouwers,
1997).

5.2.2 Re-using existing resources

Conceptual networks such as WordNet (Miller et al., 1993) contain enough ter-
minology and relationship information to be usable, however, they usually are too

1http://main.bib.uia.ac.be/MAN/UDC/udce.html
2http://www.econlit.org/elclasbk.htm
3Unlike, for example, VerityTOPIC’s meaningless link weights.

Deliverable 4.1 Final/ 1.0 24

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

static as well and cover a broad range of common semantic fields while being
sparse on detailed, specialist fields—which are far better suited to assist users in
knowledge navigation (Bodner and Song, 1996; Howard, 1992). It is especially
important to have the conceptual network organized in terms of, indeed,concepts,
instead of plain terms. WordNet uses thesynsetprimitive to group highly syn-
onymous terms together, and the EuroWordNet Project extends the synonymity
relation to include multiple languages (Vossen, 1997; Vossen et al., 1997). Other
work on Lexicons, aimed specifically at conceptual modeling (Hoppenbrouwers,
1997), also suggests ways of organizing terminology to properly present a con-
ceptual space to users.

Acquiring a suitable conceptual network therefore is not just a matter of
copying existing thesauri or term lists. Considerable effort should be put into the
initial creation of a conceptual network for knowledge navigation purposes. This
is not to say that existing information cannot be reused, but it usually requires
extensive post-processing.

Besides the acquisition problem, there is also a maintenance problem, a navigation
problem, and a mapping problem. The next sections will consider each problem
in more detail, suggesting possible solutions as appropriate.

5.2.3 Maintenance

Any semantic network which models a piece of the world needs regular updat-
ing in order to stay synchronized with the world. The idea that a network could
be constructed once and remain stable for an extended period of time should be
abandoned:

The danger is that if the thesaurus is permitted to become monolithic
and resistant to change, it can actually hinder both indexing and re-
trieval.

(Milstead, 1992)

There are two separate groups of people who naturally should get involved
in conceptual network construction and maintenance: library professionals (doc-
umentalists and librarians) and research professionals (scientists) who regularly
use the library.

The Role of the Documentalist

In case of a library system which specializes in one particular scientific field, such
as Economics, the network should be maintained by experienced documentalists

Deliverable 4.1 Final/ 1.0 25

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

who are comfortable with this field. These people can quickly recognize the par-
ticular spots in the network where potential new concepts should be placed, and
can update and use the network as part of their regular work. In this way they
develop a ‘map’ of their field, which can be very useful for other purposes besides
knowledge navigation support. We assume here that documentalists are explicitly
keeping up with the scientific field; not that they just catalog new publications.
Only then, proper maintenance of the conceptual network is guaranteed.

Of course, it should be assured that network maintenance is a technically sim-
ple operation that does not need much training or time, and that the immediate
day-to-day advantage for the documentalists is sufficiently clear. Only then will
these people be inclined to spend effort on network maintenance. This is an im-
portant part of the whole project, because without network maintenance, the rele-
vance of the concept browser will diminish over time.

Automated tools should be available to help documentalists with network
maintenance as much as possible, e.g., by proposing specific places in the existing
network for new concepts. The documentalist then might only need to confirm the
system’s proposal. In addition, tools for network manipulation (moving, copying,
deleting, printing) should be readily available. A good browser which exceeds the
simple record-oriented concept view (a single concept with all associated direct
links only) is also required, in order to facilitate situational awareness.

The Role of the Scientist

It is a reasonable assumption that the same scientists who use the library have at
least a partial task in providing its contents as well. Not only do they influence the
collection (although usually only in an indirect way), they also publish documents
about the same scientific field. This implies an intimate knowledge of at least a
part of the field.

Leaving all the network maintenance to documentalists and librarians denies
the obvious knowledge that some library users already have. Especially during the
initial network construction, library people should consult researchers in order to
build up a coherent and reasonably complete network. Note that it is not required
that all scientists fully agree on the network; it is no standard classification. The
purpose of the network is to assist less experienced people, and when several
‘research schools’ exist, that fact should be noted, not voted away.

But also when the system is in production, scientists (users in general) who
browse the system might have valuable suggestions for Lexicon changes and ad-
ditions. When these suggestions must be filed through a forms interface or by E-
mail, it is almost guaranteed that not much feedback will be generated. It would be
preferable to have a very simple ‘annotate’ option right in the Concept Browser,
that gives users the opportunity to immediately add comments and suggestions to

Deliverable 4.1 Final/ 1.0 26

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

existing concepts, and also to propose completely new concepts with some initial
links. These user additions should be shown in the browsers of all users, but with
a different presentation (e.g., color), and with the option to switch them off. The
official Lexicon maintenance people then should be able to review the sugges-
tions and to accept or reject them with the click of a button. Alerting mechanisms
should be in place to prevent the maintenance people from having to exhaustively
search the Conceptual Network for user suggestions.

5.2.4 Navigation

The networks (thesauri) typically used in information retrieval systems are stan-
dard more generic/more specific hierarchical trees, sometimes extended with cross
links such as ‘used for’ and ‘related terms.’ Synonyms may be present, but the
main purpose of classification hierarchies usually is to avoid any synonymous ref-
erences.

Obvious links such as between ‘software engineering’ and ‘software protec-
tion’ are often missing, even when both terms are present, because they do not
typically classify under the same head word. As an example, in the thesaurus
used by Excerpta Informatica at Tilburg University, ‘software protection’ was
classified directly under ‘software,’ but ‘software engineering’ was generalized
by ‘software technology,’ which was not at all mentioned under ‘software’ but
was located under ‘computer technology.’ In other words, there was no naviga-
tional path between the terms, even though they both started with the same word.
Because the Excerpta thesaurus could also be queried as if all terms together were
a full text database, the ‘software’ keyword in ‘software engineering’ was found,
but the result of this query was an alphabetically ordered list of 61 items which
did not all contain the ‘software’ search term.

It is a well-known problem of any hierarchically organized system (even when
cross links are present) that concepts often do not naturally classify under one
single category (Woods, 1997). Concepts should be placed in multiple locations
in the network, participating in several tree structures if required. However, when
users navigate a particular tree, it should be made clear to them when they are
about to leave their original tree. This is a classical Hypertext navigation problem,
and indeed, navigating a conceptual network has many parallels in navigating a
Hypertext.

When fully associative Lexicons are navigated through a suitable interface,
such as the various WordNet interfaces (Miller et al., 1993), link types such as
more generic/more specific are usually made explicit. Other variants exist that
use one single link type for all links, but give these links different ‘weights’ to

Deliverable 4.1 Final/ 1.0 27

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

indicate the ‘strength’ of the link between two concepts.4

The whole issue of hierarchical navigation boils down to the difference be-
tween structural (analytical) browsing and associative browsing. Despite the ob-
vious maintenance and implementation advantages of strict hierarchical concept
trees with explicit cross links outside the tree structure, an associative structure is
better suited to model a typical semantic field. Psycholinguistically inspired Lex-
icons such as WordNet therefore offer more link types, like synonyms, antonyms,
meronymy, and others (Miller et al., 1993). Presenting these links to the user in
an easy format is not trivial; most likely, some form of two-dimensional graphical
browser is needed. Considerable work has been done in this area, see Aitchison
(1987) and Lancaster (1986).

Many helpful ideas have come from the Lexical Navigation Project (Cooper
and Byrd, 1997), where a browser client was developed to facilitate user browsing
of a lexical network. Although there are differences between an lexical and a
conceptual network, these differences are not necessarily visible to the user. The
local, non-persistent network management that can be done, such as moving nodes
on the screen or deleting nodes to create a specialized view or subnet, seems very
helpful to browsing and query creation.

5.2.5 Mapping

Some current thesaurus-assisted information retrieval systems use the thesaurus to
let the user navigate to a certain term, and subsequently use only this term to query
the (full-text) database. Although this method certainly helps to suggest particular
search terms to the user, it does not at all use the semantic network formed by the
links between words to improve the query, i.e., to increase the system’s recall and
precision.

The semantic network actually serves two distinct purposes. First, it helps the
user to become familiar with a certain semantic field which (s)he might not fully
grasp yet. In this way, the network might help the user to come up with relevant
terms, which will yield better results than forcing the user to key in keywords
from the top of his/her head. Second, the network offers the system the option
of adjusting the user query by not using only the term the user indicated, but also
using the terms around the user term and maybe even other concepts.

The Lexicon contains actuallytwo layers. The top layer is the aforementioned
semantic network, holding concepts only. The bottom layer holds the actual vo-
cabulary that will be used for database back-end queries. From a simplified point
of view, each concept refers to a ‘terminology bucket’ that contains all synonyms
of the concept, comparable to the traditional thesaurus relationship of ‘use’ and

4http://www.plumbdesign.com/projects/thesaurus.html

Deliverable 4.1 Final/ 1.0 28

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

‘used for.’ However, the concept itself isnot a member of the vocabulary, it is
only a conceptual reference that can have several labels to recognize it, but none
of these labels is directly used for database queries.

The ‘terminology bucket’ may contain multiple language vocabulary, and also
extra flags for preferred terminology for certain databases (especially if they are
indexed using restricted vocabulary). The query mapper should use this extra
information, if available, to increase the quality of query results. It might be
a problem getting all this information to the Broker through the standard inter-
face though. We should take care not to implement direct access to the various
databases, bypassing the Broker’s multi-query.

Besides (near) synonyms, the ‘terminology bucket’ can also contain more
complex items, such as explicit ‘not’ clauses or explicit ‘and’s. The idea is that
selection of a single concept should invoke a well-tuned query that has been op-
timized for that concept, and that the user manipulates the semantic network to
combine these (sub)queries into one large query.

Candidate thesaurus terms to be called in by the query generator are synonyms
(although care must be taken not to expand the query beyond what the user in-
tends), direct hypernyms, some levels of hyponyms, and maybe some levels of
meronymic (part-of) relationships (Maulding, 1991). Note that these arecandi-
date terms, not necessarily actual terms used for query expansion. Especially
synonyms usually pose problems, as the following quote from Woods explains:

A common approach to the paraphrase problem is to use tables of
synonyms to automatically expand queries by adding terms that are
recorded as ‘synonymous.’ However, there are few real synonyms in
English, so the common practice is to include related words as if they
were synonyms. However, treating terms this way when they are not
really synonyms introduces a level of granularity that trades off pre-
cision for recall. There is no a priori correct level for this tradeoff—
different information needs require different levels of generality—so
this technique often degrades retrieval rather than improving it.

As an alternative to synonym classes, we use taxonomic subsump-
tion algorithms that exploit generality (subsumption) rather than syn-
onymy to connect terms in queries with passages that contain more
specific terms as well as the requested terms. These algorithms do
not automatically explore more general terms, so the level of gener-
ality is controlled by your choice of query terms. For example, if you
ask for ‘motor vehicles’ you would get trucks, buses, cars, etc., but
if you ask for ‘automobiles’ you would get cars and taxicabs, but not
trucks and buses.

(Woods, 1997)

Deliverable 4.1 Final/ 1.0 29

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

The use of subsumption to expand a query can be enabled if the Lexicon con-
tains the appropriate ‘narrower term’ relationships. For most existing thesauri,
this already is the case.

More than the above terms (the selected concept plus synonyms and subsump-
tions) are not available when the user came to a term without any navigation, i.e.,
by hitting a spot on the ‘map’ and not moving from there. When the user has
navigated the map, however, much more information is available to construct a
query.

For example, a common way to end up at a term is to follow one of the avail-
able tree structures down from the top. There certainly is a noticeable difference in
arriving at ‘software engineering’ via ‘technology’ and ‘engineering’ than arriv-
ing via ‘computer programming,’ ‘modular software,’ ‘component reuse’ or even
through an associative side link as in ‘organization,’ ‘business process redesign,’
‘business process re-engineering,’ ‘engineering.’ Traditional thesauri go to great
efforts to prohibit multiple paths to concepts, but a well-designed network might
provide invaluable extra clues to determine the nuances and in which context the
final term should be interpreted (Aslandogan et al., 1997).

The ability for the user to mark terms while passing them by, so that the re-
sulting query will take the marked words into account as well, can also enhance
the standard ‘query for this term’ feature.

For more details about the way in which we intend to implement the various
mappings, see Section 4.3.

5.3 Lexicon Platform Design

A feasible Lexicon Platform (Lexicon Management System (LMS) plus Lexicon
Schema) must have the following features to be usable in the context of the Deco-
mate II Project:

Fast Speed is mandatory. A hundred users must be able to access theLMS at
the same time without noticeable performance degradation, since for most
moves in the Concept Broker, some Lexicon activity is required.

Server-basedTheLMS must be built as a server, ready to respond to requests over
the network. It is not technically required to make this server a full Deco-
mate II Broker-compliant database, and for performance reasons it might be
better to skip the Broker. However, the expected Broker performance will
be sufficient for our purpose, so we will initially implement theLMS as if it
was a normal Decomate database.

Deliverable 4.1 Final/ 1.0 30

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Simple Both the server and the communication protocol, and also the Lexicon
Schema, must be simple enough to be configured and managed by the same
people as the rest of Decomate II. In particular, no bleeding edge linguistic
theory, nonstandard programming language (e.g., Prolog), or database (e.g.,
a trueOO database) should be used.

In short, despite the aim of the Advanced Access module, theLMS itself should
be as low-tech as possible. The actual innovative character of the module lies in
thecombinationof several techniques and pieces of software, and in the Lexicon
contents. We expect to be able to use existing and well-known library database
technology for the Lexicon.

5.3.1 Performance Considerations

The main activity on the Lexicon is of a simple question/answer kind, typically
requesting information about one single concept at a time. Concept access is
through conceptID, a uniquely identifying property, most likely an integer. Re-
trieving the corresponding concept information from the Lexicon database there-
fore can be done through very efficient algorithms and data structures. Only an
initial query using the terminology part of the Lexicon will require an alphabetical
search.

In order to prevent all Lexicon data to be uploaded to the client at client startup
time,5 partial Lexicon content delivery is mandatory, hence the server concept.
The IBM Lexical Navigation project (Cooper and Byrd, 1997) has successfully
pioneered this approach.

TREVI (EspritEP23311) taught us not to use a commercialOO database man-
agement system for a Lexicon. These systems offer plenty of flexibility and a
natural organization of the Lexicon, but this at the price of sluggish performance.
Given the fact that the Lexicon will be queried orders of magnitude more often
than that it will be updated, retrieval performance is more important than inser-
tion performance. The standard database management considerations such as roll-
back and protected transactions will not be used significantly, and not purchasing
a commercial database per Decomate II installation obviously saves lots of money.

WhereTREVI used Java as programming language for reasons of marketing
and maintainability, we strongly advice against using Java for a performance-
critical module such as the Lexicon. Since theLMS is completely server-based,
the byte code interpreter would not offer any significant advantages,6 and none of

5Remember that the client is downloaded over the Internet. Current typical Internet bandwidth
restricts the maximum applet size to about 50 Kbyte. The Lexicon will never fit into this straight-
jacket.

6Naturally the client front-end will greatly benefit from the byte code interpreter.

Deliverable 4.1 Final/ 1.0 31

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

the other Decomate II modules currently use Java.
The wish to reuse existing technology where possible leads us to choose a vari-

ant of a thesaurus database, based on Z39.50. The Elise II project (LB-4005/A)
implemented theAAT thesaurus of the Getty Institute, containing over 20,000
preferred terms plus associated non-preferred terms, using the Zebra index and
retrieval engine. This thesaurus has the required two different access paths (on
concept and on conceptID), plus the complete set of search features including
truncation and regular expressions. Furthermore, Zebra databases are in regular
use by all currently active Decomate partners and thus well-known. Their per-
formance is excellent (the Nordic countries use Zebra for their country-wide Web
indexing), and Zebra is free for non-commercial use.

Using an open standard such as Z39.50 also allows for relatively easy inte-
gration of existing thesauri such as theJEL classification, which often follow the
same standards.

Zebra is no ‘true’ database in the maintenance sense—it is more a search en-
gine. Experiences at Tilburg University suggest that the actual Lexicon database
that is maintained could best be stored in some form of relational (SQL) database
to suppress as much redundancy as possible. At regular intervals this database
can be converted into plainASCII files that are indexed by Zebra to produce the
production Lexicon server(s). An additional advantage of this setup is that it be-
comes almost trivial to generate special-purpose Lexicons out of the database,
e.g., hardcopy documentation.

5.3.2 LMS Architecture

TheLMS can be divided into four separate modules (see Figure 5.1):

1. Broker gate keeper

2. Lexicon Server (possibly several in parallel)

3. Lexicon Database

4. Lexicon Maintenance Interface plus Annotations

An end-user client (a Web browser such as Netscape or Internet Explorer,
capable of running Java applets) connects to a Lexicon Server through the Broker
in the usual way. Note that it is possible to start several servers in parallel on
different machines in order to distribute the load; the Broker can use a round-
robin algorithm or a smart load balancer to maintain an evenly distributed Lexicon
server load if required.

Deliverable 4.1 Final/ 1.0 32

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Lexicon Server Lexicon Server Lexicon Server

Broker Gatekeeper

Lexicon Maintenance Interface

End-user Clients

N N N N N

Lexicon

Annotations

Figure 5.1: TheLMS Architecture

The Lexicon Servers all share the same lexicon database (Lexicon), and do not
update this database in any way, thereby maintaining the safe (not crash-sensitive,
parallellizable) production model. We expect that the actual Lexicon Servers will
run on alocal copyof the database, such as anASCII file indexed by Zebra. Only
the Lexicon Maintenance Interface (LMI , see Section 5.3.3) is capable of Lexicon
updates.

An extension of the Concept Browser offers users the possibility to add anno-
tations or suggestions for new concepts to the Lexicon. It currently seems best to
channel these update requests via the Broker to a reduced variant of theLMI , that
can add the user’s input to a separate annotation database. The full-blownLMI

then can be used to selectively import the annotation database under guidance of
a certified Lexicon maintainer (documentalist).

To facilitate Lexicon sharing and cooperation, features will be offered to in-
corporate other Lexicons into the database by explicit import through theLMI

(invisible to the end-user clients). In special cases it would be advantageous to
link up separate Lexicons without merging them into one. This should be done
outside the architecture pictured in Figure 5.1, by means of a direct connection
between the end-user client and the remote Lexicon Server. Naturally, the Bro-

Deliverable 4.1 Final/ 1.0 33

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

ker would coordinate such a request (Decomate II Brokers know of each other’s
existence through their meta-database). Section 4.3.6 expands on this Federated
Lexicon approach.

5.3.3 The Lexicon Maintenance Interface

Although at this point in time a detailed design of theLMI is not feasible because
the Lexicon internal structure needs to be experimentally reviewed, several fea-
tures of theLMI are likely to be required.

The main purpose of theLMI is to help professional Lexicon maintainers with
their job, i.e., it is no library end-user tool. Visual attractiveness and intuitive use
are less important here than efficient and effective Lexicon update facilities. The
LMI is the strategic tool with which the Lexicon is kept up-to-date, and if this tool
is not considered adequate by the documentalists responsible for Lexicon main-
tenance, the performance of the whole system will suffer due to an inadequate
Lexicon.

It is not required to build such a tool as a Web browser-based Java applet or
form interface, although it might be feasible. A single application, preferably
cross-platform in a language such as Tcl/Tk (Ousterhout, 1994), might be eas-
ier to construct and maintain. A separate application might also offer advantages
due to its excellent interface possibilities with Unix text utilities, and relational
databases. The prototype of theLMI most likely will be an independent appli-
cation or set of utilities, with a full-fledged graphical implementation becoming
available later in the project.

Although availability of a goodLMI is crucial for the viability of the Lexicon
in the long run, it is no priority at the current time because without a functioning
Concept Browser and Lexicon Server, theLMI serves no purpose anyway. Given
the possibility to create a Lexicon with standardASCII utilities, we postpone the
actual design and development of theLMI to a later phase of the project.

5.3.4 Annotations

Users of the Concept Browser, either students, scientific faculty, or librarians,
must have the possibility to addad hocannotations to the network as they see fit.
A large part of the network’s usefulness is determined by the network coverage of
the semantic field, and it would not be smart to ignore user contributions.

Naturally, annotations should not find their way into the officially certified
Lexicon by themselves. All annotations should be reviewed and acknowledged
by the Lexicon maintainers before they are moved from the annotation database
into the Lexicon production database. But it should be possible for users to select

Deliverable 4.1 Final/ 1.0 34

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

if they want or do not want to see these annotations in their Concept Browser,
possibly in several stages.

The most likely annotations areadditionsof concepts, terms within concepts,
and links between concepts. Occasionally somebody will want toremovesome-
thing which in his/her opinion decreases the effectiveness of the Lexicon in putting
good Boolean queries together.Changesare combinations of removals and addi-
tions.

Other forms areverbose annotations, i.e., plain texts to explain or suggest
something, and proposals fordirect document referencesfrom certain concepts as
‘typical’ documents. The last category is both powerful and dangerous. It can cer-
tainly help people who are new to a field to get immediate references to a standard
document that would have been suggested to them by a documentalist as initial
reading, and it is a good help in relevance feedback. Having qualified document
references available even before the Boolean query and result processing has been
done is a huge advantage for the query compiler. But the danger is that users will
focus too much on standard, older documents instead of using the system to re-
trieve newer and other relevant documents. Moreover, it would make the Lexicon
dependent on a given library collection.

An alternative worth considering is to use user feedback on result sets to have a
background store of ‘good’ and ‘bad’ matches. When users mark some retrieved
document references as (ir)relevant, the interface can forward the index records
of these documents to the Annotation Database where they are stored for future
processing. Review of the records and the associated concepts and terms, either
manually or automatically, might suggest to modify the term base in order to better
match user expectations in the future.

The net result of annotations is that the Lexicon gets better tuned to what
people want instead of to what scientists/documentaliststhink that people want.
This is a very relevant feature. The whole Information Space Browser should not
aim at absolute 100% accuracy and to cover all possible search cases, but at a
generic improvement of a large part of the user queries. Expanding or shrinking
certain concept areas to what the common user seems to expect is a powerful tool
to reach this goal.

5.3.5 Implementation

Experience with previous Lexicon implementations makes us choose for a single
program (Unix process) per Lexicon Server, that does notfork() when new con-
nections to the server are initiated. Forking would mean making a full copy of the
main memory Lexicon database, which clearly is an undesirable situation. The
selected Zebra index engine follows this model.

Deliverable 4.1 Final/ 1.0 35

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Connection Management

Two methods exist for providing multi-client access to the same server process:
multi-threading and serial serving.

Multi-thread servers use a single thread for each connection, where all threads
together share all resources of the process. Since the Lexicon database is
strictly read-only and since all connections are stateless (clients require in-
formation on a concept, get it back, and that is it), the inter-thread com-
munication will be almost nil; no synchronization between threads will be
required. The scheduling of the individual threads will be taken care of
by the operating system, and on symmetric multiprocessor machines with
shared memory the server performance will scale up nicely.

Serial servers have a single process with a single thread, that serves all clients in
a round-robin fashion. New connections are put in a connection table and
some semaphore mechanism is used to decide which connection should be
served at which moment. During the service of a client, all other clients
must wait. Adding moreCPUs to the server machine has no effect on the
performance of this single process. Starting more processes to use theCPUs
is possible at the expense of memory requirements.

Both approaches have advantages and disadvantages. Since Zebra is out of our
control, its performance on many small queries should be investigated during test
runs of the Lexicon. Fortunately the (un)availability of a multi-threaded Zebra
server will have no influence on the clients; either way the connection protocol
will be exactly the same. It is feasible to change the connection handler later in
the project without changing either the clients or the Lexicon core code.

Connections can and will be interrupted frequently by Internet problems, and
the connection manager should be robust enough to handle these interruptions.
Furthermore, the very nature of the Web, with stateless network links, encour-
ages clients to ‘go away’ without signing off. A good timeout mechanism should
clean up abandoned connections in the Broker, but this is being taken care of in
Workpackage 3 anyway.

Query Management

The actual server implementation is quite straightforward. Two types of queries
will be used on the server: term queries and concept queries.

Term Queries are typically issued at the start of a Concept Browser session only.
The user has typed in a keyword query, the infamous 1.5-word naive doc-
ument selector, and the Lexicon server must return a set of concepts that
closely matches the query.

Deliverable 4.1 Final/ 1.0 36

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Concept Queries form the mainstay of the Lexicon Server’s job. Concept
Browsers request information on one or several concepts, and the server
must return this. Concepts can be individually addressed in a unique way
through a concept code, and no processing is required.

Term queries can afford to take a bit of time, up to several seconds, since users
will expect the system to ‘search’ for a while. Concept queries, however, should be
answered in almost zero time since they are used while the user is clicking his/her
way through the network. Users will be severely irritated by sluggish response
during navigation tasks.

When merging remote Lexicons, time delays in concept retrieving are in-
evitable. Solutions can be found in asynchronous processing, with remote con-
cepts popping up after they are retrieved while the user can still click ahead, and
in pre-fetching where the Concept Browser fetches adjacent concepts ahead of
time in an attempt to have them available when the user eventually selects them.

Protocol

The Lexicon Server will be accessed through a standard Z39.50 protocol over a
standardTCP/IP socket. All applicable programming languages and environments
can handle sockets, and the stable Z39.50 protocol can be implemented with sim-
ple Perl, Tcl, or Java programs.

Data protection and access control are not really relevant. Since the Lexicon
Server is read-only and the annotations do not directly influence the main Lexi-
con database, basic request sanity checking and possiblyIP-address checking for
annotations should be sufficient. The protocol does not need to be encrypted or
binary. Checksum protection over a Decomate II session identifier can be added
if concerns are voiced, and annotations can be submitted through a standard De-
comate II Broker session.

To prevent extensive code lists to be hard-coded in the associated programs
for internal readability reasons and user feedback (e.g., for translating link codes
to semantic link names), and to retain sufficient flexibility in Lexicon structure, a
lookup table should be uploaded to any Lexicon client on request. Typically this
is done on initial contact. All programs should base their behavior on this lookup
table and translate the short transmission codes to the expanded code directly upon
reception of the transmission code. Additionally this extra lookup table facilitates
multi-lingual operation.

Effort must be taken to prevent any double transmission of information. Given
the main purpose of the Lexicon (to assist in network browsing), new concepts can
only be added to the client network by two actions: either by direct retrieval of

Deliverable 4.1 Final/ 1.0 37

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

4657

7652

8865

1237

9341

3445

7654

1867

9896

7098

2
3

436

5

1

1

5
2

1

Figure 5.2: A random Lexicon content abstract

concepts through a terminology search, or by expanding a concept to see the con-
cepts surrounding it. The protocol should reflect this situation by allowing all re-
quired concept information to be uploaded to the client at initial concept retrieval
time. Concept information includes:ID, readable name, and the links leading
away from the concept.7 Link information includes link type and theID of the
concept the link leads to. There is a difference between initial (direct) concept re-
trieval and follow-the-link (indirect) concept retrieval. Directly retrieved concepts
should be immediately surrounded by neighboring concepts, i.e., all the neighbors
should be retrieved as well, including their readable name and link information.
We call thiscascading. Indirectly retrieved concepts however will not require
cascading until the user clicks on them. Because direct retrieval always involves
cascading, we include a single level cascade in the protocol to avoid unnecessary
network load.

As an example of a typical Lexicon communication session, suppose a user
starts with the initial query ‘electronic commerce’ which retrieves two concepts,
‘electronic commerce’ and ‘Internet trade.’ See Figure 5.2 for the associated con-
ceptual network and semantic link codes (meaningless for the moment).

The following example starts after the client has connected to the Lexicon
Server; the server send the greeting string and then waits for client requests. The

7Although abstract links are bidirectional in nature, actual Lexicon links are directed. A com-
plete link is formed by two paired links of opposite type in opposite directions.

Deliverable 4.1 Final/ 1.0 38

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

protocol is viewed from the server:> means server transmission,< server re-
ception. Note that there is no explicit ‘end of connection’ code; the protocol is
completely stateless and a client can (and in Web practice, will) quit at any mo-
ment.

Important: This is only an example. The actual protocol will be based on
Z39.50 and likely follow theXML nested record structure.

> Decomate-II Lexicon V1.7
< L
> S 1="broader term",2="narrower term",3="part of", ...
< T "electronic commerce"
> C 7652="Internet trade",1=4657,6=8865; \

4657="open protocols",2=7652,4=8865,7=5911; \
8665="Linux",5=4657,2=7654,5=7652,1=5911,7=2243; \
7654="electronic commerce",3=8865,4=3445,2=1237,3=9341; \
3445="teleshopping",3=7654,1=7652; \
1237="amazon.com",1=7654,1=7652; \
9341="EDIFACT",4=7654,2=3445,1=1867,2=7098,5=9896

< C 8865-4657,7654,7652
> C 5911="open source software",2=8865,1=4455,3=6666; \

4657="open protocols",2=7652,4=8865,7=5911

As can be seen, all relevant concept data is transmitted at ‘first contact,’ and
a term query (‘T’) immediately invokes a concept cascade. When the user clicks
on a specific concept, in the example 8865, the client sends this concept’sID

to the Lexicon together with a list of conceptIDs of which the client already
knows the data. The Lexicon Server then returns the missing data, i.e., links to
concepts not already included in the client’s networkand linked to the concept
clicked on. As depicted with concept 4657, the returned concept list may include
concepts that already are in the client’s network but on a different place. It would
be impractical to exclude concept data that already is available outside the scope
of a single concept cascade, since the exclusion information would easily outgrow
the transmitted Lexicon data. The current proposal seems a good compromise.

Also note that the request for lookup table upload (‘L’) can be done at the
client’s discretion. If a link gets interrupted, the client can initiate a new link
and resume operations without any additional synchronization with the Lexicon
Server. A complete client re-initialization for the same reason does not need to
re-connect to the Lexicon Server.

Deliverable 4.1 Final/ 1.0 39

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Chapter 6

The Concept Mapper

As explained in Chapter 4, the Concept Mapper is an integral part of the Infor-
mation Space Browser and shares the same interface as the Concept Browser.
Workpackage 4 however includes several functions that are technically not suited
for including in the Concept Browser. This chapter describes all modules which
are part of the post-processing phase of the Decomate II process, whether they are
included in theISB or in the Decomate II back-end.

6.1 Identifying Duplicate Results

Since several bibliographical databases may contain references to the same doc-
ument, it is likely that one query over multiple databases will turn up duplicated
index records. It is unlikely that these records are exactly equal; library experience
shows that even in catalogs that are made according to the same indexing rules,
significant differences between records may surface. Therefore it is not trivial to
detect duplicated records. Nonetheless a good de-duplicator would be very useful
to clean out the document presentation to the user.

We cannot even assume that author and title of a document will be represented
in duplicated records in exactly the same way, and the other record fields will
show a sufficient variance to preclude any comparison. However, records repre-
senting the same document will to a certain degree contain the same information—
humans would have no significant problem to decide whether or not two records
are referring to the same document. We need an algorithm that supportsfuzzy
matchingof records, and then be somewhat conservative in rejecting assumed du-
plicates.

At SilverPlatter Information Ltd, one of the project partners, the same problem
has been partially solved by the computation of a hash function that maps congru-
ent document records into the same bucket, thereby indicating a large degree of

Deliverable 4.1 Final/ 1.0 40

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

overlap. We assume that we can get access to this hash function and will subse-
quently implement it and assess its applicability to the Decomate II environment.

6.1.1 Place in the System Architecture

It is not trivial whether the de-duplicator should be included in the Broker (or find
another place in the back-end), or should be an integrated part of the Advanced
Information Browser and thus be included in the Java front-end.

An advantage of including in the back-end is that the de-duplicator then can
be used forall database queries, and not only for those which are initiated by the
Concept Browser. This effectively increases the functionality of the whole system.
Disadvantage, obviously, is that this module then must be included after the core
functionality has been established, since Workpackage 4 is scheduled for delivery
later than 3.

When duplicated records are detected, a decision must be made which record
to display and which to hide. It seems logical to give priority to records for
which the corresponding document is available in the local library. However, it
might happen that the record from a remote library is much more extensive. Elec-
tronic documents might be available both locally and remotely—possible down-
load costs then come into play.

The pragmatic solution is to display the most extensive record, or even to
aggregate information of several records into one compilation. Any availability
of electronic versions of the document should be indicated. When a user wants
the electronic document, the available options should be shown with their price
and possibly delivery time, or ‘network distance.’ Physical documents’ locations
can be shown at the same time. This separation between index record and actual
documents should not really hamper the user, and offering some choice in storage
locations is a logical concept.

Since this choice must be made by the user, it is inevitable to upload the doc-
ument availability information to the user’s browser at some point. The decision
where to put the de-duplication code influences this moment in time. When the
de-duplicator is put inside the Concept Browser (in the user’s Web browser), all
document availability information must be uploaded at query answer time, to build
the appropriate user interface. When the de-duplicator is built into the Broker, the
availability information can be held back until the user actually requests it. Since
it is nowhere certain that every document index record that is turned up by the
database back-end will actually be of interest, and since retrieving all this infor-
mation can be time-consuming, it seems best to delay the uploading of document
location information for as long as possible.

Other reasons exist that favor a place in the back-end, e.g., the tight coupling
between Document Servers and the back-end (for security and accounting

Deliverable 4.1 Final/ 1.0 41

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

control), and policy decisions about document source availability, possibly even
including network outages. It is much more convenient to have this information
centralized in the back-end than included in code for the front-end.

Summarizing, we decide that the best place for the de-duplicator is in the back-
end. This sets the de-duplicator apart from the Advanced Information Browser. It
should be considered a separate module, that ‘by coincidence’ ended up in Work-
package 4. Implementation should be done in the same way as for the rest of
the back-end, i.e., in C++, and the module should be part of the regular version
control system of the back-end.

6.2 Document Location Discovery

Even more fuzzy than the de-duplication described in Section 6.1 is the task of
locating electronicversions of a document. It may be the case that after de-
duplication, the most extensive document index record has been presented to the
user while anotherDIR contained a reference to an electronic document. Or that
a record has been retrieved from a database that did not contain electronic ref-
erences,1 while there is an electronic copy available from an unrelated database.
Both situations clearly are undesirable.

Another scenario could be that several electronic documents are available, but
not all at the same price. One document might be part of a university collec-
tion, which means that it is for free for people affiliated to that university but
unavailable to others. The same document might also be available on the basis of
pay-per-view directly from the publisher, which makes it unattractive for univer-
sity staff members with a local subscription but the only alternative for company
users.

The most sensible thing to do seems to search in one or more article databases
with location information that are in the Decomate domain. The problem is how
to create a query that has a very high probability of finding the indexing record in
such an article database. For specific publishers, using their own document code
might be a good way out. Of course, the real solution will be that all databases
use the same universal document identifiers, but that is not to be expected in the
near future.

In any case, a solution to this problem is much more likely to come from
electronic commerce research than from information retrieval research. Many
projects concentrate on information brokering, and document brokering is based
on the same principles. Eventually, external intermediate brokers might be in-

1This can happen when a user specifically restricts the search to a few databases.

Deliverable 4.1 Final/ 1.0 42

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

volved to actually solve the problem for the individual user (SilverPlatter Ltd.
comes to mind here). In any case, electronic document source suggestions must
be finely tuned to the user and his/her environment. Generic solutions probably
are not feasible; it seems more likely that every library system needs its own set
of options and rules.

As with the de-duplication, the correct place for the document discovery mod-
ule probably is the back-end and not the Concept Browser. Much of the required
information will be available from the individual databases and from the Deco-
mate II Meta-Database, and only the back-end has the specific user information
such as access rights readily available.

6.3 Result Ranking

An essential task of the Information Space Browser is to present the retrieved
document index records in a certain sort order. The database back-ends often
offer some explicit sorting, but these sort orders are only relative to their own
output. Some post-processing (merging) by the Concept Mapper is inevitable.
Merging is only possible on a relative scale, such as the order of the alphabet,
with deterministic ‘positions’ of the various document records.

The ranking most wanted is by relevance, with the most relevant document
index record on top of the list. For obvious reasons this is by no means trivial.
Many databases in Decomate II offer some form of relevance ranking, but the
used algorithms are not always known (Zebra) and the various algorithms are
most likely not mapped onto the same scale. It would be impossible to calculate
the relevance ratio of documents coming from separate databases—the number 1
relevant document of one database might very well be significantly less relevant
than the number 10 relevant document of another database.

For practical purposes we therefore must assume that all results returned by
the back-end areunsorted, and do all the sorting ourselves. A workaround could
be to present the resultsper databaseand keep the database sort order.

6.3.1 Relevance Ranking

There are some obvious ways to rank documents that might be of interest to users.
One is on reversed record entry time, with the newest document on top. Alpha-
betical author ordering, or grouping by publisher, might be useful to some, as is
grouping by availability (electronically, locally, external order). The main order-
ing of interest however isrelevance ranking, with the most relevant document on
top.

Deliverable 4.1 Final/ 1.0 43

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Of course relevance ranking is the main topic of much cutting-edge research,
and despite many years of research no universal solution has been found yet. In
Decomate II, we cannot rely on heavyweight statistics or other computationally
intensive methods requiring an extensive full-document database, which rules out
most of the current scientific approaches.

The only data which we can use for relevance ranking in Decomate II is the
actual content of the retrieved document index records—the real documents are
only rarely available in electronic format, and often as scan (TIFF) files, unsuitable
for processing. If this contents does not contain an abstract, as will often be the
case, it is an almost hopeless task to provide any ranking at all. Other ranking
systems, such as on author name, would still work well under such circumstances.

Given a list of query results with abstracts, to provide any ordering we still
need some reference of what would be the most relevant document. The plain
Boolean keyword query as sent to the back-end would be too sparse a source for
such a reference. But given that the Boolean query has been compiled by the
front-end (Concept Browser), much more information about the user’s wishes is
known. This leads to communication between the two halves of the front-end, the
Concept Browser and Concept Mapper, see Figure 3.2 on page 8. See Section 6.5
for a discussion of Relevance Feedback.

As described in Section 4.3.5, it seems a good idea to move at leastsome
database record filtering to the result ranking module. Queries containing ‘and’
and ‘not’ operators might be too strict in throwing away database hits. Moving
these operators from the hard, Boolean database query to the softer relevance
ranking module will cause a lower ranking of document records that contain the
limiting words, yet they are still in the result list. If other words in the document
records favor a high relevance ranking, they will still end up high on the list.

6.4 Mapping Query Results into the Browser

To give a good indication to the user which concepts in his or her query seem to
be related to retrieved documents, it is best to show the index records as clickable
dots on the concept map itself.

A trivial way to implement this is to show the document with all the concepts it
shares a keyword with. This leads to multiple appearance of most documents, and
gives no further clues about which concept(s) it matches best. Mathematically
it is possible to calculate the single point in concept space where the document
would be at the conceptual center of gravity (cf. the vector model inIR research),
but that would mean almost nothing to the user because the concept space itself
might (will) be mostly unordered. In practice, we suppose a combined approach
will work best: showing the record in a few concepts where it seems to fit best.

Deliverable 4.1 Final/ 1.0 44

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Optionally the user could be offered the feature to ‘collapse’ all concepts re-
lated to a record into one complex concept, which is from then on used as a single
unit with which queries can be conducted. The explicit availability of an index
record, possibly including an abstract, might further enhance the semantic content
of the new concept and increase the concept’s value in relevance feedback.

6.5 Relevance Feedback

Given that a user has compiled a query and that the back-end has returned the
search results, the Concept Mapper can update the network map with the retrieved
document index records. In order not to clutter up the map with meaningless
speckles representing documents, we indicate successful2 concept matches by a
simple graphical change of the concept. In Figure 6.1 the circle surrounding the
concept dot signals the availability ofDIRs. The size of the circle could be an in-
dication of either the number of matches, or the calculated ‘quality’ of the match.

By left-clicking on the encircled concept the user asks for a breakdown of the
retrieved documents associated with the concept. In case the concept has not yet
been cascaded, this is being done at the same time. The document index record
list is shown to the user in the form of a pop-up window, not disturbing the layout
of the underlying network map.

TheDIR list is closely comparable to a standard Decomate II result list, ordered
on relevancy, with one difference. The user can check the individualDIRs as being
‘relevant’ or ‘not relevant’ and re-submit the network again. Because essentially
the user now has given more terminology information to the network, the Concept
Browser should be able to compile a better Boolean keyword query, using terms
available in theDIRs of both the relevant and the irrelevant documents.

Alternatively the newly found terminology could be used to expand or refine
the current network, leading to the addition or deletion of concepts, which in turn
would bring in more terminology (negative and positive). A combination of di-
rect query modification through the document’s terminology and through concept
terminology is also possible.

It is especially this aspect of the Advanced Information Browser that should be
carefully researched; relevance feedback is recognized as one of the most effective
forms of query refinement, but over-enthusiastic use of the mechanism can easily
lead to a decrease in information retrieval effectiveness.

2Of course, it is a matter of statistics to decide whether a retrieved document truly matches a
concept or not, unless documents are explicitly connected to concepts, e.g., by documentalists.

Deliverable 4.1 Final/ 1.0 45

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Figure 6.1: Mapping of records into the network

Deliverable 4.1 Final/ 1.0 46

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Chapter 7

Implementation Schedule

Dec 1998 Start of Implementation
Jan 1999 Alpha release of de-duplication and doc tracing stubs
Feb 1999 Beta release of de-duplication and doc tracing stubs
Mar 1999 Final release of de-duplication and doc tracing stubs
Apr 1999 Prototype of Information Space Browser in Tcl/Tk
May 1999 Alpha release of de-duplication and doc tracing
Jun 1999 Lexicon implementation in Zebra, existing thesauri only
Jul 1999 Beta release of de-duplication and doc tracing
Sep 1999 Specialized Lexicon content
Sep 1999 Alpha release of Information Space Browser in Java
Oct 1999 Beta release of Information Space Browser
Nov 1999 End of Implementation

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Alpha dedup stub Alpha dedup

Lexicon

Beta dedup

Alpha ISB

Contents

Final dedup stub

Beta dedup stub

Final ISB

Beta ISB

Final dedup

Proto ISB

Deliverable 4.1 Final/ 1.0 47

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Bibliography

Aitchison, J. and Gilchrist, A. (1987).Thesaurus Construction. Aslib, London. 2nd
edition.

Aslandogan, Y., Thier, C., Yu, C. T., Zou, J., and Rishe, N. (1997). Using Semantic
Contents and WordNet in Image Retrieval. In Belkin, N. J., Narasimhalu, A. S., and
Willett, P., editors,Proceedings of the 20th ACM SIGIR Conference, pages 286–295.

Blair, D. and Maron, M. (1985). An evaluation of retrieval effectiveness for a full-text
document retrieval system.Communications of the ACM, 28(3):4–22.

Bodner, R. and Song, F. (1996). Knowledge-based approaches to query expansion in
information retrieval. InLecture Notes in Computer Science, volume 1081, pages
146–158.

Carbonell, J. and Thomason, R. (1986). Parsing in biomedical indexing and retrieval. In
AAMSI-86.

Chen, H. (1995). Machine Learning for Information Retrieval: Neural networks, Sym-
bolic Learning and Genetic Algorithms.Journal of the American Society for Infor-
mation Science, pages 194–216.

Cooper, J. W. and Byrd, R. J. (1997). Lexical Navigation: Visually Prompted Query
Expansion and Refinement. In Allen, R. B. and Rasmussen, E., editors,Proceedings
of the 2nd ACM International Conference on Digital Libraries.
http://www.ibm.research.com/people/j/jwcnmr/ .

de Cock, R. (1998). Frankenstein Returns. Personal communication, Decomate-II Project.

Fitzpatrick, L. and Dent, M. (1997). Automatic Feedback using Past Queries: Social
Searching? In Belkin, N. J., Narasimhalu, A. D., and Willett, P., editors,Proceedings
of the 20th ACM SIGIR Conference, pages 306–313.

Gruber, T. (1993). A translation approach to portable ontologies.Knowledge Acquisition,
5(2):199–220.

Hoppenbrouwers, J. (1997).Conceptual Modeling and the Lexicon. PhD thesis, Tilburg
University.
http://infolab.kub.nl/people/hoppie .

Deliverable 4.1 Final/ 1.0 48

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Hoppenbrouwers, J. (1998). Browsing Information Spaces. In Prinsen, J., editor,Interna-
tional Summer School on the Digital Library 1998, Tilburg, The Netherlands. Ticer
B.V.
http://infolab.kub.nl/people/hoppie .

Howard, H. (1992). Measures that discriminate among online searchers with different
training and experience.Online Review, 6:315–327.

Jansen, B. J., Spink, A., Bateman, J., and Saracevic, T. (1998). Real life information
retrieval: A study of user queries on the web.SIGIR Forum, 32(1):5–17.

Kaminsky, J. (1969).Language and Ontology. Southern Illinois University Press.

Lancaster, F. (1986).Vocabulary Control for Information Retrieval. Information Re-
sources Press, Arlington VA.

Lesk, M. (1998). “Real World” Searching Panel at SIGIR ’97.SIGIR Forum, 32(1):1–4.

Maulding, M. L. (1991).Conceptual Information Retrieval: a case study in adaptive par-
tial parsing, volume 152 ofKluwer international series in engineering and computer
science. Kluwer Academic Publishers.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., and Miller, K. (1993). Introduction
to wordnet: An on-line lexical database. Technical report, Princeton University.

Miller, U. (1997). Thesaurus Construction: Problems and their Roots.Information Pro-
cessing and Management, 33(4):481–493.

Milstead, J. (1992). Methodologies for subject analysis in bibliographic databases.Infor-
mation Processing and Management, 28:407–431.

Ousterhout, J. K. (1994).Tcl and the Tk Toolkit. Addison-Wesley.

Papazoglou, M. (1997). Knowledge Navigation and Information Agents: Problems and
Issues.

Papazoglou, M., Weigand, H., and Milliner, S. (1998). TopiCA: A Semantic Framework
for Landscaping the Information Space in Federated Digital Libraries.

Parsaye, K., Chignell, M., Khoshafian, S., and Wong, H. (1989).Intelligent Databases:
Object-Oriented, Deductive Hypermedia Technologies. John Wiley and Sons, New
York, NY.

Robinson, M. and Bannon, L. (1991). Questioning representations. In Bannon, L., Robin-
son, M., and Schmidt, K., editors,Proceedings of the Second European Conference
on Computer-Supported Cooperative Work, page 219.

Salton, G. (1991). Developments in Automatic Text Retrieval.Science, 253.

Deliverable 4.1 Final/ 1.0 49

Jeroen Hoppenbrouwers TU/Infolab DECOMATE-II

Salton, G. and Buckley, C. (1990). Improving retrieval performance by relevance feed-
back.Journal of the American Society for Information Science, 41(4):288–297.

Salton, G. and McGill, M. (1983). Introduction to Modern Information Retrieval.
McGraw-Hill, New York, NY.

Schatz, R. et al. (1996). Interactive Term Suggestion for Users of Digital Libraries. In
1st ACM International Conference on Digital Libraries, pages 126–133. Bethesda.
MD.

Shaw, W., Burgin, R., and Howell, P. (1997). Performance standards and evaluations in
IR test collections: vector space and other retrieval models.Information Processing
and Management, 33(1):15–36.

Sowa, J. F. (1983).Conceptual Structures, information processing in mind and machine.
Addison-Wesley, Reading, Massachusetts.

Ulijn, J. M. and Strother, J. B. (1995).Communicating in Business and Technology: From
Psycholinguistic Theory To International Practice. Peter Lang GmbH, Frankfurt.

Vossen, P. (1997). EuroWordNet: a multilingual database for information retrieval. In
Proceedings of the DELOS workshop on Cross-language Information Retrieval,
March 5-7, 1997, Z̈urich.

Vossen, P., Diez-Orzas, P., and Peters, W. (1997). The Multilingual Design of the Eu-
roWordNet Database. InProceedings of the IJCAI-97 workshop Multilingual On-
tologies for NLP Applications, August 23, 1997, Nagoya.

Weigand, H. (1990).Linguistically Motivated Principles of Knowledge Base Systems.
Foris Publications, Dordrecht, Holland.

Wiederhold, G. (1995). Value-added mediation in large-scale information systems. In
Database Applications’ Semantics, IFIP TC-2 DS-6.

Wiesman, F. (1998).Information Retrieval by Graphically Browsing Meta-Information.
PhD thesis, Maastricht University, The Netherlands.

Woods, W. A. (1997). Conceptual Indexing: A Better Way to Organize Knowledge.
Technical report, Sun Microsystems Laboratories.
http://www.sunlabs.com/technical-reports/1997/abstract-61.html .

Deliverable 4.1 Final/ 1.0 50

