

Tilburg University

The decomate result optimizer

Hoppenbrouwers, J.J.A.C.

Published in:
Proceedings of the Final Decomate II Conference

Publication date:
2000

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Hoppenbrouwers, J. J. A. C. (2000). The decomate result optimizer. In N. Gallaert (Ed.), Proceedings of the
Final Decomate II Conference (pp. 20-29). Universitat Autonoma de Barcelona.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 31. Jul. 2022

https://research.tilburguniversity.edu/en/publications/d5345e5c-9711-489c-9bba-dbef464f9f49

The Decomate Result Optimizer

Jeroen Hoppenbrouwers
Infolab, Tilburg University

hoppie@kub.nl

Abstract

The Result Optimizer is a relatively independent module in Decomate II that
has the task of optimizing the results returned by the main database back end.
Optimizing includes result set merging, de-duplication, ranking, and caching. This
article explains the design of the Result Optimizer and summarizes most of the
algorithms used.

1 Result Optimizing in Decomate II

Within the Decomate II Project1, a large number of bibliographical and full-text
databases have been unified under a generic query protocol and user interface (Place,
1999). The raw results that are returned by the various database back ends through the
Multi-Protocol Server (MPS) can be optimized in several ways (Hoppenbrouwers and
Paijmans, 2000). Decomate II concentrates on four optimizations:

Result Set Merging If a query is sent to multiple databases, each database will return
its own result set. The Result Optimizer must merge these separate sets into one
virtual result set, while maintaining the individual references to the databases for
future use.

De-duplication When queries are sent to multiple databases, and in practice also
within one database, there is a high probability of receiving multiple references
to the same document. If we want to represent the multiple databases as one
single virtual database, de-duplication of the results is required.

Ranking The merged and de-duplicated result set should be ranked in one of several
possible orders. Likely ranking candidates are on plain data fields, such asAU-
THOR and YEAR, and more advanced ways such as by relevance to the query.
This advanced ranking needs more information than what is available in the re-
sult set(s); this information must be supplied by the Broker, possibly through the
Concept Browser.

Document Tracing When users query a selection of databases (possibly one single
database), it can happen that a document reference is retrieved for which no full
text is available in the selected database(s). However, full text might be available
via pointers to full text in another Decomate II database. The Document Tracer
should alert users to this situation and add links to the full text to the result.

1http://www.bib.uab.es/decomate2

1

N

Distributed, heterogeneous databases

Users’ Web Browser

Decomate Broker

Multi-Protocol Server

Result Optimizer

Figure 1: Decomate II Architecture

In this paper, the first two optimizing options will be discussed in detail. Ranking will
be touched upon, and Document Tracing will not be presented at all. We refer to other
Decomate documents and future developments for this information.

The Decomate II architecture can be summarized as shown in Figure 1. The user has a
Web browser that accesses the Decomate Broker. The Broker queries the server back
ends through the Multi Protocol Server, formats the results inHTML, and returns them
page by page to the user (Hoppenbrouwers and Paijmans, 2000).

Key feature of this architecture is that result sets are not handled in one big trans-
action, but partitioned in pages, alike the Z39.50 protocol. The length of a page can
be tuned by the Decomate II maintainer and typically is 15 references. After a query,
only the number of hits in each database is returned and passed back to the Broker.
It depends on the configuration of the Broker what happens next. Usually, the user is
presented a list, enumerating the hit counts per database so that (s)he can select which
database results to view. A subsequent request to the Broker causes a page of results to
be retrieved from the database, usually in brief record format. Subsequent drill-down
clicks then retrieve full records one by one.

2

Note that neither the Broker nor theMPSstore the result list of any database query—
they function on a pass-through basis and only maintain limited session memory to
implement ‘go back’-functionality. This complete lack of result memory significantly
affects the capability of the Decomate II system to execute operations on complete
result sets. Therefore we had to add another module to the Decomate architecture
which major purpose in life is to add this result set memory and carry out operations
on it.

As shown in Figure 1, a new module is placed in between theMPS and the Broker.
This is the only place where the complete result list of a query can be captured. It
also means that the new module, even if it does not do any actual result optimization,
can function as aproxy cachefor the MPS. It relieves the database back ends from
repetitive query execution2 when a user requests another page of an already executed
query. This is an unintended side-effect of the Optimizer, but it can be quite useful at
times. More complex implementations could add background query execution, where
queries from (especially remote) databases are still running and are still being collected
by the Optimizer, while the front-end can already retrieve the first ‘page’ of results (not
yet truly optimized though).

This architecture also provides for some graceful ‘fail active’ degradation in case
of system failures. When the Optimizer breaks down, the Broker can simply bypass
the Optimizer and contact theMPS directly. This causes the system to drop all result
optimizing functionality, but the queries will still get to theMPS and the user interface
will not be influenced in a way that makes work impossible.

Lastly, a separate implementation of the Result Optimizer offers better scalability.
Result optimizing is a memory andCPU intensive process. The split design allows to
run the Optimizer on a separate machine, where it does not degrade the performance of
the MPS. Whereas theMPS takes care of the typical network problems, the Optimizer
can concentrate on its core task and since it stays within the local area network, it will
experience far less communication problems.

2 The Optimizing Process

Two aspects mostly influence the architecture and design of the Optimizer: action se-
quencing and response time requirements. Action sequencing means that some actions
cannot be performed before other actions have been fully completed. The most obvious
example of this is the actual de-duplication; this cannot take place on partial result sets.
Response time requirements dictate that no default action should ever take more than
a few seconds, preferably less than two. This excludes activities such as the tracing of
all full text documents for all returned references.

Another design factor is the browser-oriented architecture of Decomate II. It is
impossible to send lagging updates to a browser; any updates must be triggered by a
user action. For example, it is not possible to present a page of references and fill in
full text links ‘on the fly’ while the user is reading the page.

A complete optimizer run consists of several stages that are sequenced. The Broker
first sends a search request to theMPS. The Result Optimizer intercepts this request,
strips out the Optimizer Data Block, and forwards the rest of the request to theMPS

(although it may store the query for future use). TheMPSperforms the query and sends
back the results, typically a list of hits per queried database.

2Or repetitive partial result set submission, if they support both search and present requests.

3

The Result Optimizer takes in this hit list and issues a present request to theMPS,
ordering up all full records previously retrieved by the databases. The Result Optimizer
then caches the complete result sets and fires the merger, the de-duplicator, and the
ranker. After processing, the Optimizer forwards the number of ‘virtual hits’ to the
Broker and leaves the virtual result set in the cache.

Depending on user actions, the Broker comes back to the Optimizer with requests
for presentation of specific pages, one at a time. Users might want to access the original
database sets, in which case the Optimizer passes the request straight through to the
MPS. Requests for pages from the virtual result set are served from the cache, and
therefore very fast. For each page, the Optimizer might need to run the Document
Tracer, after which the enriched result can be passed to the Broker.

The result cache expires after a given timeout, or when the Broker signals that the
session is being canceled. Note that a flushed cache can be completely restored by
re-issuing theMPS query, the Optimizer run, and the Document Tracer run.

2.1 Virtual Result Sets

A common feature of all activities by the Result Optimizer is that they produce a new
result set, which is deduced from possibly several ‘original’ database result sets. We
call this new set thevirtual result set, because it is artificially generated and only exists
in the Result Optimizer, not in any contributing database.

However, from the Broker’s point of view, the optimized virtual result set is a nor-
mal result set like any other. This implies that the Broker shouldask for the virtual
result setjust as it asks for any other set. The Broker should provide a proper result set
ID and enough information to construct the virtual result set, including de-duplication
limits and ranking information.

A standard database chunk ofXML , such as included in all search requests, looks
like the following.

<database>
<DatabaseName>olc</DatabaseName>
<DatabaseServer>tcp:dbiref.kub.nl:1289</DatabaseServer>
<ResultsetNaming>Yes</ResultsetNaming>
<Profile>usmarc</Profile>
<Authentication>***********</Authentication>

</database>

For the virtual result set, this database block is replaced by a specialized ‘Opti-
mizer’ block which contains the required information for the Result Optimizer:

<Optimizer>
<OptimizeLimit>100</OptimizeLimit>
<RankingInfo>

<Order>Relevance</Order>
<Keyword>

<Term>Tinbergen</Term>
<Weight>0</Weight>

</Keyword>
<Keyword>

<Term>Value chain</Term>
<Weight>1</Weight>

</Keyword>
<Keyword>

<Term>Micro-economics</Term>
<Weight>-1</Weight>

4

</Keyword>
</RankingInfo>

</Optimizer>

Usually, the database chunks are encapsulated in a search or present request, and
preceded by the standardXREP fields such as sessionID and result setID.

2.2 The Optimize Limit

By tuning the OptimizeLimit, the Broker can control how much effort and time the Re-
sult Optimizer will spend on creating the virtual result set. During a typical first search,
the Broker sets the limit to a low number of hits, such as 20. This means that the Result
Optimizer will only create the virtual result set when the total number of hits of all
individual result sets together is 20 or less. Since optimizing requires a download of all
full records from all result sets, followed by relatively costly comparison and ranking
operations, optimizing should not be done by default on result sets that contain more
than a limited number of records. Whenever the Optimizer decides not to optimize, the
number of hits in the virtual result set is reported back to the Broker as zero.

A subsequent search request from the Broker (usually initiated because the user
decided that the retrieved result sets contain a number of records that is sufficiently
low to wait for optimizing) can have an OptimizeLimit that is high enough to equal
or exceed the total number of hits in all individual result sets. This forces an optimize
run. Local considerations and available processing power for the machine that runs
the Optimizer might require other limits for optimizing, such as 100 for the lowest and
1000 for the highest allowed values. Users might be offered to set the limit themselves
as well, guarded by a system-wide upper limit.

The advantage of this preset OptimizeLimit is that the clients themselves (users
through the Broker) can decide what waiting time is acceptable. Any other method,
such as a fixed limit of 150, will take this decision away from the users, and makes
them wait unnecessarily long when doing ‘probe queries’ while preventing lengthy but
requested optimizing runs on large result sets.

2.3 Handling Virtual Result Sets

Three features set virtual result sets apart from the standard database sets: they are
computationally expensive to create (download time plus modification time), they are
memory-intensive because they need to be stored locally in the Result Optimizer, and
they potentially obscure information from the user after de-duplication.

After creation, a virtual result set must stay available for a period of time in which
the Broker can issue present requests for parts of the set. To save memory, result sets
are only stored for a specific amount of time, using the standard expiration approach.
On top, when the Broker gets notified specifically that a user quits and sends a ‘delete
session’ message, all result sets belonging to this session are destroyed. The cache part
of the Result Optimizer keeps tabs on which result sets are locally cached and which
requests must be passed on to theMPS. Unknown requests are always passed on.

Currently, the Result Optimizerdoes never delete information. The de-duplication
process only groups equal records together, treating them as one big record with sub-
divisions. All information that comes out of the databases is retained and passed on to
the Broker. It is up to the Broker to decide which part(s) of the record to display. Most
current implementations retain the same basic grouping idea, and present equal records

5

to users as large records with more than one full document record in them. The users
then can visually determine whether the grouped records are actually duplicates or not,
and even select which of the databases to go to for the full document.

3 De-duplicating Result Sets

Previous work has concentrated mainly on de-duplication to detectexactduplicates,
either for final bibliographical database merging or for copy detection (Campbell et al.,
2000). Much effort is spent on finding (near) perfect hash functions to condense docu-
ments or records into small, but (near) unique signatures. However, in the Decomate II
system, the de-duplication process must have a considerable degree of fuzziness to
allow for closeduplicates. Various databases (organizations) have slightly different in-
dexing procedures. Some might store full author first names, while others only store
their initials. The de-duplicator must catch these slight variations.

3.1 Starting Point

Since 100% accurate de-duplication is a difficult, if not impossible task, it seems ac-
ceptable to aim for a performance that approaches 80%. We assume that having 20%
of all duplicates still in the result set is less bad than having 20% of non-duplicates
wrongly grouped with another record, so the main aim of the algorithm should be to
flag duplicates if and only if there is a high degree of overlap between them.

Analysis of several bibliographical databases available through a Decomate system
leads us to select four main ‘fields’ to classify document records with: authors, title,
source, and year of publication. Most databases provide these fields right away; in case
of mismatches, mapping instructions can be retrieved from the meta-database. More
specific fields, such as page ranges and publisher, can either be added to the source or
be skipped right away (the 80% rule).

3.2 Field Smashing

All incoming fields are firstsmashed. This is a mostly generic procedure that does the
following to the incoming string:

� Convert it to lower case.

� RemoveHTML escaped characters.

� Remove all non-alpha-numerical characters.

� Suppress all runs of one to three characters.

� Collapse all runs of more than one space into one space.

Provisions for exceptional processing according to field type have been made, but cur-
rently only theSourcefield (usually containing the journal name) is treated differ-
ently. This is because journal names often contain subtitles. TheSourcesmasher only
smashes the journal name up to the first occurrence of a colon ‘:’. Everything after the
colon, including the colon itself, is disregarded. Improvements can be expected when
characters with diacriticals are not removed, but replaced by standard characters (¨e by
e, for example).

6

After individual field smashing, the resulting smashed strings are concatenated and
sorted alphabetically (removing doubled elements), so thatsignature stringsremain.

As an example, several existing bibliographic references are smashed into signa-
tures in the next section.

3.3 Examples
Original Reference Boll, S.; Klas, W.; Battaglin, B. Design and

Implementation of RMP - A Virtual Electronic Market Place. SIGMOD
record : a quarterly publication of the ACM Special Interest
Group on Management of Data (T06853) vol.27 (1998) nr.4 p.48-53

Authors boll klas battaglin

Title design implementation virtual electronic market place

Source sigmod record

Year 1998

Signature 1998 battaglin boll design electronic implementation klas
market place record sigmod virtual

Original Reference Sussman, H.M.; Dalston, E.; Gumbert, S. Original Papers -
The Effect of Speaking Style on a Locus Equation Characterization
of Stop Place of Articulation. Phonetica : internationale
Zeitschrift fuer Phonetik (T05374) vol.55 (1998) nr.4 p.204-225

Authors sussman dalston gumbert

Title original papers effect speaking style locus equation
characterization stop place articulation

Source phonetica

Year 1998

Signature 1998 articulation characterization dalston effect equation
gumbert locus original papers phonetica place speaking stop style
sussman

Original Reference Flora, Jan L. Presidential Address - Social Capital and
Communities of Place. Rural sociology : devoted to scientific
study of rural and small-town life (T00202) vol.63 (1998) nr.4
p.481-506

Authors flora

Title presidential address social capital communities place

Source rural sociology

Year 1998

Signature 1998 address capital communities flora place presidential rural
social sociology

Original Reference Andre, E.; Rist, T.; Muller, J. WebPersona : a lifelike
presentation agent for the World-Wide Web. Knowledge-based
systems (T08576) vol.11 (1998) nr.1 (September) p.25-36 (24 refs.)

Authors andre rist muller

Title webpersona lifelike presentation agent worldwide

Source knowledgebased systems

Year 1998

Signature 1998 agent andre knowledgebased lifelike muller presentation
rist systems webpersona worldwide

7

3.4 Matching signatures

Smashing already provides a high amount of protection against differences in record
entry, but it cannot protect against typos in names or titles. Therefore, the current
system implements the following algorithm, which provides for some margin of error
in record matches. It is also designed for efficient execution.

� Every element of a signature is added to a lookup table, which is an index from
element string to recordID with multiple IDs per element possible. Essentially,
the lookup table is the inverted index of all signature elements.

� Using this inverted index, a second table is built that contains the number of
matches between each individual element of a signature and all other signatures
that contain the same element. If two signatures share five elements, their match
counter reads five.

� Additional tables are created to form groups of records that potentially match
(using transitivity, if 34 matches 45 and 50, 45 matches 50 as well). ‘Potentially’
means here a rough comparison of signature lenghts; they must be within 20%
equal to be included in the group. This is done to avoid comparing signatures
with huge size differences, which is pointless.

� A limit value is calculated by multiplying the number of elements of the signature
by (currently) 0.85 and rounding to the nearest integer. This is done for each
potentially matching pair of signatures, taking the shortest of them as reference
(but they will be within 20% equal in length anyway). Signatures below a certain
length, currently 5, can never lead to a match.

� All signatures that share more than their limit value of elements with another sig-
nature (quickly determinable through the match table) are considered equal, and
therefore their original index records are considered to represent double docu-
ments. They are gathered in a group. Group merging occurs as soon as required.

The first three steps (together with the smashing process) can be taken on the fly, as
the full records of the databases stream in over the network.CPU capacity usually
is sufficient to outrun the network. The last two steps need to be executed when all
records have been received and indexed.

4 Ranking Result Sets

Ranking of results can be done both by the individual databases and by the Result
Optimizer. Although most databases offer the common forms of field ranking (on
author, title, etc.), this feature is of limited use since the individual result sets must
be merged in the end. Merging sorted lists is somewhat easier than merging unsorted
lists, but it is not at all sure that the individual lists are sorted inexactlythe same way
(dı́ãçrı̈tı̀çåls come to mind). The bottom line is that for merged result set ranking, the
Result Optimizer needs to implement a completely self-sufficient ranking module.

The current Optimizer does not include ranking of result sets that remain on the
contributing servers; only the cached, merged, de-duplicated virtual result set is ranked
by the Result Optimizer. This means two things:

8

Figure 2: The Concept Browser

1. Present requests for individual result sets will only feature rankings if they are
implemented by the remote databases.

2. Ranking of the virtual result set can only be done after the whole set has been
compiled.

The latter is not a surprise, and given the fact that virtual result sets are compiled on
explicit user request only (or by default if their size is less than a low limit), we think
that most users gladly accept a waiting time of several seconds to fully optimize a
long list of document records. Preliminary user studies indicate that this assumption
probably is right.

Two basic types of result ranking can be distinguished: string order and relevance
order. String order is a more or less complex form of the standard alphabetical-
lexicographical ranking algorithm that has been implemented thousands of times al-
ready. It will be used mainly for the author and title fields, and possibly for a reversed
‘order of acquisition or publication’ listing (latest/newest on top).

Relevance order is much more complex, because it does not only involve sim-
ple string ranking but also concept matching and weighing. Since it is difficult to
perform proper relevance ranking with the limited information available in standard
keyword queries such asTinbergen and micro-economics (Hoppenbrouwersand
Paijmans, 2000), we need more extensive data to begin relevance ranking in the first
place.

TheConcept Browser(Fig. 2), an alternative user interface that is intended to guide
users through standard thesauri in order to get better queries, can provide this extra
ranking information. However, this information must be conveyed to the Result Op-
timizer through the Broker in some way. We use the Optimizer Block to hold this

9

information. A preliminary variant of the Optimizer Block including ranking informa-
tion can be found in Section 2.1.

Through the Concept Browser, users can select thesaurus keywords using a two-
dimensional interface and collect query terms in a ‘term bucket’. Optionally, this
bucket can be given a ranking by moving terms up or down in the list. Users who
decide not to provide weight information therefore will not receive relevance ranked
result lists. We might experiment with default rankings according to the position of
words in the Conceptual Network, or using statistical techniques from the field of
Information Retrieval (Hoppenbrouwers and Paijmans, 2000). But ranking the term
bucket manually is a relatively simple and clear mechanism, which we hope will be
understandable by the users and at least helps them creating queries with thepotential
for better precision at the top.

5 Conclusions and Future Work

The Result Optimizing functionality required in the Decomate II system has been im-
plemented as a stand-alone multithreaded server process that can be distributed to any
machine on the network. This approach turned out to be flexible and scalable enough
for production requirements.

The used de-duplication algorithm seems to work well for most databases, but is
still not sufficiently thorough for all combinations of all available databases. Further
tuning is required to take care of specific formats and fields. We expect that eventually
the de-duplicator will score significantly above the 80% correctness that we set as a
target at the beginning of the project.

Future work will include further development of the Concept Browser and the link
with the relevance ranking, in-depth research into the qualitative and quantitative per-
formance of the de-duplicator, and extensive user feedback to investigate whether the
offered services meet the users’ demands and expectations.

References
Campbell, D. M., Chen, W. R., and Smith, R. D. (2000). Copy Detection Systems for Digital

Documents. In Hoppenbrouwers, J., de Souza Lima, T., Papazoglou, M., and Sheth, A.,
editors,Proceedings of the IEEE Advances in Digital Libraries 2000 (ADL2000), pages
78–88. IEEE Computer Society.

Hoppenbrouwers, J. and Paijmans, H. (2000). Invading the Fortress: How to Besiege Rein-
forced Information Bunkers. In Hoppenbrouwers, J., de Souza Lima, T., Papazoglou,
M., and Sheth, A., editors,Proceedings of the IEEE Advances in Digital Libraries 2000
(ADL2000), pages 27–35. IEEE Computer Society.

Place, T. (1999). Developing a European Digital Library for Economics: the DECOMATE II
project.Serials, 12(2):119–124.

10

