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Empirical Issues in Value at Risk Estimation: 

Time varying Volatility, Fat Tails and Parameter Uncertainty* 

Dennis Bams’ 
and 

Jacco L. Wielhouwer’ 

2 November 1999 

Abstract 
This paper describes alternative approaches to estimate the Value at Risk (VaR) of a position. Four 

methods are compared: the unconditional case, the model with time varying drift (modeled as an AR(l) 

process), the model with time varying drift and time varying volatility (modeled as a GARCH(I,l) process) 

with error terms that are normally distributed, and the model with time varying drift and time varying 

volatility with error terms that are Student-t distributed. Two issues are important. First, different 

specifications for mean, variance and fat tailness lead to different point estimates for the associated 

distribution function and hence to other VaR measures. Second, uncertainty in parameter estimates implies 

that the VaR also is uncertain. The model with error terms that are t-distributed is the preferred model, 

since: (I) the time varying volatility incorporates that recent volatility is a better predictor for the future, (2) 

the time varying volatility makes it possible to use a longer time series which implies less uncertain VaR 

estimates and (3) the fat tail of the distribution is taken care of by the t-distributed error terms. An 

important contribution of the paper lies in the fact that we explicitly take account for parameter uncertainty 

and propose ways to deal with it. 
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1. Introduction 

An important and popular risk management tool for financial institutions nowadays is 

Value-at-Risk (VaR) (see e.g. Jorion (1997) for a thorough overview). It is not only an 
internal management tool to check whether traders are within their limits, but it is also a 

by the Basle Committee prescribed risk measure for the (international) supervisor. 
Formally VaR is the maximum value that is lost over a certain period within a given 
confidence interval. The confidence level reflects ‘extreme market conditions’ with a 
probability of, for example, 2.5% or 1%. 

The measure is based upon the probability distribution of the underlying return 
series. It deals with the maximum loss under extreme market conditions, which occur in 
the left tail of the distribution function of the future market value. More specifically, 
given the market value for which the probability mass of even lower market values is, for 

example, one percent, the change of the current market value to this extreme market 
value is the VaR. 

Crucial for the determination of the extreme future market value, and hence for 
the VaR, is the distribution function of the return on market value. Usually, as allowed by 
the Basle Committee, a normal or lognormal distribution is assumed for the market 
return. Nowadays, an important issue is the desirability of a distribution function that has 
fat tails (see e.g. Embrechts et al. 1997), since it is claimed that the normal distribution 
underestimates the probability in the tail and hence the VaR. An appropriate alternative 
distribution would be the Student-t distribution, since it allows for fatter tails in the 
distribution than the normal distribution. 

A second important issue is the way the parameters of the underlying distribution 
functions are determined. Usually these parameters are estimated using historical data. 
These parameter estimates are plugged into the distribution function and are assumed to 
be given fixed figures. A problem with using point estimates is that in fact these 
parameters still incorporate uncertainty, which is usually reflected in the form of standard 

errors. Uncertainty in the parameter estimates implies uncertainty about the underlying 
distribution function and hence about the VaR. 

In the following we determine the VaR and provide both expected value for the 
VaR and a standard deviation which reflects the uncertainty about the actual VaR. The 
two methods that are mostly used for the estimation of the VaR are Risk-Metrics of JP 
Morgan (JP Morgan, 1994) and historical simulation (see e.g. Jorion 1997 pp. 193-195). 

The Risk-Metrics method describes the possibility of calculating an exponentially 
weighted covariance matrix. If this is not done, using few historical data leads to very 
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uncertain VaR-results (reflected by large confidence intervals around the point estimate). 

But using a long time series leads to an implausible point estimate since it neglects that 
recent data are more representative for tomorrow than older data. The problem with the 

exponential weighted volatility is that it must be kept constant in the prediction of 
volatilities into the future, or otherwise decreases to zero. Besides, a second parameter 

(the decay factor h) has to be estimated. The fact that only recent data have an important 

influence on h implies that this parameter estimate will be very uncertain. 
Since parameter uncertainty is an important issue, we propose a method to arrive 

at a univariate time series of market values for the portfolio under consideration, in stead 
of modeling the multivariate behavior of different economic variables (like interest rates 

and exchange rates). In the latter case many parameters have to be estimated leading to 
higher uncertainty of the ultimate VaR. Moreover only the linear co-movements between 

the different economic variables are incorporated. By evaluating the current portfolio 
composition against the yield curve and exchange rates at historical times, we arrive at a 
time series of portfolio market values that also incorporates the effects and co-movements 
of economic variables that influence the value of the portfolio. The advantage of this 
method is that we arrive at a univariate time series, which requires less parameters to be 
modeled and hence leads to increased efficiency.3 

Four models are compared. First, the simple model in which both the expected 
value and the variance of the underlying return are assumed to be constant over time. 
Usually, the parameters of this model are estimated over a short historical period, since 
this best reflects the current situation in the market. Return observation of periods further 
away are less likely to represent the current situation. Second, we consider an AR(l) 

model for the market value return, to take account of the fact that there is some 
persistence in the level of returns. Third, we consider a GARCH(1,1)4 model that takes 
account of the fact that volatility is time-varying, where error terms are assumed to be 
normally distributed. Fourth, we consider a GARCH(I,l) model where we assume that 
the error term is Student-t distributed. 

We show that the latter model is preferred over the other three models. First, the 
variation in volatility takes account for the most recent volatility regime. Second, the 
Student-t distribution takes account for distributions with more probability mass in the 
left tail. This provides a more accurate picture of the VaR since it better models the 
probability of extreme returns. Third, it leads to lower variability in the VaR, i.e. it is 
more precisely estimated than methods in which an unconditional distribution is 

3 The fact that the series is univariate also simplifies the econometric treatment of more complex models. 
4 For a review of (G)ARCH models we refer to Bollerslev, Engle and Nelson (1994). 
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estimated on a recent sub-sample of the data. In general a lot of historical observations 
are required to arrive at precise parameter estimates, and hence at precise VaRs. 

In the next section we set up the econometric framework for a VaR analysis, 
section 3 describes the return series that is of interest and in section 4 we provide the 
estimation results for the four models that are under consideration. We perform both in- 
sample and out-of-sample analyses. Also, the expected VaRs are given for the alternative 
models together with a standard deviation to reflect uncertainty in the given figure. We 
finish with some concluding remarks in section 5. 

2. The econometric framework for the VaR analysis 

Exposure to downside risk can be summarized in a single number by an estimate of the 
VaR. Jorion (1996) formally defines VaR as “the worst expected loss over a target 

horizon within a given confidence interval”. The extreme future investment value is set 
equal to the quantile that is associated with a probability mass of, for example, a = 0.01 

in the left tail of its probability distribution. We define W, as the investment value at time 

t and R,.r+,v as the return over the interval [t,t + N]. Daily returns are defined with 

continuously compounding, and are denoted by 

W 
r,=ln 2 [ 1 K-l 

and R,,,+, simply follows as the sum of the daily returns in the interval [f,f + N] . Crucial 

for the determination of the value at risk is a probability distribution for the future 
investment value. This distribution is fully determined by the distributions of future 
periodical returns. In the following we deal with normally distributed returns and with 
returns that follow a Student-t distribution. Normal distributed returns are fully 

determined by the first and second moment of the returns. The expected value of R,,,+N 

is defined by P,,,+~ and its volatility by c,!,+~. Under the assumption of normally 

distributed returns the VaR is easy calculated as 

VaR = K 11 - exp]~,,,+, + si&W, kr.r,r+N z, ]I (2) 

where sign(W,) . is +l if W, is positive and -1 if W, is negative, and z, denotes the 

critical value of the normal distribution with a probability mass in the left tail of (z . The 
only unknown parameters in equation (2) are the expected return and its volatility over 

the interval [f,f + N]. In case of Student-t distributed periodical returns, the resulting 
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future distribution of the position of the bank is determined by means of simulation. The 

critical one percent value follows immediately. 
We propose and compare four methods to arrive at a distribution function for 

future returns: (1) the unconditional model, that only uses unconditional estimates for 
both expected value and volatility of normally distributed returns, (2) the AR(l) model, 
that assumes an auto regressive relation for daily normally distributed returns with 
constant volatility, expanding the first model with an auto-regressive part, (3) the N- 
GARCH(l,l) model for daily returns with normally distributed error terms and a 
GARCH( 1 ,l) structure on the volatility, and (4) the t-GARCH(l,l) model for daily 

returns with Student-t distributed error terms and a GARCH structure on the volatility. 
All models are nested into the fourth case, which we will describe in detail. 

In a GARCH(l,l) model the volatility of the return is given by a time varying 

process, where volatility at time t, 0,’ , depends upon the volatility of the day before and 

upon the shock in the return in the previous period. For the return itself we assume that it 
can be represented by an AR(l) model. The complete GARCH(l,l) model with t- 

distributed error terms reads 

r, =P+P,-, +4 (3) 

E, - r(o,a;,e) (4) 

0: = y(J + y,o,?_, + y+;1_, (5) 

The N-GARCH( 1 ,l) model follows after we let the degrees of freedom, 19, go to infinity 

@+a). The AR(l) model with constant volatility follows after 0 + ~0, 1; = 0 and 

yz = 0. The Unconditional model follows after the restrictions B + 03, y, = 0, y2 = 0 

and p = 0 are imposed. Intuitively, the model without restrictions is most flexible since 

it allows for time varying forecasts of return levels, time varying volatility and for fat 
tails in the return distribution. 

All models are estimated with maximum likelihood, where the loglikelihood is 
given by 

(7) 

in the most general case where the error terms follow a Student-t distribution. In the 
special case of normally distributed error terms, the loglikelihood function reduces to 
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1nL = -i~ln(2n,-i~ln(~:)-~~[~]2 (8) 
1 

where T denotes the number of historical observations. Parameter estimates follow after 
application of the Newton-Raphson algorithm. The covariance matrix that is associated 
with the parameter estimates follows from the negative of the inverse of the information 
matrix, I, where the (ij)-th element is given by 

1 = a21nL 
1, I 1 awp, (9) 

and p is the vector that consists of the parameters that have to be estimated. 
We compare the in-sample performance of the four models by testing the 

restrictions that are imposed by the unconditional model, the AR(l) model, the N- 
GARCH( 1,l) model and the t-GARCH( 1,l) model. Formally, this results in a likelihood 
ratio test, where the critical value, X, is defined by twice the difference in loglikelihood, 
which is distributed as a &i-squared distribution where the degree of freedom is 
determined as the difference in number of parameters. 

X=2[lnL,, -lnL,]-X2(n,, -n,() (6) 

where InLu denotes the value of the loglikelihood function in the optimum for the 
unconstrained model, and 1nLa denotes the value of the loglikelihood in the optimum for 
the constrained model. With nu and na we denote the number of parameters in the 
unconstrained and the constrained model, respectively. 

Also, we setup an out-of-sample test in which one part of the data is used to 
estimate a model for the return distribution. This model is applied to calculate the VaR 
for 20 periods ahead (which resembles one month forecast). The VaR then is compared 
with the realized change in the position of the bank over the same period. This procedure 
is repeated for many different periods. In the end we calculate the percentage of the cases 
in which the actual change in position of the bank exceeded the reported VaR. Since we 

calculate the VaR under 99 percent certainty, the percentage of times that the VaR is 
exceeded should not be greater than 1 percent if the model adequately describes the 
behavior of the daily returns. 

In our view, an important observation is that there exists statistical uncertainty 
with respect to the VaR, because the parameter estimates for the underlying return 
distribution are uncertain. This uncertainty is most easily reflected by a confidence 
interval for the reported VaR. The covariance matrix of the parameter estimates reflects 
the uncertainty in the parameters. We take a close look at the special cases of the 

unconditional model and the AR( 1) model, since in these cases the parameters estimates 
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and standard errors can easily be expressed analytically and therefore visualize the 

econometric properties of the parameters. In case of the unconditional model the 
parameter estimates leads to the following easy closed forms for the expected value 

&& 
I I 

and for the volatility 

To reflect the uncertainty in these parameter estimates, the covariance matrix of the 
parameter estimates is usually calculated. In the unconditional model the covariance 

matrix of the parameter estimates is given by 

&40’)= 
^2 

0 
- 0 
T 

2c?-4 o- 
T-l 1 

In the special case of the AR( 1) model, a vector Y of dependent variables is defined as 

(13) 

and a matrix X of explanatory variables is given by 

The estimator for ,U and p follow as the OLS estimator 

0 ; = (AT)-‘A-Y 

and for c2 the estimator is given by 

(14) 

(15) 

(16) 

The associated covariance matrix of the parameter estimates is given by 
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(17) 

An important observation from the covariance matrix of the parameter estimates in 

equations (12) and (17) is that the variances of p and cr’ decrease with the number of 

observations T, and hence that a large sample of observations is required to arrive at 
efftcient estimates. This is in conflict with approaches in which only a recent sub-sample 
of the data is incorporated to arrive at parameter estimates that are conform the most 

recent market developments. This motivates models that allow for time varying expected 
returns and time varying volatility. 

3. Data 

The data over the observed period represent the market value changes of a specific book 
of ING-Bank.5 The book consists of interest rate risks in both NLG and DM. 
Furthermore, on average there is a long position in the book, i.e. the downside risk was 
related to increases in interest rates. The position ultimo April 1998 is valued against 

historical yield curves. The curves used are the daily swap-curves from the period of 
January 24, 1991 until April 30, 1998. This results in market value changes on a day to 

day basis. These data not only represent the changes in the interest rates and the slope of 
the yield curve, but also the changes in the spread between German and Dutch interest 
rates, since the part of the (investment) portfolio that is in German instruments is valued 
against the German interest rates. So, we consider historical changes of the factors that 
drive the market value changes (so German and Dutch yield curves). Furthermore, we 
focus on the effect these historical changes can have on the current portfolio. An 

important advantage is that the final market value changes are a one-dimensional time 
series. This simplifies estimation of GARCH models and increase reliability of the 
results. 

Table 1 provides summary statistics on the daily returns. The empirical 
distribution is a bit skewed and furthermore it exhibits fat tails, given a kurtosis that 
exceeds 3, sometimes leading to extreme positive or extreme negative daily returns. In 
figure 1 the daily returns are represented as a time series. From the figure we observe that 
there are periods in which returns are more volatile than in other periods, which 

’ Because of confidentiality, we have scaled the data so that the results do not represent the actual market 
value changes. The implications for the VaR are the same as with the real data. 

36 



motivates a model that accounts for time varying volatility. In figure 2 the daily returns 

are presented in a histogram, which shows that there are quite some extreme observations 
in the left tail. This motivates a distribution function that has fatter tails than a normal 
distribution. 

Table 1. Summary Statistics 

Mean -0.03% 
Standard Deviation 0.82% 

Minimum -4.31% 

Maximum 3.71% 

Skewness 0.24 
Kurtosis 5.32 

Notes The table presents summary statistics of the returns sample, which consists of daily 

observations for the period June 25, 1991 until April 30, 1998. 

Figure 1. Time Series Returns 

Notes: This figure presents the daily returns for the period from June 25, 1991 until April 30 
1998 in the form of a time series. 
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Figure 2. Histogram Returns 

Nores: This figure presents the daily returns for the period from June 25, 1991 until April 30 
1998 in the form of a histogram. 

4. Results 

In this section we describe the estimation results for the four models that are under 
consideration. We start with an in-sample description and formally test the alternative 
specifications against each other. Second, we present the implied VaR under the 

alternative specifications and provide a measure of reliability. Then we investigate the 
relation between the number of historical observations that are used to estimate the 
models and the associated reported VaR. We end with an out-of-sample test of the 
models, in which we compare the reported VaR with the realized changes in the position 
of the bank for different sub periods. 

All models are estimated using the maximum likelihood principle. In case of the t- 
GARCH model the likelihood function is given in equation (7). The remaining three 
models are special cases of the likelihood function in equation (8). In table 2 the 
parameter estimates for the four models are given. The average value in the unconditional 

model is not significantly different from zero, the variance is estimated precisely when a 
long data sample is incorporated. The parameter results of the AR(l) model show that 

there is a significant relation between two consecutive daily returns, given the estimate 
for p The parameter estimates for the N-GARCH( 1,l) model show the same relation for 

consecutive returns as in the AR(l) model. Furthermore the representation of the 
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conditional volatility shows that volatility is time varying. Volatility is persistent on a 

day-to-day basis, given the high value for y, and the impact of an unexpected shock in 

the previous period is significant, given the parameter estimate and the associated 

standard error for y2. The t-GARCH( 1,l) model shows parameter results that are similar 

to the N-GARCH(1 ,l) model, but now we also find a significant estimate for the degree 
of freedom. The estimate for B implies that the distribution of the returns have more 
probability mass in the tail than in case of a normal distribution, 

A formal way to compare the in-sample performance of the three models is to 
perform a likelihood ratio test. To compare the Unconditional model with the AR(l) 

model, we test the restriction that p = 0 holds. Two times the difference in loglikelihood 

is compared with the critical value of a chi-squared distribution with one degree of 

freedom. Since 6 is greater than xi,,(l)= 3.84, we reject the restriction (p = 0) and 

prefer the AR( 1) model over the Unconditional model. The data hence suggest that a time 
varying drift is preferred over a model that assumes that conditional means are constant. 

Comparing the N-GARCH(l,l) model with the AR(l) model boils down to 
comparing two times the difference in loglikelihood with the critical value of a chi- 
squared distribution with four degrees of freedom. Since 332 is greater than 

x,?,,(4)= 9.49, we reject the restriction of constant volatility and prefer the N- 

GARCH( 1,l) model that allows volatility to vary over time. In figure 2 the in-sample 
volatility is depicted for the GARCH(l,l) model. Testing the t-GARCH( 1,l) model 
against the N-GARCH(l,l) model results in a preference for the former model, since 84 

is greater than the critical value of ~02~~ (1) = 3.84. F rom the results in table 2 we conclude 

that with respect to the in-sample behavior of the four models the data suggest that the t- 
GARCH( 1,l) model is the preferred model. 
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Parameters 

Table 2. Estimation Results 

t-GARCH(l,l) N-GARCH(l,l) AR(l) Unconditional 

(0.140) (0.150) (0.190) (0.190) 
P -0.083 -0.059 -0.060 ‘0’ 

(0.023) (0.023) (0.024) c-1 
Yo (x10+‘> 0.025 0.033 6.57 6.59 

(0.011) (0.014) (0.220) (0.221) 
YI 0.950 0.946 ‘0’ ‘0’ 

(0.011) (0.010) (-) (-) 
Y2 0.046 0.049 ‘0’ ‘0’ 

(0.010) (0.009) C-J c-1 
B 6.309 ‘co’ ‘a)’ ‘co’ 

(0.766) C-1 t-1 (-) 
CT, (x10+*) 0.390 0.408 0.810 0.812 

(0.106) (0.096) (0.014) (0.014) 
LllL 6238 6196 6035 6032 

Notes This table gives the parameter estimates for the t-distribution model and special 

cases of this model. Standard errors are given within parentheses. With CT, we denote the 

standard deviation at the first time period and 1nL denotes the value of the loglikelihood 

function. The models are estimated using daily observation for the period from June 25, 
1991 until April 30,1998. 

Table 3. Residuals 

t-GARCH(l,l) N-GARCH(l,l) Unconditional 

Skewness 0.178 0.169 0.254 0.225 
Kurtosis 4.54 4.51 5.38 5.30 

Notes This table reports the third and fourth moment of the standardized residuals for the 
t-GARCH( 1 ,l) model, the N-GARCH(l ,l) model, the AR( 1) model and the 
Unconditional model. The associated standard errors are 0.058 for skewness and 0.12 for 
kurtosis. 
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In table 3 we present values for both the skewness and kurtosis of the 
standardized in-sample residuals. The standardized residual at time t is obtained by 
dividing the residual by the associated standard deviation at time t. All models result in 

residuals that show extreme kurtosis. 
The four models are used to generate forecasts for future daily returns for up to 20 

periods ahead (which corresponds with a period of one month). The 20 forecasted daily 

returns are added to arrive at the expected total return over the one month period. This 
enables us to calculate the VaR. Because the parameter values that serve as input for the 

forecast model are uncertain, we take account for this uncertainty by repeatedly drawing 
values for the parameters from a normal distribution with mean the parameter estimates 
and covariance the covariance matrix of the parameter estimates. This results in an 

expected VaR together with a standard error, that reflects the uncertainty in the VaR. In 
table 4 these values are given for all models. The expected VaR as given by the 
Unconditional model and the AR(l) model are almost the same. The N-GARCH( 1,l) 
model assumes a significant higher value at risk, taking account for both the negative 

drift in expected returns and the higher volatility in the most recent period than on 
average in the historical sample (see also figure 3). This is in contrast with the previous 
two models in which it is assumed that volatility is constant. Finally, the t-GARCH(l,l) 
model reports the highest VaR, taking account for fat tails, which directly explains why 
the VaR is higher in this case. The more realistic representation of the t-GARCH(l,l) 

model comes with a price, since the associated standard error of the reported VaR is 
higher than in the other models. There is more uncertainty in the true value for 6’ since it 

is determined by extreme observations only. 

t-GARCH( 1,l) 

Table 4. Value-at-Risk Results 

N-GARCH(l,l) AR(l) Unconditional 

309 245 230 231 

(25) (9) (12) (13) 
Notes This table presents the expected VaR together with the associated standard error 
(within parentheses) for the position one month ahead. The underlying models have been 
estimated on daily returns for the period from June 25, 1991 until April 30, 1998. 

From the previous remarks it becomes apparent that a desirable property of the 
underlying return distribution is the fact that it takes account for the most recent market 

circumstances. An interesting approach would be to incorporate only recent market 
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observations to take account for only the most recent market developments. In table 5 we 
show the implications for the expected VaR and the associated standard error for 
different number of observations in the estimation routine. The results are striking: the 
reported expected VaR differs a lot with the number of observations that is used to 
estimate the parameters of the underlying return distribution. This uncertainty is also 
reflected in the associated standard error, which is extremely high when only a limited 
number of observations is used. Only for a large data sample the reported VaR is more 
reliable. This suggests that the unconditional and the AR(l) model are less appropriate, 
since they would assume the same expected value and volatility over the entire sample. 

In table 6 we consider the out-of-sample performance of the different models. For 
different sub-samples the model is estimated over one period and applied to the following 

period to calculate a VaR. The reported VaR is then compared with the actual observed 
change in value over the out-of-sample period. We report the percentage of cases in 

which the actual change in the position of the bank exceeds the reported VaR. Because 
there is uncertainty in the VaR we also consider the upper and lower bounds of the 95 

percent interval around the VaR. See figures 4, 5, 6 and 7 for the reported VaR, the 
associated 95 percent confidence interval for the VaR and the actual change in the 
position of the bank. A model that adequately takes account of the behavior of the return 
distribution would allow only a one percent violation of the VaR. The results show that 
the most restricted model performs worse and that the percentage of violations decreases 

as the model becomes more general. The t-GARCH(l,l) model still shows a violation of 
2.29 percent for the reported VaR. If however we take account for the uncertainty in the 
VaR by considering the 95 percent upperbound on the reported VaR, we find that in that 
case the reported VaR is violated a little less than the allowed 1 percent. 
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Table 5. Relation betweenVaR and Number of Observations 

#observations Expected VaR SE VaR 

20 468 166 

40 308 130 
60 275 89 
80 263 72 

100 266 70 

150 256 53 
200 244 44 
400 253 32 
600 266 26 
800 248 21 
1000 256 19 

1500 255 15 
1787 231 13 

Notes This table presents the expected VaR together with the associated standard error 
(within parentheses) for the position one month ahead for the unconditional model. The 
underlying model has been estimated on daily returns for different sub-samples in the 
period fkom June 25, 1991 until April 30, 1998. The first column gives the number of 
most recent observations that is used to estimate the parameters. 

Table 6. Out-of-Sample Violations 

t-GARCH(l,l) N-GARCH(l,l) AR(l) Unconditional 

VaR (low) 5.42 6.82 10.92 11.06 
VaR 2.29 5.42 9.18 9.18 
VaR (high) 0.97 4.52 7.02 7.02 
Notes. The table reports the actual percentage of violations of the predicted VaR under 
the alternative model specifications. An appropriate model should result in a violation of 
1 percent. The uncertainty in the reported VaR is reflected with the 95 percent lower- and 

upperbounds. 
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5. Concluding Remarks 

In this paper we have compared four alternative models to calculate the VaR for the value 
of the bank. Crucial for this calculation is the underlying return distribution, since it 
reflects the probability of extreme returns. A number of issues are important. 

First, the underlying probability distribution should be able to reflect the behavior 
of extreme returns. Hence the tail of the distribution should be well-modeled. We have 
proposed to adopt a Student-t distribution since it allows for fatter tails than a normal 

distribution. 
Second, the VaR is based on historical return observations. Recent market 

circumstances should be most informative on the implied future return distribution. This 
is either accomplished with a time varying return distribution based on a large historical 
data sample or with an unconditional distribution that is based on most recent 

observations only. The first method is preferred since a lot of observations are required to 
arrive at reliable estimates. 

Third, since the parameters of the underlying return distributions are unknown, 
they have to be estimated. The associated standard errors of the parameter estimates 
reflect uncertainty in the underlying distribution, which implies that the reported VaR 
also incorporates uncertainty. We have reported the VaR together with a standard error. 
The empirical implications are that a relative long time series is required in order to 
arrive at relatively reliable VaR (i.e. with low associated standard errors). The preferred 
model is the t-GARCH( 1 ,l) model since it allows for time varying drift and volatility to 
take account of most recent market circumstances, and for fat tails. 

Fourth, in order to model the VaR of a set of positions, we valued the current 

position as if we had it in historical subsequent periods. This results in a univariate time 
series that increases reliability in the VaR estimation. The alternative, for example the 

estimation of a covariance matrix, so a multivariate time series, requires more parameters 
to be estimated, which decreases the reliability of the estimation results. 

Fifth, the out-of-sample tests indicate that the t-GARCH(1 ,l) model indeed 
reports a VaR that shows the least number of violations. Taking into account the 
uncertainty of the reported VaR, we in fact cannot reject that the t-GARCH( 1,l) model 
adequately describes the VaR. 

Of course, there is always room for improvement. First, we find that the degrees 
of freedom for the Student-t distribution is an important parameter, because it takes 
account for fat tails in the return distribution. At the same time the uncertainty of this 
parameter is higher than for the other parameters. This increases the uncertainty in the 
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reported VaR. Second, from figures 6 and 7 we observe that the GARCH(l,l) 
specification indeed takers account for more volatile periods, but only after a first shocks, 
for which it does not take account. Only the degrees of freedom take account for that 

behavior. Finally, this model has been tested on a book that has positions in NLG and 
DM. When such a model is applied to for example emerging markets, distribution 

functions with even fatter tails might be required. In these cases we might think of, for 
example, a generalized Pareto distribution for the error terms. We leave these issues for 
further research. Notice however that also in these case it is worth reducing the input 
series to a univariate series and to take account for parameter uncertainty as in the 

proposed out-of-sample test. 
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Figure 3. GARCH( 1,l) Volatility 
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Notes: This figure presents the in-sample volatlity as implied by the N-GARCH( 1,l) 
The underlying model has been estimated on daily returns for the period from June 
1991 until Anril30. 1998. 



Figure 4. Unconditional model 
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Notes. The figure displays the forecasted VaR values together with 95 percent upper- and lowerbounds. Also 
the realized change in position is displayed. The entire period preceding the time of forecast is used to 
estimate the model. 



Figure 5. AR(I) model 
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Notes. The figure displays the forecasted VaR values together with 95 percent upper- and lowerbounds. Also 
the realized change in position is displayed. The entire period preceding the time of forecast is used to 
estimate the model. 



Figure 6. Normal Distribution GARCH(l,l) 
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Notes. The figure displays the forecasted VaR values together with 95 percent upper- and lowerbounds. Also 
the realized change in position is displayed. The entire period preceding the time of forecast is used to 
estimate the model. 



Figure 7. Student-t Distribution GARCH(l,l) 
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Notes. The figure displays the forecasted Var values together with 95 percent upper- and lowerbounds. Also 
the realized change in position is displayed. The entire period preceding the time of forecast is used to 
estimate the model. 




