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Abstract

In this paper we define feedback Nash equilibria in linear
quadratic differential games on an infinite time horizon in
both a deterministic and stochastic environment. The rela-
tionship between existence of such equilibria and solutions
of sets of algebraic Riccati equations is investigated.
We assume that the players have memoryless perfect state in-
formation and that they restrict themselves to stationary lin-
ear stabilizing feedback strategies.
We consider linear systems in as well a certain as an uncer-
tain environment. In the latter case we treat uncertainty both
in a stochastic and a deterministic way. In the stochastic set-
ting we consider average, discounted and exponential perfor-
mance criteria, respectively. In the deterministic setting, we
consider anH∞ type performance criterium. A relationship
between the stochastic exponential and the deterministicH∞

case is established.

1 Introduction

In this paper we consider the problem whereN parties
(henceforth called players) try to minimize their individual
quadratic performance criterion. Each player controls a dif-
ferent set of inputs to a single system. The system is de-
scribed by the following differential equation

ẋ(t) = Ax(t) +
N

∑

i=1

Biui(t) + Gw(t), x(0) = x0. (1)

Here,x is then-dimensional state of the system,ui contains
the mi (control) variables playeri can manipulate,w is a
q-dimensional vector of noise corrupting the system,x0 is
the arbitrarily chosen initial state of the system,A, Bi and
G are constant system parameters, andẋ denotes the time
derivative ofx, for i ∈ N := {1, · · · , N}.

The performance criterion playeri ∈ N aims to minimize is:
Ji(u1, · · · , uN , x0, w) :=

∫ ∞

0
{x(t)T Qix(t) +

∑

j∈N

uj(t)T Rijuj(t)}dt. (2)

We assume thatQi is symmetric andRii is positive definite
for all i ∈ N. Note that we do not make any definiteness as-
sumptions onQi. So, this formulation includes the 2-person
zero-sum game.
Without specification of the information the players have,
this problem is ill-defined. In applications (see e.g. Eng-
werda et al. (1999) for a number of references in economics)
it is often assumed that the players have either memoryless
perfect state or closed-loop perfect state information. Given
this information structure, it is then assumed that in a non-
cooperative world ultimately the controls that will be played
are those which constitute a Nash equilibrium. This naturally
leads to the definition of the feedback Nash equilibrium con-
cept as defined in e.g. Başar and Olsder (1999, pp.321) in
case the players have a finite planning horizon. If the players
have an infinite planning horizon, things are however much
less clear and usually one restricts to the consideration of
limiting stationary feedback Nash equilibria. In this paper we
will consider feedback information structure and additionally
assume that the strategies of the players in the infinite hori-
zon framework are linear in the state and are such that the
state converges to zero. To be more precisely, we shall only
consider controlsui of the typeui = Fix, with Fi ∈ IRmi×n,
and where(F1, · · · , FN ) belong to the set

F :=

{

F = (F1, · · · , FN )

∣

∣

∣

∣

∣

A +
∑

i∈N

BiFi is stable

}

Obviously, this last assumption is made in order to obtain a
stable system. A necessary and sufficient condition forF to
be non-empty is stabilizability of(A, [B1 · · ·BN ]). There-
fore, we will assume throughout this paper that this matrix
pair satisfies this stabilizability condition. Note that with
this restriction on the strategies, the performanceJi is now a



function of the matricesFi, x0 andw.
The rest of the paper is organized as follows. The next sec-
tion contains some well-known results and notation that is
used throughout the paper. In section 3 we will characterize
all feedback Nash equilibria of (1),(2) in terms of solutions
to a set of algebraic Riccati equations if the system is not cor-
rupted by noise (i.e.G = 0). In section 4 we consider the
case thatw in system (1) represents white noise. In that case
it does not make sense to consider the expected value of (2) as
performance criterion since the value of it will in general be
infinite. Therefore we consider three different performance
criteria in this section and determine the Nash solutions for
each of these criteria again in terms of solutions to some sets
of algebraic Riccati equations. Section 5 considers the case
thatw in system (1) represents unknown deterministic noise
and each of the players is looking for a worst case design.
The paper ends with some concluding remarks.

2 Preliminaries

In this section on the one hand we recall some well-known
concepts from literature and on the other hand introduce
some notation that is used throughout the paper.
First, we recall that a matrixA is called stable if each eigen-
value ofA has a strict negative real part. Furthermore, we
will use the notationA > 0 (≥ 0) to indicate thatA is posi-
tive (semi-) definite. The trace of a matrixA will be denoted
by tr(A).
Next, for an N-tupleγ = (γ1, · · · , γN ) ∈ Γ1 × · · · × ΓN ,
for given setsΓi, we introduce the notationγ−i(α) =
(γ1, · · · , γi−1, α, γi+1, · · · , γN ), with α ∈ Γi.
Furthermore, we use the matrix abbreviationsSij :=
BjR−1

jj RijR−1
jj BT

j , Si := Sii, and for given squaren × n
matricesXi, Acl := A−

∑

j∈N SjXj , Acl,i := Acl +SiXi,
andQ̄i :=

∑

j∈N,j 6=i XjSijXj + Qi. In a one-player con-
text we will mostly drop the indices in the above mentioned
matrices. A set of matricesXi is called stabilizing ifAcl be-
comes stable.
We use‖ x ‖ to denote the Euclidean norm of a vector.
Finally we note that usually we will drop in our notation the
dependency of the state on the specific initial state, input and
noise that is applied to the system and thus denote the state
of system (1) byx(t). If any of these arguments is unclear
within the context we will include them in our notation and
then use e.g.x(t; x0, F ) instead of justx(t).

3 The undisturbed case

In this section we consider the caseG = 0. Consequently,
Ji does not depend onw anymore. We define the concept
of a feedback Nash equilibrium in this noise-free context as
follows

Definition 1:
An N -tuple F̂ = (F̂1, · · · , F̂N ) ∈ F is called afeedback

Nash equilibriumif for all i the following holds:

Ji(F̂ , x0) ≤ Ji(F̂−i(α), x0), (3)

for all x0 ∈ IRn and for all α ∈ IRmi×n such that
F̂−i(α) ∈ F . �

Next, we characterize all feedback Nash equilibria for
system (1), withG = 0, in case the performance criterion
of each player is given by (2). To that end we first establish
the next relationship between existence of a stabilizing
solution of an algebraic Riccati equation and existence of a
solution to a regulator problem. A proof can be found in the
appendix. The only if part of the theorem is proved by using
the calculus of matrix differentials.

Theorem 2:
Consider the one-player case.
Then, there exists an̂F ∈ F such that for allF ∈ F for all
x0, J(F̂ , x0) ≤ J(F, x0) if and only if the algebraic Riccati
equation

−XSX + XA + AT X + Q = 0 (4)

has a stabilizing solutionX (i.e. a solutionX such that
A− SX is stable).
Moreover, this minimum equalsxT

0 Xx0 and is uniquely
attained by the feedbackF = −R−1BT X. �

Remark 3:
1) Willems showed a similar result in (1971) under the
assumption that the system is controllable.
2) It is well-known, see e.g. Kimura (1997, pp.43), that (4)
has at most one stabilizing solution.
3) Using the notion of the matrix sign Lancaster and Rod-
man derive in (1995, theorem 22.4.1) both necessary and
sufficient conditions for existence of the stabilizing solution
of (4). �

Using theorem 2 we are able to prove the next result,
establishing the link between solvability of a set of coupled
algebraic Riccati equations and existence of feedback Nash
equilibria for the differential game under consideration. The
relevant set of algebraic Riccati equations is given by (see
also Başar and Olsder (1999, pp.337))

∑

j∈N

XjSijXj + XiAcl + AT
clXi + Qi = 0, i ∈ N, (ARE)

Theorem 4:
Let there exist anN -tuple of symmetric matricesXi, i ∈ N
satisfying (ARE) such thatAcl is stable. Define the
N -tuple F̂ := (F̂1, · · · , F̂N ) by F̂i := −R−1

ii BT
i Xi.

Then (F̂1, · · · , F̂N ) is a feedback Nash equilibrium and
Ji(F̂ , x0) = xT

0 Xix0.
Conversely, if(F̂1, · · · , F̂N ) is a feedback Nash equilibrium
then the set of algebraic Riccati equations (ARE) has a
stabilizing solution.



Proof:
” ⇒ ” Let Xi, i ∈ N satisfy (ARE) such thatAcl

is stable. Furthermore, denotêFi := −R−1
ii BT

i Xi.
Then, player i is confronted with the optimiza-
tion problem to minimize Ji(F̂−i(Fi), x0) =
∫∞
0 {x(t)T Q̄ix(t) + xT (t)FT

i RiiFix(t)}dt, subject to
the constraintẋ(t) = (Acl,i + BiFi)x(t), x(0) = x0.
According theorem 2 this problem has a unique solution if
and only if the algebraic Riccati equation

−XSiX + XAcl,i + AT
cl,iX + Q̄i = 0

has a stabilizing solution. Substitution ofX := Xi into the
above equation shows after some rewriting that we obtain the
equation

∑

j∈N

XjSijXj + XiAcl + AT
clXi + Qi = 0, (5)

which holds by assumption. Furthermore, by assumption
the corresponding closed-loop systemAcl is stable. So,
inequality (3) is satisfied.
” ⇐ ” Assume that(F̂1, · · · , F̂N ) is a feedback Nash
equilibrium. Then, by definition 1,F̂i solves the op-
timization problem to minimize for allFi ∈ IRn×m,
Ji(F̂−i(Fi), x0) =

∫∞
0 {x(t)T (

∑

j∈N,j 6=i F̂T
j RijF̂j +

Qi)x(t) + xT (t)FT
i RiiFix(t)}dt subject to the constraint

ẋ(t) = (A +
∑

j∈N,j 6=i BjF̂j)x(t) + BiFix(t), x(0) = x0.
Since this problem has a solution, we know from the-
orem 2 that its solution is uniquely determined by
Fi = −R−1

11 BT
i Xi, where Xi satisfies a corresponding

algebraic Riccati equation. So, necessarily we have that
F̂i = −R−1

11 BT
i Xi. Since this property should hold for

every i ∈ N, we can substitute this into the according
Riccati equations, which yields then the stated property.�

Remark 5:
The assumption that we restrict the set of admissible
controls toF is essential here. If we drop this assumption,
one can easily construct an example (see Mageirou (1976))
where the set of algebraic Riccati equations (ARE) has a
stabilizing solution, and where it is possible to construct
a (non-stabilizing) feedback controller which yields lower
cost for one player in case the other player sticks to the
stabilizing controller advocated by the (ARE). �

4 The disturbed case: stochastic uncertainty

In this section we analyze what the effect will be on the Nash
equilibria if the system (1) is corrupted by stochastic white
noise. That is, we assume in this section that the system is
described by the following stochastic differential equation

ẋ(t) =

(

A +
N

∑

i=1

BiFi

)

x(t) + Gw(t), (6)

wherew(t) is a standard white noise stochastic process (for
a formal definition see e.g. Davis (1977, pp.79)) andx(0)
is a random vector, uncorrelated withw, with meanx0 and
E{x(0)xT (0)} = W0 > 0.
Now, for the one player case it is well-known (see e.g. Davis
(1977, pp.185)) that, ifQ is positive definite in (2), the ex-
pectation of the cost (2) does not exist (it becomes infinite).
Therefore we consider three modified cost functionals

1.) Jav
i (F1, · · · , FN ) :=

lim
T→∞

E
1
T
{
∫ T

0
{x(t)T (Qi +

∑

j∈N

FT
j RijFj)x(t)}dt}, (7)

2.) Jd
i (F1, · · · , FN ) :=

lim
T→∞

E{
∫ T

0
e−θt{x(t)T (Qi +

∑

j∈N

FT
j RijFj)x(t)}dt},

(8)
3.) JLEQG

i (F1, · · · , FN ) :=

lim
T→∞

1
T

lnEe
{ 1

2γ2
i

R T
0 x(t)T (Qi+

P
j∈N F T

j RijFj)x(t)dt}
. (9)

Hereθ andγi are positive numbers and all matrices satisfy
the previous assumptions (see below (2)). In particular,
we still assume thatQi, i ∈ N are not necessarily positive
semi-definite.
Note that since we take the expectation operation each of the
cost functionals is a deterministic function, which depends
on the statistics of the noise processes. For notational
convenience we dropped this dependency (as usual).
These performance criteria have the following character-
istics. Whereas the first, average, cost criterion measures
accurately the long run performance, and neglects the
behaviour of the system over any initial interval, the sec-
ond, discounted, cost criterion has the opposite effect: it
emphasizes the initial performance. The third performance
criterion, the linear exponential-quadratic gaussian (LEQG)
one, is motivated by the fact that it expresses that playeri
has a constant level of risk aversion12γ2

i
concerningJi (see

Pratt (1964)). The risk aversion parameterγi expresses that
the smaller it is, the more playeri likes to steer the state of
the system towards zero as fast as possible.
Since the statistics are assumed to be known a priori to all
players, we can copy more or less our previous definition
1 to define the notion of feedback Nash equilibrium in a
stochastic context. Viewed in this way, note that this equi-
librium concept is in fact more in line with the memoryless
perfect state information structure than with the feedback
information structure.

Definition 6:
Assume the statistics of the noise processes corrupting the
deterministic system are known to all players. Then, an
N -tuple F̂ = (F̂1, · · · , F̂N ) ∈ F is called afeedback Nash
equilibrium if for all i the following holds:

Ji(F̂ ) ≤ Ji(F̂−i(α)), (10)



for all α ∈ Rmi×n such thatF̂−i(α) ∈ F . �

To find feedback Nash equilibria for the above sketched
games, one first has to verify whether each game is well-
defined in the sense that for eachF ∈ F the costs of the
players are finite. We first consider again the one-player
case. The proof of the next lemma and theorem can be found
in the appendix.

Lemma 7:
let F ∈ F . Then
1) |Jav

1 (F )| < ∞.
2) W (t; F ) := E{x(t; F )xT (t; F )} → W (F ) exponen-
tially fast. Furthermore,W (t;F ) is invertible for all t and
W (F ) ≥ 0. �

Theorem 8:
Consider the one-player case.
Then,minF∈F Jav(F ) exists if the algebraic Riccati equa-
tion (4) has a solutionX such thatAcl is stable. Moreover,
this minimum equalstr(GT XG) and is attained by the
feedbackF = −R−1BT X. �

Note that this optimal control coincides with that of
the undisturbed case. Furthermore, we do not claim here
that the proposed control is the unique argument that
minimizes the cost functional. A sufficient condition to
conclude that there is only one optimal feedback control
under the assumption that (4) has a stabilizing solution is
that (A + BF,G) is controllable for allF ∈ F . Under this
condition W (F ) (see lemma 7) is strictly positive definite
for all F ∈ F (see e.g. Kimura (1997, lemma 2.14, 2.15)).
Analogously to the first part of theorem 4 we get then for the
multi-player case the following result.

Theorem 9:
Let there exist anN -tuple of symmetric matricesXi, i ∈ N
satisfying (ARE) such thatAcl is stable. Define the
N -tuple F̂ := (F̂1, · · · , F̂N ) by F̂i := −R−1

ii BT
i Xi.

Then (F̂1, · · · , F̂N ) is a feedback Nash equilibrium and
Jav

i (F̂ ) = tr(GT XiG). �

Next, we consider the discounted cost criterion. Basically,
a similar result like theorem 9 will be derived: only matrix
A has to be replaced by matrixAd := A − 1

2θI. Again,
first we consider the one-player case. The well-posedness
follows in the same way as lemma 7 and is therefore omitted.

Theorem 10:
Consider the one-player case.
Then,minF∈F Jd(F ) exists if the algebraic Riccati equation

−XSX + XAd + AT
d X + Q = 0 (11)

has a stabilizing solutionX. In that case this minimum
equalstr(W0X) + tr(GT XG) and is attained uniquely by
the feedbackF = −R−1BT X. �

The proof can be found in the appendix. Note the sub-
tle difference with theorem 8 that the argument which yields
the stated optimal control is unique here.
The next multi-player result can be derived then analogously
to theorem 4. A proof is therefore omitted.

Theorem 11:
Let there exist anN -tuple of symmetric matricesXi, i ∈ N
satisfying (ARE), in which matrixAcl is replaced by
Ad

cl := Acl − 1
2θI, such thatAd

cl is stable. Define the
N -tuple F̂ := (F̂1, · · · , F̂N ) by F̂i := −R−1

ii BT
i Xi.

Then (F̂1, · · · , F̂N ) is a feedback Nash equilibrium and
Jd

i (F̂ ) = tr(W0Xi) + tr(GT XiG). �

Finally we consider the LEQG performance criterion.
¿From Runolfsson (1994) we have the following result

Theorem 12:
Consider the one-player case. Assume thatQ ≥ 0; (A, B),
(A,G) are controllable and(Q,A) is observable.
Then, minF∈F JLEQG(F ) exists if the algebraic Riccati
equation

−X(S − 1
γ2 GGT )X + XA + AT X + Q = 0 (12)

has a (smallest) solutionX(> 0) such that both
A − (S − 1

γ2 GGT )X and A − SX are stable and
(A− SX, G) is controllable.
Moreover, this minimum equals 1

2γ2 tr(GT XG) and

is attained by the feedbackF := −γ2R−1BT X (and
w(t) = GT Xx(t)). �

To formulate the multi-player case we introduce the
following set of algebraic Riccati equations

∑

j∈N

XjSijXj +
1
γ2

i
XiGGT Xi + XiAcl + AT

clXi + Qi

= 0, i ∈ N. (13)

Then, using the previous result one can show that:

Theorem 13:
Let there exist an N -tuple of symmetric matrices
Xi > 0, i ∈ N satisfying (13). Assume that with
these solutionsAcl andAcl + 1

γ2
i
GGT Xi are stable;Q̄i ≥ 0;

(Acl,i, Bi), (Acl, G) and (Acl,i, G) are controllable; and
(Q̄i, Acl,i) are observable,i ∈ N.
Define the N -tuple F̂ := (F̂1, · · · , F̂N ) by
F̂i := −R−1

ii BT
i Xi. Then, (F̂1, · · · , F̂N ) is a feed-

back Nash equilibrium andJd
i (F̂ , x0) = tr(GT XiG).

�



5 The disturbed case: deterministic uncer-
tainty

In the previous framework, the disturbances, though unpre-
dictable, are not completely unknown. One needsa priori
knowledge of their statistics. If these statistics are not ade-
quately described then this theory is not useful. In fact, it is
assumed that all players have the same intuition on the un-
certainty that prevails in the system, and that they cope with
this uncertainty by taking the expectation operation.
A possible alternative approach is to assume that the distur-
bance entering the system is completely unknown, though
square integrable, and that each player has his own intuition
on how strong this disturbance will be. That is, we assume
in this section that the system (1) is now described by the
following differential equation

ẋ(t) = (A +
N

∑

i=1

BiFi)x(t) + Gw(t), x(0) = x0 (14)

wherew ∈ Lq
2(0,∞) is an unknown deterministic distur-

bance. We assume that all players have feedback information
and act non-cooperative.
Then, like in the stochastic case, we have to model how the
players cope with this uncertain dynamics. We replace the
statistics by a measure of the magnitude of the disturbance
the individual player expects. This is done by replacingJi in
(2) by

Jdet,w
i := Ji −

∫ ∞

0
wT (t)Viw(t)dt. (15)

HereVi > 0 measures the expectation of playeri concerning
the magnitude of the disturbance. Furthermore, we will as-
sume in this section thatQi is positive semi-definite.
The intuition for introducingVi into this performance crite-
rion is that the largerVi is the smaller playeri expects that
the influence of the disturbance on the system will be. As
such this approach can be viewed as an attempt to incorporate
some probabilistics concerning the magnitude of the distur-
bance entering into the system. The fact that we are looking
for a worst case design is expressed by replacing the expecta-
tion operator by the supremum operator. That is, we assume
that each player is interested to implement a control which
yields a guaranteed maximum level for his costs, whatever
the disturbance will be, and where this level is as small as
possible. Summarizing, we assume that in this deterministic
model each player likes to minimize

Jdet
i := sup

w∈Lq
2(0,∞)

Jdet,w
i (16)

subject to (14). Definition 1 can then be used again to define
the concept of a feedback Nash equilibrium.
Obviously this approach is inspired by theH∞ control
theory. This theory is used to derive the next characterization
for feedback Nash equilibria in terms of Riccati equations.

Theorem 14:
Consider system (14) for the one player case.
Assume there exists a matrixX ≥ 0 satisfying the algebraic
Riccati equation

−XSX + AT X + XA + XGV −1GT X + Q = 0 (17)

such thatA− SX + GV −1GT X is stable.
Let F̂ := −R−1BT X. Then,F̂ ∈ F and

∀F ∈ F , ∀x0, Jdet(F̂ , x0) ≤ Jdet(F, x0). (18)

�

In the multi-player case the next set of algebraic Ric-
cati equations play an important role
∑

j∈N

XjSijXj + XiGV −1
i GT Xi + XiAcl + AT

clXi + Qi

= 0, i ∈ N. (19)

Then we have:

Theorem 15:
Consider system (14).
If there exists Xi ≥ 0 satisfying (19) such that
Acl + GV −1

i GT Xi, i ∈ N are stable, then
F̂ := (F̂1, · · · , F̂N ) with F̂i := −R−1

ii BT
i Xi is a

feedback Nash equilibrium. �

We conclude this section by pointing out a relationship
between the equilibria we obtained in this deterministic
noise setting and the LEQG feedback Nash equilibria. Com-
paring the formulae (13) and (19) we see that both coincide
if we make the assumption thatVi = γ2

i , i ∈ N. ¿From
this we conclude that, at least generically, the solution to the
LEQG problem will also provide an admissible equilibrium
in the deterministic noise case and, vice versa. This kind of
relationship has already been noticed by a number of people
in literature, dating back to Jacobson (1973).

6 Conclusion

The aim of this paper is to analyze the relationship between
existence of feedback Nash equilibria in infinite-time hori-
zon linear quadratic games and solutions for sets of algebraic
Riccati equations. Furthermore, it provides a framework to
deal with robust optimal control problems in a multi-player
context.
By restricting the strategy space to the set of stabilizing feed-
back controllers, we showed that the notion of feedback Nash
equilibrium can be defined straightforwardly. We formulated
both necessary and sufficient conditions for existence of such
equilibria in terms of existence of stabilizing solutions to al-
gebraic Riccati equations.
Engwerda showed in (2000) that already in the scalar case
(for Qi > 0 andRij = 0 for i 6= j) the above set of alge-
braic Riccati equations (ARE) has in general more than one



stabilizing solution. Moreover, both necessary and sufficient
conditions were presented under which this set has a unique
solution. It will be clear that an extension of these results to
the multivariable case would enhance a better understanding
of these games. Another point of research is whether some
assumptions can be further relaxed, and particularly for the
uncertain context, whether here also both necessary and suf-
ficient conditions are possible in terms of existence of solu-
tions to algebraic Riccati equations.

Appendix

In this appendix we present a number of proofs to the
theorems. We start with a lemma which is used in the proof
of theorem 2. Both results require some notation used in
the theory of matrix differential calculation. Therefore, we
start of with giving these definitions (see e.g. Magnus et al.
1999).
The vec operator will be used to transform a matrix into a
vector by stacking the columns of the matrix one underneath
the other. The notationv(P ) will be used to denote the
1
2n(n + 1) vector that is obtained from vecP by eliminating
all supradiagonal elements ofP ; and Dn will denote the
duplication matrix which transforms, for symmetricP , v(A)
into vecP , i.e. Dnv(P ) = vec P . Finally,⊗ will denote the
Kronecker product andD+ the Moore-Penrose inverse of
matrixD.

Lemma A.1:
Let b ∈ IRn(n+1)/2. Assume that(aT ⊗ aT )Dnb = 0 for all
a ∈ IRn. Then,b = 0. Proof:
Let B be then × n symmetric matrix defined byv(B) = b.
Then, by definition of the duplication matrix it follows that
Dnb = Dnv(B) = vec B. Hence, we have

0 = (aT ⊗ aT )Dnb = (aT ⊗ aT )vec B = vec aT Ba

= aT Ba,

for all a ∈ IRn. This clearly implies thatB = 0, or
equivalently,b = 0. �

Proof of theorem 2:
” ⇒ ” Consider an arbitraryF ∈ F . It is well-known that
thenJ(F, x0) = xT

0 Px0, whereP is the unique symmetric
solution of the Lyapunov equation

(A + BF )T P + P (A + BF ) = −(Q + FRF ) (20)

Note that the parameters of this Lyapunov equation, i.e. the
matricesA + BF and−(C +DF )T (C + DF ) are differen-
tiable functions ofF ∈ F . HenceP is also a differentiable
function ofF ∈ F (see e.g. Lancaster et al. (1995, section
5.4)). So,J is differentiable with respect toF .
Now assume that the minimum ofJ(F, x0) is attained at
F = F̂ . SinceF̂ ∈ F it is easily verified that there is an
open environmentB ⊂ F of F̂ ∈ IRn×m (with e.g. the
topology induced by the Euclidean matrix norm). Since for

all F ∈ B J(F̂ , x0) ≤ J(F, x0), we conclude that

∂J(F, x0)
∂(vecF )T = 0,∀x0 at F = F̂ (21)

Using matrix differential calculus, see e.g. Magnus et al.
(1999), it is easily verified that

∂J(F, x0)
∂(vecF )T = (xT

0 ⊗ xT
0 )Dn

∂v(P )
∂(vecF )T . (22)

Sincex0 is arbitrarily we conclude from lemma A.1 that

∂v(P )
∂(vecF )T = 0 at F = F̂ . (23)

On the other hand we see that by differentiation of (20) w.r.t.
F we get

D+
n (In ⊗ PB) + D+

n (In ⊗ (A + BF )T )Dn
∂v(P )

∂(vecF )T =

−D+
n (In ⊗ (FT R)),

Using (23) we see that consequently atF = F̂

D+
n (In ⊗ (PB + FT R)) = 0.

Therefore, alsoDT
n (In ⊗ (PB + FT R)) = 0.

SinceDn =
(

In 0 1
2 n(n−1)

∗ ∗

)

, we have thatDT
n (In ⊗

(PB+F̂T R)) =
(

PB + F̂T R ∗
∗ ∗

)

. SoPB+F̂T R = 0

or, stated differently,̂FT = −R−1BT P . Substitution of this
last equality into (20) yields then the advertised result.
” ⇐ ” Let X be the stabilizing solution of (4). Consider

J(u1, x0, T ) :=
∫ T

0
{x(t)T Qx(t) + u1(t)T Ru1(t)}dt.

(24)
Then (see e.g. Willems (1971, lemma 6)), for allx0 ∈ IRn,
for all F ∈ IRm×n, and for allT > 0, the following identity
holds

J(F, x0, T ) =
∫ T

0
‖ (F + R−1BT X)x(t; F, x0) ‖2 dt +

xT
0 Xx0 − x(T ;F, x0)T Xx(T ;F, x0).

Therefore, for allF ∈ F , and for allx0,

J(F, x0) := limT→∞ J(F, x0, T ) =

∫ ∞

0
‖ (F + R−1BT X)x(t; F, x0) ‖2 dt + xT

0 Xx0 ≥

xT
0 Xx0.

Hence,{J(F, x0)|F ∈ F} is bounded from below for all
x0. So, the infimum exists and in fact, the infimum is a
minimum and attained byF = −BT R−1X. �



Proof of lemma 7:
Let F ∈ F . Then, W (t;F ) is the unique so-
lution of the differential equation: Ẇ (t; F ) =
(A + BF )W (t; F ) + W (t;F )(A + BF )T + GGT ;
W (0) = W0 (see e.g. Davis (1977, pp.111)). So,W (t; F ) =
e(A+BF )tW0e(A+BF )T t +

∫ t
0 e(A+BF )τGGT e(A+BF )T τdτ .

From this it is obvious thatW (t; F ) > 0 for all t and that
W (t; F ) → W (F ) exponentially fast ift → ∞, where
W (F ) is the unique positive semi-definite solution to the
Lyapunov equation

(A + BF )W (F ) + W (F )(A + BF )T + GGT = 0. (25)

Consequently,

Jav
1 (F ) = lim

T→∞

1
T

tr{
∫ T

0
{W (t; F )(Q1 + FT R11F )}dt}.

(26)
Since W (t; F ) converges exponentially fast, it is clear
that Jav

1 (F ) exists for allF ∈ F , which shows that the
optimization problem is well-defined.
Finally, note that in (25)W (F ) > 0 if and only if
(A + BF, G) is controllable (see e.g. Kimura (1997, lemma
2.14, 2.15)). �

Proof of theorem 8:
Let X be the symmetric solution of (4) such thatA− SX is
stable. Then:

tr{W (t;F )(Q + FT RF )}

= tr{W (t;F )(XSX −XA−AT X + FT RF )}
= tr{W (t; F )(XSX −X(A + BF )−

(A + BF )T X + XBF + FT BT X + FT RF )}
= tr{W (t; F )(F + R−1BT X)T R(F + R−1BT X)}

−tr{((A + BF )W (t;F ) + W (t;F )(A + BF )T )X}
= tr{W (t; F )(F + R−1BT X)T R(F + R−1BT X)}

−tr{(Ẇ (t; F )−GGT )X}.

So,

Jav(F ) =

tr(GT XG) + lim
T→∞

{ 1
T

tr (W0X −W (T ;F )X)

+
1
T

∫ T

0
tr{W 1

2 (t;F )(F + R−1BT X)T R

(F + R−1BT X)W
1
2 (t; F )}dt}

SinceW (t; F ) is invertible and converges to a positive semi-
definite solution, andR is positive definite the above inte-
grand is always semi-positive. So,

Jav(F ) ≥ tr(GT XG).

Furthermore, we see that by choosingF such that
F + R−1BT X = 0, the above inequality becomes an

equality. ¿From this we immediately derive the stated
conclusion. �

Proof of theorem 10:
Analogously to the proof of lemma 7 we first conclude
(using the same notation) that the optimization problem is
well defined in the sense that

Jd(F, x0) =

lim
T→∞

tr{
∫ T

0
e−θt{W (t; F )(Q1 + FT RF )}dt}, (27)

exists for allF ∈ F .
Similarly as in the proof of theorem 8 one can show next that

tr{W (t;F )(Q + FT RF )} =

tr{W (t; F )(F + R−1BT X)T R(F + R−1BT X)}

−tr{
(

Ẇ (t;F )− θW (t; F )−GGT
)

X}.

So,

Jd(F, x0) =

lim
T→∞

{tr(GGT X) + tr(W (0; F )X − e−θT W (T ;F )X)

+
∫ T

0
e−θttr{W 1

2 (t;F )(F + R−1BT X)T R

(F + R−1BT X)W
1
2 (t; F )}dt}

Since bothW (t; F ) and R are positive definite the above
integrand is always semi-positive. In particular we see
that at timet = 0 the integrand will be zero if and only if
F + R−1BT X = 0. ¿From this we immediately derive the
stated conclusion. �

Proof of theorem 14:
Assume thatX is a solution of

−XSX + AT X + XA + XGV −1GT X + Q = 0 (28)

such thatA− SX + GV −1GT X is stable.
First we note that due to our assumptions we also immedi-
ately have thatA − SX is stable (see e.g. Kimura (1997,
lemma 9.1)). Then, for everyF ∈ F we have

−xT
0 Xx0

=
∫ ∞

0

d
dt

(xT (t)Xx(t))dt

=
∫ ∞

0
{xT (t)(AT X + XA + FT BT X + XBF )x(t)

+wT (t)GT Xx(t) + xT (t)XGw(t)}dt,

Using this, we can rewrite the cost functional as follows



∫∞
0 {xT (t)(Q + FT RF )x(t)− wT (t)V w(t)}dt

= xT
0 Xx0 +

∫ ∞

0
{xT (t)(AT X + XA + FT BT X +

XBF + Q + FT RF )x(t) + wT (t)GT Xx(t) +

xT (t)XGw(t)− wT (t)V w(t)}dt

= xT
0 Xx0 +

∫ ∞

0
H(x0, F, w, t)dt

where

H(x0, F, w, t) :=

{xT (t)(F + R−1BT X)T R(F + R−1BT X)x(t)−
(

w(t)− V −1GT Xx(t)
)T

V
(

w(t)− V −1GT Xx(t)
)

Now, chooseF = F1 := −R−1BT X (note that by assump-
tion F1 ∈ F ). Then, using the above equality, we have

infF supw(.) J(F, w, x0)

≤ sup
w(.)

J(F1, w, x0)

= xT
0 Xx0 + sup

w(.)

∫ ∞

0
{−

(

w(t)− V −1GT Xx(t)
)T

V
(

w(t)− V −1GT Xx(t)
)

}dt

≤ xT
0 Xx0.

Next we show that by choosingw(t) := w̄(t) (as outlined be-
low), we have thatinfF J(F, w̄, x0) = xT

0 Xx0, from which
the claim is obvious then.
To that end introduceF2 := V −1GT X, andv(t) := R

1
2 (F−

F1)x(t). Now, choosew̄(t) = F2p(t), wherep(t) satis-
fies ṗ(t) = (A + BF1 + GF2)p(t); p(0) = x0 (Note
that by assumptionA + BF1 + GF2 is stable and therefore
w̄ ∈ Lq

2[0,∞)). Letx(t; w̄) be the corresponding solution of
the system equation. Then, with̃x(t) := p(t) − x(t; w̄) we
have that

˙̃x(t) = (A + BF1)x̃(t)−BR−
1
2 v(t); x̃(0) = 0, (29)

and

H(x0, F, w̄, t)

= x(t; w̄)T (F − F1)T R(F − F1)x(t; w̄)−
(w̄(t)− F2x(t; w̄))T V (w̄(t)− F2x(t; w̄))

= −x̃T (t)FT
2 V F2x̃(t) + vT (t)v(t)

≥ −x̃T (t)(Q + FT
2 V F2)x̃(t) + vT (t)v(t).

The last inequality holds since by assumptionQ ≥ 0. Con-
sequently,

inf
F

sup
w

∫ ∞

0
H(x0, F, w, t)dt ≥

inf
F

∫ ∞

0
H(x0, F, w̄, t)dt ≥

inf
v∈Lq

2(0,∞)

∫ ∞

0
−x̃T (t)FT

2 V F2x̃(t) + vT (t)v(t)dt (30)

Now, using (28) and the assumption that its stabilizing solu-
tion X is positive semi-definite, we can rewrite the integral
in (30) as

∫ ∞

0
{ d
dt

(x̃T (t)Xx̃(t)) +

(v(t) + R−
1
2 BT Xx̃(t))T (v(t) + R−

1
2 BT Xx̃(t)) +

x̃T (t)Qx̃(t)}dt

= lim
T→∞

{x̃T (T )Xx̃(T ) +
∫ T

0
{(v(t) + R−

1
2 BT Xx̃(t))T (v(t) + R−

1
2 BT Xx̃(t)) +

x̃T (t)Qx̃(t)}dt}.

Due to our assumptions thatQ ≥ 0 andX ≥ 0 it is clear
from above that (30) is positive. So,

inf
F

sup
w(.)

J(F, w, x0) ≥ xT
0 Xx0,

from which the claim is obvious now. �.
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