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Keywords: Feedback Nash equilibrium, linear quadratic The performance criterion playée N aims to minimize is:
games, uncertainty, solvability conditions, Riccati equations J; (u1, - - , un, Zg, w) :=

o0
Abstract / {m(t)TQll’(t) + Z Uy (t)TRijUj (t)}dt. (2)
0 jEN

In this haper we d_efme feedback l\!a;h_ eqL.““b”a n Ime_arWe assume thap; is symmetric and?;; is positive definite
quadratic differential games on an infinite time horizon in ) o

L : . for all i € N. Note that we do not make any definiteness as-
both a deterministic and stochastic environment. The rela- . : S
: . . - .~ —sumptions orQ);. So, this formulation includes the 2-person
tionship between existence of such equilibria and solutions

of sets of algebraic Riccati equations is investigated Zero-sum game.
9 q 9 i .Without specification of the information the players have,

We assume that the players have memoryless perfect state ir)-. o ' o
. . : . this problem is ill-defined. In applications (see e.g. Eng-
formation and that they restrict themselves to stationary lin- : .
e . werda et al. (1999) for a number of references in economics)
ear stabilizing feedback strategies. o )
it is often assumed that the players have either memoryless

We consider linear systems in as well a certain as an uncer- . . d

. : . erfect state or closed-loop perfect state information. Given
tain environment. In the latter case we treat uncertainty both, . " : o .
. : L . his information structure, it is then assumed that in a non-
in a stochastic and a deterministic way. In the stochastic set- . . .
. . : . cooperative world ultimately the controls that will be played
ting we consider average, discounted and exponential perfor: . . L .

L 4 - . are those which constitute a Nash equilibrium. This naturally

mance criteria, respectively. In the deterministic setting, we

consider arff> type performance criterium. A relationship leads to the definition of the feedback Nash equilibrium con-

between the stochastic exponential and the determidigtic cept as defined in e.g. I_Ba_gar and _Olsder_ (1999, pp.321) in
; . case the players have a finite planning horizon. If the players
case is established.

have an infinite planning horizon, things are however much
less clear and usually one restricts to the consideration of
1 Introduction limiting stationary feedback Nash equilibria. In this paper we
will consider feedback information structure and additionally
In this paper we consider the problem wheke parties  assume that the strategies of the players in the infinite hori-
(henceforth called players) try to minimize their individual zon framework are linear in the state and are such that the
quadratic performance criterion. Each player controls a dif-state converges to zero. To be more precisely, we shall only
ferent set of inputs to a single system. The system is deconsider controls; of the typeu; = F;x, with F; € R™ %",

scribed by the following differential equation and whergFy, - - - , Fiy) belong to the set
N
z(t) = Ax(t) + Z Biu;(t) + Gw(t), (0) = zo. (1) F = {F =(F1, -, Fn)|A+ Z B;F; is stable}
i=1 i€EN

Here,z is then-dimensional state of the system,contains  Obviously, this last assumption is made in order to obtain a
the m; (control) variables playei can manipulatew is a  stable system. A necessary and sufficient conditiorffdo
g-dimensional vector of noise corrupting the system,is be non-empty is stabilizability ofA, [By - - - By]). There-

the arbitrarily chosen initial state of the systery, B; and  fore, we will assume throughout this paper that this matrix
G are constant system parameters, andenotes the time pair satisfies this stabilizability condition. Note that with
derivative ofz, fori e N :={1,--- | N}. this restriction on the strategies, the performasicis now a



function of the matrice$’;, ¢y andw. Nash equilibriumif for all 4 the following holds:

The rest of the paper is organized as follows. The next sec- ) )

tion contains some well-known results and notation that is Ji(F,x0) < Ji(F_i(a), 20), 3)
used throughout the paper. In section 3 we will characterize n X

all feedback Nash equilibria of (1),(2) in terms of solutions T0r all zo € R™ and for alla e R™™" such that

to a set of algebraic Riccati equations if the system is not corf-ila) € . O
rupted by noise (i.eG = 0). In section 4 we consider the ) .

case thatw in system (1) represents white noise. In that case’\€Xt: We characterize all feedback Nash equilibria_for
it does not make sense to consider the expected value of (2) a¥Stem (1), withG = 0, in case the performance criterion
performance criterion since the value of it will in general be Of €ach player is given by (2). To that end we first establish
infinite. Therefore we consider three different performancetN€ Next relationship between existence of a stabilizing
criteria in this section and determine the Nash solutions forSelution of an algebraic Riccati equation and existence of a
each of these criteria again in terms of solutions to some setS0!ution to a regulator problem. A proof can be found in the

of algebraic Riccati equations. Section 5 considers the cas@PPendix. The only if part of the theorem is proved by using

thatw in system (1) represents unknown deterministic noiset® c@lculus of matrix differentials.

and each of the players is looking for a worst case design.

The paper ends with some concluding remarks. Theorem 2:
Consider the one-player case.

Then, there exists afi € F such that for allF" € F for all
2 Preliminaries xo, J(F,x0) < J(F,x0) if and only if the algebraic Riccati
equation

In this section on the one hand we recall some well-known
concepts from literature and on the other hand introduce

some notation that is used throughout the paper. has a stabilizing solutiodX (i.e. a solutionX such that
First, we recall that a matrix is called stable if each eigen- 4 _ SX is stable).

value of A has a strict negative real part. Furthermore, we;,eover

~XSX+XA+ATX +Q=0 4)

, this minimum equals? Xz, and is uniquely

will use the notatiord > 0 (> 0) to indicate thatd is posi-  jiiained by the feedbadk = — R~ BT X. [
tive (semi-) definite. The trace of a mattkwill be denoted
by tr(A). Remark 3:

Next, for an N-tupley = (71, ,ywv) € 't x .- x Ty 1) Willems showed a similar result in (1971) under the
for given setsI';, we introduce the notation—i(a) = agsymption that the system is controllable.

(Y15 Yim 150 Vi1, oy yN), With e Ty 2) It is well-known, see e.g. Kimura (1997, pp.43), that (4)
Furthermore, we use the matrix abbreviatioflg := has at most one stabilizing solution.

—1 —1pT . H
BjR;; Rij R By, S; = Sii, and for given square X n 3) ysing the notion of the matrix sign Lancaster and Rod-

] jj I
matricesX;, Ac i= A= jen 5 X, Acti 7= Aa + 5i X, man derive in (1995, theorem 22.4.1) both necessary and

andQ; = 3o X;j5iX; + Qi In @ one-player con-  gyfficient conditions for existence of the stabilizing solution

text we will mostly drop the indices in the above mentioned of (4). O
matrices. A set of matriceX; is called stabilizing ifA.; be-

comes stable. _ Using theorem 2 we are able to prove the next result,
We use|| z || to denote the Euclidean norm of a vector. establishing the link between solvability of a set of coupled

Finally we note that usually we will drop in our notation the a|gebraic Riccati equations and existence of feedback Nash
dependency of the state on the specific initial state, input an@quilibria for the differential game under consideration. The
noise that is applied to the system and thus denote the stat@|evant set of algebraic Riccati equations is given by (see

of system (1) byz(t). If any of these arguments is unclear ziso Basar and Olsder (1999, pp.337))
within the context we will include them in our notation and

then use e.gr(t; xo, F) instead of juste(t). > X8 X;+ XiAa + AL X + Qi =0, i € N, (ARE)
JEN
3 The undisturbed case Theorem 4:

Let there exist anV-tuple of symmetric matriceX;,i € N
In this section we consider the cae= 0. Consequently, satisfying (ARE) such thatd.; is stable. Define the
J; does not depend om anymore. We define the concept N-tuple I := (Fy,---,Fy) by F; := —R;'BI'X,.
of a feedback Nash equilibrium in this noise-free context asThen (Fl, . ,FN) is a feedback Nash equilibrium and
follows Ji(F, l‘o) = l‘OTXi.%‘o.

Conversely, if(Fy, - - - , Fiy) is a feedback Nash equilibrium
Definition 1: then the set of algebraic Riccati equations (ARE) has a
An N-tuple F = (F,--- ,Fy) € Fis called afeedback  stabilizing solution.



Proof:

" = 7 Let X;,i € N satisfy (ARE) such that4,
is stable. Furthermore, denot&; := —R;'BTX.
Then, player i is confronted with the optimiza-
tion problem to minimize Ji(F,i(Fi),xo)
S A=) Qia(t) + T (t)FT Ry Fyx(t)}dt, subject to
the constrainti(t) = (Aq, + BiF;)x(t), z(0) Zo-

According theorem 2 this problem has a unique solution if

and only if the algebraic Riccati equation

—XSX + XAq;+ AL, X +Q; =0

wherew(t) is a standard white noise stochastic process (for
a formal definition see e.g. Davis (1977, pp.79)) ard)

is a random vector, uncorrelated with with meanz, and
E{x(0)2T(0)} = W, > 0.

Now, for the one player case it is well-known (see e.g. Davis
(1977, pp.185)) that, it) is positive definite in (2), the ex-
pectation of the cost (2) does not exist (it becomes infinite).
Therefore we consider three modified cost functionals

1')J5U(F1a"' 7FN)

. 1 (T r .
Jim B[ 07 @i+ 3 T RoF)s0)d), D)

€N
has a stabilizing solution. Substitution &f := X into the J !
above equation shows after some rewriting that we obtain the) Ji' (F1, -+ Fy) =
equation T , . .
Jim B[ e a)T(Qi+ > BT RigFy)a()}dt},
Z X;8iX; + XiAg + AL X + Qi =0, ®) ° JjeN ®)
jEN
o 3) JLEQG(Ry . By =
which holds by assumption. Furthermore, by assumption (1 [T a(O)T (@it en FT Ry Fy)a(t)dt}
the corresponding closed-loop systety; is stable. So, Aim - In Ee 270 JEN T T . (9)

inequality (3) is satisfied.

» « ” Assume that(Fy,---,Fy) is a feedback Nash
equilibrium. Then, by definition 1,F; solves the op-
timi;ation problem to minimize for allF; € Rf”"",
Ji(F_i(F;),z0) = fooo{x(t)T(ZjeN,j;éiF]TRiij +
Q:)z(t) + 2T (t)F R;; Fyx(t) }dt subject to the constraint
B(t) = (A+ 2 en,jz Bit)z(t) + BiFia(t), 2(0) = zo.
Since this problem has a solution, we know from the-
orem 2 that its solution is uniquely determined by
F, = —R;llBiTXi, where X; satisfies a corresponding

algebraic Riccati equation. So, necessarily we have tha

F, = —R;'BI'X;. Since this property should hold for
everyi € N, we can substitute this into the according

Riccati equations, which yields then the stated properiy.

Remark 5:

The assumption that we restrict the set of admissible

controls toF is essential here. If we drop this assumption,

one can easily construct an example (see Mageirou (1976)
where the set of algebraic Riccati equations (ARE) has a
stabilizing solution, and where it is possible to construct

a (non-stabilizing) feedback controller which yields lower
cost for one player in case the other player sticks to th
stabilizing controller advocated by the (ARE). O

4 The disturbed case: stochastic uncertainty

In this section we analyze what the effect will be on the Nash

equilibria if the system (1) is corrupted by stochastic white

Here# and~; are positive numbers and all matrices satisfy
the previous assumptions (see below (2)). In particular,
we still assume thaf);,i € IN are not necessarily positive
semi-definite.

Note that since we take the expectation operation each of the
cost functionals is a deterministic function, which depends
on the statistics of the noise processes. For notational
convenience we dropped this dependency (as usual).

These performance criteria have the following character-
istics. Whereas the first, average, cost criterion measures
Eccurately the long run performance, and neglects the
behaviour of the system over any initial interval, the sec-
ond, discounted, cost criterion has the opposite effect: it
emphasizes the initial performance. The third performance
criterion, the linear exponential-quadratic gaussian (LEQG)
one, is motivated by the fact that it expresses that player
has a constant level of risk aversigﬁ_g concerningJ; (see

ratt (1964)). The risk aversion parémeteexpresses that

e smaller it is, the more playeérlikes to steer the state of
the system towards zero as fast as possible.

Since the statistics are assumed to be known a priori to all

eplayers, we can copy more or less our previous definition

1 to define the notion of feedback Nash equilibrium in a
stochastic context. Viewed in this way, note that this equi-
librium concept is in fact more in line with the memoryless

perfect state information structure than with the feedback
information structure.

Definition 6:

noise. That is, we assume in this section that the system iéssume the statistics of the noise processes corrupting the

described by the following stochastic differential equation

i(t) = (A +Yy BiFi> z(t) + Gu(t), (6)

i=1

deterministic system are known to all players. Then, an
N-tupleF' = (Fy,---, Fy) € Fis called afeedback Nash
equilibriumif for all i the following holds:

Ti(F) < J(F_i()), (10)



forall« € R™*"™ such thatﬁli(a) e F. O The proof can be found in the appendix. Note the sub-
tle difference with theorem 8 that the argument which yields

To find feedback Nash equilibria for the above sketchedthe stated optimal control is unique here.

games, one first has to verify whether each game is well-The next multi-player result can be derived then analogously

defined in the sense that for eaéh € F the costs of the to theorem 4. A proof is therefore omitted.

players are finite. We first consider again the one-player

case. The proof of the next lemma and theorem can be foun@heorem 11.:

in the appendix. Let there exist anV-tuple of symmetric matriceX;,i € N
satisfying (ARE), in which matrixA.; is replaced by

Lemma 7: Al = Ay — 161, such thatA?, is stable. Define the

let F € F. Then N-tuple I := (Fy,---,Fy) by F; := —R;;'BTX,.

1) [J7¥(F)| < oo. Then (Fy,--- , Fy) is a feedback Nash equilibrium and

) Wt F) = E{x(t; F)zT(t; F)} — W(F) exponen- JAUE) = tr(WoX;) + tr(GT X,G). 0

tially fast. Furthermorel¥ (¢; F') is invertible for allt and

W(F) = 0. U Finally we consider the LEQG performance criterion.
¢From Runolfsson (1994) we have the following result

Theorem 8:

Consider the one-player case. Theorem 12

Then,mlnFe}‘ J(Z’L) (F) eX|StS |f the a|gebraIC RICCEltI equa' ConS|der the one_player case. Assume ma& 07 (147 B>,
tion (4) has a solutioX’ such thatA,; is stable. Moreover, (A, G) are controllable andQ, A) is observable.

this minimum equalstr(GT XG) and is attained by the Then, minpe JLEQCG(F) exists if the algebraic Riccati
feedbackF’ = —R-'BT X. O equation

Note that this optimal control coincides with that of 1

the undisturbed case. Furthermore, we do not claim here —X(S — 72GGT)X + XA+ ATX+Q=0 12)
that the proposed control is the unique argument that 7

minimizes the cost functional. A sufficient condition to

conclude that there is only one optimal feedback controlhas a (smallest) solutionX(> 0) such that both
under the assumption that (4) has a stabilizing solution isA — (S — 7%GGT)X and A — SX are stable and
that(A + BF, G) is controllable for allF' € F. Under this (4 — SX, G) is controllable.

condition W (F') (see lemma 7) is strictly positive definite Moreover, this minimum equals#tr(GTXG) and
forall ' € 7 (see e.g. Kimura (1997, lemma 2.14, 2.15)). s attained by the feedback := —~2R-!BTX (and
Analogously to the first part of theorem 4 we get then for the ;1) = GT x z(¢)). 0
multi-player case the following result.

To formulate the multi-player case we introduce the

Theorem 9: _ _ following set of algebraic Riccati equations
Let there exist arV-tuple of symmetric matriceX;,i € N

satisfying (ARE) such thatd. is stable. Define the

A ~ R 1

N-tuple F = (Fl,"' 7FN) by F;, = —R;]'BlTXZ ZXjSinj + TXZGGTXZ + X;Aq +AZ;X74+Q1
Then (F7,--- ,Fn) is a feedback Nash equilibrium and jeN i

J(F) = tr(GTX,;G). O

Next, we consider the discounted cost criterion. Basically, =0,4i¢eN. (13)

a similar result like theorem 9 will be derived: only matrix
A has to be replaced by matrit; := A — %9[. Again,
first we consider the one-player case. The well-posednes
follows in the same way as lemma 7 and is therefore omitted

Ihen, using the previous result one can show that:

Theorem 13:

Let there exist an N-tuple of symmetric matrices
X, > 0,i € N satisfying (13). Assume that with
these solutionst,; andA.; + %GGTXI- are stableQ; > 0;

(4Cu,Bi), (Au, G) and (Aclil—,G) are controllable; and

Theorem 10:
Consider the one-player case.
Then,minrc r J¢(F) exists if the algebraic Riccati equation

—XSX + XAg+AGX +Q=0 (11)  (Q;, A.,) are observable, € N.
has a stabilizing solutionX. In that case this minimum Define the N-tuple F = (F,---,Fn) by
equalstr(WoX) + tr(GTXG) and is attained uniquely by #; := —R;'BI'X;. Then, (F1,---, Fy) Is a feed-
the feedback” = —-R~!BTX. O  back Nash equilibrium and/d(F,z¢) = tr(GTX,G).

O



5 The disturbed case: deterministic uncer- Theorem 14:
tainty Consider system (14) for the one player case.
Assume there exists a matri > 0 satisfying the algebraic
In the previous framework, the disturbances, though unpreRiccati equation
dictable, are not completely unknown. One neadiori T o
knowledge of their statistics. If these statistics are not ade- —X9X + AT X + XA+ XGVTGTX+Q =0 (17)
quately described then this theory is not useful. In fact, it isSuch thatd — SX + GV-1GT X is stable.

assumed that all players have the same intuition on the UNfet 7. _R-1BTX. Then.F € F and

certainty that prevails in the system, and that they cope with

this uncertainty by taking the expectation operation. VF € F, Vao, J¥U(F, 20) < J¥(F,z). (18)
A possible alternative approach is to assume that the distur-

bance entering the system is completely unknown, though O

square integrable, and that each player has his own intuition . _ _
on how strong this disturbance will be. That is, we assumeln the multi-player case the next set of algebraic Ric-
in this section that the system (1) is now described by thecati equations play an important role

following differential equation Z X8, + XiGVi_lGTXi b XiAg + ATX + O
N JEN

z(t) = (A+ B, F)x(t) + Gw(t),z(0) = z¢  (14) ,
; =0,ieN. (19)

i L Then we have:

wherew € L(0,00) is an unknown deterministic distur-

bance. We assume that all players have feedback informatiorltheorem 15:

and act non-cooperative. Consider system (14).

Then, like in the stochastic case, we have to model how thgs (are  exists X, > 0 satisfying (19) such that

players cope with this uncertain dynamics. We replace theAcl I G‘/;—IGTXi, i

g . . € N are stable, then
statistics by a measure of the magnitude of the disturbanc

o AN i . _p-lpTy.
the individual player expects. This is done by replacinin feed.t:aclfllilﬂgsh e;q}:JJi\ii)t)r;lt\Jlltrr:] B Rii B Xi 1s Da
(2) by '
Jide“w = J; —/ w’ (t)Vw(t)dt. (15) We conclude this section by pointing out a relationship
0

between the equilibria we obtained in this deterministic
HereV; > 0 measures the expectation of playeoncerning  noise setting and the LEQG feedback Nash equilibria. Com-
the magnitude of the disturbance. Furthermore, we will as-paring the formulae (13) and (19) we see that both coincide
sume in this section tha@}; is positive semi-definite. if we make the assumption that = 2, i € N. ¢From
The intuition for introducingV; into this performance crite-  this we conclude that, at least generically, the solution to the
rion is that the largeW; is the smaller player expects that  LEQG problem will also provide an admissible equilibrium
the influence of the disturbance on the system will be. Asin the deterministic noise case and, vice versa. This kind of
such this approach can be viewed as an attempt to incorporai@lationship has already been noticed by a number of people
some probabilistics concerning the magnitude of the disturin literature, dating back to Jacobson (1973).
bance entering into the system. The fact that we are looking
for a worst case design is expressed by replacing the expecta:
tion operator by the supremum operator. That is, we assum
that each player is interested to implement a control wh|chThe aim of this paper is to analyze the relationship between

ylelds_, a guarantegd maximum level fqr his costs, Whateverexistence of feedback Nash equilibria in infinite-time hori-
the disturbance will be, and where this level is as small a:

ible. S o that in this determini t.szon linear quadratic games and solutions for sets of algebraic
possible. summarizing, we assume that in this deterministiGy; . oy; equations. Furthermore, it provides a framework to
model each player likes to minimize

deal with robust optimal control problems in a multi-player
det .__ det,w context.
S = we Ls;(%m) Ji (16) By restricting the strategy space to the set of stabilizing feed-
back controllers, we showed that the notion of feedback Nash

subject to (14). Definition 1 can then be used again to definequilibrium can be defined straightforwardly. We formulated
the concept of a feedback Nash equilibrium. both necessary and sufficient conditions for existence of such
Obviously this approach is inspired by thé> control  equilibria in terms of existence of stabilizing solutions to al-
theory. This theory is used to derive the next characterizatiomyebraic Riccati equations.
for feedback Nash equilibria in terms of Riccati equations. Engwerda showed in (2000) that already in the scalar case
(for Q; > 0 andR;; = 0 for i # j) the above set of alge-
braic Riccati equations (ARE) has in general more than one

Conclusion



stabilizing solution. Moreover, both necessary and sufficientall F € B J(F, zy) < J(F, z), we conclude that
conditions were presented under which this set has a unique
solution. It will be clear that an extension of these results to

the multivariable case would enhance a better understanding

of these games. Another point of research is whether Som%sing matrix differential calculus, see e.g. Magnus et al

assumptions can be further relaxed, and particularly for the . ) o
uncertain context, whether here also both necessary and su?-lggg)' itis easily verified that

aJ(F7 1’0)

WZO,VIOatF:F

(21)

ficient conditions are possible in terms of existence of solu- 0.J(F, z0) ov(P)

i ic Riccati i 2 = (2 @ 3d ) Dy ———4. 22
tions to algebraic Riccati equations. B(vecF)T (xg @xp) BvecE)T (22)
Appendix Sincex, is arbitrarily we conclude from lemma A.1 that
In thi di t ber of fs to th 0P p—p (23)
n this appendix we present a number of proofs to the BvecF)T — =F.

theorems. We start with a lemma which is used in the proof
of theorem 2. Both results require some notation used iNOn the other hand we see that by differentiation of (20) w.r.t.
the theory of matrix differential calculation. Therefore, we r e get

start of with giving these definitions (see e.g. Magnus et al.
1999).

The vec operator will be used to transform a matrix into a
vector by stacking the columns of the matrix one underneath
the other. The notatiom(P) will be used to denote the
in(n+ 1) vector that is obtained from ve by eliminating
all supradiagonal elements @t; and D,, will denote the
duplication matrix which transforms, for symmetiit v(A) D (I, ® (PB+ FTR)) = 0.
into vecP, i.e. D,,u(P) = vec P. Finally, ® will denote the

Kronecker product and>* the Moore-Penrose inverse of Therefore, alsd; (I, ® (PB + FTR)) = 0.

Ov(P)
+ + T _
D} (I, ® PB)+ D, (I, ® (A+ BF)")D, Bvec )T

7D7J{(In & (FTR))v

Using (23) we see that consequentlyfat £

. . 1, 1o (n—
matrix D. SinceD,, = ( ” OQn(*n 1) ) , we have thath(In &
LemmaA.1: PB+FTR

*

(PB+FTR)) = ( ) ) SoPB+FTR =0

Letb € R*™1)/2 Assume thata” © o) D,,b = 0 for all

a € R™. Then,b = 0. Proof:

Let B be then x n symmetric matrix defined by(B) = b.
Then, by definition of the duplication matrix it follows that
D,b = D,v(B) = vec B. Hence, we have

or, stated differentlyf"”” = — R~ BT P. Substitution of this
last equality into (20) yields then the advertised result.
7 <7 Let X be the stabilizing solution of (4). Consider

T
0 = (@"®a")Dyb=(a" ®a")vec B = vec a’ Ba J(ur, 20, T) := /0 {z(t)" Qu(t) +ui (1) Rua (t) }dt.
a’ Ba, (24)
Then (see e.g. Willems (1971, lemma 6)), forajl € R”,
for all ¢ € R™. This clearly implies thatB = 0, or for all F € R™*", and for allT’ > 0, the following identity
equivalentlyp = 0. 0 holds

Proof of theorem 2:

” = 7 Consider an arbitrary” € F. Itis well-known that
thenJ(F,zo) = 2l Pzo, whereP is the unique symmetric
solution of the Lyapunov equation

(A+BF)"P+ P(A+BF)=—(Q+ FRF) (20)

T
I, T) = [ (F+ BB X)a (6 Fao) [P de+
0
ot Xy — o(T; Fy20)" Xa(T; F, 20).
Therefore, for allF' € F, and for allxg,

J(F, 1‘0) = limTﬂoo J(F, LL‘(),T) =

Note that the parameters of this Lyapunov equation, i.e. the

matricesA + BF and—(C + DF)T(C + DF) are differen-
tiable functions ofF' € F. HenceP is also a differentiable

function of FF € F (see e.g. Lancaster et al. (1995, section

5.4)). So,J is differentiable with respect t&'.
Now assume that the minimum of(F, z) is attained at

/ | (F+ R 'BTX)a(t; F,xo) || dt + af Xao >
0

SU(Z;X{EQ

F = F. SinceF € Fitis easily verified that there is an Hence,{J(F,zo)|FF € F} is bounded from below for all
open environmen3 ¢ F of ' € R™™™ (with e.g. the zg. So, the infimum exists and in fact, the infimum is a
topology induced by the Euclidean matrix norm). Since for minimum and attained by = —-BT R~ X. O



Proof of lemma 7:

Let F € F. Then, W(t;F) is the unique so-
lution of the differential equation: W (t; F)
(A + BR)W(t;F) + W(t;F)(A + BF)T + GGT,
W(0) = W,y (see e.g. Davis (1977, pp.111)). $6{¢t; F) =
e(A+BF)tWOe(A+BF)Tt+f0t (A+BF)T (T o(A+BF)Tr
From this it is obvious that/ (¢; F) > 0 for all ¢ and that
W(t; F) — W(F) exponentially fast ift — oo, where
W (F) is the unique positive semi-definite solution to the
Lyapunov equation

(A+ BF)W(F)+W(F)(A+ BF)T + GGT = 0. (25)

Consequently,
1 T
JiP(F) = Jim —tr{ [ {W(t F)(Q + FT Ry F)Ydt}.
— 00 0

(26)
Since W (t; F') converges exponentially fast, it is clear
that J{V(F') exists for all FF € F, which shows that the
optimization problem is well-defined.
Finally, note that in (25)W(F) > 0 if and only if
(A + BF,G) is controllable (see e.g. Kimura (1997, lemma
2.14,2.15)). O

Proof of theorem 8:
Let X be the symmetric solution of (4) such that- SX is
stable. Then:

tr{W(t; F)(Q + FTRF)}

tr{W(t; F)(XSX — XA - ATX + FTRF)}
tr{W(t; F)(XSX — X(A+ BF) —

(A+ BF)'X + XBF + FTB"X + FTRF)}
tr{W(t; F)(F+ R'B"X)TR(F + R'BT X)}
—~tr{((A+ BF)W(t; F) + W(t; F)(A+ BF)") X}
tr{W(t; F)(F + R'BTX)TR(F + R"'BTX)}
—tr{(W(t; F) — GGT)X}.

So,
JO(F) =
tr(GTXG) + Tlijxlm{%tr (WoX — W(T; F)X)
+% /OT tr{W2(t; F)(F+ R""BTX)"R
(F+ R'BTX)W3 (t; F)}dt}

SincelV (¢; F') is invertible and converges to a positive semi-
definite solution, andR is positive definite the above inte-
grand is always semi-positive. So,

JY(F) > tr(GTXG).

Furthermore, we see that by choosing such that
F + R'BTX = 0, the above inequality becomes an

equality.
conclusion.

¢From this we immediately derive the stated
0

Proof of theorem 10:

Analogously to the proof of lemma 7 we first conclude
(using the same notation) that the optimization problem is
well defined in the sense that

Jd(F‘7 1‘0) =

Jim ¢ Te*"t{W(t;F)(Ql+FTRF)}dt}, (27)
e A

exists for allF’ € F.
Similarly as in the proof of theorem 8 one can show next that

tr{W(t; F)(Q+ FTRF)} =
tr{W(t; F)(F+ R'B"X)TR(F + R™'BT X)}
—tr{(W(t; F) — W (t; F) — GGT) X}
So,
JUF,x0) =
Thix;o{tr(GGTX) +tr(W(0; F)X — e TW(T; F)X)

T
+/ e r{W3(t; F)(F + RT'BTX)TR
0
(F+ R'BT X)W (t; F)}dt}

Since bothW (¢; F') and R are positive definite the above
integrand is always semi-positive. In particular we see
that at timet = 0 the integrand will be zero if and only if
F + R 'BTX = 0. ¢From this we immediately derive the
stated conclusion. O

Proof of theorem 14:
Assume thafX is a solution of

~XSX+ATX + XA+ XGVIGTX +Q =0 (28)

such thatd — SX + GV~ 'GT X is stable.

First we note that due to our assumptions we also immedi-
ately have thatd — SX is stable (see e.g. Kimura (1997,
lemma 9.1)). Then, for every € F we have

—z8 Xz

OOO %(:L'T(t)Xx(t))dt

[T+ XA FTETX ¢ xBE)(
0

+w? () GT Xx(t) + 27 (1) X Gw(t) Y dt,

Using this, we can rewrite the cost functional as follows



Jo {=zT0(Q+ FTRF)x(t) — w’ ()Vw(t) }dt i / —FT () FIVEE(t) + T (Hu(t)dt  (30)
vELg 0,00) Jo
= ap Xxo+ / {2"(t)(ATX + XA+ F"BTX + Now, using (28) and the assumption that its stabilizing solu-
- T - tion X is positive semi-definite, we can rewrite the integral
XBF 4+ Q+ F'RF)z(t) +w' (t)G" Xx(t) + in (30) as
2T () XGw(t) — w” (t)Vw(t)}dt
= :UOTXI0+/ H(zo, F,w, t)dt / {dt Xa(t)) +
0
2 T _% TxX7
where T()+R BT X&) (v(t) + R 2BTXi(t)) +
()Qz(t)}dt
H(zo, F,w,t) == = Jim {l (T)Xa(T) +

{T(t)(F+ R'BYX)TR(F + R™'BT X)x(t) —
(w(t) = VIGTXx(t))" V (w(t) — V'GT Xa(t))

Now, choose” = F; := —R~!BT X (note that by assump-
tion £y € F). Then, using the above equality, we have

/ {(w(t)+ R 2BTXi(t)" (v(t) + R~ 2 BT X&(t)) +

#"(H)Qx(t)}dt}.

Due to our assumptions thgt > 0 and X > 0 itis clear
from above that (30) is positive. So,

inf p sup,,() J (F, w, zo)
inf sup J(F,w, xg) > :L'OTXmO,

< sup J(Fy,w,xo) Fow()
w;) o0 . T from which the claim is obvious now. 0.
= x5 Xxo+ ?uLEI;/o {— (wt) - VIG"Xa(t))
V (w(t) - V- GT Xx(t)) }dt References
< xg Xao. [1] Basar T. and Olsder G.J., 1999, Dynamic Noncoopera-

Next we show that by choosing(t) := w( ) (as outlined be- tive Game Theory, SIAM, Philadelphia.

low), we have thatnf J(F, @, z) = x X9, from which [2] Davis M.H.A., 1977, Linear Estimation and Stochastic
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i(t) = (A+ BF)i(t)

and

— BR3u(t);#(0) =0, (29)
H(.To, F, ’LZ), t)

= a(t;w)" (F — )" R(F — Fy)z(t; ) —

(w(t) — Fox(t; w))" V (0(t) — Fox(t; w))

= T FIVFREt) + ol (t)o(t)
>~ ()(Q+ Fy VE)i(t) + v (t)u(t).
The last inequality holds since by assumpt@n> 0. Con-
sequently,

oo
i%fsup/ H(zg, F,w,t)dt >
w Jo

1nf/ H(SL’(),F,E),t)dt >
FJo
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