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In this paper we study linear production processes. The maximal profit that can
be made has to be divided among the agents in a “fair” way. G. Owen (1975, Math.
Programming 9, 358-370) assigned to every linear production process a cooperative
game, a “linear production game,” and introduced a method to find a subset of the
core of linear production games, which we call the “Owen set.” In the first part of
the paper we give an axiomatic characterization of the Owen set. In the second part
we study the relation between the “shuffle” property (one of the axioms) and the
core of the corresponding linear production game. Journal of Economic Literature
Classification Number: C71.  © 2000 Academic Press

l. INTRODUCTION

[n this paper we study a model of a production economy, in which the
production process is linear and freely accessible for every group of agents.
The situation is as follows: there is a finite set R of resources and these
resources can be used to produce consumption goods. The set of consump-
tion goods (or products) is denoted by P. The production technologies are
given by a production matrix A4, where A;; 1s the amount of resource i nec-
essary to produce one unit of product j. The products can be sold at a fixed
market price, given by a vector c. It is assumed that the demand is large
enough to sell all produced consumption goods. Then the maximal profit
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140 VAN GELLEKOM ET AL.

that can be made from a resource bundle b is equal to the maximum of the
linear program

X € Ri,
Ax < b, (i:10)
max(c, x),

where x; denotes the amount of product j that is produced.

Further, there is a finite set N of agents and each agent owns a bundle
of resources. The agents try to maximize their profits. They can work on
their own, but they are allowed to cooperate by pooling their resources.
Pooling is favorable, because the maximal profit after pooling 1s always at
least as high as the sum of the profits of the agents separately. The reason
is that the agents can, when they cooperate, still make the products they
could make on their own. Therefore it 1s assumed that all agents cooperate,
yielding a maximal profit, say v(/N ). The question arises as to how to divide
v(N) among the agents in a “fair” way. The solution to this problem 1s
not immediately clear, if the resource bundles of various agents are very
different.

A possible way to divide v(N) is to assign a TU-game to a linear pro-
duction process and to apply game-theoretical solution rules, like the core,
to allocate v(N). Owen (1975) introduced such “linear production games”
(N, v), where v(S) is the maximal profit that coalition § can obtain. He stud-
led the core of linear production games and showed that it 1S nonempty.
For an arbitrary TU-game it is a lot of work to find a core element, as the
core condition has to be checked for every subset of agents. Owen (1975)
has found a method to find a nonempty subset of the core of linear produc-
tion games. We baptized this set the “Owen set.” The Owen set 1s usetul
to find core elements, but it is also a division rule on its own. It gives for
every linear production process a set of allocations of v(/NV).

In general the Owen set needs not be equal to the core. But for several
classes of linear production processes it is known that the two sets coin-
cide (see, e.g., Shapley and Shubik, 1972; Kalai and Zemel, 1982; Samet
and Zemel, 1984). Owen (1975) has shown that the core of the r-fold repli-
cation of a linear production process converges to the Owen set, when r
tends to infinity. Samet and Zemel (1984) give a necessary and sufficient
condition for finite convergence. In the literature many generalizations of
linear production processes can be found. We mention Dubey and Shapley
(1984), Granot (1986), Curiel ef al. (1988), Curiel et al. (1989), Feltkamp
et al. (1993), and Timmer er al. (1993).

In this paper we study the Owen set as a division rule on the set of linear
production processes (exact definitions are given in the next section). In
Section 3 we characterize the Owen set. Section 4 pays special attention
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to one of the axioms (shuffle) in relation to the core of linear production
games.

2. PRELIMINARIES

The linear program (1.1) needs, in general, not to be bounded. Therefore
we put some conditions on A, B, and c¢. Before we give a formal definition
of a linear production process, we first introduce some notations with re-
spect to matrices and vectors. Let M and Q be two finite sets. The set of
M x Q-matrices with elements in a given set 7 1s denoted by Mat,, ,(}").
Let A be an arbitrary matrix. Then

A;; := the element of A in the row corresponding to 7 and the column

corresponding to j (the 7th row and the jth column),

A;, = the ith row ot A,
A,; := the jth column of A,
A _., := the restriction of A to all rows except the ith row,
A, _; := the restriction of A4 to all columns except the jth column.

DEFINITION 2.1. The set of agents is denoted by N, the set of resources 1s
denoted by R, and the set of products is denoted by P. We define n := |N|,
Fii= IR|; and pi= |P):

For a coalition S € N we define its characteristic vector e € R by
(e), = 1 if k € §; (eg);, = 0 otherwise. The N x N-identity matrix 1s
denoted by /5. We do not use a transpose sign to distinguish between row
and column vectors. It will be clear from the context which one 1s meant.

DEFINITION 2.2. A linear production process is a triple (A, B, ¢) satisty-
ing the following conditions:
e A € MatR._p(R_k), B e MatR‘j\.r(R_E,)ﬁ £ e RP, R, E AN ?/-' 0.
® Bf.?h: = 0
» There is at least one product j € P with ¢; = 0.

o [f C; & 0. then there is at least one resource i € R with A,—j R ()
The set of linear production processes 1s denoted by .

The interpretation is as follows: A is the production matrix: A;; gives the
amount of resource i necessary to produce one unit of product j. B gives
the resource bundles owned by the agents: B;, 1s the amount of resource ¢

owned by agent k. c is the price vector: ¢; is the market price for product
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j. The condition Bey, > 0 says that every resource is owned by at least one
agent in a positive quantity. The last condition states that if the market
price of a product 1s strictly positive, then some resources are needed to
produce 1t; otherwise none of the linear programs of type (1.1) 1s bounded.

For every (A, B, ¢) € ¥ and every coalition § we can compute the max-
imal profit v(S) := v“4%9(S) that the agents in § can obtain by pooling
their resources. The value v(S$) 1s equal to the maximum of the linear pro-
gram

EP(8) x € R?,
Ax < Beg, (2.1)
max(c, x),

where x; 1s the amount of product j that i1s produced. This linear program
1s feasible (x = 0 1s a feasible vector) and the conditions put on (A, B, ¢)
ensure that it i1s bounded. We prove this with the help of the dual linear
program

LP(15) y € RY,
ya = ¢ (2.2)
min(y, Beg).
The following vector is a feasible point of the dual program:

.}"j . — m&Y;'EF:.‘I,J,?*U{;_JU’ 0} Othel'WlSﬁ‘.

So both linear programs are feasible. Applying the duality theorem of
linear programming gives that both linear programs are bounded and that
the maximum 1s equal to the minimum. An advantage of using the dual
linear program for the computation of v(S) is that the feasible region i1s
the same for all coalitions; only the objective function changes. The pair
(N, v'48:9) is called a linear production game. If there is no danger of
confusion, we omit the superscript (A, B, ¢).

Pooling resources yields a profit v(/N ), which has to be divided among
the agents. We are looking for “solution rules” as defined by

DEFINITION 2.3. A solution rule ¢ on ¥ 1s a map, which assigns to every
linear production process (A, B, ¢) € # a subset of RY.

Note that it is allowed that o(A,B,c) = ¢ for some (or all)
(A, D, c)e .

A well-known solution rule for TU-games 1s the core, introduced
by Gillies (1959): Core(N,v) = {x € RY | x(N) = v(N), x(S) >
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v(S§) for all § € N}. We define the core of a linear production process
(A,B,c) € &£ by Core(A, B, c) := Core(N, v). In this paper we mainly
consider the Solution rule introduced in Owen (1975). Before we define
the “Owen set,” we introduce some more notation.

DEFINITION 2.4. Let (A, B,c) € ¥. The feasible region of LP*(N) is
denoted by

F.in(A,B,¢) :={yeR} | y4 > c},
the optimal value of LP*(N) by
v (AL B )= min{ (y, Bey) | ¥y € F:(A, B c)},
and the set of optimal solutions of LP"(N) by

(A B, C) = {“' € me(A B (*) | (V Beﬂ“’) . Umin(“i11 Bn C)}

ﬂ]lﬂ

Note that the value v . (A, B, ¢) 1s the total profit that the agents In
N can make, i.e., v...(A, B,c) = v(N). The total profit 1s independent
of the division of the resources among the agents. It only depends on
the total quantity of resources that are available. In particular, we have

ITHH(A B, C) == Urmn(/ﬁ1 BeNvC)
Now we can define the Owen set:

DEFINITION 2.5. Let (A, B, ¢) € . The Owen set of (A, B, c¢) is defined
by

Owen(A, B,c):={yB|ye 0,;,(A, B,c)}.

TTIII](

The vectors of O_,. (A, B, ¢) can be seen as shadow prices for the re-
sources. The agents are paid for their resources according to the shadow
price vector, which yields an Owen vector. For the special case B = Iy, we
have Owen(A, Iy, c) = O,.,;.(A, Iy, c). In this case every agent owns ex-
actly one unit of one resource and every resource 1s owned by exactly one
agent.

Owen (1975) showed the following relation between the Owen set and
the core:

THEOREM 2.6. Let (A, B,c) € . Then
Owen( A, B, c) € Core( A, B, c¢).

REMARK 1. Generically the Owen set consists of one point and there-
fore it 1s “often” a proper subset of the core.
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REMARK 2. As a consequence of Theorem 2.6 linear production games
arc totally balanced. They are nonnegative as well. The converse can also
be shown; 1.e., nonnegative totally balanced games are linear production
games. In general the linear production process yielding a prescribed non-
negative totally balanced game 1s not unique. It is even possible that the
Owen sets of two linear production processes generating the same linear
production game are different. The following example illustrates this phe-
nomenon.

ExXAMPLE 2.7. Consider the following Ilinear production process
(A, b, c)ie e

L3 0 4 j
A.:(l : 4), B.:(S 3).‘ ¢ +=1(5;06:8).

We have v(1) = 0, v(2) = min{dy, + 3y, | yw+» > 5, 2y + y, > 6,

Y4y > 8F = 16; ¥(12) = 27. Furthermore, Omin(jﬁl, B )= 314;. 1)}
and Owen( A, B, c) = {(8, 19)}. The triple (A, B', ¢’) € &£, where

0 1 [ 0
e s S ey )

gives the same linear production game, but the Owen set is different:
Owen(A',B',c')=0..(A,B,c')={(y,27—y) |0 <y <11}

This means that the Owen set 1s not a game-theoretical solution; 1.e., it
1S a solution rule on linear production processes, not on linear production
games.

Let ¢ be a solution rule on #. In this paper we characterize the Owen
set with the following axioms:

One person efficiency. ¢@(A, ep,c)={v,;.(A, er,c)} forall (4, eg,c)e
S

[f there 1s only one agent owning one unit of all resources, then ¢ assigns
to him the maximal profit that can be made from his resource bundle.

Rescaling. (DA, DB, c) = ¢(A, B, c) for all diagonal matrices D €
Mat, ([, ) with positive diagonal entries, for all (A, B, ¢) € £.

Rescaling means that the solution rule is independent of the units in which
the resources are measured. The related property, “independence of chang-
ing the units in which the products are measured,” 1.e. ¢(AD, B, cD) =
¢(A, B, ¢), also holds for the Owen set, but it 1s not needed to character-
1ze the Owen set.

Shuffle. ¢(A, BX,c) = ¢(A, B, c)X for all matrices X € Maty 5, (R, )
with Xe,, = ey, for all (A, B,c) € &, where ¢(A,B,c)X ={yX | y €
¢(A, B, c)}.

This property says that if the resources are shuffled among the agents,
then the solution rule changes in the same way. Examples:
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permutation of the bundles of agents 1 and 2:

g 1 '0

As= 110

0 0 1

merging the bundles of agents 1 and 2:
£, i)
x5=1r1"0
@ -

splitting and merging the bundles of agent 1 and 2:

12 2 6.0
Xl 0 18 20
0 0 0 1

Splitting bundles of an agent is always splitting into proportional parts.

Consistency. For all (A,Iy,c) € £ with n > 2 and for all y €
p(A, Iy,c):(A_js, In\isC) € £ and y_; € o(A_;,,In\,C) for all i € N,
where ¢; :=c¢; — y;A;; for all j € P.

This property has to do with the special case that every agent owns ex-
actly one unit of exactly one resource and different agents own different
resources. We 1dentity the set of resources with the set of agents in an ap-
propriate way and write /5 for the R x N-identity matrix. (We could have
chosen [ 1nstead.)

Suppose that the agents agree that the profit 1s divided according to a
vector vy € o(A, Iy, c). Agent [ takes y; and leaves. His resource can be
used by the other agents for a price of y; per unit. This 1s the same as
saying that the profit of a product decreases with y; for every unit needed
of this resource. A solution rule satisfies consistency if the restriction of y to
the remaining agents 1s a solution to the reduced linear production process.

Deletion. For all (A,Iy,c) € £ and tor all J C P: if v (A,_;, Iy,
C+J) = ﬂ""'nﬂlin(/ﬁ]'I ]N-r C) then QD(A*: ]N* C) C ‘:D(A-—.!" lNe C—J)'

Deletion says that if a production technology is not needed to make max-
imal profit v(N) we can delete this technology. The outcomes of the old
situation are also outcomes in the new situation.

It will appear that the five axioms imply the following axioms, which are
useful in the proofs we give.

Nonemptiness. ¢(A, B,c)# ¥ tor all (A, B,c) € £.

Efficiency. (y,en) = v...(A,B,c) for all y € ¢(A, B,c), for all
(A, D)€ S

The agents can make a maximal total profit v(N) = v..(A, B, ¢). Effi-
cient solution rules divide exactly this amount among the agents.
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3. CHARACTERIZATION OF THE OWEN SET ON ¥

Theorem 3.1 1s the main theorem of this paper. It characterizes the Owen
set on .

THEOREM 3.1. If ¢ is a solution rule on £ then ¢ satisfies one person effi-
ciency, rescaling, shuffle, consistency, and deletion if and only if ¢( A, B, ¢) =
Owen( A, B, c) forall (A, B,c) € Z.

The theorem will follow from a series of lemmas and propositions. Propo-
sition 3.2 shows that the Owen set satisfies the five axioms. Lemmas 3.3-3.6
show that the Owen set is the unique solution rule satisfying the five ax-
10mS.

PROPOSITION 3.2. The QOwen set satisfies

(a) one person efficiency
(b) rescaling
(c) shuffle

(d) consistency
(e) deletion

Proof. (a) One person efficiency: Let (A, er,c) € £. Then
OWBH(A, €R> C) — {_}*’(‘?R ‘ Y€ Omin(A"- CR, C)} = {Umin(A? €R C)}

(b) Rescaling: Let (A, B,c) € # and let D € Maty, (R, ) be a diag-
onal matrix with positive diagonal entries. First note that

Vmin(DA, DB, ¢) = min{(y, DBey) | y € RY, yDA > ¢}
= min{(D'y, Bey) | D'y e RY, (D'y)' A > ¢}
= min{(z, Bey) | z€e R¥, z4 > ¢}

— Umin(A! B* C)*

where the third equality holds because D 1s a nonnegative invertible diag-
onal matrix. Using this again (the tourth equality) we have

Owen(DA, DB, c) ={yDB |y € O,...(DA, DB, c)}
= {yDB |y € RY, yDA > ¢, (y, DBey)
= (DA, DB c)}
= {(D'y)'B| D'y e R}, (D'y)'A > c, (D'y, Bey)
— v_. (DA, DB, c)}
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T {‘-B | e R, zA = 1C; (Z" BEN) = Umin(Av B, C)}’

+ <

== {ZB ‘ Z € Omin(A'r B, C)}
= Owen(A, B, c).

(c) Shuffle: Let (A, B,c) e £ and X € Maty (R, ), Xey = ep. The
row sums of matrix X are equal to one, which implies v,;, (A, BX, ¢) =
v...-(A, B, ¢). Then

Owen(A,BX,c) ={yBX |ye 0..(A, BX, c)}
= {yBX | y e R}, yA > c, {y, BXep) = vpin(A, BX, ¢)}
={yBX |y e RY, yA > ¢, (y, Bey) = v,;,(A, B, ¢)}
={yB |y e R}, y4 > ¢, (y, Bey) = vpin(A4, B, ¢)} X
= Owen(A, B, c)X.

(d) Consistency. Let (A,Iy,c) e £,n> 2,y € Owen(A, Iy,c), 1 €
N. We have to show that (A_;,, Iy\;,€) € £ and y_; € Owen(A_;,, Iy\; C)
where ¢; := ¢; — y;A;; for all j € P. We first show that (A_;,, Iy;, €) € Z.
Therefore we have to prove that there 1s at least one product j* with ¢;. = ()
and if ¢; > 0 for some product j then there is at least one resource / with

Ay > 0. From y € Owen(A, Iy, ¢) = Oy, (A, Iy, c) 1t follows that
y € RE,
yA = ¢, (3.1)

[end =l s &)

[t ¢; < 0 for all products j then ¢; < v,A forall je P. (A, Iy,c) € £ 1m-
plles that there is at least one product 7" Wlth ¢ 2 0. Then 0 < ¢ < y; 455
which implies that y; > 0. For small € > 0 we hdve (1 =2)yA; > ¢; 1ot all
jeP,ie., (1 —¢e)ye; € F. (A, Iy,c) for all j € P. Then vmi"(A, IN.. o)
(1—28)y; < y; < (y,eny) = v,.in(A, Iy, c), a contradiction. So there 1s at
least one product j* with ¢;. > 0. Suppose that ¢; > 0 for some product j.
Then ) )_, yA;; = ¢; >y, A So there is a lesoulce [ € R\{i} with 4;; > 0.
Then (A_;,); = A;; > 0. Thls proves that (A_,,, Ix;, C) € .

Next we show that y_; € Owen(A_,,, Iy, C), 1.€.,
b
Y-i € R*%\[*

ol e 3 6, (3.2)

— 0 —

<y—-f1 eN\f) == Umin(A—f-ﬂ IN\E'! 5)

The first line, y_; € Rf_\‘f, follows from y € R¥. For all j € P we have
ZF=1)”!AU = € which 1mplle'~; ..V——fA—.f'-ej = Z!;éf }?!Aij = G = yr'Af'j = Ej'r
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..e., y_;A_;,, = ¢. Finally we show that (y_;, ex\;) = Vnin(A_ie, I, €).

From Yy € Fn'lin(A—fI‘-‘ IN\E’ E), it follows that Umin(A—f-*[N\hE) <

(Y—is €nyi)- Suppose that vy (A_j,, Iy €) < (}L;,EM,;). Choose z €
Fmin(A—i-ﬂIN\f?E) such that vmin(A—f-a]N\hE) — (.Z, GN’*\:’)' Then 2 = 0
and >0u;zi Ay = ci— YAy 1.6, (2, V) € Hon (A, Iy, €) and. (2, ;) ey) <
(y, en). This contradicts the fact that y € O,;,(A, Iy, c). SO we have
vmin(A—fﬂ IN\:': E) — (_V_I', eN\i)*

(e) Deletion: Let (A,Iy,c) € ¥ and suppose that there exists
a ‘proper: subset of products J & P such that v,..(A, 7dyiC p) =
v (A, Iy, c). We have to show that

Owen( A, Iy, ¢) € OWen( A, .7, In, € 7).

Take y € Owen( A4, Iy, ¢). Then

y € RS,

yA > c, (3.3)

(Y en) = Unin(A4, Iy, €),

which implies that y also satisfies

y € RY,

YAy ZELT (3.4)
(Y, en) = Umin(Ae_y, In, €_y);

e, y e Owen(A,_j,Iy,C_5)- N

We shall use the following R x R diagonal matrix D several times in the
proofs in this section (in combination with rescaling):

D, = (e;Bey)! for all 1€ R,

f),-j =iil) otherwise.
Note that DB is a matrix with all row sums equal to 1: DBey = ep.

The following lemma shows that a solution rule satisfies nonemptiness
and efficiency if it satisfies one person efficiency, rescaling, and shuffle. The
properties nonemptiness and efficiency appear to be useful in the proofs of
the lemmas.

LEMMA 3.3. If ¢ satisfies one person efficiency, rescaling, and shuffle then
@ satisfies nonemptiness and efficiency.
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Proof.  Suppose that ¢ satisfies one person efficiency, rescaling, and shuffle
and take (A, B, ¢) € /. By rescaling we have ¢(D A, DB, ¢) = ¢(A, B, c).
Applying shuffle with X := ¢y gives o(D A, DBey,c) = o(DA, DB, c)ey.
Note that (DA, DBey,c) € ¥ is a linear production process with one
agent, which possesses exactly one unit of each resource: DB(W = eR
Applying one person efficiency glvu; o(A, B, c)ey = ¢(DA, DB. C)epr =
¢(DA, DBey,c) = o(DA,ep, c) = = {v.. (DA, ep, ¢)}, from which we gct
(A, B, c) # 0. To prove that ¢ satisfies efficiency it is sufficient to show
that vmin(f)/l* €Rr, C) = Vyin( A, B, ¢). This follows from

7 : L : ! .
1L?min([)“"ﬁlﬂ CR> C) mm(’ﬁ1 ) CR> C ) = Umin(Aw B{?N* C) = Umin(/'L B, ¢ )

where the first equality holds because the feasible region of LP(N) does
not change by rescaling; hence the optimal value of LP*(N), which is equal
to the optimal value of LP(N), does not change. m

To characterize the Owen set, we first consider linear production pro-
cesses where B = Iy (Lemmas 3.4 and 3.5). Lemma 3.6 gives a characteri-
zation of the Owen set on .

LEMMA 3.4.  If ¢ satisfies one person efficiency, rescaling, shuffle, and con-
sistency then ¢( A, Iy, c) € Owen(A, Iy, c) forall (A,1y,c) e £

Proof. The proof is by induction to n, the number of agents. The
case n = 1 follows from Lemma 3.3: ¢(A, I}, ¢) = {vpin(A, Iy, ¢)} =
OWeﬂ( A, [{1 C).

Suppom that the lemma has been proved if the number of agents 1s less
than n > 2. Take (A,Iy,c) e ¥ and y € ¢(A, Iy, c) # ¥ by Lemma 3.3.
Applying this lemma again gives (v, ey) = v, (A, Iy, c) > 0. So there
1s an agent ; with y; > 0. Consistency w.r.t. this agent and the induction
hypothesis give

y-i € p(A_j;,, In\i, €) S Owen(A_,,, Iy, €),

where ¢; = ¢; — y;A;; for all j. In particular y_, > 0; hence y > 0. Further,
Y-iA_ji = C; = ¢; — y; Ay, 1.8, vA,; = ¢; for all j. Summarizing we have

y € RY,

.}}A 2 C, (3*5)

()’"! GN) = Umin(Aﬂ [Nﬂ C)v
1.e., y € Onin(A, Iy, c) = Owen(A, Iy, c), as was to be shown. m

LEMMA 3.5. If ¢ satisfies one person efficiency, rescaling, shuffle,
consistency, and deletion then Owen(A,Iy,c) € @(A,Iy,c) for all
(A,, ]N’ C) e 1.
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Proof. Let (A,Iy,c) € £ and take y € Owen(A4, Iy, c). Define
A = [Aly], € = |cy]: Then Owen(A,Iy,¢) = {y € RY | y4 =
.,y = Y (Y, en) = voio(A, Iy, €)} = {y}. From Lemma 3.4 we get
D # (A, Iy,Cc) S Owen(A, Iy,¢) = {y}. Hence (A, Ly, €)= ¥k
As vnin(A4, Iy, €) = Vpin(A, Iy, c), we can apply deletion which gives
o(A,Iy,C) € o(A,Iy,c).Soye (A, Iy,c) =

LEMMA 3.6. If ¢ satisfies one person efficiency, rescaling, shuffle, consis-
tency, and deletion then ¢(A, B, ¢) = Owen(A, B, ¢) for all (A, B, c) e L.

Proof. Take (A, B, ¢) € #. Then we have

o(A, B, ¢)= o(DA, DB, c) (rescaling)
= (DA, Iy, ¢)DB (shuffle)
— Owen(DA, Iy, c)DB (Lemmas 3.4 and 3.5)
— Owen(D A, DB, ¢) (Prop. 3.2c)
= Owen(A, B, ¢) (Prop. 3.2b).

The following five examples show that the axioms are logically indepen-
dent.

ExXAMPLE 3.7. Define ¢o( A, B, c¢) := ¥ for all (A4, B, c) € £. ¢ satisfies
rescaling, shuffle, consistency, and deletion, but not one person efficiency.

ExaMpPLE 3.8. Take (A, B,c) € £ and let D be the (unique) diagonal
matrix such that DBey = ey (as before). Define the solution rule ¢ by
o(A, B, c) = Owen( A, DB, ¢). Then ¢ satisfies one person efficiency, shuf-
fle, consistency, and deletion, but not rescaling.

ExaMpPLE 3.9. For all (A, B,c) e £

Owen( A, B, ¢) i =1

B )= :
4 ) { % otherwise.

Then ¢ satisfies one person efficiency, rescaling, (trivially) consistency, and
deletion, but not shuffle.

ExaMPLE 3.10. The definition of the solution rule to show that consis-
tency is logically independent of the other four axioms 1s more complicated.
The idea is to construct a solution rule, which equals the Owen set for “a
lot of” linear production processes, but which is a proper subset of the

Owen set 1f
! ]. ! B ]. O ._,f 4
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T'hen we hope that ¢ does not satisfy consistency applied on a linear produc-
tion process which yields this A", B’, and ¢’. The Owen set of this triple 1s
equal to the set {(#,1 —1) |0 <1 < 1}. We choose ¢(A’, B, c') = {(1, 0)}.
This choice determines ¢ for a whole class of linear production processes, if
we want one person efficiency, rescaling, shuffle, and deletion to be satisfied.
[t appears that this class is equal to the following subset of :

£ :={(A4,B,c)e¥ | r=2,3d;,d,>03*: Ao =di(i=1,2) ;. =1,

eibey =d;, Vj#jIie{l,2}: A;=>dc,.
+" consists of all linear production processes which can be obtained from
(A", B, ") oryield (A', B, ¢') after applying rescaling, shuffle, or deletion.
We define

{-5=(Bu1 ..., By,)} if (4,B,¢)e &',

(A, B, c)= .
Owen( A, B, c) otherwise.

The proof that ¢ satisfies one person efficiency, rescaling, shuffle, and deletion
s straightforward. ¢ does not satisfy consistency by Theorem 3.1.

EXAMPLE 3.11. Define ¢(A4,B,c) := Extr(O,,(A, B, ¢))B for all
(A, B,c) € £, where Extr is the set of extreme points. ¢ satisfies one
person efficiency, rescaling, shuffle, and consistency, but not deletion.

4. THE SHUFFLE PROPERTY

For an arbitrary linear production process (A,B,c) € ¥ and ma-
trix X € Maty ,(R,) with Xe,, = ey, the equality “Core(A4, BX, ¢) =
Core(A4, B, ¢)X” does not hold. Hence the core does not satisfy the shuf-
fle property. In this section we shall show that the equality is satisfied for
all X € Maty (R, ) with Xe,, = ey (only) if the linear production game
(N, v)corresponding to (A, B, ¢) is an additive game, i.e., v(S) = D kes V(k)
for all § € N. If we only consider matrices X with X, € {0, 1} for all k, /
(only permuting and merging bundles) then the equation is satisfied (only)
it (N, v) is convex, i.e., for all S, T € N v(S) + v(T) < v(SU I)4+v(SNT).

THEOREM 4.1. Let (A, B, c) € ¥. Then

Core(A, BX, ¢c) = Core(A, B, c)X for all X ¢ Maty y(R,)
with Xey = ey
¢

(N, '8 is additive.
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THEOREM 4.2. Let (A, B,c) € &. Then

Core( A, BX, ¢) = Core( A, B, c)X for all X € Maty ({0, 1})
with Xey = ey

i

(N, v'4:5:9) is convex.

Before we prove the theorems, we shall first repeat some definitions and
theorems w.r.t. convex and additive games. For additive games we have

PROPOSITION 4.3.  Let (N, v) be a superadditive game. Then
(N, v) is additive = v(N) =) v(k).
keN
The proof 1s straightforward.

DEFINITION 4.4 (Weber, 1988). Let (N,v) be a TU-game and let
og: N — N be a permutation of N. The marginal vector m” is defined by

m .y = v(o(1))

My gy = v(a(1),...,0(k))—v(o(1),...,0(k—=1)) Vk e N\{1}.

The Weber set W (N, v) is the convex hull of the n! marginal vectors.

We need the following characterization of convex games:

THEOREM 4.5 (Shapley, 1971; Ichiishi, 1981; Derks, 1992). For cvery
T'U-game (N, v) we have

(N, v) is convex — W (N, v) = Core(N, v).

DEFINITION 4.6 (Schmeidler, 1972). A TU-game is called exact 1f for all
h# S C N there exists a vector x € Core(N, v) such that x(S) = v(95).

Well known is the following relation between convex games and exact
games:

PROPOSITION 4.7.  Every convex game is exact. If n < 3 then convexity and
exactness are equivalent.

Finally we make some remarks w.r.t. the matrices X: Let X €
Mat, ({0, 1}) with Xe,, = ey. The columns of X can be seen as charac-
teristic vectors of subsets S, ..., S,, of N. As Xe,, = ey these subsets form
a “partition” of N, where §;, = ¢ is allowed. The linear production game
p(A BX. 0) is the restriction of v* 59 to the sets S, ..., S,, and their unions.
From this we get immediately that for all matrices X € Maty ({0, 1})
with Xe,, = ey and all linear production processes (A, B,c) € £ :
Core(A, B, c)X C Core(A, BX, c¢). If X € Maty ,,({0, 1}) with Xey, = ey
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and Y € Mat,, ,({0, 1}) with Ye, = ey, then XYe, = Xey, = ey . This to-
gether with the fact that the entries of XY are nonnegative integers gives
XY € Maty, ({0, 1}).

In the proofs of the two theorems we shall use the following notations:
(N, v) is the linear production game corresponding to (A, B, ¢); (N, V) IS

the linear production game corresponding to (A4, BX. ¢), where X is given;
we write N = {1, ..., i}, where i1 := |N|.

Proof of Theorem 4.2. |}: Suppose that the equation Core( A4, BX, ¢) =
Core( A, B, ¢)X holds for all matrices X e Maty 5(10, 1}) with Xex = ey .
We first show that (N, v) is exact. Let ¥ £ S C N. We have to prove that
there exists a core element y € Core( A4, B. ¢) such that y(S) = v(S). Define
the n x 2 matrix X by

X i=les eyl

Then X, € {0,1} for all £,/ and Xey = ey, so Core(A, BX, ) 1 l—
Core(A, B,c)X. In (A,BX,c) the bundles of the agents 1 S are
merged to the bundle of agent 1 and the bundles of the agents in
N\S to the bundle of agent 2. As (N, ) is a linear production game,
the core is nonempty. So o(1) + 9(2) < o(N), which implies that
z == (9(1), 9(N) — (1)) € Core(A, BX,c) = Core(A, B, c)X. Thus
there exists a vector y € Core(A, B, ¢) such that Z = yX. In particular
Y(S) = yXe; = zej = v(1) = v(S). Conclusion: (N, v)is an exact game.

Because exactness and convexity are equivalent for n < 3 (Propo-
sition 4.7) we assume that n» > 4 and show that v(U) + v(W) <
WU UW)+v(UNW) for all U W C N. Let UW < N and define
S:=UUW, T:=UnW. Consider (N, v) for

X = [C"T Eo\T f'.w“\s]-

The number of agents is equal to three and Core(A,BXY, £) =
Core(A, B,c)XY = Core(A,BX,c)Y for all Y € Maty; 5 3y ({0, 1})
with Ye, = ey, so applying the first part of the proof gives that (N, v) is

convex. For convex games we know that all marginal vectors 7Y are in
the core (Theorem 4.5), in particular, for o where the three agents of N
“enter” in the order 1,2,3. As m” € Core(A, BX, c) = Core(A, B, c)X,

there exists a vector z € Core( A, B, ¢) such that

(= s s 5 Ty ) == 2.

v(S) — v(T), and z(S) I= z(1') + z(S\T) = v(S). Then v(U) + v(W

ZU)+z(W)=z(UUW)+z(UNW) = W(UUW)+v(UNW).

In particular, z2(T) = m? = (1) = u(1'), z(S\T) =mj = (1, 2) — (1)
)

=
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+: Conversely, suppose that (A, B, ¢) € # and that the game (N, v) Is
convex. Let X € Mat,, ({0, 1}) with Xey = ey. Then

X = [*’33, = ff'.!;‘hlw
for some subsets S, ..., S; of N.

As we have already seen that Core( A, B, ¢)X < Core(A4, BX, ¢), itis suf-

ficient to show that Core( A, BX, ¢) € Core( A, B, c)X. As (N, D) is convex
(it is a restriction of v), we have that the Weber set equals Core( A4, BX, ¢)
(Theorem 4.5). We are done if we prove that all marginal vectors m" are

an element of Core(A4, B, ¢)X, which is a convex set. Let m m” be a marginal

vector of the game (N, v); w.l.o.g. we assume that o(l) = S; for all [. Then

m? =v(1,...,0) = 9(1,....,T=1)=v(S§;U---US) —v(S; U---US_y).

Let us go back to (N, v). Let 7: N — N be a ranking such that first the
agents in S, enter (in arbitrary order), then the agents in S,, ..., and finally
the agents in S;. The game (N, v)is convex, so m’ € Core( A, B, ¢) and

(m™X),=m"(§) =v(§;U---US§) —v(S;U---US5_) = mj .
Som? =m™X € Core(A,B,c)X. =

Next we prove that the core satisfies the property shuffle it and only 1f
the corresponding game is additive (Theorem 4.1).

Proof. |: Suppose that

Core( A, BX, c) = Core(A, B, c)X
for all X € Maty (R, ) with Xey = ey. (4.1)

It is sufficient to prove that v(S U k) = v(S) + v(k) for all k € N and all
S € N\{k}. We shall show this for the first agent; the proof for other agents
is similar. Consider the situation where the bundle of the first agent is split
into two equal bundles; i.e., consider the matrix

I |

1
2

1
X 1= o :
1
where the remaining entries are 0. We write N := {1, 1,2,...,71}.
Take y e Core(A, BX,c). By formula (41 we have y = yX for
some y € Core(A, B, c¢). In particular y; = > = ¥. So y; = y; for all

y € Core(A, BX, ¢). Formula (4.1) also 1mplles that Core( A, BXY, c) =
Core( A, BX, c)Y for all Y € Matg ,,({0,1}) with Yey = ey . Applying



CHARACTERIZATION OF THE OWEN SET 155

Theorem 4.2 gives that (N, v) is a convex game. Hence Core( A, BX, c) is
equal to the Weber set.

Let S € N\{1} and let S be the corresponding subset of N\{1, 1}. We
consider two marginal vectors 7717 and m". First consider the marginal vec-
tor corresponding to the following permutation o of N: the agents enter in

the order S,1,1, N\(Su1uU 1). We have

W(SUD) - 3(S) =mf =m? =o(Sulul)-sSul),

from which it follows that

(SUl) = ;-(5(5 U1U1) +9(3)) = %(v(s U1) + v(S)).

Next consider 7: the agents enter in the order 1, S. T N\(SU1lU T). Then
() =m] =ml =5(Sulul)-aSul).

Hence

v(SUD) =3SUlul)=3(1)+(SuUl)= %v(1)+ %v(SU 1) ;v

e, v(SUT) =v(S)+v(1) for all S € N\{1}, as was to be shown.

(5);

f: Let X' € Maty, 5(R, ) with Xey = ey. We shall prove that (N, ) is
also an additive game. In the proof we need that every optimal solution of

LP*(N) is also an optimal solution of LP*({k}) for all kK € N. We prove
this first. Let y be an optimal solution of LP*(N). Then

v(N) = (9, Bey) = (_ff'.. ¥ Bq) = ) (9, Ber) = > v(k) = v(N).

keN keN keN

So v(k) = (9, Bey) for all k € N. Let k € N. As the bundle BXej of this
agent Is a nonnegative linear combination of the bundles Be, (k € N) we
also have v(k) = (y, BXe;). Then

> (k) = )" (§, BXeg) = (9, BXey) = (5, Bey) = v(N) = o(N).
keN keN

Applying Proposition 4.3 gives that (N, D) is an additive game. Fur-
ther Core(A4, BX,c) = {(v(1),...,9(m))} = {(v(),...,v(n))}X =
Core( A, B, c)X, because

v(k) = (y, BXeg) = (_f}, b XuI—Bf?z) = ) Xi(¥, Be;) = Y- Xypv(l).
leN leN leN
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