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Abstract. The rate of return earned on a deposit can depend on its term, the amount
of money invested 1n it, or both. Most banks, for example, offer a higher interest rate
for longer term deposits. This implies that if one individual has capital available
for investment now, but needs it in the next period, whereas the opposite holds
for another individual, then they can both benefit from cooperation since it allows
them to invest in a longer term deposit. A similar situation arises when the rate of
return on a deposit depends on the amount of capital invested in it. Although the
benefits of such cooperative behavior may seem obvious to all individuals, the actual
participation of an individual depends on what part of the revenues he eventually
receives. The allocation of the jointly earned benefits to the investors thus plays
an important part in the stability of the cooperation. This paper provides a game
theoretical analysis of this allocation problem. Several classes of corresponding
deposit games are introduced. For each class, necessary conditions for a nonempty
core are provided, and allocation rules that yield core-allocations are examined.

Zusammenfassung. Die Verzinsung einer Geldanlage kann von der Fristigkeit der
Anlage, vonder Hohe der Anlagesumme oder von beiden Parametern abhangig sein.
Die meisten Banken zum Beispiel bieten eine hohere Verzinsung fur langerfristige
Anlagen an. Daraus folgt, dass, wenn ein Wirtschattssubjekt jetzt uber Kapital
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verfiigt, das es erst in der nichsten Periode benotigt, wihrend fiir ein anderes
Wirtschaftssubjekt das Gegentei gilt, beide einen Vorteil aus einer Kooperation
ziehen, da sie ithnen erlaubt, in eine lingerfristige Anlage zu investieren. Eine
dhnliche Situation liegt vor, wenn die Verzinsung der Anlage von der Anlagesumme
abhingt. Obwohl die Vorteile solch kooperativen Verhaltens allen Wirtschattssub-
jekten offensichtlich erscheinen, hiingt die tatsiichliche Partizipation eines Wirt-
schaftssubjekts von dem Anteil ab, den es letztendlich vom Gesamtergebnis er-
halten wird. Die Aufteilung der gemeinsam erreichten Vorteile auf die Investoren
spielt also eine wichtige Rolle fiir die Stabilitit der Kooperation. Diese Arbeit stellt
eine spieltheoretische Analyse dieses Allokationsproblems vor. Einige Klassen
von entsprechenden Anlagespielen werden eingefiihrt. Fir jede Klasse werden
die notwendigen Bedingungen fiir das Vorhandensein eines nicht leeren Kerns
aufgezeigt und Allokationsregeln fiir die Aufteillung des Kerns untersucht.

Key words: Cooperative game theory — Capital deposits

Schliisselworter: Kooperative Spieltheorie — Geldanlagen

1 Introduction

During their lives, people save part of their income so as to better deal with any
(unforeseen) expenses in the future. These savings can be deposited at a bank to
obtain some additional earnings. Depending on the type of deposit, the rate of return
earned on it can depend on the amount of money invested, the term of the deposit,
or both.

Deposit banks, for example, usually pay a higher interest rate when the term
of the deposit increases, 1.e. there is a so-called term structure of interest rates.
This term structure implies that one would prefer long term deposits to short term
deposits. However, long term deposits are less liquid so that future consumption
needs may prevent an individual from investing in a long term deposit. The ideal
deposit would thus be the one that earns the interest of a long term deposit and
possesses the liquidity of a short term deposit. Though no deposit bank offers such
deposits, they are not completely out of this world. Consider, for instance, two
individuals, one having $1000 to invest for this year only and one having $1000 to
invest for the subsequent year only. Furthermore, suppose that one-year deposits
earn 4% interest per year and that two-year deposits earn 6% per year. Then each
person individually can invest $1000 in a one-year deposit only, earning $40 interest.
Now, if they pool their savings, they have $1000 available for the next two years.
Investing in a two-year deposit then earns them $120, which exceeds the earnings
of two one-year deposits. Moreover, each individual maintains his desired level of
liquidity (see also Diamond and Dybvig, 1983).

The above example illustrates that under a given term structure of interest rates,
individuals can obtain higher returns on investments by cooperating. Starting with
the seminal work of Vasicek (1977) and Cox et al. (1985), the finance literature
has devoted considerable attention to understanding the determinants of the term
structure of interest rates. The ultimate goal is to be able to predict how changes 1n
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the underlying variables affect the yield curve. Whereas Vasicek (1977) builds on
the no-arbitrage argument, Cox et al. (1985) departs from an intertemporal general
equilibrium model with utility maximizing agents. This leads to an equilibrium
structure for the spot rates, and consequently also for the term structure of interest
rates. In such general equilibrium models agents act individually, i.e. cooperation
between individuals is not taken into account. In this paper we take the term structure
as given and study how cooperation between individuals can lead to higher returns
on deposits. Of course, one could go one step further and try and incorporate possible
consequences of our cooperative approach in analyzing term structures. This idea,
however, 1s not exploited in the current exposition which focuses on specific issues
that might induce cooperation between investors. Moreover, the current paper not
only focuses on the issue of term structures but on more general types of deposit
structures. We consider a finite time horizon consisting of a number of periods
during which individuals have certain amounts of money available for depositing.
There 1s a number of deposits available, each of which generates revenues that may
depend on the term of the deposit or the amount of money invested in it.

In this type of situations, the following issues are prominent. First, what is the
optimal strategy, 1.e. how should the money optimally be divided over the different
available deposits, and, second, what division of the revenues is considered to be
acceptable to all cooperating individuals?

Determining the optimal strategy is a combinatorial optimization problem: what
combination of deposits earns the highest benefits given the amount of money that
the individuals have available for such deposits. This optimization problem, how-
ever, 1S not the main 1ssue of this paper. Instead, we mainly focus on the allocation
problem. Although individuals may recognize the benefits of cooperation when
depositing their savings, it does not necessarily imply that they are also willing
to participate in such a cooperation. The participation of each individual depends,
amongst other things, on what share in the revenues he eventually receives. In this
regard, the allocation of the revenues plays an important role in establishing an
enduring and stable cooperation.

To tackle this allocation problem we turn to cooperative game theory. We model
the situation as a cooperative game, called a deposit game. In a deposit game, the
value of cooperation for a coalition equals the maximal revenue that this group can
obtain by pooling their individual savings. In particular, our attention goes out to
stability conditions of the grand coalition in which all individuals cooperate. We
therefore examine balancedness of deposit games. In particular, we look for (simple)
allocation rules to obtain core-allocations. We focus on three special subclasses of
deposit games. Each subclass is characterized by properties of the revenue function,
that 1s, how the revenue generated by a deposit depends on the term and the amount
of capital of this deposit.

For the first subclass, called term dependent deposit games, the rate of return
of a deposit depends on its term, but not on the amount of capital invested in it. We
show that term dependent deposit games are (totally) balanced and the other way
around, that 1s each nonnegative totally balanced cooperative game can be written
as a term dependent deposit game. Furthermore, we show how to obtain particular
core-allocations by constructing Owen-vectors (cf. Owen, 1975).




268 P. Borm et al.

For the second subclass of capital dependent deposit games, the yearly rate of
return of a deposit depends on the amount of capital invested 1n 1t, but not on the
length of its term. The revenue of such a deposit is therefore additive over time.
The capital dependent deposit games are an extension of games that were first
introduced in Lemaire (1983), and further analyzed in Izquierdo and Ratels (1996).
As opposed to our model, the latter only considers a time span of one period. We
show that capital dependent deposit games are (totally) balanced 1t the revenue per
unit of capital is increasing in the amount of capital invested. Furthermore, we show
that in that case the proportional rule results in a core-allocation.

For the third and final class of fixed term deposit games, the revenue of a
deposit is positive only if the term covers the whole time horizon that 1s under
consideration. Hence, the name fixed term deposit game. We show that the class
of fixed term deposit games contains the class of term dependent deposit games.
Moreover, we show that fixed term deposit games are balanced 1t the rate of return
1s increasing in the amount of capital, and furthermore, that some specific class of
proportional-like rules yields core-allocations.

Our results show that proportional-like allocation rules perform remarkably well
when considering stability of cooperation. This 1s particularly interesting since 1t 18
common practice for investment funds to allocate revenues in a proportional way:
each participant of the investment fund obtains the same rate of return, irrespective
of the amount of capital he contributed to the fund.

The paper is organized as follows. Section 2 introduces deposit games and
shows that they need not be balanced. Sections 3 through 5 analyze term dependent,
capital dependent, and fixed term deposit games, respectively. Attention 1s focused
on balancedness issues and the construction of allocation rules leading to core
elements. A brief survey on cooperative game theory found in Appendix A. Proofs
are stated in Appendix B.

2 Deposit games

Consider a group of individuals, each having amounts of money available for de-
positing at a bank during 7 time periods. Let /N denote the set of individuals and
let w' € R describe individual 7’s endowment of money over time, i.e., w; is the
amount of money available to individual 7 in period ¢.

A deposit is described by a fixed amount of capital ¢ and a consecutive number
of periods t3,%t; + 1,.. ., to with 1 < t; < to < 7, in which the amount c 1s
deposited in the bank. T' = {t,,t; +1,..., to} is called the term of this deposit.
Let

denote the set of possible terms of a deposit, and let
B = {rf c R |3,.;j“ dreT 1 d = cer }

denote the set of all possible deposits in 7 periods where (e7); = 11t £ € 1" and
(er); = 0if t € T. Given a deposit d = cer € D, d; 1s the amount of capital

deposited in period 7 and it equals ¢ if ¢t € T, and zero otherwise. Each deposit
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that 1s made 1n a bank yields a certain revenue. In this regard one can think of
interest that 1s paid by the bank in each period for the duration of the deposit. Let
R : D — R, denote the revenue function that assigns to each deposit d € D a
revenue [7(d). Furthermore, assume that the zero deposit pays zero revenue, 1.€.
R(0)=10.

Depending on the structure of the revenue function, and on the individuals’
endowments, they may be able to obtain higher returns on deposits by pooling their
money. We therefore define a deposit game, which 1s a cooperative game where
the value of a coalition i1s given by the maximal revenue this coalition can obtain by
depositing their available money in the bank. Let S C N, then w(S) = ), s w'
describes the total amount of money available for depositing in each period to
coalition S. A collection d,,d»....d,, of deposits is feasible for coalition S 1f

I

they have the money to make these deposits, thatis, >, d;. < w(S). The total

rrt

revenue then equals » ,~ , [?(d).). Hence, the value of coalition S is given by

i T

v(S) = sup Z Blar ) el Tds.ds.... . d D 4 Zfﬂ- < w(S)

k=1 =]

provided that the supremum exists'. The class of all deposit games with N the set
of individuals is denoted by DG™ . From the definition of the game it follows that
deposit games are superadditive. For if two disjoint coalitons merge, they can at
least make the deposits they can make separately, earning at least the revenues they
can obtain separately:.

Once individuals cooperate, they also have to divide the benefits that emerge
from cooperation. The question that arises in this regard 1s what distributions are
‘fair’. In most cases, a core-allocation is considered to be fair. A core-allocation
divides the benefits v( V) of the grand coalition /N in such a way that no coalition S
has an incentive to part company with the grand coalition /N and decide on her own
what deposits to make. The next example shows that the core of a deposit game
can be empty.

Example 2.1 Consider the following three-person deposit game with a one period
time span. So, let 7 = 1, N = {1,2,3} and let w* = 500 for : = 1,2, 3. Next,
suppose that the agents can only deposit their money in a one year bond of 51, 000
paying 4% interest. Then the revenue of one such a bond equals $40. The revenue
function R : R, — R thus equals R(d) = 400 with 0 the number of bonds that
one can buy with d dollars.

Since individual 7 cannot buy any bonds, we have that v({z}) = 0. Two indi-
viduals on the other hand, possess w’ + w’ = 1,000 so that they can invest their
money in exactly one bond. Hence, v({¢,5}) = 40 for 7,57 € N with ¢ # j. The
grand coalition N possesses w' + w= + w” = 1.500. Since this enables them to
invest in exactly one bond, it holds that v(/N) = 40.

The core of this game is empty. For . to be a core-allocation it must hold that
r1 + x> > 40, x1 + 3 > 40, and o + 3 > 40. Adding the three inequalities

Given the nature of the problem we are considering, this assumption is justified. For if
the supremum would not exist, a coalition could obtain unlimited revenues with a limited
amount of money. Realistically. this is not considered to be possible.
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yields that 2(z, + 9 + x3) > 120. Since 1 + 2 + 3 = 40 = v(/NV) we obtain
the contradiction 80 > 120. Hence, the core of this game 1S empty.

[n order to obtain balancedness (i.e. a nonempty core) for deposit games we
need to impose some additional restrictions on the revenue function 7 : D — R .
In the remainder of this paper we focus on three subclasses of deposit games, each
of which 1s characterized by properties of the revenue function.

For the first class under consideration, the rate of return of a deposit depends
on its term, but not on the amount of capital invested 1n 1t. In case the revenue
consists of interest payments, this means that the interest rate 1s independent of
the amount of capital deposited. We refer to this class of games as term dependent
deposit games.

The second class under consideration 1s the counterpart of the first one, which
means that the yearly rate of return of a deposit depends on the amount of capital
invested 1n it, but not on the length of its term. We refer to this class of games as
capital dependent deposit games.

Finally, for the third class the revenue function is such that only deposits with
a fixed term of 7 periods yield a strictly positive revenue. Therefore, we refer to
this class as fixed term deposit games. Note that in this case the rate of return can
depend on the amount of capital deposited.

3 Term dependent deposit games

For term dependent deposit games, the rate of return of a deposit depends on its
term, but not on the amount of capital deposited in it. Mathematically, this means
that the revenue R(d) of a deposit d 1s linear in the amount of capital ¢ deposited,
1€

R(ad) = aR(d), (1)

foralla > 0and alld € D.

The class of all term dependent deposit games with agent set /N 1s denoted by
TDGN . Note that TDGY c DG".

We denote by BAY and TOB A" the class of all balanced games and all totally
balanced games, respectively. Totally balanced means that not only the game (/V, v)
has a nonempty core, but also every subgame (5,v|s), S C N. In particular,
TOBAf denotes the class of all nonnegative totally balanced games. The next
theorem shows that term dependent deposit games are totally balanced.

Theorem 3.1 Each term dependent deposit game is totally balanced.

Theorem 3.1 states that 7 DG C T()Bfl:f. The reverse of this statement also
holds, that is, every nonnegative totally balanced game can be written as a term
dependent deposit game.

Theorem 3.2 A nonnegative cooperative game is totally balanced if and only if it
(s a term dependent deposit game.
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Since term dependent deposit games are totally balanced and nonnegative, they
can be formulated in terms of linear production games (see Owen, 1975). This
enables us to construct a core-allocation by means of an Owen-vector. For this

purpose, definep € R*7, A € R™*#7 landb; € R",i € N by p = (R(er))pers
A = [(er)1eT], and b; = w?, i € N, respectively. Then

v(S) = max { pT.r r.=> 0 AP < Z b, }

LEDS

= ImaX { Z R(er)xr | VreT : a7 2> 0, Z erxTr < Zw’}

T'eT ref 1ES

for each S C N. In terms of linear production games, the endowments of the
agents serve as the resources and the goods they can produce are deposits. Since
R(ad) = aR(d) we have that R(zrer) = xzpR(er) for all z7 > 0. So, zr
represents the quantity that 1s produced of deposit e7. One unit of a deposit e
yields a revenue of R(e7 ). Thus the price at which one unit of the deposit e can
be sold is set at p» = R(ep).

In case S = N the dual of this linear program equals

min {wa(N)m Vil 2.7t S 20, Vrer ny > R(er) }

=1 =1

the Owen-vector z € R” defined by z; = :;,_l w!y; for all © € N is a core-
allocation for the corresponding term dependent deposit game.
Let us 1llustrate this procedure with the following example.

Now, if (71, 92.....y,) 1s an optimal solution of this minimization problem, then

Example 3.5 Consider the following two-period situation with two individuals.
Let w! = (1500,0) and w?® = (0,1000). Since 7 = 2 we have that T =
{{1}.4{2},{1,2}}. Now suppose that a one year deposit in period 1 or 2 yields
a revenue of 4%, and a two year deposit yields a revenue of 12%. i.e. R(eg1y) =
R(E’{z}) = (.04, and H(E—'{ LE}) =:(()L:Z.

The corresponding term dependent deposit game (/V, v) is given by v({1}) =
60, v({2}) = 40, and v({1,2}) = 120 + 20 = 140. By taking p = (0.04, 0.04,
0.12), by = (1500, 0), bs = (0,1000), and

fi 80 )38 ]

A=
T

we also have that v(S) = max{p' z|z > 0, Az < )_icgbi}, forall § C N. An
Owen-vector 1s now constructed as follows. Duality theory states that

1011 F1500]
max {pT..{' 2> {): T < | }

= A 1000 |

- - == e 1004
= min z;T i 7 =0, -yT 1 3 > | 0.04
S 1 15070 1) 8| e | (11§ 1§ 8iis
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The optimal solution of the latter minimization problem is y = (0.04,0.08). The
corresponding Owen-vector z = (7' by, 4 ' by) equals (60, 80) and belongs to the
core of the term dependent deposit game (N, v).

4 Capital dependent deposit games

For the second subclass we consider deposits for which the yearly rate of return
1s independent of the length of its term, so that the revenue function £ 1s additive
over time, that 1s,

R(cer) = Z R(cegqy) (

I

forall 7" € T and all ¢ > 0. A deposit game with a revenue function that satishes
expression (2) is called a capital dependent deposit game and the class of capital
dependent deposit games is denoted by C'DG™ . Note that if 7 = 1 we obtain the
model of financial games as introduced in Lemaire (1983) and further analyzed in
[zquierdo and Rafels (1996).

Capital dependent deposit games need not be balanced. In fact, the deposit
came of Example 2.1 is a capital dependent deposit game with an empty core. The
following theorem states that capital dependent deposit games have a nonempty
core if the rate of return per unit of capital is nondecreasing in the amount of capital
deposited.

R(ce : ; ; :
Theorem 4.1 /f Y 1,{”) is nondecreasing in c on (0,00) forallt € {1,2,..., T

then the corresponding capital dependent deposit game (N, v) is totally balanced.

Theorem 4.1 is proved by showing that the proportional rule defined by

)= 3 Yt R(wy(N))

for all 2 € N, belongs to the core of the capital dependent deposit game. Note that
this proportional rule can easily be extended to a population monotonic allocation
scheme as defined in Sprumont (1991). For this purpose, define the allocation
scheme {7°(v)}scn by:
Fa
my (v) = b —t R(wi(9))
te{1,2,....,7}:w (S)>0 w(5)

foralli € Sandall S C V.

Contrary to term dependent deposit games, not every nonnegative totally bal-
anced game is a capital dependent deposit game, as the following example shows.

Example 4.2 Remember that, for each C' C N, the unanimity game (N, uc ) 1S
defined as follows

U(_‘.‘(S) .k { JLabier (&9,

0, otherwise.

(3)
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Consider the simple game (N, v) with N = {1,2,3,4,5,6} and v(S) = ug; 2.3.4)
(S) + uf1,25,61(S) —ug1234563(S) forall S C N. So, v(S) = 1 if and only
if {1,2,3,4} € Sor{l,2,5,6} C S. We will not give the formal proof that this
game cannot be written as a capital dependent deposit game. Instead, we suffice by
agiving the intuition.

Suppose that we can write the game (/V, v) as a capital dependent deposit game.
Then there are certain time periods in which coalition {1, 2, 3, 4} can make a capital
deposit to obtain their revenue v({1,2,3,4}) = 1. The same holds for coalition
{1,2,5,6}. Now, it can be shown that coalitions {1,2,3,4} and {1,2,5,6} have
to make their deposits in different time periods. Hence, coalition {1,2,3,4,5,6}
can make the deposits that both coalitions {1,2,3,4} and {1,2,5,6} can make,
yielding a revenue of at least v({1,2,3,4}+v({1,2,5,6}) = 2, which contradicts
v(N)) =1.

Proposition 4.3 The nonnegative cone of unanimity games {uc|S C NV is con-
4 : YK <
- - 1 r - -
tained in the class C DG™ of capital dependent deposit games.

The reverse of Proposition 4.3, however, 1s not true. The next example provides
a game that 1s not a positive combination of unanimity games but that can be written
as a capital dependent deposit game.

Example 4.4 Let (N,v) € G be a three-person game with 'U(S) = U1 2} (S) +
ury 33(9) — u.{],zr.:s}(S) for all S C N. Define a capital dependent deposit game
(N,w) € CDG" witht = 1and R(d) = 1ifd > 3 and R(d) = 0 otherwise.

: 9 - . . s
Furthermore, let w; = 2, w{ = 1, and w{ = 1. Since ), gw} > 3 if and

only if S € {{1,2},{1,3},{1,2,3}}, we have that w(S) = 1 if and only if
Siedl, 28 41, 3% 4142 34} Thus, w(S) = u(S) forall. S c V.

5 Fixed term deposit games

For the third and final subclass we consider the situation in which a deposit only
yields a strictly positive revenue 1f the term covers all 7 periods. Mathematically,
this means that R(cep) = 01f T" # {1,2, ..., 7}. The class of all fixed term deposit
games with agent set NV is denoted by FDG¥ . In fact, we have already seen this
type of deposit games in the proof of Theorem 3.2. To show that each nonnegative
totally balanced game 1s a term dependent deposit game, we constructed a deposit
game 1n which deposits only earn a strictly positive revenue if they cover the whole
time span of 7 periods. Thus, the following result immediately follows from the

proof of Theorem 3.2.

Theorem 5.1 Each nonnegative totally balanced game is a fixed term deposit
game.

According to Theorem 3.1 and Theorem 3.2 the class of term dependent deposit
games 1s equal to the class of nonnegative totally balanced games. Theorem 3.1
then implies

Theorem 5.2 Every term dependent deposit game is a fixed term deposit game.
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Although fixed term deposit games exhaust the class of nonnegative totally
balanced games, they are not totally balanced in general. Example 2.1 is an example
of a fixed term deposit game with an empty core. We can, however, derive a sufficient
condition for totally balancedness similar to the one for capital dependent deposit
games.

. . R(cer) - oty
Theorem 5.3 Let T = {1,2,..., T df (rf__ L) is nondecreasing in ¢ on (0, 00)
then the fixed term deposit game (N, v) is totally balanced.

In order to show that fixed term deposit games are balanced, an allocation rule
that belongs to the core is constructed. For defining this rule, let (/V, v) be a fixed
term deposit game. Next, consider the game (N, w) with w(S5) = min;er wi(5)
for all S C N. Here, w(S) represents the amount of money coalition .S can invest
with term {1, 2,...,7}. Itis shown in Kalai and Zemel (1982) that a non-negative
cooperative game 1is totally balanced if and only if it 1s a minimum of a finite
collection of additive games. Therefore, (/V,w) 1s totally balanced so that there
exists a core-allocation = € R™. A core-allocation for the game (N, v) is then
found by allocating v(/N) proportionally with respect to = to the investors. This
means that, as long as » .y x; # 0, investor 7 € N receives

£ 5 =
ilx) = = w (V)
ZJ'EN €L 5
Otherwise, v(N) = z(NN) = 0, and all investors receive p;(x) = 0. Since this

allocation rule depends on a core-allocation = of the game (/V,w), we can obtain
several proportional-like allocation rules by specifying the allocation z. For in-
stance, by taking x to be the nucleolus n(w) (see Schmeidler, 1969) of the game
(N, w), we obtain the allocation p(n(w)) € C'(v). Alternatively, since (N, w) can
be interpreted as a flow game, a minimum cut solution me¢(w ) (see Kalai and Zemel.
1982) also results in an allocation p(me(w)) € C'(v).

A Cooperative game theory

A cooperative TU-game is a pair (N, v) with N the set of agents and v : 2% — R
the characteristic function describing the worth v(.5') of coalition S C /N. The worth
of the empty coalition is defined zero, that is, v({)) = 0. In particular, if v(S) = 0
for all S C N the game is called nonnegative. The class of all cooperative games
is denoted by GG and the class of all nonnegative cooperative games is denoted by
Gy,

A cooperative game (N, v) € G is called additive if v(S) = D _ies V({2}) for
all S C N. The game (N, uc) € G denotes the unanimity game with respect to
the nonempty coalition C, thatis, uc(S) =1i1fC C Sand uc(S) =01t C € S.
The interpretation is that a coalition S obtains the value 1 if and only 1f it contains
all the agents in C'. Note that any cooperative game (N, v) € G** can be written in
a unique way as a linear combination of the unanimity games {u¢|C' C N }.

A game (N, v) € G" is called superadditive if forany S, C' € N with SNC =
() it holds true that v(.S) + v(C') < v(S U C'). The interpretation of superadditivity
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1S that two disjoint coalitions can do (weakly) better by merging into one large
coalition.

One of the major topics of cooperative game theory is how to divide the benefits
from cooperation. In this regard it is assumed that all agents are willing to cooperate
so that the grand coalition NV is formed. The core of a game (N.v) € G is defined
by the set

C(v) = {.r &R

(N) = v(N), Vscn : 2(S) > v(S) } (4)

where x(S) = » . ¢ ;. So, core-allocations induce a stable cooperation in the
sense that no coalition has an incentive to part company with the grand coalition.

The core of a game can be empty. A game with a nonempty core 1s called
balanced. A game (/N.v) for which each subgame (S, v g) is balanced is called
totally balanced. Here, the subgame (5, v|g) 1s defined by v ¢(C') = v(C') for all
(' C S. We denote by BAY and TOBA" the class of all balanced games and
all totally balanced games, respectively. In particular, TOB A"} denotes the class
of all nonnegative totally balanced games. The following theorem, which 1s due to
Bondareva (1963) and Shapley (1967) provides a necessary and sufficient condition
for balancedness.

Theorem A.1 Let (N,v) € G". Then C'(v) # 0 if and only if ) scn (S)v(S) <
v(N) forall : 2" — R satisfying ZH.:: N (S) =1 foreacht € N.

eSS

For a characterization of nonnegative totally balanced games, let (/V, v) & G;‘“
Then the game (/V, v) 1s the minimum of a finite collection (N.ay), (N,as).....
(N, a,) of additive games, if v(S) = min{ax(S)|k =1,2,...,q} forall S C N.
The tollowing result 1s due to Kalai and Zemel (1932).

Theorem A.2 A cooperative game (N.v) € G'it (s totally balanced if and only if
it is the minimum of a finite collection of additive games.

Another characterization of all nonnegative totally balanced games 1s given in
Owen (1975) by means of linear production games. In a linear production game
each agent 1s endowed with a resource bundle, which can be employed to produce
a bundle of consumption goods. The production technique 1s linear and available
to all agents. Furthermore, produced consumption goods are sold at exogenously
given prices. Mathematically, a linear production situation is described by a tuple
(N, A,p.(bj)ien), where N denotes the set of agents, A € R"*"™ the production
technique, p € R"" the price vector of the consumption goods, and 6, € R" the
resources of agent «. The objective of each coalition 1s to maximize the revenues
given their joint resources. The value of coalition S C N in the corresponding
l[inear production game 1s thus given by

v(S) = max ]JTJ' 720, Az < Z b; » .

LES

The following result 1s due to Owen (1975).

Theorem A.3 Linear production games are totally balanced.



276 P. Borm et al.

In particular, Owen (1975) shows how to determine a core-allocation for a
linear production game. For this purpose, consider the optimization problem

v(/N) = max pT;r Tz >0, Az < b,

for the grand coalition. Let y denote an optimal solution of the dual problem

min< y ' Z b; |l y=>0,94"A>e"
e N

Then the allocation (-f/Tb,; ), n 18 called an Owen vector and 1s a core-allocation for
the corresponding linear production game. For an interpretation of this allocation,
recall that the vector y represents the shadow prices for the resources. The allocation
[g}Tbi)f-EN then gives each player the value of his resources. Theorem A.3 states
hat linear production games are totally balanced. The reverse, however, also holds
rue: each nonnegative totally balanced game 1s a linear production game.

B Proofs

Proof of Theorem 3.1. Let (N,v) € TDG". We first show that (N, v) is bal-
anced. For this we use the necessary and sutficient condition for balancedness by
Bondareva (1963) and Shapley (1967).

Take A : 2% — R, such that Y ¢ n.;cq A(S) = 1foralli € N. Then

D MS)u(S)

SN

|
[

(S) SUP Z R(dﬁ.) E'mENEiril.d;g ..... dm €D - Zdﬁ: < ”-”(S)}

SCN k=1 s=1
[ m
— Z SUp Q Z )\(‘S)R(d)'a) EHJENHJ]JIQ ..... dn€D - Z dﬁ.‘ S: L‘C(‘S)}
SCN wie=1 K=
— Z sup ZR(A(SWU e N e s g €D & de < LJ(S)}
HC;\; = k=1
— Z sup Z R(A(S)dk) |3menNTd, da,....dmeD Z A(S)dr < A(S)w(S5)
SCN k= k=
= Z SUpP Z R(d}.) HIHENE!(!]JIQ ..... dn€D - Z dff g "\(‘S')L‘L"(‘S')
SCN k=1 k=
n 5, T ‘5, | R
= sup Z Z R(dg ) |VscNImsenTas as,....a5 .eD dev < AS)w(5)
SCN k=1 k=1

I

SUp Z H(dﬁ.) E‘mENE‘rf;.r!g ..... diiED) - de S Z ’\(*ST)W(‘ST)

k=1 o= SCN

VAN
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Sup {Z H(dﬁl) HmENE‘dl 4 4 R s A = Z dk :\: Z W' Z ,)\ }

k=] k=1 1EN SCN:aeS

m m )
sup {Z R | ImeNAdid cdneni: ) G s Y o 3= (N,
=1

k=1 1N 7

where the third equality follows from (1). Since any subgame (S, v|g) is again a
term dependent deposit game, it follows that (/V, v g) 1s balanced. Hence, term
dependent deposit games are totally balanced.

Proofof Theorem 3.2. The ‘if " -part follows from Theorem 3.1. For the ‘only 1f"-part
we use Theorem A.2. So, take (N,v) € TOBAY and let (N, a;), (N,as),...,
(N, a,) be the finite collection of additive games such that v(.S) = min{a(S5)|k €
{1,2,...,q}}forallS € N.Weconstructatermdependentdepositgame (N, w) €
TDGY such that w(S) = v(S) forall S C N.

Take 7 = ¢ and define R(d) = min{d;|t € {1,2,..., 7}}. So, we have ¢ time
periods and a deposit only yields a positive reward if the term equals exactly ¢ time
periods. Next, define w! = a;({i}) foralli € N andallt € {1,2,..., q}. Then

(" m m
w(S) = sup 4 Z Rlde) | 3nieNDayds,. ..dn €D de < w(S)
\ k= =1
i
= SUp Z min - (des)t| 3menNId, da,....dmeD Vic(1,2.....q} :
tE41,2::.4q0)
k=
I’
Y (di)e < wi(S)
=1
Tri
S SUP 1111 Z(dk)f HTHENHJJ.HQ ..... dm €D va{l,‘Z ..... q} :
te{1,2,:.5,q9}
k=1
It
Z(dk)r = w;(S)}
=1
=—Sup min  d¢| Jaep Vie{1.2,...q} - di < wi(5)
t€{l1.2....; q}
=4 _min' (5]
LE4152;.., q}
= mn . a(S)
fE{l.E ..... q}
= 5.

Furthermore, let d = (lllill;e{l‘g‘“”q} wi(S)) €{1.2....+}- Then d is a feasible de-
posit for coalition S, hence

() =2 Rid)= . min .  @pS)="_ min _ais) =)

te{1,2,....q} | te{1,2,...,q}

Consequently, w(S) = v(S5).

Proof of Theorem 4.1. Since each subgame 1s also a capital dependent deposit
came, we only need to show that a capital dependent deposit game is balanced. To
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prove nonemptiness of the core we explicitly construct a core-allocation. First we
derive some preliminary results.

[Gettie L 205 7}andletcy,co > 0. Since h(:, “) is increasing in ¢ it follows
that
R(ciep R(coe
R(ciet) + R(czet) = ¢ c1ee) F €9 c2¢t)
Cq CH
R((e1 +c2)er) | R((c1 + c2)eq)
< e = (€D
€1 -+ 9 Ci =69
= R((c1 + c2)e). (5)

This implies that in each period one should make only one deposit and make 1t as
high as pos&ib]e

Take (N.,v) € CDG" and recall that R(cer) = ) _ser R(cey) forall T € T
and all ¢ > U. Hence, for S C N it holds that

v(S) = sup Z R(dk) [3menNTd, do,....dreD : de < w(5)

k=1 k=1

= sSup L Z‘ H d;. IHHJENE‘H] o L ff,t.Evaf—_{ ....... T :
k=1 t=1
Y (di)r < wi(S)
k=1

=.8UPp LLR (dy ) ‘],,IGNEL;, da,...,dr€DVte{1,2,...,7}
t=1 k=1
Z(dk)r < wi(S)
k=1

—i- i ho Z R(dy) ‘Hdepvfe{l.z.._.,—} s dy < wy(S)
t=1

=) R(w(S)), (6)

t=1

where the last two equalities follow from (5), that 1s invest in one deposit only. In
particular we have that v(N) =Y _,_; R(Q_;c v wi).

Now, we construct a core-allocation for the game (N, v). For each period ¢ we
divide the reward R(w;(S)) proportional to the contribution w; of the agents. So,
agent « € /V recelves 1n aggregate

) = ¥ “(ij R(wi(N)). (7)

LEAL 20 T Hwe (N)>0

In order to show that 7w(v) = (m;(v));en € C(v), take S C N. Then

C—

> mi(v) =) > o R(N)

) eSS tefl,2,..., T Hwe (N ) >0
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v(S),

R(cey)

where the mequality follows from the fact that —— is increasing in ¢ for all
tie 12 7. Since the inequality is an equality for S = N, it follows that

Proof of Proposition 4.3. Let (N,v) € G be a nonnegative linear combination
of unanimity games, that is, there exists c¢ > 0, S C N such that that v =
)_sc N Csus. We construct a game (N, w) € CDG?" such that w = v.

Take the number of time periods equal to 7 = 2"V — 1 and make a one-to-one
correspondence between the time periods and all the non-empty coalitions. More
precisely, let S; C N be the coalition corresponding to time period ¢. Next, define
fort =l .o 20 2o

ce. ¢ Ce
R(ces) = : : 8
“m{oﬂm%. ()

Furthermore, take w! = (#S5¢) " 'cs, if i € S; and w! = 0if 7 € S;. Here, #.5,
denotes the number of agents in coalition S;. Then

ey
w(C)=""% R{D i

b=l el
o =1
= ) R ) cs/(#5)
[=1 €S, NC
2]
= Z cs,ug, (C)
t=1
— Z csus(C)
SCN
— »(C),

where the first equality follows from (8) and the third equality follows from (8) and
Zfes,ﬁc cs, (#St) =L cs, if and only if S; C C.

Proof of Theorem 5.3. Since each subgame 1s also a fixed term deposit game, we
only need to show that a fixed term deposit game 1s balanced.
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Let@ = {1,277} and take-ej; cs >0.:S1ince R(‘:T"‘") is nondecreasing in ¢
expression (5) holds, that is
R(cier) + R(cser) < R((c1 + c2)er). (9)

Hence, one should make only one deposit with term 7" and make it as high as
possible.
Next, take (N,v) € FDGY andletT = {1,2,...,7}. Then

m m A
v(S) = sup {Z Rldx) | Snen3d, ds....deeD Z dr < w(S) ;

=1 k=1 /
rri rri
= Sup E Riczer)ilEme N Do o i606R% E cker < w(S)

sup {R((T{?j')

deer, @ cer < w(9) }

\

= Sup {R(C’G‘T) Jeer, ¢ <minw(S)

tel’

J

=2 (minu.rf(S)) (10)

tel

where the third and fourth equality follows from (9). In particular we have that
v(N) = R(minger wi(N)).

If u(N) = O then v(S) = 0Qforall S C N and 0 € C(v). Let us assume
that v(N) > 0. So, minge7 wi(N) > 0. Define a cooperative game (N, w) with
w(S) = minger wi(S) for all S C N. Note that (/V,w) i1s the minimum of a
finite collection of additive games (N, ay), (N, az),...,(N,a;), where a;(5) =
Wi (S) = ) _es w! forall S € N and all ¢t € T. Hence, (N, w) is totally balanced
by Theorem A.2.

Let z € RY be a core-allocation of the game (N, w). Thus, for each S C N it

holds true that ) . _¢x; > mine w(.S). Define foreach i € N

. i
W\ L) =— ? R 11N W N i
pilz) ming e wi (V) (1{1‘151)]3 (! )>
We show that p is a core-allocation of (N, v). Therefore, take S C N.If min; e wy
(S) =0then ), ¢ pi(z) =0 =v(S). If minger w¢(S) > 0 then

Zp?‘(ﬂ?) Lies I?‘j ) R (min uJ,«(N))

e ming e we( NV teT
LES

min A _ |
e (o) R | minw; (V)
mingeT we (V) teT

R(minger wi(N)) .
_ min wy (5)
minger wy(N)  teT
R(min;cp wi (S _
( et t(_, ) min wy (S)
min;er we(S)  teT

R(min w¢(.S5))
teT

= 1?(5)1

|V
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where the first inequality follows from » € C'(w) and the second inequality follows
R{r't'-r

from the fact that ——— 1s nondecreasing in c. Since both inequalities are equalities
for S = N, we have that p € C'(v).
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