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Abstract

Approximate solutions for optimization problems become of interest if the ‘true’ optimum
cannot be found: this may happen for the simple reason that an optimum does not exist or because
of the ‘bounded rationality’ (or bounded accuracy) of the optimizer. This paper characterizes
several approximate solutions by means of consistency and additional requirements. In particular
we consider invariance properties. We prove that, where the domain contains optimization
problems without maximum, there i1s no non-trivial consistent solution satisfying non-emptiness,
translation and multiplication 1nvariance. Moreover, we show that the class of ‘satishcing’
solutions 1s obtained, 1f the invariance axioms are replaced with Chernoff’s Choice Axiom.
© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper we will try to give an answer to an apparently silly question: 1s the
concept of ‘approximate solution’ in optimization meaningtul? We will show that,
moving from exact to approximate optimization, some serious problems may arise. One
reason to focus on approximate optimization can be derived from the increasing interest
for 1ssues related with ‘bounded rationality’ in game theory. More and more the
emphasis 1s shifted from maximization to approximate maximization. On this point, we

only refer to Fudenberg and Tirole (1991), Myerson (1991) and Radner (1980). The
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latter paper 1s interesting, both to understand the kind of results that can be achieved
along this path and for the remarks about the problems that arise when approximate
maximization enters the scene. The interest in approximate optimization arising from
game theory 1s only one particular case of a general 1ssue. We mention that our results,
obtained using Chernoff’s Choice Axiom (see Chernoff, 1954), can be related to the 1dea
of ‘satisficing” (see Simon, 1955; March and Simon, 1958).

In many situations it happens that, given an optimization problem, one does not look
for the maximum. This can happen for the obvious reason that a maximum does not
exist or for the difficulty of finding it. In both cases, one should have some ‘rule’ that
says when the search for a maximum could stop. Clearly, many different kinds of rules
can be devised, from some ‘rule of thumb’ to a sophisticated analysis that compares the
computational costs for improving the degree of approximation and the benefits that
result.

The approach that will be used in this paper is axiomatic, 1.e. we will state some
desirable properties of an ‘approximate solution concept’ and we will analyze their
consequences and mutual compatibility. To be more specific, we will investigate a
special i1ssue related with these rules: how should they be if one wants to behave 1n a
consistent way across different optimization problems and, at the same time, one has to
take into account some invariance properties. The invariance requirement 1s due to the
fact that, in many cases, the function to be maximized 1s only a representative of a class
of equivalent functions (let us recall at least utility theory, and the fact that in hard
sciences the origin or the scale of measurement quite often can be chosen freely). The
remarkable result that we get i1s an ‘impossibility theorem’, which asserts that there are
no consistent rules for choosing truly approximate solutions if one wants to take into
account translation and multiplication invariance (as one should do, for example, when
dealing with expected utilities). We also investigate the cases in which one takes into
account separately these invariance requirements. For example, taking into account only
translation invariance, leads to the class of g-optimal solutions (see Tis, 1981).

Special emphasis i1s given to rules that satisty Chernott’s Choice Axiom. The main
reason to take this point of view is that we try to consider classes of optimization
problems which contain both bounded and unbounded problems. This interest 1s an
outgrowth of previous research done by the authors in the context of semi-infinite
bimatrix games (see Jurg and Tis, 1993; Lucchetti et al., 1986; Norde and Potters.
1997). Under appropriate assumptions we get the class of ‘satisficing” solutions to which
belong the (&, k)-solutions investigated 1n the papers quoted above.

Sections 2 and 3 are devoted to the setting of the problem. The axioms and
motivations are introduced and some examples are provided. Characterizations involving
the translation and multiplication invariance axioms are given in Section 4 and
characterizations using Chernoff’s Choice Axiom in Section 5. Conclusions are made 1n
Section 6. Moreover, we devote some room to emphasize, by means of examples, that
careless specification of the domain of the rule can give quite strange results. We show
how it could be possible to strengthen the consistency requirement 1n order to overcome
these ditficulties.

Notation. Throughout this paper we denote the set RU{+ =} by R* and the set
RU{—92, +x} by R.
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2. Optimization problems

An optimization problem 1s a pair (A, u) where A 1s a non-empty set of alternatives
and « is a real-valued function with domain A. Let 2 be a non-empty collection of
optimization problems. A solution S on Z” is a map which assigns to every optimization
problem (A. u) € 7 a subset of A.

Example 2.1. For the following examples no special restriction 1s imposed on Z.

(a) The solution S, 1s defined by:
L. (A, u)=A

(b) The solution B 1s defined by:

maax

B...(A,u)=1{a € A: u(a) = u(a’) forevery a’ € A}

(c) For £ >0 the solution 3. 1s defined by:

B.(A, u)={a € A: u(a)=u(a") — eforevery a’ € A}

(d) For k€ER the solution 8" is defined by:
BA(A. u):=1{a € A: u(a) = k}

(e) For £>0, k€R the solution S, is defined by:

BIH:H(A" H) lf BIH;H(A* ”)#@
B.‘*A(A* W)= B&'(A'! i") lf Bmux(A" Uu) = @ and B‘“(A‘ 1) == @
B'(A.u)  otherwise

Notice that B, (A, u). B.AA. u) and B'(A, u) can be empty; on the contrary,
B. . (A, )0 and B_,(A, u) # for every (A, u) € 2.

Consider the optimization problems (A, u) and (B, v), defined by A:==(—>, — &/2],
u(x):=x tor every x € A (where £ >0) and B :=(—, 0), v(x):=x for every x € B. Then,
for every kER, B, (A, u)y={—&/2} and B, ,(B, v) =[—¢&, 0). So an optimizer, using
solution S_,. 1s satisfied with alternative b = — & 1n optimization problem (B, v), but not
with alternative ¢ = — & 1n optimization problem (A, u), which has however a lower
supremum. Solutions which, contrary to £,_,, exhibit an increasing level of satisfaction
as the supremum of the problem raises, are called monotonic. Formally, a solution £ on
# is monotonic if for every pair of problems (A, u), (B, v) € % with sup _ , u(x) =
sup, - ,U(y) the following statement 1s true:

it b€ B(B,v)and a € A 1s such that u(a) = v(b) then a € B(A, u)

A weaker axiom, stating that in sup-equivalent problems (1.e. problems with the same
supremum) the same level of satistfaction should be used, 1s the axiom of approximation
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consistency: a solution B on & 1s approximation consistent if for every pair of
sup-equivalent problems (A, u), (B, v) € ? the following statement is true:

it b € B(B,v) and a € A 1s such that u(a) = v(b) then a € B(A, u)

So, 1f a solution £ 1s approximation consistent, selection by £ of an alternative b € B 1n
some problem (B, v)& 2, induces selection by £ of all ‘non-worse’ alternatives in
sup-equivalent problems.

To 1llustrate the 1dea of approximation consistency consider the tollowing example.
Let % be a collection of optimization problems dealing with profit maximization.
Suppose that for every (A, u) € 2 the set of actions A is finite, and that for every action
a € A the monetary profit u(a) 1s evaluated in Dutch guilders. In practice, optimizers 1n
7 will be satisfied with the highest profit which (1) is feasible, and (i1) represents a
round figure. Condition (11) 1s caused by the desire of the optimizer for not too complex
payments. Let us assume that the optimizers in 2 do not like payments involving more
than five notes or coins. So, every optimizer in 22, whose maximal profit 1s, for example,
fl. 263, will only be satisfied when he gets this amount precisely, since 263 =250+ 10+
I +1+1. On the other hand, every optimizer in 22, whose maximal profit is fl. 2630, 1s
already satisfied when he receives 2600 (= 1000+ 1000+ 250+250+100) guilders.
Note that this solution can be extended easily to optimization problems which are
expressed in other monetary units, provided that the same monetary system 1s used.

In fact, the solution in the previous paragraph exhibits different levels of accuracy of
the optimizers, where this level of accuracy only depends on the supremum of the
optimization problem under consideration. This, however, 1s precisely the job that many
numerical methods for optimization problems do. These methods. which manipulate the
functions « directly without reference to scales, ‘stop when a precision up to a fixed
number of decimals 1s reached. Since real numbers are stored by computers using
floating point representation, this level of accuracy also depends only on the supremum
of the optimization problem under consideration. Therefore. such methods can be seen
as examples of approximation consistent solutions. Clearly, the solutions (a)—(d) in
Example 2.1 are approximation consistent.

A solution B on 2 is weakly approximation consistent if for all (A, u)& 2 the
following statement 1s true:

if a € B(A, u)and a’ € A is such that u(a’) = u(a) then a’ € B(A, u)

So, if a solution B 1s weakly approximation consistent, selection by B of an alternative
a €A in some problem (A, w)& 2. induces selection by B of all ‘non-worse’
alternatives in the same problem. In the sequel of this paper we will also make use of the
following axioms.

A solution B on 2 satisfies non-emptiness it for every P = (A, u) € » we have:

BP)==0
For every optimization problem P = (A, u) and for every r &€ R the optimization

problem (A, v), defined by v(a) =1t + u(a) tor every a € A, will be denoted by t+ P. The
collection 2 1s closed under translation if for every P& 2 and t& R we have
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t+ P& P A solution B on Z, which i1s closed under translation, satisfies trranslation
invariance if for every P € % and t € R we have:

B(t+ P)= B(P)

For every optimization problem P = (A, u) and for every A >0 the optimization
problem (A, v), defined by v(a) = Au(a) for every a € A, will be denoted by AP. The
collection 2 is closed under multiplication if for every P& # and A >0 we have
AP € 2. A solution 8 on 2, which is closed under multiplication, satisfies multiplication
invariance if for every P &€ 2 and A >0 we have:

B(AP)= B(P)

The translation and multiplication invariance axioms are desirable axioms in many
situations. Consider, for example, the example above where & denotes a collection of
optimization problems dealing with profit maximization and different monetary systems
can be used to describe one and the same problem.

We shall use a specific example' to illustrate the basic tension between approximation
consistency on one side and the invariance axioms on the other side. Consider two
optimization problems (A, «) and (A, v) with the same set of alternatives, namely rooms
with various degrees of hotness. In both problems, room « 1s 1deal. In problem (A, u).
u(h) is the absolute value of the temperature difference between rooms a and b measured
in degrees Fahrenheit, while in problem (A, v), v(b) is the absolute value of the
temperature difference between rooms « and b measured in degrees Celsius. Suppose
that in problem (A, u) any room whose temperature is within 9°F of room a is
satisfactory. It then follows from approximation consistency that in problem (A, v), any
room whose temperature is within 9°C of room « is satisfactory. Using the invariance
axioms, it then follows that in problem (A, u) any room whose temperature 1s within
16.2°F of room a is satisfactory. Continuing in this way we conclude that every room 1s
satisfactory.

What do we learn from this example? The answer is that approximation consistency
clearly rules out the possibility of scale having a meaning. To be more precise, 1f one
wants to use approximation consistency in optimization problems and information about
the scale is available, then one can not change the scale. However, we want to stress that
using the Celsius scale in the example (A, v) above 1s using more information than we
are considering in our setting. Nothing wrong with this, but such additional information
is not always available. Consider for example a decision maker who has to choose some
alternative from a set A, and let u: A— R be a von Neumann—Morgenstern utility
function describing the preferences of the decision maker. Such a description, which 1s
not rare, does not convey any kind of information about any kind of scale. However. any
other von Neumann—Morgenstern utility function v describing the same preferences has
the form v = au + B with @ >0 and 8 € R. In this situation we want to see whether we

‘Suggested by a referee.
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can use the axiom of approximation consistency in a meaningful way. Basically this is
the 1ssue addressed in Section 4.

3. Axioms and examples

For approximation consistent solutions we have the following proposition.

Proposition 3.1. Let B be an approximation consistent solution on P and let (A. u).
(B, v) € P be such that u(A) = v(B). Then there is a subset T of u(A)( = v(B)) such that
BA, uy=u (T) and BB, v)=v (T).

Proof. Take 7 :=u( B(A. u)).

If a Eu (T) then u(a) = u(a') for some a' € B(A, u) and hence, by approximation
consistency, a € B(A, u). So. u (T)C B(A, u). The inclusion BA, w)yCu (T) is
obvious.

If bEv (T) then v(b)=u(a’) for some a’ € B(A, u). Since (A, u) and (B, v) are
sup-equivalent we get, by approximation consistency, b € B(B, v). So,v (T)C B(B, v).
It b € B(B, v) then, since u(A) = v(B), there is an « € A such that u(a) = v(b) and hence,

by approximation consistency, a € 3(A, u). Therefore, v(b) = u(a) €T and hence b E
v '(T). So, BB, v)Cuv '(T).

Proposition 3.1 shows that, if S 1s approximation consistent, the set SB(A, u) only
depends on the range u(A) of w. Although much information about the optimization
problem (A, u) 1s lost by considering only the values of «, this approach is an extremely
common one. So, if we are interested in approximation consistent solutions only, we
may 1dentify an optimization problem (A, u) with u(A), the range of u, which is a subset
of . In this and the following sections we focus on this approach.

Let ./ be a non-empty collection of non-empty subsets of R. A solution o on ¥ is a
map which assigns to every S € . a subset o(S) of S.

A solution o on 7 satisfies (MON) (monotonicity) if for every S,, S, € .7 with sup
5,=sup S, the tollowing statement is true:

ILs,'€015,) and s, €8, 1ssuch thats, =s, théens, € o(S,)

A solution o on 7 satisfies (AC) (approximation consistency) if for every S,, S, € S
with sup S, =sup §, the following statement is true:

IT §5, € 0(5,)and s, € §, 1s such thats, = s, thens, € o(S,)

The reason for introducing (AC) 1s given by Proposition 3.1: it is immediate to see that,
if a solution B on Z is approximation consistent, as defined in the previous section, then
the induced solution o on the family % of ranges u(A) (A, u) € ), satisfies (AC).
Conversely, a solution o on .7 satisfying (AC), induces, for every 7 with ranges in %,

an approximation consistent solution £.
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A solution o on 7 satishes (WAC) (weak approximation consistency) it for every
S € .9 the tollowing statement is true:

ifsEe ag(S)and s' € Si1ssuch that s’ = s then s’ € o(S)

The axioms of non-emptiness, translation invariance and multiplication invariance, as
defined for solutions on a class & of optimization problems in Section 2, can be
extended 1n a straightforward way to solutions on a collection .7 of non-empty subsets of

R.

A solution o on J satisfies (NEM) (non-emptiness) if for every S € % we have:

ao(S) # ()

The collection 7 1s closed under translation (CL+ ) if for every S € % and t € R we
have t +S:={t+s: s€S}€ Y. A solution o on %, obeying (CL+), satisfies (TI)
(translation invariance) 1t for every S € % and r € [R we have:

ot+S)=t+ a§)

The collection .7 1s closed under multiplication (CL*) 1f for every S &€ .7 and A >0
we have AS:={As: sES}E€ Y. A solution o on 7, obeying (CL*), satisfies (MI)
(multiplication invariance) 1t tor every S € 4 and A>0 we have:

og(AS) = Aa(S)

[n this paper we will also characterize solutions on . making use of the axiom (CCA)
(Chernoff’s Choice Axiom) (see Chernoft, 1954). This axiom 1s defined as follows: a
solution o on .7 satisfies (CCA) 1if for every S, T € % with S C T one has:

(L)) S C alS)

So, 1f o satisties (CCA), selection by o of an element s € T, implies selection by o of s
in any subset S of 7 with s € 5. The axiom (CCA) 1s weaker than the independence of
rrelevant alternatives axiom used. for example, in Kaneko (1980) and Peters (1992).

Example 3.1. For the following examples suppose that % 1s the collection of all
non-empty subsets of R.

(a) The solution o .. defined by:

' R0 It

wES s=supS=1} ifsupS=0
0...8)=418 ES:s>supS —1} ifsupS € (0, + )
sES: s =22} if supS = + <<

satisfies (AC) and (NEM).
(b) The solution o . defined by:
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e S iftS CQ
Tu®) =1 5e8: 5222 ifSEQ

satisfies (WAC) and (CCA).
(c) The solution o, defined by:

g (§)=3§

L

satisfies (MON), (NEM), (TI), (MI) and (CCA).
(d) The solution o, . defined by:

o (S)={sES:s=s'foreverys' €S}

IThal M

satisfies (MON), (TI), (MI) and (CCA).
(e) The solution o. (where &> 0), defined by:

o(S)={sES:s=supS — ¢}

satisfies (MON), (TI) and (CCA).
(f) The solution o (where k € R), defined by:

o'(S)={sES:s=k)

satisfies (MON) and (CCA).
(g) The solution o, (where £>0, k € R), defined by:

g...(8) o . lS5)y£0

miax Mmax

o (S)=1 T.(S5) ifo_ (S)y=0and o.(S)# 0

o

o' (S) otherwise

satisfies (WAC) and (NEM).
(h) The solution &, (where £ >0, kK € R), defined by:

u o.(5) uHsupS=k-+e
@, 5 )= k e _
o (§) itsupS>k+ e

satisfies (MON), (NEM) and (CCA). Notice that 6_,(S) = o.(S)U o' (S).

(1) The solution o, ;,(S) (where a > 1, 5 <1), defined by:

o (§) ifsupS)=s€(—»,0)

S 1if sup(S) =0
J”‘”'“'-ﬁ '(S) = L s _ ~
| o”(S) ifsup(S)=s € (0, + *)
\) if sup(S) = + =

satisfies (AC), (NEM) and (MI).

The following table summarizes the statements above.
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(MON) - (AC) (WAC) (NEM) (T (MI) (CCA)

oo iy * T ag — == —
.. " = s == = = *
a.. ¥ 25 + T T b =+
7 + T+ + =~ 1 g T
0. g + e — T = e
o' F T 2 == — = T
O, . = == T T - = —

Fei + + + + - — +

pro(a.f) N ¥ N B ® B

4. Characterizations for translation and multiplication invariant solutions

Let % be a collection of non-empty subsets of R™. We write ' = U,_. ¥, where
S ={S € : sup S =k} for every k € R™. The collection ¥ is complete if all intervals
belong to .. Recall that elements of % can be considered as ranges u(A), which are
intervals if, for instance, A is connected and u« continuous. So, ./ 1s complete 1f the
underlying collection of optimization problems & 1s ‘rich” enough.

A solution o on 2 is closed if o(S) is a closed subset of § for every S € Y. For a
function a: R* — R we define the closed solution o, on ¥ by:

o (S)=lak),k]NS§

(o

where k=sup S (in particular o (S) =0 if a(k) >k oratk) =k and k& S and 0,(5) =51t
a(k) = — =»). So, o, selects, for every S € .7, the elements s €S with s = a(k). Clearly,
o, satisfies (AC). The following proposition shows that the closed solutions satistying
(AC) are precisely the solutions o, provided that . is complete. Note that the solutions,
defined in Example 3.1(c)—(f), (h), (i), satisfy (AC) and are, in fact, o, for some suitably
chosen a.

Proposition 4.1. Let & be a complete collection of non-empty subsets of R and let o be
a closed solution on . The solution o satisfies (AC) if and only if o= o, for some
function a.

Proof. We only prove the only-if-part. So, assume that ¢ satisfies (AC). Let k € R™.
Define S, € ¥ by S, =(—=, k] if kER and S, :=R if k = + . Since, by (AC) and the
fact that o is closed. o(S,) is a closed interval there is an a(k) & R such that
oS,)={xES,: x=a(k)}. By (AC) we get o(S)=lak), k]NS=o0,S5) for every
SE S

[f we impose some feasibility condition upon the function a we get closed solutions
which are characterized by (AC) and (NEM).
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Proposition 4.2. Let S be a complete collection of non-empty subsets of R and let o be
a closed solution on Y. The solution o satisfies (AC) and (NEM) if and only if o = o,
for some function a: R™ — R satisfving a(k) <k for every kER".

Proof. Straightforward by using the fact that o((—, k])#( for every k€ R™ and
Proposition 4.1.

The next theorem describes the class of solutions, which are characterized by (AC),
(NEM) and (TI). It turns out that these solutions, restricted to the collection of upper
bounded sets, coincide with the collection of ‘e-optimal’ solutions for some &€&
{10 o)

Proposition 4.3. Let S be a complete collection of non-empty subsets of R which
satisfies (CL + ) and let o be a closed solution on . The solution o satisfies (AC),
(NEM) and (TI) if and only if there is an £ € (0, + %] such that o= o,, where a:
R* — R is defined by:

{a(k)==k = for every k € R ‘n

a( + ®)= —oo

Proof. Clearly, o = o satisties (AC), (NEM) and (TI) if @ 1s defined by (1). In order to
prove the only-if-part suppose that o satisfies (AC), (NEM) and (TI). By (AC) and
(NEM) we know, according to Proposition 4.2, that o = g, for some tunction a:
R* — R satisfying a(k) <k for every k € R*. Take €= — a(0). For every k ER we
have, by (TI):

la(k), k] = o((—, k]) = g(k + (—=,0])
=k + o((—,0]) =k [a(0), 0]
= [k + a(0), k]

and hence a(k) =k + a(0) =k — & The only thing which remains to be shown 1s that
a( +»)= — =, Since g(R)# 0 we can choose s € g(R). Then for every t € R we have
t + R =R and hence, by (TI), t + s € o(t + R) = o(R). Therefore, o(R) =R and hence
a( + o) = — o,

The solution 0., of Example 3.1 satisfies (AC) and (NEM) but not (TI), the solution
o. satisfies (AC) and (TI) but not (NEM) and one easily constructs a solution satistying
(NEM) and (TI) but not (AC) (simply by defining the solution for § with sup § €
{0, + o} in an arbitrary but not approximation consistent way and extending this
solution by translation invariance). Therefore, the axioms (AC), (NEM) and (TI) are
logically independent.

In the following proposition we characterize the ‘proportional” solutions by (AC),

(NEM) and (MI).

Proposition 4.4. Let & be a complete collection of non-empty subsets of R which
satisfies (CL*) and let o be a closed solution on Y. The solution o satisfies (AC),
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(NEM) and (MT) if and only if there are a > 1 and B <1 such that o = o,, where a:
R™ — R is defined by:

a(k) = ak tfor every kK < ()
a(0) = — = .
a(k) = Bk for every k € (0, @) =)

a( + »)e{—x, 0}

Proof. Clearly, o = o, satisfies (AC), (NEM) and (MI) 1f @ 1s defined by (2). In order to
prove the only-if-part suppose that o satisfies (AC), (NEM) and (MI). By (AC) and
(NEM) we know, according to Proposition 4.2, that o = ¢, for some function a:
R* — R satisfying a(k) <k for every k € R*. Take @ = —a(—1) and B =a(l). For
every kK <0 we have, by (MI):

la(k), k] = o((—, k]) = g(—k(—%>, —1])
= —ko((—», —1]) = —kla(—1), — 1}
= [—ka(—1), k]
and hence a(k) = — ka(—1) = ak. In the same way one can prove that a(k) = Bk for

every k € (0, + ). For every A € (0, ) we have:

(a(0),0] = o((—=,0]) = g(A(—==2,0])
= Ao((—=,0]) = Ala(0), O]
= [Aa(0), O]
Therefore, a(0) = Aa(0) for every A € (0, + ). Since a(0) <0 we get a(0) = — . In a

similar way one can prove that a( + x)€&{ — %, 0}.

The solution o, of Example 3.1 satisfies (AC) and (NEM) but not (MI), the solution
o . satisties (AC) and (MI) but not (NEM) and one easily constructs a solution
satistying (NEM) and (MI) but not (AC) (simply by defining the solution tfor § with sup
S&{—1,0, 1, +=} in an arbitrary but not approximation consistent way and extending
this solution by multiplication invariance). Theretfore, the axioms (AC), (NEM) and (MI)
are logically independent.

Clearly, the trivial solution o, satisfies (AC), (NEM), (TI) and (MI). In the following

proposition we show the impossibility of finding another solution, satistying these tour
properties.

Theorem 4.1. Let & be a complete collection of non-empty subsets of R, which satisfies
(CL + ) and (CL*) Let o be a closed solution on . The solution o satisfies (AC),
(NEM ), (TI) and (MI) if and only if o= o,,.

Proof. Again we only prove the only-if-part. Suppose o satisfies (AC), (NEM), (TI) and
(MI). By Proposition 4.4 we get o((—, 0]) = (—=, 0] and hence, by (TI):

o((—=,k]) =k + o((—=,0]) =k + (—, 0] = (—, k]
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for every k € R. Moreover, by Proposition 4.3, we get o(R) = R. Using (AC) we may
conclude that o(S)=S forevery SE€ 5. L

Let us notice that, in the context of decision making under risk, « and v are von
Neumann—Morgenstern utility functions representing the same preferences ift v = cu +
d, with ¢ >0 and d €R. So, if one wants to stress the point of view that only
preferences have a true meaning, one should use a ‘solution rule’ for optimization
problems that takes this fact into account. But Theorem 4.1 just shows that 1t 1s
impossible to do this in a non-trivial way. Stated otherwise: for von Neumann-
Morgenstern preferences there is no sensible concept of approximate optimum! If one
wants to talk in a meaningful way of approximate optimization, an escape route could be
the addition of further details that allow for some ‘absolute’ reference point (for
example: how do we decide whether the oscillations of last week at the New York Stock
Exchange were wild or not? Maybe we refer to the previous history as a benchmark).
The interesting question is whether it can be done in a consistent way, without resorting
to an ‘absolute’ utility function.

Remark. If a solution o on 9 satisfies (AC) then, for every S€ Y, o(S) can be
described as {s ES: s= vy} or {s €S: s > vy} for some y (depending on S). However, we
can have strict or weak inequality, depending on the value of sup S, as can be seen in
Example 3.1(a). In order to get rid of these kind of approximate solutions we have
added the requirement that o(S) is a closed subset of S. However, this addition does not
‘force’ the parentheses to be closed. Consider, for example, & =1{10, 1}y U{[a, 1]:
a € (0, 1)} and let o be the solution on &, defined by o({0, 1}):=1{1} and o([«, 1]):=
(a, 1] for every a € (0, 1). The solution o satisfies (AC) and o(S) is a closed subset of
S for every S € Y. but there is no y € R such that o(S)=1{s €S: s =y} for every
S € S, The problems in this example are due to the fact that the collection S is rather
‘poor’. For this reason we added the requirement that 4 should be complete, i.e.
contains all intervals.

However, the Propositions 4.1—4.4 and Theorem 4.1 can also be shown to be true for
collections & which are not complete. In this situation however, the proofs become a
little bit more technical and an appropriate strengthening of (AC) is needed: a solution
a on ¥ satisfies (SAC) (strong approximation consistency) if for every S, S,.S,,... €5
with sup S = sup S, for every i € N the following statement is true:

if s. € a(S.) foreveryi €ENand s €S is such that s =limint, __s, then s € o(5)

One easily verifies that (SAC) induces (AC). Moreover, (SAC) implies that o(S) is a
closed subset of S for every S € Y. In fact, if S is a collection of intervals, then o
satisfies (SAC) if and only if o satisfies (AC) and o(S) is a closed subset of S for every
e

The impossibility result of Theorem 4.1 is caused by the fact that the domain §
contains elements without maximum. Let us notice, in particular, that whenever we have
at least a couple of problems in .7 with the same supremum, but one of which has a
maximum and the other not, the (AC) axiom prevents the possibility of choosing the



H. Norde et al. | Mathematical Social Sciences 40 (2000) 297-311 309

maximum only, whenever it exists. In fact, a solution like o_, in Example 3.1(g), which
tries to capture this kind of idea, violates (AC), as can easily be checked, whenever in ./
there are sets with maximum and others without. If we restrict our attention to domains
S containing only elements S for which max § i1s well-defined then it turns out that o,
1s the only non-trivial solution satistying (AC), (NEM), (TI) and (MI).

Theorem 4.2. Let S be a collection of non-empty subsets of X such that every element
of S has a maximum. Suppose, moreover, that 4 satisfies (CL + ) and (CL*). Let o be a
solution on . The solution o satisfies (AC), (NEM), (TI) and (MI) if and only if
=0 OF O= G, .

Proof. Again we only prove the only-if-part. Suppose o satisfies (AC), (NEM), (T1) and
(MI) and suppose that o # o, ... Then there is some §* € & with o(5*) # 7, (5™) =
{max S*}. By (NEM) we may conclude that there is an s* € o(5*) such that s* < max
S*. In order to show that o =0 take S€ .7 and s &€ S. It sufthces to prove that
s € g(S). Choose o >0 such that a(s* — max S%) + max § = s and define B := —a max
S* + max S. Define, moreover, S":=aS* + 8. By (CL+) and (CL*) we have §' € .
and by (TI) and (MI) we have as* + B € o(S'). Since as™ + B = a(s™ —max §%) +
max S =s and max S’ = max S we infer by (AC) that s € o(5).

5. Characterizations under CCA

Proposition 4.3 provides a characterization of solutions o on collections ot wupper
bounded subsets of [R: there is an € & (0, + 2¢] such that o selects all “e-optimal’
elements. In order to get a nice characterization, which takes also the unbounded subsets
of . into account, we can make use of the axiom (CCA) instead ot (TI).

Proposition 5.1. Let & be a complete collection of non-empty subsets of R and let o be
a closed solution on . The solution o satisfies (AC), (NEM) and (CCA) if and only if
o= o for some non-decreasing function a: R™— R satisfving a(k) <<k for every

keR™

Proof. We only prove the only-if-part. Suppose o satisfies (AC), (NEM) and (CCA). By
(AC) and (NEM) we may conclude, according to Proposition 4.2, that o = ¢, for some
function «: R™ — R satisfying a(k) <k for every kK € R™. In order to show that a is
non-decreasing let k, / € R™ be such that £ <= [. Suppose that a(k) > a(l). Then there is an
s € g((—=, 1)) such that s <a(k)<k. Since also s&€(—», k) we get, by (CCA),
s € g((—=, k)), and hence s = a(k). Contradiction.

One easily verifies that the solutions, characterized in Proposition 5.1 by (AC),
(NEM) and (CCA), satisfy (MON). However, since (MON) implies (AC) and (CCA),
these solutions can also be characterized by (MON) and (NEM).

A result similar to that in Theorem 4.1 can be obtained by using (CCA) and (WAC)
instead of (AC). Note that (AC) does not imply (CCA) [see, for example, Example
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3.1(a)] and that (CCA) and (WAC) does not imply (AC) [see. for example, Example
3.1(b)]. Of course. (WAC), (NEM), (TI), (MI) and (CCA) do imply (AC), according to
the following theorem.

Theorem 5.1. Let S be a complete collection of non-empty subsets of R, which satisfies
(CL + ) and (CL*). Let o be a closed solution on . The solution o satisfies (WAC),
(NEM), (TT), (MI) and (CCA) if and only if o = o,,.
Proof. Again, we only prove the only-if-part. Suppose o satisfies (WAC), (NEM), (TI).
(MI) and (CCA). Let k € R and S, :=(—, k). By (NEM) we know that a(S,) # 0, so we
can choose an s € o(3,). Of course, s < k. We will show that o(5,) = 5,. Theretfore, let
teS,. Define A=k —1)/(k—s5)>0 and w:=(1—ANkER. Then r=As+ u, S, =
AS, + o and hence, by (MI) and (TI), ¢t € o(S,). Therefore, o(5,) =S§,. By (CCA) we
get o(§)=3S for every S € %,. By (NEM) and (TI) one easily infers that o(R) = R.
Hence, by (CCA), we get that o(S)=S§ for every S € 7 .

Remark. /f the collection S is not complete, then Proposition 5.1 need not be valid
anymore, as the following example shows: consider the class & of all non-empty and
upper bounded subsets S which satisfy the condition that there exists a t €10,1) such
that S Ct + Z. Define the solution o, by:

T
Aty = {A 22 ifke”

k — 37 otherwise

Clearly o, satisfies (AC) and (NEM). It also satisfies (CCA): this is due to the fact that
for S, T € S with S CT both are contained in the same t + Z for some t € [0, 1). In fact,
one can prove that any o, with a feasible function a which is non-decreasing on t + Z
for every t € [0, 1), satisfies (AC), (NEM ) and (CCA). In fact, S can be partitioned into
several subcollections such that sets belonging to different subcollections are not related
by inclusion. These problems do not occur if S is complete. A characterization of the
solutions in Proposition 5.1 by (MON) and (NEM) on non-complete collections S can
still be obtained by using an appropriate strengthening of (MON), similar to the
strengthening (SAC) of (AC). mentioned in the remark at the end of Section 4.

6. Conclusions

The main purpose of this paper is to investigate whether an axiomatic analysis can be
carried through for approximate solutions of optimization problems. Fundamental
axioms in these characterizations are approximation consistency (reflecting the bounded
accuracy of the optimizers), translation and multiplication invariance (reflecting the fact
that the solution should be independent from the scale which 1s chosen) and non-
emptiness. It turns out that, if an optimum exists in every optimization problem under
consideration, the only non-trivial solution satisfying these axioms 1s the solution
selecting the optimum in every problem. If, however, at least one problem does not have
an optimum (and one is really obliged to look for approximate solutions) then such a
non-trivial solution does not exist anymore. So, in order to find a non-trivial solution
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satistying some desirable properties one is forced to remove some axiom or to weaken
the axioms. It we remove one of the invariance axioms, and consider bounded problems
only, we are lead to the class of ‘eg-optimal’ solutions, respectively, the class of
‘proportional” solutions. For unbounded problems such an approach yields unsatisfactory
results. It we replace both invariance axioms with Chernoff’s Choice Axiom, we get the
class of ‘satisficing™ solutions.

In this paper we did not address one important question: are approximate solutions
close to the true solution(s) or, stated otherwise, is the optimization problem under
consideration Tikhonov well-posed (see Dontchev and Zolezzi, 1993; Patrone, 1987)?
Clearly, to answer this question one needs to have some additional (topological)
structure on the set of alternatives. Instead we focused on the values of the objective
functions, but we consider issues related to Tikhonov well-posedness as quite important.
We believe that characterizing “‘axiomatically”™ approximate optima, taking into account
at the same time values, domains and objective functions is a formidable task, which
should be investigated, perhaps, first in some specific contexts (e.2. maxima of concave
functions on convex subsets of euclidean spaces).
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