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Abstract
In a dynamic model of a risk-neutral competitive firm which can lower its pollution emissions per unit of output by

building up abatement capital stock, we examine the effect of a higher pollution tax rate on abatement investment

both under full certainty and when the timing or the size of the tax increase is uncertain. We show that a higher

pollution tax encourages abatement investment if it does not exceed a certain threshold rate - a “Laffer-curve”

phenomenon. When the size of the tax increase is uncertain, at the time of the tax increase the abatement investment

path may shift upward or downward depending on whether the actual tax rate is higher or lower than the firm’s

expected rate. But, when the time of the tax increase is uncertain, the abatement investment path always jumps

upward. Further, the ad hoc practice of raising the discount rate to account for the uncertainty leads to

underinvestment in abatement capital. We show how the size of this underinvestment bias varies with the future tax

increase. Finally, we show that a credible threat to accelerate the tax increase can induce the firm to undertake more

abatement investment.
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      For some of the earlier studies of the firms’ incentive to innovate or adopt pollution abatement technology see,1

e.g., Wenders (1975), Orr (1976), Magat (1978), and Malueg (1989). 

Pollution Abatement Investment When Environmental Regulation Is Uncertain  

 1.  Introduction

A key factor in environmental pollution control is the adoption of more efficient pollution

abatement technologies by firms. In turn, the firms’ incentive to invest in capital equipment embodying

such technologies can be significantly influenced by the specific form of environmental regulation that the

government adopts and pursues.  In fact, one of the economists’ main arguments for preferring the

market-based environmental policy instruments (such as tradable pollution permits, emissions taxes and

subsidies) over the command-and-control methods (such as performance and technology standards) is

that the market-based instruments provide firms with greater incentive to innovate or adopt pollution

abatement technology . For example, Millman and Prince’s (1989) comparative study of the alternative1

policy instruments ranked emission taxes superior to standards in encouraging firms to adopt abatement

technology. Jung et al (1996) extended this conclusion to the industry level. A similar conclusion also

emerged from Jaffe and Stavin’s (1995) empirical study of the effect of alternative (price and nonprice-

based) instruments on builders’s decisions to invest in energy conservation technology as a means of CO2

emissions control. Likewise, Caswell et al (1990) showed the importance of a drainage effluent charge for

adopting more modern water-conserving, and hence less polluting, irrigation technologies. 

Although insightful, this literature, however, abstracts from several important aspects of

environmental regulation setting and firms’ decision making which can greatly affect incentives to invest

in abatement technology. First, whereas the literature has often adopted a static framework to analyze the

incentive effects of environmental regulations, the decision to invest in abatement technology is inherently

a dynamic, and often irreversible, one. Second, there are costs of adjusting abatement capital stock. Third,

and perhaps more important, the literature has usually abstracted from environmental policy uncertainties

that firms face. Among these are uncertainties about the timing and stringency of environmental

regulation. These uncertainties are a common feature of environmental policy making in democratic

societies. Under pressure from various interest groups  (including environmentalists, industrialists, and

the general public), the legislator has to obtain an agreement on the stringency and enactment date of an

environmental regulation through a lengthy political bargaining process. 

 In this paper we allow for these aspects and, by focusing on a specific environmental policy

instrument, namely pollution tax, investigate how the uncertainty about the size or timing of a future tax

reform may affect a firm’s decision to invest in pollution abatement capital. By doing so, we bring

together the above cited strand of literature on environmental economics and the strand in public

economics literature that explores the effect of tax policy uncertainties on firms’ incentive to invest (see

Rodrik (1991), Aizenman and Marion (1991), Hassett and Metcalf (1994) and Alvarez et al (1997)
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      The reason for the firm to speed up investment on the expectation of a future cut in the tax rate is the2

assumption of the immediate write off-of the adjustment costs, and thus the firm’s incentive to take advantage of the
tax shield before the tax rate cut becomes effective.  

among others). Despite taking different technical approaches, these studies generally confirm the

conventional wisdom that tax policy uncertainties can adversely affect incentives to invest. For example,

using a general density function for the timing of a tax reform and assuming a convex adjustment cost

function, Alvarez et al (1997) show that the expectations of a once-and-for-all increase (decrease) in the

corporate profits tax rate will have a negative (positive) investment spurt effect and that the uncertainty

about the timing of the reform reinforces this effect . 2

In the environmental economics literature, two studies which are close in spirit to our paper are

those of Xepapadeas (1992) and Hartl (1992).  Xepapadeas considers a dynamic model in which specific

inputs (capital and labor) are employed in production and abatement activities. He examines the short and

long-run effects of an emission tax and an emission quota on a firm’s choice of inputs in the two

activities.  His model, though insightful, differs from ours both by abstracting from policy uncertainty

issues and by assuming that the firm’s choice of abatement capital bears no effect on its demand for

productive inputs and hence on its output. As a consequence of the latter, he concludes, contrary to a

finding of this paper, that an increase in the emission tax always leads to a larger stock of abatement

capital. Hartl analyzes the investment decision of a firm that has to acquire a certain stock of abatement

capital by a future date in order to be in compliance with government pollution standard, but that the firm

neither knows the required stock of abatement capital nor the compliance date in advance. He shows that

while, in the absence of any uncertainty, the firm’s optimal policy is to increase abatement investment

rates monotonically over time until the target abatement capital stock is reached (i.e. a delayed investment

policy), when the target stock and the compliance date are uncertain, the optimal investment path is U-

shaped. Our paper, however, differs also from the Hartl’s in several important respects. (i) In contrast to

Hartl’s model, which ignores the firm’s production activity, our model explicitly incorporates this,

thereby allowing for the firm’s option of reducing pollution emissions by contracting output level. (ii)

Whereas Hartl’s paper is concerned with minimizing the investment costs of complying with an expected

target abatement capital stock at a finite (but uncertain) future date, we consider the case of emissions tax

and let the firm choose its desired abatement capital stock, and hence investment path, in order to

maximize the present discounted value of the expected cash flow before and after the tax reform (i.e.,

over infinite horizon). (iii) As another distinctive feature of our model, and a principal source of a firm’s

incentive to invest in abatement capital, we allow the emissions per unit of output to diminish as the firm

accumulates larger stocks of abatement capital. (iv) We analyze the effects of two separate uncertainties

on abatement investment: uncertainty about the size of a tax increase at a certain future date and
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      The deterministic analysis in this section somewhat resembles that by Hartle and Kort (1996) for the case of3

full certainty and investment in both productive and abatement capital stocks.

      Time subscripts are supressed when no confusion arises.4

uncertainty about the timing of a known tax increase. 

In this setting, a main result of our paper, which has an important implication for the design  of

emissions taxes is that expectations of a once-and-for-all increase in the future emissions tax rate will

result in higher (lower) abatement investment rates depending on whether the expected future tax rate

remains below (above) a certain critical level.  We show that this “Laffer-curve” phenomenon derives

from two opposing effects of a higher pollution tax rate on incentive to invest in abatement capital: a

positive tax rate effect and a negative production effect

The paper proceeds as follows. As a foundation for subsequent analysis, in Section 2 we present

the basic model which considers the simplest case where the emission tax is constant over the entire

planning horizon. Building on this, in section 3 we first examine the deterministic case of a known

increase in the tax rate at a know future date, and then proceed to the case where the size of the future tax

increase is uncertain but its timing is certain.  Subject to the threshold tax rate, we show that the

expectation of a higher tax rate motivates the firm to increase its abatement investment rates at all times

before the date of the tax increase. But at the time of the tax increase, the investment path can shift

upward or downward depending on whether the actual tax rate is higher or lower than the firm’s expected

rate.   Section 4 analyzes the variant where the timing of the tax increase is uncertain. There, we show

that, again, subject to the threshold tax rate, the expectation of a higher tax rate at some future date gives

the firm an incentive to boost its abatement investment, but that the timing uncertainty causes an

unanticipated jump in abatement investment at the time of the tax increase.  We show that a credible

threat of accelerating the tax increase can further boost the firm’s abatement investment. Further, we

establish that no certainty-equivalent discount rate exists and that raising the discount rate instead of

accounting explicitly for the uncertainty results in underinvestment in abatement capital. We show how the size

of this underinvestment bias varies with the future tax increase. Section 5 concludes.

2.  Basic Model: Constant Emission Tax Rate

 We begin with the analysis of the simplest case where the emission tax rate is known and remains

constant over time. The results obtained for this case will considerably facilitate the analysis of uncertain

emission tax policy in subsequent sections.3

Consider a perfectly competitive firm which uses a variable input v (e.g., labor) to produce a

homogenous good according to the simple production function4

h= h(v),  where  h(0)=0,  hN(v)>0,  hO(v)<0 (1)
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The production process generates pollution emissions proportional to output level, i.e.

E=" h(v) (2)

It is assumed that the firm can reduce its emissions per output unit, ", by building up a larger stock of

abatement equipment, K, although this possibility is subject to diminishing returns, i.e.

" = "(K)>0 , where  "N(K)<0,  "O(K)>0 (3)

This can be justified by noting simply that a larger stock of abatement capital allows the firm to abate

emissions more efficiently. Another justification could be the possibility of “learning by doing” as

abatement investment accumulates. It is also both realistic, in view of the second law of thermodynamics,

and analytically convenient, to assume that pollution emissions can not be entirely eliminated; so that

(4)

Let J >0 be the tax per unit of emissions, which in this section is assumed to be constant over time. Then,

the firm’s total pollution tax payment at any point in time is J "(K) h(v). 

The abatement capital stock can be increased by undertaking investments, I, in abatement

equipment. To reflect investment adjustment costs (e.g., costs of equipment installation and personnel

training), and the fact that such costs increase rapidly as the stock build up is accelerated, the total

investment cost, C(I), is assumed to be a convex, increasing function of the investment level, i.e.

C(0)=0,  CN(I)>0,  CO(I)>0 (5)

It is also assumed that the investment in abatement equipment is irreversible, so that I$0 . Without new

investment, the capital stock is assumed to depreciate at the constant proportional rate of  *.  The firm

takes as given and fixed the market prices of output, p, and the variable input, w. For analytical

convenience, we assume that production remains profitable even in the absence of abatement capital

stock, so that  

{p -J" (0)} hN(0)  > w     (6)

which, by (1) and (3), implies that p -J" (K) >0 for all K$0, i.e., the price always exceeds the emissions

tax per unit of output. The risk-neutral firm chooses the level of its variable input, v, and abatement

investment, I, to maximize the present value of its cash flow over an infinite planning horizon. Formally,

(7)

(8)

where r is the firm’s constant discount rate.

Maximization of (7) w.r.t. v yields the optimal v as an implicit function of K, i.e., v = v(K), such

that

{p- J " (K)} hN(v) = w (9)
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that is, for a given K, the variable input is employed up to the level where its after-tax marginal product

revenue equals its marginal (=unit) cost. From (9) we obtain 

(10)

Intuitively, by reducing the emissions cost per unit of output, a larger K makes production more profitable

and thus increases the employment of the variable input. Substituting v(K) from (9), we can rewrite the

objective function (7) as

(11)

The current-value Hamiltonian of the optimal control problem ((11) and (8)) is

(12)

where 8 is the shadow price of abatement capital. The necessary conditions for an optimal policy, using

(9),  are:

(13)

(14)

with the straightforward economic interpretation that along the optimal investment policy, the shadow

price of abatement investment must always equal its marginal cost (equation (13)), and that the

competitive return on a unit of abatement capital should be the same whether accrued in the form of net

capital gains or reduced emissions tax payments (equation(14)). We can obtain further

insight into the characteristics of the optimal investment policy by analyzing its phase diagram in the (K,

I) plane. The  isocline is the positively-sloped straight line I=*K.  To derive a differential equation

for I, differentiate (13) with respect to t, substitute in (14),  and eliminate 8 to get:

(15)

Using (10), the slope of the  isocline is, from (15)

(16)

from which it can readily be verified that the  isocline is globally decreasing for J < J , where  J  is*    *

given by
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      Note that the marginal return on abatement capital is the emissions tax reduction, -J "N (K) hN(v).  It can be5

verified that for J > J , the derivative of this term with respect to K is positive, implying that the total return on* 

abatement capital is a convex function of K.

(17)

Thus, as long as J < J  , the*

system converges to a unique saddle-point

s t e a d y  s t a t e
( ) .

When  J > J , it can readily be shown* 

that the  isocline is positively sloped and  convex in K, so that it cuts the straight line I=*K from

below, implying an unstable steady-state . To focus on the effects of uncertainties about future emissions5

tax rate on the firm's investment behavior, in the analysis that follows we concentrate on the case where J

<J  ,  with a unique saddle point steady-state, K  , which (from (15) and  I=*K) is given by*         *

(18)

Figure 1 presents the phase diagram of the optimal solution for this case.
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      In deriving equation (19) we have used the transversality condition .6

Figure 1. Optimal solution when J is constant over time

Further, we can determine the optimal investment path and therefore characterize its behavior

towards the steady-state equilibrium. To do this, simply solve the differential equation (14) and use (13),

to obtain6

(19)

This has a simple economic interpretation. Correcting the discount rate for the capital depreciation rate,

the expression on the RHS of (19) presents the shadow price of abatement capital, which in turn is the

discounted value of the stream of benefits (in terms of reductions in emission tax payments) resulting

from an additional unit of abatement investment at time t.  Along the optimal investment path, this

shadow price should always equal the marginal cost of investment. As Figure 1 shows, when the firm’s

initial abatement stock K  is small, the optimal investment policy starts from a relatively high investment0

rate (I>* K ) and monotonically falls over time until it reaches its steady-state level (I =* K ). The0
*  *

reverse holds for the optimal policy when K  is relatively large. 0

3.  An Increase of Unknown Size in the Future Emissions Tax Rate 

In this section we consider the case where the firm believes that at a known future date, T, the

government will raise the emissions tax rate, but it is uncertain about the exact magnitude of the tax

increase. We, however, begin with the simpler case where the tax rate after the increase is known

beforehand, and then use the result for this case to facilitate the analysis for the case of uncertainty. Let us

suppose that at time T the tax rate will increase from its current level of J  to J  (>J ) and remains at  JL  H L      H

thereafter. The problem facing the firm is

(20)

s.t. (21)

(22)

(23)

From the analysis in the previous section we know that the optimal level of the variable input v
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can be determined by solving a static optimization problem, yielding v = v(K).  For the present problem,

the relevant tax rate for calculating the optimal v is J  for t#T and J  for t>T , and the optimal v isL    H

determined from  and  respectively for t#T and t>T, where, as in (9),

satisfies 

   (24)

and satisfies

   (25)

Comparing (24) with (25) and recalling that hO<0,  we have, for every K,

(26)

which is to be expected since a higher emissions tax rate makes production less profitable and hence

reduces the employment of the variable input. 

To characterize the optimal investment policy, we note that for the period [T,4) the firm needs to

solve the same optimal control problem as in Section 2, but now with = . So, the results of Section 2

carry over here. For the period , we note that in the phase diagram of Figure 1 the  isocline

remains the same as before, but the  isocline changes according to the following proposition: 

Proposition 1: In the (I, K)-plane the  isocline shifts upwards when the emissions tax rate is raised

provided that the increased tax rate satisfies the inequality :

(27)

where  and  are given by

 (28)

(29)

and where  is given by 

(30)
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Proof. See Appendix A

Remark 1. In the special case where production function is of constant elasticity, i.e. h(v)= v  (0<"<1),a

and the emissions-output ratio declines exponentially, i.e.  "(K)="  e  , where " ="(K )>0 , we0        0 0
- b(K - K )

0

obtain

(31)

and

(32)

So that, as long as J  # p(1-a)/" , there exists a unique saddle point equilibrium and an upward shift ofH  0 

the  isocline associated with an increase in the tax rate. 

To provide intuition for condition (27), we recall from the analysis of the previous section that

for a unique saddle-point steady state to exist the (increased) tax rate should not exceed the critical value

of J  . Economic interpretation of is facilitated by examining how, for any given K,  total emission tax*

payment, , varies with the level of the tax rate. We thus have 

(33)

From (9) we also have

(34)

implying that a higher emission tax rate will, ceteris paribus, reduce the demand for the variable input, as

should be expected. Substituting (34) into (33) gives

(35)

According to (35) an increase in the emission tax rate has two opposing effects. On the one hand,

as  the first term on the RHS of (35) indicates, for a given output level, it increases the firm’s emission

tax payment. We may term this positive effect as the marginal tax rate effect.  On the other hand, as the

second term shows, a higher emission tax rate reduces the firm’s profits and thus leads to a reduction in

its output, and hence emissions, level. The consequent reduction in emissions in turn reduces the firm’s

emissions tax payment- of course as long as the tax rate is not raised to so high a level as to render

production unprofitable (i.e., as long as p-J">0 ). We may term this negative effect as the marginal
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      It is remembered that while in the short run too high an emissions tax rate may render some firms7

uncompetative and hence drive them out of the market, in the long run it is passed onto consumers and the
equilibrium will be restored.

production effect (see also Carraro and Soubeyran (1995)). Thus, whether the firm’s emissions tax

payment increases or not depends on which of these two effects dominates. It is noted from the second

term in (35) that, as long as production remains profitable, the negative production effect of a higher tax

rate will be larger the larger is the tax rate.   In fact, it is easy to verify from (35) that emission tax7

payment increases with J as long as , where  is given by (30). For ,  the production

effect dominates and therefore emission tax payment decreases with J. Thus,   is the tax rate at

which the Laffer curve attains  its maximum.

Remark 2. In the special case of Remark 1, when h(v)= v  (0<"<1) and "(K)="  e  , the Laffera
0

- b(K - K )
0

curve function has the following form and properties.   Using (9), the emission tax payment, ', is 

' = J "(K)  v  = J "   e  [a (p - J " )/ w] a      -b(K-K  )        a/1-a
0  0 

from which, and using (34), we obtain 

M' /MJ = " v  [1- J" a/ (1-a)( p- J")]a

and 

M ' /MJ  = - "  a v  [ 2 (1-a) p -" J]/ (1-a)  (p-" J)2  2   2   a       2  2

It is then easy to check that for   we  have  M' /MJ =0 and  M ' /MJ  <0, implying that ú a 0 (0,2  2

1) and any given K = >0, and hence " >0, the Laffer curve attains its maximum, 

' = (1-a) (a /w) p at .  max
2  a/1-a  1/1-a  

It is worth noting that (I) the condition J  # = p(1-a)/" for a tax increase to lead to a larger steady-H

state abatement capital stock, and hence, investment rate is more likely to hold the  smaller is the firm’s

output elasticity, a, and/or the cleaner is the firm initially (i.e. the smaller is " ), for in either case the0

negative production effect of a tax increase will be relatively small; (ii) whereas depends on " , and

hence on K, the value of  '  is independent of K ; (iii) the Laffer curve will be concave throughout if amax

#½, but for a >½ will have an inflection point at J = 2(1-a)/" .   For a = ½ , the Laffer curve is a
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       It is important to note that changes with K. So, while initially , it may very well be the case8

that at a later point in time  so that then the tax effect will dominate the production effect. Since this will

have a positive effect on subsequent abatement investments, here nothing defenite can be concluded about the effect
of a higher tax rate on abatement investment.

parabola given by ' = "(pJ-"J )/2w, with = p/2" and  '  = p /8w .  Figure 2 depicts the Laffer2        2
max

curve in the special case for various values of a and the parameter 

values of p=1.5 , w=1, and "=0.75    .

Figure 2. The Laffer curve for different values of  a in the special case

In (33) - (35) capital stock is held constant. When the tax rate increases from  to , and

, the total emission tax payment goes up. This in turn raises the pay off from pollution  abatement

and hence gives the firm more incentive to invest in abatement capital stock, thus Proposition 1.  On the

other hand, if

 and J

increases from

 to , then

the production

effect dominates

for this level of

K . In this case,

the firm reduces

production to

such an extent

that the emission tax payment decreases too. This, of course, has a negative effect on abatement

investment.   If , then whether the emission tax payment increases or decreases depends8
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       It should be noted that in general the regulator’s optimal tax rate differes from (and most likely exceeds)9

.

on the shape of the Laffer curve and the size of the tax rate increase.  9

Interestingly, from (35) it is seen that generally the negative production effect of a higher

emissions tax always dominates when the production function h(v) is almost linear, i.e. when hO(v) is

close to zero in magnitude (see also (31) where in the special case 60 as a61).  In such cases, output is

sufficiently elastic so that, faced with a higher emissions tax rate, the firm finds it more profitable to

reduce emissions by reducing output rather than investing in abatement capital. The reverse is true when

output is very inelastic (i.e. the marginal productivity of the variable input is very low, hN(v)60, or, for the

special case, a60).  This theoretical insight has a valuable implication for the design of environmental

policy. Namely, when the primary goal of environmental policy is to encourage firms to invest in

pollution abatement capital, then raising the emission tax rate to achieve this is, ceteris paribus, more

likely to succeed if firms’ output elasticity is low and/or the tax rate is not raised to an unduly high level.

On the other hand, if the output elasticity is large and the government is particularly concerned about the

level of employment, and hence production, and at the same time is under pressure from environmentalist

groups to control pollution, then combining a relatively small pollution tax rate with a subsidy on

abatement investment may be a more desirable policy than resorting to a large increase in emission tax

rate.

From Proposition 1 we conclude that the  isocline shifts upwards under condition (27).

Consequently, for T sufficiently large, the optimal trajectory starts out  near the saddle point path for the

case where . After a while it deviates from this path because it is known that at time t=T

the higher tax rate  becomes effective. Therefore, the firm will invest more in abatement capital than it

would when . At time T, the optimal trajectory passes into the saddle point path for the

case where . For a small initial value of K, the optimal trajectory is depicted in Figure

3.a.
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Figure 3.a.

Optimal

trajectory when

K is small and0 

the emissions tax

rate satisfies

condition (27)

It is

important to

note that the

shape of the

optimal trajectory, and hence of the time path of optimal investment, depends on the initial value of

abatement capital stock. For example, for a sufficiently large K  (>K )  it starts on the lower saddle point0
*  ,

path corresponding to J , with K decreasing initially and then increasing as T becomes nearer. Again, atL 

time T, the trajectory will pass into the higher saddle point path corresponding to J  . The time paths ofH

optimal investment corresponding to different values of K   are presented in Figure 3.b.0

Figure 3.b. The time paths

of optimal investment for

different values of K0

Analogous to

the case analyzed in

section 2, the

investment optimality

condition that the

marginal cost of

investment should equal

the shadow price of abatement investment, is: for t#T,
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(36)

and for t>T,

(37)

Two points can be seen immediately from equation (36). First, in determining its current

investment rate, the firm already takes into account the future increase in the tax rate (i.e., it adjusts its

shadow price of abatement capital) even though the tax rate will remain at its low level until time T.

Second, the optimal trajectory approaches the saddle point path of the high tax rate as time T draws

nearer. This implies that the sooner the emissions tax rate is increased (i.e. the smaller is T), the higher

will be the shadow price of abatement capital, and therefore the greater will be the optimal abatement

investment rates at any time before T. In other words, a quicker emissions tax increase shifts up the time

path of abatement investment before time T.  

Bearing this analysis in mind, let us now examine the situation where the firm knows that the

current low tax rate J will be raised at time T, but does not know precisely by how much. We assume thatL 

the only information that the firm has about the size of the increase, u, is that it is uniformly distributed

over the interval (0 , 2 (J  - J  )), so that H  L

(38)

which implies that

(39)

Since we assume that the firm's objective is to maximize the present value of its cash flow, then

after time T the firm's optimal investment policy will be the same as in the case where J   is knownH

because in determining its investment rate it takes into account that the expected tax rate after time T is

also J .  At time T, the actual new tax rate becomes known to the firm. So, the effect of uncertainty on theH

firm’s abatement investment path depends on whether the actual new tax rate is higher or lower than the

firm’s expected rate, J  . If the actual new tax rate exceeds J  , then, still under the assumption that theH         H

new tax rate satisfies (27), the firm will react with an upward jump in the optimal investment path. This
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       This problem resembles those of optimal saving under uncertain lifetime (Yaari(1965)) and optimal resource10

extraction in presence of uncertainty about the date of discovery of a backstop substitute (Dasguptal and Heal
(1974)), or of expropriation of an open-ended foreign concession (Heal (1975)), or of a resource embargo (Farzin
(1982)). 

jump is from the saddle point path for E(J(t)) =J  to the saddle point path corresponding to the higherH

actual new tax rate, and is upward due to Proposition 1.  In this case, for all t>T , the optimal investment

rate will be higher than when the firm knows with certainty that the future tax rate is going to be J . TheH

economic intuition is simple: since the emissions tax rate turns out to be higher than initially expected, so

does the pay offs from pollution reductions, and therefore the incentive for the firm to adjust the time path

of its abatement investment upwards. The opposite will be the case if the actual new tax rate turns out to

be lower than the firm’s expected rate. In that case, for t>T, the firm adjusts its abatement investment

rates downward. Figure 4 presents the optimal trajectories for these cases, where J  denotes the actuala
H

new tax rate and J  is the firm’s expected new tax rate. H

Figure 4. Comparison of the optimal trajectories when J  is certain and when it is not H

4.  Unknown

Timing of

the Tax

Increase

In this

section we

analyze the

case where the

firm knows

with certainty

that the emissions tax rate will be increased from J  to J but does not know beforehand the precise timeL  H,  

T at which this will occur.   Again, v and I are the firm’s choice variables. As in the previous section, the10

optimal choice of v depends only on the current tax rate; so, it is given by (24) and (25) respectively

before and after the tax increase.

In determining its optimal path of I, the firm takes into account that while currently the low

emissions tax rate, J  is in force, there is a positive probability that at any future date this rate willL, 

increase to J , thereby increasing the pay off from abatement investments. To see how the firm shouldH

optimally adjust its investment decisions for the timing uncertainty, let generally T(T) be the firm’s
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subjective probability density function of the random date, T0(0, 4), when the tax increase will be

enacted. Let also PVB(T) denote the present value of the cash flow when the tax increase occurs at a date

T, i.e.

(40)

where and are the cash flows before and after the tax  increase, i.e.  

(41.a)

(41.b)

Then, the expected present value of profits is 

(42)

Defining by the probability that the tax increase occurs after a date t0[0, 4), we have

T(t) =  - . Using this and integrating by parts, we can rewrite (42) as 

(43)

So, as long as the tax increase remains uncertain, the firm’s problem will be to choose the

abatement investment path, I, to 

(44)
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The current-value Hamiltonian of (44) is 

giving  the necessary optimality conditions

(45.a)

(45.b)

It is important to note that the investment policy characterized by (45.a) and (45.b) is a

conditional optimal policy, conditional upon the tax increase not having been yet effected.  Denoting by

K (t) the optimal steady-state abatement capital stock conditional upon the tax increase not having beenu
*

enacted before a date t0[0, 4), we can set and use  (45.a), (45.b) and (8) to obtain K (t)u
*

from  

(46)

Also, solving (45.b) for 8 , using the transversality condition and (45.a), givesu

(47)

This gives the optimal investment policy which is to be followed as long as the timing of the tax

increase remains uncertain, i.e. until the date when the emission tax is raised. Notice that the uncertainty

about the timing of the tax increase calls for the shadow price of the abatement capital to be appropriately

adjusted from its value in the certainty case. Specifically, it requires that the tax savings flow under full

certainty case be replaced by the expected flow presented by the bracketed term on the RHS of (47),

where here the probability weights are respectively , the probability that the tax increase

does not occur before t, and 1-S(t), the probability that it does. 

We are now in a position to state the following Lemma.

Lemma: If J  satisfies condition (27), then for any time interval [0,t) during which the tax increaseH

remains uncertain, the optimal abatement stock just before the higher tax rate becomes effective (i.e.,
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) increases with t and asymptotically approaches the steady-state

level which would prevail under the certainty case with J=J  . Correspondingly, the optimalH

abatement investment rate at that time ( i.e., ) also increases with t and

asymptotically approaches the steady-state rate of  the certainty case. 

Proof.  See Appendix B

The economic interpretation of the Lemma is straightforward. The case where the tax rate is

known to remain constant at the low rate, J  corresponds to the extreme situation where S(t)=1 for allL,

t0[0, 4) , i.e., when it is certain that a tax increase never occurs in future. In this case, (46) reduces to

(18) with J =J  and the corresponding steady-state abatement stock of K . Similarly, the case where theL        L
*

tax rate is known to remain constant at the high rate, J , corresponds to S(t)=0 for all t0[0, 4), and theH

corresponding steady-state abatement stock, K , is the solution to (18) for J =J ,, where K >K  .  WeH         H   H  L
*           * *

also noted previously that when the timing of the tax increase, T, is known with certainty, the steady-state

abatement stock makes rises from K  to K . In the present situation, however, there is a probability of 1-L   H
*  *

S(t)>0 that before any time t the tax rate will be raised to J , and hence that the future payoff fromH

abatement investment will be higher. So, depending on its belief about this probability, the firm optimally

adjusts its investment policy during the period [0, t) so that by the end of the uncertainty period, i.e., just

before the tax rate is actually increased, the optimal abatement capital stock, K (t),  will have reached au
*

level between K  and K . Since the probability of the tax increase rises with t, it is then clear that theL   H
*  *

optimal abatement stock at the end of uncertainty period will be larger the greater is t. 

 It is important to note that along the optimal policy, the conditional steady-state K (t) mayu
*

never realize because the tax  increase may occur before K (t) is reached. An immediate implication ofu
*

the Lemma is that

Corollary: When J   satisfies condition (27), then the optimal abatement investment path associatedH

with an uncertainty period (0,t) will be higher the larger is the value of  t, (i.e. the longer is the period

of uncertainty).

Proof:  See Appendix C.

We can also use the Lemma, to characterizes the behavior of the optimal abatement investment
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path at the moment of the tax increase and thereafter when J  becomes effective.H

Proposition 2: Provided that J   satisfies condition (27), at the time when the tax rate is increased, theH

optimal abatement investment path jumps upward to the optimal saddle point path associated with the

high tax rate J  , and then asymptotically approaches the steady-state level .H

Proof.   See Appendix D.

We can now completely characterize the optimal investment strategy. During the period of

uncertainty, i.e. before the higher tax rate becomes effective, the optimal investment path is governed by

equation (47). Then, at the moment of the tax increase, it jumps up to the saddle-point path for in the full

certainty case, and thereafter it follows that path (governed by equation (37)) towards its steady-state

level. Figure 5 displays the optimal trajectory when T is uncertain and T  > T  > T  are three likely3  2   1

realization of it.  

Figure 5. Optimal trajectory when T is uncertain and K  is smalli    0

  

Several points

about the optimal

investment strategy

deserve emphasizing.

First, as long as the

higher tax rate has not

become effective, the

increasing conditional

probability of its occurrence motivates the firm to raise its abatement investment rates over time and

above the rates that would otherwise prevail. Second, whereas in the case when the timing of the tax
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      In models where there is no uncertainty about the timing of environmental regulation, the convexity of11

investment adjustment cost would normally preclude a discontinuous jump in the optimal investment path (see, e.g.,
Xepapadeas (1992)).

increase is known with certainty, the optimal investment path rises smoothly to the saddle point path

associated with J  , in the present case it makes a discontinuous jump to the saddle point path at theH

moment of the tax increase. The reason for this difference is that, contrary to the certainty case, here the

firm is unable to perfectly anticipate the date of the tax increase and consequently fails to adjust its

abatement investment path so that its investment level reaches that of the J -saddle point path exactly atH

the time when the tax increase occurs.   Of course, the timing uncertainty imposes a sudden increase in11

the firm’s investment adjustment cost.  And, by the Corollary and convexity of the adjustment cost, this

increase in the adjustment cost will be larger if the tax increase occurs sooner. In determining its optimal

investment strategy, and based on its calculation of the conditional probability of the tax increase at any

future date, the firm optimally balances this adjustment cost increase against a larger present value of

payoffs (reduced pollution tax payments) associated with higher abatement investment rates which are

undertaken sooner. Stated differently, the firm optimally trades off the lower conditional probability of

the tax increase against the larger present shadow price of abatement capital. Thus, the sooner the likely

tax increase occurs the larger is the investment adjustment at the time of the tax increase.

An interesting question is: Does there exist a certainty-equivalent discount rate that the firm can

use to evaluate the shadow price of its abatement investment and then disregard the uncertainty in its

future payoffs stream stemming from the uncertainty about the time of the tax increase? And if not, in

what direction would such an erroneous practice bias the abatement investment path? The following

proposition provides insight into these questions.

Proposition 3: There exists no certainty-equivalent discount rate for the problem of uncertain date of

tax increase, and raising the discount rate in leu of accounting for the uncertainty explicitly leads to

underinvestment in abatement capital, where, all else being equal, the magnitude of the bias will

increase (decrease) with the size of the future tax rate,J ,depending on whether .H 

Proof.  See Appendix E.

The nonexistence of a certainty-equivalent discount rate in the present case is in accord with the

well known result in the public economics literature. The underivestment bias arises because raising the

discount rate to account for the risk of a future tax increase not only places particularly heavy penalties on

the abatement investment payoffs in the distant future, here it also ignores the possibility that a higher

emission tax rate increases the investment payoffs if . It is then intuitively clear why the
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magnitude of the bias increases with J  as long as  but diminishes with it when . In theH

former case, a higher future tax rate raises the payoffs from abatement investment, thus warranting higher

optimal investment rates, whereas it lowers the payoffs in the latter case, thereby implying optimal

investment rates that would be lower than those for the case of full certainty with J= J  and the discountL

rate of (r+*).  A policy implication of Proposition is that where the erroneous practice of raising the

discount rate to handle future risk is common among firms and where the regulator wishes to encourage

pollution abatement, then subsidizing the cost of abatement capital to correct for the firm’s

undervaluation of the shadow price of abatement investment may be a justified second-best policy.

Another question of interest is: When the regulator cannot credibly commit to a certain date for

the tax increase, how would a threat of imposing the higher tax rate sooner affect the firm’s investment

strategy? It is plausible to suppose that any such credible threat would be reflected in a revision of the

firm’s probability density distribution (i.e., a leftward shift in T(s)) such that greater probabilities are

attached to the occurrence of the tax increase in earlier periods. More precisely, we can define a larger

threat of facing the higher tax rate at time t as an increase in the conditional probability of the tax

increase occurring at any date during [0, t) given that it has not occurred before. The revision in the firm’s

probability density distribution, and hence the implied increase in the conditional probability of the tax

increase, may be caused, for example, by observation of increased pressure from environmental lobbyists

to speed up the legislation of tougher environmental regulations. Or, it may be indicated, for example, by

the urgency felt by the government to raise more revenue through higher emissions tax rates. Whatever

the reason underlying the firm’s revision of its probability density function, the following proposition

shows the effect on its abatement investment decision.

Proposition 4: As long as the timing of the tax increase remains uncertain, a larger threat of imposing

the higher tax rate at time t, as indicated by a higher conditional probability of the tax increase

occurring at any date during [0, t) given that it has not occurred before, will lead to higher abatement

investment rates and hence larger abatement capital stocks. 

Proof.  As in the proof of Proposition 3 (see Appendix E), we have .  So, for any s0[0,

t), an increase in R(s) reduces S(t). Next, noting that J h(v(K)) is increasing in J for a given K, it follows

from (47) that  M8 /MS(t) <0 and hence  MI(t)/MS(t) <0 for all t, and from (46) that u

MK * /MS(t) <0  for all t. 2u

Figure 6 portrays the optimal investment trajectories for three different conditional probability
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distributions, R , R , and R , representing respectively increasing degrees of threat of a future tax1  2   3

increase.

Figure 6. Optimal

trajectories for

different degrees of

the threat of the tax

increase 

A policy

implication of

Proposition 4 is

that when, for whatever reason, the regulator can not credibly commit to a specific implementation date,

one way to motivate polluters to increase their abatement investments would be to take measures that

firms would perceive as a credible threat of an accelerated tax increase . 

Remark 3: In the special case where T(t) is a Poisson distribution, i.e. T(t) = µ e  , then S(t)=e , and-µ t    -µ t

the conditional probability will be constant , R(t) = µ. For this special case matters become simpler in

that (i) in proposition 3, the adjusted discount rate will take the simple form of raising the discount rate r

by a constant amount, equal to µ, so that it becomes (r+µ); (ii) in Proposition 4, a threat of accelerating

the date of the tax increase will correspond to a larger value for µ and hence a pivoting of the Poisson

distribution so that T(t) will be larger for all t0 [0, 1/µ].

5.  Conclusion

One of the main reasons why economists have often favored the taxation of emissions as a

pollution control instrument has been the argument that emissions taxes encourage firms to invest in more
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efficient pollution abating technologies. In this paper, we have subjected this argument to a close scrutiny,

taking explicitly into account that in the real world firms face uncertainties about the  timing and size of a

pollution tax increase. In a simple dynamic model where a risk neutral competitive firm can reduce its

emissions per unit of output by building up its stock of abatement capital, we first showed that under full

certainty, a higher tax rate can encourage abatement investment only if it does not exceed a certain

threshold level. In our model, this “Laffer-curve” effect derives from two opposing effects of a higher

pollution tax: a positive marginal tax effect and a negative marginal production effect. Only if the tax rate

is not raised above a threshold level will the former effect dominate.

Subject to this condition, we have shown that when the time of the tax  increase is certain but its

magnitude is not, the expectation of a higher tax rate motivates the firm to increase its abatement

investment rates at all times before the date of the tax increase. But at the time of the tax increase, the

investment path can shift upward or downward depending on whether the actual tax rate is higher or

lower than the firm’s expected rate. In the opposite case where the time of the tax increase is uncertain,

we have shown that, again, subject to the threshold tax rate, the expectation of the higher tax rate at some

future date gives the firm an incentive to boost its abatement investment rates.But, in that case the

uncertainty causes an unanticipated jump in abatement investment at the time of the tax increase.  More

interestingly perhaps, we have shown that a credible threat to accelerate the tax increase can further boost

the firm’s abatement investment. A further result of the paper has been to show the nonexistence of a

certainty-equivalent discount rate and the direction and size of error resulting from raising the discount

rate to account for the uncertainty in the timing of a future tax increase. 

Although the theoretical insights obtained in the present paper may apply more generally to

situations in which the timing or the extent of a policy reform (or regulation) is uncertain, the model we

have analyzed has several limitations. We have assumed that the probability of the tax increase,

conditional on its not having occurred previously, rises with time and eventually approaches unity.

Alternatively, it would be plausible to suppose that if the tax increase has not occurred after the lapse of a

certain time interval, then the firm may develop a disbelief about the threat of the tax increase and

therefore lower its conditional probability of it occurring later on (as, for example, when the firm’s

probability density function is log normal).  It would then be interesting to examine how the firm’s

optimal abatement investment strategy may change under such a situation. 

We have also assumed that the size of the tax increase is given exogenously to the firm. A more

sophisticated model would allow polluting firms to invest in a lobbying process which may lead to a

smaller tax increase than would otherwise be mandated. A question that then arises is whether such an

endogenized emissions tax would undermine the incentive to invest in pollution abatement capital.

Finally, it is sometimes argued that investing in abatement capital can render beneficial spillover effects
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in the form of increased productivity of other inputs used in production processes (e.g., Porter (1995).  It

could be insightful to see how the results of the present paper would be affected in an extended model that

incorporates such externalities. 
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Appendix

Appendix A: Proof of Proposition 1 

On the  isocline it holds that (cf. equation (15))

(A.1)

Keeping I constant in (A.1) and differentiating the right-hand side of (A.1) totally, gives

(A.2)

Let us first examine

(A.3)

Substituting (10) into (A.3) gives

(A.4)

Furthermore, from (9) we obtain

(A.5)

Substitution of (A.4) and (A.5) into (A.2) ultimately leads to

(A.6)

From (28)- (30) we now obtain  if  , implying in turn that the  isocline

shifts upwards when the emissions tax increases.

Appendix B: Proof of  the Lemma

 Let  and denote the steady-state levels of the abatement stock and

investment respectively.   Since S(t)60, and hence 1-S(t)61, as t64, it follows from (45.a) and (45.b)

that 

(B.1) 
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which in turn implies that ,  and .  

Further, from (18), the steady-state abatement stock in the full certainty case with J=J   is H

(B.2)

Comparing (B.1) with (B.2) and recalling from (A.4) that - "N(K) h(v(K) is decreasing in K for J  <J , itH
*

follows that  and .Next, we show that K (t) increases with t monotonically.u
*

Differentiating () with respect to t yields, 

Recalling that , "N<0, and noting that for one has (see also (29)

and (30)), it then follows from condition (27) that the numerator is positive. Further, for one

has from (A.4) that , implying, together with CO>0 and condition (27), that the

denominator is also positive, and hence, . Recalling that along the isocline I (t)=*u
*

K (t), it follows that . 2u
*

Appendix C: Proof of Corollary

Since, by the Lemma, K (t) increases with t, and the isocline (I (t)=* K (t)) is upward sloping, itu       u  u
*       *  *

must be that (I (t), K (t)), the intersection point of the two isoclines, rises with t. So, to show that theu  u
*  *

optimal investment path shifts up with t, it suffices to show that the  isocline is monotonic, or, more

specifically, that . Now, using (45.a) and (45.b), the  isocline for this uncertainty case
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t
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is given by

(C.1)

Differentiating (C.1) with respect to K , we obtain 

(C.2)

where time subscripts are omitted for notational ease . Recalling from (A.4) that for J <J*,

, and that CO>0, it follows that . 2

 Appendix D: Proof of Proposition 2

Let T0(0, 4) be the  time at which the tax rate is raised to J ,. Then from (37) we have H

(D.1)

Also, from (47) we have 

     (D.2)

Writing the bracketed term in the integrand of (D.2) as

, recalling that for the function that

J h(v (K)) is increasing in J, and that "N(K)<0, it follows,, by comparing (D.1) and (D.2), thatJ 

> . Since CO(I)>0 , it then follows that and >   2

Appendix E: Proof of Proposition 3

Writing R(t)/T(t)/S(t) for the conditional probability of the tax being increased at t, we have

, which gives . Substituting this in (47) and denoting by I (t)u

the optimal investment during the uncertainty period, we get
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ĪJL
(t)

m
t

0

R(s)ds

C )(ĪJL
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(E.1)

Next, denote by the investment path when the firm continues to operate under the

certainty case with J =J  but accounts for the risk of a future tax increase by raising the discount rate byL

an amount equal to . From  (19) we then have 

(E.2)

Subtracting (E.2) from  (E.1) and simplifying yields 

   (E.3)

which, upon recalling "N(K)<0 and CO>0, implies that during the uncertainty period. 

Finally, using (A.5), it is readily verified that 

 (E.4) 

which together with (E.3) implies that  .  2
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