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Chapter 1

Coalition Formation and Game
Theory

1.1 Coalition formation

Coalition formation is a very frequent activity in everyday life. Firms merge, states
sign treaties, authors write papers together and parties form governments. All these
situations are characterized by the profitability of cooperation together with the conflict
over which coalitions should form and how the gains from cooperation should be divided.
The questions of which coalitions will form and how the gains from cooperation will be
divided have received attention since the beginning of game theory, but a widely accepted
answer has not been provided yet. This thesis attempts to contribute to our understanding
of the problem.

Consider the following situation. Alice, Bob and Chris (to whom we will refer as the
players) work in a small university. Alice is a macroeconomist, Bob is a microeconomist
and Chris is a computer programmer. Alice and Chris can write a book on macroe-
conomics (Alice would do the theory and Chris would do some simulations); Bob and
Chris can write a book on microeconomics (Bob would do the theory and Chris would
program some experiments); Alice and Bob can write a book on macroeconomics with
microfoundations. The first book is expected to produce a revenue of 60, the second book
is expected to produce a revenue of 80 and the third book is expected to produce a revenue
of 40. Each individual has time to work on only one book.

Which coalition will form? All three coalitions are profitable, but players have time
to participate in one coalition only, thus participating in a coalition has an opportunity

1



2 1. Coalition Formation and Game Theory

cost. There is a conflict over which coalition should form (no individual wants to be left
out). Furthermore, even if two individuals agree on forming a coalition, each of them
would want to get as much as possible.

The solution to this problem seems easy if we assume that coauthors divide revenues
equally. Alice and Chris would get 30 each from the first book, Bob and Chris would get
40 each from the second one, and Alice and Bob would get 20 each from the third one.
One should then expect that Bob and Chris would form a coalition, since each of them
prefers this alternative to forming a coalition with Alice.

Alice | Bob | Chris
Alice-Chris | 30 - 30
Bob-Chris - 40 40
Alice-Bob 20 20 -

Table 1.1: Equal Payoff Division in Coalitions

If we look at the above situation more closely, however, we see that the assumption
that coalition payoffs will be split equally is problematic. After all, Chris is the most
valuable player (coalitions including her earn a higher per capita revenue). Why should
she be ready to accept only half of the revenue?

Indeed, while Bob and Chris are considering forming a coalition and splitting the
revenues equally, Alice can approach Chris and offer her 41. Then Bob is left out and
may offer her 42, and so on. How high can these offers get? Suppose Alice and Bob each
offer 55 to Chris. If Chris accepts Bob’s offer, Bob gets 25. If Chris accepts Alice’s offer,
Alice gets 5. It is then better for Bob and Alice to form a coalition themselves and get,
for example, 30 and 10. Hence, it seems that the competition between Alice and Bob will
not drive the offers to Chris up to 55.

The reader can check that, whatever coalition and payoff division we start with, two
of the players could form another coalition with a payoff division that makes them both
better-off. In the language of game theory, the core of the game is empty.

Does this mean that we cannot make any prediction about the outcome of this sit-
uation? Is any proposed payoff division equally unstable? Suppose that Alice demands
10 for her participation in a coalition, Bob demands 30 and Chris demands 50. These
payoffs have the property that players are indifferent among possible coauthors. If Alice
demands more, none will want to form a coalition with her. If she demands less, the other
two players will want to form a coalition with her, and competition between them will
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drive Alice’s payoff up to 10. The values 10, 30 and 50 have the property that competition
between the players to be in a coalition tends to drive the payoff demands towards them.
In the language of game theory, these values are the quotas of the players.

If we accept the quotas as reasonable payoff demands, the question of which coalition
will form is left undetermined. Even though players have very different strengths, each
makes as good a coalition partner as anybody else.

The assumption of equal payoff division leads to the conclusion that Bob and Chris
will form a coalition; on the other hand, assuming competition allows us to predict the
” competitive” payoff division within each coalition if it forms, but it leaves the question
of which coalition will form unanswered.

Let us now come back to the starting point of this reasoning. Suppose the coalition
between Bob and Chris has been proposed with a payoff division of 40 for each. Should
Chris argue that she is more valuable than Bob and therefore she should get more or
should she be ”generous” and accept the equal payoff division? Is it better to get 40 for
sure or to get 50 only if one manages to get into a coalition? Notice also that a division
of (40,40) is very safe for Chris, since Alice cannot profit from trying to lure Bob into a
coalition with her. Non-competitive behavior in order to heighten one’s chance of getting
in a coalition is frequent in real life and has also been observed in experiments.

1.2 Game theory

This thesis attempts to give a prediction for situations like the one described above using
game theory. Game theory is a set of analytical tools designed to help us understand
the phenomena we observe when decision-makers interact (see Osborne and Rubinstein
(1994)); coalition formation is one of those phenomena. The basic assumptions that
underlie the theory are that decision makers pursue well-defined objectives (they are
rational) and take into account their knowledge of the rationality of others and form
expectations of other decision makers’ behavior accordingly (they reason strategically).
Game theory is often divided into two different branches, called cooperative game
theory and noncooperative game theory. Cooperative game theory focuses on the "big
issues” like the payoffs players can achieve together, and not on the concrete strategies
players follow in order to achieve those payoffs; in noncooperative game theory all the
»practical details” of the game, like the exact set of actions available to the agents and
the order of moves, are described in full. Aumann (1997) puts it in the following way
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The noncooperative theory is strategy oriented. It studies what we expect the
players to do in the game.(...) In the cooperative approach we look directly
at the set of outcomes, not the nitty-gritty of how one gets there. The non-
cooperative theory is a kind of micro theory; it involves precise descriptions
of what happens (...). The cooperative approach studies games from a macro
point of view.

The names of cooperative and noncooperative refer to the fact that cooperative game
theory often assumes that players have enforceable contracts available to them, whereas
noncooperative game theory often allows for no enforceable contracts at all. However,
this distinction is not sharp: one can find cooperative models without binding agreements
(e.g. Chwe (1994)) and noncooperative models with the possibility of binding agreements
(we will study some of them in this thesis).

Both approaches have advantages as well as drawbacks. Cooperative games are very
general, since they abstract from many practical details. On the other hand, there are
several solution concepts for cooperative games. Each of them tries to reproduce the ar-
guments players may make in face-to-face communication; it defines a set of arrangements
that are immune to deviations of a certain sort by groups of players. Since there are many
sorts of arguments players may make during negotiations, there are also many cooperative
solution concepts.

Noncooperative game theory tries to pin down those arguments. The rules of the
game severely restrict the type of arguments players can make. There is a widely accepted
solution concept: the Nash equilibrium (Nash (1951)). This solution concept represents an
equilibrium in the sense that each player correctly anticipates what the other players are
going to do and acts rationally on the basis of this anticipation. Other solution concepts
are merely refinements or coarsenings of the basic concept of Nash equilibrium.

Coalition formation has been studied both by cooperative and by noncooperative game
theory. The first game-theoretic analysis of coalition formation, due to von Neumann
and Morgenstern (1944), is cooperative. They point out that players may profit from
coordinating their actions in the play of a noncooperative game. They view the formation
of coalitions as previous to the play of the noncooperative game. In the context of a
noncooperative three-player majority game, where each player has to name another player
uninformed about the choices of the other two players and two players that name each
other win the game, they make the following point.
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Since each player makes his personal move in ignorance of those of the others,
no collaboration of the players can be established during the course of the
play. Two players who wish to collaborate must get together on this subject
before the play, i.e., outside the game.

The formation of coalitions is therefore not the outcome of a procedure with detailed
rules (of a noncooperative model). Instead, the set of coalitions and payoffs that can be
stable is determined by a cooperative solution concept.

Nash (1953), on the other hand, argues that the negotiation process can be modelled
as a noncooperative game.

One makes the players’ steps of negotiation in the cooperative game become
moves in the non-cooperative model. Of course, one cannot represent all possi-
ble bargaining devices as moves in the non-cooperative game. The negotiation
process must be formalized and restricted, but in such a way that each par-
ticipant is still able to utilize all the essential strengths of his position.

If one takes Nash’s approach, the formation of coalitions by players in order to coordi-
nate their moves in a game against other players and the game itself are not substantively
different, but stages of the same process.

The main lesson from the noncooperative approach is that the predictions of nonco-
operative games are very sensitive to ”institutional” details such as the order in which
players move. The cooperative approach does not offer a complete model of how negoti-
ations proceed, and is therefore more general. Indeed, while the number of cooperative
models one can write about the same situation is limited, there are many noncooper-
ative models representing the same situation. While there is a multiplicity of models
in noncooperative game theory, there is a multiplicity of solutions in cooperative game
theory.

Both approaches are complementary and, in my view, none of them is more funda-
mental than the other. While cooperative models focus on the essentials of the problem,
noncooperative models are more explicit in their assumptions, and this makes it easier
to choose between noncooperative models than between cooperative solution concepts.
Because of being more explicit in their detail, noncooperative models may shed light over
cooperative concepts. An example is how the work by Rubinstein (1982) and Binmore et
al. (1986) shed light over when and how to use the Nash bargaining solution.
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1.3 Overview of the thesis

This thesis is about coalition formation. Chapter 1 gives an introduction to the subject.
Chapter 2 contains technical preliminaries and a review of the literature. Part I (compris-
ing chapters 3, 4, 5 and 6) focuses on noncooperative game theory, and part II (chapters
7 and 8) on cooperative game theory.

Chapter 3 studies noncooperative models of coalition formation in games with exter-
nalities. In a game with externalities the formation of a coalition may affect the payoff
of other coalitions. This possibility is present in most practical situations: a merger of
some firms may hurt competitors, a treaty between some states to reduce pollution may
benefit the countries that stayed outside the treaty, and so on. The chapter gives suffi-
cient conditions for the existence of an efficient equilibrium (in the sense of total payoff
maximization). The conclusion of this chapter is that efficiency is difficult to achieve even
though there is perfect information and players can make binding agreements. The chap-
ter also compares the assumptions and results of different noncooperative games. This
chapter is based on Montero (1999b).

Chapter 4 studies the particular case of constant-sum games with externalities, with
special attention to the three-player case. Constant-sum games are special since there are
no aggregate gains from cooperation: the profit of forming a coalition must come at the
expense of the players outside the coalition. For the three-player case, expected payoffs
are fairly robust to changes in the details of the basic extensive form game. Players
are indifferent as to which partner to choose, so that the fact that one player brings a
lot of value to a coalition makes no difference for his desirability as coalition partner in
equilibrium.

Chapter 5 studies a classical economic application: the one-seller-two-buyers situation.
In this situation, a seller can sell an object to one of two buyers. All players know that
one of the buyers is prepared to pay more than the other for the good. The presence of
a second buyer, however, creates competition and may drive the price up. The chapter
focuses on the situation of the second buyer, who brings no value to the game but affects
the distribution of the gains from trade between the other two players; we argue that this
player can exploit his position and obtain a positive payoff. We also show that the one-
seller-two-buyers game is a particular example of the three-person constant-sum games
with externalities in chapter 4. Thus, the game illustrates how externalities can arise in
games that a priori exhibit no external effects. Chapter 5 is based on Montero (1998).

Chapter 6 studies another classical game: the apex game. An apex game is a weighted
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majority game with one major party, called the apex player, and several (at least three)
minor parties, called the base players. The apex player needs only one of the minor players
to form a majority; the only coalition that can obtain a majority without the apex player
is the coalition of all base players. A base player must decide whether to try to cooperate
with the remaining base players or to compete with them for the favor of the apex player.
The results in this chapter are similar to the results in chapter 4. In equilibrium, a
base player is indifferent between forming a coalition with the apex player and forming
a coalition with the other base players. Expected equilibrium payoffs coincide with the
predictions of a cooperative solution concept, the kernel. They are moreover robust to
changes in the rules of the game: if the rules of the game give more power to the apex
player, the minor players join against him more often, so that expected payoffs remain
constant. This chapter is based on Montero (1999a).

Chapter 7 is an overview of some cooperative solution concepts known as bargaining
sets. The idea behind the concept of bargaining set is that, while a given organization of
players into coalitions (a coalition structure) is under consideration and a given proposal
for payoff division is on the table, a player (or a group) who can get a higher payoff
by departing from the proposed coalition structure and forming another coalition may
threaten to do so unless he gets a higher share of the payoffs in the current coalition
structure. This threat however will not be effective if the players who are asked to give
up part of their payoffs can protect their shares by forming a coalition that excludes
the objecting player. A coalition structure is in the bargaining set if any threat (also
called objection) can be deterred by a counterthreat (also called counterobjection). If one
coalition structure can find a payoff division that is stable in the sense of the bargaining
set, and other coalition structure can not, the interpretation is that the bargaining set
predicts that the first coalition structure may form (and if it forms, it will choose a payoff
division belonging to the bargaining set) and the second will not.

There are several bargaining sets, based on different concepts of objection and coun-
terobjection. In order to construct a bargaining set, one has to answer questions like:
Who can object and against whom? Should objections always be directed against some-
body? Can several threats be made at the same time? Who can counterobject? What is
required for a counterobjection to actually deter the objection? Chapter 7 discusses these
questions with the help of examples.

Finally, chapter 8 is devoted to a new bargaining set, called the stable demand set
(SDS), introduced by Morelli (1998). This bargaining set is based on the idea that a
proposed outcome can be viewed as a pair formed by a coalition structure and a demand
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vector. This demand vector is not necessarily realized in the coalition structure: in our
introductory example, a proposed outcome could be Alice forming a coalition with Bob
together with the demand vector (20, 20,50). Only Alice and Bob would get their demands
if this proposal is executed; Chris does not get any payoff but it is understood that she
charges a price of 50 from participating in a coalition. Consider the following threat: Bob
and Chris may threaten to depart from this proposal by forming a coalition and getting
40 each. This is beneficial for Bob, and also for Chris since by ”lowering her demand to
40” she would get 40 rather than 0. Given this objection, a counterobjection has to show
that the original demand vector is stable: in this example, Alice would have to prove
that the demand vector is stable by forming a coalition with Chris in which both of them
receive their original demands. This is not possible since the coalition of Alice and Chris
is only worth 60 and their demands add up to 70. The demand vector we put forward in
the introduction, (10, 30, 50), is the only stable demand vector.

Chapter 8 discusses the properties of the stable demand set and its relation with other
bargaining sets. It also contains a characterization of the SDS for constant-sum weighted
majority games (these are majority games with the property that, for any distribution
of the players into two coalitions, one of the two coalitions has a majority, thus ties are
not possible). We argue that the SDS makes sharp and reasonable predictions for some
games, though at the price of being empty for others. This chapter is based on Morelli
and Montero (2000).



Chapter 2
Preliminaries

This chapter includes some basic definitions and a review of the literature on games with
externalities. The definitions are taken from Mas-Colell, Whinston and Green (1995),
Myerson (1991), and Osborne and Rubinstein (1994). Some of the definitions are only
informal; the reader is referred to these textbooks for more details.

2.1 Preferences and utility

Consider a set of alternatives X. A preference relation = is a binary relation on the set
of alternatives X, allowing the pairwise comparison of alternatives in X. Given z, y € X,
T > y means that z is at least as good as y. We can derive from a preference relation 3=
the corresponding strict preference relation > (z > y < z %= y and not y = z) and the
corresponding indifference relation ~ (z ~y <= z = y and y > z).

Game theory assumes that players have rational preferences. A preference relation is
rational if it possesses the following two properties: completeness (for all z,y € X, we
have z = y or y = z) and transitivity (for all z, y, 2 € X, x %= y and y = 2z implies = = 2).

Rational preferences can be represented by utility functions. A function u: X — R is
a utility function representing preference relation 3= if, for all z,y € X, z = y <= u(z) >
u(y).

Game theory also assumes that alternatives with uncertain outcomes are describable
by means of (objective or subjective) probabilities defined on a set of outcomes C' (assumed
finite for simplicity). These representations of risky alternatives are called lotteries. A
simple lottery is a list L = (py,...,pn) with p, > 0 for all n and Y, p, = 1, where
Pn is interpreted as the probability of outcome n occurring. Compound lotteries are

9
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lotteries whose outcomes are themselves lotteries. Given a compound lottery, individuals
are assumed to care only about the probability of each outcome, so that it is enough to
define preferences over simple lotteries. Preferences over lotteries are also assumed to be
continuous (small changes in the probabilities do not change the ordering between two
lotteries) and to satisfy the independence aziom (if a simple lottery L is preferred to a
simple lottery L', then the compound lottery that assigns probability « to lottery L and
probability 1 — « to lottery L” is preferred to the lottery that assigns probability a to L’
and 1 — a to L”).

If the preferences over lotteries satisfy the continuity and independence axioms, then
these preferences admit a utility representation of the expected utility form.

Definition 2.1 A utility function over lotteries U has an expected utility form if there
is an assignment of numbers (u,...,uyn) to the N outcomes such that for every lottery

L= (p,....,pn) we have U(L) = 3 pptin.

A utility function with the expected utility form is called a von Neumann-Morgenstern
utility function. The von Neumann-Morgenstern utility function is a cardinal utility, that
is, it is unique up to affine transformations.

The theory can be extended to an infinite set of outcomes. We will be interested in
the case of outcomes being real numbers; real numbers will be interpreted as amounts of
money or other perfectly divisible commodity. In this framework, a lottery is a distribution
function F'(-) over the set of outcomes. The utility of a lottery can be evaluated by a
utility function U of the form U(F) = [ u(z)dF(z).

When the outcomes are real numbers, one can formalize the notion of attitude towards
risk. A decision maker is risk-averse if for any lottery F(-), the degenerate lottery that
yields the amount [ zdF(z) for sure is at least as good as the lottery F'(-) itself. A decision
maker that has the opposite preferences is called risk-loving. If the decision maker is
indifferent between these two lotteries for any F'(-), we say that he is risk-neutral.

The concept of expected utility as a descriptive concept has been severely criticized
and alternative theories have been proposed. However, the elegance and the analytical
power of the concept of expected utility make it pervasive in game theory.
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2.2 Noncooperative game theory

A game is a formal representation of a situation of interactive decision making. The
results of the actions of one individual depend also on the actions of other individuals,
and the actions that are best for him to take may depend on what the others do.

2.2.1 Extensive form games and normal form games

To describe a noncooperative game, we need four elements: the players, the rules (who
moves when? what do they know when they move? what can they do?), the outcomes
(given each possible set of actions taken by the players, what is the outcome?) and the
payoffs (what are the players’ preferences over the possible outcomes?).

The extensive form representation of a game includes all the aspects above. We focus
on games with perfect information, that is, games in which each player, when making
a decision, is informed of all events that have previously occurred. Since extensive form
games will play a central role in Part I, we provide a formal definition, taken from Osborne
and Rubinstein (1994).

Definition 2.2 An extensive form game with perfect information has the following

components:
e Aset N ={1,...,n} of players

e A set H of sequences (finite or infinite) that satisfies the following three properties.

— The empty sequence @ is a member of H.
— If (@*)k=1.. .k € H (K may be infinite) and L < K then (a*)i_,, ., € H.
— If an infinite sequence (a¥)§2 , satisfies (a¥)x=1,.. € H for every positive integer

L then (a*), € H.

Each member of H is a history; each component of a history is an action taken

by a player. A history (a¥)—1. .k is terminal if it is infinite or if there is no a**!

such that (a¥)k=1, _x x+1 € H. The set of terminal histories is denoted Z.
e A function P that assigns to each nonterminal history a member of N.

e For each player i € N a preference relation on lotteries over Z.
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After any nonterminal history h, player P(h) chooses an action from the set A(h) =
{a : (h,a) € H}. A player may choose an action with certainty, or randomize between
several actions.

The definition above can be extended to include exogenous uncertainty by adding ¢
(chance or Nature) as a "player” of the game. The function P can then assign Nature
to a nonterminal history. For any h such that P(h) = ¢, the rules of the game specify a
probability measure f.(-|h) ((fc(alh) is the probability that a occurs after the history h).

The definition can also be extended to allow for simultaneous moves, by making P a
set-valued function. Each player in P(h) chooses an action from the set A;(h) without
knowing the actions chosen by other players in P(h); H and P jointly satisfy the condition
that for every nonterminal history & there is a collection {A;(h)}icpn) of sets for which
A(h) = {a: (h,a) € H} = Xiepn)Ai(h).

The normal form representation of a game is a condensed version of the extensive form.
It is based on the notion of a player’s strategy. A strategy is a complete contingent plan,
or decision rule, that specifies how the player will act in every possible distinguishable
circumstance (at each history) in which he may be called upon to move. The set of pure
(not randomized) strategies for player i will be denoted by S;.

Given a strategy combination, the (possibly random) outcome of the game is deter-
mined, thus players can associate an expected payoff to each strategy combination.

Randomized strategies are called mized strategies. The set of all mixed strategies is
denoted by AS;, with generic element o. Formally, a mixed strategy is a probability
measure over the set of pure strategies. For the class of extensive form games we study,
there are two equivalent ways of describing mixed strategies: either players randomize at
the beginning of the game (mixed strategies in the proper sense), or players randomize at
every history in which they have the move (behavior strategies).

Definition 2.3 The normal form representation of a game can be denoted by I' =
[N,{AS;},{Ui}], where N = {1,..,n} is the set of players, AS; is the set of strategies
for player ¢ and U;(sy, ..., s,) gives the expected utility levels associated with the lottery
arising from strategies (s, ..., 8,,).

A fundamental postulate of game theory is that all players know the structure of the
game, know that the other players know it, know that the other players know that they
know it, and so on. This postulate is known as common knowledge.
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2.2.2 Nash equilibrium

We define the concept of Nash (1951) equilibrium for the normal form of a game.

Definition 2.4 Given a normal form game I' = [N, {AS;}, {w;}], a Nash equilibrium
is a strategy profile o* such that for every player i € N we have

Ui(of,0%;) > Us(oi,0",) for every strategy o; of player .

In a Nash equilibrium, each player is doing the best he can do given the strategies
of the other players. A Nash equilibrium is played if each player has correct conjectures
about the strategies the other players are going to choose and chooses (one of) his best
strategy given these conjectures.

2.2.3 Some refinements of the Nash equilibrium concept

There are many refinements of the Nash equilibrium concept. We will mention only some
of them.

Subgame perfect Nash equilibrium

The concept of Nash equilibrium ignores the dynamic structure of the extensive form
game. A strategy combination o* may be a Nash equilibrium of the extensive form game
while at the same time a player ¢ would wish to change his strategy if he reconsidered it
after a certain history h. The reason why the player is still playing a Nash equilibrium
is that history h is never reached given ¢*. It may be the case that h is never reached
precisely because of the action ¢ takes at history h. The interpretation is that, at history
h, player i threatens to take a certain action. Since it would not be in his interest to
take this action were h to be reached, the strategy combination is "unreasonable” even
though it is a Nash equilibrium. Selten (1965) addresses this problem by requiring that
strategies are a Nash equilibrium after any history. This refinement, originally called
perfect equilibrium, currently receives the name of subgame perfect Nash equilibrium (a
subgame is the game that starts after a given history).

Refinements allowing for deviations by groups of players

Since they allow players to coordinate their actions, these refinements are on the frontier
between noncooperative and cooperative game theory.



14 2. Preliminaries

Strong Nash equilibrium Aumann (1959) introduces a refinement of the Nash equi-
librium concept that allows for joint deviations by groups of players. Formally, a strategy
combination o* is a strong Nash equilibrium if there is no subset C' of N with a strategy
combination o¢ € XiecA(S;) such that U;(of, 0% ) < Ui(og,0" ) for all i € C.

Coalition-proof Nash equilibrium The concept of coalition-proof Nash equilibrium
allows only for coalitional deviations that are immune to further deviations by subcoali-
tions. The formal definition (Bernheim, Peleg and Whinston (1987)) is quite involved.
Restricting further deviations to subsets of the deviating coalitions, while allowing for an
elegant recursive definition, is subject to controversy.

2.3 Cooperative game theory

2.3.1 Characteristic function games

A characteristic function game (or a game in characteristic function form, with transfer-
able payoff or with side-payments) consists of two elements:

e the set of players N = {1,2,...,n}.

e the characteristic function v : 2V — R which associates to every subset S of N a
real number such that v(2) = 0.

Nonempty subsets of NV are called coalitions. For each coalition S, v(S) is interpreted
as a certain amount of a perfectly divisible commodity (usually taken to be money) that
is available for division among the members of S if S forms.

We will economize on brackets and denote v({i, j..., k}) by v(3, j, ..., k).

Transferable utility versus nontransferable utility

Characteristic function games are sometimes called transferable utility (TU) games. We
say that utility is transferable if any redistribution of the total payoff v(S) among the
players in S results in increments and decrements of individual utilities which sum to zero
according to some specific set of utility scales for the players (see Luce and Raiffa (1957),
p. 168). This will be the case if the players’ utility functions are separable and linear in
money. In general, utilities are neither separable nor linear in money. It is then difficult to
find a satisfactory standard of interpersonal comparison of utility, and, even if one could
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find such standard, redistribution of the payoff would not generally lead to increments and
decrements of utilities that add up to zero. If payoffs cannot be freely redistributed inside
a coalition, or if the redistribution of payoffs does not lead to increments and decrements
of utility that sum up to zero, the situation can be modelled as a game without transferable
utility (or NTU game). A game without transferable utility assigns to each coalition S a
|S|-dimensional set containing the utility vectors that are achievable by the coalition if it
forms.

The case for using transferable payoff games to model a situation is strongest if utility
is transferable. The assumption of transferable utility is however not necessary for trans-
ferable payoff games to make sense. An alternative interpretation of the characteristic
function is that, precisely because the utilities of different players are not comparable
(there is generally no obvious choice for origin and units) players may choose to restrict
themselves to arguments over monetary payoffs. Maschler (1992) suggests the possibility
of dispensing with the transferable utility assumption in the context of arbitration:

If you and I find a $100 bill and go to an arbitrator to decide how to split it, I
am quite sure that most arbitrators will not care about our utilities for money
and will suggest that we share the dollars equally.

Taking this argument a bit further, if you and I find a $100 bill and bargain over
how to divide it, we will end up dividing it equally since we have no objective way of
comparing our utilities for money.

Another possible argument in favor of the use of TU games is that monetary payoffs
may be more salient than utility functions, and thus outcomes such as equal split of
monetary payoffs may act as "focal points” in bargaining (see Schelling (1960)).

Superadditivity

If a game is superadditive, coalitions get at least as much by acting together as they would
get acting separately.

Definition 2.5 A game in characteristic function form (N, v) is superadditive if
v(SUT) > v(S) +v(T) forany S, TC Nst. SNT = @.

Superadditivity is a very compelling property in applications. Nevertheless, Aumann
and Dréze (1974) point out some cases in which superadditivity may not arise: acting
together may be illegal, or it may change the nature of the game because of moral hazard
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(if players decide to form a coalition and divide the procedures equally, they may work
with less care than if they were singletons, and the total payoff may actually be smaller).

Orthogonal coalitions versus externalities

The characteristic function is an appropriate tool for games in which, once a coalition
forms, it does not interact with other coalitions in any way. If this is the case, the payoff
of a coalition does not depend on how the players outside the coalition are organized.
Shubik (1982) calls these games games of consent or games with orthogonal coalitions: in
these games, players can only cooperate or ignore each other, but they cannot actively
hurt each other. An example would be an economy where players form coalitions to
produce goods, trade only with other players inside the coalition, and production does
not impose externalities on other coalitions.

In many cases, a coalition forms and then interacts with other coalitions. For ex-
ample, in von Neumann and Morgenstern (1944), the purpose of forming a coalition is
to coordinate strategies in a noncooperative game played with other players (who may
also divide themselves in groups that coordinate their strategies). In this context, two

questions arise:

1. Given a certain partition of the players into coalitions, how do these coalitions
interact with each other?

2. Once a coalition forms, what are the expectations of its members concerning the
organization of the remaining players?

A characteristic function can be constructed by assigning to a coalition S the mazimin
value of the game played between S and N\S. This characteristic function assumes that
coalitions give a pessimistic answer to both questions: when a coalition S forms, it expects
that the remaining players will form a complementary coalition and act so as to minimize
the payoff of players in S. Such expectations may be justified in the context of a zero-
sum game (see von Neumann and Morgenstern (1944)): the players in the complement
maximize their joint payoffs by uniting and minimizing the payoff of coalition S. However,
it will not generally be in the interest of the players in N\S to react so as to minimize
the payoffs of players in S, since this may also hurt N\S.

A more general approach would allow the payoff of a coalition to depend on how the
remaining players are organized. This is the subject of the following subsection.
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2.3.2 Partition function games

If coalitions interact with each other, the payoff of a coalition will generally depend on
how the rest of players are organized. A function that assigns a payoff to a coalition
depending on the whole coalition structure is called a partition function.

Given the set of players N, a pair formed by a coalition S and a partition 7 of N to
which S belongs is called an embedded coalition. Denote the set of embedded coalitions
by E(N). A partition function ¢ assigns to each embedded coalition a real number that
represents the payoff S gets if coalition structure 7 forms.

A partition function game (or a game in partition function form) consists of two
elements:

e the set of players N = {1,2,...,n}.

e the partition function ¢ : E(N) — R, which associates a real number to each
embedded coalition (S,7) € E(N).

The partition function was introduced by Thrall and Lucas (1963) as a generalization
of the characteristic function. A key assumption they make is that the partition func-
tion is not necessarily superadditive (players may be better-off if they split into smaller
groups). Given a partition function, Thrall and Lucas derive a characteristic function in
the following way:

v(S) = minp(S, 7).

Whereas the classical characteristic function is constructed such that the worst case
for a coalition is that the complement forms, Thrall and Lucas allow for the worst case
to correspond to some other partition of the players.

In the context of the partition function, we can come back to the two questions made
in the precious subsection.

1. Given a certain partition of the players into coalitions, how do these coalitions
interact with each other? In other words: where does the partition function come
from?

Thrall and Lucas are not very explicit about this question. The most recent lit-
erature on partition function games (see Bloch (1996) and Ray and Vohra (1999))
assumes that the partition function reflects the Nash equilibrium of a game played
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among coalitions acting as single players (for example, a merged entity plays an
oligopoly game as if it was a single firm). Thus, (S, 7) is the equilibrium payoff of
S in the game against the remaining coalitions in 7. A similar approach is taken
by Ichiishi (1981).! Exceptions are Bloch (1995) and Espinosa and Macho-Stadler
(2000) for oligopoly games: they assume that individual players cooperate with
other players in the same coalition (by associating to do research and by sharing
revenue, respectively) while at the same time they take some of the decisions non-
cooperatively (they take their product market decisions noncooperatively, so that
the partition function is derived from the equilibrium of the noncooperative game
played by individual players; this game in turn depends on the coalition structure
since research joint ventures affect the costs of the players and revenue sharing
schemes affect their incentives).

2. Once a coalition forms, what are the expectations of its members concerning the
organization of the remaining players?

Thrall and Lucas assume that coalitions are pessimistic. However, pessimism is not
always justified outside zero-sum games. Ideally, coalitions should make consistent
conjectures about the behavior of the complement. That is, the expectations of a
coalition about the behavior of the complement should not be unduly pessimistic
(or optimistic) but rather reflect what the complement would actually do if the
coalition forms. In the absence of the possibility of commitment, players outside S
will do whatever is in their interest to do. The problem with this approach is that
what is in the interest of players outside S is not obvious and may depend on the
concrete model of coalition formation being used.

There are some cooperative models that assume players make consistent predictions:
Ray and Vohra (1997) study the stability of (proposed) coalition structures assuming
that prospective coalitions may only break into smaller subsets and that players

!Bloch (1996) and Ray and Vohra (1999) follow a two-stage approach. Once coalitions form, they
cannot dissolve anymore. Ichiishi (1981) follows a one-stage approach. He also assumes that coalitions
play a Nash equilibrium of the game with other coalitions, but the decision of forming coalitions and the
decision of choosing what strategies to play are not separated. The definition of an equilibrium in Ichiishi
is related to the concept of strong Nash equilibrium: it requires that coalitions play Nash against each
other, but also that no coalition has an incentive to form, and choose another strategy vector, taking the
strategies of the remaining players as given. In Bloch (1996) and Ray and Vohra (1999) a coalition that
deviates from equilibrium would still play Nash against the rest of the coalitions in the "new” coalition
structure.



2.3. Cooperative game theory 19

anticipate further deviations. Huang and Sjostrom (1999) propose that, given a
solution concept, a coalition predicts the reaction of the outsiders by applying the
solution concept to the "reduced society” consisting of the non-members.

2.3.3 The Nash bargaining solution
The two-player case

Nash (1950) defines a two-person bargaining problem to consist of a pair (F,d) where F
is a closed convex subset of R?, d = (d;,ds) is a vector in R?, and the set F N {(z1,z2)|
z1 > d; and 72 > d»} is nonempty and bounded. F represents the set of feasible utility
allocations and d the disagreement utility allocation. A comprehensive theory of two-
player negotiation would assign to each bargaining problem (F,d) an allocation vector in
R? denoted by ¢(F,d). Nash imposes some desirable axioms on the allocation rule and
identifies a unique allocation rule characterized by those axioms.
Nash’s axioms are the following:

e Strong efficiency. If 3 z € F: = > ¢(F,d) then z = ¢(F,d).
e Individual rationality. ¢(F,d) > d.

e Scale covariance. For any numbers A;, A2, 7; and 7, such that A; > 0 and Ay > 0,
if
G = {(Mz1 + 715 Aoz +7,) |(z1,22) € F}
and w = (A1dy + 7q, Aeda +7,)
then
¢(G,w) = (M1 (F,d) + 71, Aata(F, d) + 7).

e Independence of irrelevant alternatives. For any closed convex set G, if G C F
and ¢(F,d) € G, then ¢(G,d) = ¢(F,d).

e Symmetry. If d; = d; and {(z2,21) | (z1,22) € F} = F, then ¢,(F,d) = ¢,(F,d).

Nash (1950) proves that there is a unique solution function ¢(-,-) that satisfies these
axioms. This solution satisfies, for every bargaining problem (F,d),

¢(F,d) € arg  Jnax (z1 — dy)(z2 — dp).
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Rubinstein (1982) approaches the two-person bargaining problem by modelling nego-
tiations as a noncooperative bargaining game. In this game, players alternate making
offers until one is accepted, and future payoffs are discounted by a factor § < 1. Rubin-
stein shows that the unique subgame perfect equilibrium of this game leads to the Nash
bargaining solution in the limit when discounting vanishes.

Binmore et al. (1986) build on the work of Rubinstein (1982). They try to clarify
the interpretation of the Nash bargaining solution by distinguishing between two possible
sources of friction in the bargaining process that may induce players to reach an agreement:
the impatience of the players and the exogenous risk that the negotiations break down
without an agreement. They conclude that in both cases the subgame perfect equilibrium
of the noncooperative game with frictions converges to the Nash bargaining solution as
frictions vanish. However, the appropriate choice of the pair (F,d) to which to apply the
Nash bargaining solution depends on the source of friction: if the source of friction is the
exogenous risk of breakdown, one should use a von Neumann-Morgenstern utility function
and choose as the disagreement point the utilities players get if breakdown occurs. In the
case of discounting of future payoffs, one should use a utility function that reflects the time
preferences of the players (see Fishburn and Rubinstein (1982)) and use as a disagreement
point the no loss-no gain outcome, that is, the outcome that gives the parties the same
income streams they are receiving during the dispute.

The n-player case

The axioms can be extended to apply to bargaining problems with n players, and it can
be shown that the unique bargaining solution that satisfies the extended axioms is the
function that associates with each problem (F,d) (where F' is now a subset R™ and d a
vector in R™) the vector of utilities

arg Ier}:l’aicy 11 (z: — d;).

The Nash bargaining solution is clearly appropriate for n-person games in which agents
have only two options: either to cooperate with all other players or to remain singletons.
In many cases, partial cooperation is also profitable. Even if eventually all players coop-
erate, the payoffs from partial cooperation, and not only the payoffs players get if they
do not cooperate, may influence the outcome.

There have been some attempts to determine the disagreement payoffs endogenously:

the disagreement payoff is then determined by the opportunities of the players in other
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coalitions (which may or may not be subsets of the coalition under consideration). Bin-
more (1985) studies the three-player-three-cake problem. This is a problem in which
only partial cooperation is profitable: each pair of players can divide some ”cake” among
themselves, and only one of the three cakes can be divided. The cake that is eventually
divided and how it is divided would depend on the division of the remaining two cakes.
Bennett (1997) considers the general case of n players and a characteristic function. She
takes the reference point d to be the best payoff the agent can get in an alternative coali-
tion.? Gerber (1996) chooses instead the average of the possibilities the player has in the
"reduced game” obtained by making the coalition under consideration unfeasible.

One may also conjecture that the Nash bargaining solution is still valid in the presence
of gains from partial cooperation provided that those gains are small in comparison with
the gains from full cooperation. By small we mean the following: compute the Nash
bargaining solution as if partial cooperation is not possible. Compare what the players
get in the Nash bargaining solution and what they can get by partial cooperation. If
players are better-off in the Nash bargaining solution, we can disregard the possibility of
partial cooperation. In other words, forming subcoalitions is not credible. This reasoning
is in the spirit of the outside option principle (Binmore et al. (1989)). We will come back
to this point in the next chapter.

2.3.4 The core

Let (N,v) be a characteristic form game with side payments. A payoff allocation is a
vector x = (z;)ieny € R™, where z; is interpreted as the payoff to player i.

Definition 2.6 We say that an allocation y is feasible for a coalition S if
Z ¥ < v(9).
icS
If an allocation is feasible for S, players in S can achieve their components of y if they
get together.

Definition 2.7 We say that an allocation z is dominated if

ASC N :v(S) > )z
i€S

2We refer to the "reference point” and not to the ”disagreement outcome” because the reference point
may be unfeasible in case of disagreement, that is, it may not be possible for all players in the coalition
under consideration to simultaneously realize their best alternative opportunity (see Bennett (1997)).
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Definition 2.8 An allocation z is in the core if it is feasible for V and not dominated.
That is, z is in the core if

Z:ri =v(N) and Zx,» >v(S) VSCN.

ieEN i€S

The core is probably the most solid solution concept in cooperative game theory.
However, it is not without drawbacks. It is empty for many games (for example, it
is empty for the three-person game presented in the introduction), and very large for
others. In some games where it is nonempty, its predictions are very extreme. A classical
example is the so-called glove game.

Consider a game in which there are 2,000,001 players, among whom 1,000,000 players
can each supply one left glove, and 1,000,001 players can each supply one right glove. Let
Ny, denote the set of left-glove suppliers and let Ny denote the set of right-glove suppliers.
The worth of each coalition is defined to be the number of matched pairs (one left glove
and one right glove) that it can make. That is,

v(S) =min{ |SN Nz|, |[SN Ng| }.

The core of this game consists of the unique allocation z such that

o5 1if: e Np
"] 0ifie Ng

Any outcome that gives a positive payoff to one of the right-glove owners cannot be in
the core. The reason is that then the remaining 2,000,000 players are getting less than
1,000, 000 and they could get a higher payoff by excluding that right-glove owner.

While this result makes economic sense (the price of right gloves is zero because they
are in excess supply) it is very sensitive to the number of agents in the market. By adding
just two left-glove suppliers, the result would be reversed. Moreover, a right-glove supplier
would not lose anything by refusing to cooperate with the left-glove suppliers.

The core has also been criticized on the grounds that it assumes myopic behavior of
the players. The definition of the core seems to imply that if a coalition S can improve
over a certain allocation z, then S will form and thus z will not be realized. However,
the formation of S with a given payoff division may itself be subject to further deviations
that would make S worse-off, and thus S may decide not to depart from z after all. There
are many solution concepts that require that a deviation should be immune to further
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deviations. The bargaining sets (see part II) and the farsighted solution concepts (see
Harsanyi (1974), Chwe (1994) and Xue (1998)) are examples in this line.

Notice that the concept of strong Nash equilibrium is based on the same idea as the
core, whereas the concept of coalition-proof Nash equilibrium imposes that deviations
should be immune to further deviations.

2.3.5 The Shapley value

The idea of the Shapley value is to identify, for any characteristic function game, a unique
expected payoff allocation for the players. That is, one would like to identify a function
¢ that assigns to each game (/V,v) an expected payoff vector (¢,(v))ien-
Shapley (1953a) approached this problem axiomatically. He proposed the following
axioms
e Symmetry. This axiom asserts that only the role of a player in the game should
matter, not his specific label in the set N.

Formally, we can rename the players by taking a permutation of N, that is, a
function 7 : N — N such that for any j in N there is exactly one player i in N
such that 7(z) = j. One can also define the game that results after relabelling the
players, 7v, in the following way:

mv({m(i)|i € S}) = v(S),VS C N.
Axiom 2.1 (Symmetry) For any characteristic function v, any permutation 7 :
N — N, and any player ¢ in N, ¢, (mv) = ¢,(v).
e Carrier. We say that a coalition R is a carrier of a coalitional game v if
v(SNR) =v(S),VS C N.
If R is a carrier, the players who are not in R are called dummies, because their
entrance in a coalition does not change its worth. The carrier axiom requires that

players in the carrier should divide the worth of the grand coalition among them-
selves.

Axiom 2.2 (Carrier) For any characteristic function v, and any coalition R, if R
is a carrier of v, then Y, . ¢;(v) = v(R).
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e Linearity.® Given two characteristic functions, v and w, denote by pv + (1 — p)w
the game such that, for each coalition S,

(pv + (1 = p)w)(8S) = pv(S) + (1 — p)w(S).

The interpretation of this game is that players will play game v with probability p
and game w with probability 1 — p. If players bargain over how to divide the payoff
before the uncertainty is resolved, player 7’s expected payoft is ¢;(pv + (1 — p)w). If
players bargain only after it becomes known whether they will play v or w, player i’s
expected payoff is pg,(v) + (1 —p),;(w). The axiom of linearity asserts that expected
payoffs should be the same in both cases.

Axiom 2.3 (Linearity) For any two characteristic functions v and w, any number
p such that 0 < p < 1 and any player 7 in N,

¢i(pv + (1 — p)w) = pg;(v) + (1 — p)¢;(w).

Shapley (1953a) shows that there is exactly one function that satisfies the axioms
above. This function satisfies the following equation

s = 3 BHEZA=D s u i) - uis).
SCN\{i} )

Shapley (1953a) provides the following interpretation of his value. Suppose that the
players in N enter a room randomly so that each of the |N|! possible orders is equally
likely. On entering the room, player 7 finds a (possibly empty) coalition S already there.
Player 7 gets his marginal contribution to coalition S, v(SU {i}) — v(S). The probability
that player 7 finds exactly coalition S in the room is Em%’,ﬂ_—l)—', since all possible orders
in which players in S and players in V\S enter the room are equivalent, provided that
players in S enter before ¢ and players in N\S after i.

Roth (1977) shows that there are two conditions for the Shapley value to be a von
Neumann-Morgenstern utility function: players have to be neutral to ”ordinary” risk (risk
derived from lotteries) and also to strategic risk (risk derived from negotiation with other
players). Roughly speaking, neutrality to strategic risk means that a player is indifferent
between having a unit of utility all for himself and having to bargain with n — 1 other
players over how to divide n units of utility.

3The original axiom of Shapley, additivity, is stronger. See Myerson (1991).
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Extensions of the Shapley value to games with coalition structures

The original Shapley value allows players to evaluate their prospects from playing a game.
The extensions of the Shapley value to games with coalition structures allow players to
evaluate their prospect from playing a game given that a certain coalition structure forms.

The Aumann and Dréze extension Harsanyi (1963) and Aumann and Dréze (1974)
suggested that, given a coalition structure, the expected payoff for player i should be the
Shapley value of the game restricted to subsets of the coalition S to which i belongs in
the coalition structure, that is,

a(w5)= 3 THELIED 0y giy) - o)
TCS\{i} ’

Notice that the expected payoff of player i does not depend on how players outside 2
are organized.

Myerson (1980) shows that this Shapley value has the following property, called the
balanced contributions property:

6:(v,8) — ¢,(v,S\{j}) = ¢,(v, S) — ¢;(v, S\{3}).

The balanced contributions property implies that the loss or gain for player i if player
J would withdraw from coalition S equals the loss or gain of j if i would withdraw from
coalition S. This is a very interesting property of the Shapley value, which relates it to
the concepts we will study in chapter 7.

The Owen extension Owen (1977) proposes a different extension of the Shapley value.
This extension has also been studied by Hart and Kurz (1983).

The idea of the Owen value is as follows. Coalitions form and then bargain with other
coalitions over the division of the value of the grand coalition. The bargaining process
between coalitions is such that each coalition gets the Shapley value of the game in which
coalitions are players. The share each player gets is computed in the following way: as in
the original Shapley value, we compute the average marginal contribution of the players.
However, we only consider orderings that are consistent with the coalition structure in
the sense that for any two players 7 and j who are together in a coalition S, all players
that appear between i and j in the ordering must be also in S. In terms of the story
of random entrance in a room, players enter randomly but players in the same coalition
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must enter successively, so that the probability of each order given coalition structure
7 = (S1, ..., Sm) is (m!]S1]!|S2|"...|S,|!)~*. The Owen value is then given by

¢'(v,m) = E [v(P* U{i}) — v(P")]

where the expectation F is over all random orders on N that are consistent with 7, and
P' denotes the (random) set of predecessors of i.

Notice that the Owen value allows for externalities among coalitions: if some of the
players reorganize themselves, this may affect the Owen value of players who are still
in the same coalition. The interpretation is that the formation of coalitions affects the
bargaining power of the players. Furthermore, since the Owen value assumes that the
final outcome of the game will always be efficient regardless of the coalition structure,
the formation of coalitions does not affect the total payoff to be divided but only the
distribution of this payoff, and the only possible reason why a player would want to enter
a coalition is to improve his bargaining position vis-a-vis other players.

The Owen value introduces externalities in a setting (the characteristic function) that
did not exhibit any externalities a priori. Chapters 4 and 5 of this thesis are very much
in the spirit of the Owen value.

2.4 Noncooperative models of coalition formation

The first part of this thesis focuses on noncooperative models of coalition formation in
partition function games. This section contains an introduction to the literature. It is
partly based on the survey by Bloch (1997).

Bloch (1997) divides the noncooperative models of coalition formation in two groups:
stmultaneous games (in which all players make announcements simultaneously) and se-
quential games (players move in turn and each player can observe the moves made so
far).

2.4.1 Simultaneous games

In the simultaneous games we discuss below, players can announce their willingness to
participate in a coalition, but they cannot argue over payoff division. Payoff division is
assumed to be given by an allocation rule or valuation ¢: I[I(IN) — R™. Possible valuations
are the Aumann and Dreze (1974) or the Owen (1977) extension of the Shapley value to
games with coalition structure.
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There are two kinds of simultaneous games: open membership games and exclusive

membership games.

Open membership games

In open membership games, players can only announce their willingness to be in a coalition,
but they cannot specify the composition of the coalition to which they want to belong.
Examples are the cartel formation game of d’Aspremont et al. (1983) and the general
open membership game proposed by Yi and Shin (1995). In the cartel formation game
players have only two strategies: yes and no. All players that say yes will be together in
a coalition; players that say no remain singletons. In the general open membership game,
each player chooses a message from a given set; players announcing the same message will
be together in a coalition (this game can be extended by adding a message that commits
the players to stay alone).

Exclusive membership games

In exclusive membership games, players are not free to join any existing coalition. Each
player announces the composition of the coalition to which he wants to belong, and only
coalitions containing announced players can form. There are two variants of the exclusive
membership game: the game ' and the game A. In these games the strategy space of a
player is the set of coalitions to which he belongs

The game ' was introduced by von Neumann and Morgenstern (1944, section 26).
A coalition C is formed in this game if and only if each member i of C' has announced
s; = C. Starting from a situation in which all players in C' have announced C, a unilateral
deviation of a member of C implies that the remaining players become singletons.

The game A was introduced by Hart and Kurz (1983). In this game, a coalition D is
formed by all players 7 such that s; = C. Clearly, D C C but it is not required that C = D.
Thus, if some of the players in C' do not want to form a coalition, the remaining players
will form the coalition without them. Starting from a situation in which all players in C
want to form a coalition, a unilateral deviation by one of them implies that the remaining
players stay together.

The rules of the games I' and A are rather ad hoc: when a player leaves a coalition, it is
systematically assumed that either the remaining players will split into singletons, or that
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they will stick together. Which of these models is more reasonable? The answer cannot
be found without looking at the specific game. As Hart and Kurz (1983, p. 1060-1061)
suggest, none of the games is conceptually more correct than the other. Thoron (2000)
argues that, given that a coalition is left by some of its players, the remaining players
should break apart or stick together depending on what is in their interest (for symmetric
games, all players would agree on which of these two alternatives is more profitable). This
approach is problematic when there is more than one coalition in this situation: each of
the coalitions that have been abandoned by some of their players would have to decide
simultaneously whether to break apart or to stick together. The situation becomes even
more complex if we allow for any strategic reaction of the remaining players (not only
sticking together or splitting into singletons). Thoron (2000) concludes that an explicit
dynamic model is needed.

Notice that Thoron’s critique is also applicable to open membership games. All open
membership games are A-games: when a player abandons a coalition, the remaining
players stick together.

The games I' and A model the reaction of the players whose coalitions have lost
some members, assuming that the "outside” players (players in coalitions that have not
been altered by the deviation) do not react in any way. This assumption does not seem
justified in games with externalities: in such games, all players are potentially affected
by a deviation, either directly (their coalition is abandoned by some players) or indirectly
(their players change because of the change in the coalition structure).

Simultaneous games may have many equilibria. Indeed, for all of them except the
open membership game of Yi and Shin, there is always a trivial equilibrium in which
all players remain singletons. In order to make sharper predictions, refinements such as
coalition-proof Nash equilibrium and strong Nash equilibrium can be used.

Hart and Kurz (1983, 1984) study the games I' and A taking the Owen value as
allocation rule and using the Strong Nash equilibrium refinement. Meca-Martinez et al.
(1998) and Slikker (1999) consider general allocation rules. Yi (1997) studies the open
membership game for symmetric partition function games that systematically exhibit
either positive or negative externalities* and compares it with the models with exclusive
membership of Bloch (1996) and Ray and Vohra (1997). In partition function games with

41t is worth noticing that the definitions of positive and negative externalities in Yi (1997) are more
demanding than the usual definitions. In particular, they not only concern the ezternal effects of a change
in the coalition structure, but also the internal effects. See Yi (1997) for more details.
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negative externalities, the open membership rule achieves the efficient outcome (the grand
coalition); the results are generally not efficient for the models with exclusive membership
of Bloch (1996) and Ray and Vohra (1997). For positive externalities, the two models
with exclusive membership support more concentrated coalition structures than the open
membership game but the grand coalition is seldom an equilibrium due to free-riding
problems. Applications to games with negative externalities include Yi (1996) for the case
of custom unions, Zissimos and Vines (1999) for trading blocks and Yi (1998) for research
joint ventures; Yi and Shin (2000) analyze research coalitions with positive spillovers.

2.4.2 Sequential games

Simultaneous games have drawbacks. The set of equilibria is often very large, when using
refinements one may get an empty set (as it is the case with strong Nash equilibrium)
and moreover, players are not allowed to react optimally to deviations of other players:
the coalition that is abandoned reacts in an ad hoc way, and the possibility of reaction
by other coalitions is not even discussed.

In sequential games of coalition formation, coalitions are formed one at a time and
once a coalition forms its players are set aside, thus coalitions cannot be enlarged. The
players who have not formed a coalition yet can react optimally, whereas the players who
have already left the game cannot react in any way.

Choosing the extensive form

All sequential games of coalition formation (with or without externalities among coali-
tions) build on Rubinstein’s (1982) seminal work on bargaining. In the original game,
there are only two players. A player (selected by the rules of the game) starts by propos-
ing a division of the payoff of the two-player coalition; the other player can accept or reject.
If he rejects, the game proceeds to the next period and he can make a counteroffer; the
other player can accept or reject, and so on. Players discount future payoffs.

In generalizing this game to n players, some choices have to be made. As in the two-
player version, the rules of the game will select a player to be the first proposer. The
first choice that has to be made is what will be the strategy space of the proposer. What
coalitions can he propose? Only the grand coalition or any coalition including him? The
first option would mean that players have agreed, at least ”in principle”, to form the grand
coalition, and they are now discussing the payoff division. Other possible coalitions will
enter the game in other ways (for example, as ”outside options” that players can exercise
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at some given points in the game) but not as part of the proposal. The second option
would mean that no coalition is a priori more likely to form than others (no coalition
is favored by the rules of the game) and thus the coalition structure and payoff division
will be determined endogenously and simultaneously. We will be more interested in the
second approach.

Suppose now that the proposer proposes a coalition S and a (feasible) division of v(S).
The rules of the game must specify the order in which players accept or reject the proposal.
Two choices can be made: either the order of response is exogenously determined by the
rules of the game (in a deterministic or in a random way), or the order is the result of the
strategic choices of the players (for example, the proposer may choose the order in which
players respond, or at least he can choose the first player to respond, who in turn will
choose the second, etc.). We will refer to the rule specifying the order in which players
accept or reject as the rule of order.

The third choice that must be made is which players must accept in order for the
proposal to be approved. Without loss of generality, we can restrict ourselves to the una-
nimity rule (all players to whom the proposal is addressed must accept). If the consent
of all players is not needed, this can be modelled through the characteristic function. As
an example, consider the division of a dollar between three players by majority rule. Bar-
gaining in this game can be modelled as a variant of the Rubinstein game with unanimity.
The majority requirement does not enter the extensive form game but it is included in
the characteristic function. If the votes in favor of any two players i and j are enough to
approve a proposal, we will say that v(NV) = v(i,j) = 1 for all 7, j, and the original situa-
tion in which all three players accept or reject and a majority of acceptances is sufficient
for the proposal to be approved is modelled as a situation in which i can propose to j
only and unanimity in the proposed coalition is required.

Suppose now that at least one of the responders rejects the proposal. The rules of the
game must select what happens next. It may be the case that the game is over (at least
with a certain probability) or that a new proposer is selected. We will concentrate on the
second option for now. How is the next proposer selected? As in the case of selecting
the order of the responders, two groups of models arise: in the first of them, the next
proposer is selected ezogenously by the rules of the game (by exogenously we mean as a
function of the set of players left, and not of elements of history such as which coalitions
have been proposed or which player has rejected the proposal); in the second, the next
proposer depends on the strategic choices of the players. The natural generalization of
the Rubinstein game is of the second sort: it assumes that the first player to reject a
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proposal becomes the next proposer. We will call the rule that selects the next proposer
after a proposal has been rejected the continuation rule.

If the continuation rule is such that the next proposer is determined exogenously, the
rule of order is not relevant to the game. That is, since the continuation rule selects
the next proposer independently of who rejected the proposal, the order in which players
respond to a proposal is not relevant to the outcome of the game.® If the continuation
rule determines the next proposer endogenously, then the rule of order becomes very
important. The subsequent developments of the game may be very sensitive to who was
the first player to reject the proposal, and this in turn crucially depends on the rule of
order. One could think that who is going to reject the proposal would not depend on the
rule of order, but only on the proposed payoff division. Suppose however, that the last
player (say, i) who has to accept or reject is going to reject the proposal for sure because
it offers him a very low payoff. The last-but-one player (j), instead, is offered a very high
payoff and he would certainly want the proposal to be approved. However, given that 4
is going to reject, 7 may want to reject himself in order to take the initiative afterwards.
Thus, whether it will be ¢ or 7 who become the next proposer will depend on the rule of
order. Because the rule of order is only relevant to the case in which the next proposer
depends on history, such games may be called games with a rule of order. In other games
it is just assumed that there is some rule of order, but it is not modelled explicitly since
it is irrelevant to the results.

The last choice to be made is not specific to n-person games, but it concerns 2-person
games as well. It is the introduction of some friction in the bargaining process. The
introduction of frictions in the bargaining process makes the model more realistic and
shrinks the range of equilibria (Rubinstein (1982) finds a unique subgame perfect equi-
librium of the game thanks to the introduction of frictions). Bargaining may be costly
because players directly spend resources in it (for example, the proposer has to phone all
other players in order to make a proposal), because players are impatient (time elapses
during bargaining and players discount future payoffs, so that agreement in the future is
less valuable than agreement today), or because there is some exogenous risk of break-
down of the negotiations (for example, players may ”get upset” and leave the negotiation
table, though this could perhaps better be modelled as a strategic choice; alternatively,
while players bargain over how to divide the profits from exploiting some business op-

That is, it is relevant to the game only if players choose to condition their actions on this information.
We will exclude this possibility by using a refinement of the Nash equilibrium concept that allows players
to condition their choices only on information that is directly relevant.
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portunity, the conditions in the market may change and this opportunity may become
unprofitable). Most games have focused on the impatience of the players as the driving
force of agreements, a few have focused on the risk of breakdown, and virtually none on
constant costs of bargaining, partly because of the unpromising results (see Rubinstein
(1982)). In games with impatience, it is assumed that after a proposal is rejected a time
period elapses and players discount future payoffs; in games with breakdown probability,
it is assumed that after a proposal is rejected, breakdown of the negotiations may occur
with some exogenous probability and players then receive some exogenously given payoffs.
We will consider both sources of friction in chapter 3.

Rubinstein (1982) was able to select a unique equilibrium of his game using the widely
accepted refinement of subgame perfect equilibrium. In games with more than two players,
additional refinements are needed (otherwise almost any outcome is possible, see e.g.
Baron and Ferejohn (1989) or Chatterjee et al. (1993)). A frequently used refinement is
the concept of stationary subgame perfect equilibrium (or stationary perfect equilibrium).
In a stationary perfect equilibrium, the strategies of the players only depend on the
state of the game. By the state of the game we mean the set of variables that are
directly payoff relevant. For example, in a bargaining game, the strategy of a player
would be allowed to depend on the set of players that remain in the game (after some
players have formed coalitions, the payoff opportunities for the remaining players may
be very different) and the current proposal, but not on the history of acceptances and
rejections, that are not directly relevant for payoffs (unless players choose otherwise by
playing strategies that reward or punish past behavior, that is, by playing non-stationary
strategies). Notice that the requirement of stationarity is added to the requirement that
strategies are an equilibrium (usually also a subgame perfect equilibrium), that is, a
stationary perfect equilibrium is also immune against non-stationary deviations. While
the concept of stationary equilibrium assumes a lot of forgiveness of the players and
excludes the possibility of threats (not only incredible threats, but also credible -subgame
perfect- threats), it may be defended on grounds of its simplicity (Baron and Kalai (1992);
Chatterjee and Sabourian (1997)) or its saliency (as argued in Chatterjee et al. (1993)).

Proposal-making games with a rule of order

Selten (1981) considers a bargaining game for TU games with n players. In this game a
player makes a proposal to some coalition, and chooses a responder from this coalition to
respond first. The responder may agree and select the next responder (and so on until
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all responders accept or one rejects), or he may reject. TIf he rejects, he becomes the
next proposer. Selten assumes that the characteristic function is zero-normalized (that
is, v(i) = 0 for all ¢ in N), superadditive, essential (that is, for zero-normalized games,
v(N) > 0) and has the one-stage property, (that is, for zero-normalized, essential and
superadditive games, v(S) > 0 implies v(N\S) = 0). Because of the last property, the
game ends after one coalition has been formed, since there are no profitable coalitions
left.

This game does not have any frictions, and thus the set of stationary perfect equilibria
is generally large (in the two-player case, any payoff division preferred by both players to
remaining singletons would be an equilibrium). Selten (1981) shows that every subgame
perfect equilibrium is connected to an aspiration demand vector (see chapter 7). This
game has been extensively played in the laboratory (see Uhlich (1990)).

Binmore’s (1985) three-player telephone bargaining is along the same lines but with
discounting. A central feature of this game is that the discount factor is not necessarily
the same for all players. Binmore shows that strength may easily become weakness, that
is, being patient, while being a source of strength in the two-player game, is a source of
weakness in the three-player game.

Selten’s game was extended to NTU games by Moldovanu (1992) (for three players)
and Moldovanu and Winter (1995). In Moldovanu and Winter (1995) more than one
profitable coalition may form simultaneously.

A slightly different version of Selten’s game can be found in Chatterjee et al. (1993).
In this game the proposer cannot choose the first responder, but the order in which players
accept or reject proposals is exogenously given by the rules of the game.% Players share
the same discount factor and several coalitions can be formed.

The proposal-making model with a rule of order has been extended to partition func-
tion games by Bloch (1996) and Ray and Vohra (1999). In Bloch (1996) proposals consist
of coalitions only, whereas payoff division is given by an allocation rule; special attention
is paid to symmetric games with equal payoff division. Ray and Vohra (1999) is a direct
extension of Chatterjee et al. (1993) to partition function games. Proposals consist of
coalitions and conditional statements over how to divide the payoff depending on the
partition that eventually forms. The results of Ray and Vohra for symmetric games with
endogenous payoff division vindicate the assumptions of Bloch (1996): indeed, symmetric

6This is not an essential difference: the order in which players respond only matters if the proposal
is going to be rejected; in this case the proposer can still pass the initiative to a player of his choice by
making an unacceptable proposal to him only.
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players will split the payoff equally. While this is a very reasonable result, it is by no
means obvious: the games we will study in chapter 3 do not have this property.
Applications of the game with a rule of order to symmetric oligopoly games include
Bloch (1995) for R&D joint ventures (a joint venture reduces own cost but it also reduces
the cost of those competitors that participate in the joint venture, triggering more aggres-
sive behavior on their part), Ray and Vohra (1999) for the symmetric Cournot game (a
merger increases market power but it also triggers an expansion of the quantity produced
by outsiders) and Espinosa and Macho-Stadler (2000) for the symmetric Cournot game
with moral hazard (costs are incurred privately whereas revenue is divided equally). In
all these applications, the resulting coalition structure is both asymmetric and inefficient.

Proposal-making games with random proposers

The distinctive feature of games with random proposers is that, once a proposal is re-
jected, the rules of the game select the next proposer conditional on the state of the
game (that is, on the payoff relevant information, such as the set of players who have
not formed coalitions yet). While it would be perfectly possible to chose the next player
deterministically, this is not frequent in the literature (an exception is the work by Morelli
and Penelle (1997) on economic integration: in their model, an existing union makes an
offer to a subset of countries every period). Most of the existing work concerns games in
which the next proposer is selected randomly.

The first game with random proposers was introduced by Binmore (1987) for the two-
player case. This game was extended by Baron and Ferejohn (1989) to bargaining in
simple majority games and by Okada (1996) to general TU games. There has not been
a systematic study of NTU games with random proposers so far (we will consider a very
simple example in chapter 3).

An extension of the proposal-making model with random proposers to partition func-
tion games can be found in Montero (1998, 1999b). Chapters 3, 4 and 5 are devoted to
this extension.

The games we have described so far share some characteristics. First, the rules of
the game determine whose turn is to move (deterministically or randomly, perhaps by
designating a player who will choose who moves next). Second, the actions players can
take are proposals of a coalition with a given payoff division, and acceptance or rejections
of these proposals. Third, time is discrete. These games are the object of study in
Part I. We will briefly mention some sequential games that are constructed under other
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assumptions.

Other sequential proposal-making games

Perry and Reny (1994) study a game in which time is continuous and players decide when
to make proposals.

Games in which players cannot choose to whom they make proposals, but they are
randomly matched in pairs can be found in Gul (1989), and in the book by Osborne and
Rubinstein (1990).

Games in which only one coalition can be proposed are considered by Krishna and
Serrano (1996) and Hart and Mas-Colell (1996). Proposals must address the grand coali-
tion of the players that remain in the game. Players can exit the game in both models,
but because of different reasons. In Krishna and Serrano (1996) some players can exit the
game with their shares when a proposal is not accepted by all players. In Hart and Mas-
Colell (1996), there is the possibility of partial breakdown: if a proposal is rejected the
proposer is ”thrown out of the game” with a certain probability, and bargaining continues
among the remaining players.

Demand games

In a demand game, players do not make proposals to a concrete coalition; instead, each
player can make a payoff demand that applies to any possible coalition including him.
Demands and acceptances are not different stages of the game as in the proposal-making
game: at any moment, a player ¢ whose turn is to move can either make a demand or
accept the demands of players in any coalition S\{:} (if they have already formulated
them) in order to form S.

In the simpler version of a demand game (Binmore, 1985), there are three players
and only two-player coalitions can form. The players move in a fixed order. Player 1
announces a demand (a payoff he requires in order to participate in a coalition), then
player 2 can accept this demand or reject it and make a demand himself. If he accepts,
coalition {1,2} forms, 1 gets his demand, 2 gets v(1,2) less player 1’s demand and the
game is over. If he rejects, player 3 can choose to accept player 1’s demand, player 2’s
demand or reject both and make his own demand. If he rejects, now it’s player 1 who
has two demands to choose from, and so on. Players discount future payoffs. If no player
is dominant (in the sense that coalitions including him are much more valuable than the
remaining coalition) in equilibrium players are indifferent between the two coalitions they
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can form.

Bennett and van Damme (1991) consider a finite extensive form game in which players
make demands only once and a player that makes a demand selects the next mover. They
introduce a refinement of subgame perfection, called credible subgame perfect equilibrium,
based on the idea that players can strategically exploit their indifferences. By applying
this refinement, they are able to make sharp predictions for apex games.

Selten (1992) considers a demand game with two rounds (thus players may change
their demands from one round to the next). He assumes that players incur a fixed cost
from making a (new) demand as well a cost from forming coalitions that is increasing
in the number of players involved. This game has been played in the laboratory for
essentially the same situation we described in chapter 1, with mixed results: while the
quotas influence the outcome, they do not determine it completely (see Selten and Kuon,
(1993)).

A demand bargaining model for three-player partition function games can be found
in Cornet (1998). The results are consistent with those in Binmore (1985): for a wide
range of the parameters, the equilibrium of the game is such that players are indifferent
between prospective coalition partners. We will find the same property in chapter 4.

Renegotiation

All the games we have discussed so far assume that, when a coalition forms, it leaves the
game and it is committed not to come back to the "negotiation table”. The results of
those games are often very inefficient, since by creating inefficiencies players may get a
higher payoff. An example could be a game with three players where each pair can get
60 and the three players together can get 72; even though the grand coalition maximizes
the joint payoffs of the three players, each player prefers to be in a two-player coalition
since he would get 30 rather than 24. It is then reasonable to assume that players can
renegotiate the inefficient agreements and enlarge the coalitions. In the example, after
forming a two-player coalition, the two players may wish to approach the third player and
divide the 12 units in some way; notice though that if the rules of the game constrain the
players to divide payoffs equally this will not happen.

Seidmann and Winter (1998) have considered the possibility of renegotiation in games
with a rule of order. They make a distinction between reversible and irreversible actions.
If actions are reversible, players may continue bargaining with other players after imple-
menting an agreement. They show that renegotiation will result in the formation of the
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grand coalition if actions are reversible. Okada (1999) introduces renegotiation in the
random proposal game and shows that the possibility of renegotiation changes the incen-
tives of the players, that is, players may form different coalitions if they anticipate the
possibility of renegotiation. Montero (1998) allows for the possibility of renegotiation in
the one-seller-two-buyer game: if the seller and the weak buyer form a coalition in which
the weak buyer gets the good, the good can still be resold to the strong buyer; similarly
to the results of Okada (1999) the possibility of reselling makes the coalition of the seller
and the weak buyer more attractive. Gomes (1999) considers coalition formation with
externalities and the possibility of renegotiation for general three-player games with an
extended strategy space (when addressing a coalition, the proposer can choose between
making individual offers to players or making an offer to a coalition that needs to be
approved by all players).

2.5 Cooperative concepts of stability for games with

externalities

2.5.1 Core stability

In characteristic function games the natural stability concept for coalition structures is
the coalition structure core (see Greenberg (1994)). Given a coalition structure m =
{51, ..., Sm}, the coalition structure core is the set of payoff vectors (z;);cy that are feasible
for m (that is, }°,cs z: < v(S;) for all S; € 7) and that are not dominated AfTCN:
v(T) > Y ,crxi). A coalition structure is then stable if its core is nonempty, that is, if
there is a payoff vector feasible for this coalition structure such that no group of players can
deviate and all be better-off. For games with fixed payoff division given by an allocation
rule, a coalition structure is stable if 77 C N : ¢,(T) > ¢,(r) for all i € T.7

In characteristic function games, it suffices to consider deviations by a group of players
to form a single coalition. In partition function games, we have to consider deviations
by a group of players to form one or more coalitions. Since in partition function games
the payoff of a coalition depends on how other players are organized, one has to make
assumptions about the conjectures of the deviating players concerning the reaction of
the others. There are several definitions of core stability depending on those conjectures.

"In order for ¢;(T) to be well-defined, the allocation rule has to be such that ¢,(T") depends only on
T; if ¢ depends on the whole coalition structure, we need to know the new coalition structure induced
by the deviation of T' (see below).
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The deviating players may assume the best possible scenario and deviate provided that
there is at least one partition of the remaining players such that they are all better-off
(see Shenoy (1979)), or they may assume the worst possible scenario, as in the a-stability
concept, and only deviate if they are better-off regardless of the reaction of the outsiders.
A bit less pessimistic is the concept of G-stability: a group of players S will deviate if for
every partition of the remaining players there is a partition of S that makes all players
in S better-off.® Intermediate stability requirements are given by the y-stability concept
and the é-stability concept. These concepts assume that: a) coalitions that have not been
broken by the deviation do not react at all; b) coalitions that have been broken react
always in the same way: either breaking into singletons (y-stability) or sticking together
(6-stability).

The concepts of a-, 3-, 7- and §-stability can be defined for a fixed allocation rule,
or without using any allocation rule. For a fixed allocation rule ¢, a coalition structure
m will be core stable if there is no group of players T" who can organize themselves in
one or more coalitions (73, ..., 7;) and be all better-off given the new coalition structure
7 2 {T,...,T} (that is, ¢;(n") > ¢;(m) for all i € U{_,T}). If no allocation rule is used, a
payoff vector z will be in the coalition structure core corresponding to a given partition
m if there is no group of players 7" who can organize themselves in one or more coalitions
(T, ..., T;) and be all better-off given the new coalition structure n’ D {73, ..., T;} (that is,
o(Tj, ") > ZieTj z; for all j = 1,...,1); coalition structure 7 will then be stable if its core
is non-empty. In both cases, the new coalition structure 7’ will depend on the stability
concept.’

Even in games in characteristic function form, one may need to make conjectures
about the behavior of players outside the coalition. This is the case if the allocation rule
depends on the whole coalition structure, as in Hart and Kurz (1983).

Hart and Kurz (1984) show that there are games and allocation rules such that no
outcomes are even a-stable.

The stability concepts above assume that the deviating players expect outsiders to
react in an ad hoc way. A concept of w-stability (Thoron (2000)) that would assume
that players react optimally, is generally difficult to define. Extensive form games, on the

8These two stability concepts are in the spirit of the - and - cores introduced by Aumann (1967).
The difference is that Aumann uses pessimistic conjectures in order to construct a characteristic function,
whereas the concepts of a- and - stability are defined for an exogenously given partition function.

9Notice that, for a fixed allocation rule, the concepts of - and §-stability are equivalent to the coalition
structure being a strong Nash equilibrium outcome in the games I" and A respectively.
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other hand, make players expectations consistent, though paying the price of having to
choose a given extensive form game (and it may not be clear which one to choose). One
may wonder whether there is any relation between the noncooperative games and the
cooperative stability concepts. Are the equilibrium coalition structures of the extensive
form games stable in any of the senses above? Bloch (1996) addresses this question. In
general, a coalition structure may be an equilibrium of an extensive form game without
being a-, -, - or §-stable and the reverse. Since the reaction of outsiders in an extensive
form game will be an optimal reaction and this reaction may be more favorable to the
deviating players than the reaction prescribed by the stability concept, it is clear that
a stable coalition structure may not be an equilibrium outcome of the extensive form
game. Furthermore, since the extensive form games require coalitions that form to ”leave
the room”, these coalitions cannot react to deviations by other players. On the other
hand, extensive-form games do not allow several coalitions to form at the same time, so
a deviating group of players is restricted to organize itself in a single coalition.

2.5.2 Farsighted models

Ray and Vohra (1997) develop the concept of equilibrium binding agreements. This con-
cept is defined recursively. A key element is that only deviations to finer coalition struc-
tures are allowed. Moreover, deviations are required to be consistent in the sense that
they should be immune to deviations to even finer partitions. A variant of this model has
recently been used to study the optimality of international agreements (see Conconi and
Perroni (2000)).

Chwe (1994) defines some solution concepts based on the idea of indirect domination
(see also Harsanyi (1974)). The indirect domination concept captures the idea that de-
viating coalitions anticipate further deviations. Chwe’s analysis could be applied to the
stability of coalition structures, though in the case of variable payoff division this seems
very difficult. Moreover, Chwe’s solution concept, the largest consistent set, is often very
large. A refinement of the largest consistent set has proved useful to predict the stability of
coalition structures in the context of Cournot oligopoly (see Mauleén and Vannetelbosch
(1999)).

2.5.3 Membership rights

Stability concepts inspired by the interpretation of coalitions as jurisdictions restrict the
set of players that can deviate: only one individual at a time can deviate and he may need



40 2. Preliminaries

the consent of the coalition that he leaves or joins. Such are the concepts of individual
stability (the coalition that is joined by the individual must agree to this move) and
contractual stability (both the coalition that is left and the coalition that is joined must
agree). Those concepts are discussed in Greenberg (1994).
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Chapter 3

Noncooperative Bargaining in
Partition Function Games

In most economic situations, the payoff of a coalition depends on what other coalitions
form, that is, there are externalities between coalitions. A function assigning to each
coalition a payoff depending on the whole coalition structure is called a partition function
(Thrall and Lucas (1963)). In spite of the empirical relevance of externalities, standard
cooperative game theory is not based on the partition function but on the characteristic
function, which assigns a payoff to each coalition regardless of how outsiders are organized.
In order to derive a characteristic function from a situation with externalities, players are
assumed to have conjectures about how the rest of the players will organize themselves
given that a coalition forms. These conjectures are usually pessimistic (players fear the
worst) or optimistic (players expect the best).! Thus, when a coalition forms, the rest of
the players are expected to partition themselves so as to either minimize or maximize the
payoff of the coalition, regardless of their own interest.

An alternative to indiscriminated optimism or pessimism is to use an extensive form
game of coalition formation (together with the concept of subgame perfection) in order
to allow a coalition to predict the reaction of the outsiders as an equilibrium reaction, so
that conjectures are consistent (see Bloch (1996) and Ray and Vohra (1999)). Of course,
extensive form games have the drawback that the reaction of the outsiders may heavily
depend on the details of the extensive form game.

Because the details of the extensive form game matter, it is useful to compare different
extensive form games. This chapter coincides with Bloch (1996) and Ray and Vohra

For a recent illustration of this approach, see Funaki and Yamato (1999).

43



44 3. Noncooperative Bargaining in Partition Function Games

(1999) in using an extensive form game to predict coalition formation, but it differs in the
concrete extensive form.

Ray and Vohra (1999) extend the model of coalitional bargaining of Chatterjee et al.
(1993) to games with externalities. Both models are natural generalizations of the Rubin-
stein (1982) two-player alternating offers bargaining game.? A distinctive feature of these
models is that players respond to proposals according to a predetermined rule of order
and the first player to reject a proposal automatically becomes the next proposer. Com-
petition between the players is then very limited, as two players may continuously make
offers and counteroffers to each other without any other player having the opportunity to
step in.

The assumption that players, by making offers to each other, may exclude other play-
ers from the negotiations may not always be appropriate. Muthoo (1999) refers to this
question in his book:

In modelling this three player (one seller-two buyers) bargaining situation, one
should allow for the possibility that the two buyers may consider forming a
coalition, and then bargain with the seller over the sale (...). At the same
time, perhaps while the buyers are negotiating the terms and structure of
their coalition, the seller may have the opportunity to approach one of the
two buyers and negotiate to sell the house to her - a strategy intended to
prevent the formation of the buyers’ coalition. Clearly, such factors need to
be considered when modelling bargaining situations with three or more players.

The present chapter attempts to address this issue by considering an alternative model
of coalitional bargaining. This model has been studied by Binmore (1987) for two play-
ers, Baron and Ferejohn (1989) for symmetric majority games, and Okada (1996) for
characteristic function games. This chapter considers the extension to partition function
bargaining. The distinctive feature of this model is that a player who rejects an offer does
not automatically become the next proposer. Instead, proposers are selected randomly
by Nature. By giving less power to the responders, this model incorporates competition
between the players: any player may have an opportunity to ”step in” with a proposal
during the negotiations.

2Bloch (1996) also belongs to this family of models, even though it is not exactly an extension of
Rubinstein (1982) and Chatterjee et al. (1993) to games with externalities, since it assumes exogenous
rather than endogenous payoff division.
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As it is common in coalitional bargaining games, we assume that binding contracts
can be written over the division of the coalitional payoff, so that both coalition structure
and payoff division are determined endogenously. A player that has proposed a coalition
and a division of payoffs is committed to his proposal, and no other forward commitments

are possible.

Since the payoff of a coalition depends on the whole coalition structure, players may
have to take their coalition formation decisions without knowing what the payoff of the
coalition will be. This is not a problem since in equilibrium the probabilities of each
coalition structure can be calculated from the (equilibrium) strategies of the players and
thus the expected coalitional payoff is correctly anticipated.

In principle, the proposal could assign a different payoff division to each possible coali-
tion structure. Players could then calculate their expected payofls given the equilibrium
probabilities of each coalition structure, and decide whether to accept or reject the pro-
posal on the basis of these expected payoffs. Since it is only expected payoffs that matter,
we adopt the simplifying convention that the proposer offers a fixed payoff to the rest
of players in the coalition (he "buys the right to represent them”) and thus becomes the
residual claimant.

The partition function is assumed to be fully cohesive, that is, a merger of two or more
coalitions is always (weakly) profitable for a fixed partition of the remaining players. Two
possible extensive form games are considered, differing on the source of friction in the
bargaining process: a model with discounting of payoffs, and a model with an exogenous
probability of breakdown after a proposal is rejected. We will focus on the limiting
case in which frictions are arbitrarily small. The solution concept is stationary perfect
equilibrium.

The main focus of the analysis is on the efficiency (in the sense of aggregate expected
payoff maximization) of the outcome. Two relevant properties are immediate agreement
and formation of the grand coalition. These properties are sufficient for efficiency given
the assumptions, and also necessary if players discount the future and the grand coalition
is the only coalition structure that maximizes aggregate payoffs.

Agreement is always immediate in the model with discounting. Since time itself is
not valuable in the model with breakdown probability, it is not surprising that delay
can arise in equilibrium. Delay in this context does not imply a loss of efficiency; fur-
thermore, we show that a delayed agreement can only occur if it maximizes aggregate
payoffs. We also show that delay is not a generic phenomenon and that a player who
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creates delay in equilibrium by making an unacceptable proposal is playing a ”weak”
strategy in the sense that he could get the same payoff by making an acceptable pro-
posal to the grand coalition. One can derive the following practical rule from this re-
sult: if the grand coalition cannot arise in equilibrium, neither can agreement be de-
layed.

Two natural sufficient conditions are derived for the grand coalition to arise in equi-
librium given that all players have the same probability of becoming proposers. For the
model with discounting, the grand coalition must have the highest per capita payoff over
all coalition structures. For the model with probability of breakdown, the grand coalition
must have the highest per capita gain (with respect to the situation with no coalitions)
over all coalition structures.

Given an equilibrium of the extensive form game, one can construct a characteristic
function game by assigning to each coalition its expected equilibrium payoff. We show
that, for any equilibrium such that the grand coalition forms immediately and with prob-
ability one, expected equilibrium payoffs must lie in the core of this characteristic function
game.

Finally, the game with random proposers is compared to the game with a rule of
order studied by Ray and Vohra (1999). The game with random proposers guaran-
tees immediate agreement for fully cohesive games, unlike the game with a rule of or-
der. In general, the two games cannot be ranked in terms of efficiency. However, in
very specific cases, like symmetric games without externalities in which only one coali-
tion with positive value can form, the outcome of the game with random proposers is
at least as efficient as the outcome of the game with a rule of order. In this partic-
ular case, the higher efficiency of the random proposers game is achieved due to the
advantage of the proposer (which does not disappear in the limit when the frictions of
the bargaining process vanish), thus there is a trade-off between efficiency and distribu-
tion.

The rest of the chapter is organized as follows. Section 3.1 presents the two versions of
the random proposers model. Sections 3.2 and 3.3 are devoted to the efficiency properties
of the equilibrium. Section 3.4 relates efficient equilibria to the core of the characteristic
function game derived from the equilibrium strategies. Section 3.5 compares the game
with random proposers studied in this chapter to the game with a rule of order in Ray
and Vohra (1999). Section 3.6 concludes.
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3.1 The model

3.1.1 The partition function

Let N = {1,2,...,n} be the set of players. The non-empty subsets of N are called

coalitions.

Definition 3.1 A coalition structure 7 := {5, ..., S,,} is a partition of N into coali-
tions, hence it satisfies

S;NSk=@ifj£k UL S =N. (3.1)

The set of all coalition structures is denoted by II(NV). For any subset T' of N, the set
of partitions of T is denoted by II(T) with typical element 7.

Definition 3.2 An embedded coalition is a pair (S, 7) with S € 7.
The set of all embedded coalitions is denoted by E(N).

Definition 3.3 A partition function ¢ assigns a real number to each embedded coali-
tion (S, 7), thus ¢ : E(N) — R.

The value (S, 7) represents the payoff of coalition S given that coalition structure 7
forms.

Notation 3.1 Given a coalition structure = = {Sj, ..., S, } and a partition function ¢,
we will denote the m-dimensional vector (¢(S;, 7)™, by B(Si, ..., Sm). It will sometimes
be convenient to write down the partition function in terms of B. We will also denote
@©(N,{N}) by ¢(N) and the partition of N into singletons by (N). Analogously, the
partition of any set ' C N into singletons will be denoted by (T'). We will economize on
brackets and suppress the commas between elements of the same coalition. Thus, we will

write o({i}, {{i}, {4, k}}) as (3, {, ik}) and B({i}, {j, k}) as B, k).

Definition 3.4 A cooperative game in partition function form (a partition func-
tion game) is a pair (N, ¢), where N denotes the set of players and ¢ : E(N) — R.

Definition 3.5 A partition function game (N, ¢) is positive if

@(S,m) > 0 for all (S,7) and (S, ) > 0 for all (S,7), |S| > 2.
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Definition 3.6 A partition function game (N, ¢) is superadditive if for all = € II(N),
Si, S; € m, S; # S; it holds that

@(S; U Sj, (m\{Si, S;}) U{S: U S;}) = @(Si, ) + ¢(S;, 7).

Superadditivity means that a merger of any two coalitions is weakly profitable for a
given partition of the remaining players.

Definition 3.7 A partition function game (N, ¢) is cohesive if

o(N) > )" (S, ) for all (S,7) € E(N).
Ser
Cohesiveness means that total payoffs are maximized when players form the grand
coalition. Thus, starting from an arbitrary partition, a merger of all coalitions to form
the grand coalition is always weakly profitable.
If any merger of coalitions is weakly profitable for any given partition of the remaining
players, the partition function is called fully cohesive.

Definition 3.8 A partition function game (N, ) is fully cohesive if for all (S,7) €
E(N) and for all wg € TI(S) it holds that

(P(S» 7T) 2> Z ‘p(Tv (ﬂ'\{S}) Ums).

Tens

Notice that cohesiveness and superadditivity are independent properties, both of them
weaker than full cohesiveness.?> The following examples illustrate these three properties.

Example 3.1 A game that is superadditive but not cohesive

N=1{1,2,3}
%(1,2,3) = (3,3,3)
B(ig, k) = (7,0)
?(123) =8

Even though any merger of two coalitions is profitable, total payoffs are maximized
when all players remain singletons. The externality that a two-player merger imposes on
the outsider is stronger than the internal gain, thus the game is not cohesive.

3For the particular case of games in characteristic function form, superadditivity and full cohesiveness
are equivalent.
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Example 3.2 A game that is cohesive but not superadditive
N={1,2,3}
$(1;2,3) =(1,1,1)
(ij, k) = (0,3)
P(N) =5

Example 3.3 A game that is cohesive and superadditive but not fully cohesive
N ={1,2,3,4}
2(1,2,3,4) = (3,3,3,3)
®(ig, k1) = (7,0,0)
?(ijk,1) = (8,0)
i, k1) = (2,2)
B(N)=15

The merger of any two coalitions is profitable and the grand coalition achieves the
highest payoff, but the merger of three singletons is unprofitable.

Example 3.4 A game that is fully cohesive
N ={1,2,3,4}
%(1,2,3,4) =(1,1,1,1)
P(ij, k,1) = (3,0,0)
Blijk,1) = (3,0)
P(ig, kl) = (1,1)
P(N) =4

This example shows that full cohesiveness does not imply that going from a finer to a
coarser partition will always improve payoffs. Starting from the situation where all players
are singletons, full cohesiveness implies that any two of them would profit from merging.
Moreover, starting from a partition of the type {ij, k,[}, full cohesiveness implies that
k and [ would profit from merging. Nevertheless, starting from the partition {i, j, k, [}
players need not benefit by forming the coarser partition {7, kl}, as the example shows.

Example 3.4 also shows that a partition function may be fully cohesive while at the
same time the formation of coalitions can only reduce aggregate payoffs.

Assumption 3.1 We will assume in most of this chapter that the partition function is
fully cohesive; for some of the results we will also assume it to be positive.
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3.1.2 The noncooperative bargaining game

The noncooperative bargaining procedure described in this section was introduced by Bin-
more (1987) in the context of two-player bargaining games, and later extended by Baron
and Ferejohn (1989) to symmetric majority games, and by Okada (1996) to characteristic
function games. This chapter considers the extension to partition function games.

We will consider two versions of the bargaining game, depending on the source of
friction: the game with discounting and the game with breakdown probability.

The game with discounting

Time is discrete and indexed by ¢t = 1, 2... Given the underlying partition function game
(N, ¢), bargaining proceeds as follows:

e Nature selects a player randomly to be the proposer according to the probability
vector 6 := (0;)icn, where 6; > 0 for all i € N and ), 0; = 1. This probability
vector is called a protocol. If 6; = % for all 7 it is called symmetric or egalitarian
protocol, denoted by 6%.

e The proposer i makes a proposal (S, z5\{}) where S is a coalition to which i belongs
S\{1}
9

the payoff player 7 will receive provided that all players in S accept the proposal

and z5\(}= (Zf\{i))jeS\{i) is a payoff vector. The jth component x represents
and that a coalition structure is formed. Thus, we can think of ¢ as "buying the
right to represent coalition S ”.

e Given a proposal, the rest of players in S (called responders) accept or reject se-
quentially (the order does not affect the results).

e If all players in S accept, S is formed and bargaining continues between players in
N\S provided |N\S| > 1. A player j will then be selected to be the proposer with
probability 0 if he belongs to S and with probability m’\s—ek if he does not.

e If at least one player in S rejects, the game proceeds to the next period in which
Nature selects a new proposer according to 6.

e Players are risk-neutral and share a discount factor § < 1. We will think of § as
being close to 1.
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e When a coalition structure 7 is formed®, each coalition S € 7 gets (S, 7). Coali-
tions of more than one player share this payoff in the following way: the player i
whose proposal to form S was accepted pays zf\{i} to each responder j in S\{7}
and gets the residual payoff (S, 7) — 3" S\{i} xf\m. This payoff may be negative
(we assume players are not financially constrained). Thus, if a coalition structure
is formed at time ¢, each player in S other than i receives 6"1:5;?\{'} and 7 receives
8 p(S, ) — > jes\ii} :cf\{'}] (we refer to payoffs evaluated at t = 1). If no coalition
structure is formed, all players receive zero.

We assume a period elapses after a proposal is rejected, but not after a coalition
is formed. One may alternatively assume that a period elapses in both cases without
affecting the results in any essential way.

Definition 3.9 A (pure) strategy for player 7 is a sequence o; = (o!);-,, where !, the
tth round strategy of player ¢, prescribes

(i) A proposal (S, z5\}),

(i) A response function assigning "yes” or "no” to all possible proposals of the other
players.

Notice that since no time elapses after a coalition is formed there may be several
"stages” at time ¢, each of them with a smaller set of remaining players than the previous,
and each player taking an action in at most one of these stages.

The solution concept is stationary perfect equilibrium.

Definition 3.10 A stationary perfect equilibrium is a subgame perfect equilibrium
with the property that the strategies of the players depend only on the set of coalitions
that have already formed, my\r, and the current proposal.

Definition 3.11 An equilibrium is efficient if it maximizes the aggregate payoffs of the
players.

Efficiency in the game with discounting implies two requirements: immediate agree-
ment and formation of a coalition structure with maximal aggregate payoffs.

4Formally, let R, be the set of players who have not yet formed a coalition at the end of period t. If
|R:| € {0,1} and |R¢—1| > |Re|, we say that a coalition structure has formed at time t.
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Notation 3.2 We will denote the extensive form game described above by G(N, ¢, 8, 6).
We will also introduce notation for the reduced games.

Definition 3.12 A reduced game is a subgame starting immediately after a coalition
is formed.

Once a certain set of players NV\T have formed coalitions, bargaining continues among
the players in 7. Players in T face the partition function game (7', "™ \7), where the
partition function ¢™\7 : E(T) — R is obtained from ¢ by fixing mn\7.

Notation 3.3 We will denote the reduced game arising after the partition 77 has
formed by G(T, ¢™\7 6, 6).

The game with breakdown probability

This game is identical to the game with discounting, except in the source of friction in
the bargaining process. In a game with breakdown probability:

e Players do not discount future payoffs.

e After a proposal is rejected Nature selects a new proposer with probability p (we
will again think of p as being close to 1) and a breakdown of the negotiations occurs
with probability 1 — p.

o If a breakdown of the negotiations occurs, all players that did not form a coalition
yet remain singletons. Thus, if we denote the set of remaining players by 7" and the
set of coalitions already formed by 7n\7, a breakdown of the negotiations induces
the partition my\7 U (T').

e Payofls are as in the previous game but undiscounted. Thus, when a coalition struc-
ture 7 is formed, coalitions containing more than one player share the coalitional
payoff in the following way: player ¢ whose proposal to form S was accepted pays
zf\{i}to responder j and gets the residual payoff p(S,m) — 3, 6\ o zf\{i}, and each
singleton {k} receives o(k, ).

Unlike in the game with discounting, delay by itself does not imply a loss of efficiency.

The possibility of breakdown implies that a coalition structure forms with probability 1
in this game no matter what strategies are played (either players agree to it, or breakdown
will eventually occur).
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Notation 3.4 We will denote the extensive form game with breakdown probability by
G(N,,0,p) and the reduced game arising after partition my\r has formed by
G(N,¢™\7,0,p).

Expected payoffs and continuation values

Let o be a combination of stationary strategies. Suppose that no coalitions have formed
yet. Thus, we are at the beginning of the game or at a subgame that is equivalent to the
beginning of the game. We will denote the ezpected payoff of player i given ¢ by w;(o).
This expectation is computed before Nature draws the proposer. We will denote by wf (o)
the expected payoff for player i given that player j has been selected to be the proposer.

Suppose now a proposal has been made to player i. The expected payoff of player 7 if
he rejects a proposal is called the continuation value of player i and will be denoted by
(o). This is also i’s expected payoff if somebody else other than 7 rejects a proposal.

In the game with discounting, it holds that z;(¢) = éw;(o). In the game with proba-
bility of breakdown, z;(0) is a convex combination of w;(c) (with weight p) and ¢ (i, (N))
(with weight 1 — p).

Because the strategies are stationary, these values are the same at any subgame pro-
vided that no coalitions have formed yet. The definitions are analogous for a reduced

game. We will denote player i’s expected payoff in the reduced game arising after ma\r

TN\T TN\T
3 i

has formed by w; *\" (¢), and his continuation value by z (o). We will drop o from the

notation when no confusion can arise.

The ordering of the responders and the identity of the proposer

The order in which the responders accept or reject a proposal need not be specified, since
it has no practical relevance. In any subgame perfect equilibrium, a player accepts any
proposal that gives all the responders at least their continuation values. If a proposal
gives one of the responders less than his continuation value, it will be rejected (possibly
by another responder). Since the consequences of a rejection are the same regardless of
which player rejected the proposal, the order in which players respond to a proposal does
not affect the results.

The identity of the proposer will also be of little relevance in the following sense:
whether a payoff vector 25\ will be accepted or rejected does not depend on the identity
of the proposer i. What matters is how this payoff vector compares with the continuation
values of the players in S\{i}, and stationarity implies that the continuation values are
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independent of who made the last rejected proposal.

Buying the right to represent a coalition

We assume that the proposer offers a fixed payoff to the responders, rather than a payoff
contingent on the coalition structure that eventually forms. This assumption is without
loss of generality since players are risk-neutral, not financially constrained and the solution
concept is stationary perfect equilibrium. Given a proposal to form S with a contingent
payoff division, players can compute expected payoffs using the probability that each
coalition structure will form (stationarity implies that these probabilities are independent
of the payoff division in S), and they will accept or reject on the basis of expected payofs.

3.2 No-delay results

Given a strategy combination, we will say that a coalition structure forms without delay
in equilibrium if equilibrium strategies are such that all proposals that are made with
positive probability will be accepted. In all other cases (thus also in the extreme case
when players never make acceptable proposals), we will speak of possible delay.

3.2.1 The game with discounting

Theorem 3.1 states that a coalition structure will form without delay if the underlying
partition function is fully cohesive and positive. This theorem is an extension of theorem
1 in Okada (1996) to partition function games. The proof rests on the following lemma:

Lemma 3.1 Consider a positive and fully cohesive game (N, ). In any stationary perfect
equilibrium o* of the game G(N, p,0,6) it holds that

(i) Tienwi(a*) < p(N).
(i) Fierw; " (o) < g™ (T).

Proof. Since the game is positive and fully cohesive, the maximum aggregate payoff
for the players is achieved if the grand coalition is formed immediately. Delay of the
agreement or formation of subcoalitions can only reduce aggregate payoffs.® The same
reasoning applies to any reduced game. m

SNotice that this result holds for any strategy combination, not necessarily an equilibrium.
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Theorem 3.1 Consider a positive and fully cohesive game (N, ©). In any stationary per-
fect equilibrium o* of the game G(N, ¢, 0, 6), a coalition structure is formed without delay.

Proof. Consider any stationary perfect equilibrium o*. Let u(r‘|(c*,S)) be the
probability that coalition structure 7 is formed at time ¢ given that players follow ¢* and
that S is the first coalition to form. For every i = 1,...,n, let m;(c*) be the maximum
value of the following maximization problem

max Z Z”(ﬂ"l(a*’S))y—l B[S ) — Z y;S‘\{i)

S,yS\i} : :
TEI(N) t=1 jeS\{i}
Sem

s.t. ieSCN

o0
* o, S l *
> D u(r(e,8)8 T 4 > buy(07)
Tel(N) t=1
Sew
We will show that w}(c*) = m;(c*), that is, the expected payoff for player i given that
he is selected to be the proposer and follows his equilibrium strategy equals the expected
payoff for player 7 given that he makes the proposal that solves the maximization problem
above.

Subgame perfection implies w}(c*) > m;(c*). In a subgame perfect equilibrium all
responders accept any proposal that gives each responder j at least dw;(c*) in expected
terms, thus player i can get at least m;(c*).

On the other hand, player ¢ cannot get more than m;(c*) in equilibrium. If player i
proposes (S, y"\) with 3=, cnw), sex Sz #(7'1(0°,8)8' [0(8,7) = Tieargy ¥y ) >
m;(c*), the proposal will be rejected (otherwise at least one responder j is getting less than
éw;(c*) and could do better by rejecting the proposal) and i will get dw;(c*). Lemma 3.1
states that ) ..y wi(0*) < ¢(N). This inequality implies that player i could have proposed
the grand coalition, paid every other player j w;(c*) and kept at least w;(c*) for himself.
Thus, m;(c*) > wi(o*) > dw;(c*).

Since player 7 can always get m;(c*) (by making the optimal acceptable proposal) and
he cannot get more than m;(c*) (unacceptable proposals yield at most m;(c*)), it follows
that wi(c*) = mi(0*).

To prove that player ¢ strictly prefers to make acceptable proposals, we must prove
bw;(0*) < my(0*). Since w;(c*) < my(0*) and § < 1, dwi(c*) = mi(c*) would imply
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wi(o*) = m;(o*) = 0. Since 3,y w;(0*) < p(N), it follows that m;(o*) > (1—-6)p(N) >
0 (any player can get a strictly positive payoff as a proposer by exploiting the cohesiveness
of the partition function and the impatience of the other players).

Notice that the same reasoning applies to any reduced game, so that the whole coalition
structure forms without delay. m

‘We have assumed that the proposer pays the responders after a coalition structure has
formed. If instead the proposer pays the responders immediately after S is formed, the
objective function of the proposer becomes 3 cp(y) ser S, u(mt| (%, 8))6 (S, ) —
Ejes\{i} yf\(i} , and the constraint becomes yjs\{i} > dwj(o*). Notice that the reasoning
of the proof is also valid for this case.

Corollary 3.1 Consider a positive and fully cohesive game (N,p). In any stationary
perfect equilibrium o* of the game G(N, ¢,0,6), every player ¢ in N proposes a solution
of the following maximization problem

* S\{i}
Jmax, > ulxl(@,9) leS,m) - > (3:2)
n€ell(N) JjeS\{i}
Sern
st. ieSCN

yf\{i} > bw;(o)

The proposer makes a proposal that maximizes his own payoff subject to the proposal
being accepted. Since players are risk-neutral, what matters for the proposer is his ex-
pected payoff. Player i’s payoff as a proposer depends on the equilibrium strategies of
the other players through the probabilities u(7|(c*,S)) and the expected payoff vector
(wj(0*))jen\(iy- The expression for player i’s expected payoff incorporates the fact that
there is no delay in equilibrium.

Corollary 3.2 Consider a positive and fully cohesive game (N, ). In any stationary
perfect equilibrium of the game G(N, p,0,6), every player ¢ in N has a strictly positive
expected payoff.

As we have seen in the proof of theorem 3.1, a player can get a strictly positive expected
payoff as a proposer by exploiting the impatience of the other players together with the
cohesiveness of the partition function. As a responder, he can guarantee himself a zero
payoff by rejecting all proposals and possibly becoming a singleton.
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Corollary 3.3 Consider a positive and fully cohesive game (N, ). Every player i gets a
higher payoff as a proposer than as a responder.

This follows from the fact that m;(c*) > dw;(c*).

Remark 3.1 From the proof of theorem 3.1 we can rank the three following payoffs: the
payoff a player gets as a proposer, his expected payoff before the proposer is selected, and
his payoff as a responder, namely

mi(o*) = wi(c*) > wi(o*) > w!(0*) = bwi(c*).

We have assumed that the partition function is positive. This assumption plays an
essential role in the proof of theorem 3.1. First, the grand coalition must have a strictly
positive payoff or players would (weakly) prefer to bargain forever. Second, to make sure
that the whole coalition structure is formed without delay, all subcoalitions must have a
strictly positive payoff so that the argument can apply to every possible reduced game.
Singletons are an exception since they are not always formed voluntarily (that is, if only
one player is left the singleton coalition is formed automatically). The arguments in the
proof would still go through if singletons could have negative payoffs, but we have chosen
to keep the partition function positive.

We have limited the analysis to positive partition functions mostly for reasons of in-
terpretation. Since the extensive form game is such that players do not receive payoffs
until a coalition structure is formed, the use of this game to model partition function
bargaining seems only appropriate for situations in which coalitions get positive pay-
offs. Imagine a situation of conflict: once a coalition is formed, it may be that the
players outside the coalition can only get negative payoffs. Then these players would
prefer not to reach an agreement, and no payoffs would be realized since a coalition
structure has not been formed. This does not seem to be a feasible alternative in ac-
tual conflicts.® This example shows that "normalization” of payoffs is not without loss
of generality in this game (only normalization by multiplying by a positive constant is
innocuous).”

We include a counterexample that shows that delay may arise if the partition function

is not positive. A counterexample that shows that delay may arise if the partition function
is not fully cohesive can be found in subsection 3.2.3.

One can assign utilities different from zero to the outcome of perpetual disagreement. However, this

seems paradoxical: when are these payoffs realized?
"This fact was first pointed out by Fishburn and Rubinstein (1982).
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Example 3.5 Delay with a partition function that is not positive
N={1,2,3}
?(1,2,3) = (-1,-1,-1)
B(ig k) = (-2,-2)
?(123) = -3

This partition function is fully cohesive but not positive. There are many stationary
perfect equilibria, all of them ending in perpetual disagreement. For example, all players
may make unacceptable proposals (offering to each responder a payoff of less than zero).
It may also be that the first player to be selected forms a singleton coalition, and then
the other two players never reach an agreement.

3.2.2 The game with breakdown probability

In contrast to the game with discount factor, delay is not completely excluded in the
game with breakdown probability. However, delay will not be a generic phenomenon.
Even though players do not discount payoffs, the possibility of a breakdown will induce
players to reach an agreement unless players have nothing to lose by the breakdown, which
generically is not the case in fully cohesive games. Furthermore, possible delay implies
efficiency in the subgame where it arises.

Notice that the eventual formation of a coalition structure is guaranteed by the struc-
ture of the game.

Remark 3.2 In any stationary perfect equilibrium of the game G(N, p,0,p) a coalition
structure is eventually formed.

Because a breakdown of the negotiations occurs with positive probability every time a
proposal is rejected, a coalition structure will eventually form even if players never make
acceptable proposals.

Notice that, unlike in the game with discounting, players cannot ”escape” negative
payoffs by making unacceptable proposals. This is the reason why in this section we
assume only that the game is fully cohesive, and not that the game is positive.
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Lemma 3.2 Consider a fully cohesive game (N, ). In any stationary perfect equilibrium
o* of the game G(N, ¢, 0,p) it holds that

(i) Yien z(0*) < @(N).
(i) Tiepa ¥ (@) £ @™ (T).

Proof. Since the game is fully cohesive and a coalition structure always forms, the
maximum total payoff for the players is achieved if the grand coalition is formed. The
formation of subcoalitions (or the breakdown of the negotiations) can only reduce total
payoffs. The same reasoning applies to any reduced game G(T', 9™\, 0, p). =

Theorem 3.2 Consider a fully cohesive game (N, ). Suppose there is a stationary perfect
equilibrium o*, a reduced game G(T,p™\7,0,p) and a player i in T such that player
makes unacceptable proposals with positive probability in G(T, "™\, 0,p). Then

(i) Player i could get the same payoff by making an acceptable proposal to the grand
coalition (of the remaining players) T.

(i) Yier 7V (6%) =™ (T).

Proof. Foreveryi = 1,...,n, recall that w] (0*) denotes player i’s equilibrium expected
payoff conditional on player j becoming the proposer at time 1. Analogously to the game
with discounting, we denote by m;(c*) the maximum payoff the proposer can get given
that he makes an acceptable proposal. In the game with breakdown probability, m;(c*) is
the value of the following maximization problem

max Y pu(rl(@*,9)e(S,m) - Y g2

n€ell(N) jes\{i}

where p(m|(c*, S)) is the probability that coalition structure  is eventually formed given
that players follow o* and that S is the first coalition to form, and z;(c*) is the continua-
tion value for player j, that is, the expected payoff for player j when he rejects a proposal.
Notice that since payoffs are not discounted, the time at which a coalition structure is

formed does not matter for payoffs. We show that w}(c*) = m;(c™).
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Subgame perfection implies w}(c*) > m;(c*). In a subgame perfect equilibrium all
responders accept any proposal that gives each responder j at least z;(0*) in expected
terms, thus player ¢ can get at least m;(c*).

On the other hand, player i cannot get more than m;(c*). If player i proposes
(S, y°\i}) with 2 ren(vy 1Tl (0%, 8))p(S, 7) — 2 jes\(i} yf\{i} > m;(o*), the proposal will
be rejected (otherwise at least one responder j is getting less than z;(¢*) and could do
better by rejecting the proposal) and i will get z;(c*). Since the game is cohesive, lemma
3.2 implies that 3 jen 2i(0*) < @(N). Therefore, player i could have proposed the grand
coalition, paid every other player j z;(c*) and kept at least z;(c*) for himself. Thus,
m;(o*) > z(0*), and m;(c*) = z;(c*) only if > jen 2i(0*) = p(N).

The previous reasoning applies to delay in the formation of a coalition given that the
set of remaining players is N. Since the game is fully cohesive, the same reasoning applies
to the occurrence of delay in any reduced game. m

Since player i weakly prefers to propose the grand coalition (of the remaining players)
and offer each of the other players his continuation value, a stationary perfect equilibrium
in which agreement is delayed is "weak”. Theorem 3.2 also implies that if players would
have lexicographic preferences (preferring to agree earlier than later holding everything
else constant) then all stationary perfect equilibria would exhibit immediate agreement.

Since players do not discount the future, delay is not a source of inefficiency. Fur-
thermore, possible delay in a subgame implies efficiency in the subgame as the following
corollary shows.

Corollary 3.4 Consider a fully cohesive game (N, p). Suppose there is a reduced game
G(T,¢™\7,0,p) exhibiting possible delay. Then

(i) The final outcome is always efficient for this reduced game.
(1) Yier @™ (i, (T)) = o™\7(T).
Proof. We make the reasoning for the case of possible delay in the formation of the
first coalition. The same reasoning applies to any reduced game.

The sum of the continuation values, Y, y 2, is a convex combination of the sum of
the expected payoffs given that Nature continues the game (with weight p) and the sum
of expected payoffs if breakdown occurs (with weight 1 — p). Each of these sums is at
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most ¢(N). Since possible delay implies 3"._, 2z = ¢(N), in an equilibrium with delay
both sums must be equal to ¢(N). Given that players can never get more than ¢(N),
Y ien 2 = @(N) implies that after a proposal is rejected equilibrium strategies are such
that players always (and not only on average) get ¢(N). This must also be the case
at the beginning of the game because of stationarity, thus efficiency is always achieved.
In particular, the sum of expected payoffs if breakdown occurs, Y.y ¢(i, (N)), equals
p(N). =

Corollary 3.4 implies that delay will not be a generic phenomenon, since it requires
Yier @™\ (i, (T)) = ¢™\7(T). This condition means that the total payoff of the players
that remain in the game can never be higher than the total payoff they would obtain as
singletons, so that the formation of coalitions can only bring inefficiency (though not in
equilibrium).

Lemma 3.2 and theorem 3.2 suggest the following practical rule:

Corollary 3.5 Let o* be a stationary perfect equilibrium. Let (z;(0*))ien be the corre-
sponding continuation value vector. Consider the situation of player j as a proposer. If
proposing the grand coalition is not a best response for j against o* ;, making unacceptable
proposals cannot be a best response either.

This corollary follows directly from the fact that in any stationary perfect equilibrium,
any player weakly prefer to propose the grand coalition rather than to make unacceptable
proposals.

Corollary 3.5 will be of use while looking for a stationary perfect equilibrium (if the
grand coalition is excluded as an equilibrium proposal, unacceptable proposals are au-
tomatically excluded as well) or while testing a candidate stationary perfect equilibrium
against deviations (if deviation to proposing the grand coalition is not profitable, deviation
to a proposal that will not be accepted cannot be profitable either).

3.2.3 An example of possible delay with a partition function
that is not fully cohesive

This subsection provides an example of a partition function that is superadditive but
not fully cohesive, and shows that delay is possible in equilibrium. Since the game
with discounting and the game with breakdown probability are equivalent provided that
©(i, (N)) = 0 for all i € N, example 3.6 is valid for the game G(N, ¢,6,p) as well as for
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G(N, ¢,0,6). The proof uses the notation of the game with discounting (rephrasing the
proof in the terms of the game with breakdown probability is straightforward).

Example 3.6 N = {1,2,3,4,5,6,7,8,9}, 6, = 5 for all 4.

We are going to consider a symmetric game. Since the number of players is large, we
will depart from our usual notation and denote each coalition by its size.

2(4,2,3) = (16,12,9)

7(6,3) = (28,2)

©(2,5,2) = (1,20,1)

?(5,4) = (21,3)
2,7) = (2,25)
?(9) =30

For the other coalition structures, it holds that, regardless of how the rest of the players
are distributed, singletons get 0 and coalitions of size s > 1 get a payoff of s. Thus, for
example, $(6,2,1) = (6,2,0). Notice that this partition function is superadditive.®

This example is based in the following idea: a coalition structure of the type (4,2, 3)is
going to arise in equilibrium. In order for this to be the case, coalitions have to form in a
given order: a coalition of size 2 is the most attractive in terms of per capita payoffs, but
it cannot form first because then a coalition of size 5 would follow and the coalition of size
2 would have a low payoff. A coalition of size 4 would give rise to the coalition structure
(4,2,3), but it cannot form immediately, because then it would be more profitable in
expected terms to wait until someone else forms the coalition of 4 and then be in the
coalition of 2 or in the coalition of size 3 (the lottery of being either in a coalition of size
2 or in a coalition of size 3 is more attractive than being in the coalition of size 4 for
sure). There is an asymmetric equilibrium in which some players form a coalition of 4
and others wait, thus delay is possible.

Consider the partition (4,2, 3) as a candidate equilibrium partition (in the calculations
below, all the numerical values are computed for § — 1). We will first consider fully
symmetric equilibria (that is, equilibria in which all players propose a coalition of the same

8The game in this example is not cohesive. It is easy to construct an example of possible delay in
a cohesive game by using this example as a subgame. For example, consider a symmetric game with
20 players such that the first proposer will propose a coalition of size 11. Given that this coalition of
11 has formed, the subgame with 9 players is identical to the game in example 3.6. To make the game
cohesive and to ensure that the coalition of 11 players will form, set B(11,4,2,3) = (1100, 16,12,9), and
#(N) = 1137 (and $(15,2,3) = (1116, 2,3), B(11,6,3) = (1100, 28,2)...).
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size and, in doing so, they propose to each of the other players with equal probability.
This implies that, for any reduced game, all the players have the same expected payoff).
We first check that coalition structure (4,2,3) cannot form in equilibrium starting
from a coalition of size 2.
Suppose the formation of a coalition of size 2 is followed by a coalition of size 4 and
then by a coalition of size 3. Then the expected payoffs’ (after the formation of a coalition
of size 2) would be given by

w= ;(16 — 36w) + g [%610 + %3] .

This equation reflects the fact that, when a player is selected to be the proposer
(with probability -}) he proposes a coalition of size 4. If the player is not selected to be
the proposer (with probability £) he will be a responder with probability % (since the
proposer will form a coalition of size 4 and all the remaining players will have the same
probability to be responders) and he will be left out with probability %. In this case, a
coalition of the three remaining players would form without delay, so that each of the
three players will have an expected payoff of 3.

The solution to the equation is w = -275- The proposer gets then about 3—77 However,
he could do better by proposing a coalition of size 5 and, counting on the fact that the
remaining two players will form a coalition, get 20 — 4 * g_{g = .

If a coalition of size 3 were to follow the coalition of size 2, this would not be an
equilibrium since the players would rather wait than form the coalition of size 3. Expected
payoffs (taking into account that a coalition of 4 will form after the coalition of 3) would
be

1 6[2 4
w = 7(9 — 26w) + 7 [Eéw + E4J .

This yields w = 2. The proposer would get 9 —2* 2 = 1 < 2. He would then

prefer to wait, hoping to be in a coalition of size 4 later on.!?

9We will denote all the expected payoffs by w (without subindex since it will be the same for all
players and without superindex to simplify notation, hoping that no confusion will arise). We will also
omit from the notation the strategy combination with respect to which expected payoffs are computed.
10In general, if the partition function and the protocol are symmetric and the equilibrium is such that

players are to be divided into two coalitions with different per capita payoffs, the coalition with the
highest per capita payoff should form first (or players would prefer to wait, hoping to be in the second
coalition). See also subsection 3.5.4 on the role of per capita payoffs.
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Suppose a coalition of 4 forms first, and this is followed by a coalition of size 2 and
then by a coalition of size 3. It is clear that a coalition of size 3 would form, given that the
two other coalitions have formed. It is also easy to check that a coalition of size 2 would
follow a coalition of size 4. Thus, (4,2, 3) would be an equilibrium coalition structure if a
coalition of size 4 forms in the first place. But will this be the case? Suppose a coalition
of size 4 forms without delay. Then the expected payoff at the beginning of the game, w,
would be given by the following equation:

1 83 5(2, 3
w= 5[16—3(5’(1}]4-5 [§6w+§ (-5-6+g3>:| ;

This yields w = % > 4. This cannot be an equilibrium for high values of § since the
proposer would get a higher payoff by making an unacceptable proposal.

The reason why forming a coalition of size 4 cannot be an equilibrium is that waiting
(hoping to get into the coalition of size 2 later on) is a more attractive alternative.

Analogously, coalition structure (4,2,3) cannot form starting by a coalition of size 3
because, even though a coalition of 2 and then a coalition of 4 would follow a coalition of
3, the coalition of 3 would not form in the first place.

There is an equilibrium in which coalitions of sizes 4,2, and 3 form in this order,
but this equilibrium exhibits possible delay. Suppose four of the players make acceptable
proposals to each other (of forming a coalition of size 4) and the other five "wait” in
the hope of getting into a coalition of size 2. The two groups of players may now have
different expected payoffs, so we will denote them by w; and wy, respectively.

1 8
w, = § [16 = 3611)1] + 6611)[
5 4 (2 3
wp = §5wh + § (56 + 53)

This system yields w; = 52%; and w;, = E(—g%a—)'

‘We only have to check that a proposer whose continuation value is w; prefers to propose
the coalition of 4 (and get approximately 4). Alternatively, he could propose a coalition
of 3 and get approximately 9 — 8 = 1, a coalition of size 2 and get a negative payoff (since
a coalition of 5 will follow a coalition of 2), a coalition of 1 and get 0, a coalition of 5
or 6 and get a negative payoff (since this would be followed by a coalition of 3 and 2
respectively), a coalition of 7 and get 0.4, a coalition of 8 and get a negative payoff, or
the grand coalition and get —3.
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In fact, coalitions of size 4, 2 and 3 have to form in this order. A coalition of size 3
cannot be the first coalition to form, even with delay, because then players would prefer
to form a coalition of 4 first.

One may also wonder whether there are asymmetric equilibria without delay. This
does not seem to be the case. The reason is the following: we have managed to construct
an equilibrium where some players form a coalition of 4 and some others wait. Thus, some
players will be in a coalition of size 4 with probability 1 in equilibrium, and this is what
makes their expected payoffs close to 14—6 = 4. If we want both a coalition of 4 players
forming first and no delay, all players have to propose a coalition of 4, but this implies
that some player will be in the coalition of 4 with probability less than 1 and thus have
expected payoffs larger than 4 (since the expected payoff from being left out of the size
4 coalition, 26 + 23 = 2, is larger than the expected payoff from being in it!!, 8) and
players would prefer to make unacceptable proposals rather than follow their prescribed

strategies.

3.3 Formation of the grand coalition

In this section, we will provide sufficient conditions for the existence of a no-delay sta-
tionary perfect equilibrium in which the grand coalition forms with probability 1 (we
will say that those equilibria exhibit immediate formation of the grand coalition). These
conditions are different for the game with discounting and the game with breakdown
probability.

We will assume in this section that the partition function is cohesive (for the game
with discounting, we will also assume it to be positive). Immediate formation of the
grand coalition implies efficiency for cohesive partition function. For strictly cohesive
partition functions'? it is also the only efficient possibility.'* The question of existence
of an equilibrium with immediate formation of the grand coalition is then most interest-

'We use the fact that all players must have the same expected payoffs in the reduced game.
12 A partition function game is strictly cohesive if

@(N) > Y~ (S, 7) for all (S,7) € E(N), SC N.
Sen

131n the game with breakdown probability, the outcome may be ez post efficient even if the agreemement
is not immediate, but in expected terms there is an inefficiency due to the possibility that breakdown
occurs.
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ing for strictly cohesive games. However, we will provide examples showing that strict
cohesiveness is neither necessary nor sufficient for immediate formation of the grand coali-

tion.

3.3.1 The game with discounting
The following lemma will be useful
Lemma 3.3 Let (N, ¢) be a partition function game. Suppose there is a stationary perfect

equilibrium of the game G(N, ¢, 0,6) with immediate formation of the grand coalition.
Then the expected payoff for player i equals

w; = Bip(N). (3.3)

Proof. If all players make acceptable proposals to form the grand coalition, the
expected payoff for player ¢ can be found from the following equation

wi =0 [p(N) =6 > w;| +(1—6:)6w.
JEN\{i}

Re-arranging terms yields

w; = 0; |i(p(N) — 6211}]“ + bw;.

jEN
Using 3.y w; = (N), we obtain w; = 6;0(N).

Theorem 3.3 Let (N, ) be a positive and cohesive partition function game. There exists
a stationary perfect equilibrium of the game G(N, ¢, 0, 8) with immediate formation of the
grand coalition if

Y " 0;0(N) > (S, 7) for all (S,7) € E(N). (3.4)
jes
Proof. Suppose all players make acceptable proposals to form the grand coalition.
Expected payoffs are then given by (3.3). This strategy combination is an equilibrium if
no proposer can do better by proposing some other coalition S. If the proposer proposes
to form the grand coalition, his payoff is p(N) — § 2jem iy 0ip(N).
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structure that eventually forms. A sufficient condition for a deviation not to be profitable
is that it is not profitable for any coalition structure, even in the most favorable case of
this coalition structure forming immediately (delay would only reduce the payoff of the
proposer), thus

P(N) =6 > 8;0(N) > @(S,m) =6 Y 8;p(N) for all (S,7) € E(N).
JEN\{i} jes\{i}

Re-arranging terms, we obtain

P(N) =6 > 0;0(N) > @(S,m) for all (S,7) € E(N).
JEN\S

If we want this condition to hold for all é, it is sufficient that it holds for 6 = 1.
Substituting § = 1 and re-arranging, we obtain condition (3.4).

So far we have considered deviations to acceptable proposals only. The fact that the
partition function is positive and cohesive ensures that players prefer to propose the grand
coalition rather than make unacceptable proposals. m

Corollary 3.6 If all players are selected to be the proposers with the same probability,
the sufficient condition (3.4) becomes

e(N) _ (S, )
—ITI > T for all (S,m) € E(N). (3.5)

Condition (3.5) means that the grand coalition has the highest per capita payoff of all
possible embedded coalitions. It also implies that the partition function game is cohesive
(but not necessarily fully cohesive). The assumption of cohesiveness in theorem 3.3 is in
this sense redundant, but we have preferred to keep it explicit.

Notice that the egalitarian division %%2 is predicted by the Nash bargaining solution
for the unanimity game in which only the grand coalition can form. The interpretation
is that the equilibrium of the game is robust to the introduction of ”"small” gains from
partial cooperation. The possibility of forming subcoalitions does not affect the outcome
if they are not profitable compared to what players get in the grand coalition. In order

words, the formation of subcoalitions is not credible.
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3.3.2 The game with probability of breakdown

Lemma 3.4 Suppose there is a stationary perfect equilibrium of the game G(N, g, 8, p)
with immediate formation of the grand coalition. Then the expected payoff for player i

equals
wi = (i, (N)) +6; [cp(N) = z; G, <N>)] (3.6)

and his continuation value equals
z = (i, (N)) + pb; [so(N) - Z; (s, <N>)] . (3.7)

Proof. If all players propose the grand coalition and these proposals are accepted,
the continuation value for player ¢ can be found from the following equation:

2 = pb; [‘P(N) - ¥ zj] +p(1 = 0:)z + (1 - p)e(i, (N)).

JEN\{i}

Re-arranging terms yields

z; = pb; [w(N) -3 zJ] +pzi + (1 = p)e(i, (N)).

JEN

Substituting for 37y z; = pp(N) + (1 = p) 3,y ¢4, (N)) and solving for z;, we
obtain (3.7). Using z; = pw; + (1 — p)p(i, (N)), we obtain (3.6). m

Theorem 3.4 Let (N,¢) be a cohesive partition function game. There exists a station-
ary perfect equilibrium of the game G(N, ¢, 0,p) with immediate formation of the grand
coalition if

ZG [cp(N) Zgo(], (N)) } > (S, ) Z<p 7, (N)) for all (S,7) € E(N). (3.8)

JES JEN JES

Proof. Suppose all players make (acceptable) proposals to form the grand coalition.
Then the payoff a player gets as a responder is given by (3.7) and the payoff he gets as a

proposer is given by o(N)—p 3 v 1y 05 [w(N ) = 2jen PU (N ))} =2 jem iy #U, (V)))-
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If player 7 proposes another coalition S, his payoff will depend of the coalition structure
that eventually forms. Again, it is sufficient that a deviation will not be profitable for
any coalition structure, that is, for all (S,7) in E(N)

e(N) — ijeN\(i} 0; [‘P(N) - ZjeN ¢, (N))} - ZjeN\{i} ¢(5,(N))) =
@(8,m) = P L jen(i 03 [€(N) = Tyen 0s (N)] = S 00 (N)):

Re-arranging terms and substracting ¢(z, (N)) from both sides, we obtain

@(N) = P jems 85 [P(N) = Len 00, (N)] = Zyem 90 (M) 2
#(8,m) = Lje5 90, (N))) for all (5,7) € B(N).

Notice that it is sufficient that this inequality holds for p = 1. Substituting p = 1 and
re-arranging we get expression (3.8).

Finally, for cohesive games, proposing the grand coalition is always weakly preferred
to making unacceptable proposals. m

Corollary 3.7 If each player is selected to be the proposer with the same probability, the
sufficient condition (3.8) becomes

PN) = Pien 9(6,(N)) | 9(S,m) = Dies (i, (N))

IN] > S| for all (S,m) € E(N). (3.9

Condition (3.9) means that the grand coalition has the maximum per capita gain
with respect to the situation in which all players are singletons. It also implies that the
partition function ¢ is cohesive (not necessarily fully cohesive).

Consider the partition function game ¢, defined in terms of gains with respect to the
coalition structure (N), that is, ¢ (S, 7) = ¢(S,7) — 3 ,cs¥(i, (N)). Then conditions
(3.8) and (3.9) can be rephrased in terms of ¢, so that they look analogous to (3.4) and
(3.5).

One could be tempted to substitute ¢ by ¢, in the extensive form, so that the game
with breakdown probability G(N, ¢,,0,p) would have breakdown payoffs of zero, and
thus be equivalent to a game with discounting. The first obvious difficulty is that the
breakdown outcome in the reduced games would not necessarily be 0. Furthermore, the
equilibrium of the game with discounting is not invariant to this sort of transformation.
We will discuss this issue in section 3.3.4 below. We will also argue that there are good
reasons why the equilibrium outcome does not have to be invariant to this sort of trans-
formation.
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Similarly to the game with discounting, expected payoffs with an egalitarian protocol
coincide with the Nash bargaining solution, this time taking the vector (o(z, (N))ien as
disagreement point. The possibility of partial cooperation does not affect the outcome
provided that partial cooperation yields lower payoff for the players than forming the
grand coalition.

3.3.3 Examples

The examples in this subsection show that neither of the two extensive form games con-
sidered so far promotes efficiency better than the other. This is true not only for a fixed
protocol but also if the protocol can be chosen so as to maximize the efficiency of the out-
come. The examples also show that strict cohesiveness is neither necessary nor sufficient
for the grand coalition to form with probability 1.

Example 3.7 Consider the following partition function with N = {1, 2,3}
9(1,2,3) = (1,2,3)
B(12,3) = (4,0)
%(1,23) = (0,6)
(13,2) = (5,0)
P(123) =8

We may think of the players as three firms differing in efficiency. A coalition can then
be interpreted as a merger, a (binding) agreement to collude, a research joint venture,
etc. The (internal) profit gain from any merger of two firms is 1, whereas the profit gain
form forming the grand coalition is 2. The game is fully cohesive and the only efficient
coalition structure is the grand coalition.

Suppose that each of the players is selected to be the proposer with the same probabil-
ity, thus 6; = 3 for i = 1,2, 3. The sufficient condition (3.9) holds (thus always forming the
grand coalition is an equilibrium in the game with probability of breakdown), whereas the
sufficient condition (3.5) does not hold. We now check that forming the grand coalition
with probability 1 is an equilibrium in the game with probability of breakdown, but not
in the game with discounting.

Suppose all players propose the grand coalition. In the game with probability of
breakdown, each player’s expected payoff equal his payoff in the event of breakdown plus
an equal share of the gain from forming the grand coalition (equation (3.6)). Thus, each



3.3. Formation of the grand coalition 71

player gains % with respect to the sitnation in which all players are singletons: w, = 1+ %
w2=2+§,andw3=3+§.

In the limit when p tends to 1, each player receives w; regardless of whether he was the
proposer or the responder. Deviations to other strategies will not be profitable: any pair
of players gains more (%) by forming the grand coalition than by forming a two-player
coalition (1).

Things are different in the game with discounting. Equation (3.3) prescribes equal
shares of the value of the grand coalition, thus expected payoffs (and actual payoffs in the
limit when 6 — 1) equal -g—. Unlike in the game with breakdown probability, all players
proposing the grand coalition is not an equilibrium. Player 2 prefers to propose to player
3, offer him § and keep for himself 6 — § > §

Since expected payoffs given that the grand coalition forms are sensitive to the prob-
abilities of being a proposer, we may find a different probability vector that, by favoring

players 2 and 3, will give them an incentive to stick to the grand coalition.

13 4
87878

payoffs equal w; = 1, wy = 3 and w3 = 4. Always forming the grand coalition is now an

Consider, for example, § = (%, 2, 2). If all players propose the grand coalition, expected

equilibrium.

Example 3.8 Consider the following partition function
%(1,2,3) = (5,0,0)

%(12,3) = (5,0)
$(1,23) = (0,4)
$(13,2) = (5 0)
p(123) =

Player 1 is a very productive player when all players are alone. However, the cooper-
ation of player 1 with one of the other two players does not bring any additional value.
Cooperation of the other two players against player 1 is very profitable (they earn four
units more than they were earning separately) and cooperation of the three players is a
bit less profitable (they earn three units).

Suppose all players are selected to be proposers with the same probability. None of
the sufficient conditions is satisfied, so that it is a priori unclear whether formation of the
grand coalition will be an equilibrium. We will check that this is the case in the game
with discounting, but not in the game with possible breakdown.

Suppose the grand coalition always forms in the game with discounting. This implies
that each player has an expected payoff (and actual payoff in the limit when ¢ tends to



72 3. Noncooperative Bargaining in Partition Function Games

1) of %. This is an equilibrium even though player 1 receives less than he got when all
players were alone. The reason is that player 1 cannot secure 5 for himself: if he decides
to stay alone players 2 and 3 will form a coalition and player 1 will get zero. On the other
hand, no player will profit from proposing a two-player coalition since any two players get
$>5.

All players proposing the grand coalition cannot be an equilibrium in the game with
breakdown probability for any protocol. The reason is that player 1 must receive at least
5. Player 2 and 3 together get then no more than 3, so that any of them has an incentive
to propose coalition {2, 3} instead of the grand coalition.

It seems that the game with impatience promotes efficiency better if we are allowed to
choose the protocol, since we can induce any division of p(/N) by manipulating the vector
0, whereas in the game with breakdown probability we are constrained by the fact that
each player must receive at least ¢(z, (N)). This is however not the case since the payoff a
coalition can expect when deviating from the grand coalition may be different for the two
games, so that temptation to defect may be higher in the game with discounting. The
following example illustrates this fact.

Example 3.9 N = {1,2,3,4,5}
B(123,4,5) = (35,1,5)
%(123,45) = (30,8)
D(ijkl,m) = (40,0)
w(N) =50
@(7) = (0, ...,0) for all other 7 € II(NV).

An efficient equilibrium is not possible in the game with discounting for any protocol.
In order to achieve an efficient outcome, the protocol has to be symmetric, since each
four-player coalition can get a payoff of 40, and this together with ¢(N) = 50 implies that
each player has to get exactly 10. The only candidate protocol for an efficient equilibrium
is then the egalitarian protocol.

Consider the game with discounting. If coalition {1,2, 3} forms, players 4 and 5 will
not form a two-player coalition for sure because this would imply a payoff of 4 for each
player and then player 5 would prefer to form a singleton. Thus, players 1, 2 and 3 must
receive more than 30 in an efficient equilibrium, but this is not feasible with an egalitarian
protocol.
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In the game with breakdown probability, the symmetric protocol achieves an efficient
outcome. Coalition {1,2,3} cannot receive more than 30, since the formation of this
coalition will be followed by the formation of coalition {4, 5}.

Examples 3.7 and 3.8 show that strict cohesiveness (even strict full cohesiveness'?) is
not sufficient to ensure formation of the grand coalition. The following example shows
that it is not necessary either.

Example 3.10 N = {1,2,3,4,5}, (5) = 10, 3(2,3) = (12,1), B(2,1,1,1) = (0,1,1, 1),
©(S,7) =0 for all other 7. This game is not cohesive.

With the egalitarian protocol, the grand coalition forms with probability 1 both in the
game with discounting and in the game with breakdown probability. Each player then has
an expected payoff of 2. The only coalition that could profit from deviating is a coalition
of size 2, but this would only be the case if the coalition of size 2 is followed by a coalition
of size 3. Since a coalition of size 2 would be followed by three singletons, no player has
an incentive to deviate.

3.3.4 Comment on strategic equivalence and the outside option
principle

Strategic equivalence refers to the idea that games with different payoffs may nevertheless

lead to the same strategic considerations in the part of the players. For characteristic

function games, it is argued that any characteristic function v is equivalent to the char-
acteristic function v’ defined in the following way:

v(8) = Y iesv(d)
v(N) = Yien v(i)

The function v’ is then called the 0,1 normalization of v (notice that it does not exist

w19 =

if v(N) = Y ,cn v(7)!). This transformation amounts to observing that multiplying the
value of all coalitions by a constant or adding a constant to the payoffs of all coalitions
containing a certain player does not change the strategic incentives.

14We say that a partition function is strictly fully cohesive if, for all (S,7) € E(N) and for all wg € II(S),
75 # {8}, it holds that

‘/’(Svﬂ-) > Z QO(T, (W\{S}) Uﬂ'S)'

Tens
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For partition function games, the 0, 1 normalization would amount to

@(S, ) = Yics (i (N))
P(N) = ien p(i,(N))

The argument that multiplying by a positive constant should not matter is very sound,

‘pl(Sv 7r) -

since it amounts to a change of units. The argument that adding constants should not
matter is more controversial. Luce and Raiffa (1957, p.186) make the following argument
in favor of this normalization:

Suppose that we have a game with characteristic function v and suppose that,
in one way or another, each player ¢ is paid (or is caused to pay, depending
upon the sign) an amount a;, prior to the play of the game. Certainly these
payments do not alter the strategic considerations of the game, and so they
should not have an effect upon the rational selection of strategies nor on the
outcomes of the game. But, if this is done, then the total payment to a
coalition S is not just the v(S) of the game, for that ignores the payments a;.
The fixed payments to (or from) the coalition S are ) .. a;, so that the total
payment to S is v(S) + ;.5 @i-

It is not clear whether adding a constant to the payoff of the coalitions containing a
certain player will make a difference. Consider two games, one with v(1) = 2, v(2) = 0,
v(1,2) = 12, and other with v'(1) = ¢/(2) = 0, v'(1,2) = 10. The argument made by
Luce and Raiffa rests on the idea that players are paid upfront, before playing the game.
However, the usual interpretation of the characteristic function is that player 7 will get
v(7) only after he forms a singleton. It may well be the case that players 1 and 2 split the
payoff equally in game v even though player 1 can get 2 by himself and player 2 cannot get
anything. In other words, the threat of player 1 to form a singleton may not be credible.

Players 1 and 2 splitting the payoff equally in game v is an example of the so-called
outside option principle. The outside option principle states that, starting from an equilib-
rium in which the grand coalition always forms, making some subcoalition more attractive
does not affect the equilibrium if players would get a lower payoff in the subcoalition than
they got in the original equilibrium (see Binmore et al. (1989)). In such cases, forming
subcoalitions is not a credible threat. The outside option principle is then incompatible
with strategic equivalence.

The equilibrium of the game with discounting described in section 3.3.1 is consistent
with the outside option principle. As for the equilibrium of the game with breakdown
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probability, it is consistent with the outside option principle except for changes in the
payoffs for the all-singletons coalition structure. Changing those payoffs influences the
equilibrium regardless of whether they are more attractive than the equilibrium payoffs
of the original game. The reason is that the payoffs of the players as singletons are also
the breakdown outcome. Since breakdown is forced on the players, the issue of credibility
does not arise. The fact that the payoffs for the all-singleton coalition structure act as
the breakdown outcome allows the equilibrium of the game with breakdown probability
to satisfy strategic equivalence.

An additional problem appears in noncooperative games with discounting: the sign of
the payoffs plays a central role in these games (it determines whether the players prefer
to get the payoffs now or later). Adding or substracting constants may reverse the signs
of the payoffs.

3.4 Immediate formation of the grand coalition and

the core

Chatterjee et al. (1993) show that the limit payoff vector of any equilibrium in which the
grand coalition forms without delay and with probability 1 must belong to the core of
the characteristic function game. This implies that no efficient equilibrium can arise (for
high discount factors) if the underlying game is strictly superadditive and has an empty
core. In this section, we find analogous results for partition function games.

Given a partition function, there are several characteristic functions that can be asso-
ciated to it. Two well-known possibilities are the optimistic characteristic function and
the pessimistic characteristic function.

Definition 3.13 Given a partition function (N, ¢), we define the optimistic charac-
teristic function v* in the following way
vt(S) = max)<p(S, ) for all S C N.

well(N
LER)

Definition 3.14 Given a partition function (NN, ¢), we define the pessimistic charac-
teristic function v~ in the following way
v™(S)= min ¢(S,7) forall SC N.

well(N)
73S
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By replacing ¢ by ¢?, one can define the optimistic and pessimistic games in terms of
gains, denoted by v;” and v, respectively.

In the previous section we saw two sufficient conditions for the existence of an equi-
librium with immediate formation of the grand coalition. These sufficient conditions can
be rephrased in terms of the core of the optimistic game.

Remark 3.3 The sufficient condition for immediate formation of the grand coalition in
the game with discounting (3.4) is equivalent to (6:p(N))ien being in the core of the
optimistic game.

Remark 3.4 The sufficient condition for immediate formation of the grand coalition in
the game with breakdown probability (3.8) is equivalent to (6;¢0(N))ien being in the core
of the optimistic game defined in terms of gains U

The following theorems establish necessary conditions for immediate formation of the
grand coalition: this is only possible if the expected payoff vector found in lemma 3.3
(game with discounting) or 3.4 (game with probability of breakdown) is in the core of a
characteristic function game that assigns to each coalition its expected payoff given the
equilibrium strategies. We will denote this characteristic function simply by v*. Notice
however that v* depends on the extensive form game and on the (equilibrium) strategy
vector o*, so that a complete notation would be VG(N,p,6,6),0~ fOT the game with discounting
and vgy 0.0+ 10T the game with breakdown probability.

Theorem 3.5 Let (N,p) be a partition function game. Suppose there is a sequence
& -1 anda corresponding sequence of stationary perfect equilibria o*(6%) of the game
G(N, p,0,8%) with immediate formation of the grand coalition. Then the expected payoff
vector w = (w;(0*(6%)))icn does not depend on 6% and is in the core of the characteristic
function game (N, v*),where

v(S)=lim Y D& u(|(0*(6), 9))e(S, ).
6—1 1r€sH(N) =1
en

Proof. Immediate formation of the grand coalition implies that expected payoffs are
w; = 03p(N) for all i € N. Since agreement is immediate, expected payoffs do not depend
on 6.

Suppose now that player i is selected to be the proposer. If he sticks to his prescribed
strategy and proposes to form the grand coalition, he offers w; to each player j € N\{i}
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and keeps (p(N)— 3, ;3 6w; for himself. If instead he proposes coalition S C N, he
offers éw; to each player j in S\{i}. The expected payoff for i will then depend on the
payoff coalition S gets in the game. Recall that u(n*|(c*(8),S)) denotes the probability
that coalition structure m forms at time ¢ given that players follow strategy o*(6) and

that S is the first coalition to form. Player ¢ will only propose the grand coalition if

Z zp('rr‘|(a',.5')) 6 1p(S, ) — Z bw;j| < p(N) - Z bw; for all S > 1.
"GSH(N) t=1 jeS\{i} JEN\{i}
(S

(3.10)

Since any player may be selected to be the proposer, condition (3.10) must be satisfied
for each i € N.

In the limit when § — 1 the advantage of the proposer disappears and each player ¢
gets w; regardless of whether he is a proposer or a responder. Taking into account that
w; = 0;p(N), condition (3.10) becomes

v*(S) <Y w;forall SC N.

=
that is, the vector w must be in the core of the game (N,v*). m

Theorem 3.5 illustrates the assumptions we make in this chapter about the reaction of
the complement of S if S forms. If S forms, the complement of S does not necessarily react
in such a way that the payoff of S is minimized. The coalition structure that forms given
S is an equilibrium coalition structure (there may be several possible coalition structures
if the equilibrium is in mixed strategies) and the payoff S receives is a subgame perfect
equilibrium payoff. Thus, no incredible threats on the part of N\S are assumed.

A similar theorem holds for the game G(N, ¢, 6, p). The difference is in the expected
payoff vector w and in the equilibrium strategy vector o*.

Theorem 3.6 Let (N, ) be a partition function game. Suppose there is a sequence p* —
1 of continuation probabilities and a corresponding sequence of stationary perfect equilibria
o*(p*) of the game G(N,,0,p*) with immediate formation of the grand coalition and
expected payoff vector w = (w;(0*(p¥)))ien. Then w is independent of p* and lies in the
core of the characteristic function game (N, v*),where

v*(S) = lim Y ulwl(e* (@), 8))p(S, ).

mell(N)
Sen
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Proof. Immediate formation of the grand coalition implies the following continuation
values

2 =0plp(N) = Y @(j, (N)] + (i, (N))

JEN

and expected payoffs

= 6i[p(N) = > @, (N))] + (i, (N)).
jEN
Consider the situation of player i when he is selected to be the proposer. He will only
propose the grand coalition if

Z w(m|(a*(p), S))e(S, ) Z z; < @(N) - Z z; for all S 5 4.
w%Ié(N) jeS\{i} JEN\{i}

Immediate formation of the grand coalition requires this condition to be satisfied for all
players 7 in N.

In the limit when p tends to 1, the advantage of the proposer disappears and each of
the players gets w;. For the strategy combination o* to be an equilibrium, we then need

v*(S) <) w forall S C N.
i€S

that is, the vector w must be in the core of the game (N,v*). m

Nonemptiness of the core of v* is not sufficient for the game to have an equilibrium
with immediate formation of the grand coalition. This is easy to see for the game with
breakdown probability, since the payoff for a player i in an efficient equilibrium is con-
strained to be at least (i, (N)), a value that may not be relevant for the computation of
v*. The following example illustrates this point.

Example 3.11 We compute the function v* for the partition function in example 3.8.
We find that v*(123) = 8;v*(12) = v*(13) = 5;v*(23) = 4 and v*(i) = 0 for all i.

The function is the same for both extensive form games, but this is not the case
in general.’® Notice that the formation of the grand coalition or a two-player coalition
completely determines the coalition structure. For singleton coalitions, one has to consider

19See example 3.9, in which v*(123) is larger for the game with discounting given an egalitarian protocol.
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the reaction of the players external to the coalition. Tf player 3 forms a singleton, players
1 and 2 will form a two-player coalition, thus v*(3) = 0. If players 1 or 2 form a singleton,
their payoff is 0 regardless of whether the other two players form a coalition, thus v*(1) =
v*(2) =0.

The core of this game is nonempty but there is no efficient equilibrium in the game
G(N, p,0,p) for any 6. If there was an efficient equilibrium for some #, w; would be at
least 5, but no payoff vector that gives player 1 at least 5 lies in the core.

Nonemptiness of the core is sufficient for the existence of an efficient equilibrium in
the game with discounting provided that the game v* does not change with the proto-
col. However, it will generally be the case that v* changes with the protocol, and then
nonemptiness of the core for a given protocol does not imply the existence of an efficient
equilibrium. The following example illustrates this point.

Example 3.12 N = {1,2,3,4}
?(14,2,3) = (1,0,0)
%(13,2,4) = (1,7,0)

%(2,134) = (0, 1)

?(3,124) = (0, 1)

2(4,123) = (0,8)

B(12,34) = p(14, 23) = (1, 20)
©(13,24) = (1,7)

B(N) =24

B(m) = (0,..,0) for all other .

Note that this game is fully cohesive.

We now calculate the function v* for the game G(N, ¢,0,6) with 0; = i for all 1.
Since the coalition structure is completely determined by the formation of a three-player
coalition or the grand coalition, v*(N) = 24, v*(123) = 8, v*(124) = v*(134) = 1 and
v*(234) = 0 regardless of the extensive form game. Moreover, players 1, 3 and 4 get a
payoff of 0 in all coalition structures where they are singletons, thus v*(1) = v*(3) =
v*(4) = 0 regardless of the extensive form game. If player 2 forms a singleton, the other
three players find themselves in a situation where only coalitions including player 1 are
profitable. It is easy to check that players 3 and 4 will propose to player 1 and that,
given that the protocol is egalitarian, player 1 will propose to each of the other two
players with equal probability, therefore coalitions {1, 3} and {1,4} form with probability
1

5 each, and v*(2) = 3.5. If coalition {1,3} forms, it gets 1 regardless of the coalition
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structure. Any other two-player coalition will trigger the coalition of the complement,
thus v*(12) = v*(14) = 1, v*(24) = 7, and v*(23) = v*(34) = 20.
The core of this game is nonempty for the egalitarian protocol: for example, (0,4, 17, 3)
is in the core.
A necessary condition for the game to have an efficient equilibrium for some protocol
is that the game v* associated to the protocol has a nonempty core. Notice that v*(23)
and v*(34) do not depend on the protocol. Thus, given any protocol, a payoff vector has
to satisfy the following necessary conditions in order to be in the core of the corresponding
v*:
wy+ws > 20 (which implies wy < 4) (3.11)
wg +ws > 20 (which implies wy < 4). (3.12)

Thus, w; > 16 in any efficient equilibrium. This in turn implies 63 > 18 = %, but
63 > 2 implies v*(2) > 4 > 4, which, together with (3.12) means that we cannot find
any protocol # such that the associated expected payoff vector w is in the core of the

associated v*.

A weaker necessary condition for an equilibrium with immediate formation of the
grand coalition to exist is that the expected payoffs in lemmas 3.3 and 3.4 must be in
the core of the pessimistic game. If the core of the pessimistic game is empty, then no
equilibrium with immediate formation of the grand coalition can exist. This condition is
weaker than the conditions referring to the core of v*, but it is also easier to check.

In games without externalities (that is, in characteristic function games) the optimistic
and the pessimistic game coincide with the original characteristic function game. Thus,
it is both necessary and sufficient that the payoff vector we found in lemma 3.3 (for the
game with discounting) and 3.4 (for the game with breakdown probability) is in the core
of the characteristic function game (see also Okada (1996), theorem 3).

3.5 Random proposers versus rule of order

Ray and Vohra (1999) study a noncooperative game in which the first player to reject
a proposal becomes the next proposer. This implies that the order in which players
accept or reject proposals may affect the results, so that one has to specify a rule of order
selecting not only proposers but also responders. Ray and Vohra assume that players
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discount payoffs, so that the comparison will be made between their game and the game
G(N, p,0,6). We will assume 0; = % unless otherwise specified.

The game with a rule of order does not guarantee immediate agreement for fully
cohesive games. The conditions for the formation of the grand coalition are robust to
changes in the rule of order, unlike in the game with random proposers, where we obtained
different conditions for each protocol. If players are symmetric, the game with a rule of
order ensures that payoff division inside a coalition is symmetric as well, unlike in the game
with random proposers. If players are asymmetric, the game with a rule of order may give
too much power to the responders, so that competition between players is not reflected in
the outcome. As for the efficiency of the outcome, the two procedures cannot be ranked in
general. The two procedures are equivalent for symmetric games with (symmetric) fixed

payoff division.

3.5.1 Riskless versus risky bargaining

By just looking at the procedures, one can see that the game with a rule of order is ”safer”
for the responders: if a responder rejects a proposal, he is sure of making the next one.
Instead, in the game with random proposers, it may be that somebody else is selected
and that the responder who rejected is left out of a desirable coalition. These features are
best illustrated by an example. We will take a game without transferable payoff to make
things more transparent. This game was proposed by Roth (1980).

Example 3.13 N = {1,2,3}. If 1 and 2 form a coalition, each gets 3. If 1 and 3, or 2
and 3 form a coalition, 3 gets 1 — p and the other player gets p (0 < p < 3).

Roth (1980) argues that the outcome of the game must be (3, 3,0).

This is because, when p < 3, the outcome (3, 3,0) is strictly preferred by both
players 1 and 2 to every feasible outcome, and because the rules of the game
permit players 1 and 2 to achieve this outcome without the cooperation of
player 3. So (...) there is really no conflict between players 1 and 2.
Aumann (1985) argues that (3,3,0) will not necessarily be the outcome, because
players 1 and 2 may accept an offer of player 3 out of security considerations.

Suppose the players and the rules have just been announced on television. The
amount 1 to be shared may be fairly large, so the players are rather excited.
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Suddenly the phone rings in 1’s home; 3 is on the line with an offer. At first
1 is tempted to dismiss it. But then he realizes that if he does so, and if 3
manages to get in touch with 2 before he (1) does, then he won’t get anything
at all out of the game, unless 2 also rejects 3’s offer. ”But wait a minute”, 1
says now to himself; "2 will only reject 3’s offer if he thinks that I will reject
it. When he gets 3’s phone call, he will go through the agonizing that I am
going through now, and will realize that in this situation I would also agonize.
(...) 'm beginning not to like this one bit”.

Aumann also offers some noncooperative bargaining games in which coalition {1,2}
does not necessarily form. In one of them, a player ¢ is picked at random and given the
”initiative”. That is, i chooses another player j, and makes him an offer. If j rejects the
offer, i makes an offer to the remaining player k, but k& does not know of the previous
offer to j. If k also rejects i’s offer, coalition {j, k} forms. In this game, players 1 and 2
always forming a coalition is an equilibrium, but players accepting any offer they receive
is also an equilibrium. Aumann conjectures that, for a large p, safety considerations are
more important (so that players will rush to form coalitions), and for a small p, payoffs
are more important (players 1 and 2 are willing to take some risk in the hope of getting
a much higher payoff).

The games Aumann considers are finite games with imperfect information. The games
with random proposers and breakdown probability we have described are infinite games
with perfect information.

Suppose for simplicity that players do not discount future payoffs. If we take the game
with a rule of order, coalition {1,2} will always form. If the protocol is such that player
3 has the initiative and he proposes to player 2, player 2 can safely reject the proposal,
knowing that he will be able to address player 1 before player 3 does. In the game with
random proposers, rejecting the proposal is risky: it may be that nature selects 3 again
and that 3 proposes to 1; if 1 accepts this proposal, 2 will get nothing.

Consider the game with random proposers with an egalitarian protocol. Consider the
following strategies: players 1 and 2 propose to each other, player 3 proposes to each
of players 1 and 2 with probability 3 and all proposals are accepted. Suppose now that
player 1 receives an offer of player 3. If he accepts, he receives p. If he rejects, he will get
%-;— + -ép. Thus, the strategy combination we have described is an equilibrium if p > % Of
course, players 1 and 2 proposing to each other and ignoring the proposals of player 3 is
also an equilibrium. Thus, the arguments of Aumann, namely that players 1 and 2 may
want to accept player 3’s offer, are supported by the results of using the extensive form
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game with random proposers, while the arguments of Roth are supported by the results

of using an extensive form game with a rule of order.

3.5.2 No-delay result

In the context of characteristic function games, Okada (1996) proves that superadditiv-
ity of the underlying characteristic function implies no delay in the game with random
proposers, unlike in the game with a rule of order considered by Chatterjee et al. (1993).
Analogously, one can check that full cohesiveness does not guarantee immediate agreement
in the game considered by Ray and Vohra (1999). Indeed, any superadditive characteristic
function is a fully cohesive partition function, so that the result follows immediately.

Consider the following example, quoted in Chatterjee et al. (1993) and Okada (1996)
and originally due to Bennett and van Damme:

Example 3.14 N = {1,2,3,4},v(i) =0 for all i in N, v(1,5) =50, j = 2,3,4; v(3,J) =
100, i,j = 2,3,4, i # j; v(S) = 100, | S| = 3 and v(N) = 150.

This example can be rephrased in terms of a partition function, where B((N)) =
(0,0,0,0), B(1z, 7k) = (50, 100), ©(1z, 7, k) = (50,0,0), B(1,1, jk) = (0,0, 100), B(ijk,1) =
(100,0) and B(N) = 150.

There are three strong players and a weak player in this example (in fact, the core
consists of one single point: (0, 50, 50, 50)). If the rule of order is such that player 1 starts
the game, he will make an unacceptable proposal. The reason is as follows: if a player
other than player 1 is selected to be the proposer, he will propose to another ”strong”

player. It is easy to see that all strong players have the same continuation value, 2%

* 146
(that is, almost 50 for large ). If player 1 makes his best acceptable proposal (the gra;d
coalition) he gets 150 — 1 +.s’ close to 0 for large . If instead he makes an unacceptable
proposal to a strong player, this player will reject and form a coalition with another strong
player. This leaves player 1 and the remaining strong player in a symmetric situation, so
that player 1 can get a payoff of about 25 rather than a payoff close to 0.
In the game with random proposers, player 1 will make an acceptable proposal to the
grand coalition. Expected payoffs (for the case 6; = } for all 4) are then given by the

following system of equations, where w, represent the expected payoff for a strong player!®

(150 — 36w,) + 225

1
ry
= (100 — éw,) + 36w, + 525.

161t is easy to see that all strong players must have the same expected payoff in equilibrium.
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The solution to this system is (in the limit when § — 1) w; = 25 and w, = 122, The
reason why there is no delay is that the game with random proposer gives less power
to the responders. When a strong player rejects an offer, he is not sure of being the
next proposer; the continuation values of the strong players reflect this risk, so that it is
profitable for the weak player to make an acceptable proposal rather than to wait.

3.5.3 Formation of the grand coalition

The sufficient conditions we found in section 3.3 were sensitive to the protocol. However,
in the game with a rule of order, one obtains condition (3.5) regardless of the rule of
order. Thus, the game with a rule of order yields more "robust” results, while the game
with random proposers is more ”flexible”. In example 3.7, one could obtain an efficient
outcome by changing the protocol, whereas the game with a rule of order does not have
an efficient equilibrium for any rule of order.

3.5.4 Formation of the coalition with highest per capita payoff
in symmetric games

Ray and Vohra show that, for symmetric games and provided that the equilibrium exhibits
no delay, players form the coalition that maximizes the expected per capita payoff given
the reaction of outsiders.

This is not always the case in the game G(N, ¢, 6, 6) (even with a symmetric protocol),
as the following example shows

Example 3.15 N = {1,2,3,4,5}, 3(4,1) = (18,0), #(3,2) = B(3,1,1) = (14,0),
@(m) = 0 for all other 7.

This is a game in characteristic function form, so we do not need to consider the
reaction of outsiders.

The coalition of size 3 has the highest per capita payoff. Suppose however that players
always propose a coalition of size 3 in the game with random proposers. Then the expected
payoff (given a symmetric protocol) is given by'”

1 41
w = 5(14 = 26w) + 55510

17 A more direct way of computing expected payoffs is to notice that the total payoff is always 14 and
the equilibrium is symmetric, thus w = 14 = 2.8,
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This yields w = 2.8. The payoff of the proposer is then approximately 8.4. However,
he would get an even higher payoff by proposing a coalition of four (18 — 3 * 2.8 = 9.6).

In equilibrium, only coalitions of four players form. Expected payoffs are then % =36
so that a deviation to proposing a coalition of three would not be profitable.

The reason why larger coalitions that have lower per capita payoffs instead of smaller
coalitions that have higher per capita payoffs form is that a player who rejects a proposal
will not be the next proposer for sure. Thus, he will be left out of the coalition that
eventually forms with positive probability, and this negatively affects his continuation
value. Since the responders are "underpaid” because of the risk they have of being left
out if they reject the proposal, it may pay to form larger coalitions. Example 3.15 thus
points to a trade-off between efficiency and distribution.

In the game with a rule of order, players in the same coalition always split the payoff
equally (see Ray and Vohra (1999)). Thus, responders are never "underpaid”.

Per capita payoffs also play some role in the game with random proposers. For exam-
ple, suppose in a symmetric game that the equilibrium is such that exactly two coalitions
will form without delay. Then, it is still true that the coalition with the higher per capita
payoff must form first, or, if both coalitions have the same per capita payoff, the largest
coalition must form first (otherwise players would prefer to wait instead of forming the
coalition with the smallest per capita payoff).

3.5.5 Competition between responders

As we have seen in the previous subsection, responders are never ”exploited” in symmetric
games with a rule of order. Indeed, when players are asymmetric, responders may have
"too much power”, as in the following market game (cf example 2 in Chatterjee et al.)

Example 3.16 N = {1,2,...,n}. Player 1 is a seller who owns a unit of some good
and players 2, ...,n are potential buyers whose reservation price is u. The characteristic
function is such that v(S) =1, |S| > 2,1 € S, and v(S) = 0 otherwise.

We now calculate the continuation value of a buyer in the game with a rule of order.
After rejecting a proposal, he will make a proposal to the seller and offer him his con-
tinuation value. Thus, 2z; = §(1 — 2;). This continuation value is the same for all buyers
regardless of the strategy of the seller. Let us denote it by z,. No matter how the seller
randomizes between the potential buyers, his continuation value will be z; = §(1 — z).
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Therefore, 2 = 2z, = ’1% or the seller cannot benefit from the competition between the
buyers.

Instead, in a game with random proposers, the equilibrium would be much more
competitive: two buyers are enough to drive the price up to 1 (in the limit when § tends
to 1). Expected payoffs would be then given by the following system of equations

w; = %(1 = (511)1,) g "T'léwl
wy = %(1 - bwy) + 2156w,

These equations take into account that in equilibrium both buyers must have the same
continuation value and thus the seller must propose to each of the potential buyers with
the same probability. The reason is that, on the one hand, the seller would like to propose
to the buyer with the lowest continuation value, whereas, on the other hand, the expected
payoff of a buyer is larger the larger is the probability that he receives a proposal from
the seller.

Solving the system above, we find w; = mﬁm and w, = mﬁ%

The limit of these expected payoffs is w; = 1, w, = 0. Thus, even with only two
players, the price converges to 1 in the limit when § — 1.

3.5.6 Efficiency of the outcome

Theorem 3.1 and example 3.15 seem to point in the direction of higher efficiency for the
game with random proposers. This is indeed the case for very specific games (like three-
person quota games with the grand coalition and symmetric games without externalities
where only one profitable coalition can form at a time), but not in general (see example
3.17 below).

Three-person quota games with the grand coalition

Consider the following cooperative game. N = {1,2,3},v(i) =0Vi € N, v(1,2) =a +b,
v(1,3) =a+c¢v(2,3)=b+c,v(1,2,3) =a+b+c,a>b>c
The equilibrium of the game with a rule of order is as follows. Players 1 and 2 propose

to each other and split nearly equally, and player 3 proposes to player 1. Continuation

a—6b
146 °

wishes to propose the grand coalition, since this would imply adding a responder whose

values are z; = 2, = 6%, z3 = 6b6c+ 6 Given these continuation values, nobody



3.5. Random proposers versus rule of order 87

continuation value is larger than his quota.'®

As for the game with random proposers, notice the following. As in the game with a
rule of order, each proposer wishes to include all responders whose continuation value is
less than their quota. Notice also that the sum of continuation values is strictly smaller
than the sum of the quotas (that is, 6 >, v wi < v(N) = a+ b+ c). Thus, at least one
player has a continuation value of less than his quota. This player must be a responder
with probability 1. On the other hand, it cannot be the case that all players have a
continuation value smaller than their quotas, since this would imply the grand coalition
forming with probability 1 and all players splitting equally, contradicting dws < c¢. Thus,
at least one player and at most two must have a continuation value smaller than their
quotas. Suppose only one player (player 1) satisfies this property. It can be checked that
this is not possible when the other two players have continuation values that are larger
than their quotas. It is possible to find an equilibrium in which the other two players have
a continuation value that exactly equals their quota. Consider the following strategies:
player 1 always proposes the grand coalition. Players 2 and 3 randomize between propos-
ing the grand coalition and proposing to player 1. This strategy combination constitutes
an equilibrium. In the limit when 6 tends to 1, the probability of the grand coalition being
formed tends to 1 as well. Thus, efficiency is higher in the game with random proposers.

Symmetric games without externalities and with the one-stage property

Consider a symmetric, zero-normalized and essential characteristic function game with
the one-stage property, that is, such that v(S) > 0 implies v(7") = 0 for all 7" C N\S. Let
k be the cardinality of the coalition with the highest per capita payoff (or, if there are
several, of the largest coalition). This is the coalition that will form in the game with a
rule of order. We now show that a coalition with a smaller total payoff cannot form with
positive probability in the game with random proposers.

Suppose we have an equilibrium of the game with random proposers. Symmetry of the
game and of the protocol imply that all players must have the same continuation value.
Recall that, in the game with random proposers, the continuation value of a player is §
times his expected payoff. If we represent the value of a coalition of cardinality m by v(m),
and the probability of a coalition of size m to be formed given the (equilibrium) strategies
of the players by A, expected payoffs are 2;154:’"—"('"—) < ﬂkﬁ Since 0 < w < 1’-%2, it

18 Experimental evidence supporting this outcome (though using a very different bargaining procedure)
has been recently found by Bolton et al. (1999).
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follows that dw < ﬂkﬂ

A coalition of cardinality ! with v(l) < v(k) cannot form in equilibrium in the game
with random proposers. The reasons are obvious for [ > k. For [ < k, the proposer would
always want to enlarge the coalition to k players, since doing so will increase the value of
the coalition by at least (k — l)ﬂkﬂ, while he will only have to pay 6(k — l)w.

Things are very different in games where more than one coalition with positive value
can form. Consider the following game

Example 3.17 N = {1,2,3,4,5};v(1) = 0, v(2) = 5, v(3) = 14, v(4) = 18, v(5) = 19.

In the game with a rule of order, a coalition of size 3 will form, followed by a coalition
of size 2. Total payoffs are then 19. However, in the game with random proposers, a
four-player coalition is formed with probability 1, so that total payoffs are only 18.

Thus, one can conclude that, except for very specific situations (like three-person
quota games with the grand coalition or games in which only one coalition is formed),
neither of the procedures (rule of order or random proposers) yields more efficient results
in general.

3.5.7 Random proposers versus rule of order with fixed payoff
division

A distinctive feature of the game with random proposers is that it puts responders in a

weak position, and this induces them to accept lower payoffs than in the game with a

rule of order. This suggests that in a game with fixed payoff division (such as the games

considered by Bloch (1996)) it should not make a difference how proposers are selected.
Consider the following example:

Example 3.18 N = {1,2,3}, B(i,, k) = (0,0,0), B(ij, k) = (12,0), B(N) = 15.

Suppose payoff division is restricted to be egalitarian. Both in the game with a rule
of order and in the game with random proposers, a two-player coalition forms in any
stationary perfect equilibrium. The differences between the two games are limited to
subgames that are off the equilibrium path. Should the grand coalition be proposed in
the game with a rule of order, it would be rejected, since the rejector can earn 6 > 5
by proposing a two-player coalition. In the game with random proposers, however, the
grand coalition would be accepted, since, by rejecting the grand coalition, the responder is
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running the risk of being left out, and thus his expected payoff from rejecting the proposal
is only (given a symmetric protocol) %6 = 4 < 5. Nevertheless, the grand coalition will
not be proposed in equilibrium, so that selecting proposers at random makes no practical
difference. As in the game with a rule of order, the proposer chooses the coalition with
the highest per capita payoff.

Drawing the proposer at random can make a difference in symmetric games if the
(fixed) payoff division is not egalitarian (see example 3.13).

3.6 Conclusion

We have studied two games of coalition formation with externalities and random pro-
posers, differing in the source of friction. There are two potential sources of inefficiency in
those games: delay of the agreement (only in the game with discounting) and formation
of subcoalitions. The sufficient conditions we have found for efficiency are rather demand-
ing. Analogously to the case of characteristic function games, the possibility of making
binding agreements and the fact that there are gains from merging do not guarantee the
formation of the grand coalition, even with perfect information.

We have also compared the model with random proposers to the model with a rule
of order. These two models differ in the power of the responder. Giving less power to
responders makes immediate agreement easier, though the final outcome is not necessarily
more efficient. When players are symmetric, the game with a rule of order yields a
symmetric payoff division whereas the game with random proposers typically yields an
asymmetric distribution. In some cases, this asymmetric distribution is needed to achieve
efficiency, so that there is a trade-off between efficiency and distribution. The same feature
of the game with a rule of order that is attractive for symmetric games (the large power
of the responders) may be undesirable when players are asymmetric, since competition
between players is not reflected in the outcome.

We have assumed in the whole chapter that the contracts signed by the players do not
affect the partition function in any way. That is, given that a partition 7 forms, the payoff
of a coalition S € , p(S, ), does not depend on the payoff division rule players use. This
may not be the case in some applications. For example, suppose that players in S are
a team that engages in joint production by using some assets. The cost of production
is incurred privately by each player, and the only verifiable variable is output (that is,
binding contracts can be written over the division of the output only). If contracts are
such that each player gets a share of the output, there is a moral hazard problem: players
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will produce less than they would if costs as well as revenues were shared by all players.
If one of the players could buy the assets of the other ones, the problem of moral hazard
would disappear. Such a possibility cannot be taken for granted: it may be the case
that the asset players have is their labor! The formation of coalitions in the presence of
moral hazard has been studied by Espinosa and Macho-Stadler (2000) in the context of
a Cournot oligopoly using a game with a rule of order.

Another assumption we have kept through this chapter is that the frictions of the
bargaining process are arbitrarily small (§ and p tend to 1). The games G(N,y,6,6)
and G(N, ¢, 0, p) may have very different equilibria depending on the discount factor and
indeed the assumptions have played a role when we were solving the examples. However,
the no-delay results and the sufficient conditions for the formation of the grand coalition
in section 3.3 do not depend on this assumption, as it is clear from inspection of the proofs.
The same can be said about the assumption that Nature uses the same probability vector
(renormalized to account for the fact that some players have already formed coalitions)
in all reduced games. Assuming that the probability distribution used by Nature is a
function 6 of the set of players T that did not form a coalition yet such that 8; > 0 for all
i €T and ), . 0; =1 would make no difference for the no-delay results and the sufficient
conditions for the formation of the grand coalition.

We have also assumed that coalitions cannot be enlarged. This is the approach usually
taken in the literature. Exceptions are Seidmann and Winter (1998) for characteristic
function games where bargaining follows a rule of order, and several papers that assume
random proposers: Montero (1998) for the one-seller-two-buyers game (see also Chapter
5), Okada (1999) for characteristic function games with the one-stage property, and Gomes
(1999) for the general three-player case. Since the outcome of the game is often inefficient,
players may be willing to renegotiate and enlarge the coalitions. In such a renegotiation
stage, it is reasonable to assume that coalitions can only merge but cannot be dissolved.
The current agreement matters either by assuming that players negotiate over payoff
increases only, or by assuming that the current agreement is the breakdown outcome.
Allowing for the possibility of renegotiation as long as the outcome is not efficient will
eventually bring an efficient outcome. On the other hand, the possibility of renegotiation
may change the incentives of he players: forming intermediate coalitions may become
more attractive, since it improves the members’ bargaining position without giving up
the efficiency of the final outcome (see Okada (1999)).

The present approach, in which coalitions cannot be enlarged, would suggest that
enlarging coalitions brings substantial transaction costs to the players. Clearly, this is
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not generally true. Thus, the present model should be seen as one of many: it predicts
coalition formation in rather competitive and risky situations, where coalitions cannot be
enlarged because of substantial transaction costs. One may argue that this is the most
interesting setting to study coalition formation: if the grand coalition is eventually going
to form, intermediate coalitions have no influence on the final outcome. Of course, the
questions of how to increase one’s bargaining power through intermediate coalitions, and
which payoffs players get through the use of intermediate coalitions to their advantage are
still very interesting. The next two chapters can be seen as a contribution to answering
this question.



Chapter 4
Constant-Sum Games

This chapter is devoted to the study of coalition formation in constant-sum partition
function games. Constant-sum games are special because there are no aggregate gains
from forming the grand coalition, therefore one would not expect the grand coalition to
form. The question is then which subcoalitions will form and what will be the payoffs for
the players.

Constant-sum games arise naturally in the context of efficient bargaining. Suppose
there is a cake of fixed size to be divided between n players by bargaining. Prior to the
bargaining process, players may find it profitable to form coalitions in order to improve
their bargaining position. A coalition is then understood as a bargaining unit. Since the
share of the cake a coalition gets may depend on how other players organize themselves,
it will be given by a partition function.

In the process of bargaining between coalitions, the payoff coalitions can get by them-
selves (that is, without cooperating with other coalitions) may play an important role (in
fact, this payoff may be the source of the improved bargaining position). If a coalition
does not interact with other players it is reasonable to assume that its payoff does not
depend on how the other players are organized, thus the payoff a coalition can get by
itself will be given by a characteristic function.

For a coalition S, we will denote by v(S) the payoff the coalition can get by itself; we
will also call this payoff autarchy payoff. We will denote by (S, 7) the (expected) part of
the cake coalition S gets if players partition themselves according to m and then bargain
over the division of the cake. The partition function ¢ will be related to the characteristic
function v. A partition function can be generated starting from a characteristic function
either axiomatically (the Owen value is an example) or strategically (see the next chapter
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for an illustration).

The idea that subcoalitions can form and then bargain with other coalitions over the
division of the value of the grand coalition can be traced back to Maschler (1963) and
Hart and Kurz (1983).

Maschler (1963) argues that the characteristic function is not an appropriate measure
of the actual payoff a coalition gets if it forms. The characteristic function represents a
lower bound, but the actual payoff will generally be larger.

Obviously, in addition to what a coalition can make by itself, it may gain some
more "strength” by threatening not to cooperate with other players.

Hart and Kurz (1983) put it in the following way

Our view is that the reason coalitions form is not in order to get their worth,
but to be in a better position when bargaining with the others on how to
divide the maximal amount available.

The formation of subcoalitions in order to improve bargaining position has also been
observed in experiments (see, for example, Kalisch et al. (1954) and Maschler (1978)).

The first question we investigate in this chapter is whether it is true that the grand
coalition can never arise in essential constant-sum partition function games. Perhaps
surprisingly, this turns out to be the case if the partition function is positive and fully
cohesive, but not in general.

Assuming that the partition function is fully cohesive, we turn to the question of what
coalition structure will form in the simplest case of three-player games. The answer turns
out to depend exclusively on the protocol, and not on the parameters of the partition
function. Thus, whether a player brings a lot of value to a coalition or whether he is
nearly a dummy, his presence in a coalition will only depend on the protocol! Expected
payoffs depend both on the parameters of the partition function and on the protocol,
but they are fairly robust to changes in the protocol. The reason for this is that the
equilibrium strategies can adjust to (and often completely compensate) changes in the
protocol. For a wide range of protocols, expected payoffs coincide with the kernel of the
grand coalition. Extensions of the results above to four-player games are not possible
without further assumptions.

The chapter also includes a brief discussion of two natural ways of generating the
partition function axiomatically (namely by using the Owen value and by using the Nash
bargaining solution), and a review of the related literature.
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4.1 Conditions for the formation of the grand coali-
tion

In this section, we define constant-sum games and we study the possibility of formation

of the grand coalition in such games.

4.1.1 Preliminaries

The definition we introduce in this section is stronger than the usual definition for charac-
teristic function games: we will require that total payoff remains constant for any partition
of the set of players, whereas the definition for characteristic function requires it only for
partitions into two sets (say, S and N\S).

Definition 4.1 A partition function game (N, ¢) is constant-sum if

> @(S, ) = K for all w € TI(N). (4.1)

Serw

Constant-sum games arise naturally in the context of bargaining. Suppose there is a
cake of size K to be divided between the players. Before the cake is divided, players may
form coalitions (bargaining units) in order to improve their bargaining position. Assuming
efficient bargaining, players will agree to a division of the cake for any organization of the
players in bargaining units. The distribution of the cake may nevertheless be affected by
the formation of bargaining units. The partition function ¢ assigns to each coalition S
and partition of the players m to which S belongs the payoff of coalition S given that 7
forms. Thus, the partition function is a "reduced form” that captures the outcome of the
bargaining between coalitions.

Intuitively, there is no reason for the formation of the grand coalition in constant-sum
games, since there are no aggregate gains from cooperation. This intuition is confirmed
for fully cohesive games. Indeed, given any of the two extensive form games we studied
in the previous chapter, G(N, ¢, 8, 6) or G(N, ¢,0,p), the grand coalition can arise with
probability 1 in equilibrium only if (N, ¢) is inessential, as we will show below.

Definition 4.2 A partition function game (N, ) is inessential if

©(S,m) = (i, (N)) for all (S,7) € E(N). (4.2)
€S
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A game is inessential when there is no gain or loss from acting together: if some players
form a coalition, the payoff they obtain equals the sum of payoffs they got when they were
acting separately. Moreover, the formation of a coalition does not change the distribution
of payoffs among the remaining players.

Definition 4.3 A partition function game (N, ¢) is essential if
3 (8,m) € E(N) : 9(8,m) # ) (i, (N)). (43)
icS

Remark 4.1 All two-player constant-sum games are inessential.

Notation 4.1 In what follows we will often refer to the payoff of a coalition S when
its complement forms, (S, {S, N\S}). In order to simplify notation, we will denote this
payoff by ¢°(S5).

4.1.2 Results

Assumption 4.1 We will assume that the partition function (N,¢) is constant-sum,
positive, and fully cohesive. Notice though that the positiveness assumption is only
required for the results concerning the game with discounting.

Lemma 4.1 If (N, ) is fully cohesive and constant-sum, then
@(S, ) > p°(S) for all (S,w) € E(N). (4.4)

Proof. Starting from the partition 7, full cohesiveness implies that N\S weakly
profits from the merger, that is, p°(N\S) > Y rcn (s $(T, 7). Since ¢ is constant-sum,
this implies that S cannot be better-off: given that ¢(S,7) = ¢(N) = Yorem sy #(T,7)
and ¢°(S) = p(N) — ¢(N\S), (4.4) follows. m

Lemma 4.1 states that the worst that can happen to a coalition is that its complement
forms. Of course, this is not necessarily the case for games that are not fully cohesive (see
example 4.1).

Lemma 4.2 Let (N, ) be a positive and fully cohesive constant-sum game. Suppose there
is an equilibrium of the game G(N,¢,0,6) or G(N, ¢,60,p) in which the grand coalition
forms with probability 1. Let w; be the expected equilibrium payoff for player i. Then

w; = ¢(i, (N)) for alli € N. (4.5)
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Proof. Recall that, in any equilibrium such that the grand coalition forms with
probability 1, the (limit) payoff of any player is w; regardless of whether he is the proposer
or the responder.

Consider the coalition structures of the form (¢, N\{i}). If the grand coalition forming
with probability 1 is an equilibrium, it must be the case that w; = ¢°(i) for all 2 € N. If
w; > ¢°(7), any player in N'\{i} would prefer to propose N\{i} instead of N. If w; < ¢°(i),
player i would prefer forming a singleton rather than proposing the grand coalition (as
the partition function is fully cohesive and constant-sum, lemma 4.1 implies that player i
will get at least ¢°(i)!). Thus, w; = °(i) for all 4.

Lemma 4.1 implies ¢°(7) < ¢(i, (N)) for all 7. Since w; = ¢°(i), it follows that

w; < (i, (N)) for all . (4.6)
(

Since ¢ is constant-sum, Y,y ¢(i, (N)) = ¢(N). Inmediate agreement to form the
grand coalition implies ) ..\ w; = ¢(N). These two equalities can only be compatible
with (4.6) if (4.5) holds. m

Theorem 4.1 Let (N, ) be a positive and fully cohesive constant-sum game. Suppose
there is an equilibrium of the game G(N, ¢, 6,8) or G(N, ¢, 0,p) in which the grand coali-
tion forms with probability 1. Then (N, ) is an inessential game.

Proof. Suppose there is a coalition structure 7 and a coalition C € 7 such that
@(C,T) # > ;cc wi- Because ¢ is constant-sum, this implies that there is a coalition S
€ 7 such that (5, 7) < 3 ;g wi, therefore Y rer sy (T, 7) > 3, p\s wi- If we merge
all coalitions other than S, full cohesiveness implies p(N\S) > >°.. n\s Wi- Lemma 4.1
(together with theorem 3.1 for the game with discounting) implies that, if N\S forms,
its payoff will be at least ¢°(N\S). A player in N\S who is selected to be the proposer
would then profit from proposing coalition N\S instead of N, a contradiction. Thus, if
the grand coalition forming with probability 1 is an equilibrium, it must be the case that
o(8,m) = > cgw; for all (S,m) € E(N), that is, that is (using lemma 4.2) ¢(S,7) =
¢(z,(N)) for all (S,7) € E(N), thus ¢ is inessential. m

It is well known that the core of any essential constant-sum, characteristic function

game is empty. This result generalizes to positive fully cohesive constant-sum partition
function games in terms of the equilibrium characteristic function v*.

Recall that no delay can occur in the game with discounting for positive and fully cohesive games
(theorem 3.1), so that the payoff of player i will not be reduced by delay. As for the game with breakdown
probability, delay does not reduce payoffs and eventual formation of a coalition structure is guaranteed.
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Proposition 4.1 Let (N,y) be an essential, positive and fully cohesive constant-sum
partition function game. Let v* be the equilibrium characteristic function corresponding
to any of the strategic form games G(N,,0,8) or G(N,p,0,p). Then the core of v* is
empty.

Proof. Consider any payoff vector (z;)icy such that ), x; = @(N). Since the game
is essential, there must be an embedded coalition (S, 7) such that ). ¢ z; > ¢(S, 7). But
then, since the game is positive, constant-sum and fully cohesive, ). v\ s Zi < ¢°(N\S) <
v*(N\S), and thus Core(v*) = 2. =

Unlike in characteristic function games, the grand coalition may form (and thus
Core(v*) # @) in constant-sum games that are not fully cohesive. A trivial example
is a three-player game with ©(z,7) < ¢(i, (N)) + ¢(7, (N)) for all 7, j. In this trivial ex-
ample, both the grand coalition and the all-singletons structure can arise in equilibrium.
It is also possible to find constant-sum games in which players strictly prefer to form the
grand coalition, as the following example of a symmetric game with five players shows

Example 4.1 N ={1,2,3,4,5}

e(L,(N) =%
%(2,1,1,1) = (K,0,0,0)
7221 =(55%
?’(273) = %’ %)
®(3,1,1) = (K,0,0)
4,1)=(5%

¢(N) =K.

This game is not fully cohesive.

Consider the game G(N, ¢, 0, 6) or the game G(N, ¢,0, p) with 6; = 1 for all <. If the
grand coalition forms with probability 1, expected payoffs are % for each player. For this
to be an equilibrium, the vector (%)ie ~ must be in the core of the game v* (see theorems
3.5 and 3.6). It is easy to see that v*(1) = 0 (a coalition of 3 players would follow),
v*(2) = & (a singleton and then a coalition of two players would follow), v*(3) = £,
v*(4) = -’,‘f— and v*(N) = K for both G(N,,0,6) and G(N,¢,0,p), so that forming
the grand coalition with probability 1 is an equilibrium of both games. Moreover, this
equilibrium is strict.

For characteristic function games, it is usually claimed that the grand coalition is
more likely to form if the game is superadditive. This claim cannot be made for partition
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function games. Indeed, in example 4.1 it is precisely the lack of superadditivity of the
partition function game that allows the grand coalition to form.

4.2 The three-player case

We have established that the grand coalition cannot form with probability 1 in any essen-
tial fully cohesive constant-sum game. We now turn to the question of what subcoalitions
will form and what will be the expected payoffs for the players for essential and fully
cohesive constant-sum games with three players.

4.2.1 Preliminaries

Notation 4.2 For three-person games, the formation of a two-player coalition completely
determines the coalition structure. We will therefore denote the value of a two-player
coalition simply by ¢(i, j) rather than (7, {7, k}).

In the context of three-person constant-sum games, full cohesiveness is equivalent to

the following condition:
Definition 4.4 A partition function satisfies profitability of two-player coalitions if
©(1,5) 2 ¢(i, (N)) + »(5, (N)) for all 7,5 € N,i # j. (4.7)

Thus, profitability of two-player coalitions means that, starting from a situation in
which all players are alone, a merger of two of the players does not reduce their aggregate
payoft.

Consider a three-player constant-sum partition function game satisfying profitability
of two-player coalitions. The partition function game is essential if and only if at least
one of the inequalities in (4.7) is strict.

Remark 4.2 Profitability of two-player coalitions implies the following inequality for

constant-sum, essential games
¢(1,3) +¢(2,3) + ¢(1,2) > 2K (4.8)

Inequality (4.8) is obtained by adding up the three inequalities in (4.7) and using the
fact that ). ¢(4, (N)) = K and that at least one of the three inequalities is strict.
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Assumption 4.2 The partition function game is constant-sum, fully cohesive and essen-
tial, that is, (4.1), (4.7) and (4.8) are satisfied.

In what follows, we will focus on the extensive form game with breakdown probability
G(N, p,0,p). This game has the following convenient property:

Remark 4.3 If the partition function is such that (3, k) > ¢(j,(N)) + ¢(k, (N)), then
the formation of coalition {i} will be followed by the formation of coalition {j,k} with
probability 1.

The game with discounting has this property only in the limit when 6 tends to 1.

4.2.2 Eliminating some candidate equilibria

In order to answer the question of what coalitions will form and what will be the payoffs
for the players, we will consider all possible strategy combinations in turn. Some of
these strategy combinations will be completely discarded, and others will be shown to
be equilibria under certain conditions. Considering all possible strategy combinations
may seem difficult, but this is not the case when we are looking for a stationary perfect
equilibrium without delay.

Remark 4.4 In order to describe a stationary perfect equilibrium without delay, all we
need to know about the strategy of a player is the probability distribution over the coalitions
he proposes.

In a stationary perfect equilibrium without delay, each responder j will accept any
offer that gives him at least his continuation value z; and will be offered exactly z;. This
fact together with the probability distribution used by the proposers determines (z;) e,
therefore we need to specify neither the payoffs offered to the responders nor the set of
proposals players accept.

The following lemmas exclude certain strategy combinations from being a (stationary
perfect) equilibrium.

Lemma 4.3 In a stationary perfect equilibrium, z; > K — ¢(j, k) for all i in N.
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Proof. A player can always reject all proposals that come to him and propose to
stay alone if he is selected to be the proposer. The continuation value associated to this

strategy would be at least K — ¢(j, k). m
Lemma 4.4 No player proposes to stay alone in equilibrium.

Proof. Suppose there is an equilibrium in which (without loss of generality) player
1 proposes to stay alone with positive probability. This implies z; = K — ¢(2,3) (if
21 > K — ¢(2,3), player 1 would prefer to make an unacceptable proposal rather than to
stay alone; z; < K — ¢(2,3) would contradict lemma 4.3). Since Y,y z = K, it follows
that zo + z3 = ¢(2, 3).

It must be the case that player 1 cannot get a strictly higher payoff by proposing
two-player coalitions, that is,

K —¢(2,3) 2 9(1,2) — z (4.9)
K- ‘70(273) 2 (P(173) — 23 (410)

Adding up inequalities (4.9) and (4.10), we get
2K —2p(2,3) > ¢(1,2) + ¢(1,3) — 2z — 23.

If we take into account that z; + z3 = ¢(2, 3), it follows that 2K > ¢(1,2) + ¢(1,3) +
©(2, 3), contradicting (4.8). m

Lemma 4.5 None of the players proposes to form the grand coalition in equilibrium.

Proof. Suppose player 1 proposes the grand coalition in equilibrium. Since he might
as well have proposed a two-player coalition, it must be the case that K — z3 — 2o >
©(1,2) — zp = 23 < K — ¢(1,2); analogously 2, < K — ¢(1,3). As a proposer, player 2
can get at least ¢(2,3) + ¢(1,2) — K (by proposing to 3). In all other cases, player 2 can
get no less than K — (1,3). Condition (4.8) implies ¢(2,3) + ¢(1,2) — K > K — (1, 3),
thus 20 > K — (1, 3), a contradiction. m

21If the first coalition to form is the singleton {i}, then either ©(j, k) > ¢(j, (N)) +(k, (N)), implying
that j and k will form a coalition, or ¢(j, k) = ¢(j, (N)) + ¢(k, (N)), implying (7, (N)) = K — (4, k),
so that the payoff for player i is K — ¢(j, k) regardless of whether players j and k form a coalition.

A coalition may form or breakdown may occur before i gets to be the proposer. The only coalition
that can form is {j, k}, since player ¢ would reject any proposal including him. Then the payoff for player
iis K — ¢(j,k). If breakdown occurs, i receives ¢(i, (N)), and this is larger or equal than K — ¢(J, k)
because of (4.7).
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Notice that the proof of lemma 4.5 excludes the grand coalition not only from being
proposed in equilibrium, but also from being an optimal proposal in equilibrium.

Remark 4.5 Since proposing the grand coalition cannot be optimal in equilibrium, corol-
lary 3.5 excludes any equilibria with possible delay.

Lemma 4.6 There is no stationary perfect equilibrium in pure strategies® in which a
coalition is proposed by all its members with probability 1.

Proof. Since we have proven that no player proposes the grand coalition or to stay
alone, only two-player coalitions can be proposed in equilibrium. Without loss of gener-
ality, suppose there is a stationary perfect equilibrium in which players 1 and 2 propose
to each other. Since the equilibrium is in pure strategies, the third player has to propose
to one of the other two, say, to player 1. If 3 proposes to 1, the continuation values are
given by the following system of equations

21 = pb (p(1,2) — 22) +p(02 + 03)21 + (1 — p)o(1, (N))
22 = pb2 (9(1,2) — 21) + pbrz2 + ps(K — ¢(1,3)) + (1 — p)p(2, (N))
z3 = ph3 (p(1,3) — 21) + p(61 + 62) (K — ©(1,2)) + (1 — p)p(3, (N)).

The solution of this system (in the limit when p — 1) is z; = ¢(1,2) + ¢(1,3) — K,
29 = K —¢(1,3), 23 = K — ¢(1,2). For this strategy combination to be an equilibrium,
player 3 should prefer to propose to player 1 rather than to player 2. This implies ¢(2, 3)+
¢(1,3) — K < K — ¢(1,2), contradicting (4.8). m

The only possible equilibrium in pure strategies that we have not considered yet is
that players propose two-player coalitions, but no two players propose to each other. We
will show that, for such a strategy combination to be an equilibrium, each player has
to be indifferent between proposing to each of the other two players. Since the only
essential difference between pure and mixed strategies is that mixed strategies require an
indifference condition, we can treat those pure strategy combinations as ”corner” mixed
strategies.

Lemma 4.7 If there is a stationary perfect equilibrium in pure strategies, it must be the
case that each player is indifferent between proposing to any of the other two.

3Notice that this lemma only excludes the possibility of all three players playing pure strategies. It
leaves open the possibility that some but not all of the players play pure strategies.
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Proof. The only case that remains to be checked is the case in which no two players
propose to each other. Without loss of generality, consider the case in which player 1
proposes to player 2, player 2 proposes to player 3, and player 3 proposes to player 1.
Then the following inequalities must hold

©(1,2) — 22 > ¢(1,3) — 23 (4.11)
©(2,3) — 23 > 9(1,2) — (4.12)
@(1,3) — 21 > ¢(2,3) — 22 (4.13)

It follows from (4.11) that z; < ¢(1,2) — ¢(1,3) + 23 and from (4.13) that 2, > ¢(2,3) —
¢(1,3)+21. Thus, ¢(2,3) —z3 < ¢(1,2) — 21, which together with (4.12) implies (2, 3) —
23 = ¢(1,2) — z;. Thus, player 2 must be indifferent in equilibrium (the same reasoning
applies to players 1 and 3). =

Lemma 4.8 Any strict equilibrium with player i using a mized strategy and players j
and k using a pure strategy must have players j and k proposing to each other.

Proof. We can easily eliminate the other two possibilities, namely that players j and
k both propose to 7 and that j proposes to i while k proposes to j.

If both j and k propose to i, expected payoffs are (in the limit when p tends to 1)
zi = @(i,7) + (i, k) — K, z; = K — ¢(i,k) and zx = K — (i, ). Condition (4.8) then
implies that players j and k would prefer to propose to each other rather than to player
1.

If j proposes to i whereas k proposes to j, the conditions for j and k to play a
best response (¢(i,7) — 2z > ¢(j, k) — 2x and ¢(j, k) — z; > (i, k) — 2;) together with
the indifference condition of player ¢ (¢(7,7) — 2; = (i, k) — 2x) imply that j and k are
indifferent as well, so that the equilibrium is not strict and we can consider it as a ” corner”
equilibrium in mixed strategies. m

The next lemma shows that equilibria in which two players are playing mixed strategies
can be reduced to corner cases of all three players playing mixed strategies.

Lemma 4.9 If there is a stationary perfect equilibrium in which two players are ran-
domizing between two-player coalitions, it must be the case that each player is indifferent
between proposing to any of the other two.
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Proof. Without loss of generality, suppose players 1 and 2 are randomizing between
two-player coalitions. This implies the following indifference conditions

9(1,2) — 22 = ¢(1,3) — 23

©(1,2) =21 = 9(2,3) — 2.

Solving for z3 in the two previous equations and re-arranging, we obtain

#(1,3) — z1 = 9(2,3) — 22.

Thus, player 3 must be indifferent between proposing to 1 and proposing to 2. m

We are now ready to describe the equilibria of the game. We have shown that in equi-
librium only two-player coalitions are proposed. Moreover, we have reduced the possible
strategy combinations to two groups: the first possibility is that two players propose to
each other and the third randomizes; the second possibility is that all players are indif-
ferent between the two-player coalitions they can propose (that is, all players are playing
-possibly degenerated- mixed strategies). The equilibrium will turn out to depend cru-
cially on the protocol, thus we will distinguish two kinds of protocols: those in which
a player is selected more than half of the time to be proposer (called protocols with a
dominant player), and those in which none of the players is selected more than half of
the time to be proposer (called protocols without a dominant player).

4.2.3 Protocols with a dominant player

The next theorem shows that two players proposing to each other and the third player
randomizing is an equilibrium provided that the third player is selected to be the proposer
more than half of the time. Thus, if the protocol makes one of the players very powerful,
the other two will unite against him.

Theorem 4.2 Let (N, ) be a three-player constant-sum, fully cohesive and essential
partition function game. Consider the coalition formation game G(N,p,0,p). Suppose
there is a player i with 0; > % Then there is a stationary perfect equilibrium where players
j and k propose to each other and player i randomizes.

Proof. Without loss of generality, suppose players 1 and 2 propose to each other, and
3 proposes to 1 with probability v, and to 2 with probability 1—+. Then the continuation
values are given by the following system of equations (we denote ¢(i, (N)) by <p§N) for
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reasons of presentation):
21 = pB1(p(1,2) — 22) + p(B2 + O37)z1 + Pha(1 — 7)[K — p(2,3)] + (1 — )"’
22 = pBa((1,2) — 21) +p(61 +03(1 = )22 + PPy [K — p(1,3)] + (1 — p)§ "
23 = pIs[Y(p(1,3) — 21) + (1 = 7)((2,3) — 22)] + p(6: + 02)[K — (1, 2)] + (1 = p)p§".

together with the indifference condition for player 3
¥(1,3) — 21 = p(2,3) — 2.

The solution to this system of equations is (in the limit when p — 1)

03K + (1 — 05)[p(1,2) + ¢(1,3)] — ¢(2,3)

5 = ST (4.14)
z = BEHL= B0+ 3] ~ o) _
o = Koplt,g)+ BlEb D +oll3)+p(9) - 20 w16
¥ = 91(1292. (4.17)

For this strategy combination to be an equilibrium, players 1 and 2 must indeed prefer
to propose to each other rather than to player 3, that is

‘P(I’Q)_Z2 > W(173)_Z3
o(1,2)— 2z > (2,3) — z3.

Substituting for the zs, one can check that these two inequalities are satisfied pro-

vided that 63 > %: indeed, the difference between the left-hand side and the right-hand

side is KL"S—1)(‘?(13)4;’%1~3)+v(1,2)—2K)
—v3

inequalities are satisfied provided that 3 > 3.

in both cases. Because of assumption (4.8), the two

One can check as well that no player would deviate to staying alone, proposing the
grand coalition or making unacceptable proposals. ®

We conclude this subsection with some remarks about the expected payoffs for the
players and the probability of each coalition to form. All results correspond to p — 1.

Remark 4.6 If 6; > % for some i, the expected payoff of player i is increasing in 6;,
whereas the expected payoffs of players j and k are decreasing in 6;.
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This is easy to see by inspecting expressions (4.14), (4.15) and (4.16)* and using (4.8).
In particular, notice that (4.8) implies ¢(%, j) + ¢(j, k) > K for any (distinct) 7, j and k.

Remark 4.7 Ifi is the player with 6; > %, expected payoffs are a function of 6; only.

The reason is that, if ; increases at the expense of 6y, player i will propose to player
k more often, so that expected payoffs remain unchanged.

The probabilities of the two-player coalitions depend only on the protocol and on the
strategies of the players, not on the parameters of the partition function.

Remark 4.8 If 6; > 3, the probabilities of coalitions {i,j}, {i,k} and {j,k} are 9—'::95;,
% and 0; + 0y, respectively.

These probabilities reflect the fact that the two weak players always join forces against
the strong player, whereas the strong player proposes more often to the weakest player.

4.2.4 Protocols without a dominant player

We now show that an equilibrium in mixed strategies is possible if no player is selected
to be proposer with probability more than half. The equilibrium will be unique in terms
of payoffs, but not in terms of strategies.

Theorem 4.3 Let (N, ) be a three-player constant-sum, fully cohesive and essential
partition function game. Consider the coalition formation game G(N,p,0,p). If 6; < -,i;
Vi € N, there is a family of stationary perfect equilibria where each player is indifferent
between proposing to each of the other two. The expected payoff for player i is constant
across this family of equilibria and equals (in the limit when p — 1)

K —2p(k, j) + (i, 5) + ¢(i, k) (4.18)
3 ' '

Proof. We will construct the family of mixed-strategy equilibria described in the
theorem and check there is no profitable deviation.

4These are the limit expressions for both expected payoffs and continuation values.



4.2. The three-player case 107

Suppose all players follow a mixed strategy, and they propose only two-player coali-
tions. We will use the following notation for the probabilities

1 2 3

- @ l-a
2 6} — 1-73
3 ¥ 1—7 —

The row indices indicate the proposers and the column indices indicate the responders.
Thus, player 1 proposes to 2 with probability « and to 3 with probability 1 — «, player 2
proposes to 1 with probability 3, and so on. Using this notation, continuation values are
given by (again we denote (i, (N)) by <pr) for the sake of presentation)

21 =p[01p(1,2) — 2] + 628+ 057)21 + [02(1-8) + B3(1-7)][K — #(2,3)]] + (1-p)pt"
22 =p[02[p(1,2) — z1] + 61 + 03(1-7)]22 + [01(1-a) + O37][K — ¢(1,3)]] + (1'P)<P§N)
2= p[Bs[0(1,3) — 1] + [01(1-a) + O2(1-B)]z5 + [B1cx + 628 [K — p(1,2)]] + (1-p)eS"-

Consider for example player 1. If a proposal is rejected, Nature will choose a new
proposer with probability p (and then player i will be selected to be the proposer with
probability ;) and a breakdown of negotiations will occur with probability 1 — p. The
continuation value of player 1 incorporates the following four possible payoffs:

1. The payoff he gets as a proposer. Since player 1 proposes to player 2 with probability
a and to player 3 with probability 1 — «, we can write the expected payoff for player
1 when he becomes a proposer as a(¢(1,2) — z2) + (1 — a)(¢(1, 3) — z3). Since player
1 is playing a mixed strategy, he must be indifferent between proposing to player
2 or to player 3, thus ¢(1,2) — z5 = ¢(1,3) — z3, and we can write the payoff as
©(1,2) — 25 or ¢(1,3) — z3 indistinctly.

2. The payoff he gets as a responder. Given the protocol and the strategies of the
other players, player 1 will get a proposal from player 2 with probability 6,3 and
from player 3 with probability #37; in both cases player 1’s payoff will be z;.

3. The payoff he gets when he is left out of the coalition that forms. With probability
02(1— 3) player 2 is selected to be the proposer and proposes to 3. With probability
03(1 — «) player 3 is selected to be the proposer and proposes to 2. In both cases
player 1 receives K — ¢(2,3).
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4. The payoff he gets when breakdown occurs. This happens with probability 1 — p.
All players remain singletons and player 1 gets (1, (N)).

As argued above, all three players must get the same payoff from all coalitions they
propose in equilibrium. Thus it must be the case that

©(1,2) — 22 = ¢(1,3) — 23 (indifference condition for player 1)

¢(1,2) — 21 = ¢(2,3) — z3 (indifference condition for player 2)

¢(1,3) =21 = ¢(2,3) — 22 (indifference condition for player 3).
These three equations are not linearly independent since any two of them imply the
third. If we take two of these equations together with the three equations above describing

expected payoffs, we have a system of five equations and six unknowns. We will assume
without loss of generality that 6, < 6, < 63.

Taking +y as a parameter, the solution of the system is (for @ and 3 we have taken the
limit when p — 1)

K+ ¢(1,2) + ¢(1,3) — 2p(2,3)

L - (4.19)
Y K+p(1,2) + <,¢;(2, 3) —2¢(1,3) (4.20)
. K+¢(1,3)+<g(2,3) —20(1,2) (4.21)
o W (4.22)
g - (1— 7)930; 6, — 01' (4.23)

Notice that the continuation values in (4.19), (4.20) and (4.21) follow directly from
the indifference conditions together with assumption (4.1).

For a and (3 to be between 0 and 1, we need
’)‘03 < 0y <03 + 6, (424)
(1 - ’)‘)03 <b, < (1 - ’}‘)63 + 6,. (425)
These two inequalities imply that 63 < 6; + 6. Since 63 > 6, > 6,, an equilibrium in
mixed strategies can only exist if §; < ; for all .

We now check that we can find values for 4 that make a and 3 between 0 and 1 for
any 0 with 03 < 6; + 6,.
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We can rewrite inequalities (4.24) and (4.25) as

9, — 0, 9,
B TR

8, — 6, 03— 0, + 6,
i <7< 5 .

Since 63 > 6, > 6y, it is enough that Q’fl < o & %?. Since 0 < 235_311, %ﬁ €1
and 63 < 6, + 05, we can always find v between 0 and 1 satisfying (4.24) and (4.25).

Furthermore, we can find a continuum of possible values for +.

It is easy to check that any of these strategy combinations (parametrized by 7) is an
equilibrium. Responders do not have an incentive to reject a proposal that gives them
their continuation value. As for proposers, since they are by construction indifferent
between the two-player coalitions they can propose, a profitable deviation can only be
towards proposing the grand coalition, staying alone or making unacceptable proposals.
Condition (4.8) ensures that none of these alternatives is profitable. We will consider the
case of player 1, the other two cases being analogous.

If player 1 proposes the grand coalition, he has to offer both other players their
continuation values. Player 1 then gets K — 2 — 23. If instead he follows his pre-
scribed strategy, he gets ¢(1,2) — z,. Player 1 will prefer to propose the grand coalition
if K — 23 > ¢(1,2). Substituting for z3 from equation (4.21) and re-arranging terms, this
would imply 2K — ¢(1,3) — (2,3) — ¢(1,2) > 0, contradicting (4.8). Lemma 3.2 implies
that player 1 cannot profit from deviating to unacceptable proposals either.

If player 1 decides to stay alone, he gets K — (2, 3). For this deviation to be profitable,
it must be the case that K —(2,3) > (1, 2)—z,, implying 2K —¢(1,3)—¢(2,3)—¢(1,2) >
0, and again contradicting (4.8).

So far we have calculated the continuation values, but not the expected payoffs. The
expected payoff for player i equals®

K + (i, 7) + o(i, k) = 20(5, k) — (1 — p)3p(i, (N))
3p

(4.26)

In the limit when p tends to 1, expected payoffs and continuation values coincide. m

5To see this, notice that z; = pw; + (1 — p)p(i, (N)). Substituting for the equilibrium value of z; yields
(4.26).
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Corollary 4.1 Let (N,¢) be a three-player constant-sum, fully cohesive and essential
partition function game. Consider the coalition formation game G(N, ¢, 0% ,0). There is
a family of stationary perfect equilibria where each player is indifferent between proposing
to each of the other two. In the limit when p tends to 1, each two-player coalition forms
with probability ;.

Proof. If§; = % for all 7, the expressions for a and f3 that solve the system of equations
in the proof of theorem 4.3 are

3[K — 3‘)0(2! (N>) -+ ‘p(l’ 2) g (P(2,3) — 290(173)]
ple(1,2) + p(1,3) + ¢(2,3) - 2K]

3[K — 3<P(1, (N)) * 99(172) * 4/3(1,3) = 2‘10(2’ 3)]
P[‘P(l, 2) + ‘p(lv 3) T 50(213) - ZK]

a=7+(1-p) A27)

g=l-g4{l=p) (4.28)
In the limit when p tends to 1 we have & = v and 3 = 1 — . This implies that each
two-player coalition forms with probability %.“

As we saw in the proof of theorem 4.3, there is a continuum of values of v that induce
an equilibrium. If §;, = % for all 4, any 0 < 4 < 1 satisfies the inequalities. For v = 0
or v = 1, it may be the case that the corresponding a or 3 are not between 0 and 1 for
p < 1, depending on the parameters of the partition function. If the partition function is
symmetric, v = 0 and v = 1 induce an equilibrium. m

We now turn to comment on the expected payoffs of the players and the probabilities
of the two-player coalitions.

Remark 4.9 The equilibrium payoffs are robust to changes in the protocol.

The reason is that equilibrium strategies adjust so as to compensate changes in the
protocol: if the protocol selects one of the players more often to be the proposer, equilib-
rium strategies adjust so that he becomes a responder less often, and equilibrium payoffs
remain unchanged. If the player is selected with probability more than one half, he is a
responder with probability zero, so that the strategies cannot adjust any further and his
payoff increases the more often he is selected to be the proposer. Notice that, even in this
case, payoffs only depend on the largest value of 6, so strategies still adjust to changes in
the other two probabilities so as to keep payoffs constant.

To check this, take for example coalition {1,3}. This coalition is formed if player 1 is selected to be
the proposer and proposes to player 3 (this happens with probability 3(1—a)) or player 3 is selected and

proposes to 1 (with probability %‘7) Since in the limit a = 7, the sum of these two probabilities is %
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Remark 4.10 The probability that coalition {i,7} will form in equilibrium equals 6y in

the limit when p tends to 1.

Thus, the more often a player is selected to be the proposer, the more often the other
two players will unite against him.

Remark 4.11 The probability that a coalition forms depends exclusively on the protocol
(in the limit when p tends to 1), whereas the expected payoffs depend exclusively on the
parameters of the partition function.

Thus, for protocols without a dominant player, we can completely separate the issues
of what coalition will form and what will be the expected payoffs for the players!

Remark 4.12 A player has a higher expected payoff the larger the value of the two-
player coalitions to which he belongs and the smaller the value of the two-player coalition

ezcluding him.

This is a very reasonable result. It may be surprising that it is the absolute values
that matter (and not the marginal contributions) but recall that the all-singleton coalition
structure is not a real alternative, but the alternative to forming a two-player coalition is
forming another two-player coalition.

Remark 4.13 The result in corollary 4.1 vindicates the assumption of random matching
made in the literature (see Gul (1989) or Osborne and Rubinstein (1990)). Letting players
choose their partners may not make any difference!

Gul (1989) and Osborne and Rubinstein (1990) consider coalition formation games
with random matching. Players cannot freely choose their partners: instead, each pair can
meet with probability % and decide whether to form a coalition. In this chapter, players
can freely choose to address their proposals to any of the other two players; however, the
result is that the egalitarian protocol yields each coalition forms with probability %, the
same as in a game with random matching (if the equilibrium of the latter is such that all
players who meet form a coalition).

The results for the three-player constant-sum game differ from the results for the stan-
dard two-person bargaining game with probability of breakdown. First, the breakdown
outcome does not make any difference in the limit when p tends to 1. Second, for p < 1,
one gets a "strength is weakness” result: the higher the payoff in case of breakdown,
the lower the expected payoff. Of course, one could change the extensive form game by
allowing breakdown also before the first proposal is made, so that expected payoffs and
continuation values coincide; this would eliminate the ”strength is weakness” effect.
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4.2.5 Properties of the equilibrium payoffs for protocols without
a dominant player

In theorems 3.5 and 3.6 we defined the characteristic function v*. This characteristic
function assigns to a coalition S its equilibrium payoff given that S is the first coalition to
form. The following proposition relates the equilibrium payoffs of the three-player game
and the kernel” of the game v*.

Proposition 4.2 Under the assumptions of theorem 4.3, the continuation values (and
the limit expected payoffs) coincide with the kernel of the game v*.

Proof. We show that the continuation values found in theorem 4.3 belong to the ker-
nel. This result is linked to the fact that the equilibrium is in mixed strategies. Consider,
for example, players 1 and 2. The excess of player 1 over player 2 must equal the excess
of player 2 over player 1. Given the continuation values in theorem 4.3, the best coalition
1 can form without 2 is {1,3} and the best coalition 2 can form without 1 is {2,3}. If
(2i)ien is in the kernel, then the excess of 1 over 2 must equal the excess of 2 over 1, that
is

w(1,3) — 21 — 23 = p(2,3) — 20 — 23 (4.29)
which implies
¢(1,3) — 21 = ¢(2,3) — 22. (4.30)

In other words, player 3 must be indifferent between forming a coalition with player 1
or with player 2.

Notice also that since Y ..y 2z = ¢(N) and z > v*(i) = K — ¢(j, k) for all i (see
lemma 4.3), (z;)ien is an imputation.

We have shown that the vector z from theorem 4.3 is in the kernel. Since the kernel
of a three-person game contains a unique payoff vector (Davis and Maschler, 1965), no
other payoff vector can belong to the kernel. m

Expected payoffs also coincide with the Shapley value of v*.

Proposition 4.3 Under the assumptions of theorem 4.3, the limit expected payoffs for
the players coincide with the Shapley value of the game v*.

A formal definition of the kernel can be found in chapter 7.
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Proof. Because of the simplicity of three-person games, in order to construct the
game v* we only need to know the payoff of a player ¢ if he decides to form a singleton.
This payoff is K — ¢(j, k). For the rest of the coalitions, we have v*(S) = (S). It is easy
to check that the Shapley value of v* coincides with the equilibrium payoffs in proposition
43. m

In games with more than three players, expected payoffs will rarely coincide with the
Shapley value of v*: the Shapley value takes all coalitions into account, whereas expected
payoffs depend only on which coalitions form in equilibrium. The property that expected
payoffs coincide with the kernel of the grand coalition may generalize to games with more
than three players, but one would need additional assumptions besides the game being
constant-sum, essential and fully cohesive (see section 4.4).

4.3 Constructing a partition function from a charac-

teristic function: the axiomatic approach

4.3.1 Two partition functions based on axiomatic solution con-

cepts

As we have argued in the introduction, constant-sum partition function games may reflect
the outcome of efficient bargaining among coalitions. Consider a given coalition structure
7 = {S1,...,Sm}. Given this coalition structure, if the coalitions reach an agreement to
cooperate payoffs are given by B(w). If coalitions do not cooperate with each other, the
payoffs they get are presumably given by a characteristic function. Call this characteristic
function v. The values of ¢ may be a function of the values of v (the autarchy or
disagreement payoffs). In this section, we briefly discuss two possible ways to construct
a partition function ¢ from a characteristic function v. These two ways were already
suggested by Maschler (1963) and called by him standards of fairness.

e The first possibility is to assume that coalitions will split the gains from coopera-
tion between themselves by using the Nash bargaining solution. This partition
function will be denoted by ¢!. Thus, if there are m coalitions in 7

(P{,V(Sj, 7T') = ’U(Sj) + U(N) - ?nk:l U(Sk) for all Sj e T
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e The second possibility is to take the Shapley value of the game in which the
coalitions in 7 act as players, that is, the Owen value for the game v with coalition
structure 7. This partition function will be denoted by (5" If there are m coalitions
in 7, p5" is given by

— D — )
oSh(S;, m) = ; W[U(T) —v(T\S;)] for all S; € .
where the T’s are all possible unions of coalitions in 7 and ¢ is the number of
coalitions included in 7'.

The use of the Nash bargaining reflects the fact that partial agreements among the
coalitions in 7 are not viable or not profitable, whereas the use of the Shapley value
reflects the possibility of partial cooperation among the coalitions in 7. Both are aziomatic
approaches to the problem of determining coalitional payoffs given a coalition structure
and the disagreement payoffs given by v.

Table 4.1 gives the partition functions ¢ and 3" for three-player games. Notice that
they only differ in their values for coalition structure (N).

oy e
(i, (N)) v§N2+2ugi23——v£Z2——ugk2 2v(N)+2u(i)—v(j)—v(ké+v(i,j)+v(1'.’¢)~20(11’C)
i, ) ,,gNva;,jz_vm u§N2+v§2i,l‘2—vgk2
o°(d) ugNz-ug;,j2+ugk2 ugN2—v§2i.jZ+v§k2
¢ (N) v(N) )

Table 4.1: The partition functions ¢ and ¢5" for three-player games

4.3.2 Properties of pY and ¢J" in three-player games

One can wonder whether ¢ and 35" satisfy the assumptions of theorem 4.3. Suppose
N = {1,2,3} and the function v reflecting the autarchy payoffs is superadditive and
essential. Will ¢! and @5" be fully cohesive, essential and constant-sum? Since the Nash
bargaining solution and the Shapley value are efficient, ¢ and ¢5" are constant-sum.
It is also clear that ¢} and ¢S will be essential whenever the underlying characteristic
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function is essential. However, v being superadditive does not guarantee that ¢ and @5*
will be fully cohesive. In order for a constant-sum partition function to be fully cohesive,
we only need to check that ¢(i, j) > ¢(i, (N)) + ¢(j, (N)) for all 4, j. Thus, for ¢} to be
fully cohesive, the following condition must be satisfied for all (distinct) 7, j and k:

v(N) +v(ij) — v(k) - v(N) + 2v(z) — v(y) — v(k) » v(N) + 2v(j) — v(z) — v(k)
2 - 3 3

or, re-arranging

o(N) = () = v(k)

v(ig) — v(i) - v(j) > . (4.31)
In order for 5" to be fully cohesive, we need for all (distinct) i, j and k:
o(N) +v(ig) —v(k) | 20(N) +20(3) = v(s) = v(k) +v(if) + v(ik) = 20(Gk)
’ 20(N) + 2v(j) — v(i) - v(ﬁlg) + (i) + v(jk) — 20(ik)
Re-arranging terms we obtain
o(N) + (1) + v(2) + v(3) < v(12) + v(13) + v(23). (4.32)

Condition (4.31) is more demanding than condition (4.32). Indeed, adding up the
three inequalities in (4.31) and re-arranging (taking into account that at least one is
strict), one gets (4.32). One can easily find games for which (4.32) is satisfied but (4.31)
is not.

.
Example 4.2 N = {1,2,3}, v(1) =4, v(2) = v(3) =0, v(12) = v(13) = v(23) = 5 and
v(N) = 10.

?Y(1,2,3) = (6,2,2), whereas $5"(1,2,3) = (%£,18,18). ©N(1,2) = ¢5h(1,2) = 7.5.
@Y is not fully cohesive since players 1 and 2 would lose by merging (they would get 7.5
instead of 8). 3" is fully cohesive: for example, if 1 and 2 merge, they get 7.5 instead of
4“6‘1 &~ 7.33.

If 5" and Y are fully cohesive and essential, theorem 4.3 applies and expected payoffs
are given by (4.18). Moreover, expected payoffs coincide with the Shapley value of v.
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Proposition 4.4 Let N = {1,2,3} and ¢ a constant-sum, fully cohesive and essential

partition function based on an underlying characteristic function v. Consider the game

G(N,p,0,p) with 0; < % for alli. Expected equilibrium payoffs for the players in this game

coincide with the Shapley value of v provided that

v(N) +v(ij) — v(k)
2

Proof. Substitute (4.33) in (4.18). m

for all distinct 1,5,k € N (4.33)

p(ij) =

In games with more than three players expected equilibrium payoffs of the game
G(N,¢N,0,p) or G(N, 5" 0,p) will not generally coincide with the Shapley value of
v, even if 5" and ¢V satisfy the conditions in theorem 4.5. The Shapley value is a func-
tion of the values of all coalitions, whereas the expected payoffs in the game G(N, ¢, 8, p)
are generally a function of the values of only some coalitions.

4.4 Random matching results for the four-player case

In this section we want to explore whether the results for three-player constant-sum games
are highly specific to the three-player situation or whether they can be generalized to four
players. We will not analyze all possible strategy combinations as we did for the three-
player case, but we will directly turn to the question of whether, given an egalitarian
protocol, we can get a family of equilibria analogous to the one described in theorem 4.3
and corollary 4.1. In those equilibria, all coalitions of size two could form in equilibrium
and players where indifferent between possible coalition partners. In the four player case,
we can investigate whether there are equilibria in which all coalitions of size two can form
(each followed by another coalition of size two), and whether there are equilibria in which
all coalitions of size three can form. We will see that there are no equilibria in which all
pairs can form unless the game is inessential; whether there are equilibria in which all
trios can form depends on the parameters. The conclusion emerging from this section
is that generalization of the results for three-person games to four-player games is not
possible without making further assumptions on the partition function.

Theorem 4.4 Consider the game G(N, ¢,0%,p) where N = {1,2,3,4}, and (N, ) is
a fully cohesive constant-sum partition function game. Suppose we have a stationary
perfect equilibrium of the game G(N, @, 8, p) where only pairs are formed and players are
indifferent between all pairs they can form. Then (N, ) is inessential.
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Proof. We first notice that a pair {i, j} always gets a payoff ¢°(z, 7). The reason is
that, since the game is fully cohesive, the other two players weakly gain from forming the
complementary coalition. If this gain is strict, then the other two players form a coalition.
If not, it does not matter whether they do.

We now turn to the question of what would be the payoffs in such equilibrium. Since
each player should be indifferent between proposing to any of the other three, we get eight
equations of the form ¢°(4, ) — z; = ¢°(i, k) — 2z (player 4 is indifferent between j and k
for all (distinct) 4,7, k € {1,2,3,4}) together with the requirement that .y zi = @(N).

Solving this system of equations (of which only four are linearly independent) we get

5 ¢, 0) + k) +o°(G 1) — K
2

These continuation values are such that z; + z; = ¢°(4,7). Player i then gets 2;
regardless of whether he is a proposer or a responder and players are indifferent be-
tween following their prescribed strategies and proposing to form the grand coalition. If
no player is to deviate to proposing a three-player coalition, it must be the case that
(i, 7,k) < zi + z; + 2, which implies that the game is inessential. Indeed, consider coali-
tion structures of the type (ij, k, ). Because the game is fully cohesive and constant-sum,
the payoff coalition {7, j} gets in this coalition structure is at least z;+z;. Since ¢(7, j, k) <
2z + zj + 2, it must be the case that the payoff k gets in coalition structure (ij, k,!) is at
least z; and [ obtains at least z. This is only possible if B(ij, k, 1) = (zi + 2, 2k, z1) and
(i, 7, k) = zi + zj + z. It is easy to see that this implies ¢(7, (N)) = z;. =

We now turn to the possibility that an equilibrium exist in which only three-player
coalitions may form and all three-player coalitions are possible. We will use the following
property

Remark 4.14 If N = {1,2,3,4} and (N, ) is fully cohesive, it holds that

¢(1,2,3) + ¢(1,2,4) + ¢(1,3,4) + ¢(2,3,4) =2 3K (4.34)

This result is established by using the fact that ¢(i,7,k) > ¢(i, (N)) + ¢(j, (N)) +

@(k,(N)) and ),y (i, (N)) = K. Notice that, if the game is essential, the inequality
in (4.34) is strict.
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Theorem 4.5 Let (N, ) be a four-player constant-sum, fully cohesive partition function
game ezhibiting negative externalities® and satisfying the following conditions

330(11.71 k) =t 3‘10(17.75 l) - 90(1, kil) - SO(J1 kal) = N
4
(1,5, k) + 9(i, 5, 1) + 0(i, k. 1) — 0(G, k,1) = K
D) .

¢°(i,J) < (135)

: @
e(i,(N)) < (4.36)
Consider the coalition formation game G(N, p,6% p). There is a family of stationary
perfect equilibria where only three-player coalitions are proposed and each player is indif-
ferent between the three-player coalitions he can propose. In the limit when p tends to
1, each three-player coalition forms with probability ;} and the expected value for player i
equals (in the limit when p — 1)

4 %

(4.37)

Proof. Suppose we have an equilibrium with the property that only three-player
coalitions form and that players are indifferent between the three-player coalitions they
can propose. Knowing this, the continuation values can be easily calculated from the
indifference conditions of the players together with the fact that the game is constant-
sum.

The indifference conditions for player i are of the form

<p(i’j’ k) —Z T % = w(laJal) —Zj — 2

where 7, j, k and [ are distinct players. The game being constant-sum implies

Z z= K.
i€N

Solving the system of (not linearly independent) nine equations we get that the con-
tinuation values (2;)icy as well as the limit expected payoffs are given by (4.37).

If only three-player coalitions are formed in equilibrium, it must be the case that
players would not profit from proposing other coalitions. Since players are by construction
indifferent between the three-player coalitions they can propose, we only have to check
possible deviations to proposing the grand coalition, a two-player coalition or staying
alone.

8A partition function games exhibits negative externalities if mergers of coalitions have no beneficial
effects on outsiders, that is, ¢(S,7) < (S, {r\T}Unr7r) for all S, T € m, for all 7 € II(N).
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Consider the situation of player 1. His payoff as a proposer equals ©(1,2,3) — 2o — 23,
that is (substituting for 2, and z; from (4.37))
2
If instead player 1 would propose the grand coalition, his payoff would be ¢(N) —

29 — 23 — z4. Player 1 will not profit from proposing the grand coalition provided

that z4 > p(N) — ¢(1,2,3). Using (4.37), one can see that z; — [p(N) — ¢(1,2,3)] =
2(1,2,3)+0(1,2,4)+¢(1,3,4)+9(2,3,4)—3K
r

, and this is nonnegative because of (4.34). Thus, player 1
(or, in general, player 7) does not have an incentive to deviate. Corollary 3.5 implies that
making unacceptable proposals is not a profitable deviation either.

If player 1 proposes a two-player coalition (say, {1,2}), the payoff of the coalition
will be ¢°(12). Thus, player 1 will not profit from proposing a two-player coalition if
©°(1,2) — 25 < ‘P(l’2’3)+“’(1’2’4)*'“;(1’3’4)—“’(2‘3’4)"’( . Substituting for z, from (4.37), one can
easily see that this implies

30(1,2,3) + 3p(1,2,4) — ¢(1,3,4) — ¢(2,3,4) — K
#01,2) < BRI T30, ~ (15,4~ 34 K
More generally, player ¢ will not profit from proposing coalition {4, j} provided that

1 3

©°(1,7) <

This is precisely condition (4.35).

Suppose player 1 forms a singleton. His expected payoff cannot be determined solely
from the fact that the game is fully cohesive and constant-sum. Depending of the pa-
rameters, he may face a three-player coalition or a two-player coalition and a singleton.
Assuming negative externalities (that is, a player never profits from other players forming
a coalition), player 1’s payoff is maximized when all the other players remain singletons,
and we can find the following sufficient condition

0(1,2,3) + ©(1,2,4) + (1, 3,4) — ¢(2,3,4) — K
p(1,(N)) < 5 :

More generally, player ¢ will not profit from forming a singleton if

(P(i» (N)) < (P(i,j, k) i cp(i,j, l) + ‘g(ivk7 l) — ‘p(j7k1l) = K

This is precisely condition (4.36). Notice that a necessary and sufficient condition

would be

= 2 5
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However, this condition is not very helpful because v*(i) depends on the concrete
partition function we are considering.

So far we have checked that, given the expected payoffs found from the indifference
conditions of the players, players will not have an incentive to propose coalitions other
than the ones prescribed. It remains to find mixed strategies inducing the expected payoffs
in (4.37). We will use the following notation for the probabilities

{1,2,3} | {1,2,4} | {1,3,4} | {2,3,4}
1 «a J¢] l-a-p —
2| v P = l=5—@ (4.38)
3] A - P 1= A=
4 = ¢ 4 1-¢—-9

Thus, player 1 proposes coalition {1, 2,3} with probability «, {1,2,4} with probability
[, and so on.

Given this notation, the continuation values are given by a system of four equations
(we only include the equation corresponding to player

z =2p(1,2,3)—n—2z)+E+p+A+put+o+Y)at
+EB—7—p-A-p-¢ YK —9(2,3,4]+ (1-p)e(1,(N))

If we substitute for the z;’s from (4.37), we get four equations with eight unknowns (the
probabilities in table (4.38)). As in the three-player case, there is a family of equilibria.
Taking p, ), p, ¢ and ¢ as parameters and solving for a, 3 and 7, one gets (in the limit
when p tends to 1) the following expressions

a = ptu+o+y-1
B =1-p-¢
Y= 2=p=A-p—9¢—9
These values imply that each four-player coalition forms with probability %.9

Notice that setting p=A=p=¢ =1 =1 weobtaina=F=y=3. =

Theorem 4.5 implies that, analogously to the three-player case, the relative strength of
the players as measured by the partition function has no influence on coalition frequencies.
However, the result does not follow for all four-player constant-sum, essential and fully
cohesive games but it requires additional assumptions.

9Consider, for example, coalition {1,2,3}. The (limit) probability of this coalition forming equals
1 o
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Remark 4.15 Conditions (4.35) and (4.36) above hold for all symmetric four-player
constant-sum fully cohesive games.

Proof. Denote each coalition by its size. It follows from symmetry that ¢°(2) = %
and ¢(1,(N)) = %. For symmetric games, conditions (4.35) above becomes

£<4<p(3)—K.
2 = 4

Re-arranging terms we get
3K < 4¢(3). (4.39)

Expression (4.39) is expression (4.34) for symmetric games.
Analogously, condition (4.36) becomes
K _203)-K

— <

g5 (4.40)

This expression is also equivalent to (4.34) for symmetric games. m

Thus, for any symmetric four-player constant-sum fully cohesive game with negative
externalities, one can construct a family of equilibria as described in theorem 4.5. Con-
ditions (4.35) and (4.36) may not hold for asymmetric games. We will illustrate the
possibility (or impossibility) of an equilibrium in which each three-player coalition form
with probability % with an example.

Example 4.3 N = {1,2,3,4}, p(N) = 100 = ¢(1,2,3), ¢(1,2,4) = 85, ©(1,3,4) = 80,
$0(273’ 4) = 65.

Notice that this is a quota game in the following sense: there are numbers g, ..., g
such that ¢(i,7,k) = ¢; + ¢; + g« for any distinct ¢, j and k. The quotas of the play-
ers are q; = 45, ¢ = 30, g3 = 25, ¢4 = 10. Notice also that players 1, 2 and 3 can
obtain the whole pie by uniting against 4. We can try to construct an equilibrium
in which players only propose three-player coalitions and they are indifferent between
them. We know from (4.37) that expected payoffs in such an equilibrium would be
wy = 42.5, wp = 27.5, wy = 22.5, wy = 7.5 (each player gets 2.5 less than their quo-
tas'’). Thus, when player i is selected to be a proposer, his payoff is @ + 5. In order to

10That is, each player loses L*M%"Lﬂﬂ
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check whether this is an equilibrium, we need the rest of the parameters of the partition
function.

Suppose ¢°(1,2) = 80. Then we do not have an equilibrium because player 1 would
rather propose coalition {1,2} and get 80 — 27.5 = 52.5 rather than proposing a three-
player coalition and getting 50. The rest of the values of the partition function could be
7(12,3,4) = (80,20,0), 7(14,2,3) = (65,20,15), B(13,2,4) = (70,20,10), $(23,1,4) =
(65,35,0), B(24,1,3) = (50,35,15), B(34,1,2) = (45,35,20), B(13,24) = (60,40),
©(14,23) = (55,45), ¥(1,2,3,4) = (40,20, 20,20). This game is fully cohesive and essen-
tial but there are no equilibria in which each player is indifferent between all three-player
coalitions containing him.

Suppose instead we have the same partition function but with $(12,34) = (65, 35).
Do we have an equilibrium? First, we have to check that none of the players prefers to
form a two-player coalition, that is, ¢°(i,7) < ¢;+¢g; + 2.5 for all {7, j}. This is indeed the
case. It remains to check whether a player would have an incentive to form a singleton.
This is clearly not the case of players 1, 2 and 3. Player 4 would form a singleton,
provided that all other players would form singletons as well. Thus, the sufficient condition
(4.36) is not satisfied for player 4. However, coalition structure (N) will never arise after
a deviation by player 4 since, given that player 4 and another player form singletons,
the remaining two players would always form a two-player coalition. Finally, we know
from the proof of theorem 4.5 that deviations to proposing the grand coalition are not
profitable: indeed, proposing the grand coalition would give player 7 ¢; — 2.5 rather than
g+ 5.

In order to describe the equilibrium strategies, we need to know the probability of a
given player proposing a given (three-player) coalition. We can construct an equilibrium
as follows: using the notation from the proof of theorem 4.5, we canset p = A = p =
=19 = %; the other three probabilities can be found from the system of equations

representing the continuation values as functions of the probabilities. In this example, we

: _ 16-15 _ 5p—4 _ 4-3
obtain a —Bsp sB= -Lsp and v = —Esp .

4.5 Related literature

The idea that the value of a coalition as given by the characteristic function may not
be an adequate representation of the actual payoff of the coalition can be traced back to
Luce and Raiffa (1957). They made the point that the use of a characteristic function
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to represent a situation originally given by a normal form game is not without cost.
Maschler (1963) argues that the characteristic function may be a poor measure of the
payoff of a coalition even if the game is given only in characteristic function form. The
reason is that coalitions may cooperate with other coalitions and split the gains from
cooperation.

Maschler postulates that the outcome of any game will be an imputation (that is,
the value of the grand coalition will always be realized) but subcoalitions may appear
in intermediate stages of the negotiations. When an intermediate coalition is formed, it
may partition itself into subcoalitions or negotiation groups. Given a partition of N into
negotiation groups, a standard of fairness determines what the payoff of each negotiation
group. The standard of fairness is such that each negotiation group gets at least its value
and the sum of the payoffs for all negotiation groups is the value of the grand coalition.
The standard of fairness is therefore a constant-sum partition function. The standard of
fairness is assumed to depend on factors such as bargaining abilities of the players and
accepted distributional rules and may thus vary depending on the concrete game being
played. Maschler, however, suggests two possible standards of fairness: the cooperative
standard of fairness (which assumes that each negotiation group gets an equal share of
the difference between the value of the grand coalition and the sum of the values of the
negotiation groups) and the standard of fairness based on the Shapley value (which as-
signs to each negotiation group the Shapley value of a game in which players are the
negotiation groups, that is, each negotiation group receives its Owen value). The payoff
of a coalition will then be the sum of the payoffs obtained by its negotiation groups.
Since the partition function is constant-sum, Maschler assumes that if a coalition forms
its complement also forms; the power of a coalition is then defined to be the von Neu-
mann minimax value of the game between the coalition and its complement, where the
pure strategies of a coalition are the partitioning into negotiation groups. In this way one
obtains a new game (the derived game), to which all traditional solution concepts can be
applied.

The spirit of the chapter is very close to Maschler (1963). However, there are some
important differences. The first difference is the concept of coalition. Maschler as-
sumes that a coalition may partition itself in several negotiation groups (thus payoff
is transferable across negotiation groups belonging to the same coalition), whereas in
this chapter a coalition is understood as a bargaining unit, and thus it is forced to
act as a single negotiation group. We argue that dividing a coalition into negotia-
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tion groups may demand too much commitment from the players.!! Notice however
that whether splitting a coalition into negotiation groups is allowed or not is irrele-
vant in games where splitting is not profitable. Full cohesiveness of the partition func-
tion ensures this. Indeed, the bargaining set for the derived game (called M§"’">) com-
puted by Maschler for three-person games for both the cooperative standard of fair-
ness and the standard of fairness based on the Shapley value assigns the payoffs in
(4.18) to the grand coalition for the case in which it is not profitable for coalitions to
split themselves into several negotiation groups. The second difference between this
chapter and Maschler (1963) is that Maschler assumes that when a coalition forms its
complement also forms; the game in this chapter allows for simultaneous formation of
any number of coalitions. Equilibria with more than two coalitions are possible in our
game, even though we have focused on conditions under which only two coalitions form.
The third difference is that Maschler does not model the process of coalition forma-
tion.

New versions of the bargaining set M(lim) due to Maschler can be found in chap-
ter 5 of Kahan and Rapoport (1984). The first version, called the modified bargain-
ing set MM keeps objections and counterobjections in the modified game, but actual
payoffs must be in the original game. Thus, there is a separation of the bargaining
space and the payoff space. A simplified version of M, in which any coalition that
forms as well as its complement are restricted to act as a single negotiation group, is
called the power bargaining set MF (see also Rapoport and Kahan (1979) and (1982)).
This bargaining set requires less cognitive ability from the players (as it restricts the
number of partitions that need to be considered) and it makes no use of the mini-
max theorem. The modified bargaining set and the power bargaining set abandon the
idea that the payoff of a coalition can be greater than its value, and the derived game
is only used to determine the distribution of the value of a coalition among its mem-
bers.

!Maschler provides the following example: N = {1,2,3}, v(12) = v(13) = 100, v(123) = 120, and
v(S) = 0 otherwise.

The coalition {2, 3} may act as one player, and if it does the following outcome (60, 30, 30)
may result. However, coalition {2, 3} can still do better by forming an intermediate coalition,
deciding not to listen to any offer from player 1 to one of them but enter the game as two
players. In this case the outcome will be (40, 40, 40).

One may well argue that deciding not to listen to any offer from player 1 to one of them while at the
same time remaining two autonomous players may require too much commitment from players 2 and 3.
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A theory of coalition formation based on the possibility of bargaining between coali-
tions is the central union theory (Michener and Au (1994)). This theory distinguishes
two kinds of alliances among players: unions and coalitions. A union is an agreement
among a set of players U that none of them will establish any coalitional agreement
with any of the players inside U unless all of them are included. Unions form in or-
der to improve the bargaining power of the players. Thus, the concept of union coin-
cides with what we have called (intermediate) coalition or bargaining unit in this chap-
ter. The central union theory also distinguishes between value v and power p. Players
evaluate alternative unions in terms of their power. In order to calculate the power
of a union U, it is assumed that the power of a union equals its value plus a share
of the excess v(N) — v(U) — v(N/U). Thus, implicitly players assume that the union
would bargain with N\U, as in Rapoport and Kahan (1982). Players evaluate alter-
native unions on the basis of their power. A union preferred by all its members ac-
cording to this criterion is called a central union (there is always at least one). The
theory predicts that the final coalition structure will always contain a central union
or a superset of a central union. Actual payoffs, however, are in v, and the (rather
complicated) rules of payoff division use only information provided by v and not by
p.

This chapter shares the interpretation of coalitions as bargaining units with Hart and
Kurz (1983). Hart and Kurz use the Owen value to evaluate not only the prospects of
a coalition as a whole, but also the payoffs of the individual players. They do not have
a dynamic model of coalition formation but rather look at which coalition structures are
(a-,3-, -, or 8-) stable. For three-player games, a player has the same Owen value in
any two-player coalition, that is, any of the other players makes as good a partner as
the other. This is also a characteristic of the equilibrium of our game: each player is
indifferent between proposing to any of the other two players.

Our extensive form game does not implement the Shapley value of either v or v*. Hart
and Mas-Colell (1996) have shown that the Shapley value can be implemented by a game
with random proposers. Hart and Mas-Colell assume that unanimity is a requirement for
any agreement (thus, intermediate coalitions are not allowed) and that, if a proposal is
rejected, the possibility of breakdown only affects the proposer: with positive probability
the proposer is ”expelled” from the game and bargaining continues among the rest of
players.

Gul (1989) implements the Shapley value using a bargaining game with random match-



126 4. Constant-Sum Games

ing. We are able to endogeneize the random matching result and still obtain the Shapley
value as the equilibrium payoff vector, though only for three players.

4.6 Concluding remarks

We have learned from the three-player case that the frequency of each two-player coalition
depends on the protocol rather than on the partition function. One might expect that the
relative strength of the players, as described by the partition function, should influence
the frequency with which players are part of a coalition. However, we have seen that
under relatively general conditions (the game being constant-sum and fully cohesive) this
is not the case. If the protocol gives a lot of power to one of the players, the other two
unite against him. On the other extreme, if the protocol is completely egalitarian, each
coalition forms with probability % regardless of how weak or strong each player is in terms
of the partition function. For the case of four-person constant-sum games, one cannot get
the same kind of results without making additional assumptions on the parameters.

Full cohesiveness requires two-player coalitions to be weakly profitable only. If the
game is essential, at least one of the inequalities is strict. It may seem strange that
players are indifferent in equilibrium between a coalition that is weakly profitable and
a coalition that is strictly profitable. Nevertheless, one should take into account that
profitability is defined with respect to coalition structure (N), which never arises in equi-
librium. The actual alternative to a given two-player coalition is not (N) but another
two-player coalition.

The limit results we have obtained for the game with breakdown probability can be
obtained for positive games with discounting as well. The results can also be extended
to some games that are not constant-sum: what matters is that the sum of the values of
the coalitions in coalition structures of the type {{i,j},{k}} (in three-player games) and
{{i,4,k},{1}} (in four-player games) is the value of the grand coalition.

We have argued that a characteristic function game becomes a partition function game
if we allow coalitions to cooperate with each other. This may change the coalition structure
that arises. Suppose we have a symmetric characteristic function game. Consider the
partition function based on the Nash bargaining solution ¢ and suppose that players in
a given coalition have to split the payoff equally. If we find the equilibrium of the game
with random proposers and fixed payoff division, we know from the previous chapter
that players will form the coalition with the highest per capita value of v*. This is
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not necessarily the coalition that had the highest per capita payoff in the characteristic
function, as the following example illustrates:

Example 4.4 N ={1,2,3,4}, v(i) =0foralli € N €, v(S) = 28 for all S with |S| = 2,
v(S) =45 for all S with |S| =3, v(INV) = 100.

If a coalition of two players forms, another coalition of two players will follow (bringing
each of the members 25 rather than L:;ZS = 24). Each player will then get 25. If instead
a three-player coalition forms, it will get 19% = 72.5, which gives to each player in
the three-player coalition less than 25. Thus, the coalition with highest per capita payoff
according to v* (a two-player coalition) is different from the coalition with highest per
capita payoff according to v (a three-player coalition).



Chapter 5

The Strategic Approach to Deriving
a Partition Function: The
One-Seller-Two-Buyers Game

In the previous chapter, we argued that a characteristic function game can give rise to a
partition function game if coalitions cooperate with each other. In this chapter, we turn
attention to a classical economic application: the one-seller-two-buyers game. We will use
this game to show how a partition function can be derived from a characteristic function,
and also to illustrate the assumptions and predictions of the random proposer model.

The basic situation involves three agents. A seller owns a unit of some good and derives
zero utility from keeping it. He can sell the object to one of two buyers with different
reservation prices. The allocation of the good and payments to be made are determined
by bargaining among the players. All players are risk-neutral and the reservation values
are common knowledge.

An interesting question is whether the buyer with the lower reservation price can
expect a positive payoff in this situation. Efficient bargaining implies that this buyer
cannot expect to get the object; however, his presence in the market benefits the seller,
who can presumably ask a higher price when there are two buyers, whereas his exit from
the market would benefit the other buyer, who would then pay a lower price.

If coalitions can be formed prior to the bargaining process, the weak buyer may benefit
from his influence on the price. He can negotiate with the seller and get paid to be in the
market, or he can negotiate with the other buyer and get paid to be out of the market.
The question is then what coalition will form and what are the expected payoffs for the

129
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players (will the weak buyer ”capture” the whole price difference or not?).

The one-seller-two-buyer case is an example of a more general situation in which a
player does not add value to the game but his presence or absence in the game modifies
the value added of other players. Brandenburger and Nalebuff (1995) provide some real-
life examples. They come to the following conclusion:

Sometimes the most valuable service you can offer is creating competition, so
don’t give it away for free.

The one-seller-two-buyer situation fits into the general framework of chapter 4. Chap-
ter 4 assumes that there is a given value to be divided between the players according
to some bargaining procedure. Prior to this procedure, players may form coalitions; if a
coalition forms, it will act as a single unit in the bargaining procedure. There are then two
stages in the game: coalition formation and bargaining. The outcome of the bargaining
process will depend on how players are divided in coalitions, thus it will be described by
a partition function.

In the case of the one-seller-two-buyers situation, the amount to be divided is the
highest reservation price. We will assume that the allocation of the good and payments
to be made are determined by noncooperative bargaining. The players may benefit from
forming coalitions prior to bargaining over the allocation of the good: the most salient
case is the two buyers forming a cartel, but the weak buyer may also get paid by the
seller to create competition in the market. We will model the two stages of the game
(coalition formation and bargaining) in a similar way: in the bargaining stage, a coalition
is selected randomly to make a proposal over the allocation of the good and payments; in
the coalition formation stage, a player is selected randomly to propose a coalition and a
division of the payoff the coalition will attain in the second stage.

The solution to the second stage leads to a partition function. Once we have derived
the partition function, we can apply theorem 4.3 and obtain the following results: the weak
buyer has a positive expected payoff, but he cannot capture the whole price difference, as
the seller and the strong buyer would then form a coalition themselves. For any values
of the parameters, each two-player coalition forms with probability one third. No matter
how weak the weak buyer is, he will be part of a coalition two thirds of the time! His
expected payoff will be affected by how weak he is, but not his probability of being in a
coalition. The players’ expected payoffs correspond to the kernel and the Shapley value
of a related cooperative game, and the possibility of forming coalitions generally makes
the two buyers better-off.
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5.1 The model

The set of agents is N = {1,2,3}. Agent 1 is a potential seller who owns one unit of some
good and derives zero utility from keeping it; agents 2 and 3 are potential buyers, whose
reservation prices for the good are respectively u; and uz, 0 < uy < uz. All players are
risk-neutral and valuations are common knowledge. The characteristic function associated
to this situation is then v(1,2,3) = v(1,3) = us, v(1,2) = uy, v(2,3) = v(i) = 0 for
1 = 1,2,3. The characteristic function assigns to each coalition the payoff it can get if it
remains isolated: if the three players remain isolated, all of them receive zero (players 2
and 3 want the good but do not have it; player 1 has the good but does not want it); if
the two buyers form a coalition, they still receive zero since they do not own the good; if
players 1 and 2 form a coalition they can trade the good and make a total gain of u,; if
players 1 and 3 form a coalition they can trade and make a total gain of uz. The value
of the grand coalition is the same as the value of coalition {1,3}; since there is only one
unit of the good and player 3 values it most, the presence of player 2 does not affect the
total value that can be created (though it affects the marginal contribution of player 3 to
the game).

The question we investigate is whether player 2 can expect a positive payoff in this
situation. On the one hand, if the outcome of bargaining is efficient, he cannot expect to
buy the good, as for any price player 2 is prepared to pay, player 3 is prepared to pay
more. On the other hand, player 2 may affect the price of the good: if player 2 were not
in the game, the "intuitive” outcome would be player 3 buying the good for %; if player
2 is in the game, the price cannot be lower than u, Player 2 may then exploit this power
and, say, form a cartel with player 3 and get a share of the gains derived from the cartel.

Different cooperative solution concepts give different answers to this question. The
core of v contains all allocations of the form (z,0,u3 — z) with £ > wuy; thus, in any
core allocation player 2 must receive zero. On the other hand, the Shapley value of v is
(gﬂ%’n 2 ﬂ‘—"g—z"z); it gives a payoff to player 2 that is proportional to his reservation
price.

To address the question of whether player 2 can expect a positive payoff, we model the
situation described above as a two-stage game. The allocation of the good and payments
are determined in a bargaining process with random proposers and exogenous probability
of breakdown. Prior to this bargaining players may form coalitions: if two players form
a coalition, they will bargain with the third player as a single unit. It is assumed that
contracts specifying the division of the coalitional payoff can be enforced. The game is
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now described in more detail.

5.1.1 The coalition formation stage

This stage is just a concrete case of the game with breakdown probability G(N, ¢, 67, p),
where ¢ is derived from the equilibrium of the second stage. The outcome of the coalition
formation stage is a coalition structure 7 (interpreted as the distribution of players in
bargaining units to play the second stage) and an agreement of the players over side
payments.

The game starts with Nature selecting a proposer; each of the three players is selected
with probability % A proposal consists of a coalition S to which the proposer belongs and
a payment to the remaining players in S.

Once a proposal is made, the rest of the players in S accept or reject the proposal
sequentially. If the proposal is accepted the coalition forms, and the game proceeds to the
next stage unless the coalition formed was a singleton, in which case Nature chooses a pro-
poser among the remaining two players. If the proposal is rejected, Nature chooses a new
proposer with probability p, and breakdown occurs with probability 1 — p. If breakdown
occurs, the coalition structure (N) forms.

The coalition formation stage lasts until a coalition structure is formed by breakdown
of the negotiations or by agreement of the players.

There are two cases in which the game ends after the first stage (or, alternatively,
the second stage is trivial): if the grand coalition forms, the division of the value of the
grand coalition has already been decided (as a proposal to form a coalition includes a
payoff division) and nothing remains to be settled; if coalition {1, 3} forms, it can achieve
a payoff of u3 by itself.

5.1.2 The bargaining stage

In the bargaining game between coalitions each coalition acts as a unit (say, each coalition
is represented by its proposer). Depending on the outcome of the first stage, bargaining
takes place between a two-player coalition and a single player, or among three single
players.

The coalitional payoff is determined by the equilibrium of this stage. It can be a
monetary payment (e.g., the payoff for coalition {1} would be the price), a consumer’s
surplus (e.g., for coalition {3} the payoff would be the difference between his reservation
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price and the price actually paid) or a sum of payments and consumer’s surplus (for
coalition {1,3} the payoff would be the total value to be created, us).

The bargaining process runs as follows: first, a coalition is chosen by Nature to be the
proposer (all coalitions are chosen with equal probability). This coalition makes a proposal
about the allocation of the good and transfers between coalitions. The coalitions affected
by the proposal accept or reject sequentially. If a proposal is rejected, nature selects a
new proposer with probability p. With probability 1 — p, a breakdown of the negotiations
takes place and each coalition gets the payoff it can get by itself, v(S). We will think of
p as being close to 1.

Notice the difference between v(S) and the expected payoff of a coalition in this
bargaining process, ¢(S, 7). The value of the characteristic function, v(S), represents the
payoff the coalition gets ”by itself”, i.e., when it is isolated from other players. However,
the coalition will often be able to do better than this, and can improve upon v(S) by
reaching an agreement with other coalitions. For example, v(2,3) = 0, as neither 2 nor 3
own the good, but ¢(2,3) > 0, as the coalition {2,3} can act as a single buyer and reach
an agreement with 1 about the price of the good.

Once an agreement is reached, it is implemented and the game ends, except in one case:
if the three players are playing the bargaining game as single units, and player 1 agrees
to sell the good to player 2, player 2 may resell the good to player 3. The game continues
then until players 2 and 3 reach an agreement or breakdown occurs. If breakdown occurs,
player 2 keeps the good. This responds to the idea of allowing for bargaining between the
players until all gains from contracting are exhausted.

The division of the payoff of the coalition is implemented as follows: once the game has
ended (either with agreement or with disagreement) the proposer pays the responders the
amount agreed at stage 1 and keeps the (positive or negative) residual payoff. Suppose
for example that coalition {1,2} forms with the agreement that 1 will pay % to player
2. If the game ends without agreement with player 3, this means that player 1 sells the
good to player 2 for 2—152 If the coalition sold the good for, say, us + €, player 1 will pay
% to player 2 and keep 22 + ¢ for himself.

The coalition formation stage and the bargaining stage are formally very similar. In
both stages players move sequentially, proposers are selected randomly and there is an
exogenous probability of breakdown. However there are three differences: the stages differ
in the players (the first stage is played among individual players, whereas the second is
played among coalitions), in the content of proposals (in the first stage, proposals include
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a coalition and payoff division within the coalition, whereas in the second stage a proposal
consists of a payoff division among coalitions) and in the consequences of breakdown (if
breakdown occurs in the first stage, no coalitions form and the game proceeds to the
second stage; if breakdown occurs in the second stage, the game ends).

As in the previous chapters, we will focus on stationary perfect equilibria.

The game can be solved by backward induction: first, the equilibrium of the bargaining
stage is found for each possible coalition structure; this determines the expected payoffs
(the function ¢(S, 7)) that are used as an input to solve the coalition formation stage.

5.2 Solving the bargaining stage

The bargaining process in the second stage depends on the outcome of the first stage.
If either {1,2,3} or {1,3} have been formed, nothing remains to be settled as the total
value has been divided. Thus, there are three bargaining processes to be considered,
corresponding to coalition structures (1,23), (12,3) and (1,2, 3).

5.2.1 The second stage with a buyer cartel

If players 2 and 3 form a "buyer cartel”, there is effectively only one buyer in the market.
There is no asymmetry between the two coalitions, as both of them receive a payoff of
zero if a breakdown occurs, so we can expect both coalitions to receive the same payoff.
As the total value to be created is us, each coalition gets 4. This is also the expected
outcome of bargaining between the two coalitions with random proposers and exogenous
probability of breakdown.

We will call Z;; (analogously, Z{53;) the continuation value for coalition {1} (i.e., the
expected payoff for player 1 given that he rejects an offer). We can find the continuation
values from the following system of equations:

Zyy = g[Ua —Zpay) + gzm

g[us —Zw)+ gz{m)

g
N
w
-

|

The solution to this system is Z{;) = Z{;3) = £ u3. The expected payoffs for the coalitions
are Wy = Wiggp = .1

I Notice that W1 is an expected price, whereas W{2,3} is the expected consumer surplus for player 3
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The outcome with a buyer cartel also reflects the situation that would occur if player

2 were not in the game: then the only buyer (player 3) would buy the good for #.

5.2.2 The second stage with no prior coalitions

If the coalition structure resulting from the first stage is (1,2, 3), bargaining takes place
among individual players. This is the benchmark case, and the only possible case if
agreements to collude cannot be enforced. Bargaining starts by a chance move that
determines the first proposer; each player is selected with probability -é

If the seller is selected, he can offer the good to one of the buyers for a price. If a
buyer is selected, he can propose a price to the seller. Players may also propose a ”global
agreement” in which 3 gets the good and pays something to the other two players.

In this subgame it makes a difference whether reselling is feasible.

Unfeasible reselling

If reselling is not feasible, the outcome of the bargaining procedure may not be efficient, as
it is possible that player 2 buys the good from 1 instead of proposing a global agreement
in which player 3 gets the good and pays transfers to both 1 and 2.

It seems reasonable to expect that the presence of a second buyer will not affect the
price if he is not prepared to pay more than 3 (the "threat” player 1 has to sell the good
to player 2 is not credible). On the other hand, if u; > %, we can expect that the seller
sells the good to player 3 at a price equal to uy. Proposition 5.1 states that this is indeed
the case.

In order to find the equilibrium of the three-player bargaining stage, notice that player
1 has three meaningful alternatives: he can either propose to sell the good to player 2,
to player 3 or randomize; player 2 can buy the good from player 1, propose a global
agreement or randomize; 3 can only propose to buy the good from player 1. There are
then nine candidate equilibria.

We will denote expected payoffs and continuation values in this subgame with capital
letters (thus Z; is the continuation value of player 1 and W; his expected payoff) in order
to distinguish them from the expected payoffs and continuation values of the whole game.

(gross of payment to player 2). If the players reach an agreement over the price, player 3 keeps the good
and player 2 receives a monetary payment that depends on the agreement 2 and 3 reached in the first
stage.
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Proposition 5.1 In the bargaining stage with coalition structure (1,2,3) and without the
possibility of reselling, the following strategies constitute the unique equilibrium for p close
tor 1:

a) If up < %, player 1 offers the good to player 3, player 3 buys the good from player
1, and player 2 proposes a global agreement. Further, player i accepts any proposal
that gives him at least his continuation value.

Expected payoffs when p tends to 1 are (4,0, %).
b) Ifus > % , 1 offers the good to 3, 3 buys the good from 1, and 2 randomizes between
buying the good from 1 and proposing a global agreement; in the limit when p tends

to 1, he proposes a global agreement with probability 1. Player i accepts any proposal
that gives him at least his continuation value.

Ezpected payoffs when p tends to 1 are (us, 0, uz — ug ).
Proof. a) The continuation values can be found from the following system of equations

2
Zy = g(us - Z3) + ?pzl
Zy = %) (uz — Z1 — Z3)

2
Zy = %(Us — &)+ ?pzii'

This implies

1_
P . 3”ff’p and Z; = ”(—3_’;)&.

We prove now that both players 1 and 2 stick to these strategies provided that up < 2.

Player 1 gets uz — Z3 if he follows his prescribed strategy, whereas he gets u; — Z
if he proposes to sell the good to player 2. The difference between the two payoffs is
3—'3%2113 — uy, larger or equal than zero for uz > 3_3_ P~ uy = ¥(p)us. Because ¥'(p) > 0,
the condition is more restrictive for higher values of p. ¥(1) = 2, thus we need uz > 2u,
for the inequality to be satisfied for p arbitrarily close to 1.

Player 2 gets uz — Z; — Zs if he proposes a global agreement, and u, — Z; if he buys
the good for himself. The difference between these two payoffs is 33—__2pzu3 — uy, larger or
equal than zero for uz > :f—:%ufz. Again the inequality is more restrictive for higher values
of p, and it holds for p arbitrarily close to 1 given that uz > 2u,.
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b) Suppose player 2 proposes to buy the good from 1 with probability ), and a global
agreement with probability 1 — A. The continuation values can be found from the following
system of equations, the fourth being an indifference condition for player 2:

2
Zy = p(U3 — Z3) + ?pzl

3
_p
Zy = 5(“3—21—23)
2—-A
By = g(us = 21)4_(_3ﬂz3
’U3—Z1—Zg = uy— 2y = Z3 = u3 — uy.
The solution to this system is
puz
Z —3
: 3—-2p
B = p(1 —pluy
3—2p
Zy = uz—up
y = 30-p)[B-pus— (3 —2p)u

p(us — u2)(3 — 2p)
A € (0,1) provided that? us < uz < 2uy and p close enough to 1.

We now check that none of the players has an incentive to deviate from his prescribed
strategy. First, it is clear that player ¢ should accept any offer that gives him an expected
payoff of at least Z;. Second, it can be easily checked that the payoff a player gets when
he makes the prescribed proposal is higher than his continuation value, thus no player has
an incentive to deviate to make unacceptable proposals. Moreover, since Z, > 0, players
1 and 3 have no incentive to deviate to proposing the grand coalition. As for player 2, he
is by construction indifferent between proposing to buy the good from 1 and proposing
a global agreement. Player 1 can stick to his prescribed strategy and get uy, or he can
propose to sell the good to player 2 and get us — Z; < us. Thus, we have indeed found
an equilibrium.

It can be checked that no other strategies constitute an equilibrium. If player 1
would propose to 2 or randomize, and 2 would propose a global agreement or randomize,
this would require Z3 > u3 — ug + Z5 and Zz < uz — uy. We are left with the three

2There is a discontinuity of the equilibrium strategies at uz = uy. Player 1’s strategy changes from a
pure strategy to a mixed strategy that places a weight of % on each buyer. Continuation payoffs then

equal 2 1__ s for players 2 and 3 and 22 —L2J2 for player 1, as in the reselling case.
q 6 - 5p 6 —5p) g
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strategy combinations in which player 2 proposes to player 1. All of them would require
Z3 > u3z — uz but it can be checked that this is not feasible precisely because player 3
never gets a proposal from player 2. m

For up > %, the outcome of the process may be inefficient, as player 2 receives the
good with positive probability. However, this inefficiency vanishes as p tends to 1.

For up > %, the seller benefits from the presence of a second buyer (and the first
buyer is hurt to the same extent), but the second buyer himself does not get anything for
p— 1.

Feasible reselling

If the good is bought by player 2 and reselling is feasible, it is natural to assume that
player 3 will buy the good from 2. The resale price is again determined by bargaining
between the two players. Each player is selected with probability % to be the proposer,
and breakdown occurs with probability 1 — p after a proposal is rejected. If breakdown
occurs, player 2 keeps the good.

Expected payoffs for players 2 and 3 in this subgame can be found to be 2 (the
expected price in this subgame) and *25*2 respectively.

Remark 5.1 If player 2 were not in the game, the seller would sell the good to player 3
for %¢; player 2 can obtain a higher price from player 3 because he has a positive valuation
for the object.

The possibility of reselling may affect the price at which the seller sells the good in
the first place. If 1 is selected to be the proposer and proposes to 2, he anticipates that
2 will resell the good, so that the total value to be divided between 1 and 2 is not u but
%t - Analogously, if 2 is selected to be the proposer and proposes to buy the good from
1, he anticipates that he will resell it. The continuation value of player 3 takes reselling
into account as well: if player 3 rejects a proposal, with a certain probability (determined
by the strategies of the players) the good will be sold to player 2. Player 2 will then resell
the good at the expected price of “£*2; this implies an expected payoff for 3 of %15%2.

Proposition 5.2 describes the (unique) equilibrium of this subgame. The details of
the equilibrium strategies depend on the size of u; relative to uz. As for the equilibrium
payofis, a clear picture emerges from this proposition: the presence of player 2 in the game
only shifts payoffs from player 3 in favor of player 1; player 2 himself does not benefit.
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Proposition 5.2 In the bargaining stage with coalition structure (1,2,3) and possibility
of reselling, the following strategies constitute the unique equilibrium for p close to 1:

a) If us > 3u, player 1 offers the good to player 3, and players 2 and 3 buy the good
from player 1. If player 2 gets the good, he resells it to 3. Further, player i accepts
any proposal that gives him at least his continuation value.

b) If us < 3uy player 1 randomizes between offering the good to players 2 and 3, and
players 2 and 3 buy the good from player 1. If player 2 gets the good, he resells it
to 3. Further, player i accepts any proposal that gives him at least his continuation
value.

For all values of the parameters the limit of the expected payoffs when p tends to 1 is

us + u
W, = B
Wy, = 0
Uz — U2
W =
£ 2

Proof. We will consider the nine candidate equilibria in turn.

a) Suppose 1 always proposes to 3. Then the continuation values are given by

2
Zy = E[US—Z:;]-{—?;DZl

3
_ Pstys
Z = 307 Z]
= Plow p bus — U
3 = 3[11,3 Zl]+323+3 3 :

Notice that the continuation values incorporate the possibility of reselling (if 2 buys
the good from 1, he gets “3%2 — 7, and player 3 gets *372).

The solution of this system is

p[(6 — 5p) uz + puy)

% 2(p2 — 9 +9)
7 p(1 —p) [(3 — 2p) uz + 3uy]
’ 2(p*—9p+9)
& p[(9 — 8p)uz — (3 — 2p) uy
2(p2—9p+9)

As p tends to 1, Z; tends to 3‘*%2, Z, tends to 0, and Z3 tends to *35*2.
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For these strategies to be an equilibrium, it must be the case that none of the players
can be better-off by deviating from his prescribed strategy. First, it is clear that player
i should accept any offer that gives him an expected payoff of at least Z;. Second, it can
be easily checked that the payoff a player gets when he makes the prescribed proposal is
higher than his continuation value, thus no player has an incentive to deviate to make
unacceptable proposals. Moreover, since Z, > 0, players 1 and 3 have no incentive to
deviate to proposing the grand coalition.

It remains to be checked that player 1 does not prefer to propose to player 2. Suppose
that player 1 is selected to be the proposer. If he sticks to his prescribed strategy, he gets

uz — Z3, whereas if he proposes to player 2 he gets 5’—;"2 — Zs. The difference between
: (1-p)[9-6p—2p)us+3(2p—3)us]

those expressions equals S —9p19)

gﬂ_;,;_z%,ug := ®(p)uy. Notice that ®'(p) > 0, or the condition is more restrictive for

higher values of p. ®(1) = 3, thus if us > 3uy, the inequality is satisfied for all values of

p-

. This expression is positive for uz >

We conclude that, for uz > 3us,, player 1 has no incentive to deviate. As for player 2,

he would profit from proposing a global agreement if Z3 < #=%2. Given the strategies of

the players, Z3 — “5%2 = 3(1"’)[(2:2;,”3';;:_8)_?)3“3] > 0.

b) Suppose player 1 offers the good to player 2 with probability A and to player 3

with probability 1 - A. The continuation values are then given by the following system of
equations (including the indifference condition for player 1)

2
Z = flus-Z)+ 32

P usz + u p
Zy = = -7 =\Z.
2 3 2 1]+3 2
p P p uz — Up
Z3 = = -7 =(1- - A
3 3(U3 1)+3( /\)Z3+3(1+ ) 5
uz — Z3 = _u3 ;U2 = Zg.

The solution of this system is
P[(3 — 2p) uz + uy)

= 2(6 - 5p)
e (1-p)[(4p—3)us + 3us)
o 2(6 — 5p)
7. - B+2—4p")us - (3-2p)uy
. =
2(6 — 5p)
\ = (9—6p)u2—(9—2p2—6p)u3'

P [3uz + (4p — 3) us)
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Notice that ) increases with p. For p =1, A = 3%2-%  thus we need 3us > u3 to keep

Quataa?
Jugtus

A nonnegative.

The limit of the continuation values when p tends to 1 is the same as in the previous
case: Z, tends to 32, 7, tends to 0, and Z3 tends to *23*2.

For the limit case up = us (identical buyers), A equals 1 and Z, = Z3 = 2—”((61_;;’;,%,

whereas Z; = g%z—:%%g (thus in the limit when p tends to 1, the seller gets all the surplus).

Player 1 is by construction indifferent between proposing to 2 and to 3. Since Z3 —

o — Ml[ﬁ%_r:__?:)a;‘“‘?l > 0, player 2 has no incentive to deviate either.

Now we proceed to discard the other seven candidate equilibria.

If player 1 always offers the good to player 2, the continuation values can be found
from the following system of equations

Zl = g[u;; = Z3] + 23221
Zy=B[min _ z] 127
Z3 = §(U3 = Zl) + 232%2‘

The solution to this system is 2, = Eletw 820 7, Mﬁ)ﬁz_}é;%r)ﬁl’ and Z3 =

2(p2—9p+9)
pug + 2 (“32+"’) = (12(—;231’ ,)9 ;7(:39;"2). If player 1 would propose to 3 instead of to 2, he would

gain (=2l 22’(‘;;_95;;5;("3—"2)1 > 0 for p < 1. Thus, this strategy combination cannot be an
equilibrium.

There are still six candidate equilibria. Some of them can be easily discarded.

If player 1 proposes to player 2 or randomizes, this implies Z3 > *35*2 + Z,. If player
2 proposes a global agreement or randomizes, this implies Z3 < *37*2. Since Z; > 0 in
any equilibrium, these two inequalities cannot be satisfied simultaneously.

If 1 proposes to 3 and 2 proposes a global agreement, the positions of players 1 and 3
become symmetric. Then Z3 = Z; = %3; > %22 and player 2 would not be playing a
best response.

The only possibility left is that 1 proposes to 2 and 2 randomizes. This implies
Z3 = “35%2. Then player 3 gets the same payoff independently of the strategy of player
2. The system of equations describing the continuation values would be the same as
in section a), with the additional constraint that Z3 = *35%2, and therefore would be
incompatible. ®



142 5. The One-Seller-Two-Buyers Game

The results can be summarized as follows: in the limit when p — 1, player 1 always
receives a price #1£%2 and player 3 gets the good and enjoys a consumer’s surplus *52.
Player 2 does not receive anything, either because players 1 and 3 reach an agreement
with each other, or because he resells the good at the same price that he bought it. The
seller benefits from the presence of a second buyer, as he obtains a price i instead of
4, but the second buyer himself does not get anything.

Notice that the presence of player 2 in the market is relevant regardless of whether his
reservation price is higher or lower than the price when he is not in the market, =

Remark 5.2 The presence of a second buyer always results in a higher price, regardless
of whether ujy is greater or smaller than the price when he is not in the market, “3-.

The presence of player 2 always influences the price because he can resell the good
to player 3 for ¥£%2 (player 2 has an advantage over player 1 in a bilateral bargaining
with 3 because he has a positive valuation for the good). The reservation price of player
2 becomes in practice 22 which is higher than the price when he is not in the market
%, Player 1 should then be able to obtain a price 33%1, as it is the case.

Remark 5.3 The seller benefits from the possibility of reselling, as WA > max (ug, %)

5.2.3 The second stage with collusion between the weak buyer
and the seller

This case is equivalent to the case of player 2 having bought the good from player 1 and
reselling it to player 3. Because of the asymmetry between the two coalitions (coalition
{1,2} obtains a payoff equal to u; in the event of breakdown, whereas coalition {3} obtains
a payoff of 0) expected price is not % but tages

5.2.4 Summing up: the partition function

We have solved the bargaining game between coalitions for all possible coalition structures.
The partition function associated with this game assigns a payoff for each coalition in each
coalition structure. As it results from the equilibrium of the game, the partition function
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is given by (we take the limit when p tends to 1)

@(N) =u3

?(13,2) = (u3,0)

P(12,3) = (tafn,nazm)

¢(17 23) = (Eza’ Eza
(waf2, 0, 222%2)  if reselling is feasible.

$(1,2,3) =14 (ug,0,u3z —uy) if reselling is not feasible and uy > =,
(5,0,%) if reselling is not feasible and u, < #.

5.3 Solving the coalition formation stage

Once we have constructed the partition function ¢, we can solve the extensive form game
G(N, ¢,6%,p). Since ¢ is constant-sum, we can apply the results in the previous chapter.
The following proposition is a particular case of theorem 4.3 and corollary 4.1. It applies
for all variants of ¢ we have considered in the previous section, that is, whether reselling
is feasible and whether u; > % does not make any difference.

Proposition 5.3 There is a family of stationary perfect equilibria in which at least two
players randomize between two-player coalitions.
For any equilibrium in this family, the continuation values (and also the limit expected

payoffs) of the players are

(3u3 +U2) .
21 = ——= =limw,
6 p—1
- lim w
2z - — —
2 =
-2
& = =Bl
6 p—1

In the limit when p — 1, each two-player coalition forms with probability %

There is no other equilibrium.

Particularly appealing equilibria are perhaps the ones in which one of the players
proposes to each of the other players with probability % When p — 1, these equilibria
converge to the same strategy combination in which every player proposes to each of the
other two with probability 3.
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Remark 5.4 The size of uy has no influence on coalition frequencies.

The size of u, determines the extent to which the presence or absence of player 2 in the
market influences price, and can be considered a measure of player 2’s bargaining power.
This value, however, does not play a role in determining how often player 2 is part of a
coalition.

Remark 5.5 The possibility of reselling does not make a difference for the equilibrium.

This is a particular instance of the fact that the breakdown outcome does not influence
expected equilibrium payoffs.

The expected payoff for player 2 is %2. If the weak buyer forms a coalition with the
seller, the price of the good is ﬂ-%rlz; if he forms a coalition with the other buyer, the
price is %2. Thus, the change in the price player 2 can induce equals “Z. If coalitions are
allowed, player 2 captures exactly % of this value.

Remark 5.6 The possibility of forming coalitions makes a difference to the expected pay-
offs of the players. If the players bargain individually, the expected payoffs vector lie in the
core of v (and thus player 2 must receive zero). If we take into account the possibility of
forming coalitions, the expected payoffs vector does not lie in the core of v and coincides
with the Shapley value and with the kernel for the grand coalition.

This section concludes with two more remarks about how the possibility of forming
coalitions influences the equilibrium price and the players’ expected payoffs.

5.3.1 Feasible reselling

Remark 5.7 The equilibrium price is lower when players are allowed to form coalitions.

If players are not allowed to form coalitions, they have to play the bargaining game as
single units; the price is then *3£*2_ If players are allowed to form coalitions, the expected
price of the good depends on the concrete equilibrium being considered. This price equals
%1% when coalition {1,2} forms and % when coalition {2,3} forms. However, when
coalition {1,3} forms, the price depends on which of the two players was the proposer,
and that depends on the concrete equilibrium being considered (this is related to the
fact that players get a higher payoff when they are proposers). Taking this into account,
we can conclude that the expected price ranges from %+ 2—;1 (expected price when 3 is
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always the proposer for coalition {1,3}) to %2+ %2 (expected price when 1 is always the

proposer for coalition {1,3}).?

Remark 5.8 The possibility of forming coalitions makes the two buyers better-off, whereas
the seller is worse-off.

Expected payoffs corresponding to the no coalition case are W for player 1, 0 for
player 2, and *25*2 for player 3. Comparing these payoffs with the ones in proposition
5.3, we see that both buyers see their payoff increased by %.

The intuition for these results is that the seller cannot get much from the possibility
of forming coalitions: if he forms a coalition with 3, there is nothing this coalition can
gain from bargaining with player 2; if he forms a coalition with 2, the coalition gets the
same payoff player 1 gets in the bargaining process with no coalitions.

5.3.2 Unfeasible reselling

As we have seen in the previous section, the infeasibility of reselling does not change the
payoff of a two-player coalition but it affects the payoffs players get when no coalitions
are formed. The presence of player 2 in the market is then irrelevant if uy < %, and leads
to a price of only u, (instead of “2542) if uy > 4.

Remark 5.9 The weak buyer benefits from the possibility of forming coalitions even if
his presence was irrelevant for the original market (i.e., even if uy < )4

Remark 5.10 The expected equilibrium price may be higher or lower when players are
allowed to form coalitions, depending on how large is us.

As in the reselling case, the expected equilibrium price ranges from e 2—’9‘2 to 2+ ‘E’T’f.
For a small uy, this price is always higher than the price when coalitions are not allowed,
for high values of u; is always lower, and for intermediate values it depends on the concrete
equilibrium considered.

3This may seem surprising, since proposition 5.3 states that expected payoffs do not depend on the
equilibrium considered. However, expected payoffs conditional on a certain coalition being formed do
depend on the concrete equilibrium, because a player receives a higher payoff when he is the proposer

(this proposer’s advantage does not vanish as p tends to 1).
In the reselling case, coalition {1, 2} could be interpreted as "2 gets paid to be in the market”, (as

opposed to coalition {2,3} in which "2 gets paid to be out of the market”) since the payoff is the same
for coalition {1,2} and for player 1 when no coalitions are formed. That interpretation is not possible for
the no-reselling case.
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Remark 5.11 The possibility of forming coalitions always makes player 2 better-off.
Player 1 is better-off for small values of us relative to uz (uy < 3—’5‘1) whereas player 3

is better-off for large values of ua (uz > 3—';3)

We can then conclude that the results in the no-reselling case are similar to the results
in the reselling case provided that u, is large enough relative to us.

5.4 Discussion

In dynamic models of bargaining it is usually assumed that there is a force that motivates
the players to reach an agreement as soon as possible: this force may be players’ impa-
tience or an exogenous probability of breakdown. We have chosen the game with break-
down probability because of its ”split the difference” properties. However, an exogenous
probability of breakdown is perhaps a less natural assumption than players’ impatience.

A coalition in this chapter is understood as a bargaining unit. This means that when
the weak buyer forms a coalition with either the strong buyer or the seller, they play the
bargaining game together against the other player. Alternatively, we could assume that
the weak buyer can get paid to play the bargaining game by the seller (or not to play
it by the other buyer), but that, if he plays this game, he will do it noncooperatively
(so he cannot collude with any of the other parties during the bargaining process). This
restriction makes a difference if reselling is not allowed (if the weak buyer can get paid to
be in the market, but he cannot collude with the seller once he is there, the price will be
ug or %, whereas if they can act together also during the bargaining process, the price
will be ¥it22),

We have chosen a two-stage approach (coalition formation and bargaining). This two-
stage approach is common in the literature: first coalitions form and then, once a coalition
structure is determined, payoffs are determined by a rule (say, the Owen value in Hart
and Kurz (1983)) or by the equilibrium of a game played among the coalitions (as it is
the case in Bloch (1996)). In other papers (for example, Gul (1989)), coalition formation
and bargaining are not separated: coalitions form and are enlarged in many steps until
the grand coalition is formed. For the one-seller-two-buyer game, both approaches would
yield the same results, but we have chosen to keep the decision to collude and the decision
to transact over the good separate.

Gul (1989) considers a bargaining model that implements the Shapley value.® Agents

3Osborne and Rubinstein (1990) explicitly consider Gul’s model applied to the one-seller-two-buyer
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own valuable resources that can be combined and produce flows of utility according to
a characteristic function, and may buy each other’s resources. Only pairwise meetings
are allowed. Since the utility of a coalition depends on how the remaining resources are
partitioned, there are externalities among coalitions. The present chapter is very much
related to Gul’s approach. It shows that the assumption of random matching may not
be so restrictive as it seems. Even though players can choose their partners, coalitional
frequencies are the same as if matching was random.

We can compare the results of this strategic model with the results of the axiomatic
model of Hart and Kurz (1983). The use the Owen value to assign a payoff to each player
in each coalition structure. This yields the following payoff vectors for our game:

o (Rratw w ws—w) for coalition structure (12,3)

% 2us—w) for coalition structure (1,23)

. (2—“3#,0, 2—“3{—"2) for coalition structure (13,2)

° (3—“3611‘2, -, ﬂﬁ—‘s—z"z) for coalition structures (123) and (1,2, 3).

Adding the payoffs of the players in each coalition one gets a partition function based
on the Owen value. We have called this partition function ©35". This partition function
is identical to the one we have derived strategically except for B5"(1,2,3), which is not
equal to $(1,2,3) but to (wy, ws, ws).

Hart and Kurz do not present a dynamic process according to which coalition struc-
tures form, but they specify which ones will be stable, using the notion of strong equilib-
rium. A coalition structure is not stable if a group of players can abandon the coalitions
to which they belong and organize themselves in a way that makes all of them strictly
better-off. All two-player coalitions are stable in this sense in our game.

The results in this chapter are consistent with Hart and Kurz’s. With regard to stability
of coalition structures, the same coalitions that form in the equilibrium of the extensive
form game are stable in the sense of Hart and Kurz. The equilibrium of the extensive form
game is characterized by each player being indifferent between his two possible partners;
this is also a characteristic of the Owen value. It can be checked that the payoffs for the
players conditional on a coalition structure coincide (in the limit when p tends to 1) with
the Owen value of that coalition structure provided that we take the equilibrium in which

problem in section 9.5 of their book.
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(again in the limit when p tends to 1) each player proposes to each of the other two with
probability 3.

Consider, for example, coalition structure (1,23). Given that {2,3} forms, player 1’s
payoff is %, corresponding to Owen’s value. The payoff for coalition {2,3} is %, divided
in the following way: with probability %, player 2 offers to player 3 his continuation value
Jus=2w2 and gets %; with probability 2, player 3 offers to 2 his continuation value % and
gets ﬁaﬁ—_uz. Expected payoffs coincide then with the Owen value.

We have assumed that proposers are selected randomly. We may instead assume a rule
of order as in Chatterjee et al. (1993). As we saw in chapter 3 this bargaining procedure
does not capture the competition between responders. Thus, if players bargain as single
units, the price of the good is always % regardless of the value of uy. If reselling is not
feasible, expected payoffs depend on whether 2u; > us. If us < 4, expected payoffs are
% for players 1 and 3 and 0 for player 2. If up > %, expected payoffs are undetermined.
Take the first proposer with probability % Then expected payoffs are (4, Z‘Le“"i, o) B
reselling is feasible and each player is selected with probability % to be the first proposer,
expected payoffs for this subgame equal (&, %2,3—"35—“1). Notice that, since the rule of
order procedure does not reflect the competition between responders, the presence of a
second buyer does not help the seller to get a higher price, even though buyers are not
colluding and there is perfect information. Imperfect competition allows the buyer with
a lower reservation price to get a positive payoff in this subgame. If forming coalitions is
possible, the presence of a second buyer becomes valuable for the seller, since his utility
for the good makes him a ”better seller” who can get a higher price from the strong buyer.
The equilibrium of the two-stage game is such that players 1 and 2 propose to each other,
and both players benefit from the possibility of forming coalitions. Unlike in the game
with random proposers, equilibrium payoffs are a function of breakdown payoffs even in
the limit when p tends to 1; thus, equilibrium payoffs depend on whether u, > % and
whether resale is feasible.

Precisely because breakdown payoffs make a difference, the game with a rule of order
has different equilibria in its two versions (two-stage and Gul’s type). In a game of Gul’s
type the breakdown outcome is always the autarchy outcome. The equilibrium of this
game is equivalent to the equilibrium of the second stage of the two-stage game with
reselling: players 1 and 3 always propose to each other, and player 2 always proposes to
player 1. If {1,2} forms, they sell the good to player 3 for “£%: otherwise the price

2

is %4. Expected payoffs are (%#,0,%) if {1,3} forms directly, and (48, %, mom) if the
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intermediate coalition {1,2} forms.

The one-seller-two-buyer situation was already used by von Neumann and Morgenstern
(1944) to illustrate the concept of solution, later called stable set. In any stable set there
are imputations where the price lies between u, and u3 and imputations where it lies under
uy. An outcome under us is related to the existence of a coalition between the two buyers.
The results in this chapter differ from the results of von Neumann and Morgenstern. They
attribute a price smaller than uy to a coalition of the two buyers; this is not always the
case in the present paper. If coalition {1,3} forms, the price of the good is either 3¥+2u2
or 3—“36_—“2; these values may be smaller than u, depending on the parameters. Thus the
mere possibility of a buyers’ coalition may drive the price below us.

The present chapter underlines the possibility that the weak buyer forms a coalition
with the seller. Commenting on the book of von Neumann and Morgenstern, Stone (1948)
argues that the weak buyer can never be of use to the seller. This chapter argues that
the weak buyer can be valuable for the seller not only because his entry in the market
creates competition, but also because the weak buyer may have a comparative advantage

as a seller.

5.5 Conclusion

In a bargaining game with a seller and two buyers, we have studied the position of the
“weak” buyer who can not get the good if bargaining is efficient, but who can benefit
from his influence in the price by colluding with either the other buyer or the seller. We
have found that the weak buyer can indeed get a positive payoff from playing this game,
even though he can not capture the whole influence he has on the price.

The results illustrate once more how the characteristic function may not be an accurate
representation of the actual payoff of a coalition (v(23) equals zero whereas the actual
payoff of coalition {2,3} is %). They also illustrate that players who, without adding
value to the game, can shift the balance of power between other players in the game, may
get paid for ”changing the game”.



Chapter 6

Noncooperative Bargaining in Apex

Games and the Kernel

An apex game is a simple n-player game with one major player (the apex player) and
n — 1 > 3 minor players (also called base players). A winning coalition can be formed by
the apex player together with at least one of the minor players or by all the minor players
together. Apex games can be interpreted as weighted majority games in which the major
player has n — 2 votes, each of the n — 1 minor players has one vote, and n — 1 votes are

required for a majority.

Since the apex player only needs one of the minor players he can play them off against
each other to obtain favorable terms. Each minor player has two options: either try to
unite with the other minor players (and run the risk that one of the others yields to an
advantageous offer of the apex player) or compete with them for the favor of the apex
player. Apex games have received a lot of attention both in theory and in experiments.
Rapoport et al. (1979) put it the following way:

The centrality of the Apex player, which produces the conflict faced by each
Base player of whether to cooperate and trust all the remaining n — 2 Base
players or to do his best, negotiating from weakness, against the Apex player,
has aroused intense interest in apex games, such that they may become to
n-person experimental games what the Prisoner’s Dilemma has been to two-
person noncooperative games.

This chapter addresses three questions concerning apex games:

1. What coalition(s) are likely to form?

151
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2. How will the gains from cooperation be divided for each possible coalition?
3. What are the ex ante expected payoffs for the players?

There are very different answers in the literature to the first question. Some papers
(Bennett (1983); Morelli, (1998)) predict that all minimal winning coalitions are possible,
whereas others limit the possible outcomes to the coalition of all small players (Aumann
and Myerson (1988); Hart and Kurz (1984)) or to coalitions consisting of the major player
with a minor player (Chatterjee et al. (1993)).

As for the second question, equal division of gains seems indicated if all minor players
form a coalition. If the apex player forms a coalition with a minor player, the division

of gains is not so clear-cut. The answers given in the literature point either to the ”egal-

itarian” 1 : 1 split corresponding to the kernel (Davis and Maschler (1965)) or to the

n—2. j
n-1"n-1

”proportional” (to the number of votes) split that comes from observing that
a small player cannot expect more than ﬁ if all the minor players form a coalition.
The bargaining set (Aumann and Maschler (1964)) includes these two extremes and all

outcomes in between.

Most of the literature has little to say about ez ante payoffs. They are either very
extreme (as the major player receives a payoff of zero) or undetermined (when several
coalitions are possible, ez ante expected payoffs depend on the likelihood of each coalition,
and the latter is left undetermined). On the other hand, ex ante concepts like the Shapley
value give no predictions about coalitions or division of gains. This chapter attempts to
provide an answer to the three questions simultaneously.

We model bargaining in apex games using a simplified version of the noncoopera-
tive procedure with random proposers described in chapter 3. Two types of protocol
are examined: the egalitarian protocol in which each player is selected to be the pro-
poser with equal probability, and the proportional protocol, in which each player is
selected with a probability proportional to his number of votes.! The solution con-
cept is stationary perfect equilibrium with symmetric strategies for the minor play-
ers.

Intuitively, the apex player should benefit from a proportional protocol since he is
chosen more often to be the proposer. However, we show that this is not the case: for

1This would be the case in a parliamentary system where the probability of a party being asked to
form a government is proportional to the number of seats it holds. Baron and Ferejohn (1989) use a
proportional protocol in one of their examples. Okada (1996) only considers the egalitarian protocol.
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both protocols, expected equilibrium payoffs are proportional to the number of votes of
the players. The reason is that equilibrium strategies change so as to compensate changes
in the protocol: if the protocol selects a player to be the proposer with a higher probability,
the other players make offers to him with a lower probability so that his ez ante expected
payoff remains unchanged.

We also show that all minimal winning coalitions may form, and that the probability of
a coalition being formed depends on the protocol (the coalition of all minor players being
more frequent under a proportional rule). Expected payoffs conditional on a coalition of
the major player and a minor player depend on the protocol: for an egalitarian protocol,
the expected division is "close” to the egalitarian division (and converges to it when the
number of players tends to infinity); for a proportional protocol, the expected division is
proportional.

The rest of the chapter is organized as follows: section 6.1 describes the model and the
results, section 6.2 reviews some of the literature, section 6.3 discusses possible extensions
and section 6.4 concludes.

6.1 Bargaining with random proposers in apex games

6.1.1 The model

Apez games consist of one major player (the apex player) and n — 1 minor players. If
N ={1,2,...,n} and 1 is the apex player, then v(S) = 1 if either 1 € S and S\{1} # @,
or S = N\{1}. Apex games can be interpreted as weighted majority games in which the
major player has n — 2 votes, each minor player has 1 vote, and n — 1 votes are required
to obtain a majority.?

Bargaining in apex games is modeled following Okada (1996), which in turn extends
the model of Baron and Ferejohn (1989). The model has been described in chapter 3
for the more general case of partition function games; here we use a simplified version,
adapted to apex games.

Given the underlying cooperative (apex) game (N, v), bargaining proceeds as follows:

2This is of course only one of the many possible vectors of weights we can assign to the players. We
have chosen a so-called homogeneous representation, in which all minimal winning coalitions have the
same number of votes.
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e At every round t = 1,2,... Nature selects a player randomly to be the proposer
according to a probability vector (a protocol) 6 := (6;):cn, where 6; > 0 Vi € N and

ZiEN 0; = 1.

e This player proposes a coalition S C N to which he belongs and a division of v(S),
denoted by z° = (27),cs. The ith component z7 represents a payoff for player 7 in

S.

e Given a proposal, the rest of players in S (called responders) accept or reject se-
quentially (the order does not affect the results).

o If all players in S accept, the proposal is implemented and the game ends.® If at
least one player rejects, the game proceeds to the next period in which nature selects
a new proposer (always with the same probability distribution).

e Players are risk-neutral and share a discount factor § < 1.*

o If a proposal z° is accepted by all players in S at time ¢, each player in S receives
a payoff 6 'z5. A player not in S remains a singleton and receives zero.

A (pure) strategy for player i is a sequence o; = (0%)2,, where o!, the tth round
strategy of player ¢, prescribes

1. A proposal (S, z%).

2. A response function assigning "yes” or "no” to all possible proposals of the other
players.

The solution concept is symmetric stationary subgame perfect equilibrium. Stationarity
requires that players follow the same strategy at every round ¢. Symmetry requires that
each minor player proposes coalition N\{1} with the same probability. Notice that this
concept of symmetry is rather weak, since it does not impose any restriction on the payoffs
offered or on the strategy of the major player.

Concerning the probability of players being selected to be proposers, two natural

==L
= (5

protocols suggest themselves: the egalitarian protocol 6% : ., 1), which selects each

3Ending the game after one coalition has been formed is a simplifying assumption that does not affect
the results for apex games.
4 Alternatively, after a proposal is rejected the game ends with probability 1 — p.
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player with the same probability, and the proportional protocol 8*:= (2%, 52—, ..., 523 )

which selects each player with a probability proportional to his number of votes.

We denote the noncooperative game described above G (N, v,6,6). We will think of v
as the characteristic function of an apex game, unless otherwise specified.

6.1.2 The equilibrium

We will make use of theorem 1 in Okada (1996). Even though the original theorem
assumes the egalitarian protocol 6%, it can be applied to any protocol 6.

Theorem 6.1 (Okada, 1996) Consider a zero-normalized, essential (v(N) > 0) and su-
peradditive® game (N,v). In any stationary subgame perfect equilibrium of the game
G(N,v,0,6), every player i in N proposes a solution of the mazimization problem

max (v(S) = Y ¥3) (6.1)

v €SI
st. 1€SCN
v > bw; Vj € S\{i}

where w; is the equilibrium expected payoff of player j. Moreover, the proposal is accepted.

Proof. For every i = 1,...,n, let wf be player i’s equilibrium expected payoff condi-
tional on player j becoming the proposer at time 1, and let m; be the maximum value of
(6.1). We first show that w? = m;.

Subgame perfection implies w! > m;. In a subgame perfect equilibrium any player j
must accept any proposal that gives him at least w;, thus player i can get at least m;.

Can player i get more than m,;? If player i proposes (S,y°) at round 1 with y; > m;,
the proposal will be rejected (otherwise at least one responder j is getting less than dw;
and could do better by rejecting the proposal) and i will get dw;. Since the characteristic
function is superadditive we have v(N) > 3.y w;. This implies that the pair (N, w),
w = (wj)jen is a feasible proposal and thus we must have m; > w; > éw;, therefore
m; > wi.

Since wi > m; and m; > w?, it follows that w} = m;.

To prove that player i makes an acceptable proposal, we must prove m; > éw;. We
know that m; > éw;. If w; = m;, then w; = m; = 0 since m; > w; and § < 1. Since
(N, éw) is a feasible proposal, m; > (1 —§)v(N) > 0. m

5Notice that this assumptions are slightly different to the ones we made in chapter 3.
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The following corollary follows from the proof of theorem 6.1.

Corollary 6.1 Consider a zero-normalized, essential and superadditive game (N,v). In
any stationary subgame perfect equilibrium of the game G(N,v,6,6), every player in N
has a strictly positive expected payoff (w; >0 Vi € N).

Corollary 6.1 has the following implications for simple games.®

Corollary 6.2 Consider a zero-normalized, superadditive and essential simple game
(N,v). In any stationary subgame perfect equilibrium of the game G(N, v, 6, 6), all players
propose winning coalitions in which each responder is pivotal.

Proof. Proposing a losing coalition cannot be a solution of (6.1), since it would yield
at most zero for the proposer and he can get at least 1 — § > 0 by proposing the grand
coalition and offering éw; to each responder. On the other hand, since by corollary 6.1
w; > 0 Vi € N, a proposal including a responder who is not pivotal cannot be a solution
of (6.1). m

It does not follow from Corollary 6.2 that only minimal winning coalitions are proposed
in equilibrium. In fact, a stationary perfect equilibrium may include proposals of coalitions
in which the proposer is not pivotal (see Section 6.3). For apex games however only
minimal winning coalitions are proposed, as Corollary 6.3 shows.

Corollary 6.3 If (N,v) is an apez game, in any stationary subgame perfect equilibrium
of the game G(N,v,0,6) all players propose minimal winning coalitions.

Proof. A winning but not minimal winning coalition in an apex game must contain
the apex player and at least two minor players, thus at least two players in the coalition are
not pivotal (the two minor players). If such a coalition would be proposed in equilibrium,
at least one responder would not be pivotal, contradicting Corollary 6.2. m

The following proposition shows that if the protocol selects all minor players with
equal probability, then all minor players have the same expected equilibrium payoff.

SA game (N,v) is a simple game if v(@) = 0, v(N) = 1, v(S) =0 or 1 for all S C N, and v(S) = 1
whenever v(T') = 1 for some T C S (see also chapter 8). A simple game is called proper if v(S) =1
implies v(V\S) = 0. Notice that a proper simple game is superadditive, and (if there is not player i such
that v(i) = 1) zero-normalized and essential.

A coalition S in a simple game is called winning if v(S) = 1 and losing if v(S) = 0. A player i € S is
called pivotal if v(S) = 1 and v(S\{i}) = 0. If all players in S are pivotal S is called a minimal winning
coalition.
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Proposition 6.1 Consider an apex game (N, v) and a protocol 6 such that 0; = 6; for all
i,7 € N\{1}. Let o* be a stationary subgame perfect equilibrium of the game G(N,v,0,9)
and w the associated expected payoff vector. Then w; = w; for alli,j € N\{1}.

Proof. Suppose we have an equilibrium ¢* such that two minor players have different
expected payoffs. Consider a minor player j that receives proposals from the apex player
with positive probability and a minor player i with a different expected value, thus w; >
w;. Denote by 6, the probability each minor player has of becoming a proposer (6, > 0,
(n —1)8, < 1) and by 7; and r; the probabilities with which ¢ and j receive proposals.
Then the expected payoffs of players i and j are given by

O + ;6w (6.2)
Omw’ + 76w (6.3)

w;

Wy
We now note some relations between the parameters in (6.2) and (6.3).

a) We start by showing that r; > r;.

Indeed, the apex player proposes to j, but not to ¢; minor players propose to either
both or none of i and j. Could it be that j proposes to i more often than i to j?
Suppose j propose to i with positive probability. This means that j proposes the
minor player coalition, and thus that 1 —w; <1 —w; — ZlceN\{l,i,j} wg. But then
1—w; <1=wj— Y yenm1,ij) Wk thus i should propose to j with probability 1.

b) It is easy to see that w! > wj (both 7z and j get the same payoff as proposers if they
propose to the apex player; if they propose the minor player coalition, player i gets
more as a proposer since he has to pay less to j than j has to pay to 7).

c) We now show that w! — wj < w; — wj.

If wi # w), it must be the case that w} > w’. This means that, either both players
propose the minor player coalition, or player i proposes the minor player coalition
and player j the coalition with the apex player. If they both propose the minor
player coalition, w! — wj = §(w; — w;), and the result follows. If player j proposes
to the apex player, it must be the case that w1 < w;+ 3 e (11;) Wk- On the other
hand, w} — wj > w; — w; would imply w1 > Wi + 3 w17 Wk and this is only
compatible with j proposing to the apex player if wy = w; + 3, N\{Lij} Who but
then player j gets the same payoff proposing to the apex and proposing the minor
player coalition, thus we are back in the previous case with w} — wj = §(wi — wj).
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Substracting (6.3) from (6.2) and re-arranging, we get
Wi — w; = O (W] — w)) + rib(w; — w;) — (75 — 1:)6w;.
Substituting w} — w;’ by w; — w; — € (¢ > 0) and re-arranging, we obtain
(1= 0 — 1:6) (wi — w;) = —Ope — (r; — 13)6w;.

Since 16, —7:6 > 0, wi—w; > 0, € > 0 and r; —r; > 0, the two sides of the equation
have different signs, a contradiction. m

Notation 6.1 In the sequel we will denote equilibrium expected payoffs by w,, for a
minor player and w, for the apex player.

Notice that proposition 6.1 applies to any stationary perfect equilibria and not only
to symmetric ones. Restricting ourselves to symmetric equilibria, we obtain the following
corollary.

Corollary 6.4 Consider an apex game (N,v) and a protocol 6 such that ; = 0; for all
i,j € N\{1}. Let 0* be a symmetric stationary subgame perfect equilibrium of the game
G(N,v,0,6). Then the apex player proposes to each minor player with equal probability.

Proof. Recall from the proof of proposition 6.1 that, if i is a minor player, his expected
payoff is given by w; = 6,,w} + r;6w;. If all minor players have the same expected payoff
w;, they must also have the same payoff when they are proposers, wi. Tt then follows that
they must have the same probability of being responders, ;. =

Symmetry of the equilibrium implies that all minor players have the same probability of
receiving a proposal to form the minor player coalition, thus the apex player must propose
to each minor player with equal probability. The requirement of symmetry eliminates the
possibility of mixed-strategy equilibria where every minor player has the same probability
of being the responder, but some minor players propose the minor player coalition more
often than others and receive proposals from the apex player more often than others.

Proposition 6.2 describes the symmetric stationary perfect equilibrium of the game for
the egalitarian protocol; proposition 6.3 describes it for the proportional protocol. Both
protocols satisfy the assumptions of proposition 6.1 and corollary 6.4, thus equilibrium
expected payoff must be the same for all minor players and the apex player must propose
to each minor player with equal probability.
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Propoesition 6.2 The unique symmetric stationary subgame perfect equilibrium of
G(N,v,0F,6) is as follows

a) When selected as a proposer, the apex player proposes to form a coalition with each

of the minor players with equal probability.”

b) When a minor player is selected as a proposer, he randomizes between proposing
a coalition with the apex player (with probability %":;—)%(:—;)32 ) and with all other

minor players.

These proposals are accepted and expected payoffs are 7= ‘_23 for the apex player and

1
2n —3

for each minor player.

Proof. The equilibrium strategy of the apex player follows from Corollary 6.4. Corol-
lary 6.2 leaves three possibilities for the minor players: they may propose a coalition with
the apex player, a coalition including all the minor players, or they may randomize. If they
randomize, symmetry implies that all of them must use the same probability distribution.

Suppose they propose a coalition to the apex player. The continuation values are then
found from the following system of equations, where w, denotes the continuation value
for the apex player and w,, denotes the continuation value for a minor player:

W, 101 - bwm) + 226w,

Wm = 1[1-6w,]+ ﬁ&wm.

The solution to this system is w, = m—_lg’z(ﬁ‘s’:y—w and w,, = #ﬁ%. When
6 is close to 1, w, is close to 1 and w,, is close to 0, thus this strategy combination cannot
be an equilibrium (a minor player would prefer to form a coalition with the other minor
players and get a payoff close to 1, instead of following his prescribed strategy and get a
payoff close to zero).

Suppose each minor player proposes to the rest of the minor players. Then the con-
tinuation values are found from the following system of equations:

we = 2[1— 6wy
iy = ;1; [1 —(n— 2)6wm] + ﬁéwm + ‘n;—zéwm-

"Recall that it suffices to describe the equilibrium strategies of the players by a probability distribution
over the coalitions they propose. Proposition 6.1 implies that each responder j will accept any offer that
gives him at least dw; and will be offered exactly dw;. This fact together with the probability distribution
used by the proposers determines (w;);en, therefore we need to specify neither the payoffs offered to the
responders nor the set of proposals players accept.
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The solution to this system of equations is w, = ;(H)Z’ = nJ(n"_;Il))_—é Clearly,

w, < W, thus these strategies cannot constitute an equilibrium (a minor player would
prefer to propose to the apex player).

Suppose a minor player proposes to the apex player with probability A and to the
other minor players with probability 1 — A. The continuation values and A are found from
the following system of equations (the third one being an indifference condition for the
minor players):

Wa = 1[1-bwn]+2 0w,
Wn = 31— Mwa— (1 = A)(n = 2)6wn] + srig56wm + 22(1 — A)bwn
Wq F— ('n, = Z)wm
The solution to this system of equations is wo = =%, Wm = 523,A = ——L——M—H;(n"__li(ﬂ"_;:; ;

When 6 tends to 1, A tends to 2—:? ]

Proposition 6.3 The unique symmetric stationary subgame perfect equilibrium of
G(N,v,0%,6) is as follows
a) When selected as a proposer, the apex player proposes to form a coalition with each

of the minor players with equal probability.

b) When a minor player is selected as a proposer, he randomizes between proposing a
coalition with the apex player (with probabzlzty <) and with all other minor players.

These proposals are accepted and expected payoffs are 3- =2 > for the apex player and
35— for a minor player.

Proof. It is easy to check that there is no equilibrium in which the minor players play
pure strategies (see the proof of proposition 6.2).

Suppose a minor player proposes to the apex player with probability A and to the
other minor players with probability 1 — A. The continuation values and A are found from
the following system of equations:

w, = 2n_3 2 (1 - bwn] + £ 26w,

Wm = g3 (1= Mwe — (1= N)(n — 2)6wn] + W&Um 22(1 — A)bwm
we = (n—2)wn.

The solution to this system of equations is w, = =5, W = 523, A = 5. B

We now turn to comment on the results.
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6.1.3 Expected payoffs

The proportional protocol seems more favorable to the apex player than the egalitarian
protocol. However, both protocols yield the same expected payoff.

Remark 6.1 Ezpected payoffs are the same for both protocols.

The reason why payoffs are the same for both protocols is that equilibrium strategies
change so as to compensate changes in the protocol: if the protocol selects a player to be
a proposer more often, equilibrium strategies adjust so that he becomes a responder less
often and his expected payoff remains unchanged.

Since in equilibrium a winning coalition always forms without delay, we have

we + (n— 1w, =1.

If the minor players follow a mized strategy in equilibrium, this condition together
with the indifference condition

We = (n — 2)wp,

determines expected payoffs regardless of the protocol. These payoffs are such that players
are indifferent between all the minimal winning coalitions they can propose, thus there
is always such an equilibrium provided that the corresponding A is indeed a probability,
that is, a number between 0 and 1. If we restrict ourselves to protocols that give the
same probability of being the proposer to all minor players, all values of 6, in the (open)
interval |0, %[ yield the same ex ante payoffs. Outside this interval, the minor players no
longer randomize, there is no room for strategies to compensate changes in the protocol
(one would need A < 0 or A > 1) and the intuitive result that a player gets a higher
expected payoff if he is more often selected to be the proposer is obtained.

Remark 6.2 Ezpected payoffs coincide with the kernel for the grand coalition.

For both protocols, expected equilibrium payoffs follow from the indifference condition
for a minor player together with the fact that players propose winning coalitions and there
is no delay in equilibrium.

The indifference condition of the minor player, w, = (n — 2)w,,, implies 1 — w, =
1 — (n — 2)wy,. Substracting w,, from both sides we get 1 — w, — w,,, = 1 — (n — 1)wpn,.
That is, in the language of the kernel, the surplus of the apex player against a minor
player equals the surplus of a minor player against the apex player.
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Because there is no delay in equilibrium (and players always propose winning coali-
tions), the sum of all expected payoffs equals 1, that is w,+(n—1)wn, = 1. In the language
of the kernel, (w;);cn is an imputation.

Remark 6.3 Any stationary perfect equilibrium of the game G(N,¢,0% 6) or
G(N, ¢, 6%,6) has the same expected payoffs as the corresponding symmetric equilibrium.

Indeed, in the proofs of proposition 6.2 and 6.3, we have excluded the possibility of
an equilibrium in pure strategies. For equilibria in mixed strategies, expected payoffs are
determined by the indifference condition of the minor players together with the no-delay

condition.

6.1.4 The advantage of the proposer

The proposer is said to have an advantage if the payoff a player gets as proposer is higher
than the payoff he gets as a responder. This advantage is common to most noncooperative
bargaining games. In apex games (and indeed in most games) with random proposers, this
advantage does not vanish in the limit when § tends to 1, in contrast with the Rubinstein
(1982) game and its natural extensions. The reason is that the impatience of the players
is not the only source of advantage for the proposer; a second sort of advantage is the
majority rule (as opposed to the unanimity rule). The proposer will offer to each responder
6 times his continuation value. Since the proposer only needs to form a minimal winning
coalition, he "saves” the expected payoff of players outside the minimal winning coalition.
Because expected payoffs for the players are proportional to their number of votes, the
proposer gets a payoff of at least one half.?

Remark 6.4 The proposer has an advantage that does not completely disappear in the
limit when 6 tends to 1.

6.1.5 Coalition formation

The reason why expected payoffs can be robust to changes in the protocol is that equilib-
rium strategies adjust in such a way that the players who become proposers more often

8This reasoning is not valid for games with a rule of order, since the continuation values and the
expected payoffs are not closely related in this game. Indeed, the sum of the continuation values may
well exceed the value of the grand coalition.
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become responders less often. At first sight, the effect of a change in the protocol on the
frequency of the different coalitions seems ambiguous: on the one hand, the players get
to make proposals less often with a proportional protocol; on the other hand, given that a
mianor player is selected to be proposer, the minor player coalition is proposed more often.
However, it is easy to prove that the net effect must be a higher frequency of the minor

player coalition.

Remark 6.5 The coalition of all minor players forms more often under a proportional
protocol.

As we have argued above, the payoff a player gets as a proposer and the payoff he gets
as a responder are the same for both protocols. If the protocol changes so that a player
is selected more often to be a proposer, strategies change so that he is selected less often
to be a responder to keep expected ex ante payoffs unchanged. Moreover, since a player
gets a higher payoff as a proposer rather than as a responder (see remark 6.4), his total
probability of being in a coalition (that is, the sum of his probability of being a proposer
and his probability of being a responder) must decrease as well.

The reasoning above implies that the apex player must be less often in a coalition
under a proportional protocol, thus the coalition of all minor players must form more
often. We can calculate the concrete probabilities using propositions 6.2 and 6.3.

Under an egalitarian protocol, each minor player proposes the coalition of all minor
players with probability ﬁ (in the limit when § tends to 1). Since one of the minor
players is selected to be the proposer with probability "—;l, this implies that the coalition
of all minor players forms with probability ;2= = 1. A coalition of the apex player
with a given minor player forms with probability -,1;-,'1—1 + %Z—:f— = % (the apex player is

-
n—1"

given minor player is selected with probability % and proposes to the apex player with

selected with probability ,{ and proposes to each minor player with probability a

probability :—:f) Thus, each minimal winning coalition is equally likely.

Under a proportional protocol, each minor player proposes the coalition of all minor
players with probability ::—:f Since a minor player is selected to be the proposer with
probability 2’;‘_13, this implies that the coalition of all minor players forms with probability
2’:“_23 (approximately % for large n). Analogous computations show that each coalition of

the apex player with a minor player forms with probability 5.
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6.1.6 Payoff division

For any of the minimal winning coalitions, the payoff division is fixed: the proposer offers
the responders their continuation values (approximately equal to their share of the total
votes) and keeps the rest (always more than half, since he needs to buy less than half
of the votes). Since players get more as proposers than as responders, expected payoffs
conditional on a given coalition depend on whether one is usually a proposer or a responder
for that coalition.

Remark 6.6 Ezpected payoffs conditional on a concrete coalition being formed are
[;—i—l-,. 3 1] for a coalition containing all minor players and depend on the proto-
col for a coalition containing the apex player and a minor player.

The first part of the remark follows from the fact that expected payoffs are the same for
all minor players and the equilibrium is symmetric. As for the second part, we have argued
above that the apex player will be in a coalition less often under the proportional protocol.
Since his ex ante expected payoff remains unchanged, this implies that conditional on being
in a coalition his payoff must be higher. We can calculate the exact (limit) expected
payoff division using the equilibrium values of A found in propositions 6.2 and 6.3 and the
coalition probabilities computed above.

For the egalitarian protocol, a coalition of the apex player with a given minor player
forms with probablllty 1 Tt is proposed by the apex player with probability - a.nd

nn-17
1n=2
nn-1°

by the minor player with probablllty As a proposer, the apex player gets 1 — 5-5;

as a responder he gets ==. His expected payoff conditional on being in the coalition is

then

2n

%ﬁ[l_ﬁ]"‘%n_fz —3 n(n —2)
1 (n— 1)(2n —3)°

n

This value is close to 3.

For the proportional protocol, a coalition of the apex player and a given minor player
forms with probability 1. It is proposed by the apex player with probability =2 -1
. As for the egahtarlan protocol, the

and by the minor player with probability 2n 3n

apex player gets 1 — L= as a proposer an

conditional on being in the coalition is then

n-2 1
2n—-3 n—1 [1

1 n-2
o3 _N—2

n—1

2n—3] W 2n 3n
1
2n-3
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That is, the expected division of payoffs conditional on a coalition of the apex player

and a minor player is proportional to the number of votes each of the two players has.

6.2 Related literature

This section reviews some of the theoretical and experimental literature on apex games.
The theoretical literature is divided in four groups: the stable demands literature, the two-

stage literature, the imperfect competition literature and the bargaining set literature.

6.2.1 Stable demands

The stable demands literature (Albers (1974), Bennett (1983), Cross (1967), Morelli
(1998), see also chapter 8) predicts that any minimal winning coalition may form. Given
that a coalition forms, payoff division will be proportional.’ Since probabilities are not
assigned to each minimal winning coalition, there is no prediction of ez ante expected
payoffs.

If the situation is modeled as an extensive form game (Selten (1981), Bennett and van
Damme (1991), Morelli (1998)) the equilibrium strategies are not unique: the apex player
can propose to any minor player and each minor player can propose the minor players
coalition or a coalition with the apex player. ”Natural” assumptions on the selection of
the first proposer (egalitarian or proportional protocols) and on the mixed strategies (each
player plays all strategies that yield the same payoff with equal probability) do not lead
to expected ez ante payoffs proportional to the number of votes.!® Ez post payoffs are
proportional to the number of votes; ex ante payoffs may be proportional to the number
of votes (if initial probabilities and mixed strategies are chosen in an appropriate way)
but need not be so.

On the other hand, given that a coalition forms the payoff division is always propor-
tional and does not depend on the protocol or on who was the proposer. Thus, the stable
demands approach makes robust predictions ez post, whereas the current approach makes
robust predictions ez ante.

9The rationale for this division varies across the stable demands literature. A simple justification
is the partnership condition: given two players, either each of them needs the other to get his payoff

demands, or neither needs the other.
10Neither do they lead to the Shapley or Banzhaf values.
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6.2.2 Two-stage models

By two-stage models we mean models that keep coalition formation and payoff division
separated. First, the coalition structure is determined (the procedure depends on the
concrete model under consideration). Once the coalition structure is determined, payoffs
are bargained upon. This stage is not modelled explicitly but in ”reduced form”: payoffs
are assumed to correspond to some axiomatic solution concept, like the Owen value (used
by Hart and Kurz (1983)) or the Myerson value'! (used by Aumann and Myerson (1988)).

The two-stage approach provides possible justifications for the  : § split in the two-
person minimal winning coalition. This type of coalition, however, never arises in equi-
librium and the apex player always gets a zero payoff.

A reason why the kernel assigns the unintuitive 1 : § split to a coalition of the apex
player and a minor player is the assumption that, when players consider alternative coali-
tions, they assign to the other players the payoff they get in the current coalition struc-
ture. Hart and Kurz (1983) instead assume that payoffs are given by the Owen value,
and that if a group of players deviates the new payoffs are given by the Owen value of
the new coalition structure. The new coalition structure depends on the reaction of the
other players. Depending on the reaction of the other players, several notions of stabil-
ity can be obtained. The concept of v-stability assumes that coalitions that are left by
even one member break apart into singletons; the concept of §-stability assumes they
stick together. A coalition structure is considered to be stable if no group of players can
reorganize themselves in such a way that all its members are strictly better-off.

The payoff division corresponding to a coalition of the apex player with a minor
player is (3,3) if the other minor players are together in a coalition and (2=2, -L;) if
they remain singletons (the kernel makes the same prediction for both structures). This
coalition structure is not stable because the apex player can form a coalition (larger than
minimal winning) with other minor players. The coalition of all small players is y-stable
if n > 5.

Aumann and Myerson (1988) consider a link formation game in which players are
offered the opportunity to form links and payoffs are determined by the Myerson value
of the resulting graph. The 3 : § split in a two-player coalition is then justified since
communication is not possible among players in different coalitions, so that the apex and
the minor player are in a symmetric situation. Because of this, the big player prefers to

form a coalition larger than the "minimal winning”.

1 The Myerson value is the Shapley value of a graph-restricted game: see Myerson (1977).
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In equilibrium, all minor players form a coalition. The reason is that, if any of them
links with the apex player, the apex player will then link with his ”optimal” number of
minor players, and each minor player would get less than what he would get if he linked

with all the other minor players.

6.2.3 Imperfect competition

Chatterjee et al. (1993) consider a proposal-making model in which a rule of order selects
the first proposer and the order in which players respond to a proposal, and the first player
to reject becomes the next proposer. They predict that a coalition of the apex player and
a minor player will form and split the payoff equally regardless of the number of players.
Expected payoffs depend on the rule of order and the strategy of the apex player. If each
player has the same probability of becoming a proposer and the apex player proposes to
each of the minor players with equal probability, expected payoffs are (3, zr(Tl—T)’ . 2(71_1—))

The reason for the equal-split prediction is that the game fails to reflect competition
between the minor players.

Suppose the minor players propose to the apex player. A minor player who rejects
an offer will propose to the apex player in the next period and get a continuation value
zm = 6(1 — 8z,); this payoff is the same for all minor players, and it is independent
of the proposing strategy of the apex player. If the apex player rejects a proposal, he
gets z, = 6(1 — 62,,) no matter to which minor player he proposes. These two equations
determine z, and z,, independently of the number of minor players. In the present chapter,
the payoff of a player who rejects a proposal depends on how often other players propose

to him, so that competitive pressures are reflected in the expected payoffs of the players.'?

6.2.4 The bargaining set literature

The Aumann-Maschler (1964) bargaining set does not predict coalition formation, but it
predicts the payoff division given that a coalition forms. For the coalition of the apex
player with a minor player, it predicts any payoff division between the egalitarian and the

2Recall that in the game considered by Chatterjee et al. (1993) expected payoffs and continuation
payoffs may be very different. Consider a protocol that always appoints a given minor player i to be the
proposer. This implies that the expected payoff for a minor player j # i (w; in the notation of this paper)
equals 0, whereas his continuation payoff z; is approximately . In the game with random proposers there
is a close relation between expected payoffs and continuation payoffs. Since nature selects a new proposer
once a proposal is rejected, we have z; = fw;.
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proportional division. The kernel (Davis and Maschler, 1965) of this coalition structure
predicts one of the extremes (equal payoff division). The other extreme is predicted by
the competitive bargaining set (Horowitz, 1973).

6.2.5 Experimental evidence

Some of the experiments on apex games are characterized by unstructured, face-to-face
communication (examples are Selten and Schuster (1968) and Albers (1978)); others are
based on computer-controlled, highly structured anonymous interaction (examples are
Horowitz and Rapoport (1974), and the experiments reported in Rapoport et al. (1979))."
The qualitative results of these experiments are fairly robust. Minimal winning coalitions
form almost all the time (in some of the experiments these are the only allowed coali-
tions); a vast majority of those are coalitions of the apex player with a minor player,
while the base coalition is very rare. The payoff division in the two-player coalition sup-
ports the predictions of the (Aumann-Maschler) bargaining set. In some of the studies
(Horowitz and Rapoport (1974)) it is close to the proportional division, whereas other
studies find payoffs uniformly distributed in the range of the bargaining set. The exact
proportional division is not usually found since the base players prefer to form the base
coalition other things equal, so that the apex player has to offer its partner a premium
over the proportional division. The payoff division in the base player coalition is usually
egalitarian, though Selten and Schuster (1968) and Albers (1978) found some cases of
unequal divisions; in Albers (1978) this is related to the competition between the apex
player and a block of minor players over a distinguished minor player.'* Payoff division
also depends on the nominal weights of the players (see, for example, Murnighan et al.
(1977), were players play three versions of the four-player apex game, differing only in the
nominal weights). The results also suggest that a higher number of base players leads to
more frequent two-player coalitions and more competitive payoff division. There is also

130ne may wonder why the most recent experimental papers concerning apex games are twenty years
old. A possible reason is that, even though the computer controlled experiments tried to test cooperative
cooperative solution concepts like the kernel and the bargaining set, it is obvious from the experimental
setup that players are really involved in a noncooperative extensive form game (Selten, 1981). A need
was felt to know the Nash equilibria of the games played in the laboratory, and, since the equilibria of the
noncooperative games that were played were difficult to calculate, experimenters later looked at simpler
bargaining procedures, and also at simpler characteristic function games (usually no more than three
players, and three-player apex games are not very interesting!).

14Note that minor players do not profit from forming bargaining blocks in our noncooperative game;
neither they do according to ez ante solution concepts like the Shapley value or the kernel.
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an effect of the communication structure: in face-to-face communication, the base players
are more successful in cooperating with each other and the apex player gets a lower share

when a two-player coalition forms.

There are many reasons why the experimental results differ from the theoretical pre-
dictions in this chapter. The extensive form games being played are different, human
subjects are boundedly rational and moreover there are several empirically relevant fac-
tors that the model does not capture, like the substantial transaction costs involved in
forming larger coalitions, the solidarity between base players'® and the saliency of payoff
division norms based on the nominal weights of the players.

6.3 Possible extensions?

The main result of this chapter, namely the fact that expected payoffs are proportional
to the number of votes, easily extends to all simple games with one large player and
n — 1 identical small players. In this sort of games, the large player has n — 2m votes
(0 < 2m < n), each of the small players has 1 vote (thus the total number of votes is
2(n—m)—1), and n—m votes are needed to win. The large player needs m minor players
to form a minimal winning coalition whereas a small player needs n — m — 1 other small
players. A smaller m represents a more favorable position of the large player: m = 1
corresponds to apex games.

It can be checked that expected equilibrium payoffs are proportional to the number of
votes of the players, both for the egalitarian and the proportional protocol.

This main result does not extend to all weighted majority games. This section in-
cludes two counterexamples, one for the egalitarian protocol and one for the proportional
protocol.

6.3.1 Counterexample 1: egalitarian protocol

Consider a weighted majority game in which two large players have & > 2 votes each,
2k — 1 players have one vote each and 2k votes are needed to obtain a majority. The
number of players is then n = 2k + 1, and the total number of votes is 4k — 1. There are
two types of minimal winning coalitions: the two large players, and a large player together
with k small players. Consider the egalitarian protocol and suppose expected equilibrium

15 An attempt to model reciprocal loyalty is made in Albers (1988).
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payoffs are proportional to the number of votes of the players; this implies that players
will propose only minimal winning coalitions. A small player will then include one and
only one of the large players in the coalition he proposes; a large player is indifferent
between proposing to the other large player or to k minor players.

One may suspect that a large player cannot get a payoff proportional to his number of
votes for n large enough. As n grows, a large player becomes a proposer less often, thus
he must be a responder more often to keep his expected payoff equal to his proportion of
votes 4k—"_1. Since the proportion of the total votes a large player has is roughly constant
regardless of the number of players, his probability of being a responder must be close to 1
when the number of players is large. However, there is an upper bound to his probability
of being the responder since a small player proposes to only one of the large players
(together with k£ — 1 small players).

The expected payoff for a large player w;, must satisfy the following equation, where
A is the probability with which a large player proposes to the other large player!®

w = L1 - bw)] + -'ﬂ%éwl + L éw;.

T n n

The maximum possible value of w; (corresponding to A = 1) is smaller than £ for

any k> 2!

One can prove that in equilibrium a small player will propose a coalition of himself
and the two large players with positive probability and a large player receives k — 1 times
what a small player receives instead of k times. Thus, large players are underpaid and
coalitions larger than minimal form.

6.3.2 Counterexample 2: proportional protocol

Consider a weighted majority game with four players: a large player with 3 votes, two
medium players with 2 votes and a small player with 1 vote. 5 votes are needed to obtain
a majority, and thus there are two types of minimal winning coalitions: a player with
3 votes together with one of the players with 2 votes, or the two players with 2 votes
together with the player with 1 vote. Thus, the largest and the smallest player are never
together in a minimal winning coalition.

Suppose the protocol is proportional and expected equilibrium payoffs are also pro-
portional. Then the equilibrium must be such that only minimal winning coalitions form,

16We have chosen symmetric strategies without loss of generality.
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thus the player with 3 votes must propose to one of the players with 2 votes, and the
player with 1 vote to both of them. A player with 2 votes has a choice between two
minimal winning coalitions: one including the largest player and the other including the
smallest player. If p is the probability that a player with 2 votes proposes to the largest
player, the following equations must be satisfied:

° % = -g—( 1-— 5%) + %ué%, describing the expected payoff for the largest player.

° % = é(l - 26%) - %(1 - ;4)6%, describing the expected payoff for the smallest player.

For 6 close to 1, 1 needs to be close to % for the largest player to receive a propor-
tional payoff, and close to 0 for the smallest player to receive a proportional payoff, a
contradiction.

The game we have just examined is not constant-sum, that is, it may be the case
that neither a coalition nor its complement are winning. For this sort of games, the
proportional payoff division may not be in the kernel; indeed, this is the case in the
example. Whether expected equilibrium payoffs will be proportional with a proportional
protocol for all constant-sum weighted majority games remains an open question.

6.4 Concluding remarks

This chapter considers an application of the random proposers bargaining model to apex
games. Expected ez ante payoffs are found to be proportional to the number of votes of
the players, and this result is robust to (not too extreme) changes in the protocol. The
probability of a coalition being formed as well as the expected division of payoffs given
that a coalition is formed depend on the protocol.

The proposer has two sources of advantage in this game: the impatience of the players
and the majority (rather than unanimity) rule. In fact, a proposer always gets more
than half of the total payoff regardless of the number of players. The reason is that each
responder receives a payoff proportional to his share of the total votes, and, since only
minimal winning coalitions form, the sum of these shares is always smaller than % This
is striking if we think of large apex games with a minor player selected as a proposer.

Expected payoffs proportional to the number of votes may be desirable for fairness
reasons. However, the fairness argument only applies for homogeneous majority games
(games in which each minimal winning coalition has the same number of votes). This
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chapter concerns homogeneous apex games only. If the game is not homogeneous, the
result that all minor players have the same expected payoff is not so obviously attractive.
Moreover, the assumption that the protocol treats all the minor players equally and the
requirement that the minor players follow similar strategies are less reasonable if the game

is not homogeneous.
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Cooperative Solution Concepts



Chapter 7

Bargaining Sets and Coalition

Formation

Aumann and Maschler (1964) introduced the first bargaining set as "an attempt to trans-
late into mathematical formulas what people may argue when faced with a cooperative
n-person game described by a characteristic function”. The bargaining set answers the
following question: given that a coalition structure forms, what will be the payoff di-
vision? The bargaining set selects the outcomes that are stable in the sense that all
"threats” players have (called objections) can be countered (by a so-called counterobjec-
tion). Peleg (1967) has shown that one can find payoffs that are stable in the sense
of the Aumann-Maschler bargaining set for any coalition structure. Thus, the bar-
gaining set does not answer the question of which coalitions will eventually form, and
can be considered a contribution to ”partial equilibrium analysis” (Aumann and Dreze
(1974)).!

After the work by Aumann and Maschler, other bargaining sets have been constructed
that differ in the concepts of objection and counterobjection. These other bargaining sets
may be used to predict coalition formation: since they may be empty for some coalition
structures, they predict that such coalition structures will not form. Horowitz (1973)
introduces a bargaining set that selects the most competitive outcomes of the Aumann-
Maschler bargaining set. Bennett (1983, 1984) introduces a bargaining set defined in
a different payoff space (aspirations instead of imputations). Mas-Colell (1989) uses a
bargaining set in which objections and counterobjections are made by coalitions instead
of by individual players. The objective of his work was not to predict coalition forma-

1See however Shenoy (1979) for an attempt to use the bargaining set to predict coalition structures.
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tion but to prove the equivalence between the bargaining set and the set of Walrasian
allocations for large economies; for this, a large bargaining set is not a drawback since
it only makes the equivalence result more remarkable. Zhou (1994) introduces a mod-
ification of the Mas-Colell bargaining set that aims at predicting coalition formation
and at giving the concepts of objection and counterobjection an intuitive interpreta-
tion. The Zhou bargaining set greatly improves over the Mas-Colell bargaining set in
terms of the intuitive content of its definition. However, it retains some unintuitive
features. In this chapter, we discuss the difficulties with the Zhou bargaining set and
compare it with the other bargaining sets. We also discuss some other solution con-
cepts, namely the kernel, the aspiration kernel, the equal gains aspirations set and the
aspiration core. This chapter serves as an introduction to the next chapter, where we
will discuss a new bargaining set that improves on some dimensions over the existing
ones.

7.1 The Aumann-Maschler bargaining set

Aumann and Maschler (1964) discussed several possible variants of the bargaining set.
We refer here to the version in Davis and Maschler (1963, 1967), called the bargaining set
M.

The bargaining set M(li) is defined on the space of individually rational payoff config-
urations.

Definition 7.1 Let (/V,v) be a game in characteristic function form. An individually
rational payoff configuration (i.r.p.c.) is a pair (z,7) where z := (z;)ien is a payoff
vector and 7 := {By, ..., B} a coalition structure satisfying

z(B;) =v(B;); j=1,...,m (group rationality) (7.1)
z; 2 v(t); i=1,..,n (individual rationality) (7.2)

For the special case of # = { N}, individually rational payoff configurations are also
called imputations.

The concept of payoff configuration assumes that each coalition distributes its value
among its members (no payoffs are wasted) and that no individual will accept a lower
payoff than what he can secure by himself.
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Definition 7.2 Let (z, 7) be an i.r.pic. et i, 7 be two distinct players in a coalition B

i
of 7. An objection of i against ,7) is a pair (S, y) satisfying

icS, j+8
y(S) = v(S)
ye > VEES.

The idea behind the concept of objection is that, if 7 can form a coalition without j
that makes all members of the coalition better-off, 7 can demand that j gives up part of
his share of v(B) in favor of 7, and use the possibility of forming S as a threat.

Definition 7.3 Let (S,y) be an objection of ¢ against j in (z,7). A counterobjection
to this objection is a pair (7, z) satisfying

jeET,i¢T
z(T) = v(T)
>y VkeSNT
zx > xx Vk € T\S.

If player j has a counterobjection, it means that he can protect his share of v(B)
without 7. He can form coalition 7', give everybody in 7" at least what they got in z and,
if some members of T" were offered a higher payoff by 7, he can match the offer.

Definition 7.4 The bargaining set Mgi) is the set of individually rational payoff con-
figurations s.t. every objection can be countered.

Peleg (1967) shows that, given any coalition structure m, one can find a payoff vector
z st (z,7) e M.

Notice that the definition of counterobjection does not exclude cases in which 7 and j
can both make a profit by leaving B; this would be the case if SNT = @ and v(T) > z(T).
Furthermore, it is possible that everybody in the game can make a profit by moving from a
coalition structure that is in the bargaining set to some other coalition structure. Indeed,
the coalition structure of all singletons, each receiving v(z), is always in the bargaining
set. No player can object to this allocation, since objections have to be directed against a
player in the same coalition. These features are justified by the fact that the bargaining
set is defined for a given coalition structure.
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Aumann and Dreze (1974) provide the following interpretation for the bargaining set
(and in general for all solution concepts that are defined for a given coalition structure):
players partition themselves according to the coalition structure 7, and each coalition
negotiates the division of the payoff on the assumption that 7 will be formed. This division
may be based on the opportunities players have in other coalitions. The negotiations may
break down, and at no time is asserted that they will succeed. What is being asserted is
that if negotiations succeed and 7 forms, then the payoff division should be according to
the bargaining set.

Maschler (1992) emphasizes that the fact that two payoff configurations are in the
bargaining set does not mean that they are equally reasonable; all what is claimed is that
payoff configurations outside the bargaining set are unstable. The question arises of how
to select the "more reasonable” payoff configurations, and especially of how to select the

more reasonable coalition structures.

Shenoy (1979) attempts to use the bargaining set Mgi) as well of other concepts to
predict coalition formation. He models coalition formation as an abstract game. An
abstract game is a pair (X, dom) where X is an arbitrary set whose elements are called
outcomes and dom is an arbitrary binary relation defined on X and called domination.
Shenoy considers two abstract games; we will discuss one of them in detail. In this game,
the set X is the set of coalition structures, and domination is defined as follows.

Definition 7.5 Consider two coalition structures, 7, and m,. Call S(r) C R the set

of possible payoffs assigned by the bargaining set (or other solution concept) to coalition
structure . We say that 7; dominates 7, via coalition R (denoted m, dompg m3) if

Z) Re ™
and
it) Yy € S(m2), 3z € S(m) such that z; > y; Vi € R.

Definition 7.6 We say that m; dominates 7, denoted m; dom 5, if there exists a
nonempty coalition R such that m; domg ms.

Shenoy considers two solution concepts for abstract games: the core and the d-
solution.?

2The core is the set of undominated outcomes.
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The definition of domination above is controversial. When evaluating a move from m,
to 71, only the incentives of coalition R are examined. It may be that other players that
must reorganize themselves in order to achieve 7; have no incentive to do so. Moreover,
this reorganization of players outside R may be essential in order to make the move from
m to m profitable for all players in R. This is due to the fact that the stable payoffs for
a coalition in the sense of the bargaining set may depend on how the remaining players

are organized.

The following example shows that domination may rest upon the ”"wrong” conjectures

of players in R.

Example 7.1 N = {1,2,3,4}, v(N) = 40, v(S) = 50 for all S s.t. |S| = 2. All other
values are zero.

According to the concept of dominance above, coalition structure (12, 3,4) dominates
coalition structure (1234). The bargaining set for the first coalition structure assigns a
payoff of zero to players 3 and 4; this implies that any division of v(1,2) between 1 and 2 is
in the bargaining set. For the grand coalition, the bargaining set contains all imputations.
It is clear that, whatever the imputation one starts from, players 1 and 2 cannot get more
than 40, so that they can form coalition {1,2} and divide 50 between themselves in such
a way that they are both better-off.

The reasoning above, however, rests on the fact that 3 and 4 remain singletons, so
that each of players 1 and 2 can protect any share of 50 by forming a coalition with
one of players 3 and 4 and offering him zero. If 3 and 4 would also form a coalition
(as it seems reasonable), the only payoff vector in the bargaining set is (25,25, 25, 25).
Coalition structure (12,34) does not dominate the grand coalition® via {1, 2}, since there
are imputations for the grand coalition that give player 1 more than 25.

The d-solution is based on the concept of accessibility. We say that z € X is accessible from y € X,
denoted by = « y, if there exist a chain of outcomes 2y, ..., z,, such that

z dom z; dom 25 ... dom z,, dom y.

An elementary dynamic solution is then defined as a set S C X such that

ifzeS,ye X\Stheny

and

ifz,y€ S, then z — y and y « =z.

The d-solution is the union of all the elementary dynamic solutions. It is never empty for a finite X.

3Notice, however, that coalition structure (12, 34) is accessible from the grand coalition.
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7.2 The kernel

The kernel was introduced by Davis and Maschler (1965) as a subset of the bargaining
set that is relatively easy to compute. Since then, it has become a solution concept on its
own right.

Consider a cooperative game (N, v). Assume v(S) >0 VS C N and v(i) =0 Vi € N.
The kernel is defined on the space of individually rational payoff configurations.

Definition 7.7 Let (z,7) be an i.r.p.c. in a game (NN, v) for an arbitrary coalition struc-
ture. The excess of a coalition S at x is (S, z) := v(S) — Y, cq Ti-

Definition 7.8 Let (z,7) be an i.r.p.c. for a cooperative game, and let k and [ be two
distinct players in a coalition B; of 7. The surplus of k over [ at z is

sii(z) = max e(S, z).
1¢S

Definition 7.9 Let (N,v) be a cooperative game, 7 a coalition structure and X () the
set of payoff vectors = such that (z,7) is a i.r.p.c. The kernel K () for = is

K(m) :={z € X(7) : sgu(z) > six(z) = 2, =0, for all k,l € B € m,k #1}. (7.3)

The idea of the kernel is that players demand equal gains (or losses) from cooperating
with each other. If player k& gains more (or loses less) from stopping cooperation with [
than [ would gain (or lose) from stopping cooperation with k, k will demand that [ gives
up some payoff in his favor, unless [ is already receiving the amount he can guarantee by
forming a singleton (0, given the normalization above).

The kernel is nonempty for all coalition structures (Davis and Maschler (1965)).

Davis and Maschler (1965) used the apex game to illustrate the predictions of the
kernel (cf chapter 6).

Example 7.2 (Apex game). N = {1,2,..,n}, v(S) = 1if 1 € S and N\{1} # @ or
S = N\{1}, v(S) = 0 otherwise.
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Consider the coalition structure {{1,2}, {3}, {4}, ....{n}}. The kernel for this coalition
structure predicts that 1 and 2 receive % each. Since the payoff for a coalition must equal
its value, all singletons must receive zero. The surplus of 1 against 2 then equals 1 — x4,
whereas the surplus of 2 against 1 equals 1 — z,. Thus z; = z5. Player 1 needs only one
of the other players, whereas player 2 needs all of them; however, since all those players
receive zero, this makes no difference for payoffs. This is somehow disappointing, because

intuitively the apex player is stronger and it seems that he should get more than half.

n—2 1
2n-3’ 2n-3° "’

that all the minor players must get the same payoff; call this payoff 5. The surplus of the

For the grand coalition, the kernel predicts - -2—71-1:5) To see this, notice
apex player against a minor player then equals 1 — x5 — 21, whereas the surplus of a minor
player against the apex player equals 1 — (n— 1)z,. The equality 1 —z2—2; = 1—(n—1)z;
together with z; + (n — 1)z, = 1 (that is,  must be an imputation) yields the result. If
we interpret apex games as weighted majority games, the kernel predicts payoffs that are
proportional to the number of votes of the players.!

7.3 The competitive bargaining set

Horowitz (1973) introduces a new bargaining set that aims at predicting payoff division
in a highly competitive environment. The starting point of this work is the definition of
counterobjection for the bargaining set M (li). He argues that condition z; > y; for all k
in SN T is reasonable, but condition zx > zj for all k£ in T'\S is open to criticism.

The bargaining set theory assumes that player k is willing to join the counter-
objection for at least his previous payoff zj, regardless of his relative power
defined by the characteristic function of the game. Why should player k help
player 7 for any return zj, zx > xy, ignoring potential coalitions with player j
in which he may obtain a higher payoft?

He uses the apex game to illustrate this criticism. Consider the following payoff
configuration for the five-person apex game: {(55,45,0,0,0),(12,3,4,5]}. Player 1 (the
apex player) has an objection against player 2 through coalition {1,3}: he can offer 40
to player 3 and keep 60 for himself. Player 2 then has a counterobjection: he could form
{2,3,4,5} with payoff division (45, 40, 7,8). Players 4 and 5 agree to 7 and 8 units

4While proportional payoffs may seem only too obvious, one must take into account that neither the
Shapley value nor the Banzhaf (1965) value assign proportional payoffs to the apex game.
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since they got zero in the original payoff configuration. Horowitz suggests that they may
instead compete against player 2 and offer 60 or more to player 1. If players 4 and 5 make
an offer to player 1, these offers can be considered as threats of 1 against 2.

In order to formalize these insights, Horowitz introduces the concept of multi-objection.

Definition 7.10 Suppose ¢ has an objection against j in (z, 7). Let Sy, ..., S; be t distinct
coalitions, ¢t > 1, through which player ¢ may object against player j, and let 3!, ..., y* be
the associated payoff vectors. Then the set of objections

{(8",9"), ..., (8%9")}
is called a multi-objection of player i against player j in (z, ).
By the definition of objection, a multi-objection implies that for each g = 1,2, ..., ¢,

1€89,57¢8%i,5e Ben
> kess Vi = v(S59)
yp >z for all k € §9.

In the example of the apex game above, a multi-objection could be ({1, k}, (60, 40));_5
The interpretation would be that player 1 is ready to offer 40 units to the first player
among {3,4,5} who is willing to join him.

Definition 7.11 Suppose 7 has a multi-objection against j in (z, 7). The pair (T, z) is
called a counter-multiobjection of player j against i if

jeT,i¢T

> ker 2k =v(T)

2k = Tk forall ke T

2z > yy for all k € (T'NSY).

In the example of the apex game, player 2 has no counter-multiobjection, since he
would have to give a payoff of 40 to each of players 3, 4 and 5.

Definition 7.12 The competitive bargaining set is the set of individually rational
payoff configurations such that every multi-objection can be countered.

The competitive bargaining set is included in the bargaining set Mgi) . For apex games,
it gives a unique stable payoff division for each coalition structure (see Horowitz (1973)).
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Example 7.3 The competitive bargaining set in the apex game for a coalition structure
including {1,1}.

Call the payoff division (1 —z,z). The "most damaging” multi-objection by player 1 is
that in which he offers each other minor player almost z. Thus, in order for player 4 to have
a counter-multiobjection, he must be able to offer each other minor player = and still keep
z for himself, thus (n — 1)z < 1. If (n— 1)z < 1, player 7 has a multiobjection against the
apex player in which he gives every other minor player :‘;_2 > n—i—l- In order for the apex
player to have a counter-multiobjection, -}ﬁ < z. Thus, the only stable payoff division is

,':—:f, n+1)v proportional to the weights of the players in the homogeneous representation.

For the five-player case, the payoff division is (75,25). If the minor player would
receive more, like in (74, 26), the apex player could offer each other minor player 25, and
the minor player cannot counterobject. If the minor player receives less, as in (76,24), he

can offer each other minor player 25, and the apex player cannot match this offer.

The competitive bargaining set may be empty for all coalition structures in some
games (Horowitz (1973)).

7.4 The aspiration bargaining set

Bennett (1983, 1984) introduced a bargaining set that can predict coalition formation.
This bargaining set differs from the rest in that it is not defined in the space or imputa-
tions, but in the space of aspirations.

Definition 7.13 A payoff vector z € R" is an aspiration if it satisfies the following
properties

1. z(S) > v(S) VS C N (mazimality).
2. Vi € N 3S containing ¢ such that z(S) = v(S) (feasibility).

Unlike the space of imputations, the space of aspirations does not presuppose the
formation of any coalition structure.

Aspirations are interpreted as prices players set for their participation in a coalition.
Feasibility captures the idea that an agent will not set a price so large that no coalition can
afford to pay it given the prices set by the other players. The idea behind the requirement
of maximality is that a player will increase his price if he can do it without completely
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pricing himself out of the market. While feasibility is rather compelling, maximality is
more debatable: by raising his price, a player may not price himself out of all possible
coalitions, but he may price himself out of a considerable number of them. Since eventual
participation in a coalition is not guaranteed, it may be better not to raise one’s price
(unless one is an optimist!).

Let z € R™ be an aspiration. The set GC(z):= {S C N | z(S) < v(S), S # @} is
called the generating collection of x. This is the set of coalitions that are feasible given
z. Usually there is no partition 7 C GC(z), and thus not all players can simultaneously
get their payoff demands.

Aspiration solution concepts select a subset of the space of aspirations. An aspiration
solution concept of interest in this chapter, originally introduced by Albers (1974), is the
partnering condition.

Definition 7.14 Let z be an aspiration vector. Let S;(z) be the set of coalitions including
1 that are feasible given z. We say that j and k are partners if

either S;(z) = Sk(z)
or S;(z)\Sk(z) # @ and Sk(z)\S;(z) # @.

Definition 7.15 An aspiration z such that any two players are partners at z is called a
partnered aspiration.

Players j and k are partners if either they need each other’s cooperation in order to
obtain their payoff demands or neither of them needs the other in order to obtain their
payoff demand. The spirit of this concept is close to spirit of the bargaining set M(li):
if a payoff vector is in Mgi) for some coalition structure, given two players in the same
coalition, either they need each other to keep their payoffs (there are no objections) or
neither of them needs the other to keep his payoff (objections can be counterobjected).
This is why the set of aspirations satisfying the partnering condition was called the aspi-
ration bargaining set by Bennett.® Formally, objections and counterobjections are defined
as follows:

Definition 7.16 Player : has an aspiration objection against j for the aspiration z
if there exists a coalition S containing both 7 and j with z(S) = v(S) and there exist a
coalition T containing 7 but not j with z(T) = v(T).

5 Albers (1979) calls it the d-superkernel.
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Definition 7.17 Player j has an aspiration counterobjection against i if there exists
a coalition Z containing j but not ¢ with z(Z) = v(Z).

Definition 7.18 An aspiration z is in the aspiration bargaining set if there are no
aspiration objections without counterobjections, or, analogously, if any two players are

partners.

Bennett (1983) shows that the set of partnered aspirations is nonempty.

Selten (1981) studies a noncooperative model of characteristic function bargaining.
He shows that every stationary perfect equilibrium is connected to an aspiration, and
that refinements of the equilibrium concept can be introduced in order to reduce the
equilibrium payoffs to those satisfying the partnership condition® (called stable demand
vectors by Selten).

7.5 Equal gains aspirations

The equal gains property, introduced by Bennett (1983) is based on the idea that agents
may demand equal gains from forming their "best” coalition rather than their "next best”
coalition.

Consider an aspiration z and a coalition S in the generating collection of z. Suppose
that an agent ¢ € S can no longer form S, and that all other agents can still form coalitions
in GC(z). If agent 7 wants to attract agents to other coalition S’, he will still have to pay
them their components of . The aspiration z has the equal gains property if all agents
make the same loss from forming their next best coalition.

Definition 7.19 The gain to agent 7 from forming S in GC(z) over his next best alter-
native, g'(S), is given by

g'(S) = max{z(S’) —v(S') | i€ S, S’ # S}.

6The basic idea of this refinement is as follows: suppose the equilibrium is such that all coalitions that
are optimal for player 7 to propose contain player j, but player j has an optimal coalition not including
player 7. Then j can "provoke” i by proposing a higher share for himself and a lower share for player
i, knowing that he faces no risk of being excluded from a coalition in doing so. Player i, one the other
hand, cannot do the same to player j, since j can form a coalition that excludes i. Such situations are
excluded by the refinement.
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Definition 7.20 The aspiration z is called an equal gains aspiration if for each coali-
tion S in GC(z) and for each pair of agents i and j in S, g'(S) = ¢?(S5).

Notice that, when calculating ¢'(S), player 7 imagines that he cannot form S, whereas
the remaining players in S can still form S.

Example 7.4 N = {1,2,3,4}, v(1,2) = v(3,4) = 50, v(1,2,3) = 60, v(1,4) = 35.

The aspiration vector (25, 25,25,25) is equal gains. If player 1 cannot form coalition
{1, 2}, his next best coalition is {1,2,3}. In this coalition he has to pay 25 to both players
2 and 3. This is reasonable as far as it concerns player 3, who can get 25 by forming a
coalition with 4. Player 2 is also assumed to keep his demand unchanged, but in order
for 2 to keep his demand, he needs to be able to form coalition {1, 2}.

An aspiration vector can be equal gains without being partnered. This will be the
case if player i needs player j in his second best coalition, while player j does not need
player i.

Example 7.5 N = {1,2,3}, v(1,2) = v(1,3) = 10, v(N) = 15. This is example 3 in
Bennett (1983).

The aspiration vector (5,5, 5) is equal gains but not partnered.

Bennett (1983) shows that the set of equal gains aspirations is nonempty for any game.

7.6 The aspiration kernel

The aspiration kernel (Bennett (1985)) is an extension of the kernel to the space of
aspirations.

Consider an aspiration z. Suppose that an agent i can no longer form coalitions
including player j, and j cannot form coalitions including i. If agent i or j; wants to
attract agents to other coalition S’, he will still have to pay them their components of z.
The aspiration z is in the aspiration kernel if ¢ and j make the same loss by having to
form a coalition that excludes the other player.

Definition 7.21 Let z be an aspiration vector and 7 and j be two distinct players. The
surplus of i over j at z, s; ;(z), is given by

sij(z) = max{v(S') —z(S") | i€ S, j ¢S}
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Definition 7.22 The aspiration z is in the aspiration kernel if for any two players 1,

jin N, s;;(z) = 8;i(x).
Remark 7.1 The aspiration kernel is a subset of the aspiration bargaining set.

The aspiration bargaining set requires that s; ;(z) and s;;(x) are both zero (if no player
needs the other to keep his demand) or both negative (if each player needs the other to
keep his demand) but not necessarily equal.

In computing s;;, player i assumes that the demands of all other players remain
unchanged, even if players other than i and j need to be able to form coalitions including
both 7 and j to keep their demands.

Example 7.6 N ={1,2,3}, v(2) =1, v(1,3) = 6, v(N) = 15.

Consider the aspiration vector (5,5, 5). Coalition {1,2,3} is the only coalition in the
generating collection of this aspiration vector. If we compute s;2 and sy, both values
equal —4. Player 2 can get 1 by himself, whereas player 1 can get 1 by forming a coalition
with player 3 and giving him 5. Since player 3 needs both players 1 and 2 in order to
keep his demand, there is no clear reason to assume that, in case players 1 and 2 do not
cooperate with each other, 3 can still keep his demand.

7.7 The aspiration core

The aspiration core, also called the set of balanced aspirations, was introduced by Cross
(1967). The idea behind this concept is that, while players will try to get as much as they
possibly can (thus leading to the space of aspirations) competition among coalitions for
potential members will drive up the payoffs of scarce players and drive down the payoffs
of the others, resulting in the selection of those aspirations which have least sum.

Example 7.7 Consider the five-player apex game with v(1,2) = v(1,3) = v(1,4) =
v(1,5) = v(2,3,4,5) = v(N) = 100.

Consider the aspiration vector (50, 50, 50,50, 50). Each player is setting his demand
as high as he possibly can given the demands of the other players. However, if we assume
that the environment is highly competitive, these demands are not stable. Players 2, 3,
4 and 5 would all want to form a coalition with player 1. It is reasonable to assume
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that competition between players 2, 3, 4 and 5 will drive the ”price” of player 1 up and
the prices of players 2, 3, 4 and 5 down. Consider now the aspiration vector (60, 40,
40, 40, 40). This aspiration vector has a lower sum than the original one. Nevertheless,
player 1 is still in high demand, and his price will go up. This process has a stable
point, namely (75, 25, 25, 25, 25). Starting from this point, deviations are still profitable.
However, further deviations will bring the prices of the players back towards this point.
Suppose that the coalition of all small players in under consideration. Player 1 may then
offer player 2 a higher payoff (say, 26) but then player 1 only demands 74 and competition

between minor players will drive his payoff back to 75.

Definition 7.23 The aspiration z is a balanced aspiration (is in the aspiration core)
if 2/(N) > z(N) for every aspiration z’.

Thus, the set of balanced aspirations is the solution to the following linear program-
ming problem
min Z )
ieN
sk, in > v(S).

€S

The name of balanced aspirations is due to the following result.

Theorem 7.1 (Bennett, 1983) The generating collection of the aspiration z is a balanced
collection” if and only if the aspiration x is a balanced aspiration.

Three of the four solution concepts we have seen for aspirations (excluding the aspira-
tion kernel, that is included in the aspiration bargaining set) cannot be ranked in terms
of inclusion. One can always find aspiration vectors that satisfy two of the three stability
requirements but not the third (see Bennett (1983)).

"The collection of coalitions G is a balanced collection if there exists a set of weights dg > 0 for each
S € G, such that for every agent,

Yseq 8i(S)ds =1

lifieS
here §;(S) =
whies Gl { 0ifi ¢S
For the example of apex games, these weights are % for the minor player coalition and % for each apex
coalition.
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7.8 The Mas-Colell bargaining set

Mas-Colell introduced a new bargaining set in 1989. The objective of his work was not
to predict coalition formation, but to prove the equivalence of his bargaining set and
Walrasian equilibrium allocations in an atomless exchange economy. This is perhaps the
reason why the definition of counterobjection for the Mas-Colell bargaining set is difficult

to interpret.

Mas-Colell (1989) defined the bargaining set on the space of imputations. An imputa-
tion in this context is a payoff vector z € R™ such that >, y z; = v(N). Thus, Mas-Colell
does not require imputations to be individually rational. One can easily extend the defini-
tion to payoff configurations (that is, payoff vectors satisfying (7.1)) to allow for coalition
structures not payoff equivalent to the grand coalition. We take this approach in the

definition below.

Definition 7.24 An objection from a coalition S against a payoff configuration (z, )
is a pair (S,y) in which ), cv: < v(S) and y; > z; forall : € S.

Definition 7.25 Let (S, y) be an objection against a payoff configuration (z,7). A coun-
terobjection from a coalition 7' against (S,y) is a pair (7, z) in which ) 2z; < v(T)
and

2z > yforallkeT NS (7.4)
2z > xpforal keT\S. (7.5)

Definition 7.26 An objection (S,y) against (z, ) is justified if there is no counterob-
jection from any other coalition T against (.S, y).

Definition 7.27 The Mas-Colell bargaining set is the set of imputations for which
there are no justified objections.

Vohra (1991) shows that the Mas-Colell bargaining set for the grand coalition is
nonempty for weakly superadditive games® even after adding the individual rationality

requirement.

8A game (N, v) is weakly superadditive if v(SU {i}) > v(S) +v(i) for all Ss.t. i ¢ S.
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7.9 The Zhou bargaining set

The Zhou (1994) bargaining set is defined in the space of payoff configurations. The
distinctive feature of this bargaining set is that it imposes some additional requirements
in the definition of a counterobjection.

Definition 7.28 An objection from a coalition S against a payoff configuration (z, )
is a pair (S,y) in which }°, sy < v(S) and y; > z; for all i € S.

Definition 7.29 Let (S, y) be an objection against a payoff configuration (z, 7). A coun-
terobjection from a coalition T' against (S, y) is a pair (T, z) in which > jerzi S u(T)
and

T\S # ,S\T#@andTNS # @. (7.6)
2 > x forall ke T\S, and z; >y, foralll € SNT. (7.7)

Definition 7.30 An objection (S,y) against (z,7) is justified if there is no counterob-
jection from any other coalition T against (S, y).

Definition 7.31 The Zhou bargaining set of a game (V, v) is the set of payoff config-
urations against which no coalitions have justified objections.

The conditions in (7.6) are imposed in order for a counterobjection to have a satis-
factory interpretation. It must be launched by some player not in S (thus T\S # @), it
should not reinforce the original objection (S\T # @), and it must nullify the objection
(SNT # 2).

Notice that (7.6) implies that there cannot be any counterobjections to an objection
made by the grand coalition. This implies that, for a superadditive game, only efficient
coalition structures are stable in the sense of the Zhou bargaining set.

Zhou (1994) describes his bargaining set as being ”almost a subset” of the Mas-Colell
bargaining set. The reason why it is not a subset is that it requires weak inequalities in
(7.7). Zhou points out that requiring a strong inequality would make the bargaining set
empty for some games.

Example 7.8 N = {1,2,3,4}, v(S) = 4if S = {2,3}, v(S) = 3 if S = {1,2} or {3,4},
v(S) = |S| otherwise.
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The coalition structure {1,2, 3,4} together with (1,1,1,1) is in the Zhou bargaining
set. An objection by {2,3} with (2,2) can be counterobjected by {3,4} with (2,1). If we
would require a strict inequality, this allocation would not be in the bargaining set. Thus,

it is not in the Mas-Colell Bargaining set.

The Zhou bargaining set is nonempty for any TU game (see Zhou (1994)).

7.10 Intuitive and unintuitive features of the Zhou
bargaining set

Despite of the intuitive content of definition 7.29, the Zhou bargaining set contains some
payoff configurations that rest on unintuitive counterobjections. The next subsections

provide some examples.

7.10.1 A player may be ”forced” to counterobject

The Zhou bargaining set allows for counterobjections that are not in the interest of the
players. Consider the following example:

Example 7.9 N = {1,2,3,4}, v(S) =4 if |S| = 2 and v(S) = |S| otherwise. This game
corresponds to example 2.6 in Zhou (1994). The payoff configuration {(1,1,1,1),[1234]}
is in the bargaining set.

The reason why this payoff configuration is in the bargaining set is that an objection
like {{1,2}, (2,2)} can be counterobjected by a coalition like {2, 3} with a payoff division
like (2.1,1.9).

There seems to be something counterintuitive in this reasoning. While players 3 or 4
can launch a counterobjection that nullifies the objection above, they can also improve
their payoffs by forming coalition {3,4}, without nullifying the objection. Furthermore,
the counterobjection implies that all players will receive 1.

It seems that this sort of situation should be excluded. Intuitively, if players 3 and
4 would have a choice between counterobjecting and not counterobjecting, they would
prefer not to counterobject. Then the objection would succeed and players 3 and 4 would
have the opportunity to form a two-player coalition and earn each of them more than
1. However, while this is clear in this game, in more complicated games the decision
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between counterobjecting or not would not be straightforward. For example, consider the
following game with five players

Example 7.10 N = {1,2,3,4,5}, v(S) =4if |S| = 2,v(S) = |S| if |S| > 3and v(S) =0
if |§| = 1.

Now the success of an objection of players {1,2} would presumably lead to the for-
mation of another coalition of size 2, and player 3 cannot be sure of getting into that
coalition.

Example 7.10 shows the difficulties of trying to let players decide whether they want to
counterobject or not. Still, when the success of an objection is compatible with a Pareto
improvement (as in example 7.9), it seems reasonable to assume that the objection will
be successful.

An alternative way of addressing this question would be to allow the objecting set to
partition itself into several subcoalitions. This would exclude situations like example 7.9
(the grand coalition would object and (7.6) implies that there are no possible counter-
objections). Allowing an objecting coalition to partition itself into several subcoalitions
together with requirement (7.6) would solve the problem while keeping the nonemptiness
result (see Zhou (1994)). Zhou (1994) argues that it may be difficult to coordinate this
type of moves.

Since the Aumann-Maschler bargaining set is never empty, it also allows for the grand
coalition in example 7.9. The same can be said about the kernel. The competitive
bargaining set allows for the grand coalition as well: a multiobjection of, say, 1 against 2
can always be counterobjected: whatever the payoff player 1 offers to 3 and 4, player 2 can
match player 1’s offer. Both the Aumann-Maschler bargaining set and the competitive
bargaining set look at whether the player affected by the objection can keep his payoff
without the objecting player; this is clearly the case in example 7.9. The aspiration
bargaining set and the other aspiration solution concepts, on the other hand, do not allow
for the grand coalition in example 7.9 (or in general, for outcomes in which a coalition
could form and pay its members more than their demands), since they are restricted to
the space of aspirations in the first place.

7.10.2 ”Strangers” can counterobject

The Aumann-Maschler bargaining set requires counterobjections to be launched by a
player who was affected by the original objection. This requirement is in agreement with
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the original interpretation of a counterobjection as an argument that seeks to deter the
objection. The Zhou bargaining set allows counterobjections by players that are not
affected by original objection. Consider the following example.

Example 7.11 (The modified glove game). N = {1,2,3,4,5,6},v(S) = 10if S = {4,},
i€ {56}, € {1,234}, v(S) =8 if |S| = 2 and either S = {5,6} or S C {1,2,3,4}. In
all other cases, v(S) = 0.

Only pairs of players are valuable. Moreover, pairs formed by players of different type
are more valuable than pairs of players of the same type.

Payoff configurations {(0,0,5,5,5,5),[1,2,35,46]} and {(0,0,4,4,6,6),[1,2,35,46]}
are in the Zhou bargaining set. The reason is that, for any objection by coalition {1, 2}, we
can find a counterobjection by {1,5} or {2,5}. We can think of those counterobjections
as being launched by player 5. However, player 5 (or any other player for that matter)
was not affected by the objection.

The Aumann-Maschler bargaining set, the kernel, the competitive bargaining set, the
aspiration bargaining set and the aspiration kernel also allow for the outcomes
{(0,0,5,5,5,5),[1,2,35,46]} and {(0,0,4,4,6,6),[1,2,35,46]} (with payoff demands
(5,5,5,5,5,5) and (4,4,4,4,6,6) in the case of the aspiration bargaining set).

The Aumann-Maschler bargaining set and the competitive bargaining set do not even
allow an objection by 1 or 2 in example 7.11. The reason is that objections always have
to be against some player. Analogously, the kernel only considers pair of players that are
together in a coalition.

Both demand vectors (5,5,5,5,5,5) and (4,4,4,4,6,6) are stable in the sense of the
aspiration bargaining set and the aspiration kernel. The aspiration solution concepts offer
only payoff demands, not coalition structures. As for coalition structures, it is predicted
that coalitions in the generating collection of the stable aspirations can form, and other
cannot. Given the second vector, coalition {1,2} can form. Given the first vector, it
can not. Thus, the aspiration bargaining set allows for outcomes that could be Pareto
improved. Notice that the aspiration bargaining set is designed to judge whether the
demand vector is stable, and this is done by checking whether each player can keep his
demand without counting on other players. It passes no judgements on the coalition
structure that is formed as such. Each player demanding 5 would still be in the aspiration
bargaining set (though not in the aspiration core) for arbitrarily many players of one type
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and only two of the other type. Such examples illustrate the fact that the concept of
aspiration is a very optimistic one, since it is only required that each demand is feasible
in some coalition.

7.10.3 ”Scarce” players are punished

Consider the following example.

Example 7.12 The game is as in example 7.9. Payoff configuration {(1, 3,2, 2), [12, 34]}
is in the Zhou bargaining set.

The reason is that, if a coalition like {1,3} would object with a payoff division like
(1.5,2.5), then coalition {1,4} would counterobject with a payoff division like (1.6, 2.4).
Thus, player 1 cannot benefit from the fact that he is "scarce” (if {1,4} was not feasible,
the objection would have succeeded) .

In the language of the Aumann-Maschler bargaining set, the objection should be
interpreted as made by 1 against 2; then the counterobjecting coalition should include 2
and not 1.

Intuitively, it seems that the fact that a player is "scarce” should not hurt this player.

The Aumann-Maschler bargaining set does not have this problem in example 7.12.
Player 1 can object against player 3 and player 3 cannot keep his payoff. Notice however
that the scarce player may be a singleton and as such he is not allowed to object.

Example 7.13 N = {1, 2,3}, v(1,2) = »(1,3) = 10, v(2,3) = 8.

Consider the coalition structure 7 = (1, 23) with payoff division (0,4,4). Any objection
of 2 against 3 through {1,2} can be counterobjected by 3 trough {1,3}. Player 1 as such
cannot object. Thus, this payoff configuration is the Aumann-Maschler bargaining set
and also in the competitive bargaining set.

We have not defined what we understand by a ”scarce” player. We would like to
distinguish between cases like example 7.12, in which a player is obviously ”exploited”
and cases like the "musical chairs” game.

Example 7.14 (musical chairs) N = {1,2,3}, v(S) = 1 if |S| = 2, v(S) = 0 otherwise.
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A reasonable outcome of this game is {(3, 3,0), [12,3]}. Player 3 would be better-off
if only coalition {1,3} was feasible. Nevertheless, we do not want to call player 3 a scarce

player.

The aspiration approach may clarify the question of scarcity of players. Defining a
scarce player as a player such that other players would be prepared to give him more than
his demand, maximality of the demand vectors precludes any player being scarce. Thus,
in example 7.12, the payoff vector is not an aspiration because coalitions {1,3} and {1, 4}
could pay the players more than their demands. Coalition {2,3} in example 7.13 would
be justified if player 1 demands 6, which is quite reasonable.

The Zhou bargaining set inherits some problems of the Aumann-Maschler bargaining
set (players may be "forced” to counterobject and "scarce” players may be punished)
and it adds a new problem: ”strangers” (players that are not hurt by the objection) may
launch a counterobjection. On the other hand, the Zhou bargaining set allows any player
that is affected by an objection to counterobject, and this is arguably a desirable property.
The following example illustrates this.

7.10.4 Should any affected player be allowed to counterobject?

Consider the following example.

Example 7.15 N = {1,2,3,4}, v(123) = 3, v(24) = v(34) = 2, v(S) = 0 in all other
cases.

Consider a payoff configuration like {(1,1,1,0),[123,4]}. This payoff configuration
is in the Zhou bargaining set, since an objection by {3,4} can be counterobjected by
{2,4}. However, it is not in the Aumann-Maschler bargaining set because the objection
by {3,4} can be interpreted as an objection of 3 against 1. Player 1 does not have any
counterobjection. On the other hand, player 2 is also affected by the objection.

Shouldn’t any affected player be allowed to counterobject? It is no use for player 2 to
think that the objection is not really against him but against player 1; in fact, he would
prefer that 3 objects against him since in this way he can defend himself.

The aspiration vector (1,1,1,1) is not partnered, balanced or equal gains. However,
the outcome described above is perfectly reasonable: players 2 and 3 have decided not
to fight with each other for the favors of player 4. The aspiration (0,1.5,1.5,0.5) may
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be more favorable for players 2 and 3 given that they get into a coalition, but there is
nothing wrong with preferring a certain payoff of 1 to an uncertain payoff of 1.5.

In the bargaining sets we have discussed, objections and counterobjections are either
personal (M 5"), aspiration bargaining set) or through coalitions (Mas-Colell, Zhou). One
could define a hybrid bargaining set: any coalition can object (thus, objections do not
need to be against any particular player) and any affected player (and only those) could
counterobject. While this seems desirable in view of the examples above, one can also
produce examples in which personalized objections are much more reasonable, as we will

see in example 8.6 in the next chapter.

7.11 Conclusion

The Aumann-Maschler bargaining set answers the question of what will be the payoff
division given a certain coalition structure. After this bargaining set, other solution
concepts have appeared that attempt to determine a coalition structure endogenously.
Clearly, a lot of progress has been done. It is also true that more work is needed. A
completely satisfactory solution concept is not likely to arise. Trying the solution concepts
on concrete examples that show the weaknesses of those solution concepts contributes at
the very least to a deeper understanding of those concepts.



Chapter 8

The Stable Demand Set

The aspiration approach makes more reasonable predictions than other solution concepts,
at least for some games. This approach, however, has the obvious drawback that it is
restricted to the space of aspirations. It would be convenient to have a solution concept
that, without being restricted to the space of aspirations, would make similar predictions
to the aspiration approach. The stable demand set, introduced by Morelli (1998), is such
a concept. This chapter, based on Morelli and Montero (2000) studies some of properties.

The stable demand set is a bargaining set. It can be described as a "hybrid” bar-
gaining set, since it has some elements from the traditional bargaining sets, and some
elements from the aspiration bargaining set. Objections in the stable demand set are de-
fined as usual (an objection must make all objecting players strictly better-off), whereas
counterobjections are restricted to use the original demand vector.

The stable demand set contains the core and is contained in the Mas-Colell bargaining
set and in the Zhou bargaining set. It may be empty for some games, but it makes intuitive
predictions for others. In this chapter, we will concentrate on constant-sum homogeneous
weighted majority games. These games have received a lot of attention both in theory
(starting with the book of von Neumann and Morgenstern) and in experiments. Moreover,
they are very relevant for applications.

The existing cooperative solution concepts defined on the space of imputations (or
payoff configurations) fail to provide an adequate prediction of the outcomes of weighted
majority games. The core of any constant-sum essential game is empty. Value concepts do
not yield predictions of what coalition will eventually form and how payoffs will be divided.
The bargaining set and the kernel answer the question of payoff distribution conditional
on a coalition structure, but they do not predict what coalition will form and the set
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of possible payoffs is often large. On the other hand, the cooperative solution concepts
defined on the space of aspirations seem more appropriate to predict coalition formation,
but they are defined on the restricted domain of aspirations. The stable demand set shares
the spirit and some of the predictions of those solution concepts without being restricted
to the space of aspirations.

The stable demand set is never empty for constant-sum homogeneous weighted ma-
jority games. It predicts that only minimal winning coalitions will form and that each
player will receive a payoff proportional to the number of votes he brings to the coalition.
While this seems reasonable, no other bargaining set makes the same prediction.

The remainder of this chapter is organized as follows. Section 8.1 is devoted to the
definition of the stable demand set and the discussion of its relation to other solution
concepts. Section 8.2 is devoted to the characterization of the stable demand set for
constant-sum weighted majority games. Section 8.3 includes two illustrative examples in
which the stable demand set selects a reasonable outcome where other bargaining sets are
too large. Section 8.4 compares the stable demand set and the Zhou bargaining set in the
light of the problems discussed in the previous chapter. Section 8.5 concludes.

8.1 The stable demand set: definition and properties

8.1.1 Definition

Let (N,v) be a zero-normalized characteristic function game. The stable demand set
(henceforth SDS) is defined on the space

X :={(a,7) € (R} x II(N)) : Zaj < v(S) for all S €, |S| > 1}.
jes

Thus, a candidate element for the SDS is a pair (o, 7) where a€ R?” is a demand vector
specifying what each player charges for his cooperation with other players in a coalition
and 7 is a coalition structure compatible with a in the sense that coalitions of more than
one player must be able to afford the demands of their members; no such restriction is
imposed on singletons.

For any given pair (, ), actual payoffs are obtained using the following payoff as-
signment rule:

1

= {ai fieSemn: 3 sa; <u(S)

Qs = )
0  otherwise.
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Players receive their demands provided that they are feasible for the coalition to which
they belong, otherwise they receive zero. Notice that this implies that all singletons receive
zero.

Like all bargaining sets, the SDS rests on the concepts of objection and counterobjec-
tion.

Definition 8.1 An objection of a coalition T against (a, ) is a pair (7', y) such that

ier ¥ < v(T)
y; >af forallieT.

Notice that objections are against actual payoffs, not against demands; thus, an ob-
jecting player may receive less than his demand in the objection.

Definition 8.2 Let (T,y) be an objection against (a, 7). A coalition Z has a counter-
objection against (7, y) if

TNZ +@

Ziezai < v(Z)
o>y VieTNnZ.

Thus, counterobjections in the SDS must use the original demand vector. We also
require the inequality within 7N Z to be strict.

Definition 8.3 An objection against (a,7) is acceptable if it cannot be counterob-
jected.

Definition 8.4 A pair (o, 7) belongs to the SDS if there is no acceptable objection to
it.

A counterobjection in the SDS is restricted to use the original demand vector, while
at the same time having a nonempty intersection with the objecting coalition and making
players in the intersection better-off. Therefore, in order for a counterobjection to exist,
it must be the case that at least one player in the objecting coalition S was receiving less
than his demand. Thus

Remark 8.1 Objections that use the demand vector a« cannot be countered.
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8.1.2 Relation with other solution concepts
Aspiration solution concepts

The SDS is obviously related to the aspiration approach to coalition formation. However,
the payoff demands in the SDS are not always aspirations: they satisfy maximality but
they do not necessarily satisfy feasibility.

Lemma 8.1 If (a,7) is in the SDS, then « is mazimal but not necessarily feasible.

Proof. If there was a pair (a, 7) in the SDS and S C N such that ), ca; <v(S), S
itself would have an objection in which each player would receive more than his demand.

An example that shows that demands do not have to be feasible is a game with three
players, where v(1,2) = 6, v(i) = 0, v(S) = 1 for every other S: in this case the vector
(3,3, z) (together with the coalition structure (12, 3)) is in the SDS, for every z. m

Even in games where the SDS contains only aspirations, it may contain aspirations
that are not stable according to the aspiration solution concepts. Consider the following
examples:

Example 8.1 N = {1,2,3}, v(1,2) = v(1,3) = 10, v(1,2,3) = 15. All other values are
Z€ro.

The demand vector (5,5,5) together with the grand coalition is in the SDS. This
demand vector is an aspiration, but it does not satisfy the partnership condition (player 2
needs player 1 in order to obtain his demand, but player 1 does not need player 2) and it
is not equal gains or in the aspiration kernel (player 1 can maintain his demand without
coalition NV or without player 2, but player 2 can not).

Example 8.2 Consider the set of players N = {1,2,3,4,5,6} with

v(i,7) =10 if ¢ € {5,6} and j ¢ {5,6}, v(i,j) = 8 otherwise, v(S) =0 for |S| # 2.

This is the modified glove game from the previous chapter. The only balanced aspi-
ration vector is (4,4,4,4,6,6), but the SDS also contains (5,5, 5,5,5,5) together with a
coalition structure like [1, 2, 35, 46].

It is easy to see that the reverse is also true: there are stable aspirations that are not

stable demand vectors in the sense of the SDS. Consider the following game, proposed by
Maschler (see Aumann and Dréze (1974)):
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Example 8.3 N = {1,2,3}, v(¢) =0, v(S) =60 if |S| = 2, v(N) = 72.

The aspiration vector (30, 30,30) is partnered, equal gains, balanced and it is in the
aspiration kernel. It is not in the SDS because an objection by the grand coalition with
a payoff division like (31, 31, 20) cannot be countered. The SDS is empty in this game.

Maximality of the demand vectors together with the fact that the game is zero nor-
malized implies that the SDS lies in the space of payoff configurations in terms of realized
outcomes.

Remark 8.2 If (a,7) is in the SDS, then (a™,7) is a payoff configuration.

The core

The fact that the SDS lies in the space of payoff configurations in terms of realized
outcomes makes it comparable with other solution concepts that lie in the same space,
like the core or most bargaining sets. Like all bargaining sets, the SDS contains the
(coalition structure) core. This follows because the core is the set of allocations to which
there are no objections.

Remark 8.3 If (o, 7) is in the SDS and of = «; for all i, then a is in the (coalition
structure) core. In particular, if (o, N) is in the SDS, « is in the core.

It follows from remark 8.3 that the grand coalition can never be stable in the sense of
the SDS if the core of (N, v) is empty.

The SDS is a strict superset of the core, and as such contains some dominated payoff
vectors. However, if (o, ) is in the SDS, then the induced payoff vector o™ cannot be
dominated via a subset of a coalition in 7 or (if the game is cohesive) via the union of
several elements of 7. The first property is called coalitional rationality (see Aumann and
Maschler (1964)); the second property can be called union rationality.

Proposition 8.1 If (o, ) belongs to the SDS, then

Za}' >u(T) foralTC S, S €. (coalitional rationality)
i€T
Moreover, if the game is cohesive

T :v(T) > Za}’ and T is the union of elements of 7. (union rationality)
i€T
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Proof. The first part of the proposition follows trivially if 7" is a singleton; for larger
sets, it follows because af = «; for all 7 in T, and we know that « satisfies maximality.

As for the second part, suppose 3T : v(T') > >, ., af and T is the union of elements
of m. If (a,7) is such that all players in T" are receiving their demands, T itself has an
acceptable objection. If (o, 7) is such that not all players in T are receiving their demands,
call Z the set of players who are receiving their demands. It follows immediately from
coalitional rationality that v(T) > 3. _;, @;. Furthermore, since the game is cohesive
and T is the union of elements of 7, v(N) > }"._, a;. Consider an objection by the grand
coalition that gives all players in Z more than their demands. A counterobjecting coalition
C cannot include any players from Z. Thus, if a counterobjecting coalition (perhaps T'
itself) exists, this counterobjecting coalition itself has an acceptable objection. m

Indeed, a reason why the SDS may be empty is that there are games in which coali-
tional rationality and union rationality cannot be achieved simultaneously. Consider
example 8.3: coalitional rationality requires a two-player coalition to form, whereas union
rationality requires the grand coalition to form, and thus the SDS is empty.

Example 8.2 shows that coalition structures that are not union rational can occur if
the game is not cohesive and not all players receive their demands: the resulting payoff
vector is dominated by coalition {1,2}, and this coalition is the union of two elements of
the coalition structure .

Corollary 8.1 If (N,v) is such that the grand coalition is the only efficient coalition
structure, only the grand coalition can be stable in the sense of the SDS.

Corollary 8.2 If (N,v) is such that the grand coalition is the only efficient coalition
structure, the SDS will be empty if the core is empty.

Thus, the SDS does not improve over the core in games where the grand coalition is

the only efficient coalition structure. The SDS is a useful solution concept for games that
do not have this property, like quota games or simple games.

The Mas-Colell bargaining set

The SDS is a subset of the Mas-Colell bargaining set.

Proposition 8.2 If (o, 7) is in the SDS, then (o™, ) is in the Mas-Colell bargaining set.
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Proof. The definition of objection in the SDS is equivalent to that in Mas-Colell
(1989). The definition of counterobjection in the SDS is more demanding, since it re-
quires objecting and counterobjecting coalition to have a nonempty intersection and the
counterobjection must use the original demand vector. On the other hand, the Mas-Colell
bargaining set requires strict inequality for all members of the counterobjecting coalition,
whereas the SDS only requires strict inequality for the members in the intersection. Since

payoff is transferable, this makes no practical difference. m

The Zhou bargaining set

We now turn to the Zhou bargaining set. The SDS and the Zhou bargaining set share
the same definition of objection. As for the definition of counterobjection, they cannot
be directly ranked. The SDS makes counterobjecting more difficult since it requires
counterobjections to use the original demand vector and some of the counterobjecting
players to be better-off; on the other hand, it seems to make counterobjecting easier since
it does not impose the requirements Z\T # @ and T\Z # @. However, we will show that
the SDS is included in the Zhou bargaining set.

Proposition 8.3 If (a,7) is in the SDS, then (o™, 7) is in the Zhou bargaining set.

Proof. Suppose (a, ) is in the SDS but not in the Zhou bargaining set. Then, there
must be a coalition 7" that has an objection y such that any counterobjecting coalition Z
satisfies either Z C T or T C Z.

Consider first the case in which T has an objection and Z C T has a counterobjection.
Then it must be the case that a; > y; > oF for all i € Z, thus Z itself has an acceptable
objection and (a, 7) cannot be in the SDS.

Consider now the case in which T has an objection that can only be countered by
supersets of T. Let Z be one of those supersets. Since Z is a superset of T it follows
that o; > y; for all 4 in 7. Maximality together with the fact that the demand vector a
is feasible for Z implies 3", ., a; = v(Z). Z itself has an objection in which one of the
players in T (say, j) receives less than his demand and each other player in Z receives more
than his demand. In order for (o, ) to be in the SDS, there must be a counterobjection
to this objection. Let Z’ be one of the coalitions that have a counterobjection to this
objection. Z’ must contain player j and cannot contain any other player in 7. But then
7' itself has a counterobjection to the original objection by coalition T', contradicting the
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assumption that this objection can only be countered by supersets! of 7. m

8.2 Characterization for constant-sum homogeneous

weighted majority games

The predictions of the stable demand set for constant-sum homogeneous weighted major-
ity games greatly improve over those of other solution concepts in terms of sharpness and
intuitive content. The stable demand set predicts that only minimal winning coalitions
will form and that the payoff division inside a coalition will be proportional to the vec-
tor of homogeneous weights. This section contains the proportionality results and some

examples.

8.2.1 Definitions

Definition 8.5 A characteristic function game (N, v) is a simple game if
i) v(@) =0, v(N)=1, v(S)=0or 1.
i) v(S) =1 whenever v(T) = 1 for some T' C S.

Denote by 2= {S : v(S) = 1} the set of winning coalitions (WC) and by Q™= {5
v(S) =1, v(T) = 0 VT C S} the set of minimal winning coalitions (MWC).

Definition 8.6 A simple game is called proper if S € implies N\S ¢ Q.
Definition 8.7 A simple game is called strong if S ¢ 2 implies N\S € Q.
Definition 8.8 A simple game is called constant-sum? if it is proper and strong.

Definition 8.9 A simple game is a weighted majority game if there exists a vector
of non-negative weights w and a number ¢ called quota (0 < g <Y, wi) such that

SeEN — Zwizq.
€S

17’ can only be a superset of T if T is a singleton. Notice that since the SDS only contains individually

rational payoff configurations, any ob, jecting set T' must have at least two players.
?The reason for this terminology is that v(S) + v(N\S) = 1 for all S.
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A convenient notation for a weighted majority game is [g; w1, ..., Wn).

Definition 8.10 A weighted majority game admits a homogeneous representation if
there exists a vector w > 0 (and an induced quota ¢) such that

> wi=qVSeqQm (8.1)
i€S
A weighted majority game in homogeneous representation is called a homogeneous
weighted majority game.

Example 8.4 (apex game) N = {1,2,3,4}, O™ = {{1,2},{1,3},{1,4},{2,3,4}}.

Suppose player 1 holds 3 votes, player 2 holds 2, and players 3, 4 hold 1; this is
a weighted majority representation of the simple game above. This representation is
not homogeneous: there is one MWC with 5 votes, and three MWCs with 4 votes. An
equivalent homogeneous representation of the same characteristic function game is one
where player 1 has 2 votes, and players 2, 3 and 4 have 1 vote each. Each MWC has now
3 votes.

8.2.2 The proportionality result

For a given game (N,v), denote by M* the set of MWCs containing player i, and the
number of elements in M* by m'.

Lemma 8.2 Consider a constant-sum homogeneous weighted majority game. For every
player i, either m* =0 or m* > 2.

Proof. Suppose that for some i there exists a MWC S € M. Since the game is
strong, the coalition 7' = {N \ S} U {i} must be a winning coalition. Either 7 itself is a
MWTC, or there must exist Z C T such that Z € Q™, and such a coalition Z must contain
i, otherwise S would not have been winning in the first place; in either case, m' > 2. m

Corollary 8.3 For any MWC' S containing player i, we can find another winning coali-
tion S’ such that SN S" = {i}.

The results in the previous section have the following implication for the selection of
coalition structures in simple games:
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Lemma 8.3 The only candidate pairs (a,7) for the SDS of any simple game are those
where

(i) ™ always includes a WC S € Q.
(1) For anyT € Q, 3", ra; > v(T).

Proof. Part (1) follows because of union rationality for cohesive games (proposition
8.1); Part (2) follows because of maximality (lemma 8.1). m

Corollary 8.4 Let (a, ) be in the SDS of a simple game (N,v), and let i be a dummy
player. Then af = 0.

We can now characterize the SDS of constant-sum homogeneous weighted majority
games.

Theorem 8.1 Consider a constant-sum homogeneous weighted majority game (N, v).

(i) If there are no dummy players, the SDS is non-empty and only contains pairs (a*, )
where the unique stable demand vector o* has

W; ;
al=—, Vie N
q
and 7 always contains a coalition S € Q™.

(ii) If there are dummy players, the SDS is nonempty and only contains pairs (a*, )
where of = %’li for all nondummy players and 7 contains a winning coalition S € ).

Proof. We first provide the proof for the case in which there are no dummy players.

Consider a pair where there is a MWC S € 7 and the demand vector is a*. We first
show that (a*, ) is in the SDS of the game.

Since (N, v) is proper, any blocking coalition 7" must contain some agents in common
with S (i.e., TN S # @). T can make an objection to (a*, ) only if there exists a payoff
vector y feasible for T' such that y, > ﬂqi YieTNS.

Define Z :={i € T : y; > %1} Because Z D T'NS and all agents in 7N S must receive
more than %%, it follows that Z is a losing coalition (Z winning would be unfeasible). Thus,
there must be a WC C' C N\Z, and a MWC C’ C C. Since the game is homogeneous,
a* is feasible for any MWC, thus coalition C’ has a counterobjection: since the game is
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proper, C'NT # @&. Moreover, the fact that C” is included in N\ Z ensures that all players
in C' N T are strictly better-off.

We have shown that no objection to (a*, ) can be acceptable, because every objection
would lead to a counterobjection using a* once again. In order to complete the proof,
we now have to show that any pair (a,7) with a # o* (and o; # «f for at least one

nondummy player ) is vulnerable to acceptable objections.

Suppose (o, ) is in the SDS but a # a*. We define the following sets:
U:={i € N:a; < a}}, the set of "underdemanding” players.

F:={i e N : a; = a}}, the set of players demanding exactly o*.
O:={i € N : a; > o]}, the set of "overdemanding” players.

There are two possibilities:

Case 1. U = @.

Case 2. U # @.

1. Since U = @ and a # o, it must be the case that o; > o for all i and a; > of
for some j. We know from lemma 8.3 that 7 contains a winning coalition S such
that 3. .ca; = v(S). Since U = @, coalitions containing overdemanding players
are unfeasible, thus S must be such that a; = o} for all 7 € S, therefore j ¢ S. Any
MWC T > j has an acceptable objection. In this objection, any player i € T N F
receives a; + € and any player i in 7' N O receives some positive payoff. Notice that
j € T and T being a MWC ensures that players in 7' N F have less than q votes,
so that this payoff distribution is feasible. Since SN O = @, any positive payoff
makes the players in T N O better-off, thus we indeed have an objection. There is
no possible counterobjection, since it would have to include some players in T'N O,
and any coalition containing overdemanding players is unfeasible.

2. U # @ implies O # @ (otherwise we would contradict maximality). Again, we know
from lemma 8.3 that 7 contains a winning coalition S such that 3. s a; = v(9).
We will distinguish two cases:

Case 2(a). SC F.

Case 2(b). S Z F.
(a) S C F. Take any player j € U, and any MWC T > j. Denote T U U by

Z. Coalition Z has an acceptable objection in which every member of Z\O
gets o] + € and every member of Z N O gets a positive payoff. To see this,
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notice that this payoff division is feasible for Z if € is small enough.®* S C F
implies that all players in Z are made better-off by the objection. Finally,
since a counterobjection must include at least one player from Z N O, and it
can include no players from U, it follows that no counterobjecting coalition is

feasible given a.

(b) SZ F. Lemma 8.3 implies SN O # @ and SN U # @. Moreover, there is a
MWC S’ C S such that SN0 # @, SNU # @ and SNO C S'. Take a
player i € S’NU. Corollary 8.3 implies that there exists another MWC T > i
such that 7N S’ = {i}. We can then repeat the argument above: coalition
Z := T UU has an objection with the payoff distribution we have described.
The only reason why case 2b) differs from case 2a) is that, in constructing Z,
we had to make sure that ZN (SN O) = @.

If there are dummy players, the reasoning we made above for games without dummy
players can be replicated to conclude that any stable demand vector must assign a demand
ﬂqi for all 2 with m* > 2. As for the dummy players, their payoffs are always zero (corollary
8.4) but their demands are not restricted: a pair (@, ) in the SDS may well be such that
a; > 0 for a dummy player i. We cannot construct an acceptable objection the way we
did in case 1), because no winning coalition containing i can pay each of the other players
—",’;’ + €. A dummy player demanding zero may be part of a winning coalition S in 7. m

Remark 8.4 Notice that the definition of the SDS depends only on the characteristic
function, and hence it is invariant to the particular representation chosen.

Thus, if a game admits a homogeneous representation, theorem 8.1 applies (with
the understanding that (w;);cny denotes the weights corresponding to an equivalent ho-
mogeneous representation®) regardless of whether the game is actually in homogeneous
representation or not.

8.2.3 An example: the apex game

Consider the five-player apex game, represented by [4;3,1,1,1,1]. Notice that there are
two sorts of MWCs, namely:

3This follows because Z\O is a losing coalition. If it were winning, one could find a subset of Z \O
having exactly g votes, and containing at least one player from U (because of the way Z has been

constructed, Z\U is losing), contradicting maximality.
4Homogeneous representations are unique up to multiplication by a constant (see von Neumann and

Morgenstern (1944)); thus, the vector a* is unique for nondummy players.
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e Apex coalitions: {1,i}.

e Minor player coalition: {2,3,4,5}.

The SDS predicts that if an apex coalition forms then player 1 receives %, and the
other player gets i (proportional payoffs); if the minor player coalition forms they share
equally (§ each).

The proof that the only stable demand vector (for this example) is the proportional

one can be summarized as follows.

Consider first the proposal where the demand vector is o* = (3,1,1 1 1} and the

coalition structure includes an apex coalition. One possible type of objection to this
proposal is another apex coalition with payoff division ( % +e¢€, % —¢€). These objections are
not acceptable because the minor player coalition can counterobject with the vector a*.
The second (and last) kind of objection would be one with the four small players together,
where the “blocker” receives % + € and the others share the rest; but then at least one of
these other three small players must be receiving less than i—, and can therefore counter
by offering again a* to the apex player.

Consider now the demand vector o* together with m = [1,2345]. The objection to be
considered here is one by an apex coalition and payoffs (% — e,% + €); to this, however,
there exists a counterobjection by another apex coalition with (%, %) It is finally easy to
see that no other pair can be in the SDS.

The core of the apex game is empty, as it would be for any other constant-sum es-
sential game. The Shapley value only looks at the ex ante balance of power, which here
implies g for the big player and % for each small player. Similarly, the nucleolus (that
here coincides with the kernel) of the grand coalition has the allocation (2,1,1 1 1) (the
homogeneous representation of the game itself}’ and can again be interpreted as an ex
ante evaluation. While this solution assigns each player the appropriate relative bar-
gaining power, this property disappears when the nucleolus is computed with respect to
other coalition structures: for example, the nucleolus of a coalition structure including an
apex coalition gives each of the two players a payoff of %, in spite of the very different

endowments.

The Aumann-Maschler bargaining set, on the other hand, not only allows for any coali-
tion structure, but it also gives an uninformative prediction about the payoff distribution

3See Peleg (1968).
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for some minimal winning coalitions. For the apex coalition, the share of the apex player
can take any value between 3 and . The latter extreme (z = (3,3)) is the kernel for any
coalition structure including the apex coalition. The competitive bargaining set makes
the same prediction as the SDS for the MWCs, but it allows for all coalition structures.
The Zhou bargaining set also allows for the grand coalition to form and for the two-player
coalition with equal division. The aspiration approach makes the same predictions as the
SDS.

8.2.4 Comparison with other solution concepts for constant-sum

weighted majority games

We conjecture that for strong homogeneous weighted majority games, all demand vectors
that are stable in the sense of the SDS are balanced aspirations, and vice versa. Corollary
8.3 together with theorem 8.1 imply that all demand vectors that are stable in the sense
of the SDS are also partnered, equal gains and in the aspiration kernel. The reverse is
not true, as example 8.5 shows.

Remark 8.5 The proportional payoff vector in theorem 8.1 is partnered and belongs to
the aspiration kernel (since each nondummy player is at least in two MWCs, no player
depends on any other player). It is also equal gains (for the same reason, the next best
coalition is always as good as the best one).

Remark 8.6 One can find aspiration vectors that are partnered, equal gains and belong
to the aspiration kernel without being proportional.

Example 8.5 Consider the weighted majority game [6;4,2,2,1,1,1]. The demand vector
4 7 7 2 2 2

181380 T80 ﬁ) is partnered, equal gains and in the aspiration kernel.

Notice that each player can keep his demand without any of the other players, except
for players 2 and 3, who need each other to obtain their demands. Thus, the demand
vector is partnered. It is also equal gains (each player can keep his payoff after deleting
his first-best coalition, except for players 2 and 3, who would make the same loss) and in
the aspiration kernel (each player can keep his payoff without any of the others, except
for players 2 and 3, who would lose the same if they do not cooperate). However, it is not
proportional, since players 1, 2 and 3 make more than proportional demands and players

4, 5 and 6 make less than proportional demands.
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As we know from theorem 8.1, only proportional payoffs can be in the SDS. We will

7 o oo

nevertheless check that the demand vector (ﬁ, -ﬁ, e ae ﬁ, ﬁ- ) is not in the SDS for the
purpose of illustration. There are two sorts of coalition structure that can accompany this
demand vector: a coalition of player 1 with two of players 4, 5 and 6, and a coalition of
players 2 and 3 with two of players 4, 5 and 6. In the first case, coalition {2,3,4, 5} has
an acceptable objection with the proportional payoff division (%, T%’ %, %); in the second
case, coalition {1,4,5} has an acceptable objection with the proportional payoff division
(18, = 18) These objections are acceptable because, since players 4 and 5 are receiving
more than their demands, they cannot be included in any counterobjecting coalition; no

winning coalition included in {1,2, 3,6} can afford the original demand vector.

8.3 Some other applications

8.3.1 Positive m-quota games

Quota games were introduced by Shapley (1953b). We will take a slightly different defi-
nition, due to Peleg (1965).

Definition 8.11 An n-person game (NV,v) is an m-quota game, 1 < m < n, if there
exist n real numbers g, ..., ¢, such that v(S) = > g¢; when |S| = m, and v(S) = 0
otherwise.

We will consider the case of ¢; > 0 for all 7 (positive quota games). A reasonable
solution for positive quota games is that each player demands exactly his quota. This
is the prediction of all the aspiration solution concepts (except the equal gains solution
concept, that allows for other vectors as well) and also of the SDS. Quota games were
used by Bennett (1985) to illustrate the advantages of the aspiration approach.

Proposition 8.4 For positive m-quota games, the only demand vector in the SDS is q.

Proof. Suppose at least one player demands less than his quota. Since the SDS only
contains maximal demand vectors, we know that there are less than m underdemanding
players. Proposition 8.1 implies that there is at least one feasible coalition containing m
players. Any such coalition S must include all underdemanding players (otherwise the
coalition resulting from deleting one player not in U and adding a player from U would
have an acceptable objection). This implies that only one feasible coalition can form at a
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time. We can construct an objection including all players in U in an m-player coalition
T # S and giving them more than their demands (this is feasible since m < n implies that
at least one of the players is receiving zero; the objecting coalition T can be constructed by
replacing one of the players in S\U by this player). This objection cannot be countered.

If no player demands less than his quota and at least one player j demands more,
one can easily construct an acceptable objection taking an m-player objecting coalition
S containing j that gives all players (if any) in S\O more than their demands. m

Proposition 8.5 For positive m-quota games, the only aspiration vector that is part-
nered, balanced and in the aspiration kernel is q.

Proof. The requirement of feasibility of aspirations exclude cases in which all players
demand at least their quotas and at least one player demands strictly more.

Suppose at least one player demands less than his quota. By the same reasoning
as above, if the demand vector is an aspiration any feasible coalition must contain all
underdemanding players. Because of feasibility, each player in N\U belongs to at least
one of such coalitions. Thus, each player in N\U depends on each player in U to get
this demand. Since there are more than m players, no player in U depends on any player
outside. This means that the aspiration vector is not partnered or in the aspiration kernel.
The sum of all payoff demands can be decomposed in two terms, 3 ¢ a; and NS Q>
were S is some feasible coalition. The first of this terms equals > ¢ and the second is
strictly larger, thus the demand vector would not be balanced. m

The aspiration approach and the SDS predict that an m-player coalition will form
and divide payoffs according to the quotas. This prediction may look far too obvious.
However, it does not follow from all solution concepts. The core is empty unless n is
a multiple of m. The Shapley value does not assign players their quotas, even if n is a
multiple of m. The Aumann-Maschler bargaining set allows for coalition structures where
all players receive zero; the same can be said of the kernel. The Zhou bargaining set and
the competitive bargaining set also have this problem.

Example 8.6 N = {1,2,3}, ¢; =50, g> = 30, g3 = 10, m = 2. This is the game described
in the introduction of this thesis.

The core of this game is empty. The grand coalition with payoffs (0,0,0) is clearly
in the Aumann-Maschler bargaining set and in the competitive bargaining set: given
any objection, the affected player can always protect his payoff by forming a singleton.
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The Zhou bargaining set requires that the objecting coalition and the counterobjecting
coalition have some element in common. However, since objections are not personalized,
it is still possible to find a counterobjection for any objection. Consider an objection
by {1,2}. Whatever the payoff division, at least one of the players (say, 7) is not getting
more than his quota. Then {4, 3} can counterobject. Notice that if instead objections were
personalized (holding other features of the Zhou bargaining set constant), player 1 could
object against player 3 via coalition {1,2} with payoff division (1,79). Since objecting
and counterobjecting coalitions cannot be disjoint, player 3 could only counterobject via
coalition {2,3}. It would then be impossible for player 3 to keep 0 for himself while still
offering 79 to player 2.

Example 8.7 N = {1,2,3,4}, ¢1 =50, go = 30, g3 = 20, ¢4 = 10, m = 2.

The core makes the obvious prediction for this game. However, the Shapley value
equals (35, 28%, 25, 21%), and thus assigns values to the players that are less extreme than
the quotas. The bargaining sets still allow for the grand coalition with payoff division
(0,0,0,0).

In the introduction we argued that a noncompetitive payoff division (in this context,
a payoff division diverging from the quotas) can be rational because the players who are
getting less than their quotas have higher chances of getting into a coalition. In example
8.7 all players can still get into a coalition when they demand their quotas, so that the

quota solution is specially compelling.

8.3.2 A modified glove game

A glove game has two types of players, and only pairs of players of different type can profit
from cooperation. A modified glove game allows for gains from cooperation by pairs of
players of the same type, but coalitions of players of the same type are less profitable
(players of different types own a right-left pair of gloves, players of the same type own
two identical gloves that they cannot use but they can still sell for their leather).

6This behavior is however not observed in experiments. The reason is that players usually form
coalitions sequentially, whereas the aspiration solution concepts and the SDS are designed for simultaneous
determination of the coalition structure and the payoff division. See Shapley (1953b) for a discussion of
sequential coalition formation in quota games in connection with the concept of stable set.
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Example 8.2 is a modified glove game. It is not a quota game, since players contribute
more to coalitions of different type than to coalitions of the same type.”

We now examine some candidate outcomes for example 8.2.

e Each player joins a player of the same type and they split equally. An example is
{(12,34,56), (4,4,4,4,4,4)}.

This allocation does not include maximal payoffs (a coalition like {1,5} can pay its
players more than their demands). Thus, it is not stable in the sense of the SDS or of the
aspiration solution concepts (the demand vector is not even an aspiration).

This outcome is in the bargaining set. The only possible objection is through a coali-
tion of players of different type, say, {1,5}. This could be an objection of 1 against 2
or of 5 against 6. In either case, it can be countered through coalition {2,6}. A similar
reasoning applies to the Zhou bargaining set (an objection by {1,5} could be countered
by either {2,5} or {1,6}).

The competitive bargaining set also allows for this outcome. Any multi-objection, like
{1,5}, {2,5}, {3,5}, {4,5} with payoff division (5,5) could be counterobjected, by, say,
{1,6}. Whatever offers player 5 can make to the players of the other type can be matched
by player 6.

e Players form pairs in such a way that there are as many pairs of players of different
type as possible, and all pairs split the payoff equally. An example would be the
payoff configuration (12, 35, 46], (4,4, 5,5, 5,5)}.

Again, these demands are not maximal. This outcome is nevertheless in the Aumann-
Maschler bargaining set, in the competitive bargaining set and in the Zhou bargaining
set.

e Players form as many pairs of players of different type as possible, and they split
equally. The players who are left out remain singletons and (for the SDS and
the aspiration approach) insist in getting 5 as well. An example would be the
payoff configuration {[1,2, 35,46}, (0,0,5,5,5,5)} associated to the demand vector
(5,5,5,5,5,5).

"To be sure, we could use (4,4, 4,4,6,6) as quota vector, but this "quota” would not be invariant to
the number of players of each type in the game.
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The demand vector is partnered, equal gains and in the aspiration kernel, but not
balanced (the demand vector (4,4, 4,4, 6,6) has a lower total sum). The pair {[1, 2, 35, 46],
(5,5,5,5,5,5)} is in the SDS.

This payoff configuration is in the Aumann-Maschler bargaining set (players 1 and 2
cannot even object), in the competitive bargaining set and in the Zhou bargaining set.

e Players form pairs in such a way that there are as many pairs of players of different
type as possible, and split the payoffs so that each player of the first type receives
4 and each player of the second type receives 6. An example would be the payoff
configuration {[12, 35,46], (4,4,4,4,6,6)}.

This is probably the common sense prediction for the modified glove game. Indeed,
the demand vector is partnered, balanced, equal gains and in the aspiration kernel; it is
also stable in the sense of the SDS. The payoff configuration {[12, 35, 46], (4,4,4,4,6,6)}
is in all three bargaining sets, and in the core.

8.4 Intuitive and unintuitive features of the SDS

In the previous chapter, we discussed some pros and cons of the Zhou bargaining set,
comparing it to other solution concepts. The SDS improves over the Zhou bargaining set
in most of these dimensions.

The first problem of the Zhou bargaining set was that players might counterobject,
therefore keeping the original payoff configuration in force, while at the same time having
the possibility to form a coalition compatible with the objection and more profitable than
the original payoff configuration. Since counterobjections use the original demand vector
and demand vectors are always maximal, this cannot happen in the SDS.

The second problem was that ”strangers” can counterobject. This problem is shared
by the Zhou bargaining set and by the SDS. Adding the requirement that counterobjecting
coalitions must include some player who was affected by the objection (in the sense that
he was in a coalition with one of the objecting players in the original payoff configuration)
would not affect the results on majority games and quota games and would eliminate this
problem.

The third problem was that "scarce” players may be hurt by their scarcity. It is not
clear how to define in general the scarcity of a player. For the SDS, and similarly to the
aspiration solution concepts, we can define a player to be scarce if other players would
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be willing to pay him more than his demand. Taking this definition, maximality of the
demand vector excludes the existence of scarce players.

So far the SDS performs weakly better than the Zhou bargaining set and similarly to
the aspiration concepts.

The Zhou bargaining set has some desirable features as well. Indeed, there was a point
in which the Zhou bargaining set was more intuitive than the aspiration bargaining set:
it allows any player who is hurt by an objection to launch a counterobjection. This is
also the case of the SDS. In example 7.15, the demand vector (1,1,1,1) together with
coalition structure [123,4] is in the SDS.

In example 8.6, the fact that objections in the Zhou bargaining set are not personalized
led to unintuitive results. Objections in the SDS are not personalized either, but the fact
that counterobjections are restricted to use the original demand vector excluded any
unreasonable outcomes.

Finally, the SDS eliminates all outcomes that are not coalitionally rational or (for
cohesive games) union rational. This is not the case of other bargaining sets. Consider
the following simple example:

Example 8.8 N = {1,2,3}, v(S) =1 for all S with |S| > 1, v(i) = 0 for all i.

Payoff configuration {[1,2,3],(0,0,0)} is in the Aumann-Maschler bargaining set, in
the competitive bargaining set and in the Zhou bargaining set. This payoff configuration
is not union rational, and is excluded from the SDS. Payoff configuration {[123], (1, 1, 1)]
is in those three bargaining sets and in the Mas-Colell bargaining set. Since it is not
coalitionally rational, it is not in the SDS. The only pairs in the SDS are of the form
a=(33%13), ™= [ijk.

8.5 Conclusion

We have studied the properties of a new solution concept, the stable demand set. This
solution concept shares some elements with the traditional bargaining sets and with the
aspiration approach. While at one extreme the traditional bargaining sets allow objecting
and counterobjecting coalitions to divide their payoffs in any way, and at the other extreme
the aspiration bargaining set forces objecting and counterobjecting coalitions to use the
original demand vector, the SDS allows objecting coalitions to use any payoff division
but forces counterobjecting coalitions to use the original demand vector.
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The SDS strictly contains the core and, at least for some interesting games, it makes
sharper predictions than the bargaining sets. For the very relevant case of constant-sum
homogeneous weighted majority games, it predicts that only minimal winning coalitions
will form, and that players will split the payoff in proportion to their number of votes.

The SDS may be empty for some games, including the important class of games where
the grand coalition is the only efficient coalition structure but the core is empty. The
possible emptiness of the SDS may cast doubts over whether it is a real improvement over
other solution concepts. After all, the aspiration solution concepts are similar and they
are never empty. However, all those concepts are nonempty because they are restricted to
the space of aspirations. The possibility of the SDS being empty is a price we have to pay
for the unrestricted domain. Moreover, whether the SDS is empty or not may be taken
as a test of how solid is the prediction of the aspiration approach for the corresponding
game. We would then claim that the predictions of the aspiration approach are more solid
for the apex game than for the three-person game in example 8.3.

We agree with Maschler (1992) that emptiness of a solution concept for some games
is not a reason to abandon the concept.

They [solution concepts that may be empty] represent desires for greater sta-
bility which, however, cannot always be met. But in those cases where they
can be met, I see no reason not to recommend their outcomes.
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Samenvatting

Het onderwerp van het proefschrift is de formatie van coalities. Dit is een vaak voorkomend
verschijnsel. Voorbeelden zijn fusies, internationale verdragen, samenwerkende weten-
schappers en kabinetten zoals Paars II. In al die situaties is samenwerking voordelig,
maar er bestaat echter een conflict over welke partijen een coalitie moeten sluiten en hoe
de uitbetalingen die de samenwerking levert verdeeld moeten worden. Het doel van dit
proefschrift is de volgende vragen te beantwoorden:

1. Welke coalities zullen er worden besloten?

2. Hoe zullen de leden van elke coalitie de uitbetalingen van de samenwerking verdelen?

De factoren die een rol spelen in het beantwoorden van deze vragen kunnen het best
worden geillustreerd met behulp van een voorbeeld.

Beschouw drie wetenschappers die in een kleine universiteit werken en Ans, Bouke en
Cees heten. Ze zijn deskundig in verschillende vakken: Ans in macroeconomie, Bouke in
microeconomie, en Cees in informatica. Er zijn drie mogelijkheden voor samenwerking: in
de eerste plaats kunnen Ans en Cees een boek schrijven over macroeconomie (Ans zou dan
de theorie behandelen en Cees zou enkele simulaties programmeren), ten tweede kunnen
Bouke en Cees een boek schrijven over microeconomie (Bouke zou de theorie behandelen
terwijl Cees experimenten zou programmeren), en tenslotte kunnen Ans en Bouke een
boek schrijven over de relatie tussen individuele keuzes (waarin Bouke op zijn best is)
en het gedrag van het geaggregeerde economische systeem (daar weet Ans alles van). De
drie boeken zijn verwacht opbrengsten van respectievelijk 60, 80 en 40 op te leveren. Elk
individu heeft tijd om maar op een boek te werken.

Welke coalitie zal er gevormd worden? Er moet gekozen worden. Er bestaat een
conflict over welke coalitie moet gevormd worden (elk individu wil in de coalitie zitten)
en over het verdelen van de uitbetalingen (als twee individu’s een coalitie vormen, elk

individu zou zoveel mogelijk willen krijgen).
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De oplossing schijnt makkelijk te zijn als we aannemen dat medeauteurs de uitbetalin-
gen gelijk verdelen. Iedere auteur verdient 30 met het eerste boek, 40 met het tweede en
20 met het derde. Het is dan te verwachten dat de tweede boek wordt geschreven: Bouke
en Cees verdienen het meest met de tweede boek, en geen van hun kan profiteren van een
boek schrijven met Ans.

De aanneming van gelijkverdeling is echter problematisch. Uit de situatie blijkt dat
Cees het meest waardevol individu is. Waarom zou hij bereid zijn om maar de helft van
de uitbetalingen te krijgen?

Inderdaad, terwijl Bouke en Cees een coalitie met gelijk verdeling aan het beschouwen
zijn, kan Ans Cees aanspreken en hem 41 aanbieden als hij het boek over microeconomie
met haar schrijft (dan zou Ans nog 19 verdienen). Bouke neemt daar geen genoegen mee
een biedt Cees 42 aan, enzovoort. Welk bedrag kunnen zulke aanbiedingen bereiken? Stel
je voor dat Ans en Bouke bieden beiden 55 aan. Als Cees een coalitie met Bouke sluit,
verdient Bouke 25. Als Cees een coalitie met Ans sluit, verdient Ans 5. Dan zullen Bouke
en Ans liever een coalitie sluiten, en bijvoorbeeld 30 en 10 verdienen.

De lezer kan de volgende stelling verifiéren: onafhankelijk van welke coalitie en welke
verdienstenverdeling we nemen, kunnen we altijd twee individu’s vinden die van een andere
coalitie kunnen profiteren. In de taal van speltheorie, de kern (core) van het spel is leeg.

Betekent deze stelling dat we helemaal niets kunnen voorspellen over het resultaat van
de interactie tussen onze drie individu’s? Is iedere verdienstenverdeling even labiel?

Stel je voor dat Ans 10 vraagt voor haar medewerking in welke coalitie dan ook,
terwijl Bouke 30 vraagt en Cees 50 (ze zetten een ’prijs’ voor hun medewerking). Deze
prijzen hebben een interessante eigenschap: het kan elk individu niet schelen met wie hij
een coalitie sluit. Als (bijvoorbeeld) Ans meer zou vragen, niemand zou een coalitie met
haar willen. Als ze juist minder zou vragen, iedereen zou een coalitie met haar willen, en
competitie tussen de andere individu’s zal de prijs van haar medewerking terug naar 10
brengen. De prijzen 10, 30 en 50 hebben de eigenschap dat competitie tussen individu’s
de prijzen naar deze bedragen brengt. In de taal van speltheorie, deze bedragen zijn de
individu’s hun quota.

Als we de quota als redelijke prijzen accepteren, blijft de vraag van welke coalitie
vormt ontbeantwoordt. De verschillende individu’s zijn weliswaar niet even waardevol,
maar wel even voordelig als coalitiepartners.

De aanneming van gelijkverdeling leidt dus tot de stelling dat Bouke en Cees een
coalitie zullen sluiten, terwijl de aanneming van competitie wel tot de uitvinding van de
competitieve verdeling (de quota), maar niet tot een duidelijk conclusie over coalities leidt.
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Laten we maar op het begin van deze redenering terugkomen. Stel je voor dat de
coalitie tussen Bouke en Cees met een gelijkverdeling is nu onder beschouwing. Zou Cees
argumenteren dat hij waardevoller is dan Bouke en daarom meer dan 40 verdient, of zou
hij ’gul’ zijn en gelijkverdeling aanvaarden? Wat is voordeliger: een zekere winst 40 of
een winst van 50 maar alleen als het men lukt in de coalitie te zitten? Bovendien is
de huidige verdeling (40 voor Bouke, 40 voor Cees) bijzonder veilig voor Cees: Ans kan
niet profiteren van een coalitie met Bouke. Een ’gul’ gedrag gericht om mens deelneming
waarschijnlijker te maken is niet uiteenlopend en komt ook vaak voor in experimenten.

Het doel van dit proefschrift is voorspellingen te geven in situaties zoals de boven-
staande met behulp van speltheorie. Speltheorie is een verzameling analytische gereed-
schappen ontworpen met het doel onze verstand van de interactie (waaronder coalitievorm-
ing) tussen besluitvormers te verbeteren. Speeltheorie neemt aan dat besluitvormers doel-
gerichte keuzen maken (ze zijn rationeel) en ook rekening mee houden met de rationaliteit
van anderen als ze verwachtingen vormen over hun gedrag.

Speltheorie is verdeeld in twee takken, namelijk cotperatieve en niet-cooperatieve
speltheorie. De cooperatieve speltheorie houdt zich bezig met de ’grote kwesties’ zoals
welke uitbetalingen mensen kunnen bereiken als ze samenwerken, en niet met ’praktische
kleinigheden’ zoals welke strategieén men moet volgen om zulke uitbetalingen te bereiken.
De niet-codperatieve speltheorie houdt zich wel bezig met alle praktische onderdelen van
de situatie zoals welke acties de individu’s (de spelers) kunnen nemen, wat precies ze
weten, in welke volgorde verschillende spelers beslissingen moeten nemen, enzovoort. De
namen ’codperatieve’ en 'niet-codperatieve’ wijzen naar de gebruikelijke veronderstellin-
gen van deze theorieén: de cotperatieve theorie neemt aan dat de spelers verplichtende
contracten kunnen sluiten, terwijl de niet-codperatieve theorie aanneemt dat verplich-
tende contracten in de situatie onder beschouwing onmogelijk zijn. Zulke classificatie
is niet zonder uitzonderingen: niet-codperatieve modellen met verplichtende contracten
staan in dit proefschrift centraal.

Beide takken van de speltheorie hebben sterke kanten en zwakke kanten. Een coper-
atieve model is van algemene toepassing, terwijl een niet-codperatieve model alleen in
specifieke situaties van toepassing is. Aan de andere kant zijn er veel mogelijke oploss-
ingsconcepten voor codperatieve modellen: elk oplossingconcept probeert de argumenten
die mensen in hun onderhandelingen hanteren weer te geven. Aangezien de vele moge-
lijkheden waarover mensen beschikken, zal de menigvuldigheid van oplossingsconcepten
niemand verbazen. De niet-codperatieve theorie beschouwt de argumenten die mensen



236 8. Samenvatting

kunnen hanteren als een onderdeel van het model (en dus niet van de oplossingsconcept).
De mogelijke argumenten worden dan zeer precies omschreven en streng beperkt tot de be-
langrijkste kenmerken van de werkelijke situatie. Voor niet-codperatieve modellen bestaat
er een geaccepteerd oplossingsconcept: het Nash evenwichtspunt. Het idee van het Nash
evenwichtspunt is dat de spelers juiste verwachtingen vormen over de beslissingen van
andere spelers en ook hun best doen gegeven wat de andere spelers hebben besloten.
Beide benaderingen zijn waardevol en steunen elkaar: codperatieve modellen vestigen
de aandacht op het wezen; niet-codperatieve modellen zijn explicieter in hun veronder-
stellingen en daardoor kunnen ze licht werpen op codperatieve oplossingsconcepten.

Hoofdstukken 1 en 2 van dit proefschrift zijn inleidend. Hoofdstuk 1 geeft een tamelijk
informele inleiding naar het probleem van coalitievorming. Hoofstuk 2 bevat enkele tech-
nische benodigdheden en een overzicht van de vakliteratuur.

Deel I behandelt niet-coperatieve modellen van coalitievorming. Het bestaat uit
hoofdstukken 3, 4, 5 en 6.

Hoofdstuk 3 bestudeert niet-codperatieve modellen van coalitievorming in spelen met
externe effecten, dat wil zeggen, spelen waarin de formatie van een coalitie de uitbetalingen
van andere coalities beinvloedt. Deze mogelijkheid geschiedt in de meeste praktische
situaties: fusies zijn ongunstig voor concurrenten, internationale verdragen met het doel
de luchtvervuiling te verminderen zijn gunstig voor andere landen, enzovoort. De waarde
(uitbetalingen) van een coalitie is dan afhankelijk van welke andere coalities vormen. Of
er een bepaalde coalitie wordt gesloten, hangt van de verwachtingen over de wijze waarop
buitenstaanders zich groeperen. Er zijn vele mogelijke verwachtingen: geheel optimistisch,
geheel pessimistisch... We veronderstellen dat spelers juiste verwachtingen vormen: wat
de spelers verwachten is in overeenstemming met wat er in de werkelijkheid zou gebeuren.
Het hoofdstuk bevat ook noodzakelijke voorwaarden voor het bestaan van een efficiént
evenwicht: het begrip 'evenwicht karakteristieke functie’ staat daar centraal. De conclusie
van dit hoofdstuk is dat efficiéntie lastig te bereiken valt, zelfs als er 'perfecte informatie’
is (de spelers weten precies welke preferenties andere spelers hebben, en ze weten ook alles
wat er tijdens de onderhandelingen gebeurt) en verplichtende contracten. Het laatste deel
van het hoofdstuk is besteed aan het vergelijken van enkele niet-cooperatieve modellen.

Hoofdstuk 4 concentreert zich op een bepaalde soort situaties met externe effecten:
de constantsomspelen in partitionele functie vorm, dat wil zeggen, spelen waarin de som
van de uitbetalingen voor alle coalities (maar niet de verdeling tussen coalities) constant
blijft ongeacht welke coalities worden gevormd. Het grootste deel van het hoofstuk be-



237

handelt de driepersoonsspel. We veronderstellen dat alle tweepersoonscoalities voordelig
zijn; verder veronderstellen we niets over de waarde van de coalities. De verwachtte uitbe-
talingen voor de spelers zijn vrijwel onafhankelijk van de details van het niet-cooperative
model: als de details van het model veranderen (in het voordeel van een bepaalde speler),
veranderen ook de strategieén die de spelers hanteren (in het nadeel van die speler) zodat
de verwachtte uitbetaling onveranderd blijft. Als de regels van het spel symmetrisch zijn
(geen enkele speler heeft een voorsprong of een achterstand), zijn alle tweepersoonscoali-
ties even mogelijk. De verwachtte uitbetalingen hebben ook de volgende eigenschap: het
kan de spelers niet schelen met welke andere speler ze een coalitie vormen (al kunnen de
spelers heel verschillend zijn!).

Hoofdstuk 5 is volledig gewijd aan een klassieke economische probleem: de drieper-
soonsmarkt. Een verkoper kan een rare stoel verkopen aan een van twee kopers. Alle
spelers weten precies hoeveel elke koper bereid is maximaal te betalen. Een van de kopers
(de sterke koper) heeft meer waardering voor de stoel, en die zal de stoel krijgen (hij is
bereid meer dan de andere koper te bieden). De aanwezigheid van de tweede koper zorgt
echter voor een hogere prijs. De zwakke koper kan dan ervan profiteren en betaald worden
door de koper om buiten de markt te blijven of door de verkoper om juist in de markt te
zijn. De moraal van dit hoofdstuk is dat mensen die geen extra waarde leveren aan een
spel maar de verdeling van de waarde beinvloeden, kunnen ervan profiteren.

Hoofdstuk 6 behandelt een andere klassieke situatie: het aper spel. Een apex spel
bestaat uit een grote speler (de apex) en enkele (minstens drie) kleine spelers. De
apex speler heeft alleen een kleine speler nodig om een voordelige coalitie te sluiten; de
kleine spelers zijn machteloos tenzij alle kleine spelers zich in een coalitie verenigen. De
verwachtte uitbetalingen van de spelers in het evenwichtspunt van het niet-cotperatieve
model corresponderen met een codperatieve oplossingsconcept: de kernel.

Deel II behandelt codperatieve modellen van coalitievorming. Het bestaat uit hoofd-
stukken 7 en 8.

Hoofdstuk 7 bespreekt enkele cotperatieve oplossingconcepten bekend als bargaining
sets (‘onderhandelingsverzamelingen’). Deze oplossingsconcepten zijn gebaseerd op de
begrippen objectie ('bezwaar’) en counterobjectie (‘tegenbezwaar’). Stel je voor dat er
een bepaalde verdeling van de spelers in coalities (een coalitiestructuur) samen met een
distributie van de uitbetalingen binnen de coalities onder beschouwing is. Als een van
de spelers een coalitie kan vormen die voordeliger voor hun leden is dan de huidige coali-
tiestructuur, bestaat er een objectie. Het bestaan van een objectie betekent niet meteen
dan de huidige situatie labiel is. Een objectie meent de aandacht te vestigen op het feit
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dat een andere speler nu ’te veel’ krijgt. Als deze speler zijn uitbetalingen kan bescher-
men door het vormen van een nieuwe coalitie, is er nog niets aan de hand. Het hoofdstuk
bespreekt verschillende definities van de begrippen objectie en counterobjectie. Wie mag
een objectie hebben en tegen wie? Moeten objecties eigenlijk altijd tegen iemand gericht
zijn? Mogen verschillende objecties tegelijk voorkomen? Wie mag er een counterobjectie
hebben? Wat voor eisen zijn gesteld aan een geldige counterobjectie?

Hoofdstuk 8 bestudeert een nieuwe onderhandelingsverzameling, de stable demand set
(’stabiele eisen verzameling’). Dit oplossingsconcept is gebaseerd op het idee dat de spelers
prijzen stellen voor hun samenwerking. De spelers krijgen niet altijd deze prijzen: in het
bovenstaande verhaal over Ans, Bouke en Cees zijn (20, 20, 50) mogelijke prijzen. Als Ans
en Bouke een coalitie sluiten, krijgen ze wat ze geéist hebben, terwijl Cees niets krijgt.
De prijzen gelden alleen als men binnen een coalitie zit. Als Ans en Bouke een coalitie
sluiten met een gelijkverdeling (elk krijgt 20) hebben Bouke en Cees er bezwaar tegen: ze
kunnen een coalitie vormen en krijgen 40 per persoon. Dit is voordelig voor Bouke en ook
voor Cees, die, door een verlaging van zijn eisen, krijgt nu 40 in plaats van nul. Gegeven
deze objectie, een counterobjectie moet bewijzen dat de oorspronkelijke eisen (20, 20 en
50) stabiel zijn. Ans zou dan een coalitie met Cees kunnen sluiten waarin beiden hun
oorspronkelijke eisen (20 en 50) krijgen. Zoiets is niet mogelijk aangezien de coalitie van
Ans en Cees is maar 60 waard. De enige stabiele eisen corresponderen precies met de
quota (10, 30, 50).

Hoofdstuk 8 bespreekt de eigenschappen van de stable demand set en de betrekkin-
gen tussen dit en andere oplossingsconcepten. De stable demand set wordt berekend
voor enkele vaak voorkomende spelen, zoals constant-som gewogen meerderheidsspelen,

quotumsspelen en handschoenenspelen.
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