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Chapter 1

Games, Evolution, and Learning

1.1        Introduction

Imagine yourself in a situation where you have to make a choice among several actions.
The actions will bring you some payoff, however, you do not know with certainty what
payoff each particular action will bring. What will be your choice?

Of course, the situation above is not completely specified. There may be a lot of extra
information available to analyze it. For example, you might remember being in a similar
situation before, this may help in making a choice now. It might be known that there
are others who have been in a similar situation; you may learn from them. It might be
that the actions of others may influence your payoff, then you are in a game situation.
Many specifications are possible and several of them will be considered in this thesis.

Nevertheless, the structure of the first paragraph (a situation with a given set of actions
with uncertain payoffs) is the base on which they all are built.

Examples of such situations are abound. The whole life is, in a sense, a sequence of
such problems. Think of buying a yogurt:  will you like it? will it be tasty? will it be good
for your stomach? For an interactive situation, imagine approaching a street crossing on
a bicycle (typical for Dutch life): will the car that is approaching from the other direction
go first or let you pass? Or even simpler, passing through a door: will the other person

go first or let you pass? These are all examples of (very simple) problems of the character
described above. This thesis is a collection of papers that consider such sort of situations
from a particular point of view: with limited information and repeated experience, what
can and should one do in them?

There is a powerful tool to analyze such situations: game theory (and decision the-

1
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ory   as its restriction  to the one-player   case).    It is, indeed, a powerful   tool: for almost

every situation described above, it provides a solution (or a set of solutions). However,
the underlying assumptions of standard game theory are strong:  it is required that each
individual knows his preferences over possible outcomes, the preferences of all other in-
dividuals involved, all the relevant probabilities etc. Observe the difference with the first
paragraph:  all that is said there is that a set of actions is known and that there is a
payoff obtained. Moreover, in classical game theory each individual is very capable: all
the multiple interdependent maximization problems can be solved and all the information
available is used to that purpose. This is quite a requirement for modest human abilities:
can you tell quickly what the 50th digit in the decimal notation of number 71  is7 The use
of a less demanding approach suggests itself.

There   has   been   an   " as if" defence  of  this full rationality approach, manifested   in

Alchian (1950) and Friedman (1953). This defence, in my view, is not exactly valid. First,
it says that a theory should be judged by results rather than by assumptions. But nobody
yet convincingly demonstrated that what happens in reality corresponds to what the full
rationality theory predicts. Second, even if the predictions of the full rationality theory
were close enough to reality, in some cases an alternative theory may make predictions
not  far from those  of the full rationality theory  (as  we will  see),  and  they  are not  easy  to

distinguish.   Then  the  use  of  a
"
wrong theory" instead  of the " right theory" for making

further predictions about the development of the system may lead to rather disastrous
results. The fact that a theory seemingly worked for one case does not imply that it works
for other, even similar, cases. We do not claim that we found an alternative theory that
is "true"; what we say is that the models of this thesis are at least no worse than the full
rationality model  in some cases  and  that  they are closer  to  the " common sense" decision
making. The rational game theory will serve us as a useful benchmark.

There are two basic components that the individual in the situation described knows:
the set of actions and the payoff or utility obtained. The second paragraph in the be-
ginning describes how information can be obtained, usually through own or others' past
experience. To model this, a dynamic approach should be used. The essence of this
approach is that the situation is repeated so that past experience can be used to guide
future actions. There is a tool for this as well: the theory of repeated games. Nevertheless,
as argued in the previous paragraphs, limited human abilities point to the use of a less
demanding approach.  Thus the use of information by the individual will be limited: not
all past experience will be used. The basic components of the models considered will be
a dynamic structure and bounded rationality.
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To complete the model a rule of transforming past experience into future actions
should be specified. There are great many possibilities to do this, some of them will be
discussed briefly below in the introduction, some in detail in the main body of the thesis.

Given a rule, the use of actions changes over time. What actions will be used in the long
runi ? These actions  are  in a sense a solution  for the situation.   What  is the relationship
of this solution with the solutions of classical rational game theory? These are two main
questions that will be addressed in this thesis.

The theory of dynamic models with bounded rationality in games led to the appearance
of several books2 and numerous journal articles in recent years. The state of the theory
currently is rather disperse; there are few general results and a great deal of specific ones.
Below we discuss rather general specifications of dynamic models.  The main body of the
thesis contains more specific models  that  stem  from " common sense" assumptions  and
lead to interesting results.

1.2 Evolution

One dynamic model of bounded rationality in game theory stems from the biological idea
of evolution. Imagine that individuals in a large population are genetically programmed
to play a certain strategy (action). Payoffs represent fitness. Fitness may mean higher
probability of survival or higher number of offspring. Offspring inherit the strategy of the
parent.  Thus, the proportion of the population playing the strategy with a higher payoff
increases as evolution progresses.

The idea is close to the " as if' explanation of rationality in economics:   if an individual
uses a strategy that does not maximize his payoff, evolution will drive out such a strat-

egy. The idea is appealing, indeed it has found support both in economic theory and in
game theory. The models introduced along evolutionary lines, such as evolutionary stable
strategy and replicator dynamics (see, e.g. Weibull (1995)), lead often to a subset of Nash
equilibria, the solutions found by the classical game theory.

There are exceptions, however. Instead of converging to the payoff maximizing strat-

' Why  are we interested  in  the  long run outcome? An answer could  be  that  " in  the  long  run  we are all
dead" but some are more dead than others! More seriously, first, often asymptotic properties are easier
to analyze than finite time properties. Second, the long run may be not that long, and provide good
approximation for finite times.

2Weibull (1995), Vega-Redondo   ( 1996), Samuelson (1997), Fudenberg and Levine   ( 1998), Young
(1998).



4                                               1. Games, Evolution, and Learning

egy, the evolutionary process may cycle. Then the state of the population in any given
moment does not coincide with what classical game theory predicts. As we will see in
chapters 4 and 5 of the thesis, in some interactive situations maximization of own payoff
does not necessarily lead to the highest payoff, thus evolution of preferences does not
necessarily lead to the classical game theory solutions.

There are also conceptual difiiculties with evolutionary interpretations. One needs a
large population to apply the model. Instead of focusing on the behavior of individuals,
the aggregate behavior of population is analyzed. This is similar to macro models rather
than to the analysis of the behavior of micro units. Individuals have no choice: their
strategy is genetically programmed. Observe that this changes the problem in the very
first paragraph of the thesis: the action set is reduced to the one genetically programmed
action. Still, one can speak of the whole population changing actions as evolution pro-
gresses.  In this case the question of which action to choose stands before the society
rather than before a single individual.

1.3 Learning
A more general dynamic approach that has been used in game theory is learning.  Learning
is a broad notion.  It is understood here as individual learning of how to act in the situation
described in the very first paragraph, when information is very scarce. There are a lot
of ways to model individual learning; some ways may, after aggregation, coincide with
the evolutionary models described in the previous section. But there are other ways too.
Furthermore, a large population is not needed. Thus, in my view, learning is broader
than evolution.

A learning rule is a rule that maps past experience into future actions. There are
almost no requirements on a learning rule, except that it uses the payoff obtained and
looks plausible from a common sense point of view. Observe that we did not say a word
about bounded rationality in learning yet; indeed there are learning models that use all
the information that comes along in a rational way. However, there are rules that are
plausible and boundedly rational and they often perform not worse than the rational rules
in games.  In some of the chapters of the thesis we consider such learning rules.

The learning rules can be deterministic, that is the past experience completely deter-
mines future actions. The deterministic approach has, however, two major problems. One
is theoretical: deterministic models often have too many possible outcomes and different
initial conditions lead to different outcomes. Another is empirical: there are many factors
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in human behavior that are unexplained as yet. To overcome these problems, stochastic

learning rules are used. Stochastic rules give a probability distribution over future actions.

The question that we analyze in this thesis is, given a learning rule, what is the
outcome of the learning process? What action(s) is(are) played in the long run? That is
an interesting question but another question comes up: where does the learning rule come

from? Why do we analyze this particular learning rule and not another one? The answer

is that we do not know yet what learning rules are used in reality, if any, the empirical

and experimental evidence is not convincing in favor of one or another rule.  Thus, we
do not address this question in the thesis. The first question above has more normative
character: what are the rules that perform well? The answer to this question that this
thesis tries to provide might help in understanding real learning processes in life in general

and in the economy in particular.

1.4 Overview of the Thesis

This  thesis is about the problems and models described above. Chapter 1, about  half of

which you have already read, gives an introduction to the subject in the first half and
technical preliminaries in the second half. Chapters 2 to 6 present the analysis of some

particular dynamic models for some particular games.

Chapter 2 considers a reinforcement model in decision problems and several games,
both from the point of view of convergence to the optimal action and the speed thereof.

Reinforcement learning occurs when a strategy is reinforced by a good payoff associated

with it. The model is derived from a learning model of Bush and Mosteller (1955) whose

relevance for economics was demonstrated in Arthur (1993) and Roth and Erev (1995).
Several modifications of the basic reinforcement dynamic are considered. Their conver-

gence properties in decision problems are analyzed. It is shown that there is a trade-off
between convergence to the optimal action and the speed of convergence; one modification
is chosen to cope with the trade-off. This modification is then applied to certain games.

By means of computer simulations we show that an equilibrium that is more central in the
set of equilibria, or more egalitarian (has more egalitarian distribution of payoffs) is more
likely to be observed in the medium run. There is a connection between the egalitarian
equilibrium and the notion of risk-dominance, this connection is also illustrated in the
chapter. The chapter is based on Possajennikov  (1997).

Chapter 3 analyzes another dynamic process, imitation, in a Cournot-type game.
When a player observes a payoff higher than his own, he may be tempted to imitate the
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strategy that brings this higher payoff. Vega-Redondo (1997) has demonstrated that the
rule  " imitate  the  best" in small populations  lead  to the inefficient  ( for firms)  Walrasian
outcome. The chapter considers two modifications  of the simple " imitate  the  best"  rule.
One modification is imperfect imitation when players cannot observe full strategies of
other players. The other one is separating interaction and imitation by enlarging the
population. Introducing imperfection in the imitation process allows players to achieve
better results than without imperfections; also separating interaction and imitation leads
to  the same outcome. The chapter  is a revised version of Possajennikov (1999a).

Chapters 2 and 3 consider examples of particular learning processes that are not
modeled by evolution; chapters 4 and 5 take another view and consider a stability notion
that comes from an evolutionary process. Chapters 4 and 5 model evolution of preferences.

Evolution works indirectly, it affects the composition of the preferences in the population
through equilibrium payoffs. The model can be also understood as an adjustment in
players' valuations of different strategy combinations through cultural evolution of values.
This indirect evolution approach was initiated in Guth and Yaari (1992). Games stemming
from industrial organization are analyzed in chapter 4 while chapter 5 considers 2 x 2
symmetric games from a more general point of view. Chapter 4 extends the model of
Bester and Guth    (1998) to spiteful preferences and shows   when such preferences   are

stable.  It also demonstrates that the results of indirect evolution may be affected by a
change in the set of feasible preferences.  As a logical consequence of this result, chapter 5
considers all possible (von Neumann-Morgenstern) preferences in 2 x 2 symmetric games
and analyzes their stability In some games, like prisoners' dilemma and chicken-type
games, selfish preferences (that is, the ones that maximize the material payoff) are not
evolutionarily stable while in others, like coordination problems, they are stable. The
models in chapters 4 and 5 are extended to an incomplete information setup when players
do not know the preferences of the opponent.  In both chapters it is shown that with
complete information selfish preferences are not necessarily stable under evolution; with
incomplete information such preferences are stable more often. Some results of chapter 4
can also be found in Possajennikov (1999b).

Finally, chapter 6 is slightly different in that it does not model explicitly a dynamic

process. Instead, equilibrium selection techniques related to dynamic processes are applied
to a merger game. The merger game is modeled as a non-cooperative game of coalition
formation (see Bloch   (1997)  for a survey  of such games). The non-cooperative merger
game in the chapter often has multiple equilibria. The equilibrium selection techniques are
applicable for any three-player merger game and their work is illustrated in an asymmetric
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linear Cournot oligopoly It is shown that the equilibrium selection approach chooses a

unique equilibrium. In this equilibrium a merger that is preferred by its participants to
other mergers forms. Thus, the model allows to predict which merger is more likely to
occur. The analysis of the asymmetric Cournot triopoly shows how asymmetries affect.
the selected merger. Roughly speaking, if asymmetries are large, the most and the next
efficient firm merge, while if asymmetries are small, the most and the least efficient firms

merge. The chapter grew from a joint project with Maria Montero.

All the chapters are almost self-contained. The basic concepts from game theory that
are used in the thesis are introduced below.

1.5     Preliminaries

This section describes some basic notions of preference theory, game theory, and stochastic
processes that are used in the thesis.  For a more thorough treatment of preference theory
and game theory the reader is referred to Mas-Colell, Whinston, and Green (1995, Chs.
1,6,7,8,9) and for stochastic processes to Bhattacharya and Waymire (1990, Chs. 1, 2,

0).

Preferences

The basic idea in economic analysis is that each economic agent has preferences. Given
a finite set A of possible outcomes, with a being a typical element of A, agent i has a
complete and transitive preference relation 2, over outcomes, where a' 2, a" denotes
that the agent prefers a' over a" or is indifferent between them. Such preferences can
be  represented   by a utility function  u,   :    A   -   R,   such   that   a'   M,   a"   *=*   u,(a')    2
14(a") Va',a" € A. Assume moreover that on the space of probability distributions on
A the preferences are continuous and satisfy the independence axiom. Then they can
be represented by a von Neumann-Morgenstern expected utility function (see Mas-Colell,
Whinston, and Green (1995, Ch.6)).  If #(·) is a probability distribution on A, where

B(a)  = Pr(a),  then u(11(·))  = Eau(a)/1(a).  Thus,  for any probability distribution utility
is determined by the utilities of the elements of A.  In what follows we work with von
Neumann-Morgenstern utility functions.
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Games

A game G in normal form is a tuple (N, {S,}t,i, {14(')};=1), where N = {1,...,n} is an
arbitrary finite set of players,  S,  is an arbitrary set of strategies of player i,  and u, ( ·)  is the
(von Neumann-Morgenstern) payoff (utility) function of player i from the set of strategy
profiles .9 -  xTiS, to the real line. Denote by s, E S, a typical strategy (action) of player
i and bys= (sl, ···, sn) E S a typical strategy profile. The strategy sets are often extended
to  the  sets of mixed strategies 2.4, which  is  the  sets of probability distributions  over  S,.
Then the set of (independent) mixed strategy profiles is AS = x idS,·  A pure strategy
8,   corresponds  to  the probability distribution having unit weight  on  s,. A completely
mixed strategy  is a probability distribution having non-zero weights  on  all  s,  E S, Since
the payoff function is von Neumann-Morgenstern, it extends to mixed strategies in the
straightforward way and is determined by its values on pure strategy profiles. A typical
element of A.9 is denoted by a =(0,-,an), where a, c AS,.

A decision problem is a game with one player that differs from the above description
in that the payoff function of the player depends not only on the strategy but also on the
state of the world.  If <2 - {wl, ···, wk} is the finite set of states of the world, and F E AR
is a probability distribution over it specifying the probability of each state (B, = Pr(w,)),
the payoff function u : 3 x R --+ R specifies what the player gets in each state w given

strategy s.
Denote  by  u,(a" 0-,)  the  payoff of player  i when player  i uses strategy  0, and other

players use strategies (al'.,(4-1,O,+1,···,an) =: a_, € AS_, 2- xl l,j, ,asj. Strategy
ai dominates strategy< if u,(ai, 0-,) > u,(a:, a_,) Vo-,· Strategy a, weakly dominates
strategy 05 if u,(ai, 0-i) 2 u,(a:, a-i) Va-, and 30-, such that 71,(a„a-,) > 14(cri, 0-,).
Strategy 0, is dominant if 0, dominates any other 0 € AS,. Strategy a,  is dominated if
3«  such  that < dominates ai. Strategy  ai is weakly dominated  if  305  such  that 05 weakly
dominates ai. Strategy a, is a best response to a-, € AS_, if u,(Cr:, 17_,)  2 14(«,a-,)
V<  E AS..  The set of all best responses to a given 0_, is denoted by BR(a_,). A strategy
profile a = (al, ···, an) f AS is a Nash equilibrium of the game if u,(0, a_,) 2 14(a , a_,)
Va;   E  AS.,Vi  C   N,  that  is all players  play best responses.    If a strategy profile  a  =

(al,''.' On) issuch that for every player i, 0, E BR(0-,) we write 0 c BR(cr). Thus, a
is a Nash equilibrium if a € BR(a).  A Nash equilibrium a is pure if o € S.  A Nash
equilibrium a is strict if 14(ai, a_,)  > u,(cr;, a_*) V< E AS„Vi € N.

A game is symmetric if for any players i, j S, - Sj and for any permutation 7r : N - N

U,(Sl, ···,Sn) = 14(i)(S/(1),···,S,r(n)).For symmetric games we will often write G = (N, S, u)
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since S := Si is the same for all players and ul =: u determines uj for all j
These are the basic notions of game theory that are used often in the thesis.  The

following notions are not used often therefore they are given in an informal way, with
references to the formal definitions.

A game in normal form assumes that each player chooses a strategy simultaneously
with other players.  A game in extensive form specifies which player moves at any moment
of time and what information he has (for a formal definition see Mas-Colell, Whinston,
and Green (1995, Ch.7)). For each game in extensive form there exists a normal form

representation of it. An equilibrium of this normal form representation is an equilibrium
of the extensive form game. An extensive form game is usually represented as a tree.  A
subgame perfect equilibrium is a strategy profile that is an equilibrium in each subgame

of the extensive form game, that is, in each subtree satisfying certain properties (see

Mas-Colell, Whinston, and Green (1995, Ch.9)).
In a game with incomplete information, or a Bayesian game each player has a payoff

function that depends on the type of the player that is a random variable. The probability
distribution on types is known to all players.  In an equilibrium of a Bayesian game players

play mutual best responses for every realization of their types (the formal definition is in
Mas-Colell, Whinston, and Green (1995, Ch.8)).

Stochastic processes

The dynamical systems considered in this thesis will consist of the following elements.

Let  (n, Y,P)  be a probability space. A discrete  time stochastic process is a sequence of
random variables {Xt}fo on the probability space, taking values in a set Z. The set Z is
the state space of the process.  We will work with either finite Z, countable Z, or Z = Rk.

The canonical construction of a stochastic process takes as R the space of all sample

paths, that is, Q - Z- - {z = (zo, zi,···), zt e Z}.  If Z isfinite, the 0-field F is the
smallest 0-field containing all events {z E R : zo e Z,...,z™ E Z}.  If Z = Rf the
0-field F i s the smallest a-field containing all events  {z  E  Q  :  zo  e  Bo,..., z„,  e  Bm},
where B,·'s are Borel subsets of Rk. The probability measure P on  (Q, F) extends  from

the set of all finite sequences by Kolmogorov's Existence Theorem (Bhattacharya and

Waymire (1990, Ch.1)). The stochastic process is given by Xt(Z) = Zt. Observe that
the probability measure defines probabilities for infinite events thus we can speak of the

asymptotic behavior of the process.
A sequence of random variables {Xt}ifo on the probability space (Q, F, P) is said to
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converge in probability to a random variable X if VE > 0 limt-=00 Pr({1Xt - X    > E}) = 0.
A sequence {Xt}*=0 is said to conve,ye almost sumly to X MVE > 0 Pr({limt+- I.Xt-XI >
E}) = 0. Convergence almost surely is a stronger notion than convergence in probability.

A stochastic process {Xt}Zi is a Markov process, if the conditional distribution of
Xt+1  given  Xo,..., Xt  depends  only on  Xi.   If Z  is  finite,  we have Pr(Xt+1  =  Z|Xo  =
Zo,..., Xt = Zt) = Pr(X:+1 - zIX: = zi) for any z e Z and the process is called Markov
chain.  If the distribution of Xt+i given Xt depends only on Xt but not on t, the Markov
process is homogeneous.

In other words, for a (homogeneous) Markov process, the dynamic is given by a func-

tion f : dz - dz, where AZ is the set of probability distributions on Z.  If Ft is a
probability distribution on Z a t time t, the probability distribution at time t+l i s given
by /4+l - f (Ilt · Applying f recursively from a given initial probability distribution over
states Bo, the probability distribution at time t is given by Ft  =  ft (Fo).   We will be mainly
interested in the long run outcome of the dynamics, which is given by limt-= ft(Fo)

If set Z is finite, we have a finite Markov chain. In the following we talk about finite
Markov chains. A Markov chain is described  by a square matrix  P  of  size  IZI  x  IZI,
whose elements  p,j = Pr(zt+1   =   zjlzt  =   z,)  we  will also denote  as P..., Denote  by

Ft   a probability distribution  on   Z   at   time t, represented   as   a row vector   of  size    Z.
Matrix P determines a probability distribution at time t+l i n the straightforward way
P:+ 1 - PtP· The probability distribution B is stationary if BP = p.  If a stationary
probability distribution B places unit weight  on a state  z,  then  z  is a stationary  state.   A
state z' is accessible from state z if 3n such that PA, > 0.

A subset of states W C Z i s a mcurTent class if Vz, z' c W  z' is accessible from z, and
Vz" 0 W and Vz E W, z" is not accessible from z. A stationary state is always a recurrent
class. A Markov chain is irreducible if Bn such that Pn does not have any element equal
to 0. An irreducible Markov chain has only one recurrent class, the whole space Z.  If a
Markov chain is irreducible it has a unique stationary distribution A Moreover, starting
from any initial distribution Fo, the probability distribution as the process progresses,
Bopt converges to A in probability and A then corresponds to the proportion of time the
system spends in each state in the long run, that is, the process is emodic.



Chapter 2

Simple Reinforcement Dynamic

2.1 Introduction

This chapter analyses one of the simplest dynamic models of strategy adjustment, the so
called reinforcement dynamic. The adjustment is very elementary and makes use only
of information about a player's own payoff.  The main assumption behind the model is
that the agents are ignorant about the precise structure of interaction or, alternatively,
they do not use all the information they are required to use by the standard game theory.
The main question is whether this simple adjustment process will nevertheless with time

converge to one of the standard garne or decision theoretic solutions.

The reinforcement dynamic stems from theoretical and experimental research in psy-

chology (e.g.  Bush and Mosteller (1955)) and experimental works in economics (e.g.
Arthur (1993) and Roth and Erev (1995)) These papers show that real human behavior
can be approximated by such an adjustment process. They argue that people playing a
(complex) game do not necessarily perform sophisticated calculations and reasoning to
find the (game-theoretic) solution. Instead, if the game is played repeatedly many times,

agents learn to play the game with a simple learning dynamic. The reinforcement dynamic
is an example of such learning.

The behavior of the subjects in the experiments does not necessarily converge to the
optimal action or to a Nash equilibrium (or its refinement) in some of the examples

Arthur (1993) and Roth and Erev (1995) consider. Together with experimental results,
Arthur (1993) offers convergence results for some versions of the reinforcement dynamic
in decision problems. In this chapter we report analytical results about convergence to
the optimal action for other versions of the dynamic. Although the dynamic is formulated

11
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quite simply, the analysis of it requires sophisticated tools of stochastic optimization.
We compare several different versions of the reinforcement dynamic, since modifica-

tions of the dynamic lead to different convergence results. The focus is not only on the
long run properties (convergence, optimality),  but  also  on the medium run since  it  can
be of more economic importance. The environment in an economy is not likely to be
constant indefinitely. Thus the issue of the speed of convergence will play a role in our
analysis. There is a trade-off between the long run convergence to the optimal action and
the speed of convergence, which will be analyzed by means of computer simulations.

Convergence results for the reinforcement dynamic in decision problems can, and have
been, generalized for games.  It has been shown for some versions of the dynamic that
the dynamic converges to any of the strict Nash equilibria with a positive probability
(Posch (1997), Laslier  et  al.     (1999)).    In this chapter we focus rather  on the selection
properties of the dynamic in the case of multiple equilibria. Though any of the equilibria
has a non-zero probability to be observed in the long run and in the medium run, some
of them are more likely to be observed. Using the version of the dynamic that performs
best in decision problems, by means of computer simulations we try to determine which
equilibrium is more likely to be observed in the medium run and in the long run.

We demonstrate that there is a relation between the concept of risk dominance between
equilibria (Harsanyi and Selten (1988)) and the medium run results of the dynamic in
2 x 2 games. Risk dominance is defined only for 2 x 2 games, in larger games we define
another concept of central, or egalitarian equilibrium.  We show that in some games in
the medium run the egalitarian equilibrium is observed rather often though in the long
run the subgame perfect equilibrium starts to play a larger role.

The remainder of the chapter is structured as follows. Section 2.2 describes the model,
Section 2.3 gives the analysis for the case of one-player decision problem, Section 2.4
reports results for some games and Section 2.5 concludes.  Most of the simulations results
are gathered in Appendices.

2.2 The Model

The model is formulated for games though it can easily be simplified to one-player decision
problems. The description of the model follows Arthur (1993) and Roth and Erev (1995).

There are n players.  The set of players is denoted by N. The stage game G, that is, the
game played in each period is a game in normal form. Thus G = (N, {S,}l,i, {,r,(.)}11),
where S, are the (finite) sets of pure strategies for each player i, S - xilisi, and 7ri :
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S -R are the payoff functions. The payoff functions are assumed to be positive for every
player  and for every profile  of pure strategies,  that  is  7r, (s)  >  0  Vi  E  N, Vs  f  S.

Let  player i  have  k pure strategies,  ISil  =  k.   Time is discrete,  t  =  1,2,.... The state
of player  i  at  time  t is described  by the vector  q'i  -  (qfl,  ·· ·, qfk)  E  Rk. The vector  qf  is the

vector of propensities, that is q,ij denotes the propensity of player i to play strategy j E S,
at  time t. The propensities are assumed to be strictly positive,  q&  > 0 Vt, Vi, Vj

pkLet us define Qf  as  the sum of the propensities for player  i  at  time  t,  Qf  =  L j= i qt·
Given the vector of the propensities, the probability to play strategy j at time t is defined

as

t qt
(2.1)pij = QO

The vector pb  =  (p 1, · ··, P k)  e AS„ where AS,  is the set of mixed strategies of player

i. Working with propensities rather than with probabilities is easier since probabilities
have to be kept between 0 and 1 while from the only restriction of being positive on
the propensities it follows that the probabilities defined in the way described above are

between  0  and  1.

The state of the whole process at time t is determined by the state of each player,
that  is by the vectors w, ..., al. According to the vector of probabilities derived  from the

q's, each player chooses a pure strategy to play in the present period. The stage game
G is then played with the chosen pure strategies. Though the goal of the investigation
is the dynamic of probabilities pf, we work with the propensities qf through which the

probabilities are determined.
There are two main requirements we pose on the dynamic. First, the dynamic should

be reinforcing:  if a strategy is played and the payoff is "satisfactory", the probability to
play this strategy should increase. Second, the dynamic should be in a sense simple: no
complex functions must be involved. One class of the dynamics satisfying these require-

ments is following. A player triggers a strategy, observes his payoff and adds the payoff

to the propensity of playing this strategy Then the player renormalizes the propensities

by multiplying them by a certain variable.

In the model above all payoffs are positive, which means that the propensity of playing
a strategy increases after the strategy has been played. The probability of this strategy

increases as well. Thus, all payoffs are satisfactory and all trials are reinforcing. Since
the payoff is added to the propensity, the function involved is the simple, linear. Finally,
renormalization by multiplication is not complicated either.
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The renormalization will play an important role. Since it multiplies all propensities
by the same number it does not change the probabilities in the current period but it does
change the expected motion of probabilities. This will influence the convergence results
and the speed of convergence. We try to answer the following questions: for which forms
of normalization the dynamic converges to an equilibrium, and for which forms the speed
of the dynamic is fast enough to achieve good results quickly.

Formally, assume that at time t=1 the vectors of initial propensities e are given,
q,1   >  O  Vi   E   N,Vj  €   Si. If player i chooses strategy  j   at  time t while the other players
choose strategies s-i € S_„ then the state of the player i a t time t+l i s defined as

q ;1  -  (q& + 815)Af
(e-1   -  q:kA , k g,6 j

(2.2)

where  B j  =  A, (j, s-,)  is the realized payoff at period  t,  Af  is the normalizing multiplier.
Since the initial propensities are assumed to be positive, and the payoffs are positive, the
propensities at period t are positive as well. The normalizing multiplier can be chosen such

as  to keeR the sum of
the propensities equal to a predetermined variable C, , in which case

Al   =    t"B„.    This  type of normalization  was  used in Arthur  ( 1993), is mathematically
tractable, and gives a rich variety of results since Cl determines the speed of adjustment.

The variable Cf can be deterministic, for example,  C   = Ctv, where C, v are given
constants. This case will be called the normalization case.  In the case of no normalization
Af  -  1 or, equivalently,  1,+1  -  Q:  + B:j, which  is a random variable since the payoff Bi3
is generally random. Yet another interesting case is the so called fowetting case, when
Af =6<1, that is, Cf+1 = 6(Qf + B j). The parameter b i s a forgetting parameter since
the payoff that was obtained T periods ago enters the sum of the propensities with factor
6', that is, such a payoff is partially forgotten.

The use of variable C,2 in the analysis is justified by the observation, as it will be
clear later, that Cf will determine the step size of the dynamic, which is important for
convergence. In fact, it will be shown in the subsequent section that the inverse of C,  has
the same order as the step size of the dynamic.

Observe that in equation (2.2) the propensities at time t+1 depend only on propensities
at time t, on realized payoff at time t, and on Af that in turn depends only on variables
at time t as well. Therefore, the dynamic process on propensities is a Markov process,
though not necessarily a homogeneous one (for example, in the case C'£ = Cte it is not)
The state space of the process  is  Rki +

, where k, is the number of strategies of player...+k.

i.   In distinction from that, the process on probabilities  (2.1)  is  not a Markov process since
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probabilities at time t are not sullicient to determine probabilities at time t + 1, since they

depend on propensities.
As usual in evolutionary and learning theories of games, two interpretations of the

above model are possible. The first one is that each player i possesses at every moment

of time t a mixed strategy, characterized through the propensities qf by the vector of
probabilities  pl. The other interpretation  is  that for every  role of players 1, . . . ,n there  is
a large population of agents each possessing a pure strategy but the distribution of pure
strategies in each population i is given by the vector pl and than the evolutionary dynamic
of changes in the composition of the populations is given by (2.2). We think that in the
context of the reinforcement dynamic, the first interpretation is more plausible.  That
is, though the evolutionary interpretation is possible, we believe that the reinforcement
model describes learning by an individual player, rather than evolution of a population.

Though the system is described in terms of a mixed strategy, each period a pure
strategy is played. The precise mechanism of this choice is not modeled.  In the first
interpretation above it can be a randomizing device used by a player. In the second

interpretation such a choice can be understood as a random draw of an agent with a pure
strategy from a population.

Notice that the updating of propensities and, therefore, of mixed strategies, depends

only on a player's own payoff. The model can be applied also to one-player decision

problems with random distributions of payoffs. This distribution is unknown by the
players. The players behave as if the distribution is stationary and the strategy that was
good yesterday will be good today too. Though the formulation of the model does not
restrict the dynamic to stationary distributions, in the decision problems we analyze we

assume stationarity. In games the distribution of other players' strategies is not stationary
but is changing according to the dynamic. The justification of carrying the dynamic to
games can be that agents may not know that they are participating in a game, or do not
perceive the complex interdependence between their own payoff and other agents' actions.
or do not know who the opponents are, or the preferences of the opponents. Of course,
in economic situations agents may have some idea of what is going on, or form subjective
expectations, but we will consider the extreme case of ignorance of strategic interaction.
The model can also be applied easily to extensive form games where not all information
sets are reached during the course of the game, because players do not need to know the
other players' strategies.

The normalization case with C = Ct" was considered in Arthur (1993) for decision
problems and in Posch (1997) for 2 x 2 games. These papers analyze the convergence
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properties of the dynamic and show that if t<1 then the dynamic does not necessarily
converge to the optimal action or equilibrium while if t=1 the dynamic does converge to
it. The no normalization case and the forgetting case were introduced in Roth and Erev
(1995) who did not consider long run convergence. Laslier et al. (1999) consider conver-
gence properties of the no normalization case in decision problems and games showing
that the dynamic converges to the optimal action or equilibrium. We supply these results
with the result for the forgetting version.

However, the issue of the speed of convergence and medium term results were largely
neglected in the papers mentioned above (except Roth and Erev (1995)). In economic
situations, when the environment changes, fast convergence may be more important. We
address the questions of how the versions of the reinforcement dynamic perform in the
medium run for both stochastic problems and games by performing computer simulations.

Roth and Erev (1995) point out that the dynamic captures two important aspects
of learning, derived from the psychological literature. The first one, the Law of Effect,
states that the choices that have led to good outcomes should be repeated more often in
the future. In the model, since every strategy gives a positive payoff, the probability of
playing it in the next round increases, hence the law is fulfilled. The second aspect, the
Power Law of Practice, says that learning tends to be fast in the beginning and then slows
down. In the no normalization case (A2 - 1) the propensities increase with time.  If the
forgetting parameter 6 is close enough to  1,  this is also true in the forgetting case for quite
a long initial time. For the normalized case (Cii = CY) with C, v > 0, Cze grows with time
too. Payoffs at later stages change the probabilities less than at earlier stages, when the
propensities are not yet very large, so learning indeed slows down as time progresses.

Another interpretation of the dynamic can be in the spirit of learning dynamics with
an aspiration level. In such dynamics a strategy is regarded as successful and its weight
increases if it gives a payoff that is higher than the aspiration level. The aspiration level
may be fixed or variable. Our model can be understood as having a fixed aspiration level
not larger than 0, hence every strategy is successful, or, at least, not unsuccessful.  A
similar model for decision problems, employing a variable aspiration level, is considered
in Borgers and Sarin (1996), where the probabilities change directly, not through propen-
sities. A description of a model with variable aspirations for 2 x 2 games can be found in
Karandikar et al. (1998).

The model of reinforcement learning can be applied also to learning by automata.
An extended analysis of machine reinforcement learning is provided in Narendra and
Thathachar (1989). They consider mostly schemes of reward-penalty nature, which re-
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quire knowledge of the maximal and minimal payoffs.  If the realized payoff for an action
is close to the maximal one, the probability of playing this action increases (reward) while
if the payoff is close to the minimal  one, the probability decreases (penalty). Our scheme

can be considered as a reward-reward scheme since the probability of playing a strategy
increases independently of the outcome.

2.3 One-Player Decision Problems

Though the ultimate goal is to analyze the dynamic in games, it is interesting and useful

to consider its behavior in one-player decision problems. In decision problems the distri-
bution of payoffs to an action is random and unknown but is not changing as it happens

in games when all players are learning simultaneously. Binmore et al. (1996) expressed
the view that it might be wiser to consider human behavior in decision problems first and
only then apply it to games. We will proceed in this spirit.

2.3.1  The Long Run Convergence
One of the main questions concerning every dynamic is whether it converges and if so,

to what point or set of points. For games the Nash equilibrium concept serves as a
benchmark thus it is desirable that a dynamic converges to a Nash equilibrium and,
if there are multiple Nash equilibria, to a certain refined equilibrium, for example, to
a subgame perfect equilibrium. In one-player decision problems the concept of Nash
equilibrium corresponds to the choice of the action that gives the highest expected payoff.
However, the lock-in problem of path dependency may arise. Path dependency refers to
the phenomenon when initial choices influence the long run outcome. It is not a priori
clear that the optimal action will be chosen in the long run.

In this subsection we make an overview of results for different versions of the dynamic.

We report recent results regarding convergence of the dynamic to the optimal action in
decision problems for the normalization and the no normalization cases, supplied also by
a result for the forgetting case. The normalization and no normalization results are taken
from Arthur (1993), Posch (1997), and Laslier et al. (1999).

In the model described in the previous section, we have now a decision problem, so
n = 1 and we can omit subscript i in the formulas. The payoff to strategy j, denoted by
7rj (w),  depends  on the state of the world w  that  is a random variable drawn each period
after a strategy was chosen by the decision maker. The environment is the set of the
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states  of the world  f"2  -   {w 1, ···, wt }, assumed  to be finite,   and a stationary probability
distribution B on fl that gives the probability of each state of the world. The decision
maker has k strategies, or actions.

Suppose the decision maker plays strategy j at time t. Denote the realization of *,(w)
by Bt. Let ej be the unit k-vector with 1 on the jth place and let be = Btej. Thus, W is
the vector of payoffs to all k strategies at period t. Since strategies other than j were not
tried, they did not get any payoff. The formulas for the dynamic of the propensities from
the previous section can be rewritten in vector form with the multiplier expressed in the
form of a given sum of the propensities:

Calqe+1 = (qi + b,) (2.3)QI + Bt
Notice that after normalization  Qi+1  - Ct+1 Rearranging terms,

t+1                    t                                               tq                  q                   bt             q                B'qt                    bt
- =         +         = - -              +                   (2.4)
Qt+1 Qt + Bt Qt + Bt Qt    (Qt + 899 Qt + Bt

Since  31  - pt,  it  can be rewritten  as

pi+1 - pi + a'(bt - B'pe), (2.5)

where at =  rfBT) determines the step size of the process. Assume that the payoffs are
bounded and denote by M the upper bound and by m the lower bound. Since the set
of states and the set of strategies are finite, M can be taken as the maximal payoff over
states and strategies and m as the minimal payoff over states and strategies.  Then Bt
is bounded for each t. Whether at is bounded and its asymptotic (as t - 00) behavior
is  determined  by   *.     In  the  normalization  case  Qt   =   Ct = Ctv ' hence at = OXV.
In the non-normalized dynamic by definition Qi + (t - 1)m 5 Qi 5 Qi + (t - 1)M,
hence at  = 0(t-1).  For the case with forgetting, observe that 018:-1 + m Elll Or  5
Qt  5  Qlbt-1 + M ES"1167. After calculating the sum of the geometric series,  we have
Q16t-1 + 77161:=fil S Qt 5 (216:-1 + Mblifil. Hence, ai = 0(1-61,.r)·

Assume that the kth action is the unique optimal action, that is, it has the largest
expected payoff.  To have some idea about the expected motion of probabilities, we can
look at E[pi+1 Iq11 Since the kth action is optimal, one may wonder if, starting from
some time, the expected probability of playing the optimal action increases. The actual
probability, of course, does not have to increase.

Proposition 2.1  In the case of normalization (Ct = Ctv, C, v > 0) and also in the case
of no-normalization (At = 1) it holds that BT such that Vt > T E[pl+1|qt] > pl.



2.3. One-Player Decision Problems 19

Proof.  From the expression for probabilities (2.5) E[pt.1-1 Iqi]  = pl .1. E[(at(be - Bipt))kl.
The last term can be rewritten as E[bSTif;fl = plE[bJifif I{k}}+(1-14)E[fQI+Bi  1{-k}l,
where {k} denotes the event that action  k is played,  and {-k} denotes the event  that
any other action is played. By definition of b  and Be it can be further rearranged as

E[bbi.5 ] = PLE[BJ,lip)1{k}l + (1 - PS)E[84&'el{-k}l = PS(1 - 14)(EIQ,fB·,1{k}] -
E[Q& 1{-k}). The first two terms  in the product are positive.   The last  term  can  be

t+Bt-1.rewritten as E[Bil{k}] + E[-Bt QJf+B '11{k}] - E[Btl{-k}} - E[-Bit t+Bt 1{-k}l, or,
equivalently, as (E[Btl{k}] - E[Bil{-k}]) - (E[BtQJ:.5711{-k}] - E[BiQJ:5711{k}l)
Consider the last parenthesis. Notice that, if Qt is large enough, 1-E S tifj,1 <1
VE > o. Then E[Bt9511{-k}]-E[BiQJ15,711{k}] < E[Btl{-k}}-E[Bt(1-£)1{k}] =
E[By{-k}] -E[Btl{k}]+EE[Bil{k}]. Substituting into the previous expression, we have

E[Qi25*1{k}] - E[*5*1{-k} > 2(E[Btl{k}] - E[By{-k}]) - gE[Btl{k}l. Since E is
arbitrarily small, and E[Btl{k}} - E[Btl{-k}l > O by the optimality of action k, the last
expression is positive  and  E[pl+1 Ipt]  >  pl.   We  used  that  Qt is large enough, which  is  the
case for both non-normalized and normalized models.  •

It can be easily shown that if Qt  is not large, the statement that E[pl+i |q l  , p   does
not have to hold.

Example 2.1 Consider the following decision problem with two states of the world and
two actions

Wl 6612

81       3               , Pr(wl ) - Pr(w2)  =   .
82   1    1

Strategy  sl   is  optimat.     Consider  qf   =   qj   =    .     By  straightforward  catculations

E[111+11 =  %8 =5 0.4987 < 0.5 = Pt.

In the case with forgetting Qt is bounded from above by Q16t-1  + Malifil,  thus we
cannot  say  that  BT such  that  Vt  >  T  E[pl+i |q9    pl since  Qt  may  not grow enough.
Though a useful insight, saying that on average the probability of the optimal action
increases, Proposition 2.1 does not necessarily mean that the optimal action is played in
the limit as t -co with probability  1.

To establish (or disprove) the last statement we will make use of the notion of almost

sure convergence.
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Definition 2.1 A sequence of random variables {pt}710 is said to convenge atmost
surety to  a Tandom variable p if Pr({limt-= Ipt - pl  < E}) = 1 VE > 0.

Convergence almost surely also implies convergence in probability. Thus, if we show
that   {pt}   in our model converges   to a distribution placing unit weight   on the optimal
action, it would mean that the optimal action is played in the long run with probability
1.

The following results show when the process (2.5) does converge to the state when the
optimal action is played with probability 1 and when it does not. Recall that k is the
unique optimal action.

Theorem 2.1 In the normalization case (Ct = Ct''C,v > 0),ifv<loT (v = 1 and

C<  m),   Pr({lim:-00 |Pl  -1 1<  E})   <1,   that  is,   a  non-optimal  action  is  played  in  the
limit t - oo with non-zero probability.

The theorem says that the process does not converge almost surely to the optimal
action. The proof  of the  v   <   1   case  is in Arthur   (1993), the proof  of  the  (v   =   1  and

C < m) case is in Posch (1997). The proofs are similar to the one below for Theorem 2.4.

Theorem 2.2 In the normalization case (Ct = Ct",C, v  >  0),  ify -  1  and C 2 m,
Pr({limt-- |Pl - 1  < E}) = 1, that is, the probability of the optimal action converges to

1 almost surely.

The proof is contained in both Arthur (1993) and Posch (1997).  In the proof the
stochastic dynamic is approximated by a deterministic one, based on the expected motion
of the dynamic, whose convergence properties are easier to analyze. These properties carry
over to the stochastic dynamic only if the step size at becomes small sufficiently fast which
is the case when v - 1.

Theorem  2.3  In  the no normalization  case  (At  =  1),  Pr({limt-00 |P1  -1 1<  s})  =1,
thal is, the probability of the optimal action conve,yes to 1 almost surely

Proof.  Wehaveseenthat in this case Qi + (t- 1)m f Q' S qlt (t - 1)M, which can
be rewritten as mt f Qi 5 (Qo + M)t. Then the dynamic is equivalent, in the sense of
having the same asymptotic behavior, to the normalization case with v - 1 and C 2 m.
By Theorem 2.2 the process converges to the optimal actiont.   .

1 An alternative proof of this theorem  can be found in Lastier et  al.   (1999).



2.3. One-Player Decision Problems                                              21

Theorem 2.4 In the case with foWetting (At =6< 1), Pr({limt-go |Pl -1 1< E}) <1,
that  is, the probability  of playing  a  non-optimal  action  is  positive  in  the  limit  t  -  00.

Proof. The proof is along the lines of the similar proof for the normalization case
given in Arthur  (1993).  We have seen that Q16t-1 + mblifil  S QL  5 Qig-1 + 1WSlit:ii,
that is Qt has the order of 1 - 6t- 1. To proof the non-optimality consider the event that
an inferior action j is triggered from time t on. Denote this event by D: We need to
show that Pr{Dt} = II;°p; >0.  I t a; =1- p;. Since 0<a j< 1 the convergence
of the infinite product  II;° (1  -  aj) is necessary  for the convergence  of the series  ET a;
From the process equation (2.5), the dynamic for action j when it is played at all times
from t on can be written as p;+1 = p; + B ,U;). Then a;+1 - a;(1 - 0, 8,). The ratio

t+l

of two successive terms  is  then  fir  =  1  - Qiffw Given  that  Qt  has the order  of 1  -B
t+1

the last expression  can be rewritten   as   iT   -   1  -                  B'                   <   1  -  ci + +B'   forClte (1 -bt- 1)+Bt
some constants  cl, c2  >  0. It means that  a  decreases faster  than a geometric series  and

therefore converges. Therefore, the probability of playing an inferior action j from time t
on is positive and the theorem is proven.  •

The long run results are very different for different specifications of the dynamics.

Roughly speaking, if the propensities grow fast enough, as in the normalized version with
v - 1, or in the non-normalized version, the optimal action is found in the long run. With

forgetting, it is not necessarily so. However, for economic relevance one should look also
at the speed of convergence and medium run results.  It may well be that the learning
algorithm that eventually discovers the optimal action is too slow to achieve good results
in the medium run and may be inferior in that respect to a non-optimal learning algorithm.
The next subsection presents some simulation results comparing different variations of the
model in the medium run.

2.3.2 The Speed of Convergence and the Probability of Conver-
gence to the Optimal Action

In any stochastic decision problem there is a trade-off between the speed of convergence

and long run optimality. If the speed of learning is high, there is a probability of locking
in in an inferior action, while if learning is slow, the optimal action will be eventually
found. For example, in the normalization case, if v<1 learning is quick (the step size of
the process is large),  so the process converges to an action quickly but  it does not  have



22                                                 2. Simple Reinforcement Dynamic

to be the optimal action.  On the contrary, if v - 1 learning is slow enough to achieve
optimality. However, even in the case with P < 1, changing the other parameter C can
make the probability of playing the optimal action as close to 1 as one desires. that is,
the learning scheme can be made E-optima12 (Narendra and Thathachar (1989)).

Instead of pursuing this approach, or deriving the expected rate of convergence ana-

lytically, we adopt a simulation method. The method allows to derive some stylized facts
on the basis of which certain conclusion can be made. To illustrate the issues of both
non-optimal convergence and the speed thereof, we choose plausible parameter values for
the dynamics and run simulations'' for a couple of decision problems. The version that
performs better in the sense of average realized payoff over a number of simulations for a
given period will be said to be simulation-better.

For a given decision problem and a given initial propensities of the actions, a simulation
calculates the propensities for periods 1, . . . ,T according  to (2.2) using a pseudorandom
numbers generator to determine which action j is played and which state of nature is
realized at period  t. The associated probabilities are calculated  by  (2.1).   We  know  the
stream of realized payoffs and can compare it with another stream for a different version
of the dynamic.

The definition of simulation-better dynamic for a given decision problem and a given
number of periods is as follows. Denote two versions of the dynamic by Pl and P2. Denote
by zf (Pj) the realized payoff for dynamics  Pj at period t in simulation i.

Definition 2.2  Let a decision problem G, a number N, and dynamics Pl and P2 be given.
Then Pl  is N-simulation-better than P2 for period T if the average (over N simulations)
malized payof up to period T, xj' = * El 1 * EL 1 4(Pj ) is larger for j=l  than for
3 -2.

We will illustrate the method on the following two decision problems.

Wl  W2

1)  81   4   1  ,Pr{wi  =  ,Pr{w2} = 1;
82   1   4

2 A  scheme  is said to be E-optimal  if VE  >  0  3T such that  Vt  >  T  the  probability of playing the optimal

action pi >1- € .
3 A DOS program for running simulations was written  by the author  in  the C programming language

and is available upon request.
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Wl

2)                     , Pr{wl } = 1.
81   2

82   3

83  2.5

For the first decision problem the expected payoffs  are  E(sl)  =  2, E(32)  = 3. Hence

the second decision problem is the certain case of the first one plus an additional action.
The second decision problem is devised to show how convergence slows down with more
actions.

The sum of the initial propensities is set to Qi = 30. The number is chosen to be close

to the estimated from human behavior by Arthur (1993). Roth and Erev (1995) in their
simulations also choose this parameter with a similar magnitude, so we follow their path.
They also argue that choosing a number of a similar order will not change the results
considerably. Initial propensities qi for actions are equal to each other, that is qii - 15
in the first problem, and q,1 = 10 in the second one. This is chosen in order to give all
strategies equal chances in the beginning. The simulations are run for three specifications
of the dynamic, namely for the normalized version with C - 01  - 30, v = 0,  for the
non-normalized version (At = 1), and for the forgetting case with 6 - 0.999. The versions
of the dynamic are fully specified.

The question remains of what should be taken as the medium run.  We have chosen
that the long run starts after  100, 000 periods.  The 100, 000th period will be considered
as the medium run.  This is also one of the periods that in Roth and Erev (1995) dis-
tinguishes the medium run, when the process did not necessarily converge, from the long

run, when the process already is in (or very close to) a stationary state. A justification
for choosing 100,000 could be that if an action is chosen every hour, then 100,000 hours

is  approximately 11.5 years. This period, almost equal  to a decade.  in an economy  can
be roughly considered as having a constant environment. We do not consider the more
difficult question of how the dynamic responds to a change in the environment but focus
on the medium run results since they can be considered as a first step towards that more
difficult question.

The results of the simulations are reported in Tables 2.1 and 2.2 for the problems 1), 2)
correspondingly. The columns in Tables 2.1 and 2.2 show results of a hundred simulations
for  each  of the three different specifications  of the dynamic. The column  " v  =  0"   is  for

the  normalized  case  with  v  =  0,  the  column  " no-norm"   is  for the non-normalized case,

and the column "forgetting" is for the case with 6 - 0.999. The tables consist of three



24                                                 2. Simple Reinforcement Dynamic

Time v - 0 no-norm forgetting
300 Probability 0.998 0.764 0.768

Mode 100     99        97

Av.Payoff 2.896 2.706 2.701

10,000 Probability 1 0.914 0.992
Mode 100 100 100

Av.Payoff 2.997 2.879 2.937

100,000 Probability 1 0.959              1
Mode 100 100 100

Av.Payoff 2.999 2.939 2.994

N = 100; qi = (15,15)

Table 2.1: Simulations results for decision problem  1)

parts: for period T =  300,  for T =  10,000,  and for T =  100,000.   In the row labeled
" Probability" the average probability of playing the optimal action k (action  2  in  both
problems)  over  N(= 100) simulation is given,  that  is,   )5 Eli PI''.    In  the row labeled
" Mode" the number of simulations where the probability  of the optimal action is larger
than   is given, that is, #{i : PI'' >  }. The row labeled "Av.Payoff" gives the average
payoff up to time T over N simulations, that is, * Ell * F-Ll 4.  Thus, a dynamic is
100-simulation-better if the number in the row "Av.Payoff" is higher.

From Table 2.1 one can see that if v - 0, the dynamic learns very quickly: al-
ready in period 300 the probability of playing the optimal action is 0.998. Both other
modifications are slower. The dynamic with forgetting accelerates after an initial slow
period  and in period  100, 000 it almost catches  up  with  the fast model  v  -  0.    All
three variations converge  to the optimal action  for this decision problem.    The  "v  =  0"
case collects a larger average payoff due to the higher speed of learning. Applying the
definition of simulation-betterness, we can say that the normalized version of the dy-
namics with v = O is simulation-best among the three versions for decision problem

1).

The second decision problem shows the non-optimality of the normalization approach.
As Table 2.2 shows, not all of the simulations go to the optimal action; some of them
lock in in a suboptimal one. Again, the model with v=0 collects a larger aver-
age payoff in the beginning. However, the two other models find out what the opti-
mal action is and they start to regain the payoff difference in later periods.  The non-
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Time v = 0 no-norm forgetting

300 Probability 0.841 0.511 0.532

Mode          85           75              76

Av.Payoff 2.812 2.630 2.634

10,000 Probability 0.860 0.687 0.904

Mode          86           90             100

Av.Payoff 2.926 2.777 2.863

100,000 Probability 0.860 0.774 1
Mode          86           97             100

Av.Payoff 2.930 2.846 2.983

N = 100; qi - (10,10,10)

Table 2.2: Simulations results for decision problem 2)

normalized version  of the dynamic  did not catch  up  with  the  "v   =   0"   case  but  the

forgetting variation did overcome it. According to definition 2.2 the forgetting varia-

tion is simulation-best for the decision problem 2) in the medium run among the three

models.

The main conclusion we want to draw from the analysis of the decision problems is

that in the medium run a model that has sufficiently high speed of convergence while

it does not lock in in an inferior action too often is in a sense optimal. The model

with forgetting seems to satisfy this criterion since it accelerates after a slow learning

in the beginning. The normalized model with low v gets locked in in an inferior ac-
tion rather often; the non-normalized model explores its optimality too slowly to catch

up with other models in the medium run. The model with forgetting has a non-zero

probability of getting trapped in an inferior action, but the probability is very small.

In fact, none of the simulations reported for the forgetting case converged to an infe-
rior action. All in all, though we do not give a formal criterion for choice of a model

in all situations, it seems that the model with forgetting performs better than the other
two models. It should be noted that the results may depend on the choice of the for-
getting parameter and the magnitude of the initial propensities. Nevertheless, for the
simulations for games, reported in later sections, we will use the model with forget-
ting.
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2.4 Games
Games provide additional insight into the behavior of the dynamic. The payoffs to a
player depend now not on the state of the world but on the actions of the opponents.
Since the opponents are also learning and do not always choose their optimal strategy, it
is more difficult for the player to learn her optimal strategy.  If the opponents play the
same strategy all the time, the problem is reduced to the decision problem of learning the
best response to this strategy. As we have seen in the previous section, it is possible to
learn the best response to a given (but unknown) probability distribution with the simple
reinforcement model.  Thus, a Nash equilibrium is the most likely outcome of the dynamic
since in it all players play mutual best responses. We start the analysis with 2 x 2 games
and proceed to more complex ones.

2.4.1  2x 2 Games

The main results about the convergence of the reinforcement dynamic in 2 x 2 games are
stated in Posch (1997) and Laslier et al. (1999).

Theorem  2.5   (i) # the game has strict Nash equitibria,  then the dynamic with normaliza-
tion (Ce = Cte, v 2 1, C > m) and the dynamic without normalization (At - 1) converge
to the set of strict Nash equitibria almost surely and all strict equilibria are attained in
the limit with positive probability.

(ii) If the game has no strict Nash equitibria then the dynamics may cycle.

The proof of the normalization case is in Posch (1997). The intuition of it is similar
to the decision problem case, only the dimensions of the dynamic system are different
since now we have two players instead of one. By asymptotic equivalence of the case with
no normalization (At = 1) to the normalized dynamic the result can be extended to this
case. Since other versions (normalization with v < 1, forgetting) did not converge to the
optimal action in decision problems, we cannot expect that they converge to equilibria in
games.

The theorem does not say anything about selection among strict Nash equilibria,
except that they all have non-zero probability. To get some insight into the problem, we
run simulations for some 2 x 2 games. The simulations showed that there could be a
relation between the notion of risk dominance (Harsanyi and Selten (1988, Ch. 3)) and
the results of the dynamic.
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Consider a 2 x 2 game with two strict pure Nash equilibria (31,81) and (82, 32).

81       82

sl  all, bll  a12,b12

32  a21,621  a22, b22

Let ul = all- a,1, 14 = bll-b12 be the deviation losses of the two players in equilibrium

(sl, sl) and ut = a22 - a12, u  = b22 - b21 the deviation losses in equilibrium (82, 82).

Definition  2.3  Equilibrium (s"s,) risk-dominates equitibrium  (sj, sj)  if 11£u&  > «14.

That is, the risk-dominant equilibrium is the one with the larger product of the losses

from the deviations. Intuitively, it is less risky to play the strategy that is a part of the
risk-dominant equilibrium since it is more likely that the other player will play her part
of the equilibrium since the losses if she does not are higher.

First, we consider two symmetric games. The first game is of pure coordination type,
the second one is of stag-hunt type. Therefore, in the first game there is no Conflict

between efficiency and risk dominance while in the second game one equilibrium is Pareto
efficient and the other is risk dominant.

Gamel   81    82
Sl     3,3  1,1

32     1,1  2,2

Game 2   si    S2
81     3,3  62

82     2,   2,2

Both games have two strict equilibria (sl,sl).(32, 32)·  In the first game the efficient
equilibrium   (sl, Sl)   is also risk-dominant,   in the second  one the inefficient equilibrium

(82,82)  is risk dominant. Since the model with forgetting has desirable properties  of

converging fast enough while not locking in a suboptimal action too often, we present
the results of the simulations for the forgetting model with the parameters from the
previous section in Tables 2.3 and 2.4 in Appendix 2.A. Similar to the decision problems,

a simulation calculates the dynamic of propensities for each player according to (2.2),

using associated probabilities and pseudorandom numbers generator to determine which



28 2. Simple Reinforcement Dynamic

strategies are played in a given period. The played strategies and obtained payoff are kept
to report statistics after a specified number of periods T.

Table 2.3 shows that the efficient risk-dominant equilibrium is almost exclusively cho-

sen by the dynamic in Game  1.   Only one simulation converged to the inferior equilibrium.
In Game 2 the inefficient risk-dominant equilibrium is chosen more often than the efficient
one. The results suggest that risk-dominance plays a more important role in equilibrium
selection than efficiency does. Since the initial propensities are equal, in the beginning
the risk-dominant strategy is optimal. It may play a role in the convergence more often
to the risk-dominant equilibrium though the results do not differ much for random initial
propensities. The result is in line with the one of Kandori et al. (1993) where a different
dynamic also favors the risk-dominant equilibrium.

The previous games are symmetric, but the notion of risk-dominance is not restricted
to symmetric games. We illustrate than the reinforcement dynamic favors the risk-
dominant equilibrium in general 2 x 2 games by the following game.

Game 3   4    52
st        %,3    1,1
82     1,1  2,2

Depending on the value of z, either equilibrium  (sl, sl) or equilibrium (82,32)  is dom-
inant.   If z  <  3,(82,82) is risk-dominant while if z  >  3,  (si, sl) is risk-dominant. Table
2.5  in  Appendix 2.A shows results  of the simulations  for z  =  2 . 3,3 ,  and  5 for period
T = 100,000.

The simulations show clearly the attractiveness of the risk-dominant equilibrium.  If
x = 2 ,the risk-dominant equilibrium (82,82) is observed more often.  If z = 3  or 5, the
risk-dominant equilibrium (sl, sl) is observed more often. This equilibrium is also more
likely to be observed when I - 3, though neither of the equilibria is risk-dominant in
this case. The risk-dominant equilibrium is in a sense more stable (so that the dynamic
does not escape once there) because the deviations from it lead to higher losses. Though
it is not clear whether the stability is determined by the product of the deviation, like
in the concept of risk-dominance, there is a relation between risk-dominance and higher
probability of convergence to an equilibrium for the reinforcement dynamic. The exact
form of this relation is an open question.
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2.4.2 Other Two-Player Games

For general two-player games there is a result of convergence of the dynamic without

normalization (At - 1) to any strict Nash equilibria with positive probability. This result

is  presented in Laslier  et  al.   (1999).

Theorem 2.6 If the game has strict Nash equitibria, then the dynamic without normal-
ization (At = 1) converges to any strict Nash equilibrium with positive pmbability·

The result is weaker than for 2 x 2 games since it does not state that only strict
Nash equilibria are attained in the limit. Again, like in 2 x 2 games we are inter-
ested more in the equilibrium selection features of the dynamic. Therefore, we use
simulations to get insight into the question of which equilibrium is selected in which

game.

Our main hypothesis comes from the analysis of the behavior of the dynamic in the
medium run presented in Roth and Erev (1995). They illustrated that the dynamic con-
verges quickly to the subgame perfect equilibrium in the best-shot game but not in the

ultimatum game. It happens because though there are multiple equilibria in both games,
the structure of the set of the equilibrium outcomes is different in these games.  In one

of them (the best-shot game) only two outcomes are (pure) equilibrium outcomes.  In the

other game (the ultimatum game) there are (pure) equilibrium outcomes that lie between

the extreme points of the set of the equilibrium outcomes. The hypothesis is that the
more "central" Nash equilibrium is more likely to be observed in the medium run. We
check this hypothesis by simulations.

The notion of centratity can be formalized as following. Consider three equilibria
:Ti,zg, Z3 with payoffs (7rl, 71' ), (,r , 7r ), and (7r , r ) respectively.

Definition 2.4  Equilibrium Z, is centmt with respect to equilibria zi,  Ik   if 7 '1 ties between

'd, 7rt   and  7rs lies between  lr , 71' .

A central equilibrium lies in between the other equilibria in the space of payoffs for
both players. The concept of centrality is more of an ordinal concept since it uses only
inequalities.
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If we are in a cardinal world, and the payoffs (utilities) of the players are compara-
ble, we can define another, somewhat related notion of egatitarity of payoffs. Formally,
consider  two Nash equilibria  zi, Z2  with  payoffs  (,ri, 71-4)  and  (,rI, 7rj) respectively  (the
subindex denotes player. the superindex denotes equilibrium).

Definition 2.5 Equilibrium zi is more egatitarian than equilibrium :rj if 171'1 - 4| <
I,ri - 4 1.

For the games that we consider below both notions will be equivalent, in the sense
that a central equilibrium will be more egalitarian than the equilibria around it. The
medium run results of the dynamic may depend on the magnitude of payoffs or initial
propensities, therefore, we need to assume cardinality to analyze them. Thus, we can use
the notion of egalitarity and we will mostly talk about it rather than about centrality.
Observe that for egalitarity the existence of three equilibria is not needed. Nevertheless,
when we talk about egalitarity below, we mean that the distribution of payoffs in an
egalitarian equilibrium is more equal than in the other two equilibria with respect to
which the egalitarian equilibrium is central.

We want to show that if a game possesses several equilibria then a more egalitarian
one has rather high chances to be observed in the medium run. Since learning is simulta-
neous for both players, they are pressing each other for a compromise and since a central
equilibrium is closer to a compromise, it is played more often.

To illustrate this point, we show the results of simulations of the dynamic for several
games. The first two games, the ultimatum game and the best shot game, are analyzed

also in Roth and Erev (1995). The third game, the oligopoly leadership game, has the
same structure as the best shot game but it has a different set of equilibria, among which
a central one. Through a comparison of the two last games we can see that the egalitarian
equilibrium indeed has almost the same probability of being observed in the medium run
as the subgame perfect equilibrium. The fourth game is a kind of property game analyzed

in Young (1998, Ch.9). It also possesses an egalitarian equilibrium that is observed more
often in the medium run.

The version of the dynamic used for simulations is the one with forgetting since it
learns fast enough to achieve convergence in the medium run, and does not lock in in a
suboptimal action too often. Like in 2 x 2 games the simulations calculate the vectors of
propensities for each player and for each strategy, using associated vectors of probabilities
to find which strategies were played and the payoffs obtained in each period. Though
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some of the payoffs are 0 instead of being positive, the dynamic is well defined for such

payoffs.

The Ultimatum Game

Two  players  are to divide 10 units. The first player makes a demand  z  6{1, . . . ,9}   for
himself and accordingly leaves 10 - s to the second player. The second player can then
accept or reject the demand.  If the second player accepts, the payoffs are (z, 10 - z).  If
the second player rejects, the payoffs  are  (0,0)

We restrict the strategy set of the second player to monotone strategies. This means

that strategies in which player 2 accepts a demand x > k but rejects a demand z 5 k are
ruled  out. Then player  2  has nine strategies {1, . . . ,9} . Strategy k means that player  2
accepts any demand I E k, that leaves 10-3210-k for her, and rejects any demand
s   >   k. The strategy  set for player   1   is  the  same, {1, . . . ,9} , where strategy j means

demanding j.   Then the game is reduced to  a game in normal form where both players

choose a strategy simultaneously. Each player chooses a (pure) strategy according to a
vector of propensities. Let player 1 choose strategy j and player 2 strategy k.  If j S k,
the demand of player 1 is accepted and the players get  (j, 10 - j) correspondingly.   If

j  >  k the demand is rejected and the players get  (0,0). The propensities are updated
according to the dynamic and the game moves to the next period. Though the original
game is in extensive form, we analyze it in normal form since it is easier and does not

change essentially the structure. Player 1 knows whether his current demand is accepted

or rejected but does not know what would have happened with larger or smaller demands.

The reinforcement model allows us to analyze such situations since updating depends only

on the obtained payoff and does not depend on the payoffs that might have been obtained.

The ultimatum game has nine equilibria in pure strategies.  A pair of strategies (j, j)  is

an equilibrium  Vj  f  { 1,..., 9}. The subgame perfect equilibrium  of the original extensive

form game is  (9,9).
Table 2.6 in Appendix 2.B shows the results of the simulations  for the 100, 000th

period.  For each pair of strategies (i, j) it reports the number of simulations (out of 100)
that  have the probability of playing  this  pair of strategies larger  than   .   Thus,  6  in  cell

(7,8) means that in six simulations the probability that in period T = 100,000 the pair
(7,8)  is played, in larger than  , that is, PT,7PS,8  ,   ·   Thus, the number in cell (i, j)
indicates how many of the simulations converged, or at least started to converge to the
pair of strategies (i, j). Observe that not all simulations converge to the subgame perfect
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equilibrium (9,9). Equilibrium (8,8) attracted more simulations  than  (9,9) in period
100,000, while one simulation converged to  (5,5).  Thus, a more egalitarian equilibrium
(8,8) (with payoffs  (8,2))  is more likely  to be observed  in the medium  run  than  the
subgame perfect equilibrium  (9,9) (with payoffs  (9,1)). The average payoff of about
7 for player 1 also shows that there is some money left on the table. Though the most
egalitarian equilibrium (5,5) did not attract many simulations, there is clearly a possibility
of convergence to an equilibrium that is more egalitarian than the subgame perfect one.

Roth and Erev (1995) use experiments for the ultimatum game. Their data also
favor more egalitarian equilibria than the subgame perfect one.  The mean demand in
the experiments was between 5 and 6.  From the point of view of the dynamic, a high
demand is likely to get rejected, at least in the beginning. A more modest demand has a
smaller probability to be rejected because of the monotonicity of the strategies of player
2. Therefore, it yields a positive payoff more often thus reinforcing itself. Though a high
demand reinforces itself better, it happens less often, hence it is not clear a priori whether
the subgame perfect equilibrium (with high demands) will be chosen. The result is also
not new in the area of dynamic game theory A model of noisy replicator dynamic and
extended discussion about the convergence of it to an equilibrium that is not subgame

perfect in the ultimatum game can be found in Gale et al. (1995).

The Best-Shot Game

Both players have three actions,  S,  =  {sl, 82,83}· Player  1 moves first, after that player
2 observes player I's move and makes own move. Thus, the first player has 3 strategies,
and the second player has 33 - 27 pure strategies in the normal form corresponding to
the described in extensive form game. The payoffs, nevertheless, can be described by a
3 x 3 bimatrix since the payoffs depend only on the first player's strategy and the answer
to this strategy by the second player. What player 2 intended to play in response to
other strategies of player 1 is irrelevant for this payoff. Payoffs are given by the following
bimatrix.

Sl           82           53

Sl 0,0 1.95,0.31 3.70,0.42

82    0.31,1.95   0.31,0.31    2.06,0.42
33    0.42.3.70    0.42.2.06    0.42,0.42

The underlying story for the game is that players choose a contribution towards pro-
vision of a public good. The private cost of provision is an increasing function of the
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quantity provided. The provided level of the public good depends on the maximum of
the contributions. Thus the benefit from the public good is an increasing function of the
maximum between the two players' contributions. Actions sl, 82, 83 correspond to the low,

medium, and high contributions. The exact payoffs in the bimatrix are taken froni Roth
and Erev (1995) who report about an experiment on an extended version of the best-shot

game and also about simulations of various versions of the reinforcement dynamic.
Since player 1 chooses first, the subgame perfect equilibrium strategy for him is to

choose sl,  and for player 2 to choose s3 if player  1  played sl,  and to choose sl if player  1

played 32 or 33·  We will denote strategies of player 2 as sisjsk, where the first sym-
bol  is her response to player  1   playing  sl, the second symbol  is the response  to  s2,

and the third symbol  is the response  to  83· The subgame perfect equilibrium  can  be

denoted  as (sl, 838181).     The  set  of pure strategy equilibria  for  the game consists  of
{(53, sisist), (83,818281), (si, 33=Z)}, where Z stands for any action si, 82, 33. The sub-

game perfect equilibrium belongs to the last subset.  In all equilibria of the last subset
the payoffs are 3.7 for player 1 and 0.42 for player 2. In the other two equilibria payoffs

are inverse, 0.42 for player 1 and 3.7 for player 2. There is no central, or egalitarian,

equilibrium in the game.
The averages of the probabilities of actions over a hundred simulations are reported in

Table 2.7 in Appendix 2.B.  One can clearly see that the subset of equilibria (st, 33xx) that
contains the subgame perfect equilibrium is chosen with a probability indistinguishably
close   to   1. The results   do not differ   much   from   the ones reported   in   Roth   and   Erev

(1995, Table II). Player 1 learns to choose strategy 1 rather quickly. Learning by player
2 is slower in the beginning since she has much more strategies to choose from. But in
period 100,000 player 2 learns to reply with s3  on  sl ·  The game converges to the subset

(Sl' 83xx) of equilibria. Although  it  is not reported, the distribution among  Ix  is  such

that (sl, 838131)  is  the most likely outcome though other strategy combinations  are  also

present since player 2 does not have much opportunity to learn what she should play in
response to 32 and 33·

An explanation for the finding of the subgame perfect equilibrium is that the difference
in payoffs between the two equilibria is rather large for player 1. Therefore, player  1  learns

not to play other equilibrium rather quickly. In the ultimatum game the difference in
payoffs for player 1 between two neighboring equilibria was not that large, thus player 1

could be persuaded (by player 2 rejecting high demands) more easily to move into another

equilibrium. The best-shot game does not have a central, of egalitarian, equilibrium,
hence we observe fast convergence of the dynamic to the subgame perfect one.  In the
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next subsection we consider a game with the same structure as in the best-shot game but
with an egalitarian equilibrium.

The Oligopoly Leadership Game

The structure of the game is as in the best-shot game. There are two players, both
have three actions, one moves first. The interpretation of the actions and the payoffs
are different.  The game is a simplified version of the Stackelberg game. The players are
firms, they choose production levels. Firm 1 chooses first, firm 2 follows. The price for
the good produced by the firms and therefore the profits received by the firms depend
on the aggregate level of production. The demand function is decreasing and quadratic
and the cost function, the same for both firms, is increasing and quadratic too. By an
appropriate choice of functions the following payoffs bimatrix can be obtained for low,
medium, and high production levels.

81       82       83

81 1,1 1,2.3     1,4

82  2.3,1 2,2 0.6,0.3

S3 4,1 0.3,0.6      0,0

The magnitude of the payoffs has the same order as in the best-shot game. Interpreting
actions  81,82,83  as low, medium,  and high levels of production correspondingly,  one  can
see that the subgame perfect equilibrium strategy for firm 1 is to capture the market by
choosing  the high level of production  s3 ·    Firm  2  is  then  left  with the small remaining
fraction of the market. The payoffs are 4 for firm 1 and 1 for firm 2. These actions
correspond to subset (83, IEESi) of the Nash equilibria of the game, where I again denotes
any  of the actions  sl, 82,83· Equilibrium  (83,833281 ), which belongs  to this subset  is
the subgame perfect one. The game possesses also other pure Nash equilibria with two
different payoffs.  One type of them, as in the best-shot game, is an inversion of the
subgame perfect equilibrium. Such equilibria are (sl, 838382)  and  (81,838383) with payoffs
1 for firm 1 and 4 for firm 2.  The new type of equilibria is the egalitarian one, namely
(82,T8232) and (e,x#6), where payoffs are 2 for both firms. Bymeans of simulations
we show that this last type of equilibria has not much fewer chances of being observed in
the medium run than the subgame perfect equilibrium. Table 2.8 in Appendix 2.B shows
the averages of the probabilities of actions over a hundred simulations.

One can see from the table that the egalitarian equilibrium (s2, x32Z) is learned faster
than the subgame perfect  one. In period   1,000 the equilibrium   (32, x32x)   has a larger
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probability of being played than the subgame perfect one. As time progresses, the sub-

game perfect equilibrium regains its strength. In period 10. 000 the probabilities of playing
both s2 and s3 for player 1 are equal. In period 100,000 the subgame perfect equilibrium

finally gets a larger probability. If the egalitarian equilibrium fails to gain a lion's share

in probability distribution in the beginning then the subgame perfect equilibrium can
regain the probability in later periods. Still, the egalitarian equilibrium succeeds in be-
ing  observed in about   1   of the simulations (not reported  in the table).    23  out  of  100
simulations have the probability of playing this equilibrium after 100,000 periods larger

than  3.   For  the set of equilibria containing the subgame perfect  one the number  of such

simulations is 45. This shows that though the subgame perfect equilibrium is more likely
to be observed, the difference in probabilities between it and the egalitarian equilibrium
is not that large. The egalitarian equilibrium has not much fewer chances to be played

in the medium run. Since the subgame perfect equilibrium also has 32 as the response to

S2' the early recognition  of the egalitarian equilibrium helps to discriminate the subgame

perfect equilibrium among the set (82, Izsl  · According to the simulations, the dynamic

converges to the subgame perfect equilibrium in f of the cases when it converges to this

set (not reported  in the table).
The oligopoly leadership game, as well as the ultimatum game, possesses an equi-

librium that lies between two extreme equilibria where almost all payoff goes to one of
the players. In this central equilibrium the payoffs are divided more equally between the
players, that is, the equilibrium is also egalitarian. In contrast with these two games, the

best-shot game does not possess such an equilibrium and the subgame perfect equilibrium
gains dominance very easily The implication of the observations presented in this section
is that the likelihood of equilibria under the reinforcement dynamic in the medium run
may depend on the structure of the set of Nash equilibria of the game. If the game has

only extreme equilibria, the players (or at least one of them) quickly learn to play the
subgame perfect one. A possible explanation, suggested by the analysis of the best-shot
game, might be that the price player 2 has to pay to induce player 1 to play another
equilibrium is too high, therefore player 2 has to allow the unfavorable for her subgame

perfect outcome. In the presence of an egalitarian equilibrium between the extreme ones,
it is easier for player 2 to insist on the egalitarian equilibrium and the subgame perfect

one is not learned that quickly. The simulation analysis presented here shows that the

central, or egalitarian, equilibrium has rather big chances to attract the process in the
medium run, though in the long run the subgame perfect equilibrium prevails.

The non-equilibrium payoffs can also influence the outcome. Notice that the strategy
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82'   which is played  in the egalitarian equilibrium,   is best response against the uniform
distribution over the opponent's strategies.  This lead to initial success of strategy 32· If
the payoff are changed in such a way (without changing the set of equilibria) that the
player 1 subgame perfect strategy s3 is optimal against the uniform opponent's strategy,
the chances that the egalitarian equilibrium is observed decrease. However, they are still
higher than the chances to observe any other equilibria in the best-shot game, even when
the player 1 subgame perfect strategy 31 is not the best one against the uniform strategy
of the opponent. Observe also that if the moves of the players are simultaneous, that
is, the bimatrix above represents the game rather than the payoff structure, the central
equilibrium (82,32) risk-dominates both other equilibria in pairwise comparison.   As the
analysis of 2 x 2 games has shown, such an equilibrium has high chances to be observed
in the medium run.

The Property Game

In the analysis of the games above the egalitarian equilibrium was not subgame perfect
while there was a subgame perfect equilibrium that regained probability in the long run
though the egalitarian equilibrium did not perform too badly. In this subsection we
consider a game where all three equilibria seem to be equally plausible and one cannot
give preference to any of them by conventional refinements.  The game has the following
payoff matrix.

81    82    83

81  1,1  1,1  4,2

S2  1,1  3,3  1,1

83  2,4  1,1  1,1

The story behind it, adapted from Young (1998, Ch.9), is that two people are to
divide a property of 6. They can agree on three outcomes (4,2),(3,3), and (2,4). In case of
disagreement they both get an outside option 1.  Thus the game is a simplified version of
the Nash demand game. The three equilibria of the game are (sl, 83), (82,82), and (33, sl)·
The second equilibrium is the egalitarian one since it has a more equal distribution of
payoffs than the other two.

The results of the simulations are reported in Table 2.9 in Appendix 2.B.  The sim-
ulations show that starting from equal initial propensities for all three strategies, the
central equilibrium is observed more often than the other two though all three equilibria



2.5. Conclusion 37

are  observed  in the medium  run. The probability of playing  the  pair of strategies  (s2, 82)

is larger than the probabilities of playing the other two equilibria and the dynamic con-

verges to the central equilibrium rather than to another equilibrium in a larger number
of simulations  as  it  is  seen  from the "Modes" column. An explanation for  this  is  that
if one calculates the expected probabilities of playing the equilibria for period 2 (for pe-
riod 1 they are equal since the propensities are equal) then the expected probability of
playing the central equilibrium is slightly higher that for the other equilibria. Hence in
expectation the dynamic should go more often to the egalitarian equilibrium. Due to the
noise the other equilibria also have a chance to be observed in the medium run, which
is confirmed by the simulations. Another explanation for the results is that the central

equilibrium risk-dominates any of the other two equilibria.  Thus, from the results for

2 x 2 games, it has larger chances to be observed in the medium run.
The simulations support the hypothesis about a larger likelihood of the egalitarian

equilibrium in the property game. In Young (1998, Ch.9) the findings for pure coordina-

tion games are similarunder a different dynamic.
The hypothesis that we formulated in the beginning of the analysis for games is that

a central, or egalitarian, equilibrium has high chances to be observed under the reinforce-

ment dynamic in the medium run, even if other refinements, like subgame perfection,
do not select it. The games considered above provide some evidence to support the hy-
pothesis. Of course, it is only partial evidence and the exact relationship between the

probability of observing a particular equilibrium and the structure of the set of equilibria
is an open problem.

2.5 Conclusion

The simple reinforcement dynamic captures certain aspects of human learning such as
the Law of Effect and the Power Law of Practice. Hence it may describe the behavior
of humans while learning in decision problems and games. The analysis for the case of
one-player decision problem shows that some versions of the dynamic selects the optimal
action in the long run despite the fact that non-optimal actions are also reinforcing. The

long run, however, is too long as the speed of convergence is low. The average payoff of
other versions of the dynamic was higher after 100,000 periods.

The speed of convergence might depend on the difference between payoffs for the
optimal and non-optimal actions, and on the number of actions. Since this speed is too
low for the non-normalized version of the dynamic, the dynamic was modified in such
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a way that learning is slow in the beginning (so that the probability of a lock-in in an
inferior action is low) but accelerates later (so that the overall speed of convergence is
higher).   Such a modification is achieved by introducing a forgetting parameter  into  the

dynamic.  In our view, the speed of convergence plays an important role in real decision
situations and games. For example, chess, in principle, can be solved explicitly but we do
not have all the time in the world just to play chess. Therefore we must sometimes admit
having non-optimality in actions. The trade-off between the speed and the convergence
seems to be best resolved by a model with forgetting, at least for some decision problems.

The applications of the dynamic to games yield some interesting observations. Though
it seems that in the long run the dynamic will eventually converge to the subgame perfect
equilibrium, in the medium run it often converges to another equilibrium or fails to find
an equilibrium at all (as in the ultimatum game). The equilibrium to which the dynamic
converges rather often (between i and   of the simulations for the games we considered)
has the feature to be central with respect to the set of Nash equilibria for the game,
as in the oligopoly leadership game and in the property game.  In some games (the
property game, and in a sense in the oligopoly leadership game) it also risk-dominates
other equilibria in pairwise comparison.  Such an equilibrium is also called egalitarian
because of the more equal distribution of payoffs.  In the absence of a suitable egalitarian
equilibrium, like in the best-shot game, the dynamic finds the subgame perfect equilibrium
rather quickly.

The chapter provides a formal analysis of the convergence properties of the dynamic
only for the case of one-player decision problems. Through simulations it gives examples
of how the dynamic performs in games. Of course, simulations carl give only indications
for the results. Nevertheless, we believe that by the analysis of simulations enough ob-
servations can be made about chances of observing particular equilibria. Namely, the
egalitarian, or central, equilibrium can compete with the subgame perfect one in the
medium run if it also risk-dominates the subgame perfect equilibrium.

Appendices

2.A Simulations Results  for 2 x 2 Games

A two-player game is given. Player 1 has kl actions and Player 2 has k  actions. The
vectors of initial propensities are given and are the same for all simulations i, qii'' =
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Time Probabilities Modes Average Payoff
300 0.638,0.062 79,1 2.136, 2.136

1,000 0.816, 0.023 93,1 2.410, 2.410

10,000 0.990, 0.010 99, 1 2.882, 2.882

100,000   0.990, 0.010 99, 1 2.979, 2.979
N = 100; qi - (15,15)

Table 2.3: Simulation results for Game 1

Time Probabilities Modes Average Payoff
300 0.150, 0.482 7,52 1.866, 1.862

1,000 0.120, 0.620 9,69 1.893, 1.887

10,000 0.106, 0.877 11, 88 2.028,2.027
100,000   0.120, 0.880 12, 88 2.110, 2.109

N = 100; qi = (15,15)

Table 2.4: Simulation results for Game 2

1, '                 1,i(qi, ,···, qi,ki), q '' = (q 'I,···, q '12 )· The result of simulation i is a sequence of vectors of
propensities for both players (qii'z, qj''),...,(q '2, qI.') determined recursively according to

(2.2).  Also, the associated sequences of vectors of probabilities p, of played actions s, and
of realized payoffs x  are kept.

For the 2 x 2 games of subsection 2.4.1 the tables 2.3,2.4,  and 2.5 reports the results in
the  following  way. The column " Probabilities" reports the average  (over N simulations)
probabilities of equilibria (81,81), (82,82) respectively.  That is the first number in the col-
umn is * 211 pRipRi and the second number is A- E 11PIlpT- The column "Modes"
reports the numbers of simulations in which the probability of the given equilibrium is
larger than  , that is, #{i : PRip:11 >  } and #{i : pRp22 >    } .   The column

"
Average

Payoffs" gives the average (over N simulation) payoffs up to time t for players 1 and 2
respectively, that is, * E 1 * EL,t Zt' and 7  Sti   ES-1 z '. The rows correspond to

time periods T = 300, T = 1, 000, T = 10, 000, and T = 100,000.

For Game 3 the first column is the value of z. The numbers are given for T = 100, 000.
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x Probabilities Modes Average Payoff

2.5   0.380, 0.620 38,62 2.161, 1.790
3   0.610, 0.390 61, 39 2.568, 1.678

3.5  0.860, 0.140   86, 14 3.231, 1.557
5   0.940, 0.060 94,6 4.746, 1.520

N = 100; qi = (15,15)

Table 2.5: Simulation results for Game 3

1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0 0 0   0

20000000 0   0

30000000 0   0

40000000 0   0

5 0 0 0 0 1 0 0 0   0

6 0 0 0 0 0 4 1 2   0

700000010612
800000001815
90000000 0  11

Average payoffs: Player 1: 7.141, Player 2: 2.789
N - 100; e = (10,10,10,10,10,10,10,10,10,10),i = 1,2.

Table 2.6: Simulation results for the ultimatum game

2.B Simulations Results for Other Games

The simulations are similar to the ones for 2 x 2 games.  For the ultimatum game we
report the results  only  for  the 100, 000th period. The number  in  cell  (i, j) represents
the number of simulations in which the probability of playing pair (i, j) is larger than  ,
#{m: PR'pbm>  }.

For the best shot and oligopoly leadership games the results are reported in the fol-
lowing manner. The tables are divided into three parts,  for T  =  1,000,  T  =  10,000,
and  T  =  100, 000.   In  each  part, for player  1 the average  (over N simulations)  prob-
abilities of playing  each  of the three strategies are reported,  that  is,  * E  i PRk ·    For
player 2 the average probabilities of answers to a given strategy of player 1 are reported,
that  is, for example,   in the column  sk   and  the  row " Player  2  on  si" the number  is
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Time   81 82 83 Av.Payoffs

1,000 Player 1 0.951 0.036 0.009 2.151

Player 2 on sl   0.127   0.331   0.538  0.506

10,000 Player 1 0.999 0.000 0.000 3.195
Player 2 on 81   0.000  0.058  0.941   0.411

100,000 Player 1 1 0 0 3.645

Player 2 on 81  0 0 1           0.419

n - 100; q  = (10,10,10), q  = (89, ..., 3 )

Table 2.7: Simulation results for the best-shot game

Time   sl S2 83 Av.Payoffs

1,000 Player 1 0.052 0.567 0.380 1.975

Player 2 on s2   0.164   0.743  0.092   1.445
Player 2 on s3  0.467  0.306  0.226

10,000 Player 1 0.000 0.500 0.500 2.621
Player 2 on s2  0.068  0.893  0.037  1.489
Player 2 on 33  0.567  0.220  0.175

100,000 Player 1 0  0.420 0.580 3.079
Player 2 on 32   0.069   0.897   0.034   1.436
Player 2 on s3   0.623  0.176  0.167

N = 100; q  = (10, 10,10), qj = (89'..., R)

Table 2.8: Simulation results for the oligopoly leadership game

  Z„,1 5 El,=1 Zi=1 P *s,3.'     Analogously  in  rows  "Player  2  on  32"  and  "Player  2

on  83". The column "Av.Payoffs" reports the average realized payoffs  up  to  time  T,
* Eli * Zili zi" for Player 1 and * S11 * EL1 :r '' for Player 2.

For the property  game  the  set of equilibria  is  (sl, 33), (32, 32), (83, sl)· The numbers
in the table are given correspondingly to the equilibria, that is, the first number in each
entry  is for equilibrium  (sl, S3),  etc. The column "Probabilities" reports the average

(over N simulations) probabilities of equilibria.  That is the first number in the col-
T,i   T,iumn  is  * Ell pRip£,13,  the  second  number  is    E  1 Pl.,21'2.82 '  and  the  third  number

is      Ell PR,PRi· The column " Modes" reports the numbers of simulations in which
T,i   T,i        11the  probability  of the given equilibrium is larger  than   ,  that  is,  #{i  :  pi,siI'2,33   >   21'
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Time Probabilities Modes Average Payoffs

300 0.113, 0.191, 0.143  2, 12, 4 1.777, 1.831

1,000 0.133, 0.260, 0.175  8, 29, 18 1.920, 1.993
10,000 0.289, 0.406, 0.284  30, 41, 29  2.612, 2.651
100,000  0.300, 0.410, 0.290  30, 41, 29  2.969, 2.955

N = 100; q& = (10.10,10), i = 1.2

Table 2.9: Simulation results for the property game

#{i : PI'lpi.;2 >  }, and #{i : pR,p21 >  }. The column "Average Payoffs" gives
the average (over N simulation) payoffs up to time t for players 1 and 2 respectively,
that is, * E 11 * ZI,1 Zl'' and * r-:li * Zili,1 Z ,· The rows correspond to time periods
T = 300, T = 1,000, T = 10,000, and T = 100,000.



Chapter 3

Imitation Dynamic in Cournot
Oligopoly

3.1 Introduction

In the previous chapter we considered a dynamic that uses information only about a

player's own payoffs. In this chapter we turn to a dynamic that uses information about
other players' payoffs too.

People often observe what their neighbors do. For example, when planning to buy a
computer, or a car, it is not uncommon to ask around in the circle of friends or colleagues

what they advise with respect to what brand is the best one. It is often worthwhile to
compare own experience with that of somebody else and do what the other person did
if he/she fared better. Imitative behavior is a part of real life and we often employ it,
maybe unconsciously.

When observing other people in the same decision problem individuals can see what
others have done in the same situation as they are in. Clearly, such observations give
some valuable information without incurring the cost of experimentation. Thus, one can
learn via mistakes of others rather than via own mistakesi. Still. the extra information
should be handled with care. Similarly to the reinforcement dynamic of the previous

chapter, if imitation is too fast, a lock-in in an inferior action is possible. Banerjee (1992)
considers a model with imperfect information that can lead (rationally!) to the selection
of a non-optimal action. The population may end up with an inferior technology if the

agents disregard their own information in view of the behavior of other agents. Examples
1 A wise person said: "only fools learn by their own mistakes; wise people learn by mistakes of others".

43
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of boundedly rational sequential decision making with imitation that may lead to the
efficient action are given in Ellison and Fudenberg (1993, 1995). The question in decision
problems is not whether to imitate but rather how to imitate.

Imitation can occur in games too. Players want to improve their performance, therefore
if they observe a payoff higher than their own they might be tempted to imitate the
strategy bringing this higher payoff. Doing so may actually decrease their own payoff but
at the moment of making the decision players might not realize it. One justification can
be that players do not know that they are playing a game, or they do not understand
the complex interdependence of their actions.  Thus, they may use the same behavioral
rule as in decision problems. Other justifications might be such considerations as "other
players are more clever, I shall imitate their behavior", or "finding the best strategy is too
difficult, let's watch what others do". Imitation can be useful if the environment changes
rapidly,  as is argued in Rhode and Stegeman (1997). There  is some experimental support
for imitative behavior in games, including Cournot oligopoly models, nicely presented
in Huck et al.  (1999). Yet another justification of imitative behavior in games is that
players are concerned about relative payoffs. Such an interpretation of imitation appears,
for example, in Schaffer (1989). Non-strategic behavior, like imitation, may lead in some
games to the outcome that would have appeared had the behavior been strategic. The
main question of this chapter is when this would happen for games having the Cournot
oligopoly structure.

Specifically, in games interaction and imitation may occur  in  the same population2.
This case is of practical interest. For example, firms in an industry can be competing
with each other and at the same time be interested in each other's market strategy so
that a successful firm might be imitated by others. Another justification for imitation
is that a firm with a higher profit increases its market share and expands, establish-
ing new factories. These factories still employ the same market strategy as the original
firm. Other firms shrink, thus with time the strategy employed by the firm with higher
profit gains more weight in the population. Of course, the presence of imitation does
not imply that everybody will be better off in the end, on the contrary, the results
might be very inefficient for the firms as in the Cournot oligopoly model of Vega-Redondo
(1997).

This chapter focuses on games arising from Cournot oligopoly models. Our model
follows closely the model of Vega-Redondo (1997).  In his paper he shows that the dynamic
" imitate  the best" converges  to the Walrasian (competitive) equilibrium rather  than  to

2 The  case when interaction and imitation  are in different populations is considered in Schlag  (1998),
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the Cournot-Nash equilibrium. We introduce variations of the imitation process or the

underlying game that allow for the reinstalling of the " as if' rational behavior represented
by Nash equilibrium. The variations still  have  as   a  base  the  rule " imitate  the  best".
Gale and Rosenthal (1999) have a model of imitation in Cournot oligopoly that leads

to the Cournot-Nash equilibrium but their result was due to the fact that imitators are
imitating the aggregate action of the population, disregarding the comparison of payoffs

to their current action and the new action.  We want to keep as a rule imitation of
success.

The first variation concerns imperfection in imitation. Imitation in real life can be
imperfect, for example, when one observes only a part of the strategy of another player
but not the whole strategy The reason is that a strategy prescribes what to do in every
contingency, but the players observe only the realized play. When trying to imitate a
strategy, the absent parts are filled with something else, for instance, with a part of the
own old strategy In gaines such models are considered in the context of the repeated

prisoners' dilemma game by Cooper (1996) and Ruebeck (1999). Depending on the exact

specification of the model both a substantial amount of coordination and total defection
are obtained as outcomes. In this chapter we extend the one-stage Cournot oligopoly to
a two-stage capacity-price game and we demonstrate that imperfect imitation gives some
support to the Cournot-Nash outcome in the sense that it is a possible long run outcome
of the dynamic process.

The second variation differentiates interaction and imitation. In a large population
one can observe (and imitate) a player with whom there was no direct interaction. For

example, players interact in different locations, like in the evolutionary local interaction
model of Ellison (1993) but the information is spread over the whole population.  Al-
ternatively, firms interact in different markets but the information available comes not
only from the own market but from other markets too. The possibility of observing an-
other copy of the game allows comparison of different outcomes and restores the Nash
equilibrium if it is more efficient that the outcome of the purely imitative process.  A
similar model is considered in Palomino (1996) who makes the accent on the survival
of non-rational outcomes while we make accent on the possibility of the rational out-
come.

The chapter is constructed as follows. Section 3.2 presents the general model of imita-
tion and experimentation and an example of Cournot oligopoly game. Section 3.3 extends
the example to imperfect imitation and Section 3.4 to a local interaction model. Section
3.5 concludes.
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3.2 The Model

3.2.1 The Perfect Imitation Dynamic
There are N  = m·n agents in the population.   They play a finite n-player symmetric game
G - (n, S, lr) having been matched each period randomly or deterministically according
to a prespecified rule; m is interpreted as the number of locations where the game is
played and can be infinite. The strategy set S of the game is assumed to be finite.

The dynamic process is in discrete time t  = 1,2,.... Agent  i €N i s characterized
at time t by a pure strategy 81 she plays in period t. The state of the population at
timet is a vector st E SN, st = (st, ..., sk,) of the strategies of all agents. Having been
matched and having played the game G with these strategies the players realize payoffs.
Let 7rt (st) = (7rf'..., 7rl,) be the vector of the realized payoffs of the players.

The imitation process works as follows.  In each period of time each player has the
possibility to revise her strategy3. To revise her strategy the player samples k other players
randomly or according to a prespecified sampling procedure and observes their payoffs and
corresponding strategies. A (natural) restriction we impose on the sampling is that the
players always observe their own payoff and strategy and those of their direct opponents
in the match. The players can also receive information about a play in other copies of
the n-player game, though. We assume that each player i has a non-zero probability to
observe any player  j.

Denote by IP,t = ((71·;1, 8 1), ..., (71' k' sl)) the information player i has obtained at the
end of period  t   and   by   P,i   =   0.1,  · · · ,j k)   the  set of players whose payoffs and strategies
player i has observed. The player finds the maximal payoff in his information set IP,t and
then copies the corresponding strategy. That is,

4+1 - s , j;, € arg max{xi 1. (3.1)i-EP'     3- '

If there are several strategies that give the maximal payoff, one of them is chosen randomly
according to a probability distribution with full support on the set of strategies giving
this highest payof.   This  kind of imitation is called "imitate  the best", since  only  the

3If there is a probability ·r <  1 (independent across players) of revising the strategy, the process slows
down but the results do not change.

4 If we assume that the player does not change strategy if the current payoff is among the highest then
stationary states other than monomorphic are possible, which makes the analysis more difficult but does
not change the qualitative results.
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highest payoff in the sample can be imitated.  If the initial strategies s,i are given, the

dynamic is fully specified.
We call a population state monomorphic if all individuals play the same strategy. In

such a state all individuals receive the same payoff since the game is symmetric.  Ob-
serve that the imitation process alone cannot bring a new strategy into the population.
Obviously, if the population is in a monomorphic state, it will stay there. Therefore,

monomorphic states are stationary. Conversely, consider the case when there are sev-
eral strategies in the population. Suppose two of the strategies bring different payoffs.

Since each player has a positive probability to observe any other player, the player with
the lower payoff will eventually observe the player with the higher payoff and will im-
itate her. Therefore, such a state cannot be stationary. Alternatively, suppose that
all present strategies bring the same payoff. By the same reason as above, and by the
fact that any of the strategies that bring the maximal payoff is imitated with a posi-
tive probability, there is a non-zero probability that players with different strategies will
switch to the same strategy  This will reduce the number of strategies present.  Thus
the only stationary state of this sort is the one where all agents play the same strat-

egy.

Remark 3.1 All monomorphic states, that is, the states with strategy profile of the pop-
ulation  st   =   (sf,  . . . , 811)   with  35   -   4   Vi,j   am  stationary   states   of  the imitation process.

These are the only stationary states of the process.

In order to analyze which stationary states are more stable against small perturba-
tions of the process, the possibility of experimentation is introduced.  In each period each

player has an independent probability X of experimentation, that is, a player can switch
to a strategy that is not necessarily found by the imitation procedure. The probability
distribution over strategies resulting from experimentation will be taken to be uniform
across strategies for each player though any not very extreme (in the sense that for any
two strategies the ratio of probabilities that the strategies are the result of experimenta-

tion remains bounded as A - 0) probability distribution will do. The combined process of
imitation and experimentation defines a Markov chain on the space of states of the popu-
lation.  If m is finite, the Markov chain is ergodic and has a unique stationary distribution
p(A) over states.  We are interested in the case when the probability of experimentation
is arbitrarily small,  that is, we consider limx-O 11(A). This limit will be called the limit
stationary distribution.
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The limit stationary distribution is a distribution over the states of the process.  The
notion of stochastic stability uses the limit stationary distribution.

Definition 3.1 A state is stochastically stable if it has a non-zero weight in the limit
stationary distribution.

Since the process is ergodic, the weights in the limit stationary distribution correspond
to the proportion of time the process spends in each stochastically stable state in the long
run, independent of the initial conditions.  Thus, if the limit stationary distribution puts
a non-zero weight on a state, this state is observed some non-negligible proportion of the
time in the long run. A stochastically stable state will be called also a long-run outcome
of the process.

Notice that we require very little rationality from the players. First, they do not sus-
pect that they are playing a game, they simply copy actions of others that may be their
direct opponents. Second, they condition their behavior only on the last period observa-
tion, that is, they have one-period memory. These boundaries on rationality of the players
are not uncommon in the literature. For example, Schlag (1998) analyzes behavioral rules
in one-player decision problems where players are allowed to use information only about
the last period play of oneself and one other individual. He shows that in the class of
such models only imitative models never decrease the expected payoff. The closest to our
model are the model of Vega-Redondo (1997) where players could observe all other players
in the population in the setup of a Cournot oligopoly and the model of Palomino (1996)
where players could observe a subpopulation of other players.  The aim of this chapter is
to show  that  even with little rationality the players can achieve  " as if' rational behavior.

The simplest example of the process described above is a population of two agents,
playing a two-player game (thus m = 1, n = 2).  In this case the long-run outcome of the
imitation process is influenced by relative rather  than by absolute payoffs5. How exactly
the outcome depends on relative payoffs in general games is not clear, in section 3.3 we
present an example showing that the set of stochastically stable states does not necessarily
coincide with the set of Nash equilibria of the relative payoff game.

In what follows we consider the imitation and experimentation dynamic in symmetric
Cournot oligopoly type games with a unique pure strategy symmetric equilibrium. The
main question is to what state the imitation and experimentation dynamic converges in
the long run in such games.

5 Shubik (1982, Ch. 10) was one of the first to notice this.  See also Schaffer (1989).
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3.2.2 The Cournot Oligopoly Example
One of the results in the class of imitation models described above is due to Vega-Redondo

(1997), who shows that the process converges to the non-Nash Walrasian outcome in
Cournot oligopoly. We will build on the model of Vega-Redondo (1997).

Consider an industry with n identical firms all competing with each other, thus m = 1.
Denote by *2 0 the output of firm i and by Q the aggregate output. The demand side
is given by the twice differentiable decreasing demand function D(p) that is concave.

The inverse demand function is denoted  P(Q)  := D-1 (Q). The inverse demand function

is decreasing and concave too. The twice differentiable increasing cost function C(q) is
assumed to be convex and C(0) = 0. For our purposes we need to define the Walrasian

and Cournot production levels since they play a particular role in the analysis.

Definition 3.2 The Walmsian (competitive) production level qw is the production levet
such  that  it mazimizes profit taking price as given, P(nqw)qw - C(qw)   2   P(nqw)q'- C(q')
Vq'.  The cor,·esponding price P(nqw) is the Watrasian price.

Alternatively, the Walrasian production level is such that price equals marginal cost,
P(nqw) - C'(qw)·

Definition 3.3 The Cournot (Nash) production level qN is the production level in sym-
metric Nash equilibrium, P(nqN)qN - C(qN) 2 P(4 + (n - 1)qN)4 - C(q') Vq'.  The
col·responding price P(nqN) is the Cournot (Nash) price.

Given the assumptions above, the Walrasian and the Cournot equilibria exist and are

unique. The Walrasian output level is higher than the Cournot output level.

To bring the setup under the general model considered above, assume that firms can
choose quantities from a finite grid I'q  =  {0, bg,..., 1,6q}.   It is assumed that both  the
Walrasian output level  and the Cournot equilibrium output level belong  to the grid .

Since all firms are competing with each other, that is, they are all in a single game,
they all observe each other.  Then the work of the imitation process can be illustrated
on the example with a linear cost function. Observe that if price is higher than marginal

cost, the profit of firm i is higher than that of firm j if firm i has a higher output, since

the difference between price and marginal cost is the same for all firms. If price is below

marginal cost, all firms make losses, but the one with the lowest production level makes the

6The finite grid can be largely dispensed of, see Schenk-Hopp6 (1997). We assume the finite set of
strategies to avoid unnecessary technical difficulties.
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smallest loss. Suppose that the firms are in a stationary state, that is, they all produce
the same quantity. If price is higher than marginal cost, a firm experimenting with a
higher quantity (still keeping price above marginal cost) obtains a higher profit that the
other firms. The other firms then imitate the new quantity and the old stationary state
is upset.  If the current price is lower than marginal cost, a firm experimenting with a
lower quantity will have a smaller loss than the other firms. Finally, if price is equal to
marginal cost no experimentation by one firm can upset this stationary state.

Therefore, whatever the current output in a stationary state is, a firm will get more
than the other firms if it decreases or increases output towards the point where price
equals marginal cost. If all firms produce the competitive output, such that price equals
marginal cost, a unilateral experimentation will not bring a profit higher than the profit
of other firms, while at all other production levels a unilateral experimentation upsets
the corresponding stationary states. Since we assumed that the probability of experi-
mentation is arbitrarily small, a unilateral experimentation is infinitely more likely than
a simultaneous experimentation by more firms. Thus, the competitive production level
is more stable than the other stationary states. The limit stationary distribution of the
process of imitation and experimentation puts weight one on the Walrasian equilibrium.
The result holds for an arbitrary convex cost function.

Theorem 3.1  The only long-run outcome of the imitation and ezperimentation dynamic
for the Cournot ohgopoly described above is the Watrasian equilibritim.

The formal proof is in Vega-Redondo (1997).
Thus, the long-run outcome of the process for Cournot oligopoly coincides with the

Walrasian outcome. The latter is not a Nash equilibrium of the game with absolute
profits as payoffs but it is a Nash equilibrium of the game where instead of absolute profit
relative profit is maximized (see Vega-Redondo (1997)). Though  it  is  the  case  here  that
the outcome of the process coincides with a Nash equilibrium of the relative payoffs game,
this does not always hold as we will demonstrate in the example in section 3.3.

The result of the imitation and experimentation dynamic in the simple Cournot
oligopoly model is very inefficient for the firms.  Profits in the Walrasian equilibrium
are smaller than in the Nash equilibrium.  If the firms simply imitate each other and
occasionally experiment, in the long run they receive a smaller profit than in the one-shot
Nash equilibrium. This comes from the fact that a deviation from the Nash equilibrium in
Cournot oligopoly hurts the competitors more than it hurts the deviator. This result also
holds when a higher payoff is not always imitated. Schlag (1998) argues that proportional
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imitation, that is, when the probability of imitating is proportional to the difference in

payons, is optimal (in the sense of payoff increasing in the next round for any decision

problem) for a situation when agents play many copies of a decision problem. In our case
proportional imitation slows down the process but does not change the long-run outcome
since a strategy close to the Walrasian one gets imitated with a probability higher than
the probability of imitating a strategy far from the competitive equilibrium.

Despite the inefficiency of the outcome in Cournot oligopoly, imitation does not seem
to be an implausible behavioral rule. People do imitate in the real life and experiments

(see Huck et al.  (1999)).  Is it possible to change the setting of the model slightly so that
the agents fare better? The next two sections build on the model extending it in some
dimensions.

3.3 Imperfect Imitation
Imperfections in imitation can occur, for example, when players can observe only the

realized play but not the intended strategy, like in extensive form games. Imitation in
the context of a repeated prisoners' dilemma is considered in Cooper (1996) and Ruebeck

(1999). The players there can observe only the realized play and therefore they are not able
to distinguish between " always cooperate"   and " tit-for-tat" strategies if their opponents

never defect. To incorporate such a possibility into the oligopoly model, we extend the

game to the two-stage game of price competition with capacity precommitment, the model
considered in Kreps and Scheinkman (1983) to justify Cournot competition.

Kreps and Scheinkman (1983) consider a game where in the first stage two firms

simultaneously choose capacities and in the second stage, after the capacities are known,
they simultaneously choose prices. The assumptions on the demand and cost functions
are the same as in section 3.2. The rationing rule is efficient, that is, the consumers with

higher valuations for the good buy from the cheapest supplier.  If the prices are equal then
each firm gets a half of the corresponding demand. Kreps and Scheinkrnan (1983) show
that under certain mild conditions the choice of capacities and prices corresponding to
the Cournot equilibrium of the one-stage game is an equilibrium of the two-stage game.

We now assume that the firms observe each others' actions and profits. In the two-

stage game a firm can observe only the capacity of the other firm and the price announced
by the other firm after both firms have chosen capacities, that is, a firm does not know
what the other firm's prices are in response to other capacity choices. Therefore imitation
is imperfect, that is, a firm can imitate just one price and one capacity it has observed.
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There are several different ways to model such a restriction. For example, the firms call
keep intact their intended responses on capacity combinations different from the observed
one. Alternatively, they can change all intended price choices to the one observed. We
adopt the second way of modeling. Though it is quite a restriction on the rationality
of the players, it requires the least memory to remember a strategy (only one price to
remember instead of the whole vector of intended prices).

Formally, imitation in the two-stage game described above is modeled as follows. There
is one location with just two firms.   Thus,  m  =  1, n  -2. In addition to the grid on
quantities  I'q, the firms choose prices  from a finite  grid  I'p   =   {0,6p,..., w }  such  that
Vq € I'q it contains P(2q). Then it contains prices that correspond to the Walrasian
and Cournot equilibria.  A (full) strategy of firm i in the normal form corresponding to
the two-stage game in extensive form can be described by a (v + 1)2 + 1-tuple specifying
the capacity choice and the price choice for each combination of the capacities of the
twofirms. Denote suchastrategy in period t by 4 = (qi;p,(010)1...,p,(vb, vb)) where
p,(x, V) is the intended price choice of firm i if the capacities are z and y After playing
the   game  firm   i has observed own capacity choice   q;, the capacity choice   q;   of  firm  j,
own price p, (q;,q;) =:p,* and firm j's price pj(q;,q;) =: p;. Thus, indistinction from
the perfect imitation dynamic of the previous section, the information set of firm i is
IF'it =  ((71·„s ),((71'5, c(36))), where c(sj) =  (qj;·,...,·,pj (q, ,qj),·,...,·), that is, c(s;) is a
signal that suppresses information about intended choices for capacities other than the
played ones.

By assumption, when imitating, firms change the capacity and all intended price
choices to the one observed.  Thus, if firm j's profit was larger, firm i's strategy in the

t+1     *  *     *
next  period will be s,      =  (qj; pj,..., pj). Therefore, except possibly in a finite number of
periods after each experimentation, a firm's strategy is completely described by just two
variables,  (q, p).   This is equivalent  to the situation when firms announce both capacity
and price simultaneously. The original two-stage game is reduced to a simultaneous move
one-stage game. Observe that this reduction comes from our assumption on the imitation
process, not on the game itself.

The resulting one-stage game can have multiple symmetric Nash equilibria. Choosing
the Walrasian quantity and price may be an equilibrium (if the market is not too big to
accommodate comfortably a firm with a higher price),  as  well as choosing the Cournot
quantity and price. This makes the point that the Cournot-Nash quantity and price will
have a non-zero probability in the limit stationary distribution of the process stronger,
since the Cournot equilibrium has to compete with other Nash equilibria.
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Let us illustrate how the process works on a simple example with linear demand and
cost functions and only two possible levels of capacities and of prices, corresponding

to the Cournot-Nash and Walrasian competitive outcomes.  Then each firm has four
strategies. Denote them  by  (qN, PN), (qN, PW), (qw, PN), (qw, PW), where qN (PN) stands
for the Cournot-Nash capacity (price) and qw (pw) stands for the Walrasian capacity

(price). The demand and cost functions are P(Q) =a-b Q and C(q) = cq, with positive
a, b, c  and  a   >   c.     Then the Cournot-Nash output   of  each  firm  is  q.v   -    &,   and  the
corresponding price  is  PN  -  '95. The competitive output  of each  firm  is  qw  =  9,  the
corresponding price is PW = c.  One can calculate the profits of the firms. After dividing
each profit  by & , which does not change the structure,  the game has the following form:

 qN,PA'  (qN, Pw) QW,PN) (qw,pw)

<qN,PN) 2a-2c, 2a-2c 2a-2c, 0 2a-2c, 2a-5c a-4c, 0
(qN,PW) 0,2a - 2c 0,0 0,2a - 5c 0,0

(qw, PN)     2a- fc, 20- 2c    2a- Bc, 0    2a- 542a- 5c     a - 740
(qw,pw) 0, a - 4c 0,0 0, a - 7c 0,0

The pure (without experimentation) imitative process has four stationary states on the

diagonal of the bimatrix. Now let us introduce experimentation. Consider the Cournot-
Nash stationary state in which both firms play  qN,PN · Experimentation with QA,PW)

or (qw,PN) cannot bring a higher profit than that of the firm that does not experiment.
If a  > 4c, experimentation  with  (qw, pw) cannot bring a higher payoff either. All other
stationary states are upset by experimentation  with  (qN, PN)  by  one firm. Therefore,  if
a > 4c, the Cournot-Nash outcome has weight one in the limit stationary distribution
and is played in the long run.

If a  5  4c,  both the Cournot  (qN, PN)  and the competitive  (qw, pw) outcomes are Nash
equilibria of the game above. Experimentation by one firm is enough to upset any of the
stationary states, for example  (qN, PN) is upset by one firm moving to  (qw, piv). The state

(qw,pw) itself is upset  by one firm experimenting with  (qN, Pw).   We need  to show that
the Cournot-Nash outcome can be achieved from other stationary states with no more
experimentations than any other stationary state. Using the graph-theoretic techniques
introduced to evolutionary game theory by Kandori et al.  (1993) and Young (1993),
which are described in the Appendix 3.A, we can show that the Cournot-Nash outcome
has  a non-zero probability  in the limit stationary distribution  in  the game above7.   In  the

7For  the game above, the limit stationary distribution puts weights  (1,1,0,  ) on stationary states
 qN,PN ,  N,PW ,   W,PN ,  4W,PW ) respectively.
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general case, a similar reasoning gives

Theorem 3.2 In the model of imitation and aperimentation described above the limit
stationary distribution put a non-zero probability on the Cournot-Nash outcome if the
grids rg and rp are jine enough.

The formal proof is in the Appendix 3.A.
Notice that in the example above the Walrasian outcome also has a strong position

in the limit stationary distribution. In general, if the grid is fine enough, it has a non-
zero weight too, since, unless the process is already in the Walrasian equilibrium where
marginal benefit equals marginal cost, it is always possible to undercut slightly the other
firm in price and expand capacity so that the deviating firm's profit does not change but
the remaining firm's demand decreases thus its profit decreases. The remaining firm is
then forced to follow the deviation.

There are other states of the process that are stochastically stable. Any state  (q, p)
that has the property that a firm playing (p, q)  has a higher or equal profit than a firm
playing (qN,PN) is Stochastically stable. Such states lie above the q = f  line, that is,
in such states q > 2 81. Since the Walrasian outcome  is also stochastically stable, states
that have the property that a firm in such a state has a higher or equal profit than a
firm playing the Walrasian strategy, are long run outcomes too. Such states lie below the
q  =  2 21  line,  that  is,  in such states  q  <  91.   In the example above, the state  (qN, pw)  is
such a state. For any price p between the Cournot-Nash and the competitive price there
exists a set of capacity choices q such that (p, q) is stochastically stable.

The twoostage game considered in this section gives also an answer to the question
whether the imitation and experimentation dynamic always leads to the outcomes that
are Nash equilibria of a game where absolute payoffs are replaced by relative payoffs.
Consider the example with two strategies, the Cournot-Nash one and the Walrasian one,
and let us take particular values for the parameters, a=2.b=c=1. The bimatrix of
relative payoffs is

 N,PN        N,PIV       q,V, PN       9W,P,V 
 qN,PN) 0,0 2,-2 3,-3         -2,2

(qN,Pw) -2,2 0,0 1,-1 0,0

(qw,PN)   -3 3    -1 1 0,0 -5,5
(qw, pw)         2,-2 0,0 5,-5 0,0
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Let us denote by /1,82,83,84 (921, 9'2, 4'39 914 ) the probabilities with which the strategies
are  played by player  1   (player  2).    The Nash equilibria  of  this  game are given  by  81   -

Pl -0,8 2 5  ,P 2 5  ,  3-  23 -Q,0 4 -1-82,  24 -1-  02· Strategy (qN, PN 
is never played in an equilibrium while the limit stationary distribution of the imitation
and experimentation dynamic places a non-zero weight on it. Therefore, in this game the
set of long-run outcomes of the imitation and experimentation dynamic is larger than the
set of Nash equilibria of a game where absolute payoffs are replaced by relative payoffs.
This shows that it is not generally true that a long-run outcome of the dynamic is a Nash
equilibrium of the relative payoffs game.

This section showed that imperfect imitation, in distinction from perfect imitation,
may lead to the outcome corresponding to a Nash equilibrium in a Cournot type game.  In
this outcome firms earn higher profits than in the competitive outcome, thus imperfection
in imitation improves efficiency.  The next section considers another modification of the
imitation dynamic, namely a local interaction model.

3.4 Random Matching and Local Interaction

In this section we consider models with number of locations m > 1. Specifically, we
assume that there is a large (infinite) population. Thus, there is a large (infinite) number of
locations. The individuals in the population are randomly assigned to locations (matched)
to play an n-player Cournot oligopoly type game described below.

Let us first consider the imitation process without experimentation. We return to the

perfect imitation setup of section 3.2. We focus on the analysis when there are only two
strategies present in the population. This is not a strong restriction since with imitation
only, the number of strategies in the population cannot increase but can decrease from an

arbitrary situation to the situation with no more than two strategies.  We call the situation
with only two strategies a two-strotegy contest. If there is a strategy s that wins every

two-strategy contest without experimentation, then such a strategy is very likely to be
the long-run outcome of the process since any other monomorphic state of the population
can be upset by experimentation with s by a small proportion of players, while the state
where everybody plays s cannot be upset by experimentation with other strategies.

The Cournot oligopoly type game we consider has the following features. The finite

strategy set is ordered.  It can be interpreted as the set of possible production levels.

There  is one strategy, denoted  by  aN,  that is called the Cournot-Nash strategy. Suppose
that there are only two strategies present in the population, sN and some other strategy
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s.    Denote by KN(t) the payoff for a player playing the Cournot-Nash strategy when t
players in the match play the Cournot-Nash strategy (and thus n-l players play s).
Similarly, 7r(l) denote the payoff of a player playing s in the same situation. To represent
a Cournot oligopoly  type  game,  for any strategy  s  >   sN, we assume  that  both  7rN (t)
and 1(l) are increasing in 1, 7rN(t) < lr(t) Vt < n and 7rN(n) > 71·(n - 1).  We also
assume the worst possible  case  for the Cournot-Nash strategy,  7riv(n  -  1)   <  71·(0),  that
is, one deviator lowers the payoff of the other firms considerably. These assumptions
represent general properties of the Cournot oligopoly, namely that an upward deviation
from the Cournot-Nash strategy makes a firm worse off but hurts its competitors even
more. For any strategy s < sN we assume that both 7rN(l) and T(l) are decreasing in 1,

7TN(n) > r(n - 1) and lrN(1) > 7,-(0), that is, the Cournot-Nash strategy sN is a better
response to s than s itself.

According to the general model, players sample k other players. We assume that the
direct opponents in a match are always observed, so k=n+ k'. We assume that k' >0
and sampling of other players is uniform, i.e. the probability to observe any other player
is the same. As usual, after sampling the players copy the strategy that gives the highest
payoff among sampled.

Let us first consider strategies  s  > sN. Consider first  the  case  k'  = 1. Since  we
have only two strategies, the state of the system can be described by one variable, the
proportion of the population playing one of the strategies. Denote by at the proportion
of the population playing the Cournot-Nash strategy at time t.  If a player playing sN
is matched with other players playing the Cournot-Nash strategy, she gets the highest
possible payoff and therefore does not change her strategy  If the player is matched with
some players who play the other strategy s, she switches to their strategy (since it gives
a higher payoff and direct opponents are always observed) unless she samples a player
getting the highest possible payoff.  The last event occurs with probability a;' under
uniform matching and sampling. Correspondingly, a player playing strategy s does not
switch to the Cournot-Nash strategy unless he samples a player with the highest payoff.
In a large (infinite) population, the population imitation dynamic can be described as

at+1 - at - at(1 - cri-1)(1 - a;) + (1 - at)0;. (3.2)

The last term in the equation is the increase in the proportion of players playing the
Cournot-Nash strategy due to the observation of the highest payoff and the second term
on the right-hand side is the corresponding decrease. The equation has stationary states
0,1, and a'  c (0,1).  It is easily seen that 0 and 1 are stable stationary states in the
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sense that if the process starts near them, it converges to them.  Then a' is an unstable

stationary state. Thus, both states 0 and 1 have non-empty basins of attraction and the
process of imitation converges to one of them depending on the initial conditions unless

it starts precisely  at  a'.
As k' increases, the probability of sampling a player with the highest possible payoff

increases, approaching 1 as k' goes to infinity, if at > 0. The formula for the population

dynamic for a general k' becomes

at+1 = at - at(1 - al'-1)(1 - a;)k' + (1 - at)(1 - (1 - a;)k'). (3.3)

For any at > 0 it is possible to find k' large enough so that at+i 3 ot.  Then the

dynamic converges to the state a = 1, that is, everybody plays the Cournot-Nash strategy.
For production levels s lower that the Cournot-Nash one sN, an analogous reasoning

works even if we consider a situation that is worse for the Cournot-Nash strategy that the
original assumptions.   That  is, we consider the situation  when  71-N (2)  <  7r(n - 1) instead

of 7rN(n) > 7r(n - 1). Then strategy s brings a higher payoff unless there is a match
where  only one player plays  sN,  when sN gives the highest possible payoff. Formally,  the

population dynamic is then described by the equation

at+1  -  at - at(1 - (1 - at)n-1(1 - at(1 - at)n-1)k'
+(1 - at)(at(1 - at)n-2 + (1 - at(1 - at)n-2)(1 - (1 - at(1 - at)n-1)k'

where the second  term  is the decrease  in the proportion  of the population playing  sN,
and the last term is the increase in that proportion. As the number of observations of
others k' increases there is a larger chance to observe a player playing sN in a match with
players playing s. Thus, we have

Theorem 3.3 In the model with injinite population playing the Cournot oligopoly type
game described above with unifonn mndom matching and sampling, the Coumot-Nash
strategy wins even/ two-strategy contest if the sampte size k is large enough.

So far we considered the dynamic without experimentation. If experimentation is
introduced, a small number of experimentators in the state a=O i s enough to upset the
state, since for any at > 0 it is possible to find k' large enough so that at+1 > at· Then

a = 1 is the long run outcome of the process.

Remark 3.2 The Cournot-Nash strategy is the long-run outcome of the imitation and

el:perimentation process in the game described above starting from the situation when
only sN and one other stmtegy s an pmsent, if the sample size k is large enough.
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Palomino (1996) considers similar games and shows that the strictly dominated Wal-
rasian strategy survives if players have information about less than the whole population.
Our results differs from Palomino (1996) in two respects. First, the order of the limits is
changed: we let first the sample size k grow keeping the initial proportions al fixed. In
Palomino (1996) it is shown that for any finite k there exists initial proportion al such
that the process converges to the strictly dominated strategy Our result is the oppo-
site: for any initial proportion al there exists k such that the process converges to the
Cournot-Nash strategy. Second, by introducing experimentation we look at the stochastic

stability of the stationary states of the imitation dynamic starting from a situation with
only two strategies. Both monomorphic states are steady states of the dynamic but with
experimentation the Cournot-Nash strategy has an upper hand.

For a finite population a similar result can be achieved for a fixed local interaction

model. Suppose the locations of the players are fixed. Players in a location interact among
themselves but not with the outside world. However, each player also has information
about some players in other locations.    In the contest  of  sN  with a strategy  8   >   sN,  if
there  is a location playing the efficient Nash equilibrium  (siv, ···, s ), the players  in  the
location never change strategies since they have the highest possible payoff. Players in
other locations sooner or later sample a player in the efficient location and change their
strategy to the Cournot-Nash one. Therefore, the state when the whole population plays
the Walrasian strategy can be upset by exactly n experimenting players if they happen to
be in the same location. For the state when everybody plays the Cournot-Nash strategy

it is not enough. The Nash equilibrium is then the long-run outcome. The contest Oi SN
with an s < sN has features of a prisoners' dilemma with sN being the defecting strategy.
Even if n cooperators convert some other player to cooperation, a defector will exploit
these cooperators, which might induce the original cooperators to switch to defection too.
This comes from the fact than mutual cooperation does not give the highest payoff but
is beaten by the payoff of a defector against a cooperator.

Remark 3.3  In a jinite population with ji:Ted local interactions playing the Cournot oli-

gopolv tvpe game above the Cournot-Nash equilibrium is the unique long-run outcome for
any k' > 0,  if initially only sN  and one other strategy s are present.

In the context of industrial organization the model can be interpreted as one with
several identical industries each having the same number of firms, or several identical ge-
ographical or other markets. In the random matching model firms are randomly assigned
to markets while in the fixed local interaction model their locations are fixed. The firms
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can observe their own industry or market perfectly and they can also sample firms in
other industries or markets.

Our result is similar to the one of Robson and Vega-Redondo (1996). In their model

players can imitate the best on average action in the population. In 2 x 2 coordination

games the efficient equilibrium is selected.  In our model players can observe other locations

and if they observe a more efficient one, they imitate it.  In a sense players make their
own location relatively efficient by imitation of other locations.

The results presented in this section show that when imitating, it is good to have
some external information, that is, not only information about the direct opponents. The
intuition for the result is simple and resembles the intuition for imitation in decision

problems.  If the eflicient way to solve the game is never observed, as in the model of

section 3.2, it cannot be found by imitation. However, with external information, if the
efficient equilibrium exists somewhere in the population, it is found. The dynamic was
constrained to two strategy contests; if there are more strategies originally, it can happen

that the Cournot-Nash strategy is eliminated before the process goes down to a two

strategy contest. Winning every two strategy contest, however, is a feature underlying
stability of a strategy against an invasion by one other strategy, and we have demonstrated

that the Cournot-Nash strategy is immune to such invasions.

3.5 Conclusion
Several models of imitation in Cournot oligopoly games are considered in this chapter.

Though the results cast doubt on (perfect) imitation, imitative behavior is not as unattrac-
tive as it may seem: taken with care, it produces plausible results. Actually, one of the
most celebrated strategies   in the repeated prisoners' dilemma,    " tit- for-tat" is nothing
else than imitation of what the other player did in the previous period (though it does
not  take into account the payoff). Applied  with  care,  that is starting from cooperation,

"tit-for-tat" "solves" the dilemma. Therefore, imitative behavior should not be rejected
without considering the game at hand.

Indeed, in the chapter we demonstrated that imperfection in imitation, and separation
of imitation and interaction may have a Nash equilibrium as the outcome. Though for
the latter model (separate imitation and interaction) the result is not surprising, since we

require that players have more information than in perfect imitation, for the former model

the result is surprising since imperfection reduces the information available to the players.

This  shows  that  " as if" rational behavior  can be achieved  by an increase in rationality
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(using more information) as well as by a decrease in rationality (using less information).
The model of imitation presented here is applicable only to symmetric games. Still,

asymmetric games might be considered. For example, in a sequential extensive form game,
it is possible to imitate the preceding player move. In chess, for example, there was a
(wrong) belief that if Black imitates White, it can achieve a draw. Of course, in chess it is
not true, but there might be games where it is. More applicable to economics, particularly
to industrial organization, is the situation when there are asymmetries in information and
a less informed agent (firm) may find it profitable to imitate a more informed agent (firm).
Such situations are not considered in this chapter but the ones that are considered show
that imitation does not necessarily lead to bad results.

Appendix

3.A    Proof of Theorem 3.2
The technique to work with the notion of stochastic stability was introduced into the
evolutionary game theory by Kandori et al. (1993) and Young (1993). First. we recall
a useful result for general Markov processes with perturbations. In its presentation we
follow Young (1998, Ch.3).

Let Po is a finite Markov chain on the state space Z.  A set {PE} of perturbed processes
is regular if VE E (0, E'} P  is irreducible, Vz, z' C Z lim _011, = Pl„ and if PA,  > 0
then 3r(z, z') such that 0 < limE-0 -&% < 00.  The real number r(z, z') is the resistance
of the transition from z to z'.  Each PE has a unique stationary distribution B . A state
z is stochastically stable if lime-„0 Be(z) > 0.

Suppose  that  Po has recurrent classes  El, ··•,Ek·   A  path  from  E,  to  Ej  is a sequence
of states < - (zi,··,zg),zi E Ei, zg € Ej. The resistance of the path is the sum of the
resistances of transitions (zi, zj):  r(<) =r(zi, 12) + ···+ r(zq-1, zq).  Let rij =min r(<),
where the minimum  is  over all possible paths  from  E,  to  Ej.

For   a given recurrent class   Ei, a i-tree  is a directed graph with recurrent classes   as
vertices such that

(i) each E, 4 E, is the source of exactly one edge;
(ii) from every  Ej  4 E, there  is  a path from  Ej  to  Ei.
The resistance of an i-tree is the sum of the resistances of its edges. The minimal

resistance over all i-trees is the stochastic potential of the recurrent class E,.
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Lemma 3.1 (Young (1993))  Let {P } be a regular set of perturbed pTocesses. Then

lim£-o Be exists and the stochastically stable states are the ones contained in the TecurTent

classes of P with minimal stochastic potential.

The proof of Theorem 3.2 will be based on two lemmas. Recall that the demand

function is denoted by D(p) and the inverse demand function is denoted by P(Q). Though
the state is specified by the strategies of both firms   0'Pl ,  e,PAhthe state where both
firms  play  the same strategy  (q, p) is denoted simply  by  (q, p). Recall  that the grids  are

chosen is such a way that Vq they contain p such that p  =  P(2q), or, equivalently, q  =  29&.

Lemma  3.2  V(q, p)  with q > one  experimentation is needed to arrive  at  (DP, p)

Proof. Since q > 2 31, the firms oversupply the market, that is, they both sell actually
only EP .  Thus, if firm i reduces qi to EP, it has the same revenue but a lower cost, and,
therefore, a higher profit. The other firm follows.  i

Lemma 3.3 V(q,p) with q < 2 21  one  experimentation is needed to arrive  at  (q, P(2q)).

Proof. Consider  such  (q, p)   that  q<   2931.     If  firm i increases price  to  P(2q),   its

demand is still q as well as the demand of the other firm. Therefore, the revenue of the

deviating firm is higher, while the cost is the same. The other firm imitates.  I

We are ready for the main proof.

Proof of Theorem 3.2.   Let Po be the imitation process without experimentation.
The set of perturbed processes is {PA} where A is the experimentation probability.  The
set is regular since the transition probabilities of the perturbed processes are polynomials

in A.

By  RBmark  3.1 the recurrent classes  of  Po are states where both firms  play  the  same
combination of capacities and prices  (p, q).   Thus, the imitation process without experi-
mentation has (v+ 1)(w+ 1) recurrent classes (recall that v is the cardinality of the capacity
grid  and  w  is the cardinality  of the price space grid). The resistance  of a transition  from
one recurrent class to another is always at least 1, since at least one experimentation  is
needed for it.

Since there are (v + 1)(w + 1) recurrent classes, the minimal i-tree for any of them has
at least resistance  (v + 1)(w + 1) - 1, therefore the minimal stochastic potential  is at least

(v +  1) (w +  1)  -  1.   We will construct  a tree  with such a resistance for the state  (qN, PN ·
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First, consider arbitrary (q,p) with q 96  21.  If q > 2121 by Lemma 3.2 we can arrive at
the curve q =  DP by decreasing capacity with one experimentation.  If q <  EP by Lemma
3.3 we can achieve the curve q - D  by increasing price with one experimentation.
Therefore, the resistance of the transitions from (q, p) with q 96  .8 1 to (q, p) with q = 9'1
is 1.

Now  consider an arbitrary  (q,p)  with  q  = 2P. First consider  q  < qN Suppose
one firm deviates  to  (qN, PN) ·    Since  PN   <  p  and  qN   <   D(PN) the deviating firm sells
qN and has a positive profit since it receives the profit equal to the profit in the Nash
equilibrium.  If qN 2 29, the remaining firm does not sell anything, thus having zero
revenue and nonpositive profit. Therefore, the remaining firm will follow the deviation.
If qN < 29, the remaining firm sells the residual demand q' = 2q - qN < q at price

p = P(29) = P(q' + qN), still producing q.  By the definition of the Nash equilibrium
P(2qN)qN - C(qN) 2 P(q' + qN)q' - C(q'). The left hand side expression is the profit of
the deviating firm, the right hand side is the profit of the remaining firm if it would have
capacity q'; since q > q' the profit of the remaining firm is even smaller.  Thus, the profit
of the deviating firm is higher than the remaining firm and with one experimentation we
have arrived to the Nash equilibrium.

Consider  now an arbitrary  (q, p)  such  that  q  2  qN  and  q  =   2,1 (or, equivalently,
p = P(2q)). Suppose one firm deviates to the next available point on the grid and on the
curve q = l», that is, the deviating firm plays (q + 8, P(2(q + 6)). Since the deviating
firm has lower price, it sells all its capacity and its profit is (q + 8)P(2q + 26) - C(q + 6)
The remaining firm sells only D(P(2q)) - (q + 6) =q-6>0 since 5 can be chosen to
be smaller than qN· The profit of the remaining firm is then  (q - 6)P(2q) - C(q).  The
difference in profits between the deviating and the remaining firm is (2P(2q) + 2qP'(2q) -
C'(q))6 +0(62). By choosing an appropriately small 8',  V6  5  6'  the sign of this expression

is determined by the sign of 2P(2q) + 2qP'(2q) - C'(q).
Let F(q) := 2P(2q) + 2qP'(2q) - C'(q). Then F,(q) = 6P'(2q) + 4qP"(2q) - C"(q).

Since P(q) is decreasing and concave, the first two terms are negative, and since C(q) is

convex, the last term is also negative. Therefore, F'(q) < 0. Then F(q) is decreasing
and there exists a unique 4 such that F(4) = 0, Vq < 4 F(q) > 0, and Vq > 4 F(q) < 0.
This  means that along the curve  q   =   201,   34  such  that  Vq   <   4 a deviation  to  q  +  8
gets imitated, and Vq > #a deviation to q-6 gets imitated. The process can arrive to
(4, p(24))  Cor to the point of the grid closest to it) by unilateral experimentations along

D(p)q--27.
We have shown above  that 4 cannot be smaller  than (IN since  Vq  <  qN,  a  firm  at  qN
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gets   higher profit. Therefore,   4   2   qN·     If  4   =   qN   then   we   are done. Consider  4   >   qN·

Suppose the firms  are  at  ( , P(24))   (or  at the point  of  the grid closest  to it). Consider
now that one firm experiments with (qN, PC  +  N))· The profit of the experimenting firm
is 72 - qNP(q + qN) - C(qN), the profit of the other firm is T = 4P(24) - C(4).  The
difference 71-' - 71' = qNP(4 + qN - C(qN)- 4P(24) + C(0) = qNP(2qN)- C(qN) + qNP(4 +
yN) - qNP(2qN) - 4P(2 ) + C(4).  By the definition of Nash equilibrium 7r' - ir 2 4P(4 +
qN) + qNP(4 + qN) - qNP(2qN) - 4P(24). From the assumptions on the inverse demand
function it follows that P"(q + q')q + 2P'(q + 4)  < 0, which implies that  (P(q + q')q)"  <  0,
or that P(q + q')q is concave for any q, q'.  The last fact implies that P(aqi + (1 - a )q2 +
q')(aql + (1 - a)q2) > aP(qi + q')qi + (1 - a)P(q2 + q')e Vqi, 72, q' Va E (0,1) Consider

qi = 2qN, q2 = 24, q' = 0, a =  .  Then we have (4 + qN)P(4 + qN) > qNP(2qN) + 4P(24),
that is, 7r' - 71- > 0. Therefore, a firm experimenting with (qN, P(4 + qN)) gets a higher

profit and gets imitated. If P(4 + q ) does not belong to the grid, the grid can be made
finer until the point of the grid closest to P(4 + qN) brings a higher profit. Observe that
making the grid finer does not change 4, the point to which the process can arrive along

the curve q = 2221 by one experimentation.
Finally,  from  (qN, P(4 + qN)), one arrives to  (qN, P(2qN))  by one experimentation

since P(4 + (IN) < P(2qN)·  We have constructed a i-tree for the Nash equilibrium with
resistance  of each edge equal  to  1,  thus the resistance  of  the  tree  is  (ti  +  1)(w  +  1)  -  1,
which is the minimal possible resistance among i-trees for any stationary state. Therefore,
the Nash equilibrium has non-zero weight in the limit stationary distribution, that is, the
Nash equilibrium is stochastically stable.  m



Chapter 4

Indirect Evolution in Duopoly

4.1     Introduction

A fundamental assumption in economics is that economic agents care only about their

own payoff or profit and do not take into account the payoff or profit of others. This point
was defended by Alchian (1950) and Friedman (1953) by stating that if it were not the
case, agents not maximizing their profit would be eliminated by evolution. It has been
shown recently that in a strategic interaction context with complete information this is
not necessarily true (see, e.g. Bester and Guth (1998) and Kofkesen et al. (1999)) while
an incomplete information setting supports the claim (see Ely and Yilankaya (1997) and
Ok and Vega-Redondo (1999)).

This chapter applies the indirect evolution approach, described informally below and
formally in the next section, to games which can arise from differentiated product oligopoly

games. The indirect evolution approach, initiated   by  Gath and Yaari (1992), works
on preferences rather than on strategies. The material payoff game is given, but the
players may have preferences that differ from maximization of the material payoffs.  They
play the game with their subjective preferences. Players are either rational, or learn

fast enough so that they play an equilibrium of the game with subjective preferences.
Given equilibrium strategies, one can calculate the fitness of a player by substituting the
equilibrium strategies into the material payoff game. Evolution selects preferences that
have a higher fitness.  We are interested in the stable stationary points of the evolutionary
process, that is, such preferences that the population is robust to invasion of a small
number of mutants with some other preferences. These points are the evolutionarily
stable strategies of a game where the strategy sets are all feasible preferences and the

65
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payoffs are the material payoffs corresponding to the equilibrium strategies of the game
with given subjective preferences.

Evolution is assumed to work on preferences in a large population of players who are
randomly matched to play a two-player game. In the game they are either able to find an
equilibrium or learn to play it sufficiently fast so that evolution uses the material payoff
outcome corresponding to the equilibrium strategies. In the duopoly context evolution
can be interpreted as a cultural phenomenon changing preferences (priorities) of a given
firm as it observes profits and priorities of other firms in other duopoly markets.

Bester and Guth   (1998) have analyzed the model with preferences restricted   to   a
convex combination of egoistic (maximizing own profit) and altruistic (maximizing the
sum of profits) preferences. In a quadratic setting they showed that (partial) altruism is
evolutionarily stable with strategic complements. With strategic substitutes no altruism
survives and purely egoistic preferences are evolutionarily stable. The last result appears
because the preference parameter is restricted to lie between egoistic and altruistic values.
We remove this restriction on the preference parameter by introducing spitefid preferences

(maximizing  the  difference  of profits)

Altruism resembles positive reciprocity in the sense that one may want to reward
the opponent who is good to him. The spiteful preferences, in turn, resemble negative
reciprocity in the sense that one may want to hurt somebody who lets him down, and
therefore they are not uncommon. They are also linked to imitative behavior which was
analyzed in the previous chapter, since caring about the relative payoff means that a
higher profit of the opponent makes you feel worse.  We show that (partially) spiteful
preferences are evolutionarily stable when egoism was stable in Bester and Gath (1998).

Bester and Gath (1998) make a parallel between the strategic properties of the game

(complementarity or substitutability) and the result of evolution. Strategic complemen-
tarity or substitutability are determined by the slope of the reaction function. Since
the reaction function depends on (subjective) preferences strategic properties can be sub-

jective or objective (when we consider the material payoff game). Evolutionarily stable

preferences determine subjective strategic complementarity or substitutability. Therefore,
subjective strategic properties are the result of evolution while objective strategic prop-
erties of the material payoff game are given data that determine how evolution works.
The basic element of the model is the material payoff function and its properties, such as
super- or sub-modularity can provide some light for the result. We will see, however, that
they are not always enough to provide an unambiguous answer for games going beyond
standard differentiated product oligopoly games but which have a similar structure.
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Finally, if the preferences of the opponent are not known, we show that maximizing
the material payoffs is the only evolutionarily stable preferences and, therefore, with
incomplete information the claim of Alchian (1950) and Ffiedman (1953) is valid in the
context analyzed in the chapter. As referred in the first paragraph of the chapter, this
result holds for several indirect evolution models.

We proceed as follows. In Section 4.2 we introduce the indirect evolution approach
and consider the Bester and Guth (1998) framework with spiteful preferences. In Section
4.3 we relax some restrictions of their model and illustrate that subjective strategic com-
plementarity or substitutability is endogenously determined. Section 4.4 considers the
model with incomplete information. Some conclusions are drawn in Section 4.5.

4.2 The Duopoly Model with Spiteful Preferences

4.2.1 The Indirect Evolution Approach
Here we formulate briefly how the indirect evolution works for general games.  In the
following subsection we analyze the model of Bester and Guth (1998) with spiteful pref-
erences.

Guth and Yaari (1992) initiated the indirect evolution approach to the evolution of
preferences in games. Consider a symmetric two-player  game  G   =   ({ 1,2}, S, U).     De-
note the strategy of player 1 by sl and the strategy of player 2 by s2. The payoffs

Ul (81,82),U2(81,82)   are  the   material  payofs  or the jitness of players   1   and  2.   Let  W

be a subset of the set of functions from strategy profiles (or outcomes) to real numbers,

W C {V(·) : SY = R}. The set W contains the possible subjective utility functions of
the players and is called the set of feasible preferences.

Consider  now  a  game  G  =  ( {1,2}, S, {14, 1/2})  with  the same strategy  sets  but  with
players whose preferences are represented  by the subjective utility functions  Vi (Sl, S2),
1/2 (81, s2)  €  W.   We  can  find an outcome  of G'  that is considered plausible, for example,
a Nash equilibrium of G'.  If G' has a unique equilibrium, it is natural to assume that the
equilibrium is played. Even if G' has multiple equilibria, there are ways to select one of
them (see Harsanyi and Selten (1988) or the learning process of Kandori et al.  (1993)).  We
will address the problem of non-uniqueness of the equilibrium in our particular example
later. Observe that we assume  that the subjective utility functions  14,1/2 are common

knowledge.
Assume  that  for any given  pair of preferences  14, 1/'2  from  W a unique outcome  of
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the game is found, together with the corresponding strategies 4, sl.  That is, there is a
function F from W x i i/t o the set of strategy profiles S x S that gives a "solution" for
each G'.  Then one can find the fitness of a player with given preferences in the particular
match by substituting the equilibrium strategies into the material payog function.  Let
us denote the fitness of player  1 by U;(14,1/2)  := Ul(F(Vi, 14)). The material payoff for
player 2 is found by symmetry, that is, U;(Vi, 1/ 2) = U;(V,i Vl)

Define an evolutionary  game  r  =  ({1,2}, W, U-)  as a symmetric  game with strategy
sets W and with payoff function U;(Vi, 1/'2).The definition of evolutionary stability for
one-population symmetric games is standard (see, e.g. Weibull (1995, Ch.2))

Definition 4.1  Strategy V*  is evolutionarity stable if
(a) U; (V*, V*) 2 U;(K V') W € W,
(b) if V 0 V- and U;(V*, V') = U;(K V-), then Uaviv)>67(KV).

Evolutionary stability is a refinement of Nash equilibrium since condition (a) coincides
with the condition for Nash equilibrium. Moreover, if a Nash equilibrium is strict, it is
evolutionarily stable since then condition (a) is satisfied with inequality and condition (b)
is irrelevant.

The evolutionarily stable preferences are the ones that are evolutionarily stable in the
evolutionary game I'.

Definition 4.2 Preferences V' are evolutionarity stable if they are an evolutionarity
stable strategy in P.

The story behind the definition is as follows. Suppose that an arbitrarily small pro-
portion of mutants with preferences V appears in the monomorphic population of players
with preferences V*. Since the proportion is arbitrarily small what matters more is the
performance against the original preferences V- rather than the performance against the
mutant preferences V. Therefore, if U;(V*, V-) > U;(K V-) the mutants will bedriven
out of the population.  When U;(V-, V') = U;(K V-) then the matches against the mu-
tants start to play a role and the mutant will grow if it has a higher material payoff against
itself than the incumbent has against the mutant.

Note that the game F has as a strategy set the set of feasible preferences W. Since
the set of equilibria of game I' (in particular, the set of evolutionarily stable strategies)
is affected by the changes in the strategy set, which preferences are evolutionarily stable
depends on W.
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Finding the evolutionarily stable preferences allows us to say which preferences are

robust with respect to an invasion of a small number of mutants in a large population
with random matching. Evolutionary stability does not necessarily guarantee that an
evolutionary process will converge to the evolutionarily stable strategy  It can also happen
that there is no evolutionarily stable strategy. However, we will see that this concept
allows us to draw conclusions in certain games.

4.2.2 The Quadratic Example

Let  G  =  ({1,2}, R+, U)  be a symmetric  game with strategy  sets  of all nonnegative  real
numbers. Let x 2 0 b e the strategy of player 1 and y 2 0 b e the strategy of player 2.
The material payoffs of the game are given by

Ul(Z, y)-x(ky +m-Z),  UY(z, y)-y(kz +m-y) (4.1)

where -1  <  k  <  1, k 4 0, m  > 0. These restrictions, together with the assumptions on
preferences introduced later, will guarantee uniqueness of the equilibrium in games with

any feasible preferences .
Such a payoff function appears, for example, in differentiated product oligopoly games,

where strategies are quantities produced. The demand function is linear. If the products
are complements (k > 0), an increase in the quantity of one product leads to a reduction
in its price  but  to an increase  in the price  of the other product, since the other product
becomes more valuable. If the products are substitutes (k < 0), increasing the supply of
one product reduces the price of both products.  Then the above functions are the revenue

functions of the firms producing the two products and, if costs are zero, they coincide with
the profit functions.

The players do not necessarily maximize their material payoffs.  The set of feasible

preferences W consists of the following linear combinations of own and opponent's payoffs:

14 X, y) - Ul(I, y  + QU2(X, v),  1/2(K, v) = U2(I, y) + dul(Z, y) (4.2)

where a, B E  [-1,1] are the preference parameters.  Thus, the subjective preferences are
characterized by the preference parameter. The set W is then equivalent to the interval

[-1,11. This formulation is slightly different   from  the  one of Bester and Guth   (1998)
but easier to work with. The bounds on the parameters will guarantee the uniqueness
of equilibrium.  We will relax them later overcoming the problem of non-uniqueness by
extending the fitness function.
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If a-0, player 1 maximizes his material payoff. A preference parameter a>0 means
that the player is altruistic, that is, takes into account the opponent's profit with a positive
weight, while a<0 represents spiteful preferences, that is, ones where the opponent's
profit reduces one's utility. The same description is valid for player 2's parameter B. The
parameters 4 B are common knowledge for the players. This assumption is important
and the consequences of its relaxation will be analyzed in Section 4.4. The evolutionary
game  is  r  =  ({1,2},  [-1,11, U'), where  U*  is the fitness function whose closed  form  in the
quadratic example is found below.

When two players are matched they maximize their corresponding subjective utility
functions Vi, 1/2 with parameters a, B. The reaction functions derived from the first order
conditions (the second order conditions are always satisfied) are

x- k(#+1)ytm k(B + 1)x + m
, Y =                                        (4.3)22

Following Bester  and  Guth  (1998),   we  say  that the strategies are complements,   or
that the game exhibits strategic comptementarity, when the reaction functions are upward
sloping. The strategies are substitutes,  or the game exhibits strategic substitutability,  if the
reaction functions are downward sloping.  The sign of the slope of the reaction functions
above depends only on k since a t l and B t l are always nonnegative.  If k>0 then
the reaction functions are upward sloping, thus strategies are complements. If k < 0, the
reaction functions are downward sloping and strategies are substitutes.

The unique equilibrium of the game is given by

x. (a, B)= v. (a, B) - (4.4)
m(k(a + 1) + 2) m(k(B + 1) + 2)

4 - k2(a + 1)(B + 1)' 4 - k2(a + 1)(B + 1)
Given the equilibrium strategies, the fitness of the player with preference parameter

a is the material payoff she gets in the equilibrium. This defines the evolutionary game
F on preferences.

The material payoff of player 1 as a function of preference parameters through the
implied equilibrium strategies of both players is

U;(a, B) =
(4.5)

m2(k(a + l) + 2)(k20(B + 1) + k(a - 1) - 2)
(4 - k2(0 + 1)(0 + 1))2

while the material payoff function of player 2 satisfies U;(B, a) = U;(a, B). The function
U; (a, B) is differentiable given the restrictions on a, B, and k.

An evolutionarily stable strategy for the evolutionary game F on preference parameters
is a parameter a' satisfying
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(a) U; (a*, a') 2 UT(a, a') Va e [-1,11,
(b) if a 4 a' and U;(a*, a') - D;(a, a'), then U;(a*,a) > UT(a, a).
Condition (a) requires  (a*, a')  to be a symmetric equilibrium of the evolutionary

game r. To check condition  (a),  we fix the second argument  of U; (a, B), find maxima of

U; (a, B) with respect  to the first argument and equate the arguments. The first order

condition is

k(B + 1)(k +2)
-                                                       (4.6)a  Bk(k-2) tk2-2k-4

After equating  B  to a, possible candidates  for an evolutionarily stable preference  pa-

rameter are

k,2 2-k
k+2   a* = k

(4.7)

The boundary values a' = -1 and a' = 1 are possible candidates too. These four

values are the only possible candidates for evolutionary stability. Consider B = -1. Then

U;(0,-1) - U;(-1,-1) = "'2(k -2)2 _ Elif;+11 - m &2  > o.  Thus, a. = -1 cannot be
evolutionarily stable as it is not a best reply against itself in the evolutionary game r.  If
B = 1 then aa la=1 8(k+1)(k-1)2

BU'ta,11 1   _ m2 k2
< 0 thus U/(a, 1) is decreasing in a around a = 1.

It implies that there exist an a' <1 such that U; (d, 1) > U;(1,1). Thus,a=lis not a
best reply against itself either and, therefore, is not evolutionarily stable.

Note that, for -1 <k<1,a;i s never between -1 and 1 thus we can ignore it.
Condition (a) of evolutionary stability for a& says

kk  k
Uy- -)-U'(a -) > 0 Va «=*

1 2-k'2-k 1 '2-k -
m2(k + 2)(k - 2) _ m2(k + 2)(k - 2)(k2(0 + 1)2 - 4)

16(k - 1) 4(k2(a + 1) + 2k - 4)2           -
>  O Va *=>

(k2(a + 1) + 2k - 4)2 - (k2(a + 1)2 - 4)4(k - 1)   2  0 Va *=>
(k(a + 1) - 20)2   2  0 Va.

The last inequality is always satisfied and turns to equality  only  when  a   =   iS.

This means that a; is the unique best response against itself, that is, it is a strict Nash

equilibrium of the evolutionary game F, and, therefore, evolutionarily stable. We have

Theorem 4.1 With preference parameters from  [-1,1},in the  quadratic model with -1  <
k <  1,  k 0 0,  the unique evolutionarity stable pnference parameter is a' =  5  .
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Figure 4.1: Evolutionary stable a.

This result extends the Bester and Gath (1998) example to spiteful preferences. For
positive k the result is the same: some amount of altruism is evolutionarily stable.  News
comes when k i s negative. If k<0 then a- <0. This means that spiteful preferences are
evolutionarily stable when the strategies of the game G are substitutes. An interesting
difference between positive and negative values of k is that as k -+ 1, 0* -+ 1, that is,
altruism becomes " perfect"   as the degree of complementarity between strategies becomes
perfect, while if k  -,  -1,  a'  --+  -f,  that is, spite does  not  gain full strength  even  when
the degree of substitutability is perfect. These results are illustrated in Figure 4.1.

The intuition for the result is as follows. There are two material effects of a change
in the preference parameter of a player. One is the change induced by the change in own
equilibrium strategy and the other is the change induced by the change in the opponent's
equilibrium strategy. A preference parameter can be evolutionarily stable when the two
effects compensate each other, thus, no other nearby preference parameter has a higher
material payoff.

Notice that an increase in a player's preference parameter always increases the equi-
librium strategy of the opponent. The material payoff function is such that with strategic
complements (k > 0), a higher strategy increases the opponent's payoff, thus a player
who is more altruistic should increase her strategy that through complementarity leads
to an increase in the strategy of the other player. With strategic substitutes (k < 0)
a lower strategy increases the opponent's payoff, thus a more altruistic player chooses a
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lower strategy, but the strategies are substitutes so that the other player chooses a higher
strategy in the equilibrium. The choice of a higher strategy by the opponent leads to an
increase in the material payoff if k > 0, and to a decrease if k < 0.

With strategic complementarities (k > 0), an increase in a player's preference pa-
rameter means a higher strategy of the opponent and a higher own strategy. A higher
opponent's strategy leads to an increase in the material payoff. A higher own strategy
means an increase in the opponent's profit.  If the players are spiteful, such an increase

has to be compensated in the equilibrium by an increase in own profit. Then both ef-
fects point to an increase in the material payoff; therefore, a higher preference parameter
would have performed better. Thus, spiteful preferences cannot be evolutionarily sta-
ble. Altruistic preferences require that in equilibrium an increase in the profit of others
is offset by a decrease in the own profit. Then the effects point to different directions
and when they offset each other, such altruistic preferences are possibly evolutionarily
stable.

With strategic substitutes   (k   < 0), lowering one's level of altruism leads  to  a  de-
crease in the opponent's strategy and to an increase in the own strategy.  The de-
crease in the opponent's strategy leads directly to an increase in the material pay-
off. The increase in the own strategy means a decrease in the opponent's profit; since
players are altruistic, in the equilibrium this decrease has to be compensated by an
increase in own material payoff.  Thus both effects work in the same direction and
altruistic preferences cannot be evolutionarily stable with strategic complementarities.
For spiteful preferences the equilibrium strategy is such that the decrease in the op-
ponent's profit is compensated by a decrease in own profit; the effects work in dif-
ferent ways and when they are equal, such spiteful preferences are evolutionarily sta-
ble.

An implication of the above result is that in games with strategic substitutes it
pays to be spiteful i.e. to care also about relative payoff (though to a certain degree)

since lowering preference parameter leads to an increase in the material payoff.  In a
Cournot oligopoly, for example, it is evolutionarily stable to have preferences not only
over own profit but also over market share since maximizing own market share implies
minimizing the one of the opponent (see, e.g. Dufwenberg and Guth (1999)).  In a
Bertrand oligopoly it works the other way round, that is, it is evolutionary stable to
care about the opponent's profit to avoid the cut-throat competition leading to low
prices.
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4.3 Further Extensions

A logical step further than the extension of the preferences to allow spiteful ones is to
remove the restrictions on the preference parameter altogether thus allowing it to vary
from -00 to too.   When a can vary from -00 to too,  we can represent preferences such as

pure spite, i.e., minimizing the opponent's payoff (a  = -00), relative profit maximization
(a = -1), maximizing own material payoff (a = 0), maximizing the sum of the payoffs

(a = 1), pure altruism, i.e., maximizing the other's payoff (a-+ +00),and all preferences
in between. This range covers a much larger span of preferences than the original model
of Bester and Guth (1998)

One could argue that the extension of the preference parameter to a  >  l is not natural
and can lead to para.doxes. In my view, it is not true. First, 0<a<1 looks rather like
social planner preferences and can hardly be called altruistic at all. Real altruism means
that the other's payoff is more important than own, like risking own life to rescue others.
Second, altruism does not lead to paradoxes more than egoism does. For example, in
the Nash demand bargaining game with known preferences. the Pareto frontier contains
equilibria with altruistic preferences as well as with egoistic and spiteful preferences. In
complex environments, there could be no equilibria even with egoistic preferences. Thus,
one should not reject altruistic preferences from the start.

There are two reasons why the above approach does not generalize automatically with
this extension. The first reason is that if one keeps the restrictions z  2  0, y 2 0 then
corner solutions often appear. This would require further assumptions on the cases with
no or more than one equilibria than the ones below. Doing this would make the analysis
more complicated without changing the qualitative results. Furthermore, the assumption
of the nonnegative strategy space comes from the oligopoly interpretation of the game.
However, if one sticks strictly to the standard oligopoly interpretation, one has to check
also nonnegativity of the variables representing both quantities and prices. This would
complicate the analysis even further and lead to cases where no obvious extension of the
evolutionary game to cases with no equilibria would be possible. Therefore we remove the
nonnegativity restriction altogether and consider as strategy space the whole real line R.

Thus, the (symmetric) material payoff game is G' = ({1,2}, R, U), where U(z, y)  are
given in (4.1) with -1  <k<  1, k 0 0, m  > 0. The players maximize their subjective
utilities  (4.2) with preference parameters a, B E R.

It is possible to give an economic interpretation of the strategy space as the real line in
the differentiated products oligopoly. Suppose that the market has already accumulated
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stocks of the two products. Then firms may still sell on the market (positive quantities

supplied) or they may buy (withdraw their products) from the market (negative quantities
supplied). Again, the "demand" functions are linear. A negative quantity and positive
price for own product mean that a firm has to pay for withdrawing its product from
the market because the market wants to keep it. A positive quantity and negative price

mean that a firm has oversupplied the market and has to pay the consumers to accept its
product, or, alternatively, has to pay a fine for producing too much. A negative quantity
and negative price mean that the market wants to get rid of the product, so it pays the
firm for withdrawing the product. For example, when the products are complements,
such a situation may occur when the two products are not dangerous in combination but
each of them is dangerous in itself.

Other economic interpretations of the real line strategy space and the payoff function

(4.1) include bidding (or asking subsidies) for franchises when the proportions allocated
to each firm depend on the difference in bids  (asks), an effort game where an effort can
be positive (performing a task) or negative (destructing, breaking a tool, where the unit
payoff to a negative effort can be positive if the tool becomes dangerous, e.g.  out of

control), international duopoly where governments can impose taxes (or subsidies)   on

own firm, and investment games when a disinvestment (negative investment) is possible.
We do not focus on any particular interpretation but on the abstract features of the game.

The second problem is that there may be no equilibrium of the game with given
preference parameters, or there may be more than one (a continuum) of equilibria.  In
such a case the evolutionary game F is not well defined. A possible approach is to extend
the fitness function   U; (a, B)   to such preference parameters by continuity   in the first

argument.
It follows from the equilibrium strategies equation (4.4) that the game with preference

parameters a', B'  does not have a unique equilibrium if 4 - k2 (a' + 1) (13' + 1)  - 0.   For such

d, B' we extend  the  fitness  function  by  continuity  in  the  first  argument  as  U; (a'' B')  =

time-o,lim»o,U;(a, B). This limit always exists on the extended real line RU{foo}
We choose continuity in the first argument since then we can use first order conditions to
find an evolutionarily stable strategy.

The evolutionary game  is  F  =  ({1,2}, R, U-), where the closed  form of the fitness
functions U- is given in (4.5) and in the points of discontinuity it is extended as in the
previous paragraph. Given this extension of the fitness function, the evolutionary game
is well defined and we can apply the concept of evolutionarily stable strategy.  All the
derivations of the previous section go through except that now there are no boundary
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candidates and that a; = -&*2 from (4.7) is a legitimate candidate for an evolutionarily
stable strategy.  With the above extension of the fitness function U;(*-72) - f Va.
Condition (a) for evolutionary stability is satisfied with equality for any a. However,

67(-%2,0) =0< 67(0,0) = (tri), thus condition (b) is not satisfied and a; -- k:-2
is not evolutionarily stable. The proof of the evolutionary stability of al = 5h goes
through. We have

Theorem 4.2 Even with preference parameters from R,  in the quadratic model with -1<
k <  1, k 0 0,  the unique evolutionarity stable preference pammeter is a' -  3.S ·

Notice that the signs of the slopes of the reaction functions (4.3) depend now on
the preference parameters in an essential manner. Depending on whether the preference
parameter is smaller or larger than -1, the game changes from one with strategic comple-
ments to one with strategic substitutes and vice versa depending on the sign of k.  Thus, we
need to distinguish between objective strategic complementarity or substitutability (when
the reaction functions come from maximizing the material payoff) and subjective strategic
complementarity or substitutability (when the reaction functions come from maximizing
subjective utilities   that   may not coincide   with the material payoffs). The subjective
strategic complementarity or substitutability is determined endogenously, depending on
what value of the preference parameter is evolutionarily stable.

In order to avoid confusion between objective and subjective strategic properties, it is
better to use the notion of super- and sub-modularity. A twice differentiable function of
two variables U(I, y) is super-modular if > 0 Vz, y and it is sub-modular if Agi < 0
Vz, y.  Bulow et al. (1985) actually use this definition to define strategic complements and
substitutes. If players maximize the material payoffs then objective strategic complemen-
tarity and super-modularity are equivalent as well as objective strategic substitutability
and sub-modularity.

With   -1   <   k   <   1   if the function is super-modular  ( SIi   =   k   >   0)   then  the  game
with evolutionarily stable preference parameter a' = ih exhibits strategic complements,
while if the function is sub-modular (ai  =k<  0), the strategies  of the resulting  game
are substitutes. Thus, for -1 <k<1, there is still a one-to-one correspondence be-
tween subjective strategic complementarity (substitutability) and super-modularity (sub-
modularity). A natural question to ask is whether this property holds for other values of
k.

The parameter k measures the degree of interdependence between players' strategies.
Though the differentiated product oligopoly interpretation of the game is hard to justify
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with   I kl   >    1 (own product usually influences own price  more  than the other's price),
some other interpretations allow for Ikl > 1. For example, in the effort game, the relation
between tasks can be such that players perform tasks that are more important for the
other player; in international duopoly it can be that the production of the firm in the
other country is more important than the output of the firm in own country.

Given the extension of the fitness function, the evolutionary game on preference param-
eters is well defined for any k. Thus we only have to check the two possible candidates for
evolutionarily stable preference parameters  from  (4.7). The above proof that  a;  =  - &2
is not evolutionarily stable works for any k 0 0. Therefore, we are left with only al = ifs
to check.

The second order condition for aS to be a best reply against itself requires that

02U;(a, a j k2m2(k + 2)(k - 2)5 < 0.
&£%2 6=4 So **

512(1 - k)3      -

The last inequality holds when k €  [-2, liu [2,+00). For other values of k,  aS is a
strict local minimum, therefore it cannot be evolutionarily stable. When the second order
condition is satisfied, the proof that 01 is the unique global maximum against itself from
the previous section goes through. For boundaries one can check that al is evolutionarily
stable for k= -2 but not for k=l o r k=2. This gives us the following

Theorem 4.3 With preference parameters from R, in the quadratic model with k €
R, k 0 0, there is

(i) a unique evolutionarity stabte preference parameter a- = 5%  ifk € 1-2,1)\{0} u
(2,+00);

(ii) no evolutionarity stable preference parameter otherwise.

While for k f [-2,-1] the result is a natural extension of the previous result, indicating
that the evolutionarily stable preference parameter  has some degree of spite  (a-  =  - 
when k = -2), a new result appears when k > 2. Evolutionarily stable a* is negative
and larger than one in absolute value when k > 2.  Thus, a large degree of spite, up
to minimizing opponent's payoff (a' - -00 when k-2 from above) is evolutionarily
stable when the degree of interdependence between players' strategies is high, though it
is a positive interdependence!

The result also shows that the question posed above has a negative answer. For some
k  outside the interval  (- 1,1) no evolutionarily stable preference parameter exists,  so  we
cannot say anything about the properties of the game played with the evolutionarily stable
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preferences. More important, when k > 2, the material payoff function U(z, y) is super-
modular while the game with the evolutionarily stable parameter a' exhibits strategic
substitutes.  Thus, the property of subjective strategic complementarity or substitutability
of the game played with the evolutionarily stable preferences does not have a one-to-one
relation with super- or sub-modularity of the material payoff function.

4.3.1 General Payoff Function

A generalization of the material payoff function along the lines of Bester and Guth (1998) is
also possible with spiteful preferences. We denote the material payoff function U(z, y) :-
Ul (T, y)  to simplify notation. Assume  that the preference parameters belongs  to  a  set
W  C  R, W  3 0. Assume that the subjective utility functions V(Z, 1/)  :=  1/1(Z, Y)  =
U(x, y) + aU(y, x) are strictly concave for any a C W. Denote by U; the derivative of a
function U(Z,Y) with respect to the first argument and by g the derivative with respect
to the second argument. The notation for the second derivatives is analogous.

The necessary condition for evolutionary stability of a preference parameter a reads

eu(=·(afl·v. (°·m)10=0  - 0, where  I*, y' are equilibrium strategies.    By the chain  rule,  the
necessary condition becomes

U.ZI' + U;14'le=B = 0 (4.8)

The terms in the equation are the effects referred to in the previous section: the effect of
a change in own equilibrium strategy and the effect of a change in opponent's equilibrium
strategy.

The equilibrium strategies are found by maximization of the subjective utility function
V(z, y) = U(z, y) + aU(y, z)  and the corresponding function for player 2.  Then :rA, and
92 can be found by the implicit function theorem. Notice that a - B implies z* =y'
because of symmetry.  Then we have the following expressions for zi; and yy when a -B:

-U;(UL + aui)s. =
(4.9)

=         (Ux"x + QUA)2 - (LTV(1 + a))2'
(1 + a)UAU'

(4.10)14'   =   (Uf= + aU )2 - (UA(1 + a))2
Assume that the material payoff function satisfies (Ul + QUA)2 - (UA(1 + a))2 > 0

Va  E  W, Vz, y  2 0 Further, assume that  U   has the same sign for any z, y  2  0.   By
concavity of the subjective utility functions Ul + QUA < 0. Then sign(<) = sign(U&)
and sign(yA) = sign(ULUL)
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Suppose that UL > 0 and UL > 0, as in the quadratic example with k > 0. Then

xt'  > 0 and yw > 0. Further, from the maximization of the subjective utility function V it

follows that U; = -aU . Then equation (4.8) becomes -azt'+14'10=B- 0. Since both zA,

and 14' are positive, it can hold only for a > 0.  Then a < 0 cannot be evolutionarily stable

if U  > 0 and U  > 0.  The same result appears when (Ul + aU )2 - (UA(1 + a))2 < 0.
Analogously, a<0 cannot be stable with U; >0 and U A>O. The same reasoning gives

that a>0 cannot be evolutionary stable when UL < 0.
Recall that a twice differentiable function of two variables  U(I, y)  is  supeT-modular

if UA  >  0 Vz, V and it is  sub-modular if UA  < O Vz, y. Given this definition, we can
formulate the following theorem

Theorem 4.4 Suppose it holds for the material payoll'function U(x, y)  that sign( (Ul +
aUgy)2 - (UA(1 + a))2) = con.st 4 0, sign(UL) = const 4 0 for any a E W and any

r, y  2  0.   Then,  if the material payo/ function is super-modular only a>0 can be

evolutionarily stable and if the function is sub-modular only a<0 can be evolutionarity
stable.

The theorem extends the results to more general material payoff functions than the

quadratic one. Notice that the quadratic model of section 4.2 with the set W - [-1,11
satisfy the assumptions of the theorem but the models of this section do not satisfy

them since U  = kI does not have a constant sign. Another possible generalization is

the subjective utility function which  in the example above takes  the  form  V(Ui, U2)  -
Ul +OU2. Although it is difficult to establish analytical results in the infinite-dimensional

space of functions, the intuitive reasoning in the end of the section 4.2 may go through if

VA > 0 and VA has a constant sign and the theorem can be valid for this case too.

4.4 Incomplete Information

In the previous sections it was assumed that the players knew each other's preferences.

This assumption is rather strong. In this section we relax the complete information
assumption. Instead we assume that players know the distribution of preferences in the

population. This assumption is used also in other works considering indirect evolution
with incomplete information  (Guth and Peleg  (1997),  Ely and Yilankaya  (1997),  Ok  and
Vega-Redondo (1999)). Thus, each encounter is a Bayesian game where the set of types

is the set of feasible preferences (preference parameters) and the payoff to each type is

given by its corresponding subjective utility function V.
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The definition of evolutionary stability can be extended to the incomplete information
setting in the following way. Suppose the population is monomorphic with preference pa-
rameter a. To analyze the evolutionary stability of this preference parameter we consider
an invasion by a small number of mutants with some other preference parameter a'.  The
proportion E of mutants is common knowledge and arbitrarily small. The population is
large (infinite), so every member of the population faces the same distribution of types,
independent of his own type.  Thus, we have a Bayesian game with two types T = {a, a'},
with prior beliefs  on  the  set of types  {1  -  E, E},  and  with the subjective utility functions
for the two types

K,(z, y)= Ul Z, y) + autz, y),  1'1,(1:, Y) = Ul(Z, Y)+ 0 6 2(Z, Y) (4.11)

where U,(z. y) are given in (4.1).

We are looking for an equilibrium of the Bayesian game. Given equilibrium strategies
we can calculate the material payoffs of the two types. Denote the expected material
payoff of type a in the equilibrium by Ui (E)  and  that of mutant  type  a' by LT;,(E).

Definition 4.3 A preference parameter a' is evolutionarity stable with incomplete
information if BE'  >  0  such that U,;.(E) > U,;(E) for any mutant tpjpe a for any E €
(O, E')

Note that our definition is slightly different from the specification of mutations used
elsewhere in the literature. Ely and Yilankaya (1997), for example, consider non-atomic
distributions of preferences and, therefore, mutations with full support on the space of
preferences.  Ok and Vega-Redondo (1999) have a finite population and, therefore, players
of different types have a different view on the population composition. We use the above
definition since it is the closest to the one for the complete information. It captures the idea
that the (infinite) population is stable against invasion of an arbitrarily small proportion
of mutants with particular preferences, for any mutant preferences.  The only thing that is
changed with respect to the complete information case is that in each encounter a player
receives an uncertain payoff (depending on the type of the opponent).  In the complete
information case the payoff in an encounter was certain but the encounter itself was not.

We restrict ourselves to symmetric equilibria of the game. Let us denote the strategy
of player 1  by (zo, zo,) where z. is the strategy when the player is of type a and z.,  is
the strategy when the player is of type a'.  Let (y., yo,) be the strategies for player 2.  To
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find an equilibrium one has to solve

max (1 - E)21/1(ze,y=) + (1 - E)EK,(Zo, 1/0,) +
Zo,Za'

+ E(l - E)1/a, (Zo#,yo) + E21,1,(To''ya,) (4.12)

and the corresponding problem for player 2 which we omit because of symmetry. Since

we are looking for symmetric equilibria, Zo - yo and Z., = 110, in an equilibrium.
The solution of the problems leads to

m(aEk - a'Ek + 2)
Za =

2(ak(E - 1) - a'Ek - k + 2)'
m(ak(E - 1) + a'k(1 - E) + 2)

Ta' i
(4.13)2(ok(E -1) + a'Ek -k+2)

These are the strategies of the two types in the symmetric equilibrium.
The limit of the expected material payoff of type a in the equilibrium

m2(1 - ak)
lim(1 -

E)U; (Ia, I#,) + EU;(Ia, Ta)= . (4.14)
E- (ak +k- 2)2

while the limit of the expected material payoff for type a' is

m2(ak + a'k - 2)(ak - a'k - 2)
lim(1 - E)U; (za,, za) + EUT(Zo#, :Ea') - (4.15)E-'0 4(ak +k- 2)2

The difference between the two is

linj U: - lim UL = > 0 4=*k2mfan- a2)
E- E--*0

-
4(ak +k- 2)2

an-  02     >     0  *=>la'  1>1  al (4.16)

Therefore, we have

Theorem 4.5  The only evolutionarity stable preference parameter with incomplete infor-
motion is a' = 0.

For any other a ,i O a mutant with preference parameter closer to 0 achieves a higher

payoff. The intuition of the result is straightforward. Suppose the population consisted of
maximizers of the material payoff when mutants invade. Since the proportion of mutants
is arbitrarily small, in equilibrium the incumbents play almost the same strategy as they
played before the invasion, that is, maximizing the material payoff in a game against



82 4. Indirect Evolution in Duopoly

each other. The mutants, since they face almost exclusively the incumbents, play a best
response against the incumbent according to the mutants' subjective utility. This best
response does not maximize the material payoff, therefore mutants have lower fitness.
They have strictly lower fitness since the game is such that different types play different
strategies and the material payoff function has a unique maximum, therefore the mutants
cannot have the same fitness as the incumbents. Thus, with incomplete information only
preferences which coincide with the material payoff maximization survive evolutionary
pressure, supporting the claim of Alchian  (1950) and Friedman  ( 1953). A similar result
that with incomplete information the material (or equivalent to them) preferences are

evolutionary stable under certain conditions was also obtained by Ely and Yilankaya
(1997) and Ok and Vega-Redondo (1999).

4.5 Conclusion
The indirect evolution approach helps to address the question which preferences will
survive evolutionary pressure. However, one should not artificially restrict the set of
feasible preferences. In this chapter we extend the model of Bester and Guth (1998) to
a larger set of preference parameters. We have shown that when spiteful preferences are
allowed they can be evolutionarily stable for a large set of values of the parameter of
the material payoff function. Admittedly, this model still analyzes specific forms of the
material payoff function, though some more general results are available. Nevertheless,
already in this specific framework there is a variety of results showing that some basic
properties of the material payoff function are not enough to draw general conclusions.  The

properties of the game played with the evolutionarily stable preferences may be different
from the properties of the material payoff game.

Perhaps more important, the set of preferences is restricted to a one-dimensional family
of utility functions. Certainly,   it is possible to enlarge   the   set, for example,   with  such
utilities that depend on the opponent's utility (see, e.g. Bolle (1991)), or on player's beliefs

(Rabin  (1993)), or preferences  that take equity into account.    But  then the analysis  for

duopoly games considered here becomes rather intractable. The next chapter considers
indirect evolution for quite general preferences in 2 x 2 games.

The persistence of spiteful preferences, found in this chapter, may be explained by the
fact that a "

player gets a higher payoff than a
" normal" player for a rather generalspiteful"

class of games. An analysis of the advantage of negatively interdependent preferences can
be found in Kofkesen et al. (1999) though their result should be taken with caution
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as  it  does not necessarily  mean that "spiteful" players  will  wipe  out
" normal"  ones.   In

the random matching setting there   is a counter-balancing effect   that " spiteful" players

cooperate  less  with each other  than " normal" players. The result  of the evolutionary
process depends much on the exact form of the material payoff function.

Preferences different from maximizing own material payoff are evolutionarily stable

when players know each other's preferences in a match. In a sense, having certain pref-
erences is a commitment device to use a strategy that does not maximize the material

payoff but can bring a higher material payoff than that of the opponent.  In an incomplete
information setting only maximizing preferences survive since this commitment does not
work due to unobservability. This result is of a general character and supports the claim of

Alchian (1950) and Ftiedman (1953) that rationality will be selected by evolution. Thus,
the informational issues play a large role in the determination of the outcomes of the

evolutionary process.



Chapter 5

Indirect Evolution  in 2 x 2 Symmetric
Games

5.1 Introduction

The previous chapter analyzed indirect evolution of preferences for games arising from
duopoly models. We argued that limitations on the set of feasible preferences may be

important for the results. However, the set of possible preferences we considered in
that chapter was still rather limited, and it was difficult to conduct the analysis for

all preferences.  In this chapter we analyze indirect evolution of preferences in simple
(symmetric 2 x 2) games for all possible (von Neumann-Morgenstern) preferences.

Indirect evolution, as described in the previous chapter, works on preferences instead of
on the strategies of the players.  Thus, each player is supplied with genetically programmed
preferences represented by a von Neumann-Morgenstern utility function. Given these

preferences, players play the game. They are either rational and thus play an equilibrium
from the start, or they arrive at it by a process of learning which is much faster than
the process of evolution. Thus, their evolutionary success is determined by the fitness
they receive from playing the equilibrium strategies. Different preferences imply different

equilibria and, generally, different fitness, and the evolution selects the preferences with a
higher fitness.  We are interested in stationary stable points of the evolutionary process.

Preferences that are observed in such points are called evolutionarily or neutrally stable

preferences.
Some work using the indirect evolution approach has been done before for certain

games. For example, evolution of trust (Brennan et al. (1997)), evolution of fairness

85
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(Huck and Oechssler (1999)), evolution of preferences for sales in duopoly (Dufwenberg
and Guth (1999)) have been analyzed. However, the set of feasible preferences in these
papers is usually assumed to be a one-dimensional subset of all possible preferences.

These restrictions may lead to results which are not robust to an enlargement of the set
of feasible preferences (see Bester and Guth  (1998)  and the previous chapter). Therefore,
it is important to consider all possible preferences.

The set of all possible preferences is huge for large games. We focus on 2 x 2 sym-
metric games since they are the simplest games and they are of importance for real life
situations. The class of 2 x 2 symmetric games includes such extensively analyzed games
as coordination problems, the prisoners' dilemma,  and  the " chicken" (Hawk-Dove)  game.
The set of all possible preferences in 2 x 2 symmetric games is not that large; it can
be parametrized by two parameters. Thus we can consider a two-dimensional space of

preferences. We are interested in the question of which preferences are stable for which
class of games. We also address the related questions of whether selfish preferences, that
is, the ones that coincide with fitness, survive evolution, and how the outcome of the
game with evolutionarily stable preferences relates to a Nash equilibrium of the material
payoffs garne.

We analyze first a model of complete information and perfect coordination where

players can observe each other's preferences and they can coordinate perfectly on one
equilibrium, if there are multiple ones. Then selfish preferences are not necessarily stable,
for example, they are not stable in the prisoners' dilemma or in the "chicken" game.
Relaxing the assumption of perfect coordination does not change the result substantially
though it gives some interesting insights for coordination games.

More important is the assumption of complete information. This assumption is rather
strong and is relaxed to two models with incomplete information. In one model the iden-
tity of the mutant is not known but the fact that a mutant with certain preferences has

appeared is known. This game then can be modeled as a Bayesian game. In the other
model the existence of a mutant is not known, so the incumbent population continues
to play the same strategy as before. We show that selfish preferences survive more of-
ten under incomplete than under complete information. Moreover, they (or preferences
equivalent to them) are the only preferences that can be stable under incomplete informa-
tion. These results support the results of the preceding chapter.  The only model where
selfish preferences  do not survive  is the Bayesian model   for   the " chicken"   game.     The
reason is that players with selfish preferences play the symmetric mixed equilibrium, so
any strategy is an alternative best reply to the mixed equilibrium strategy.
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We formulate the model of indirect evolution in 2 x 2 symmetric games in Section 5.2.

Section 5.3 analyzes the model. Imperfect coordination and incomplete information ex-
tensions of the model are considered in Sections 5.4 and Section 5.5. Section 5.6 discusses

and concludes.

5.2 The Model

5.2.1 Games

We consider 2 x 2 symmetric games. The generic normal form of such games is given

below, where  81, 32  are the strategies  of the players  and  a, 0,7, 6 represent the material

payofs or ,fitness.

Sl     S2

81    a, a    #,7
82  7,8  6,6

In order to exclude uninteresting games we require that the strategies bring different
payoffs at least against some strategy of the other player, that is, either a 4 7 or 0 0
6.  We assume that adding a constant to all payoffs and multiplying all payoffs by a

positive constant do not change the result of evolution. This assumption is not strong
since commonly used dynamic specifications of evolution, such as the replicator dynamic,
and static evolutionary concepts, such as evolutionary stable strategy, are invariant with
respect to these changes. Without loss of generality we can take a 2 b (otherwise rename

strategies). By substracting 6 from all payoffs, and multiplying them by =13 (if a > 6)
we can consider games of the form

81    82

Sl  1,1  b, c

S2  c, b  0,0

where  b  =    Ef, c  =  13.   If  a  -6,  we  have  a  game  of the  form

81    82

sl  0,0  b, c

82  c, 6  0,0

where b=B-6,c=7-6.I n what follows we use these representations of the material
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payoff game.  Thus the parameter space is reduced to two dimensions. We focus on games
with 0>6 since they are more interesting. When the results for games with a=6 differ
from the ones for games with a>6 w e comment on them.

Fora > 8, depending on the values of the parameters b, c we distinguish four different
types of 2 x 2 symmetric games:

(Eff)  1 2  c,b 2 0- "efficient dominant strategy" ;

(CP)   1  >  c, b  <  0  -
" coordination problem",

(Ch)1<c, b>0- " chicken type game";
(PD)  1  S c,b 5 0- "Prisoners' Dilemma type game".
As one can see, the set of symmetric 2 x 2 games we analyze contains interesting games

which have been analyzed extensively in the economic and game-theoretic literature. To
our knowledge, however, they have not been analyzed yet from the point of view of indirect
evolution of preferences. We seek to close this gap. For each type of games we analyze
which preferences (described in the next subsection) are stable.

5.2.2 Preferences

Let a 2 x 2 symmetric game be given, that is, parameters b, c are fixed.  The set of strategies
for each player is S, = {sl, 82}. Denote the mixed extension of S. by E'.  The set of mixed
strategy combinations is then E = El x E2. Each agent i in the population that is
playing the game in randomly matched pairs is endowed with certain preferences over
the set E of mixed strategy combinations. These subjective preferences are represented

by  a von Neumann-Morgenstern utility function  v, (·). The function is completely defined
by its values on all four pure strategy combinations (sj,sk),j, k e {1,2}, where si is
own strategy and sk is the opponent's strategy We do not make any restriction on the
utility function other than being von Neumann-Morgenstern. In what follows we identify
preferences with their utility function vi.

The preferences are defined on the set of strategy combinations rather than on the
set of payoff combinations since it allows to represent a larger set of preferences, and

our goal is to analyze as large a set of feasible preferences as possible. If preferences are
defined on the set of outcomes, the players have to be indifferent between two strategy
combinations that lead to the same payoff combination. By considering preferences on
the set of strategy combinations, we avoid this restriction. Our players know what the
strategies are and may have biases towards one or the other strategy.

Analogously with types of games, one can define types of preferences.  We are interested
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in finding an equilibrium of a game with given preferences. For this end we only need to
know the best response correspondences for each player. Since only ordinal relationships
matter for best response, for our purposes we can divide cardinal preferences according
to ordinal relationships into the following subsets that we call types:

Type 1 (Stl): 13,((sl,sl)) 2 74((81,52)), 74((52, st)) 2 71,((82,32)), at least one inequal-

ity is strict;
Type 2 (CO): Vi((Sl,81)) > 11,((Sl,82)), 11,((82,81   < 11,  82, 32  ;
Type 3 (NC): 14((Sl,Sl)) < 71,((Sl,S2)),1,1((S2,Sl)) > T),  S2, S2  ;
Type 4 (St2): V, ((81,81)) 5 24((sl,S2)),V, ((S2,sl)) 5 1,:((s2,82)), at least one inequal-

ity is strict;
Type 5 (BB): vi((sl, 31)) = v, ((sl, S2)), 14((82, 81)) - 11:((32, 32))·
We say that preferences vi belong to the type k if v, satisfies the inequalities for type

k.  Correspondingly to the types of games above, players with type (Stl) preferences

perceivel  the game as having dominant strategy si, while players of type (St2) think that
82 is dominant.  Type (CO) players (COoperators or COnformists) perceive that sl is
best reply to sl and 32 on 82, while type (NC) (NonConformists) players prefer to play sl

on  s2  and  s2  on sl· Finally, there are preferences  of type  (BB)  (" Big Bores") for which
the strategies are equivalent. Though such preferences are rather strange, they have to
be included if one is to consider all preferences. The players with such preferences are

indifferent to any (mixed) strategy and therefore can be induced to play any strategy by,
for example, a (private) benevolent planned who maximizes their fitness (or by chance,
for that matter).

An interpretation of having different preferences can be seen on the example of the

prisoners' dilemma. Some agents may have selfish preferences while others might not like
to let their opponents down and therefore have a higher subjective utility from mutual
cooperation than from cheating against a cooperator. Yet others can be heroic uncon-
ditional cooperators who derive a higher utility even from being defected upon, that is,
they prefer to sacrifice themselves in favor of the other player.

The subjective utility functions can represent many preferences. It is clear from the
definition of types that such preferences as biases towards a particular strategy, the desire

to conform, and the desire to differ can be represented. Preferences that depend more

i We often use such terms as "perceive", " think" to represent the preferences of the player.   This seems
to us a valid interpretation of preferences, since in game theory a player's preferences are known to the
player, and usually even to all players.

2 Maria Montero suggested  to  call the (private) benevolent planner " mother  of the player"
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on the opponent's strategy rather than on own strategy (for example, preferences for

dealing with a friendly person) may be represented. Altruistic and spiteful preferences
of the preceding chapter can be represented as well since one can compute the sums

(or the differences) of the material payoffs for each strategy combination and compare.

Furthermore, preferences represented by any well behaved function of material payoffs
are  feasible  too.    Thus,   the  set of feasible preferences contains  many " common sense"

preferences.
Though the agents know their preferences, they do not need to know what the material

payoffs are. Evolution, described in the next subsection, will choose those preferences that
have higher fitness.

5.2.3   Evolution and Stability
Evolution works indirectly choosing preferences through equilibrium payoffs.  What is
important for evolution is not the subjective utilities but the material payoffs. Roughly,
the evolutionary process works as follows. The agents of the population are randomly
matched to play the symmetric 2 x 2 game. We assume that the preferences in a match
are common knowledge, an assumption which will be relaxed later. The agents are rational
given their subjective utilities and therefore they play an equilibrium of the game as they
perceive it. We assume that either there is a unique equilibrium of the game or there is a
way to select some solution of the game, which will be specified in the following sections.
The fitness of an agent is determined by the material payoffs game with the equilibrium
strategies. The agents then reproduce having more offspring  if they had higher fitness'.
Offspring inherit the preferences of their parent.  Thus, if an agent with preferences 71,

had on average  over all matches a higher fitness  than an agent with preferences  15,  the
proportion of agents with preferences 4 grows faster than those with preferences  tij.   We
consider a large population so that the Law of Large Numbers allows us to use the expected
payoffs as the realized ones. Together with reproduction and selection, once in a while a
mutation occurs possibly bringing new preferences into the population.

We do not model the evolutionary process more explicitly but instead turn to the
analysis of which stationary states of it are stable against a mutation. We concentrate on
monomo,phic stationary states, that is, ones where all players have the same preferences.

The formal description of the indirect evolution approach is in the previous chapter.

3This interpretation is only suggestive.  One can also think of proliferation of values through imitation,
for example.
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Here we repeat quickly the essential points. Denote  by  u, (74,713) the material payoff  of

an individual with preferences vi in equilibrium (or otherwise chosen unique solution) of
the game between agents with preferences  iti, 7,1. The evolutionary  game F is a symmetric
two-player game with the sets of all possible preferences  as the strategy  sets  and  u, (7,„ 713)

as the payoff function  (see the preceding chapter for formalities). The standard definition
of evolutionarily stable strategy (e.g. Weibull (1995, Ch.2)), reformulated for preferences,
is

Definition 5.1 Prefemnces   v,    are evotutionarity stable   if  u, (14, 11,)    2    Uj (1'J' 14)   V"j

and iftli(vi, 14) =16(1'j, 14) for t'j 4 14 implies u,(7'i, uj) > 14(1'j, vj).

Given that the space of preferences is rather large, for any preferences v, there are
always other preferences uj which do no worse than 11, do both against 7, and against

themselves.  It is often so that when 74, 711 belong to the same type of preferences they play

the same strategies in equilibrium, and so are indistinguishable in terms of the material
payoffs. For example, if under both u, and l,j strategy sl is dominant, players with both

vi and l,j always play sl though it may be that 11,  has a larger bias towards sl. Therefore,
we often use a weaker concept of neutral stability.

Definition 5.2 Preferences v,  an neutrally stable  if u,(Vi, 14)  2  uj(vj,t,i) Vi,j  and if
14(14, vi) = uj(vj, vi)  implies u,(14, vj) 2 uj(l,j, vj)

Under neutrally stable preferences a mutant can survive but it will not grow. Neutral
stability states that once perturbed, the system will stay in the neighborhood of the
original state while evolutionary stability implies that the system converges back to the

original state.
Given that we divided the space of preferences into types, similar definitions can be

given for types of preferences.

Definition  5.3   A  type  k  of preferences  is  evolutionarity  stable  if Vit,  €  k,  u, 94, v,)  2
uj (vj, 14 ) Vt,j ¢ k and if u, (14, 1,) = uj (133,13, )  for 5 ¢ k implies u, (71„ ti) > ui ( vi, 73)·

Definition 5.4  A  type k  of preferences  is neutratty  stable  if Vit,  E  k,  u,(i,i, v,)  2
uj (715,  23,)   Vvj   0  k   and  if ui (14,12,)  =  uj (111, 71,)   implies  u, (19., 1,3)   2  uj (11, 7,3 ) ·

A type of preferences is stable if any preferences of this type cannot be invaded by

mutant preferences of other types.  Thus, if the monomorphic population consists of agents
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with preferences from a stable type, evolution cannot lead to the growth of preferences of
other types.

Our goal is to find which preferences are neutrally stable and which types of prefer-
ences are evolutionarily or neutrally stable depending on the underlying game. Related
questions are whether selfish preferences are stable and what outcome of the material
payoffs game is observed under stable preferences.

5.3 The Analysis

5.3.1   Equilibria and Material Payoffs
As we mentioned in the previous section, the fitness of the players is defined as the material
payoff with equilibrium strategies if the equilibrium is unique and by some other plausibly
chosen outcome if there are multiple equilibria.  In this section we will be more precise on
this.

Since we divided the set of all possible preferences into types according to the best
response correspondence, we can analyze games between players with preferences of given
types without specifying the preferences completely. Thus, for example, type (Stl) pref-
erence would mean any preferences with the property that sl is the (weakly) dominant
strategy for them.

We focus on undominated equilibria.

Assumption 1 Only undominated strategies are played in equilibrium.

If a player perceives one of the strategies to be dominant (types (Stl) and (St2)), her
opponent can be sure that such a strategy will be played and therefore can choose a best
reply to the dominant strategy. Unless the opponent in question is of type (BB), either
he plays his own dominant strategy or has a unique best reply to the dominant strategy
of the player.    Thus, in games  with one player  of  type   (Stl)   or   (St2) the equilibrium
is unique regardless of what type of preferences different from (BB) the opponent has.
The equilibria might be different, however:    the  game  of  type (Stl) against  type   (St 1)
has  equilibrium  (sl, si) while  the game of type (Stl) against  type  (NC) has equilibrium
(sl' 32).     If  the  opponent  is  of  type   (BB),   we  are  free to choose any (mixed) strategy
for him, as any strategy constitutes an equilibrium. We assume that any equilibrium is
achievable,   and  that the (private) benevolent planner (" mother  of the player") chooses
one with the highest material payoffs for him. The idea is to give such preferences a fair
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chance for survival. A justification could be that there is evolution on the subpopulation
of players with type (BB) preferences leading to such of them that have the highest

fitness. Alternatively, it may be that just by chance the players of type (BB) hit the
" right" strategy. The assumption  will not influence the stability  of the other preferences
too often though sometimes it will, then we will comment on that. In a later section

we will relax this assumption by introducing small mistakes since the players have little
incentive to follow the planner's recommendations. For the time being, we make

Assumption 2 Agents with type (BB) preferences play an equilibrium that brings them the

highest material payogs among all equitibria. Between themselves they play a symmetric
equilibrium with this property.

If a player has preferences  of type  (NC),  that is,  82  is best reply to sl  and vice versa,
the situation is as follows.  If such a type is matched against itself there are three equi-
libria: two pure strategy off-diagonal ones and one mixed equilibrium. If the preferences

are exactly the same, by the considerations of symmetry the mixed equilibrium is more

appealing. Moreover, in one population for many models of learning, e.g. derived from
the replicator dynamic, the mixed equilibrium is stable while the pure equilibria are un-
stable (Weibull  (1995,  Ch.3)). The probabilities  that the mixed equilibrium  puts  on  pure

strategies depend on the exact cardinal preferences. If the preferences differ but are still
both of type (NC), the symmetry argument does not apply, but, to preserve some sort of
continuity of the solutions of the game with respect to the small changes in preferences,

we assume that the material payoffs realized in such a game will be the ones corresponding
to the mixed strategy equilibrium. Furthermore, even when an (NC) type player plays

the mixed equilibrium strategy, the strategy can be made arbitrarily close to either of the
pure one by choosing extreme preferences  (13,((sl, 32))  -  stoo)  for the opponent.   Thus,

the assumption is not a very strong restriction.

Assumption 3  Ina game of two agents with type (NC) preferences, the mixed equilibrium

is played.

If type (NC) agent is matched with type (CO) agent, there are no pure strategy
equilibria and, therefore, the mixed strategy equilibrium is played. Again, since the game
of type (BB) against type (NC) has a continuum of equilibria we allow type (BB) to
choose one with the highest material payoff for him.

The problem of multiplicity of equilibria appears also with type (CO) preferences.  If
such an agent is matched against another agent of the same type, the perceived game is a
coordination game, that is, a game with three equilibria, two pure ones on the diagonal and
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one mixed. With symmetric preferences, the mixed equilibrium is unstable and both pure
equilibria are stable. We assume that the players of type (CO) indeed can coordinate,
and so one of the pure equilibria is played, and, moreover, it is the one with a higher
material payoff. A justification for this choice of the eflicient equilibrium rather than
of the risk-dominant equilibrium is that we want to give preferences of type (CO) a fair
chance to survive, as before for preferences of type (BB). There is also a model of strategy
adjustment of Robson and Vega-Redondo (1996) that leads to the efficient equilibrium
in coordination gaines. We extend the assumption of the efficient equilibrium choice to
asymmetric type (CO) preferences as well. Later in the chapter, similar to the mistakes
in type (BB) planned action, we will introduce mistakes in coordination of type (CO)
players. For type (BB) against type (CO) we assume the equilibrium with the highest
material payoff for  type  (BB).

Assumption 4 In a game of two agents with type (CO) preferences, the pure equilibrium
with higher material payo s is played.

Summarizing the above, we can represent the evolutionary game on types by the
following bimatrix (if a 4 6)

(Stl) (CO) (NC) (St2) (BB)
(Stl)   1,1     1,1     b, c     b, c   uf, uj

(CO)      1,1 1,1 tlm'  11;'            0,0            11  1  11 

(NC)           c, b          u ,u        um, um           b, c          T12, 11 

(St2)   c, b 0,0 c, b             0,0        1 2, ug

(BB)       ttj, uf         ti , 11           1: , 1.19        11%, 112       112, 112

The entries in the bimatrix are the material payoHs in the chosen equilibrium.  By
u™ we denote the fitness of the players in the mixed equilibrium. The exact value of um
depends on the exact preferences. The entries ti, represent the material payoff of type
i in the equilibrium chosen by type 5 (BB) in the game against type (BB). Similarly,
111 represent the material payoff of type 5 (BB) in the game against type z.  If a = 6,
entries (1,1) should be substituted by (0,0) while other entries stay the same.  The next
subsection analyzes evolutionary stability of preferences.

5.3.2 Evolutionary Stability of Preferences
Given the evolutionary game from the previous section we will consider the types in
turn for the case a > 6. Thus, we have that strategy sl is more eflicient in the sense
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that strategy profile  (sl, Sl)  is more efficient than strategy profile  (32, 82)·  This will have
consequences for the stability of (Stl) and (St2) preferences.

The following lemma is useful.  By a symmetric strategy we mean that both players

play the strategy.

Lemma 5.1  If b+c 5 2 then 1 is the highest material payoU that can be achieved by

symmetric strategies.  I f b+c>2 then there aTe symmetric mil:ed strategies that give
higher material payoff.

Proof.  Let the symmetric mixed strategy put probability p on sl ·  Then the material
payoff players get is p2 + p(1 - p)b + (1 - P)pc - p2(1 -b-c) + p(b + c). If b + c s 1, the
maximum with respect to p is at the borders of the interval  [0,1],  in our case at p =  1.  If
b + c  >  1, the maximum  is  at p >O i f p' <  1, and at p- l ifp'  2  1.  We have* _   b+c

2(b+c-1)

1 - PI -2 Il ) > 0 «* b + c > 2. Since the material payoff of 1 is achieved by p = 1,

the maximum is higher than 1 in the case b+c>2.   •

Now we turn to the types.

Lemma 5.2 Tkpe (Stl) is neutrally stable and all preferences of  type   (Sti)   an:   neutrally

stable if (c<1 or (c -1 and b-1)) and b t c 5 2.

Proof.  If c > 1, preferences of types (NC) or (St2) are better replies to type (Stl)
preferences in the evolutionary game thus type (Stl) is not stable in this case.  If c <  1, the
best replies to a given type (Stl) preferences are themselves, other type (Stl) preferences,

type (CO) preferences, and type (BB) preferences, all leading to the material payoffs

(1,1).     If  b+c   5   2, all these preferences  have   1 both against themselves and against

type   (Stl). By Lemma  5.1,  type (BB) preferences can achieve a higher payoff against
themselves by using a symmetric mixed strategy  if b+c>2,  thus  type  (Stl )i s not stable

in this  case.   For  c=1 all preferences  are best responses  to  type  (Stl).Ifb<1  then  type
(NC) preferences can have a higher payoff against themselves then what type (Stl) get
against them.  If b=l n o preferences can get more than 1, the sure payoff of type (Stl).

Thus, the preferences that consider sl as the dominant strategy are neutrally stable

when sl is really (i.e.  in the material payoff game) best reply against itself and when there

is no possibility of finding a symmetric mixed strategy with higher material payoffs.  If we
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omit type (BB) preferences, the first condition (sl is a best reply against itself) together
with b k l i s suflicient for neutral stability of (Stl) preferences.

To analyze type 2 (CO) preferences, we normalize them (if 712((sl, sl)) >  ,2((S2, 32)))4
by such transformations as adding a constant and multiplying by a positive constant

to 1,2((81,81)) = 1,112((82,32)) = 0,1,2((81,82)) = 62 < 0,1,2((82,81)) = (:2 < 1. The
normalization is without loss of generality.

Lemma 5.3 Type (CO) preferences that after normalization satisfy b < are neu-C2+62-1
b2

trally  stable  ifb+c- 2  5  0  and c  S  l.   Ifb  =  932=1   then  such type (CO) prefemnces are
neutmtly  stable  if b +  c  -2  50   and  c <1. Type  (CO)  is neutrally stable  ifb+c-2  5  0,
c 5 1, and b S l

Proof. Analogously with the type (CO) preferences normalization. we can consider
any normalized type 3 (NC) preferences with 13((81,81)) > 1,3((82,32)) and 1,3((sl, Sl)) -

1,13((82,32)) = 0,113((sl,S2)) = b3 > 0,1,3((s2,81)) = c.3 > 1 (the proof is similar with
other normalizations). When type (NC) and type (CO) players are matched against
each other, they play a mixed equilibrium where type (CO) plays sl with probability
1)2 = 53+cs.1, while type (NC) plays sl with probability 1)3 =  52tui· We should compare
the expected payoff u, of type (NC) in equilibrium with what type (CO) gets against
itself which is 1.  We have u3 -1= (03-1)(bib+1-c2-62)+53((ce-1)0+1-c2). The denominator is(C2+1 -1)((:3+1 -1)
negative thus the fraction is positive if (c  - 1)(b b+ 1 - c  - b ) + 6((C2 - 1)C+ 1 - C2)  < 0.
Since c3 -1 and b3 can range from O t o + 00, it is possible if either b26 +1-c 2-6 2<0
or (c  - 1)c +1-c 2<0 o r both. That is, type (NC) is a better reply to type (CO) than
type (CO) to itself if b> £2*-1 or c>1.I f b TS 9-t »1 and c 5 1 and at least one of
the inequalities is strict then types (Stl) and (BB) are best replies to (CO), as well as
type (CO) itself, all bringing the material payoff of (1,1).  By the same argument as in
the previous lemma, if b+c>2, type (BB) can achieve a higher material payoff against
itself by using a mixed strategy, and, therefore, type (CO) is not stable then.  If b+c 5 2,
neither of the other types can achieve a material payoff higher than 1 against themselves,
so type (CO) is neutrally stable.  If c=  1 and b = 9-:*-1  =  1+ Se  >  1  =>btc>  2 and
again type (BB) can do better against itself then type (CO) does. The neutral stability
of type (CO) is verified only when 6 5 1 since only in this case the condition b 5 9+68-1
holds for any 4 < 0, cy < 1.   .

4 If v2((81, 31))  S  v2((82,82))  we  can use another similar normalization  that  does not change the result
since this relationship does not matter for the best response correspondence.
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The conditions of the lemma can be interpreted as follows. The condition c 5 1
says that sl is a best reply against itself, that is correctly perceived by type (CO). The
condition b 5 9+48-1 indicates that not necessarily all preferences of type (CO) are stable

but for any b there is a subset of non-zero measure of preferences of type (CO) that are
neutrally stable.  If b s  l this subset coincides with the whole set of type (CO) preferences.

Similarly to type (Stl), without type (BB) preferences, type (CO) preferences would be
stable even when b+c>2.

Analogously with type (CO), for the analysis of type (NC) preferences consider their
normalization (112((81, Sl)) > 1,2((82,82))) to 1,2((81, St)) - 1, 112((32, 82)) - 0, 112((St, 82)) -
1)3 , 0, 112((82, Sl)) = (3 > 1. Such preferences are never stable.

Lemma 5.4 No type (NC) preferences am nentrally stable and type (NC) is not neutrally
stable.

Proof. Players of type (NC) with the same preferences play the symmetric mixed
equilibrium with probability  p = 63+.3ZT  of  playing st. Denote the expected material
payoffs in such equilibrium by u3·

Consider  type (CO) preferences with 712((sl, sl))  >  '12((S2, S2))  and  12((sl,sl))  =
1,132((82,82)) - 0,1,2((81,32)) = 4 < 0,T,2((82,si)) = c2 < 1. The mixed strategy equi-
librium played in an encounter of type (CO) and type (NC) is found in the proof of the
previous lemma. Denote the expected payoff of type (CO) in equilibrium by u2·  We need

to compare it with what type (NC) gets against itself. We have

U2 - 1.t  - ((c2-1)b,-62(¢3-1))(63b+c(1-c3)-63) > 0 -
(c2 +1,2-1)(63 +C3-1)2

(1 - C2)b3(-(b3b + c(1 - c3) - b3)) + b2(1 - C3)(b3b + ((1 - C3) - b3) < 0.
If hb+C(1-C3)-53 4 0, it is always possible to find c2 or b2 small enough that the above

inequality holds and type (NC) is not stable. Consider therefore 63b + c(1 - c3) - 53 = 0.
Since c3 > 1 and 53 > 0, this equality can hold only when either (b > 1 and c > 0) or
(b<landc<0).

Consider the subset of type (NC) preferences satisfying b3b + c(1 - c3) - 53 - 0.  Any
preferences in this subset get u; = E.32-T against themselves as well as any type (CO)
preferences get against them. If u; is smaller then either b or c, then either type (Stl) or
type  (St2)  are a better response  to  type (NC). Notice  that  14 is larger  than  both  b  and  c

when b<0 and c<0. But in this case type (NC) gets in the mixed equilibrium against
type  (CO) an amount smaller than type  (CO) gets against itself, which is  1.    I

The intuition of the result lies in the instability of the mixed equilibrium. Since in
the material payoff game not all strategies bring the same payoff, the material payoff in
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the mixed equilibrium is lower than in some pure strategy combination. If there is a type
that can commit to use a pure strategy and achieve that pure strategy combination, such
a type makes type (NC) unstable.

Type (St2) preferences are analogous to type (Stl) except that type (CO) can do
better against itself than type (St2) does against type (CO) thus leading to the instability
of preferences  (St2).

Lemma 5.5 No type (St2) prefeTences am neutrally stable and type (St2) is not neutratty
stable.

Proof. Obviously, if b > 0, types (Stl) and (NC) are a better response to (St2) than
type (St2) itself.  If b   0, an alternative best response is type (CO). But since type (CO)
gets 1 against itself, while type (St2) gets 0 against type (CO), mutants of type (CO) will
grow. I

The argument is similar to the one of "secret handshake" (Robson (1990)), since

mutants of type (CO) can recognize each other and coordinate on a better outcome.
Since we have given the indifferent type (BB) preferences the best shot, they are stable

quite often.

Lemma 5.6 All preferences of type (BB) are neutrally stable and type (BB) is neutratly
stable   ifc   f   l    or  b   5   0.     Moreover,   if  b  +  c   >   2   or  c   >    l    in   this   region,    type   (BB)   is

evolationarily stable.

Proof. By assumption, type (BB) preferences play a symmetric equilibrium that
maximizes the material payoffs. By Lemma 5.1 the equilibrium is  (sl, sl), giving a payoff

of  1  ifbtc-2  5  0,  and sl is played  in the equilibrium with probability p = *j3ts-i),
giving a material payoff of u5 = i. ffli i >l,i f b+c-2>0.

Type (Stl) plays sl.  Then type (BB) chooses to play sl against type (Stl) if c 5 1
In this case the material payoff is 1 for both types.  Type (Stl) can be a best response
to  type  (BB) if b+c-2 5 0  but  then type  (BB) is neutrally stable against  type  (Stl).
If c > 1, type (BB) plays s2 against type (Stl). Then type (Stl) has the material payoff
of b.  If b 5 1, type (Stl) has a lower payoff against type (BB) than type (BB) itself.
The interesting case is when b>1 and, therefore, b+c-2>0.I n this case we should
compare us and b.  We have b>u s *=* c<b+ 2\/b(b - 1), therefore type (Stl) is a
better response to type (BB) if c<b+ 2 /b(b - 1).
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Type (St2) plays s2· Then type (BB) plays si if b>0 and type (St2) receives c. If
c 5 1 type (St2) cannot be a better response to type (BB). If c > l and b+c-2 5 0, type
(St2) is a better response to type (BB). Finally, if c>1 and b+c-2>O,w e calculate

C  >  Us  *==>  C    2-b+9=6*-1 Therefore,  type  (St2)  is a better response  if this inequality
is satisfied.  If b 5 0, type (BB) chooses 52 and type (St2) receives 0 and cannot be a best

response.

Combining the inequalities, we derive  that  type  (BB) is immune against types  (Stl)
and (St2) when b f o o r when c 5 1.B y a straightforward reasoning, given that type

(BB) chooses the best equilibrium for itself, types (CO) and (NC) cannot achieve a higher
payoff against type (BB) than type (BB) against itself in these regions either.

The evolutionary stability of type (BB) comes from the observation that when a+b>
2, the highest material payoff under symmetric strategies is achieved by a mixed strategy.
When playing against other types type (BB) always chooses an equilibrium where the
strategy of at least one player is pure. The payoff of the other type in such an equilibrium
is strictly lower than what type (BB) gets against itself. Also, when &5 0 and c>l
even with b+c 5 2,b y choosing the best equilibrium for himself, a player of type (BB)
makes the payoff of the opponent strictly worse than 1 for any type of the opponent's

preferences. •

Type (BB) preferences are supported by a private benevolent planner ("mother of
the  player") that chooses  for the player the maximal material payoff equilibrium while
the player himself does not care. Since the maximal material payoff is chosen, it is no
surprise that such preferences are often stable. That such preferences are not always

stable comes from the possibility that the opponent's material payoff will be improved
even more when type (BB) chooses the best equilibrium for himself.  Thus, when b, c are
large, in a symmetric equilibrium a player of type (BB) cannot achieve much, but when
he plays against players of types   (Stl)  or  (St2), an asymmetric equilibrium arises  with

higher payoffs for both players than in the symmetric one.
Combining the lemmas we get

Theorem  5.1    We  have the following pattern of neutral  and  evolutionary  stability.

(i) ifc5  1, b> 0, b +c> 2  then type (BB) is neutrally and evolutionarity stable;
(ii)  ifc<   1, b>   1, b t  c  52   then types (Stl),(BB) and some pmferences of type (CO)

are neutrally stable, and no type is evolutionarity stable,·

(iii)  ifc <  1, b  51  then types (Stl),(CO),  and (BB)  are neutrally stable and no  type
is evolutionarily stable,
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Figure 5.1: Neutrally stable types of preferences.

(iv)  ifc >  1, b 5  0  then type (BB) is neutrally and evolutionary stabte;
(v) i f c>l,b>0 then no type is neutratly or evolutionarily stable.

The theorem is illustrated in Figure 5.1. The discussion of it, relating the results to
the types of games discussed before, follows in the next subsection.

If preferences of type (BB) are not considered then the line b+c=2 disappears from
the picture and type (Stl) is neutrally stable if c<1 and b>1.I n the area c>l,b<0
no type is neutrally stable.  If a - 6, the results for (Stl) and (St2) should be obviously
the same. The other results do not change in this case, except that c should be compared
with 0 instead of with  1.

5.3.3 Discussion
In the previous section we found what preferences are neutrally stable for each particular
values of b, c.  Let us see what it means for the four classes of games discussed in section
5.2.

In games with an e#icient dominant strategy (c 5 1, b 2 0, region I in the Figure) we
have three subclasses. If there is a symmetric mixed strategy combination with higher
material payoffs than 1(b+c> 2), then only type (BB), for whom the efficient combi-
nation is chosen by a planner and who can commit to it because of his indifference, is
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evolutionarily stable. If there  is  no such mixed strategy combination,  then  also  the  " true"

(that is, whose preferences are equivalent to the material payoffs) type (Stl) is stable. In

addition to this, some preferences of type (CO) who believe the game to be a coordina-

tion problem but still are able to coordinate on the efficient equilibrium, are stable. The
smaller the off-diagonal payoff b, the larger is the set of such type (CO) preferences and

when b E l all type (CO) preferences are stable.

In coontination problems  (c <  1, b < 0, region II) the same three types as above are

stable. Unconditional play of the efficient pure strategy (type (Stl)) survives because it

brings the highest possible material payoff and the mutants cannot achieve a higher payoff
because they have to play only this strategy too. Since types (CO) and (BB) are also
able to pick the efiicient equilibrium, they are stable as well. Type (CO) is the type that
contains  the "true" preferences.

In chicken type games (b >  1, a > 0, region III) there are no neutrally stable prefer-

ences. Since we consider a one-population model, we are interested in symmetric strate-

gies. In such games the only symmetric equilibrium is in mixed strategies. Since the

equilibrium is mixed any strategy gives the same payoff against the equilibrium strategy.
Whatever preferences that play a mixed equilibrium are (even the "true" preferences)
there are other preferences that pick up another strategy with a higher material payoff

than the "true" preferences. Thus, evolution never settles on a monomorphic outcome,
either there is a polymorphic stationary population composition or the population com-

position always changes.
In the prisoners'  dilemma  (b  >  1, a  < 0, region IV) again  only  type  (BB) is stable.

Type (BB) is helped by a planner that picks the highest material payoff equilibrium for
this type. Since the selfish Nash equilibrium is ineflicient in the prisoners' dilemma, it is no
surprise that the planner can find a more efficient allocation. Note that selfish preferences

cannot upset the planner's ones, since the planner recognizes the mutant selfish preferences
and instructs type (BB) players to use the dominant strategy 32 against the mutants.

For type  (St2) ("true") preferences, mutants of type  (CO)  can get the same payoff as

type (St2) against (St2). If there are several mutants of type (CO), they sometimes meet
each other and receive the cooperation payoff and thus have a higher payoff than type

(St2) against (CO). This means that the "true" type (St2) is not neutrally stable. This
is similar to the "secret handshake" argument of Robson (1990) to establish cooperation
in the prisoners' dilemma. Without type (BB) cooperation cannot persist, however: once
there is a majority of players who coordinate, another mutant can invade the population
defecting against the coordinators.
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The "true" preferences do not always survive evolution: in chicken-type games and in
the prisoner's dilemma they are not stable. Notice that in these games the equilibrium
with "true" preferences is not efficient, thus evolution promotes efliciency, at least in the
prisoners' dilemma. The results also illustrate that a material payoff Nash equilibrium is
not necessarily played with the stable preferences.

The players could use the "secret handshake" or, alternatively, they could commit
to a strategy because their preferences were known to the opponent.  This is a strong
assumption. Another rather strong assumption we made was the perfect coordination of
the players on one of the equilibria when there are multiple ones.  In the next sections we
relax these assumptions one by one.

5.4 Imperfect Coordination
We have assumed in the previous section that the players can perfectly coordinate on
one of the multiple equilibria. Moreover, players with preferences of type (BB) can be
induced to play any strategy without mistakes. These assumptions are, in our view, too
strong. Coordination problems may require more effort and attention than games with
dominant strategies. Coordination on an equilibrium takes time, and evolution may be
working when perfect coordination is not yet achieved. Similarly, since agents with type
(BB) preferences have no strong incentives to play any particular strategy, the planner
may not be able to induce this strategy with certainty.

To formalize the arguments above, we assume the following. In games with a dominant
strategy for either player,  that is, games involving types  (Stl)  or  (St2), the rationality
requirements are not so strong and therefore players play the unique undominated pure
equilibrium without mistakes. In a coordination problem, that is, when type (CO) plays
against itself, we assume that players almost coordinate on the efficient equilibrium.  That
is, they play sl with probability 1 - E2, where 62 is arbitrarily small (but larger than the
proportion of mutants, so we can use the definition of evolutionary and neutral stability).
With the remaining probability E2 the players play s2.

Assumption 4' In a game of two plavers with type (CO) preferences, they play the
ellicient  strategy  with  probabitity   1  -  &2

A similar model is applied to players of type (BB), that is, such players play the
intended (by the planner) possibly mixed strategy with probability 1 - 65 and some other
strategy with probability 55, for arbitrarily small E5.
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Assumption 2' Players with type (BB) pmferences play the strategy that corresponds to

the highest for them material payoU equitibrium with pmbability 1 - £5.

For players of type (NC), who plays the mixed equilibrium, we do not need to assume

small probability of mistakes, since the symmetric equilibrium for them is unique.  More-
over, even if there were mistakes in the equilibrium strategy, leading to another mixed

strategy, we can consider players with other preferences of type (NC) for whom the latter
strategy is the equilibrium strategy.

We have the following evolutionary game on preferences

(Stl) (CO) (NC) (St2) (BB)

(Stl) 1,1 1,1 b, c b, c uiui
(CO)       1,1        €12, Q2      u , ig,      0,0      fi8,fi 

(NC)      c, b      u , u     Um, um      b, C      6 , Q 
(St2)   c, b 0,0 c, b 0,0 62,61

(BB)       u , uf        fit, il           il , u          ill, 11:       112, 112

where the differences from the previous section are in 62 that depends on €2 and in the
row  and the column of type (BB), where 6 incorporates 65· The following result is useful.

Lemma 5.7  I f b t c> 2,  then the symmetric strategy (1 - £)51 + €32 gives a material
payou higher than  lfor small £.  I f b t c 5 2,  the material payoffrom (1 - 6)81 + 682  is

louter thanl.

Proof. By straightforward calculation, the material payoff when both players use
(1-E)81+ES2 is u =lt(btc- 2)€+(1-b- c)6:2. If b+c-2=0,1-b-c<0,
therefore u < 1. Since E is arbitrarily small, only the second term matters if b+c-2 9 6 0,
which proves the lemma.  m

The result suggests that the main difference from the previous section lies in that now

types (CO) and (BB) cannot achieve perfect coordination and a payoff of 1 if b t c 5 2,
while if b+c>2, the mistakes will not hurt but rather help them. Therefore, the main
difference in the results is with respect to these types that are less stable if b+c 3 7 2 and
more stable if b+c>2.

Consider the case when b+c>2.  If c<1, even without mistakes preferences of

type (BB) are stable, so they are stable with mistakes that favor them. Preferences of
type   (CO)  can be stable  if  E2   < 65, since a player is favored  more by mistakes  of  the
opponent than by own mistakes in this area. For stability of preference of type (CO), the
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condition b 5 523*=1 from Lemma 5.3 still has to hold. Since it cannot be satisfied for all
preferences of type (CO) if b+c>2 and c<1, some preferences of type (CO) are then
stable but not all.  If E2 2 E5, only type (BB) preferences are stable.

Now turn tothecasebtc 5 2. Without mistakes, type (Stl) was neutrally stable
when c < 1. Types (CO) and (BB) are best responses to type (Stl) but now they cannot
get a higher payoff against themselves. Thus, type (Stl) is still neutrally stable and even
evolutionarily stable since types (CO) and (BB) have a payoff strictly smaller than 1
against themselves. Moreover, type (Stl) is a better response to types (CO) and (BB)
than these types themselves since it can secure a payoff of 1 while types (CO) and (BB)
get a lower payoff. Thus, preferences of types (CO) and (BB) are not stable if b+c 5 2
and c < 1.

Other reasonings used in the lemmas in the previous section go through. Therefore,
we have

Theorenn 5.2 Under imperfect coordination, the following pattern of neutral and evolu-
tionary stability eme,yes:

(i)  ifc 5  1, b> 0, b t c> 2 then type (BB) is neutrally and evolutionarity stable and
some preferences  of type  (CO)  are  neutmtty  stable  if E,2  <  +5 ;

(ii)   ifc  <   1, b +  c  5  2   then type (Stl) is neutrally and evolutionarity stable;
(iii)  ifc>l, 5 5 0  then type (BB) is neutrally and evolutionarily stable,·
(iv) ifc>  1, b> 0  then no  type is neutmlly or evolutionary stable,·

The theorem is illustrated in Figure 5.2.

As observed above, the difference from the perfect coordination case lies with respect
to the preferences of types (CO) and (BB) who are directly affected by imperfect coor-
dination.  When b+c>2, type (CO) preferences can be stable now, if their mistakes
are  smaller  than the mistakes of type  (BB). Both types  (CO)  and (BB) profit from their
failure to coordinate perfectly since mistakes rather help than hurt in that area. When
bt c 5  2, however, only type (Stl), that is, unconditional preference for the more efficient
strategy sl, survives. Mistakes are costly in this region, types (CO) and (BB) are prone
to them while type (Stl) is not. An interesting illustration is a coordination problem.
If a player happens to play the efficient strategy without giving it a thought, as if the
strategy is the dominant one, he fares better than a player choosing one of the strategies
consciously, which is prone to occasional mistakes. Obviously, if strategies are equally
efficient (a = 6), any of them can be considered as dominant. Thus, driving on the
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Figure 5.2: Stable types of preferences with imperfect coordination.

right became a habit rather than the result of deliberation (if one does not go out of the

country; but beware of England if you think it is the dominant strategy!).

5.5 Incomplete Information

The models above considered the case where players could observe each others' prefer-
ences. The assumption is rather strong. In this section we relax this assumption and
assume instead that players cannot observe each others' preferences at all. We consider
two setups. The first one is when the players know that a mutant has appeared and

his type but not his identity. The second setup is of ignorance when the players do not
know that a mutant has appeared. We again concentrate on the analysis of monomorphic
populations. We return to the case with perfect coordination, thus players of type (CO)
coordinate on the efficient equilibrium  (sl, Sl) and players  of type  (BB)  play an equilib-

rium with the highest material payoff for themselves. Other assumptions are also kept, so

only undominated equilibria are played and players of type (NC) play the mixed strategy
equilibrium.
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5.5.1 Bayesian Approach
Consider a monomorphic population with preferences vi Similarly to the complete infor-
mation case, assume that an arbitrarily small proportion E of mutants with other prefer-
ences 7,2 appeared in the population and this is known to all players. But the identity of
the mutants is not known, so the players cannot recognize a mutant in a match. Since
the population is infinite, each player faces the same distribution of types.  Then each
match  is a Bayesian  game with types  { ,1, 112 , priors  {1  -  E, E} and preferences specified
by the utility functions  1,1, 1'2 ·   One can calculate a symmetric equilibrium  of the Bayesian
game, where symmetric means that both players use the same strategy. Let us denote the
material payoffs of preferences ul in equilibrium by Ul (E) and of preferences 712 by U2(E)
Similar to the definition of evolutionarily stable with incomplete information preferences
in the previous chapter, and the definition of stable types in 5.2, define

Definition 5.5 A type of preferences k  is evolutionary stable with incomplete  in-

formation if 32*  > 0 such that Vvi c k  it holds that Ui (E)  > U2(E)  Vv2 0 k, VE E  (0, E-).

Definition 5.6  A  type of preferences k is neutrolly stable with incomplete infor-
mation if 3€- > 0 such that Vvi e k it holds that Ui(E) 2 U,(E) \/7,2 0 k, VE E (0, E-).

The discussion of the definition and comparison of it with definitions used elsewhere
can be found in the previous chapter. Again, we analyze the types of preferences in turn.

Lemma 5.8 Dpes (Stl) and (CO) are neutrally stable with incomplete information if
c<lorc=l,b>0.

Proof. Type (Stl) always plays its dominant strategy sl in equilibrium. For type
(CO),  since the proportion of the mutant preferences is arbitrarily small,  it is also optimal
to play a strategy arbitrarily close to sl in an equilibrium of the Bayesian game. Therefore,
for a mutant type to get a higher payoff the mutant  has to play a better reply to sl ·  If
c > 1, s2 is a better reply, and, for example, a mutant of type (St2) plays it.  If c = 1,
the   fitness   of the players depends   on the performance against 52, which is reflected   in
b > 0.  Types (Stl) and (CO) are not evolutionarily stable since both of them play sl in
equilibrium of the game with only them present, achieving the same payoff.   I

Thus, type (Stl) is stable with incomplete information in the same regions as with
complete information, and also when b+c>2 since now players with preferences of
type (BB) cannot recognize each other to profit from the possibility of mixed strategies.
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Type (NC) is now no problem for type (CO) since there is always an equilibrium of the
Bayesian game where type (CO) plays a strategy arbitrarily close to sl and receives a
payoff of almost 1 and type (NC) plays a strategy arbitrarily close to 32 and can get a

higher payoff only when c >  1.
For type (St2) the reasoning is similar, only mirrored with respect to b, c.

Lemma 5.9 Tlipe (St2) is neutratty stable with incomplete information i f b<0 or b=
0, c > 1.

The reason that type (St2) is now stable is that types (CO) or (BB) cannot use the
"secret handshake" anymore and have to play strategy s2 as well. Note that type (CO)
preferences can be made stable in this region, if they could coordinate on the other,
inferior equilibrium.

Type (NC) that was never stable under complete information, is not stable under

incomplete information either.

Lemma 5.10 Type (NC) is not neutmity stable with incomplete infonnation.

Proof. Consider  type   3 (NC) preferences   with  7 1 3( (s t, sl))   >   1,3 ((32 ' 82)) (the proof
is similar for the other case). Without loss of generality, we can normalize them to

V3 (81,81)) = 1,713((52, 82)) = 0,113((sl, 82)) = h > 0,113((82, St)) = (3 > 1. ConSider
a Bayesian game with proportions 1-E o f players of type (NC) and E o f players of
type (Stl). Denote by 65(E) the material payoff in an equilibrium of the game for type
(NC) and by Ui(E) the material payoff of type 1 (Stl). It follows from calculations that

limc-O(66(E)-Ul(E)) = (1-c3)(b(ci-1)-53(c-1))   Since 1-C3 < 0, limz-0 65(E) 2 lim -0 Ui(E)(b3 +03-1)2

if b(c3 - 1) - 53(c - 1) 5 0 Analogously, in the Bayesian game between players of
types 3 (NC) and 4 (St2), lim+_„0(U3(E) - U4(E)) - ba(b( 3-J  9 -1)), thus limw-0 U,(E) 2
limE-0 U4(E) if b(c3 - 1) - 53(c - 1) 2 0.  Thus, if b(c3 - 1) - 53(c - 1) 0 0 either type
(Stl)  or type  (St2)  have a higher material payoff in the equilibrium  of the Bayesian  game

for some small  E.

Consider from now on preferences of type (NC) satisfying b(c3 - 1) - 53(c- 1)  -  0.  The
equality  can  hold  only when either  (b  >  0  and  c  >   1)  or  (b  <  0  and  c  < 1). Given  that

limE-0(U3(E) - Ul(E)) = 0 in this case, consider lim<-0(U6(E) - M (E)) = (c,+61)(c-1)3
(C3-1)(btc-1)2,

where bl  - Ul ((sl, 82))  2 0 since type (Stl) preferences regard sl  as the dominant strategy.
Thus, lim£_0(US(E) - UE(E)) > 0 only if c > 1.

Consider now the Bayesian game between players of types (NC) and (CO). Take
type (CO) preferences normalized to 1,2((81,81)) = 1,1,2((32,82)) = 0,112((81,82)) =b2 <
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0, 2,2((82,31)) -CY< 1. Calculations reveal that in equilibrium of this game lim£_0(U)(E)-
U2(E))  =0 and linl -0(U;(E) - U;(E))  = (b-'+1)(c  )(lt:c-2)-l,2(c-1)) Since 62, c.2 -l  E
(-00,0) are arbitrary, the expression can be made negative if b-c+1 9 6 0.  Then type
(CO) preferences have a higher material payoff in equilibrium than type (NC) preferences
have for small €.

Consider therefore b-c+1=0. Then lim.-0(U;'(E) - UUCE)) = (,2-#-1)31-c) <O i f
c> 1 and (2 - 52 -1 40. Then type (CO) preferences have a higher material payoff.  For

any b, c we found another type of preferences that has a higher payoff in equilibrium of
the Bayesian game. Therefore, type (NC) is not neutrally stable.  •

For type (NC) that plays the mixed equilibrium with complete information, there are
always some preferences that move the equilibrium of the incomplete information game
towards an outcome that is better for them than for type (NC). Even in the chicken type
games, when type (NC) contains the "true" preferences, there are preferences that move
the mixed equilibrium of the Bayesian game towards a pure equilibrium that is more
favorable for mutant preferences. Then these mutant preferences grow.

For players with preferences of type (BB), observe from the previous sections that
they plays a symmetric mixed strategy combination when b+c-2>0. However, such
a strategy combination is never an equilibrium of the material payoffs game. Therefore,
a mutant can appear so that it plays a best response to this strategy combination. This
mutant is not recognized by the players and, therefore, it receives a higher payoff. When
b+c-2 5 0, type (BB) plays strategy 81 against itself and by a reasoning similar to the
reasoning for types (Stl) and (CO) is stable when these types are stable, that is, when
c<lorc=l,b>0.

Lemma 5.11 n/pe (BB) is not neutrally stable i f b t c-2 >0.  I f b+c-2 5 0 itis
neutrolly stable ifc<  1  or c- 1, b> 0.

Summarizing the results, we can conclude

Theorem 5.3  With incomplete information the following types an neutrally stable:
(i) ifc<  1  or c-  1, b>0  then  types (Stl), (CO) and (BB)  (if btc-26 0);
(ii) i f b<0  or b=O,c>  1  then type  (Stp),·
(iii) ifc>  1, b> 0  then no  type.

Compared with the results of the previous sections, now types that play a (strict)
Nash equilibrium of the material payoff game are stable. For example, in coordination
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problems  (b  <  0, c  < 1) types  (Stl),  (CO),  (St2),  and  (BB)  are all neutrally stable,
though types (Stl), (CO), and (BB) play the efficient equilibrium and type (St2) plays

the inefficient equilibrium.  In the prisoners' dilemma (b < 0, c >  1) only type (St2) that
plays the equilibrium of it is stable. Thus, preferences that are "tru€', or preferences that

are equivalent to "true" preferences (in the sense that they play a Nash equilibrium of
the game with "true" preferences) are stable if they play a strict or undominated Nash

equilibrium. However, if players with the "true" preferences play a mixed equilibrium,
such preferences need not be stable. Ely and Yilankaya (1997) and Ok and Vega-Redondo

(1999) show that the "true" preferences (or preferences equivalent to them) are stable in

their models, but they did not allow for mixed strategies. In this respect our model and

the results of these subsection differ from theirs.
The following subsection relaxes the informational assumptions even further.

5.5.2 Ignorance
Suppose now that players in a (originally monomorphic) population do not suspect that a

mutant with other preferences has appeared, and therefore they still continue to play what
they used to play The mutant, however, plays a best reply to the strategy of the original
players. Clearly, if the original players played a (material payoff) best reply against

themselves, the mutant can be no worse only if he plays a best reply as well. Analogously,

if the original players are not playing an equilibrium, a mutant could appear that plays a

best reply to the strategies of the original population and has a higher material payoff.

Denote the strategy of the players in the original population by s, and the strategy

of the mutant   by   sm. The expected material payoff  of the players   with the original
preferences is U,(E) = (1 - E)u, (si, 8,) +Eu, (8„ s„,) and of the players of the mutant type is

U™(E) = (1 - E)u™(Sm, 8,) + Eum(sm, S„,). In the spirit of the previous subsection, taking

arbitrarily small  E,

Definition 5.7 A type of preferences k is evolutionary stable under ignorance if

Vvi E k lim _0 U,(E) > lim _0 Um(E) Vv™ 0 k.

Definition 5.8 A type ofpnferences k is neutrotly stable under ignomnce if Vit, f k
lim-0 U,(E) 2 lim._o U™(E) Vum 0 k

Comparing the expressions for the expected material payoffs, one can observe that

lim _o U,(E) > lim&-0 Um (E) when u. (Si, 8,) > U„,(Sm, S,) and if 14 (s„ s,) - U„,(sm, si) then
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when U,(si, sm) > u™(sm, sm), which is precisely the standard definition of evolutionary
stability for the game with the material payoffs.  Thus, if a type plays the strategy that is
evolutionary stable in the game with material payoffs, then this type is at least neutrally
stable under ignorance.

It  is  easy  to  see that  if c  <  1  or  c  =  1, b  > 0, strategy  sl is evolutionarily stable.
Therefore, types (Stl), (CO), and (BB) (if b+c-2 5 0) are neutrally stable under
ignorance if c  <  1  or c  =  1, b  > 0. Analogously,  if b  <  0 or b  =  0, c  >  1,  type  (St2)
is neutrally stable. A difference   from the previous subsection appears   in   type   (NC).
If the material payoff game is of chicken type, the unique mixed strategy equilibrium
is evolutionarily stable. Therefore, if players with preferences of type (NC) play the
strategy corresponding to the equilibrium, such preferences are neutrally stable. To play
the material payoff game equilibrium strategy, preferences of type (NC) with 2,3((st, sl))  >

7'3((32, 32))  and 1,3((81, 81)) = 1,713((82, 82))  = 0, 713((31, 82)) = 63 >  0, 733((52, Sl)) - £3  >  1
should satisfy  b (c  -  1)  =  b(c   -  1). This holds  not  for all preferences  of type  (NC)  (but
it holds for the "true" preferences), therefore type (NC) is not neutrally stable.

Theorem 5.4  With ignorance the following types am neutrally stable
(i)  ifc<  1  or c -1, b> 0  then  types  (Stl),(CO)  and (BB)  (ifbtc-2 5  0);
(ii) if b <0 or b=O,c>  1,  then type  (St2);
(iii) ifc >  1  and b> 0  then no type is neutrally stable bitt some pmferences of type

(NC) an neutrally stable.

The conclusions of the two last theorems are illustrated in Figure 5.3.  They do not
change if preferences of type (BB) are not considered and when a=6 (then c should be
compared with 0).

The two last theorems show that the preferences that play a Nash equilibrium of the
game with material payoffs, are more often stable under incomplete information. More-
over, only preferences that are "true", or equivalent to "true"  ones, are stable. Preferences
of types (Stl) and (St2) are stable for a larger area than in the complete information case,
since they play a Nash equilibrium also in coordination games (region II). However, with
the Bayesian approach, there is still a possibility   for   the   " true" preferences   not   to   be
stable. It happens for preferences  of type  (NC),  that  play a mixed strategy equilibrium
against themselves. With ignorance only the "true" preferences, or preferences equivalent
to them, survive the evolutionary pressure, a result that is in line with other recent results
in indirect evolution under incomplete information (Ely and Yilankaya (1997) and Ok and
Vega-Redondo (1999)).
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Figure 5.3: Neutrally stable types with imperfect information.

5.6 Conclusion

Of course, the results of the previous sections should be taken with caution.  Many of
them rely on the particular choice of equilibria (or approximate equilibria) for certain

preferences. Other choices may lead to other results but the analysis indicates that the

problem of coordinating is of importance. Another limitation of the analysis is that only
monomorphic states were considered while non-monomorphic or type-monomorphic states

can be stable as well. However, the analysis of monomorphic states allows to draw some
conclusions. With complete information selfish preferences may be unstable and evolution

improves efficiency, while with incomplete information, for any (strict) equilibrium in pure
strategies of the material payoff game, one can find preferences that play the equilibrium
strategies and such preferences are stable even if the equilibrium is inefficient.

The consideration of incomplete information supports the claim that incomplete infor-
mation promotes selfishness (Ely and Yilankaya (1997), Ok and Vega-Redondo (1999)).
The preferences that are equivalent to material payoffs are more often stable under in-
complete information. However, they are not necessarily stable.  If the material payoff

game has only a mixed symmetric equilibrium, such preferences would not be stable in
the Bayesian game we considered. The main difference between our model and the model
of papers mentioned above lies in the possibility of mixed strategies.
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Consideration of all possible preferences reduces chances for any particular preferences
to be stable. Since the space of preferences is large, there is a chance that for any given
preferences there are other preferences that beat them.

Inclusion of type (BB) preferences in the analysis, represented by a planner that
maximizes their material payoff is, in our view, an interesting approach. They can be
stable, but not always. Following advice, even for own good, is not necessarily stable,
since the advice may benefit the opponent even more. In the prisoners' dilemma such
preferences are the only stable ones under complete information, since there are gains

from cooperation. In coordination problem, however, they are not stable (assuming a
small possibility of mistakes in implementation of the planner's advice) since preferences
that regard one of the strategies as dominant choose one of the equilibria more efficiently.



Chapter 6

Merger Games and Coordination

6.1 Introduction

This chapter analyses a non-cooperative game of coalition formation inspired by merg-

ers.  Mergers are an important concern of policy makers and industry regulators. Though
regulations usually deal with a merger that has been proposed, it is interesting and also
important to know which merger in an heterogeneous industry is more likely to be pro-
posed, since it allows the regulators to predict the development of the industry  The
proposed merger is determined endogenously; this chapter attempts to find out which of
the possible mergers is most likely.

It is well known that a merger can be unprofitable for its participants, for example,
it is so in the simple setting of symmetric Cournot oligopoly (see Salant et al.  (1983)).
Since the firm that results from a merger reduces aggregate production in equilibrium, it
pushes price up thus making other firms better off, while firms participating in the merger
have smaller aggregate profit. That a merger is unprofitable does not rule it out when
firms are rational as firms may merge to prevent an even more disadvantageous merger,
as shown in Flidolfsson and Stennek (1999).

If firms are asymmetric, a merger can be profitable in the Cournot setting since it
improves efliciency. Profitable mergers with asymmetries in costs are considered in Perry
and Porter (1985). A fairly general analysis of mergers in Cournot oligopoly, including a
welfare analysis and policy implications is found in Farrell and Shapiro (1990). In these

papers, however, a merger is given exogenously and the question is whether there are
incentives to merge, that is, whether the merger is profitable. In contrast, we consider
the question of which one of several profitable mergers is more likely to occur.

113
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There have been attempts to address this question from the point of view of cooper-
ative game theory. Rajan (1989) considers several games in characteristic function form
corresponding to several conjectures about how the firms outside a merger will act, no
consistency requirement is imposed on these conjectures. Horn and Persson (1996) intro-
duce a new concept of domination between coalition structures and predict that a merger
that yields maximum industry profit will arise. The dominance concept does not take
into account the problem of free riding, since most of the combined profit in the dominant
structure may accrue to the firm outside of a merger. Since transfers between coalitions
are not allowed, it is counterintuitive that a dominant structure with most gains going to
an outsider of the merger will arise.

We model the merger game as a non-cooperative game of coalition formation instead.
The idea of such games is that before the actual play takes place, there is a stage of
coalition formation, that is, players can make agreements that will be binding in the
actual play. The stage of coalition formation has strict rules and is also modeled as a
non-cooperative game. The two-stage nature of the resulting game may lead to too many
equilibria; the standard refinement in this case is subgame perfection where incredible
threats are eliminated.

More precisely, the merger game is modeled as a simultaneous moves, exclusive mem-
bership game (Bloch (1997)) with a restriction on the size of coalitions.  That is, players

simultaneously propose certain coalitions, and a coalition is formed if (and only if) all
players in the coalition propose the same coalition.  This way of modelling is chosen be-
cause of several reasons. Exclusive membership refers to the impossibility to force a player
into a coalition; it is, in our view, a better way to model a merger, since a firm in reality
can always refuse to merge. The simultaneous moves part has two advantages. First,
sequential moves models often have results that depend crucially on the order of moves.
Even when the results do not depend on the order of moves, predictions are not clear-cut
because of multiple equilibria. Though the simultaneous moves model also has multiple
equilibria, it allows to apply equilibrium selection techniques more easily. Then in the
asymmetric setting a clear-cut result can be achieved. Kamien and Zang (1990,1991)
have followed the way of noncooperative modeling of the merger game but the firms there
were symmetric and the question addressed was how many firms would merge rather that
which firms would merge, like in this chapter.

We show that if there are several profitable mergers, there are correspondingly several

Nash equilibria in the game. The problem then is on which equilibrium to coordinate. We
address the question of equilibrium selection in this coordination problem. With certain
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assumptions on the payoff division rule in the merger, the structure of the merger game

is such that many refinements that use notions of small perturbations of strategies and
best response dynamic lead to the same equilibrium.

An example in the chapter analyzes this coordination problem in an asymmetric
Cournot triopoly Whereas all firms may benefit from a merger, a firm may prefer most to
stay out of the merger since the merger creates positive externalities. Therefore, there is a

potential free rider problem. Nevertheless, we will show that a merger whose participants
prefer this merger to other mergers is in a sense " focal".  With a particular specification
of the division of gains from merger, we show that this merger is the one with the highest
internal gains. Barros (1998) uses this criterion (without justification) to chose among
mergers in a model similar to ours but where cost parameters are more restricted. We

provide a justification for the highest internal gains criterion.
Welfare considerations are an important issue in the analysis of mergers. Antitrust

policies aim at identifying and preventing a merger that decreases welfare. In the asym-
metric firm case, a merger may improve efficiency (as the less efficient firm ceases pro-

duction) while still having a negative effect on welfare due to the reduced number of
competitors. We analyze  when  the " focal" merger improves  and  when it hampers  ef-

ficiency. We consider also the implications of the "focal" equilibrium for the producer
surplus and find that it is not necessary maximized there, in contrast with the results of
Horn and Persson (1996).

The structure of the chapter is as follows. Section 6.2 describes the general model.

The rest of the paper focuses on the three-player case. The analysis of the game is in
Section 6.3, while Section 6.4 considers the Cournot example. Section 6.5 concludes.

6.2 The Merger Ganne

We model the merger game as a simultaneous moves, exclusive membership game (Bloch
(1997)) with partition function and restriction on the size of coalitions.  Let  N= {1, . . . ,n}
be  the  set of players. A coalition  S  =  {il ···im}  is a subset  of  N. A partition  of set  N
into coalitions is a coalition structure. That is, a coalition structure is a collection of sets
71' = (Sl, ···, Sk} such that ULiS, = N and S, n Sj - 0 vi 0 j. A pair (S; 7r) of a coalition
S and a partition 7r that contains S is called an embedded coahtion. Denote the set of all
embedded coalition by A.  A partition function 11 : Q = R is a function from all possible

embedded coalitions to the real line.  For each embedded coalition (S; ir) it gives the worth
of coalition  S in partition 7r, denoted  by  v(S; w).
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In a general simultaneous moves, exclusive membership game players announce a coali-
tion to which they want to belong. Depending on the announcements, a coalition structure
is formed. Hart and Kurz (1983) introduced two models, differing in the mapping from
the announcements to the coalition structures. In model 7 a coalition S is formed if and
only if all its members announced S. In model 8 a coalition S is formed if and only if
all its members announced the same coalition S' that may be larger than S. After the
coalition structure is known, the worth of each coalition in it can be calculated by the
partition function.

We restrict announcements to one-player and two-player coalitions only A justification
is that a merger usually involves only two firms at once. The restriction eliminates the
need to distinguish between 7 and 6 models since the only possibility to form a two-player
coalition is that both players in the coalition announce this coalition. Alternatively, in
the merger game players simultaneously announce their intended partner. If two players

have announced each other, they merge. There may be no intended partner (player i
announces the singleton coalition {i}), meaning that a player does not want to form a
coalition with anybody but prefers to be a singleton.

Formally, the strategy set X, of player i is the set of all one and two-player coalitions

containing i.  X, = {{i}, {ij};=i,j*, }.    Denote  by  xi   E  Xi the strategy (announcement)
of player i and by zj € Xj the strategy (announcement) of player j. Coalition {ij} is
formed  if  and  only  if zi  =  (ij    =  Ij.

Observe that  XJ - n. Thus, an alternative representation of X, is N. A strategy

(announcement) xi E N is interpreted as the intended partner for player i where xi = i
means that player i prefers to be a singleton. Coalition {ij} is formed if and only if
z, = j and z, = i. This representation of strategies is simpler but we will use both
representations in what follows.

For the full description of the non-cooperative merger game a division of the coalitional
worth to the two players forming a two-player coalition is needed. However, even without
specification of the division rule one can state the following result. There is always a Nash
equilibrium of the merger game when all players do not name any intended partners (that
is x, = i Vi). Since to form a coalition the consent of both players is needed, a unilateral
proposal to another player does not change the resulting coalition structure consisting of
singletons. Payoffs remain unchanged too.

Remark 6.1 There is always a Nash equilibrium where att players remain singletons.

To specify how individual players value different coalition structures, we need a division
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of the coalitional worth for the players. We assume that there is an exogenously given

division rule 40:(ij) that specifies what player i gets in coalition {ij} in coalition structure
r. We require the following properties from the rule.

Definition 6.1 A division rule 99 is ellicient if 99 (ij) + M;(ij) = 1,({ij};7r) Vi, j and
any  coalition structum 71'  3  {ij}

Consider any coalition structure  gr   3 {ij}. Denote   by   lr_ · · the coalition structure1J

resulting from breaking up coalition {ij} while other coalitions stay intact, 71--,j  = 71- {ij U

{i} U {j}.

Definition 6.2 A division  rule  p  is  individually  rational  if Vi, j  and  any  coalition
structure ,r 3 {ij}, whenever v({ij}; lr) 2 v({i}; lr-,j) + 13({j}; 7r-,j) then 45(ij) 2
V({i};lr-,j).

Definition 6.3 A division rule 99 is strictly individually rational if Vi, j  and any coati-
tion structure 7r 3 {ij}, whenever 11({ij},71·) > 7,({i},71·-,j) + 1,(<j),71'-ij) then (2:(ij) >

V ({i}, lr_,j)

That is, a rule is efficient if the worth of a coalition is fully divided.  For a rule to
be strictly individually rational, it should be the case that if a merged worth is higher
than the sum of the separate worths, keeping other coalitions fixed, then the division rule
should give payoffs higher than the individual payoffs of each of the participants in the
coalition. We consider only efficient and strictly individually rational division rules.

6.3 The Three Player Case

6.3.1       Equilibria
The restriction of the model to the three-player case simplifies the analysis considerably.

The main feature of the three-player case is that the value of a two-player coalition t, ({ij})
is determined, since the only coalition structure compatible with a two-player coalition is
({ij}, {k}).   This will allow  us to drop superscript  7r  in the specification of a division rule.
The value of a one-player coalition, though, may depend on whether the other two players

formed the coalition or not. However, since a single player cannot unilaterally influence
the formation of the other players' coalition, this has limited relevance. In particular, for
the set of pure Nash equilibria it is not important whether the formation of a coalition
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hurts or helps outsiders. Spillovers, that is, how a merger affects the outsider, do not
matter for the set of pure Nash equilibria of the game.

The set of pure strategy Nash equilibria in the game with three players depends only
on the profitability of forming two-player coalitions.  It is easy to show that if a two-player
coalition has a higher worth than the sum of the individual worths, then there exists a
pure Nash equilibrium of the merger game in which this coalition forms. Formally, denote
the coalition structure ({i}, {j}, {k}) by lr,jk and i,({i}; 'r,jk) by 1,(i). Then we have

Theorem 6.1  If 1,({ij})  2 1,(i) + 1,(j) then there wists a pure Nash equilibrium of the
me,yer game in which {ij} rms.

Proof. Suppose player i proposes to j and player j proposes to i. Suppose also that
player k wants to remain a singleton.  We show that this is an equilibrium. First, player k
cannot change the coalition structure by unilateral deviations and therefore receives the
same payoff regardless of her strategy. If players i or j change their strategy, the resulting
coalition structure would be all singletons since no coalition offers would coincide. By the
individual rationality of the division rule, both players i and j receive higher (or equal)
payoff when they merge, therefore they would not deviate.   I

It is also true that if a merger is unprofitable (73({ij})  <  73(i) + 1,(j)), at, least one of the
players will have incentives to remain a singleton instead. Therefore, the possible outcomes
of pure Nash equilibria are characterized by the profitability of two-player coalitions: those
coalitions that are profitable will arise in a pure Nash equilibrium, and those that are not
profitable will not.

Since there is also the equilibrium where no merger forms, if there are profitable two-
player coalitions, the game exhibits multiplicity of (pure) equilibria.  Some of them, like
the no-merger equilibrium, seem to be rather unstable. We want to select one equilibrium
in order to be able to say more about possible outcomes of the game.

6.3.2 Equilibrium Selection

We continue to focus on pure equilibria. First, we consider static approaches to equilib-
rium selection like perfection and persistency (see, e.g. van Damme (1991, Ch.2)). Then
we also discuss set-valued equilibrium concepts and dynamic approaches to equilibrium
selection. All approaches select the same equilibrium in the merger game. One can ob-
serve that the notions of perfection and persistency make use of small perturbations, like
dynamic approaches do. Thus, they are similar, and in the merger game lead to the same
equilibrium.
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The Static Approach

We start with the notion of (pure) perfect equilibrium for our game.

Definition  6.4  A Nash equilibrium z  =  (Ti, I2,1:3) is perfect if there exists a sequence

of completely mixed stmtegy projiles  { 0, }3i -I such that Ij E BR(atj) Vj = 1,2,3.

Observe that since xj has to be a best response to a completely mixed strategy, no

weakly dominated strategy can be part of a perfect Nash equilibrium. Thus, like in the
previous chapter, we consider equilibria in undominated strategies.

Assume that there exists a strictly profitable merger for players i, j, that is, 13({ij}) >
v(i) tv(j).  Then the strategy "stay alone" is weakly dominated for players i, j by strategy

{ij} because the only difference a unilateral switch of player i from "stay alone" to {ij}
can make is to change the payoff of player i from „(i) to W,(ij) if player j was proposing to

i. Recall that we work with strictly individually rational division rules, thus A(i) > 1,(i)
Therefore, any equilibrium in which  any  of the players  i,j uses strategy  " stay alone",   in
particular the equilibrium from Remark 6.1 where all players played  "stay  alone",  is not

perfect. Even when there are large positive externalities from a merger, that is, a player
benefits from the merger of other players very much, possibly more than the participants
of the merger themselves, trying to free ride on the merger of others is a dominated

strategy. Thus, the (possibly inefficient) equilibrium of no merger is not selected if there

is a (strictly) profitable merger.
To save space we will call strictly profitable merger simply profitable. Clearly, if there

is only one profitable merger, it is selected by the perfection criterion. The situation is

more interesting if there are two or three profitable mergers.  Then the perfection criterion
is not enough to select one merger as the following example shows.

Consider a situation  when only mergers   {12}   and   { 13} are profitable  and  the  divi-

sion rule is such that (21(12) > Wl(13) and 9'2(12) > 992(23) > i,(2). Then equilibrium

({12}, {12}, {13}) with merger {12} and equilibrium ({13}, {23}, {13}) with merger {13}
are both perfect. The first equilibrium is perfect since the strategies of all three players

are best replies to any mixed strategy close enough to the equilibrium except when player

2 offers the merger with player 3 much more often than player 1 does. The second equi-

librium is perfect since  if the elements  of the sequence  { a' }  have much smaller probability
on player 1 playing {12} than on player 3 playing {23}, {23} is a best reply for player 2.
For other sequences of completely mixed strategies converging to that equilibrium it may
be not true that the equilibrium strategies are best responses. These observations lead to
the feeling that the second equilibrium is less attractive than the first one.
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To distinguish the two equilibria we employ the concept of persistent equilibrium

(Kalai and Samet (1984)). A retract is a non-empty closed convex subset of the set of
mixed strategies of all players. A retract e is absorbing if for sufficiently small E, for every
strategy profile a i n the E-neighborhood of e, there exists strategy profile p€e such that
p is a best reply to a for all players. A persistent retract is a minimal absorbing retract,
that is, an absorbing retract that does not contain any smaller absorbing retracts. Now
we are ready for

Definition 6.5 A persistent equilibrium is any equilibrium that belongs to a persistent
Tetract.

Intuitively, an absorbing retract attracts (under best response) the play back to itself
after sufficiently small mistakes by the players. Observe that it attracts the play back
for every strategy in the E-neighborhood, which distinguishes it from perfect and proper
equilibrium.

We make also an additional assumption on the division rule.

Definition  6.6  A division rule W is acyclic if Bi, j such that 92,(ij)  > 99,(ik) and Wj(ij)  >
Fjok).

That is, there are players  i, j  such that i prefers merger with j over merger with  k
and j prefers merger with i over merger with k under 4. Acyclicity rules out cycles in

preferences over mergers. That is, the situation when i prefers merger with j, j prefers
merger with k, and k prefers merger with i is ruled out.  Thus, one of the three possible
mergers is preferred by its participants over the merger with the third player. We call
such a merger the most prefer,·ed partners merger. We consider from now on only acyclic
division rules. In the example in the next section we present an acyclic division rule
arising from quite reasonable assumptions.

Without loss of generality, suppose that the merger referred to in the above paragraph
is between players 1 and 2. Then for any (mixed) strategy 33 of player 3 the strategy
profile  ({12}, {12}, z3)  is an equilibrium.   We show  that at least  some of such equilibria
are persistent. Consider a retract e consisting of ({12},{12},z3), where z3 E 63. For
players 1 and 2, strategy {12} is a strict best reply to any strategy profile that belongs to

e  since  921 (12), 992 (12)  are the maximal values players  1  and  2  can  get by participating in
a merger, and therefore, it is a best reply to any strategy in a small enough neighborhood
of e.  Since e contains all strategies of player 3, it contains best replies to any strategy



6.3. The Three Player Case 121

in the neighborhood of e as well.  Thus, e is absorbing. The whole retract e may be

not minimal; a subset of it where player 3 does not use (weakly) dominated strategies is
then minimal. Any equilibrium of the form  ({12}, {12}, s3) that belongs  to such a subset

is persistent.
Suppose now that there is another profitable merger, say, between players 1 and 3.

Then ({13},z2,{13}), where z2 puts low enough probability on {12} so that {13} is a
best response for player 1 and low enough probability (which may be 1) on {23} so that
{ 13}   is   a best response for player   3,   is an equilibrium. Suppose there   is a persistent
retract e' that contains ({13}, x2, {13}) for some 3:2 as described. Any neighborhood of
e' would contain a mixed strategy of player 1 that puts a non-zero probability on {12}
higher  than the probability of player 3 playing  {23}.    Then   { 12} would  be the unique
best reply for player 2.  Thus, e' has to contain ({13}, {12}, {13}).  But then {12} is
the best reply for player 1; e' has to contain ({12}, {12}, {13}) as well.  In the previous
paragraph we showed  that  ( { 12}, {12}, {13}) belongs  to a persistent retract  that  does not

contain ({13}, x2, {13}). By Corollary 3 of Kalai and Samet (1984) that any two persistent
retracts have empty intersection, we arrive to a contradiction. Therefore, there is no
persistent retract containing  ({13}, x2,  {13})   and such equilibrium  is not persistent.    A

similar reasoning shows that the equilibrium when everybody stays alone is not persistent
either.

Combining the reasonings above we state

Theorem 6.2 If then are projitable meqers and the division rule p is acyclic, in the
pure strategy persistent equilibrium of the memer game the most preferred partners Tnerger

forms.

Thus, using the static refinements of the Nash equilibrium, we can select one merger.

Observe that the notion of strong Nash equilibrium does not necessarily help in this
situation. A Nash equilibrium is strong if there is no group of players such that they can

get a better payoff than in the equilibrium by a joint deviation.  If a firm has large enough
positive externalities from the merger of other firms, the equilibrium with such a merger
is strong since this firm would not want to make a joint deviation.  Thus, it may be the
case that any equilibrium with a profitable merger is strong.

In the next subsection we consider set-valued and dynamic approaches for equilibrium
selection.



122 6. Merger Games and Coordination

Set-Valued Concepts and Dynamic Approach

We used the notion of persistent equilibrium to select one of the pure strategy equilibria
of the merger game. This notion is formulated in such a way that though it is a refinement
of Nash equilibrium, it uses sets of strategies: the equilibrium is persistent if it belongs
to a persistent retract, which is a set of strategies. There are other, less demanding,
set-valued notions of equilibrium that lead to the same result for the merger game if one
adjusts their definitions in a way similar to the definition of persistent equilibrium.

A retract e is closed under rational behavior (curb) if Vi, Vo E e, a' € BR(a-,) =*
(d, a_,) E e (Basu and Weibull (1991)).  A curb retract is minimal if it does not contain

any smaller curb retract.  Then we can define

Definition 6.7 An equilibrium is curb if it belongs to a minimal curb retract.

The definition of a curb retract requires that all best replies to strategies in it belong
to it.  Analogously with the reasoning in the case of persistent equilibrium one can see that
in  the  case of retract  ({12}, {12}, z3) with arbitrary  :r3  all best replies to strategies  in  it
belong to it. Thus this retract is curb, and, moreover, it is minimal curb since player 3 is
indifferent among all his strategies.  On the other hand, by definition the set of strategies

({13}, z2, {13}) is contained  in  a curb retract  only  if the retract contains all strategies  of
player 2.  But then it contains {12} to which the unique best reply of player 1 is {12}.
Thus, the retract has to contain ({12}, {12}, x3) together with ({13}, Z2, {13}).  Then the
retract is not minimal curb. A similar reasoning applies to other equilibria of the game.
Thus, only equilibrium ({12}, {12}, z3) belongs to the minimal curb retract.

Remark  6.2  A pure equilibrium of the me,yer game is curb only if in it the most pn,ferred
partners merger forms.

Another set valued concept that also incorporates dynamic considerations, is equilib-
rium evotutionarity stable (EES) set, introduced by Swinkels (1992).  Consider a non-
empty closed subset e of Nash equilibria of a game. The set e is equilibrium evolution-
arily stable if it is minimal with respect to the following condition:  3E' > 0 such that
VE € (O, E'), Va € e, Va' it holds that a' E BR((1 - E)0 + Ea') ==* (1 - E)0 + Ea' E e.
Analogously with the above definitions

Definition 6.8 An equilibrium is EES if it belongs to an EES set.
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The idea of equilibrium evolutionarily stable set is that it is robust against an invasion

of small number of mutants that play a best response a' against the population after the
invasion that is represented by BR((1 - E)or + Ea').

Consider again the set of Nash equilibria e = ({12},{12},33). If E is small, {12}
continues to be the unique best reply for players 1 and 2. Since  :3 is arbitrary, Va € e,
e contains all small perturbations of 0 that differ from 0 only in the strategy of player

3. Thus, e satisfies condition for equilibrium evolutionary stability and it is also minimal

with respect to it.

Consider now the set  e'  =  ({13}, x2, {13}) with appropriate x2  so that it  is a subset of

Nash equilibria. If it is equilibrium evolutionarily stable, by definition Vcr € e' it has to
contain perturbations of cr that differ from o in the strategy of player 2.  But then it has
to contain a strategy of player 2 that puts high probability on  {12}.  Then {12} becomes  a

best reply for player 1. Thus, an equilibrium evolutionarily stable set containing e' has to
contain also {12} as strategies of players 1 and 2.  But then it is not minimal since in the

previous paragraph we found a minimal equilibrium evolutionarily stable set containing
such combinations of strategies. Given that the reasoning applies to other equilibria of
the merger game, once again we have

Remark 6.3 A pum equitibrium of the merger game is EES only if in it the most preferred
partners merger forms.

All three concepts (persistency, curb, EES) we used select the equilibrium of the merger
game with the same outcome. There are also other similar concepts, like cyclically stable
set of Matsui (1992) that lead to the same results. Furthermore, Hurkens (1995) presents

a learning process that converges to a minimal curb set, so in our game it converges to
the equilibrium with the merger of the most preferred partners. Also, the best response

dynamic with mutations (Kandori et al. (1993), Young (1993)) leads to the same result.
All this comes as no surprise: all concepts use small perturbations in players' strategies
to check stability of equilibria. Notice that in the selected equilibrium a merger always
forms even when all firms prefer that their rivals merge. The potential free rider problem
is overcome by equilibrium selection. The problem on which merger to coordinate is also
overcome by possibility of small mistakes in players' strategies. The results are restricted
to acyclic division rules; if a division rule is not acyclic, the refinements above do not have

much bite and any of the profitable mergers can occur.



124 6. Merger Games and Coordination

6.4 An Illustrative Example: Asymmetric Linear
Cournot Triopoly

In this section we consider an example of the merger game in a linear Cournot oligopoly
with asymmetric firms. Using the results of the previous section, we are able to answer the
question of how asymmetries in efficiency influence the likelihood of each merger.  Thus,
we are able to say which of the three mergers is more likely.

There is an industry with three firms that differ in efficiency  That is, they have
different marginal  cost of production  cl, C2, C ·   In what follows  we take, without  loss  of
generality, cl -0<c 2< c3· The demand side of the market is represented by the inverse
demand function P=1-Q.

There are two stages in the game. The second stage is the usual Cournot oligopoly
game while the first stage is the merger game. Since the second stage has a unique
equilibrium, using subgame perfection enables us to reduce the game to the first stage

by substituting the profits realized in the Cournot game into the first stage valuations of
coalitions.

Formally, in the first stage each firm can propose, simultaneously with the other firms,
a merger with another firm but not with both other firms. Monopoly is impossible either
because of regulations or of high costs of negotiations with more than one partner.  Of
course, a firm cannot be driven into a merger, so it also has an opportunity to stay alone.
Thus, each firm has three possibilities in the first stage: stay alone, propose to the more
efficient firm, and propose to the less efficient firm.

If two firms propose a merger to each other, they merge; the efliciency level of the
resulting firm is the maximum of the two, that is, the resulting firm has marginal cost
equal to the minimum of the marginal costs of the merging firms. The firms in a merger
retain their identities and each will get a certain share of the joint profit, in a way that
is specified below.  If no proposals coincide, no merger takes place and all three firms
proceed to the second stage as separate entities.

A merger is understood as an arrangement where the identities of the firms are re-
tained. One interpretation is that it is a temporary arrangement, say the less eflicient
firm places an order for production to the more efficient firm. Another interpretation is
that shareholders of both merging firms should have a part of the profit of the resulting
firm; one then can find out how much each shareholder gets compared with the situation
before the merger.

After the first stage, there are either three (if no merger took place) or two firms in
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the industry. They play the usual Cournot game. With the restriction on the parameters
(marginal costs) specified below, there is a unique equilibrium of the second stage game.

We consider subgame perfect equilibria of the two stage game.  Thus, the profits of the
firms in the Cournot equilibrium of the second stage game will be understood as the

payoffs after the first stage and the whole game.
If no merger has occurred, the profit of each firm in the second stage is well defined.

Denote the profits in this  case by ,Tl, 7r2,  3· If there was a merger, the merged firms i, j
get some profit  as one entity, which is denoted  by  x,j. The remaining  firm  k gets profit

7rV,  which in general  is not equal to rk.   As the merged firms retain their identities  they
have to divide the profit in some way. We assume that there is an efficient and strictly
individually rational rule p· ·  for the division of the payoff in this case that specifies the

1J

share F,j(i) of player i.

6.4.1 Second Stage Payoffs

Let us analyze the second stage of the game. Three distinct situations are possible. If there
was no merger, there are three firms in the industry with marginal costs cl -0< (2< c3·
If firms  1  and 2 have merged, there are two firms with marginal costs cl  =0<  £3.  If firms
1 and 3, or firms 2 and 3 have merged there are two firms with marginal Costs Cl -0< (2
We analyze these three situations in turn.

Case ci = 0 < C  < C3

Following the standard oligopoly theory, the equilibrium quantities produced by the firms
are

q1  =  lictica , (12  =  1-30 +Ca, (13 =  1+ZI-303

Thus, the total quantity and price are

Q  -  2=&4=£:1 'p "  lic,+E
which bring the profits

7rl . (13:54 £1)2, X2 = <1-37+ 3 2,7r3 -  1+C24-3(3)2.

The quantities and the price above are required to be positive to avoid corner solutions.

Since  c2  <  C , for positivity  of all quantities and prices  it is suflicient  to  have  also  c2   >

3c3 - 1. The region where both conditions hold is shown in Figure 6.1.



126 6. Merger Games and Coordination

0.5-
C2

0.4-

0.3-

0.2-

0.1-

C3

0 0.1 0.2 0.3 0.4 0.5

Figure 6.1: Region where quantities and prices are positive.

Case cl =0<C 3

This case occurs when firms 1 and 2 merge. There are two firms in the industry whose

equilibrium quantities are
q12 -  19:1, th =  1»,

implying the total quantity and price

Q=  292 , p =  192 .
The profits are

71 12 = (1:35)2, r 2 = (13£1)2
Note  that  in the region depicted in Figure  6.1 the quantities and prices  for  this  case  are

positive.

Case cl =0<C 2

This case arises when firms 1 and 3, or firms 2 and 3 merge. The case is completely
equivalent to the case cl =0< ca, where we substitute c2 for (3.  Thus the profits of the
flrms are

 13 . (192)2':r13 = (1=f£2)2, or
71 23 = (lis)2,11.23 - (1=f£2)2.

The region in Figure 6.1 is again sufficient for positive prices and quantities.
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Figure 6.2: Regions where mergers are profitable.

6.4.2    Equilibria of the First Stage

Having calculated the payoffs of the second stage we can proceed to the first stage. Notice,
first, that mergers are not always profitable. A merger can have as a consequence that the
profit of the resulting firm is lower than the sum of the profits of the two merging firms,
if there would have been no merger. Below we calculate the values of the parameters c 

and c3 for which mergers are profitable.
For example, the firm obtained as merger of firms 1 and 2 in the equilibrium of the

second stage has profit  12 - (1.3'a)2. Separately, firms 1 and 2 get respectively 7rl -

(1.t£4 £)2,71'2  -    1-37+C,  2. Therefore, the firms find merger profitable if x12  >  7rl + 7r2·

This inequality holds  if  £1*1  <  (:2  <  *1  for  (:3  E  (0,0.5). This region is marked  12  in

Figure 6.2.
Analogously, the firm combining firms 1 and 3 gets in the second stage  13 = (1*2)2,

while separately firms 1 and 3 get 71-1 - (11*-Sa)2,71-3 - (1+04-3ca)2 respectively. x13 >
7rl + 7T3 holds when 3(:3 -1  <c 2 < 1503 -1 for c3 E  (0,0.5). The region is marked 13 in

Figure 6.2.
Finally, firms 2 and 3 find merger profitable if,r23 - (1--f£2)2 > 71-2 +ST3 -   1-3, 2+c,)2 +

(1+C24-3e )2. The inequality holds if 303 -  1  <  c:2  <  1.Mpl  for Ca  E  (0,0.5). This region is
marked 23 in Figure 6.2.

Not every merger is profitable.  If c2 is very small, firms 1 and 2 would not like to
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merge.  If both c2 and (:3 are small, firms 1 and 3 would not like to merge. Finally,
if c  is not very different from C3, firms 2 and 3 will stay apart. The observations are
in line with the result of Salant et al.  (1983) that in a symmetric Cournot oligopoly a
merger is unprofitable if less than 80% of the firms merge. The result also holds for small
asymmetries; however, as the asymmetry between participants of the merger grows, the
efficiency gain from the merger overcomes the negative effect of the merger.

Remark 6.4 A meWer is projitable only if the cost difemnce between its participants is
laTTe enough.

We will focus our attention on the case when c2 is not very small and c  is sufficiently
different from c2, since this is the case when all three mergers are profitable and the
coordination problem is most acute. That is, we consider the intersection of regions 12,
13, and 23 in Figure 6.2, which is denoted by I. In this region all three firms prefer a
merger  to the situation when there  is no merger. Following Theorem  6.1, all mergers  are
possible in equilibrium. The question is which one is more likely.

Though all firms prefer a merger to occur, they might have different preferences among

possible mergers. For example, due to the positive externality of a merger in Cournot
oligopoly it can happen that a firm prefers most that the other two firms merge rather
than to participate itself in a merger.  It is also possible that all three firms have such
preferences. There is a potential free rider problem:  if each firm prefers most that the other
two merge, they all can try to stay alone. It is an equilibrium as Remark 6.1 indicates.
But this equilibrium brings the worst possible outcome as all firms stay separate. For a
strategic choice, as we have seen in the previous section, the preferences over the merger of
the two other firms are irrelevant, as it cannot be influenced. The only preference relevant
for a strategic choice is between two possible mergers is which the firm itself participates.

The firm evaluates these two mergers according to the profit division rule P, which
determines what merger the firm prefers more. Firm i prefers merger with j rather than
with k, if 47,(ij)  > p,(ik). In distinction from Barros (1998), who did not give justification
for choosing one of the mergers, and Horn and Persson (1996), who used a cooperative
concept, we apply the equilibrium selection results from the previous section to select an
equilibrium.

As an example of a division rule, which seems one of the most natural ones, we consider
equal division ofgains from merger.  Thus, 9, (ij)  =  A,  1  „., -C j.+Ij). This division arises,  for
example, from the Nash bargaining solution. The Nash solution can also be implemented
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Figure 6.3: Pattern of firms' preferences over mergers.

via a non-cooperative game.  It can be justified by a game where the merging firms bargain
over the joint profit after they had committed not to merge with the remaining firm.

With such division rule, in the Cournot model above, one can find what firm prefers

what merger. The rule is acyclic; the pattern of firms' preferences is depicted in Figure
6.3.

Firm 3 always prefers to merge with firm 1 rather than with firm 2. In region I firm
1 prefers firm 2 and firm 2 prefers firm 1; in region II firm 1 prefers firm 3 and firm 2
prefers  firm  1; in region  III both firms  1  and 2 prefer  firm  3.

Applying Theorem 6.2, we immediately arrive at the following result.

Theorem 6.3 In region I me,ger (1,2 1 forms in the selected equilibrium; in regions II
and III me,yer  (1,3j  forms  in the selected equilibrium.

Loosely speaking, the merger that is more likely to form depends on the difference in
cost parameters.  If c2 and c  are high enough, the most efficient firm 1 merges with firm

2, while if the cost differences are not that high, it merges with firm 3. A merger of the
two least efficient firms is never selected: the efficient firm has always more to offer to
attract a partner.

Since we have assumed that the division rule always gives each player the same pro-
portion (half) of the gains from merging, it is no surprise that the merger in the selected
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equilibrium is the one with the highest internal gain, where internal gain is the differ-
ence between the profit of the merged firm and the sum of the profits of the separate
firms. Barros (1998), though using the highest internal gains criterion, does not give any

justification of it.  Horn and Persson (1996) select a merger which maximizes industry
profit since they ignored the free rider problem of the outsider in a merger.  Thus, the
result of merger selection corresponds to Barros (1998) and differs from Horn and Persson

(1996). The next subsection shows that in our model the selected merger does not always
maximize industry profit.

Note that the result depends much on the division rule. The division rule we consider
divides the gains equally.  If the division rule gives all the bargaining power in a merger
to the buyer (more efficient firm) then merger of firms 2 and 3 is selected since firm 1
prefers to merge with firm 2, firm 2 now prefers to have some profit from merging with
less efficient firm 3 and firm 3 is indifferent between mergers.

6.4.3    Efficiency of the Selected Equilibrium
We analyze efficiency from two points of view: from the point of view of the firms and
from the point of view of a regulator whose objective is social welfare.

We call an equilibrium Projit e#icient if the sum of the profits of the firms in the
equilibrium is highest among all equilibria. Since the equilibrium selected maximizes
internal gains, one might think that it is also profit efficient. This is not true since the

merging firms do not take into account the effect of the merger on the outsider.  We show
that there is a region where a profit inefficient merger forms.

The  sum  of the firms' profits when firms  1  and 2 merge is equal to 5'3 -2,3+2, while
when firms  1  and 3 merge the aggregate profit is 54-r+2.  One can check that the profit
in the first case is larger than in the second case when c3 <c 2<f- ( :3 for (:3 <i and
i -c 3  <  (:2  <  (:3  for (:3  >  i.   The line c2  =   -C 3  does not coincide with the line separating
regions where the corresponding mergers are selected. There is a region where the selected

merger is between firms 1 and 3 while a merger between firms 1 and 2 would have given
a higher aggregate profit. The region where a profit inefficient merger forms is shown on

Figure 6.4.
In region I a profit inefficient merger takes place. It happens because firm 3 would

have profited a lot from merger {12} driving the sum of profits up; given the division rule,
however, firm 1 prefers to merge with firm 3 and firm 2 does not benefit that much from
this merger.
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Figure 6.4: Regions of merger (in)efficiency.

If redistribution of profits was allowed, the firms could achieve a better result.  This

example shows that the equilibrium selected needs not be the one where the producer
surplus is maximized.

Welfare consists of the sum of consumer surplus and profits.  We call an equilibrium
welfare e,Oicient if the sum of consumer surplus and profits in the equilibrium is highest

among all equilibria. When the sum of profits is higher one can expect that consumer
surplus will be lower since higher profit means higher price. Therefore, the effect on
welfare is a priori ambiguous.

2

3-43 +4When firms 1 and 2 merge the price is 192, thus the consumer surplus is c
18    '

When  firms  1  and 3 merge the price  is 1-:P, resulting  in a consumer surplus of '1-*2+4.
114-8 +8 11,€-8¢2+8Thus welfare in the first case is while in the second Comparing the18                                      18

two expressions we have that welfare in the first case will be higher only when c2  >    - (:3·

Figure 6.4 shows the region (denoted by II) where the selected merger is not welfare
efficient. Note, however, that in the other two regions the equilibrium merger is welfare
efficient and the coordination problem helps to improve efficiency in region I compared
with the merger that maximizes producer surplus.

If the cost difference between the most efficient firm and the other two is large (c2
and c  large) then it is better for welfare that firms 1 and 2 merge, thus leaving the least
efficient firm on the market. Notice, however, that in this case the difference between
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(32 and c3 is not large, thus eliminating firm 3 instead of firm 2 does not bring much in
terms of efEciency.  As the difference between the most efficient firm 1 and the other two
firms decreases, it becomes better for welfare to eliminate the least efficient firm 3 but
the firms prefer to eliminate firm 2 instead. After some point, the selected equilibrium of
the merger game indeed eliminates firm 3. Eventually, if the difference decreases further,
mergers become unprofitable, which is also good for welfare, since then a merger would
hamper competition without bringing much in terms of efficiency.

6.5 Conclusion

We have considered a model of the merger game. The attention was restricted to three-
player games; they give enough insight into the problem while avoiding the difficulties

of a game with more players. The merger game we constructed has multiple equilibria;
the coordination problem of which equilibrium to select was resolved by refinements that
have a dynamic flavor and all led to the same result. The resulting merger is the one
where both participants prefer this merger to other mergers. In the Cournot oligopoly
example with a particular division rule we found that the resulting merger maximizes
internal gains. There are cases when the selected equilibrium is both profit and welfare
efficient. There are also cases when the equilibrium is not welfare efficient but profit
efficient. Finally, it can happen that the equilibrium is welfare efficient but not profit
efficient. Thus, coordination problem in our merger game gives a better outcome for
welfare than in the case where firms can collude to get maximal profit.

Certainly, there are ways to extend the model to endogenous division of gains, more

players and sequential merger decisions, though there appear to be many difficulties (for
an attempt, see Gowrisankaran (1999)). However, it is possible to address the question of
how asymmetries affect mergers with just three players.  Thus, the simple merger game
and its illustration with a linear triopoly model considered in this chapter provides already
an insight of what may happen in an endogenous merger game and how asymmetries affect

possible mergers.
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Samenvatting

Stel je voor dat je een keuze tussen vele acties moet maken. De acties zouden een uitbe-

taling brengen, maar je weet niet precies hoeveel elke actie brengt. Wat zou je doen?

Natuurlijk, is de situatie erboven niet compleet. Er kan veel meer informatie zijn om
de keuze te maken. Bijvoorbeeld, je weet dat er ook anderen zijn die in dezelfde situatie

zich  bevinden.   Dan kan je van ze leren.   Of je weet  dat de acties  van deze anderen invloed

op je uitbetaling hebben.  Er zijn veel mogelijkheden om de situatie te modelleren en

sommige worden in dit proefschrift geanalyseerd. De structuur uit de eerste alinea vormt

de basis voor de modellen.

Er zijn veel voorbeelden van de bovenbeschrevene situaties. Denk aan het kopen
van een yoghurt:  zou je hem lekker vinden?  zou hij goed voor je maag zijn?  Voor
een interactieve situatie, stel je voor dat je een kruising op de fiets nadert (typisch voor
Nederland): zou de auto die uit de andere richting komt, zelf v66r gaan of zou hij je
v66r laten gaan? Deze zijn voorbeelden van (heel simpele) problemen die erboven zijn

omgeschreven. Dit proefschrift is een verzameling van een aantal modellen die dergelijke
situaties van een bepaald uitzichtpunt bekijken: met beperkte informatie en groeiende

ervaring, wat kan en wat moet men doen?
De klassieke speltheorie geeft een antwoord op deze vraag, maar deze theorie veron-

derstelt ook dat men alles weet wat er te weten is over de situatie: de preferenties van de
andere spelers, de relevante waarschijnlijkheden enz. Dat is niet wat in de eerste alinea

werd bedoeld: daar weet men slechts welke acties er zijn en dat ze een uitbetaling oplev-
eren. Dus moet een andere methode worden gebruikt. Toch blijft de oplossing uit de
klassieke speltheorie (het evenwicht van Nash) een nuttige referentiepunt waartegen we
onze modellen kunnen meten.

De tweede alinea boven beschrijft hoe men informatie over de situatie kan krijgen:

meestal door ervaring, eigen of die van anderen.  Om het te modelleren, moet een dy-

namische methode worden gebruikt. De essentie van deze methode is dat de ervaring
voor toekomstige beslissingen kan worden gebruikt. De klassieke speltheorie heeft ook de

139
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herhaalde situaties geanalyseerd maar, als het boven al gezegd is, moet men dan te veel
weten om op een beslissing te komen. In dit proefschrift worden modellen met beperkte
rationaliteit beschouwd, waarin niet alle relevante informatie wordt gebruikt.

Om het model compleet te maken, moet een regel worden gespecificeerd hoe ervaring
wordt gebruikt voor toekomstige beslissingen. Er zijn veel mogelijkheden; sommige wor-
den in dit proefschrift geanalyseerd. Als een regel is gekozen, verandert het gebruik van
acties met de tijd volgens deze regel. Welke acties worden dan uitendelijk genomen? Wat
is de relatie van deze acties met de oplossing die klassieke speltheorie biedt? Zulke vragen
probeert dit proefschrift te beantwoorden.

De dynamische modellen uit de bovenstaande alinea's kunnen in twee grote groepen
worden verdeeld. De eerste groep bevat modellen die gebaseerd zijn op het biologische
idee van evolutie, van " survival of the jittest".  In de tweede groep bevinden zich modellen
uit de psychologische wetenschap, die gebaseerd zijn op het idee van leren. Dit proefschrift
is  getiteld

" Leren en Evolutie in Spellen en Oligopolistische Modellen". Zoals  uit de titel
blijkt, beschouwt het proefschrift beide groepen. Hoofdstuk 1 van het proefschrift geeft
een inleiding tot dit type van modellen en definieert ook noodzakelijke begrippen.

De modellen die uit leren komen worden beschouwd in hoofdstukken 2 en 3. Hoofd-
stuk 2 beschouwt zogenaamde "versterking leren" (minforcement learning). In dit model
krijgt de actie die wordt genomen een versterking als er een positieve uitbetaling wordt
gebracht door de actie. De versterking betekent dat deze actie in volgende perioden met
hogere waarschijnlijkheid wordt genomen. De vraag is, zou men de beste (in de zin van
verwachte uitbetaling) actie vinden wanneer elke actie versterking krijgt? In eenspelers-
besluitvorming bestaat een trade-of tussen het vinden van (convergentie tot) de beste
actie en de snelheid van leren. Door simulaties met de computer wordt een modificatie van
het grondmodel gekozen, die deze trade-off het best aanpakt. Het model met deze modifi-
catie wordt dan toegepast voor meerpersoonspellen. Er wordt getoond dat het evenwicht
dat meer centraal is, dat is intussen andere evenwichten ligt, meer kansen heeft te worden
gekozen door het dynamische proces van versterking leren. In de beschouwde spellen is dit
evenwicht ook egalitair. Er is een verband tussen het egalitaire evenwicht en het begrip
van risico-dominatie; dit verband wordt door een paar voorbeelden geYllustreerd.

Hoofdstuk 3 beschouwt een ander proces, namelijk imitatie, in een spel van Cournot-
oligopolie type. Wanneer een speler de uitbetaling van een andere speler ziet, en deze
uitbetaling hoger is dat de uitbetaling van de eerste speler, heeft de eerste speler de
verleiding de tweede speler te navolgen. Maar als de spelers elkaars strategieen imiteren in
een kleine populatie die een Cournot-oligopolie speelt, dan landen ze in een heel inefficiente
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(voor ze) staat. Het hoofdstuk beschouwt twee modificaties van de simpele "imiteer de
beste" (imitate the best) regel. De eerste modificatie is onvolmaakte imitatie waarin de

spelers slechts een deel van de strategiean van de anderen kunnen zien en dus slechts dit
deel kunnen navolgen. De andere modificatie veronderstelt dat interactie en imitatie in
verschillende populaties plaatsvinden. Beide modificaties leiden tot een betere uitkomst
voor de spelers; de combinatie van de strategieen die uitendelijk wordt gespeeld oplevert
een hogere uitbetaling. Het is mogelijk dat het evenwicht (in de zin van de klassieke

speltheorie) van het spel uitendelijk wordt gespeeld.
Hoofdstukken 2 en 3 van het proefschrift beschouwen lerenmodellen, hoofdstukken 4

en 5 nemen evolutie als de basis. Deze hoofdstukken proberen de evolutie van preferenties
te modelleren. De evolutie werkt niet direct maar heeft invloed op de compositie van de

populatie door uitbetalingen in evenwicht. Spelers ontmoeten elkaar in paren en spelen

een tweepersoonspel; ze hebben bepaalde preferenties en met deze preferenties zijn ze in
staat een evenwicht te spelen. De evolutie is minder rationeel en kiest kortzichtig voor

vermenigvuldiging van de spelers (preferenties) die gemiddeld de hoogste uitbetalingen
hebben tegen de huidige populatie. Alleen de situaties waarin oorspronkelijk een type

van preferenties in de populatie aanwezig is worden geanalyseerd. Er wordt verondersteld
dat een kleine hoeveelheid mutanten met een andere type van preferenties verschijnt. Als
de mutanten verdwijnen of niet meer groeien, is de originele situatie stabiel tegen zulke

mutaties. Het model kan niet alleen voor biologische evolutie worden toegepast maar ook
voor culturele evolutie van waarden.

Hoofdstuk 4 analyseert spellen dat uit oligopolistische modellen komen. Het hoofdstuk
beschouwt wanneer altruYstische preferenties (je voelt je goed voor de hoge uitbetaling van
de ander) en wanneer nijdige preferenties (je voelt je slecht voor de hoge uitbetaling van
de ander) stabiel zijn. In een Bertrand-type oligopolie zijn de altruYstische preferenties
stabiel, terwijl in een Cournot-type oligopolie zijn de nijdige preferenties stabiel. Wanneer
informatie niet volledig is (de preferenties van de anderen zijn onbekend), dan worden de
" normale" egoYstische preferenties stabiel.

Hoofdstuk 5 zet deze analyse voort voor 2 x 2 tweepersoonspellen. Het hoofdstuk
beschouwt alle mogelijke (von Neumann-Morgenstern) preferenties. In sommige spelen,

namelijk  in de gevangenes dilemma  en in lafaard( chicken)-type spellen  (ook  soms  valk-
duif (hawk-dove) genoemd), zijn de egoYstische preferenties niet stabiel, terwijl in an-
dere spellen, zoals coordinatieproblemen, zijn ze stabiel. Het model wordt uitgebreid tot
onvolmaakte coordinatie, waarin coordinatie kostbaar is, en tot onvolledige informatie
over preferenties van de anderen. Met onvolmaakte coOrdinatie verdwijnt de stabiliteit
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van egoYstische preferenties en worden in coordinatieproblemen simpele preferenties, die
dan strategie als dominante beschouwen, stabiel. Met onvolledige informatie worden de
egoYstische preferenties meer stabiel in bijna alle types van spellen en wordt uitendelijk
het evenwicht van het spel gespeeld.

Hoofdstuk 6 is wat verschillend van de andere hoofdstukken. Daarin in plaats van
een expliciet dynamische proces worden de technieken voor de selectie van evenwichten
gebruikt die op impliciete dynamische processen baseren. Zo wordt bijvoorbeeld het
beste-antwoord leren gebruikt. Als het beste-antwoord proces het spel terug naar het
evenwicht (of naar de verzameling van evenwichten) trekt na een kleine verstoring, dan
wordt dit evenwicht geselecteerd. Deze technieken worden toegepast voor een fusiespel.
Het fusiespel wordt gemodelleerd als een niet-cooperative spel van formatie van coalities.

De selectiestechnieken zijn in principe voor iedere driespelersfusiespel van toepassing. Het
werk van de technieken wordt door een voorbeeld van Cournot-oligopolie gedemonstreerd.
In het evenwicht dat wordt geselecteerd, vormt zich de fusie, die beide deelnemers beter
dan de andere fusies vinden. De asymmetrische Cournot-triopolie wordt geanalyseerd met
de vraag welke invloed het verschil tussen de bedrijven op de geselecteerde fusie heeft.
Wanneer het verschil tussen de bedrijven groot is, vindt de fusie van het meest efliciant
en het minst efficient bedrijven plaats, en wanneer het verschil niet groot is, dan vormen
de twee meest efficiente bedrijven de fusie.
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