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Factor Analysis of Multidimensional Polytomous Item
Response Data Suffering From Ignorable Item

Nonresponse

Coen A. Bernaards
Department of Methodology and Statistics FSW, Utrecht University, the Netherlands

Klaas Sijtsma
Department of Methodology FSW, Tilburg University, the Netherlands

This study deals with the problem of missing item responses in tests and questionnaires
when factor analysis is used to study the structure of the items.  Multidimensional rating
scale data were simulated, and item scores were deleted under Rubin’s (1976) MAR and
MCAR definitions.  Five imputation methods, the EM algorithm, and listwise deletion
were implemented to deal with the item score missingness.  Factor analysis was done on the
complete data matrix, and on the seven data matrices that resulted from the application of
each of the missingness methods.  The factor loadings structure based on EM best
approximated the loadings structure obtained from the complete data. Imputation of the
mean per person across the available scores for that person was the best alternative to EM.
It is recommended to researchers to use this simple method when EM is not available or
when expertise to implement EM is lacking.

Introduction

Factor analysis is often used to study the structure of the item set in tests
and questionnaires.  A well known and difficult problem in data collection via
tests and questionnaires is item nonresponse.  Item nonresponse occurs if
respondents are unable or reluctant to provide answers to one or more items
or if they accidentally skip items, but at the same time produce answers to
other items.  In this article, we are concerned with item nonresponse which
can be considered to be a completely random phenomenon in the population
at hand (responses are missing completely at random, MCAR; Little &
Rubin, 1987, pp. 14-15), or which is a random phenomenon in particular well-
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defined subgroups of the population but which may vary in degree across
such subgroups (responses are missing at random, MAR; Little & Rubin,
1987, pp. 14-15).  An example of a completely random phenomenon is that
respondents accidentally skip questions.  An example of random item
nonresponse in subgroups is that older respondents tend to accidentally skip
more questions than younger respondents.  Here, age is a covariate that
explains differences between meaningful subgroups. The response
mechanisms MCAR and MAR are known to produce ignorable
nonresponse.

Other relevant forms of item nonresponse exist, but are postponed to a
later study (Bernaards & Sijtsma, 1999).  For example, a respondent may be
unable to give an answer when he or she lacks adequate information, and
refuses to guess or otherwise give a fake answer.  If this tendency is typical
of this respondent and not of others, this kind of item nonresponse does not
fall under the definitions of MCAR and MAR.  Other examples of
nonresponse that do not subsume under these definitions are reluctance to
respond if, for example, a question is considered menacing to privacy
(questions about ones sexual habits or income) or embarrassing (questions
about the relationship with one’s parents or children) when these opinions
are not typical of the whole population or of particular subgroups.  Item
nonresponse does not include refusal of respondents to take part in the
investigation, known as unit nonresponse, or dropout from the investigation
due to illness, moving to another city, and so on, known as experimental
mortality.

Thus, we consider the case when all respondents produced answers to
at least some of the items, but not all respondents gave answers to all items.
If nothing is done about item nonresponse, this may highly influence results
from factor analysis and other multivariate statistical analyses, since
incomplete cases will simply be omitted from the data to prevent covariance
matrices from not being positive (semi)definite.  Often the causes of item
nonresponse are unknown to the researcher.  If item nonresponse is not a
random process, after omission of incomplete cases the reduced data matrix
may no longer be representative of the population of interest.  Therefore, it
is important to deal with item nonresponse in a sensible way, for example, by
estimating the missing item scores.  Other reasons may be that a larger
sample leads to more accurate estimates of parameters and an increased
power for testing hypotheses.

In this study, we investigated missing data problems in the context of
factor analysis of questionnaire rating scale data.  Other researchers have
addressed missing data problems with factor analysis.  Cattell (1978, pp.
515-516) discussed six ways of dealing with missing item scores in
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questionnaires, among which were listwise deletion, item mean imputation,
and imputation based on multiple regression.  Finkbeiner (1979) investigated
five methods, for example, listwise deletion, an item mean replacement
method, and a principal components method (also see Huisman & Molenaar,
1997).  Brown (1983) compared listwise deletion, pairwise deletion,
regression estimation, and the maximum likelihood method for estimating the
loadings from a single factor model.  For MCAR, Lee (1986) compared
listwise deletion, generalized least squares estimation, and maximum
likelihood estimation in structural equation models.  Also in a structural
equation modeling context, Muthén, Kaplan, and Hollis (1987) compared
several methods for dealing with missingness that is not completely random.
Rather than imputing values for missing item scores or handling the missing
data problem in the likelihood function, one could under certain assumptions
estimate the complete data correlation matrix of the items, and then perform
factor analysis directly on this estimated matrix; for example, see Wilks
(1932), Timm (1970), Gleason and Staelin (1975), and Knol and Ten Berge
(1989) for more information.

In this article, we study the performance of five imputation methods
designed to deal with missing item scores in questionnaire data, and two
missing data methods not based on imputation (listwise deletion and the EM
algorithm).  For simulated questionnaire data containing missings, the
question was how well the use of these methods to produce complete data
can lead to the reconstruction of the factors that resulted from the original
complete data.  Correspondence between loadings matrices based on
complete data and loadings matrices based on data also containing imputed
scores was evaluated using several indices.  This led to recommendations
concerning the use of missing data methods in practical questionnaire
research where factor analysis of the data is envisaged.

The simulated data were the scores on a test or questionnaire consisting
of ordered five-point rating scales (Likert items) and, for each person, scores
on two covariates.  Although many test theory models assume that all items
measure the same trait (unidimensionality), in practice responses frequently
are the result of a combination of latent traits (multidimensionality).  For
example, responses to an item on introversion could partly be determined by
language skills.  Most simulated item score data matrices used here were
multidimensional, while a smaller number were unidimensional.  Complete
simulated data matrices were generated by means of a multidimensional
polytomous item response theory (IRT) model (Kelderman & Rijkes, 1994)
and, next, subjected to factor analysis.  Dolan (1994) demonstrated that even
with five-point rating scale data, factor analysis is not seriously affected by
deviations from normality of the distributions of the variables.  Takane and



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ite
it 

va
n 

Ti
lb

ur
g]

 A
t: 

12
:3

0 
25

 A
pr

il 
20

08
 

C. Bernaards and K. Sijtsma

280 MULTIVARIATE BEHAVIORAL RESEARCH

De Leeuw (1987), Muraki and Carlson (1995), and McDonald (1997)
discussed the relation between multidimensional IRT and factor analysis; see
Bello (1993) and Knol and Berger (1991) for related work in this area.

Next, item scores were deleted both under the MCAR and MAR
definitions of missingness (Little & Rubin, 1987; to be discussed later on in
full detail), and the resulting incomplete data matrix was then treated by
subsequently applying one of the seven missing data methods, which yielded
seven reconstructed data matrices.  For each of these seven data matrices
the same number of factors was extracted as for the complete data matrix.
This way, factor analysis results based on a complete data matrix could be
compared with the results obtained under each of the missing data methods,
and conclusions could be drawn on the effectiveness of these methods in
producing the correct results.

Method

Generating the Data

The multidimensional polytomous latent trait (MPLT) model (Kelderman
& Rijkes, 1994) was used to generate the polytomous item scores.  A two-
step procedure was followed.  First, for each simulee latent trait values were
drawn from a multivariate distribution (multidimensionality).  This
determined the number of factors underlying the data.  Second, given these
latent trait values the MPLT model was used to determine for each
combination of a simulee (defined by a combination of latent trait values) and
an item each of the probabilities of responding in particular answer
categories.  These probabilities were used to generate the final data.  Thus,
this two-step procedure generated a multivariate distribution of item scores
(step 2) based on a multidimensional latent trait structure (step 1).  Also note
that the underlying trait structure may, as a special case, be unidimensional.
We generated both unidimensional and multidimensional multivariate item
score distributions.

Suppose i = 1, ..., N respondents answer to j = 1, ..., k items.  Each item
has ordered answer categories with scores x = 0, ..., r; here, r = 4.  The items
measure a combination of latent traits according to some a priori known ratio
per item.  For example, ten items may measure latent trait A and latent trait
B with weights 1 and 3, respectively, and the next ten items may measure
these traits with weights 3 and 1, respectively.  Latent traits are denoted by
u with indices i for identifying persons and indices q (q = 1, ..., s) for
identifying traits, so that the notation is u

iq
.
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The scoring weights associated with the response categories are
contained in the three-way array B with entries B

jqx
.  The scoring weights

reflect the ratio by which item j measures the latent traits, and also can be
interpreted as discrimination indices.  Following Kelderman and Rijkes
(1994), we maintain the terminology of scoring weights.  The separation
parameters for the categories associated with B

jqx
 are contained in the array

C with elements C
jqx

.  By choosing the scoring weights B appropriately,
different models can be defined.

The MPLT model is of the form 

(1) P X x
B

B
ij i is

iq jqxq

s

jqx

iq jqy jqyq

s

y

r
( | ,..., )

exp

exp
.= =

−L
NM

O
QP

−L
NM

O
QP

RST
UVW

=

==

∑
∑∑

u u
u

u
1

1

10

C

C

d i

d i

The MPLT model requires that if B
jqy

 = 0 then C
jqy 

= 0 to ensure uniqueness
of the parameters.

The generation of the data used two binary covariates with scores for
each simulated person.  In practical research, examples could be
respondents’ gender and membership of majority or minority groups.  The
relative occurrence of all four possible combinations of scores on the
covariates in the population was known.  Combinations of scores on
covariates are indexed by g, with g = 1, ..., 4.  When simulating data, for each
of the N persons a combination of covariate scores was drawn with
probability equal to the relative frequency in the population.

We assumed that different covariate classes are characterized by
different means on the us.  This was formulated as follows.  Traits were
assumed to be distributed according to a s-variate normal distribution (in this
simulation study, s = 1, 2, 4) with given matrix of dispersion, and means
depending on the covariates via 

(2) mu

u

u

m

m
g

g

gs

c Z c Z

c Z c Z

g g

s g s g

g=
F

H
GG

I

K
JJ =

× + ×

× + ×

F

H
GG

I

K
JJ =

1 11 1 12 2

1 1 2 2

M M CZ ,

where Z
g
 = (Z

g1
, Z

g2
) is a vector with the binary scores of covariate class g,

and C is a s × 2 matrix of weights.  Different mean vectors m
ug
 can be

generated by choosing different sets of weights C.  In this study (to be
discussed later on), one choice was maintained throughout.
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Since the scoring weight array B in model 1 and the array of separation
paramaters C were specified a priori, for each item the probabilities of
response in all answer categories could be calculated for each vector
u drawn from the s-variate normal distribution and subjected to the
transformation in Equation 2.  Next, given a vector u for each of the k items
an outcome was drawn from a multinomial distribution with response
probabilities (Equation 1) as calculated for the answer categories, resulting
in k item responses for each of N persons.

“Generating” Missing Item Scores

We considered two cases of missingness.  First, scores can be
considered MCAR (Little & Rubin, 1987, pp.  14-15) when the missing item
responses are a random subsample from all observed item scores, with the
covariate structure being ignored.  Second, scores can be considered MAR
(Little & Rubin, 1987, pp.  14-15), when the missing item responses are not
a random subsample of all observed item scores, but a random subsample of
item scores within classes defined by the covariates.  See Greenless, Reece
and Zieschang (1982) for a discussion of deviations from the MAR
assumption.

In order to compare results from factor analysis of data sets based on
different imputation methods and other missing data methods (listwise
deletion and EM), simulated data matrices each should have the same
number of missing item responses.  For example, consider a data matrix for
100 respondents who answered 20 items, thus yielding 2000 scores in total.
When 20 percent of the item scores out of 2000 item scores are deleted, 400
scores should be missing in each replication.

Under the MCAR assumption, this was realized by randomly assigning,
with equal probability, 400 of the 2000 scores in the data matrix the status of
missing value.  Each imputation method thus replaced each of these 400
missing item scores by an imputed score; listwise deletion omitted the data
lines that contained missing item scores; and the EM algorithm maximized
the likelihood by iterating between updating the missing values given the
factor scores and alternatingly estimating of the covariance matrix given the
data (E step), and estimating the factor loadings and factor scores given the
covariance matrix (M step).

Under the MAR assumption, covariate classes should be represented
among the missing scores in an a priori specified ratio.  This was realized by
treating the sampling of 400 scores designated as missing as drawing from
a multinomial distribution with 2000 categories (corresponding to the entries
of the data matrix).  Since a person belongs to one covariate class, the
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separate scores in a data line each had the same probability of being sampled.
Table 1 contains an example for two covariates where a respondent with two
0 scores has a probability of not responding to an item that is four times the
probability of a person with two 1 scores, and so on.

For this example, the multinomial distribution with 2000 categories has
four different probabilities.  The desired ratio of these probabilities was fed
to a program and the relative frequencies were then normalized to
probabilities summing to 1 (see Table 1).  This procedure also resulted in the
assigning of 400 scores as missing.  Note that due to randomly drawing from
a multinomial distribution, in samples the ratios of covariate classes as
represented among the missing scores may deviate from the theoretical a
priori ratio.

Implemented Missing Data Methods

Five imputation methods were used.  Imputation methods estimate the
unobserved values and then replace the missing value by this estimate.  The
result is a complete data matrix, and the standard factor analysis estimation
procedures can be carried out on this data matrix without loss of cases.  We
chose imputation methods that were easy to understand and to implement by
practical researchers without a training in applied statistics or
psychometrics.  One of the methods imputed random scores and was used
as a benchmark.  Of the other four methods, to be defined shortly, Cattell
(1978), Finkbeiner (1979), and Huisman (1998) discussed item mean
imputation, and in the context of scale construction Huisman (1998) also
studied person mean imputation.  Moreover, we studied two methods using
the total mean and a mean conditional on covariate classes, respectively.

Table 1
Relative Expected Frequency of Nonresponse for Two Binary Covariates,
and Corresponding Probabilities

Covariate 2 Covariate 2
0 1 0 1

0 8 4 0 .47 .23
Covariate 1 Covariate 1

1 3 2 1 .18 .12



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ite
it 

va
n 

Ti
lb

ur
g]

 A
t: 

12
:3

0 
25

 A
pr

il 
20

08
 

C. Bernaards and K. Sijtsma

284 MULTIVARIATE BEHAVIORAL RESEARCH

1. Random Imputation (RI) draws at random from a multinomial
distribution with outcomes 0,...,4, and equal probabilities (0.2) for each
outcome.

2. Overall Mean Imputation (OM) calculates the mean across all
available item scores in the data matrix and imputes this value for all missings.

3. Mean Conditional on the Covariates (CM) imputes the mean based
on the available scores across all items of all persons within the same
covariate class, and imputes this mean for each missing in this covariate class.

4. Item Mean (IM) calculates for each item its mean across the available
scores, and imputes this mean for each missing value of this item.

5. Person Mean (PM) calculates for each person his/her mean over the
available item scores, and imputes this mean for each missing value of that
particular person.

Two other methods, not based on imputation, were also implemented
because they are widely used in missing data problems.

1. Listwise Deletion (LD) is popular in the social sciences.  For
example, LD is often used by researchers who analyze their multivariate data
by means of the sofware package SPSS.  LD results in factor analysis based
only on those persons who responded to all items.

2. The EM algorithm (EM) as described by Little and Rubin (1987, pp.
148-149) is widely used among statisticians and psychometricians as a
method to estimate a covariance matrix subject to missing data.

RI serves as a benchmark for the other methods.  If factor analysis results
based on another method hardly are better than those based on RI, that
method should not be used at all.

OM is easy to calculate.  However, due to lack of any kind of separation
between groups based on covariates, and given that OM ignores
multidimensionality, its performance may not be much better than RI.

Because the means of the latent traits differ across covariate classes, CM may
yield sensible factor analysis results.  However, CM is computed ignoring the latent
trait structure underlying the data, and this may impair factor analysis results.

Imputation of the mean per item, IM, is not impaired by
multidimensionality because it is based on single items.  Unlike method CM,
however, IM ignores the covariate structure.

PM takes the mean over the smallest meaningfull group of item responses
of all imputation methods discussed here and, therefore, it may be the least
biased but it may have the largest variance.  However, in case of
multidimensionality bias also may be large, especially if the correlation
between latent traits is small.  In case of unidimensionality this method may
be expected to perform well.
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LD can reduce the number of valid respondents dramatically.  For
example, consider a respondent who produced a response to each of 20 items
with probability 0.9.  Then the probability that he or she answered to all 20
items is 0.920 < 0.122.  Hence the probability of not responding to at least one
item, and thus of being eliminated by LD, is 0.878.  Another method which
is popular in the social sciences is Pairwise Deletion.  This method was not
implemented because it may result in covariance matrices that are not
positive (semi) definite, and because in other situations LD is superior over
Pairwise Deletion (Kim & Curry, 1977).

Finally, the EM algorithm (Dempster, Laird, & Rubin 1977; Little &
Rubin, 1987) handles the factor scores from factor analysis as missing.
Initially, random values are substituted for the missing data.  In the E step,
the missing values are updated given the factor scores, and the expected
value of the covariance matrix given the factor loadings is calculated.  In the
M step the factor loadings and factor scores are updated based on the current
estimate of the covariance matrix.  These two steps are re-iterated until
convergence of the likelihood occurs.  The EM implementation used here is
described in detail in the Appendix.

Calculation of a mean usually will not generate an integer.  The imputed
mean values thus are not “valid” in this sense.  However, the present study
was concerned only with results from factor analysis and not with the
imputed values themselves.  Moreover, rounding of imputed values to the
nearest integer would probably introduce more error in the data.

Other methods, such as multiple imputation (Rubin, 1987) and
computerintensive methods as described by Tanner (1996), are more
difficult to understand and to implement and, therefore, were not considered
here.  Acock (1997) gives an elementary introduction to missing data
methods used with social science data.  Little and Rubin (1987) provide an
elaborate treatment of missing data methods.  Other sources on missing data
methods are, for example, Little and Rubin (1989), Rubin (1991), Little and
Schenker (1995), Rubin (1996), and Schafer (1997).

Performance of Imputation Methods

One method for assessing performance of an imputation method in factor
analysis is the coefficient of congruence or Tucker’s f (Tucker, 1951; Ten
Berge, 1977), defined as 

(3) f(a, b) = aTb(aTabTb)-½,      a, b [  IRk      (a Þ 0, b Þ 0).
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Here a and b are column vectors containing the loadings of the same
k variables on one factor obtained in two different data sets, for example,  a
complete data set and a corresponding data set with imputed values for the
missing scores.  f(a,b) = 1 if and only if a is a multiple of b.  Tucker’s f  yields
a value between the bounds of -1 and 1 for each pair of corresponding
factors.  For practical purposes, factors with values of f  higher than 0.85
are considered to be equal (Ten Berge, 1977; Niesing, 1997).  This value
serves as a guideline more than an absolute standard.

Another method is defined as follows.  Let D2 denote the sum of squared
differences, divided by the number (m) of factors extracted, between the
factor loadings on all extracted factors based on the complete data set and
the corresponding factor loadings based on the missing data method.  The
smaller D2, the more similar the two loadings matrices are; they are exactly
identical if D2 = 0.  Although there is a positive maximum to D2 determined
by the bounds of the loadings, it is difficult to say when a value of D2 should
be interpreted as high.  In our simulation studies, however, we compared
D2 values and, thus, we were interested only in relative values of D2.
D2 results in one outcome whereas Tucker’s f  yields separate outcomes for
each retained pair of corresponding factors.  From loadings matrices X and
Y, D2 can be calculated through 

(4) D tr m tr m
T T2 = − − = − −X Y X Y X Y X Yb g b g b gb g/ / .

It may be noted that if D2 = 0 then each f = 1; however, the reverse need
not be true.  For positive values of D2 and values of the fs lower than 1, there
is no exact relation between both indices.

Both Tucker’s f  and D2 share the following problem.  If, for example,
two factors are retained, the result from factor analysis of the complete data
could be such that the first ten items heavily load on the first factor and the
next ten items heavily load on the second factor.  However, due to sampling
fluctuation the factor analysis of the “missing data matrix” does not
necessarily yield the same pattern: the first ten items may heavily load on the
second factor and the next ten items may heavily load on the first factor.
When this interchanging of vectors of loadings occurs, the fs will be close to
0 and D2 will be much higher than 0.  In order to solve this problem, Tucker’s
f  and D2 were calculated for two cases: (a) for the loadings matrices
produced by the software, and (b) for the loadings matrices with the columns
of the second matrix interchanged.  Hence, for D2 the minimum of the two
cases was taken, and for Tucker’s f the maximum of the sum of the two fs
was taken to be the criterion of interest.  When four factors were extracted,
all possible 4! = 24 permutations of loadings were used to calculate both
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D2 and Tucker’s f.  For D2 the permutation with the smallest D2 was chosen.
For f the permutation with the maximum of the sum of the four fs was taken.

Design of Simulation Study

The choices of design factors and their specific levels were determined
by their importance for evaluating the effectiveness of different methods for
producing a valid factor analysis solution.  Also, the computer time needed
was of interest.  Table 2 gives an overview of candidate factors.  The upper
panel of Table 2 contains the factors that were varied, and the lower panel
contains the factors that were held constant.  The total number of candidate

Table 2
Factors and Levels Relevant to the Simulation study

Factor Values

Scoring weights B 3 configurations,
  see Table 3

Sample size 100, 500
Percent missingness 5, 10, 20
Relative expected frequency 2 Configurations, see Table 4
  of nonresponse
Missing Data Methods Random Imputation,

Overall Mean,
Conditional Mean,
Item Mean,
Person Mean,
Listwise Deletion,
EM algorithm.

Extraction method Principal component,
Maximum likelihood.

Method of rotation Varimax, Procrustes

Number of latent traits 2
Number of items 20
Number of answer categories 5
Distribution of latent traits, u S, see Equation 5

Weights C, see Equation 6
Separation parameters C fixed per item
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design factors was rather high and using them all to build one comprehensive
design would render this design too large.  For example, if each of the eleven
factors in Table 2 would have two different levels, the design would have
211 = 2048 entries.  Due to such practical limitations, we decided to analyze
one larger design and two smaller designs.  The large design was intended
to be comprehensive, and the smaller designs addressed interesting special
cases not included in the large design.

Comprehensive Design

Throughout the comprehensive design, two latent traits were used
because this is the simplest multidimensional case.  Across the design, the
number of items was fixed at twenty, divided into two sets of ten items each.
Each item had five ordered answer categories, with scores 0,...,4, comparable
to Likert (1932) rating scales.  A questionnaire consisting of twenty Likert
rating scales was considered to be representative of many questionnaires used
in practice.  We assumed that the first ten items measured both latent traits in
another mixture than the second ten items.  These mixtures were manipulated
through the choice of the B weights from the MPLT: the higher B for a
particular latent trait, the stronger the relation of the item to that trait.  The
scoring weights are contained in the three-way array B, see Equation 1;  three
different choices appear in Table 3.  For each questionnaire, this table gives
configurations (first column) of the scoring weights B (fourth column) for the
two subsets of items (third column).  Note that for each item there are five Bs
corresponding to the five answer categories, respectively.

Figures 1, 2 and 3 (following pages) provide the conditional probabilities of
an answer in a response category for the different sets of scoring weights B.
The configuration Mix 1:0 has ten items which exclusively measure u

1
 and ten

items which exclusively measure u
2
 (also see Table 3).  The interpretation of

Mix 3:1 is that half of the items load three times heavier on u
1
 than on u

2
, and

for the other half of the items the situation is reversed.  Finally, under Mix 1:1
items depend on u

1
 and u

2
 with the same weights.  In fact, this is

unidimensionality.  Mix 1:0 thus contains “pure” items for each trait but the
whole questionnaire measures two traits, and Mix 1:1 contains equally
weighted mixtures for all items, that is,  unidimensionality applies.  The choice
of Mix 3:1 reflects the idea that, in practice, items are not pure and
questionnaires are often not unidimensional, but rather that items measure
some mixture of one dominant trait and one or more “nuisance” traits, resulting
in at least two factors.  We also tried some analyses for Mix 6:1, and concluded
that the results already much resembled results for Mix 1:0; thus, Mix 6:1
already came close to the ideal of pure items.  Likewise, Mix 2:1 may be too
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close to Mix 1:1, in fact reflecting a nuisance trait which becomes too strong
relative to the dominant trait.  Thus, we decided that Mix 3:1 may be an
appropriate case between the extremes of Mix 1:0 and Mix 1:1.

Hence, in performing factor analyses the first two factors were
extracted for Mix 1:0 and Mix 3:1, and one factor was extracted for Mix 1:1.
It may be noted that we assumed the number of latent traits to be known; in
another specialized design to be discussed later on, we investigated whether
inspection of the eigenvalues of the correlation matrix would have led to the
extraction of additional factors.

The distribution of the two latent traits is decisive for the distribution of
the item scores over the answer categories per item.  Moreover, uncorrelated
traits are unrealistic, and correlations higher than, say, 0.7, seem to be rare.
The latent traits thus were assumed to originate from a bivariate normal
distribution with matrix of dispersion

(5) 
 . .

. . 
 ,2 5 0 6

0 6 2 5

Table 3
Scoring Weights B for MPLT Model.

Mix Latent trait item numbers B

1:0 u
1

1, ..., 10 1, 2, 3, 4, 5
u

2
1, ..., 10 0, 0, 0, 0, 0

u
1

11, ..., 20 0, 0, 0, 0, 0
u

2
11, ..., 20 1, 2, 3, 4, 5

3:1 u
1

1, ..., 10 1, 2, 3, 4, 5
u

2
1, ..., 10 3, 6, 9, 12, 15

u
1

11, ..., 20 3, 6, 9, 12, 15
u

2
11, ..., 20 1, 2, 3, 4, 5

1:1 u
1

1, ..., 20 0, 1, 2, 3, 4
u

2
1, ..., 20 0, 1, 2, 3, 4
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Figure 1
MPLT Model with Scoring Weights Mix 1:0; Consecutive Graphs Give Probability
of Score 0, 1, 2, 3, 4, as Function of Two Latent Traits.
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Figure 2
MPLT Model with Scoring Weights Mix 3:1; Consecutive Graphs Give Probability
of Score 0, 1, 2, 3, 4, as Function of Two Latent Traits.
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Figure 3
MPLT Model with Scoring Weights Mix 1:1; Consecutive Graphs Give Probability
of Score 0, 1, 2, 3, 4, as Function of Two Latent Traits.
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from which it follows that the correlation between u
1
 and u

2
 was 0.24.  For each

covariate class, the choice of matrix C implied the means of u
1
 and u

2
; see

Equation 2.  This matrix was fixed and had values

(6) C=FH
I
K

1 1
1 1

.

Using Equation 2, this resulted in latent trait means (0,0) for covariate class (0,0);
(1,1) for covariate classes (1,0) and (0,1); and (2,2) for covariate class (1,1).

The separation parameters of the MPLT model (Equation 1) were held
fixed for each set of scoring weights Mix 1:0, Mix 3:1, and Mix 1:1.  This was
done in such a way that of the first ten items, on average the first three items had
the highest scores (mode = 4), the next four had medium scores (mode = 3), and
the last three had the lowest scores (mode = 2).  For the next ten items having
the reversed weights ratio this was done similarly.  More specifically, the
item score distributions were realized by choosing the separation parameters
to be negative for the items that were to have the highest scores, so that most
simulees had high probabilities of producing high item scores; and so on.
Figure 4 (next page) gives per panel the histograms for the combined scores
on all 6 easiest items, and so on.

To prevent running into computional problems, the sample size should
far exceed the number of items.  Sample sizes of 100 (small) and 500
(large) were considered to be representative of most questionnaire
research conducted in an academic context that uses factor analysis.  Also
see Dolan (1994) who used simulated data matrices with sample sizes
ranging from 200 to 400.

The generation of the missing item scores had two parameters: the total
percentage of missingness, and the relative expected frequency of
missingness for each set of covariate scores.  The present research used 5, 10
and 20 percent missing scores.  Application of missing data methods for
higher percentages of missing scores was considered undesirable.  The
missing item scores were generated according to the relative expected
frequency of nonresponse for each combination of covariates.  Table 4
contains the two configurations used in the simulation study.  Configuration
REF-MCAR reflects the missing completely at random case; and
configuration REF-MAR reflects the missing at random case.

Seven missing data methods were implemented (discussion in the section
entitled "Implemented Missing Data Methods").

In psychology, the method of extraction of factors often is principal
components analysis.  From a mathematical point of view, maximum
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Table 4
Relative Expected Frequency (REF) of Nonresponse for Combinations of
Covariate Scores.

Covariate 2
0 1 0 1

0 1 1 0 5 2
Covariate 1

1 1 1 1 2 1

REF-MCAR REF-MAR

Figure 4
Histograms of Score Distributions of the Total Number of Scores Given by 100
Persons on the 6 Easiest Items (Upper Panel); the 8 Medium Items (Middle Panel);
and the 6 Most Difficult Items (Lower Panel).
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likelihood estimation of parameters may be preferred.  Furthermore, the EM
algorithm produces maximum likelihood estimates.  Hence, both maximum
likelihood extraction and principal components extraction were used.

For two-dimensionality cases (Mix 1:0 and Mix 3:1), the first two factors
were rotated according to the varimax criterion in order to render them
comparable; see for example,  Anderson (1984).  This seems to be well in
agreement with practical factor analysis, where researchers usually rotate
their factor solutions to simple structure or another configuration in order to
enhance interpretation.  In the hypothetical situation where the population
loadings structure were known, it would be better to rotate a sample loadings
matrix to this population structure.  Although not completely comparable, we
considered our complete data loadings matrix as the “population” matrix, and
for a limited number of design cells also rotated each of the imputed data
loadings matrices to this matrix using orthogonal procrustes rotation
(Krzanowski, 1988, 159-160).  It may be noted, that if f > 0.85 the results
from varimax rotation of the factors based on the complete data and the
factors based on the imputed data are comparable (Ten Berge, 1977;
Niesing, 1997); thus, in that case procrustes rotation is superfluous.  For the
one-dimensionality case (Mix 1:1), rotation was not an issue, and D2 and f
were calculated between the factor obtained for the complete data and the
factor obtained for the imputed data.

Finally, the results in each design cell were based on 50 replications.  The
design had 6 factors which were completely crossed, with magnitude 3(scoring
weights) × 3(percent missing) × 7(missing data method) × 2(relative expected
frequency of nonresponse) × 2(method of extraction) × 2(sample size).  This
yielded 504 cells.

Specialized Designs

Two specialized designs were analyzed.  The first specialized design
addressed the situation where the number of latent traits was four and only
two factors were extracted.  The second specialized design addressed the
number of factors to be retained based on the eigenvalue-larger-than-1
criterion when the researcher has no previous knowledge of the number of
underlying factors.

Four Latent Traits

Because in practice the number of latent traits can be higher than two,
we analyzed a design for data with a four-dimensional latent trait structure.
However, despite the four dimensions only two factors were extracted.  We
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assumed a 20-item questionnaire, in which the items had the same weights on
the first two latent traits as with the Mix 3:1 case in the comprehensive design.
Moreover, the first 5 items had weights B = 1, 2, 3, 4, 5 on the third latent
trait, and the items 11 through 15 had weights B = 3, 6, 9, 12, 15 on the fourth
latent trait.  These choices imply that the items 1-5 are influenced by the four
traits in the ratio 3:1:1:0; the items 6-10 in the ratio 3:1:0:0; the items 11-15
in the ratio 1:3:0:3; and the items 16-20 in the ratio 1:3:0:0.

The design factors were: (a) percentage of missingness, which was 5, 10,
and 20, respectively; and (b) sample size, which was 50, 100, and 150,
respectively.  These sample sizes are different from sample sizes used
previously because larger samples produced serious problems in the process
of data generation, which required calculations based on large arrays
needing too much memory capacity and/or computing time (using a SUN
Unix system with 64 Mb memory).  Listwise deletion was omitted from the
analysis because, based on the results of the comprehensive design, we
expected bad results here, and EM was omitted in the cell with 20 percent
missingness and sample size 150 because computer memory problems were
encountered while running the analyses.

The separation parameters for each item were fixed.  Data were
generated under a four-variate normal distribution with variances of 2.5 and
covariances of 0.6 (also, see Equation 5).  The relative expected frequency of
nonresponse was fixed at REF-MAR (Table 4).  Maximum likelihood factor
analysis was used, followed by varimax rotation.

Eigenvalue Criterion

In practice, researchers often do not know the number of latent traits and
thus rely on the eigenvalues of the factors for deciding on the number of
factors to maintain for further analysis.  To evaluate whether our
comprehensive design would have led to other conclusions had we relied
upon the eigenvalues rather than our a priori knowledge, a design was
analyzed with factors: (a) 5 and 20 percent missingness; and (b) three
different scoring weight configurations B, denoted Mix 1:0, Mix 3:1, and Mix
1:1 (see Table 3).  It may be noted that 10 percent missingness was omitted;
this was done to save computing time.  Data were generated for 100 subjects,
REF-MAR (Table 4), and all missing data methods except LD.  The
eigenvalues were evaluated for each covariance matrix corresponding to a
particular missing data method.
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Results

Results for the Comprehensive Design

Because differences between mean D2s and between mean fs in
corresponding cells of the designs for maximum likelihood factor analysis
and principal component analysis often concerned the third decimal place,
differences between results for maximum likelihood factor analysis and
principal component analysis were considered ignorable; therefore, only
maximum likelihood results are discussed.  Also, the difference between D2

results and between f results based on varimax rotation and corresponding
results based on procrustes rotation were ignorable.  Consequently, only
results for varimax rotation are discussed.  The results for D2 can be found
in the Tables 5 and 6 (following pages).  The main result was that in almost
all design cells the EM algorithm had lower D2  and lower s(D2 ) than each of
the other methods.  This result should be kept in mind when reading the
remainder of this section, where we mostly confine the discussion to
imputation methods.  This is done for each of the design factors: mixing
configuration, percentage of missingness, sample size, and relative expected
frequency of nonresponse.

Results for D2

Mixing Configuration

For Mix 3:1 and Mix 1:0, EM had the lowest D2  and the lowest s(D2).  For
Mix 3:1, PM had the second lowest D2 .  The s(D2)’s of PM and IM were the
second lowest, and they were approximately equal.  The D2  for methods IM,
CM, OM, and LD roughly were two to three times as high as D2  for PM.  For
CM and OM, the s(D2) was twice as high as s(D2) for PM.  RI always and LD
often had the highest D2  and the highest s(D2).  For Mix 1:0, PM, IM, and CM
had approximately equal D2  and approximately equal s(D2).  The D2  of RI
and LD was much higher than D2  of PM, IM and CM.  For Mix 1:1, EM and
PM had the lowest D2  and the lowest s(D2).  With a few exceptions, for EM
and PM D2  and s(D2) were approximately equal.  For the other methods, IM,
CM, and OM, D2  often was at least ten times higher than for PM.  For RI this
factor was much higher.  For the methods IM, CM, OM, and RI, s(D2) was
approximately ten times higher than for EM and PM.
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Table 5

D2  and s(D2) Across 50 Replications for Different Sample Sizes, Percentages of Missingness, and Mixing
Configurations; Relative Expected Frequency Matrix MCAR.  Entries are Result of Multiplication by 1000.

Sample Size

100 500

Percent Missing

5 10 20 5 10 20

Mix Method D2 s(D2) D2 s(D2) D2 s(D2) D2 s(D2) D2 s(D2) D2 s(D2)

1:0 EM 5 2 11 3 35 7 1 0 4 1 17 2
PM 13 4 35 11 110 24 6 1 22 3 84 9
IM 13 3 37 8 113 17 6 1 21 2 77 6
CM 14 4 37 8 106 23 6 1 20 2 70 7
OM 17 4 49 9 148 22 8 1 29 3 106 8
RI 52 12 152 32 428 66 28 4 97 10 345 29
LD 144 58 27 10 113 41

# omit 64 3 89 3 99 1 322 7 441 6 494 2
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3:1 EM 2 1 4 1 11 3 0 0 1 0 5 1
PM 10 4 23 8 65 18 4 1 15 2 49 6
IM 14 4 41 8 142 19 7 1 25 2 101 6
CM 18 6 47 13 142 35 9 1 29 4 104 11
OM 25 7 67 13 227 33 13 2 45 4 170 10
RI 75 23 215 45 664 84 43 5 152 12 535 37
LD 67 35 10 5 40 18

# omit 64 3 89 3 99 1 321 8 439 6 494 2

1:1 EM 2 1 6 2 22 6 1 0 4 1 18 2
PM 2 1 5 2 12 5 1 0 3 1 7 1
IM 18 7 55 15 192 32 10 2 41 4 163 13
CM 18 9 48 17 165 53 11 2 40 5 136 22
OM 29 11 88 24 313 60 18 2 71 7 270 24
RI 98 29 299 69 1012 178 71 9 252 22 901 65
LD 33 19 6 3 27 13

# omit 65 4 89 3 99 1 321 6 440 6 494 2

Note:  Rows “# omit” contain the average number of cases omitted and the accompanying standard error using LD.  Empty cells could not be
calculated due to singularity of the covariance matrix.
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Table 6

D2  and s(D2) Across 50 Replications for Different Sample Sizes, Percentages of Missingness, and Mixing
Configurations; Relative Expected Frequency Matrix MAR.  Entries are Result of Multiplication by 1000.

Sample Size

100 500

Percent Missing

5 10 20 5 10 20

Mix Method D2 s(D2) D2 s(D2) D2 s(D2) D2 s(D2) D2 s(D2) D2 s(D2)

1:0 EM 5 2 12 3 33 7 1 0 5 1 17 2
PM 15 4 36 10 106 23 6 1 22 3 83 11
IM 15 5 37 8 113 21 6 1 20 2 75 7
CM 16 5 36 8 102 23 6 1 20 3 67 7
OM 21 8 50 9 153 25 9 1 30 4 107 9
RI 55 16 151 31 449 65 29 5 99 10 341 23
LD 126 44 23 7 78 34

# omit 59 3 80 3 95 2 292 8 400 8 475 5
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3:1 EM 2 1 4 1 10 3 0 0 1 0 5 1
PM 9 3 23 7 69 18 5 1 15 2 50 6
IM 14 4 44 9 134 21 8 1 27 3 100 9
CM 17 5 47 13 142 35 9 1 30 3 101 12
OM 26 9 73 17 228 36 14 2 51 6 179 17
RI 78 31 226 47 685 114 48 6 161 13 545 30
LD 51 26 11 5 29 14

# omit 59 3 80 3 95 2 294 7 400 9 475 5

1:1 EM 2 1 7 2 22 6 1 0 5 1 18 2
PM 3 1 8 3 18 6 1 0 4 1 13 3
IM 22 7 64 17 237 61 14 3 50 7 195 19
CM 19 7 58 16 167 53 12 3 43 8 146 21
OM 36 11 105 23 358 81 23 4 83 12 310 27
RI 107 30 321 66 1027 169 76 11 272 30 936 63
LD 49 42 13 12 41 34

# omit 59 3 80 3 95 2 293 9 400 7 475 5

Note:  Rows “# omit” contain the average number of cases omitted and the accompanying standard error using LD.  Empty cells could not be
calculated due to singularity of the covariance matrix.
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The results confirmed the expectations as described in the section entitled
"Implemented Missing Data Methods", except that for Mix 1:0, PM, IM , and
CM had approximately equal D2  and approximately equal s(D2).  If the
correlation between the traits is higher than 0.24 used here, for Mix 1:0 PM
may have the lowest D2  and s(D2) because then the traits are more alike.
Table 7 contains the results of additional simulations where the correlation
between the two traits was 0.5.  For computational reasons, the sample size
was kept at 100.  The relative expected frequency of nonresponse was taken
to be REF-MAR (Table 4), because this case is more realistic than MCAR.
From Table 7, it can be concluded tentatively that, for higher correlation
between the latent traits, PM had lower D2  and lower s(D2) than IM  and CM.

Percentage of Missingness

For all methods, a higher percentage of missing item scores resulted in a
higher D2  and a higher s(D2).  For 10 percent missing, D2  was approximately
three times higher than for 5 percent missing.  For 20 percent missing, D2

was three to four times higher than for 10 percent missing.  For 10 percent
missing s(D2) was approximately two times higher than for 5 percent missing.
With 20 percent missing, s(D2) was two to three times higher than for 10
percent missing.  Thus, doubling the percentage of missingness at least
doubled D2  and s(D2).

Sample Size

For sample size 500, both D2  and s(D2) were lower than for sample size
100 by a factor of approximately 0.5.  These results probably are due to a
reduction of chance capitalization with larger sample size.  The conclusions
with respect to the other design factors did not change.

Relative Expected Frequency of Nonresponse

Finally, for most methods D2  and s(D2) were approximately equal when
relative expected frequency matrix MCAR (Table 5) was used to generate the
missing item scores and when relative expected frequency matrix MAR
(Table 6) was used.  The exception was LD: the number of cases omitted
under the MCAR assumption was higher than under the MAR assumption.
For Mix 1:0 and Mix 3:1, this resulted in a lower D2  with MAR even though
the estimators were biased.
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Table7

D2  and s(D2) Across 50 Replications for Sample Size 100, Relative
Expected Frequency Matrix MAR, and corr(u

1
,u

2
) = 0.5.  Entries are Result

of Multiplication by 1000.

Percent Missing

5 10 20

Mix Method D2 s(D2) D2 s(D2) D2 s(D2)

1:0 EM 5 2 12 4 35 8
PM 11 3 30 8 88 24
IM 15 4 37 8 115 21
CM 14 4 38 8 103 23
OM 19 5 52 10 153 25
RI 54 15 138 25 433 63
LD 128 65
# omit 59 3 80 3 95 2

3:1 EM 2 1 5 4 12 5
PM 8 5 21 9 49 17
IM 20 18 50 19 160 41
CM 18 6 53 18 147 45
OM 26 8 78 19 238 47
RI 81 27 218 46 731 146
LD 64 55
# omit 59 3 80 3 95 2

1:1 EM 2 1 6 2 18 6
PM 2 1 6 2 14 6
IM 21 8 64 18 228 49
CM 21 9 57 18 177 50
OM 33 12 102 29 346 64
RI 102 30 317 63 1008 148
LD 42 46
# omit 59 3 80 3 95 2

Note:  Rows “# omit” contain the average number of cases omitted and the accompanying
standard error using LD.  Empty cells could not be calculated due to singularity of the
covariance matrix.
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Results for Tucker’s f

The mean value of Tucker’s f was calculated for each factor across 50
replications.  In all cases, f was higher than 0.98.  f was the closest to 1 for
EM and it was the smallest for LD.  However, the directions of the loadings
matrices extracted from the complete data matrix and from the data matrices
based on missing data methods were almost identical.  Hence, application of
a missing data method does not change the interpretation of a vector of
loadings.  Furthermore, the fs obtained for procrustes rotation and for
varimax rotation were the same.

Results for Specialized Designs

Four Latent Traits

When the wrong number of factors was extracted, here two instead of
four, EM no longer was the best method in terms of the lowest D2  and the
lowest s(D2) (Table 8).  Method PM consistently had the lowest D2 .  Method
CM was the second-best method in 7 out of 9 cells and method EM was
second-best in 2 cells.  Method RI consistently had the highest D2 .  In most
cells, Method EM had the lowest s(D2).  Another method that performed
consistently well was method OM.  Keeping sample size constant, D2  and
s(D2) both increased when the percentage of missingness increased; keeping
percentage of missingness constant, D2  and s(D2) both decreased with
increasing sample size.  Compared with corresponding cells for N = 100 in the
Comprehensive Design (Table 6), in Table 8 both D2  and s(D2) were
considerably higher.

Thus, extracting the wrong number of factors may highly influence results
for factor loadings matrices when EM or imputation methods are applied to
incomplete data matrices.  This could mean that the application of missing data
methods as the ones studied here is most meaningful when the researcher
already has an idea about the number of dimensions underlying his/her data.

Eigenvalue Criterion

The first five eigenvalues of the covariance matrices based on each of the
five imputation methods PM, IM, CM, OM, and RI were calculated directly
after the missing scores had been imputed.  The EM method resulted in a
completed data matrix after the algorithm had converged.  Because the
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Table 8

D2  and s(D2) Across 50 Replications of the Specialized Design Four Latent Traits.  Entries are the Result of
Multiplication by 1000.

Sample Size

50 100 150

Percent Missingness

5 10 20 5 10 20 5 10 20

Method D2 s D2 s D2 s D2 s D2 s D2 s D2 s D2 s D2 s

EM 169 69 213 89 263 87 173 48 192 56 256 75 177 40 193 45
PM 153 73 166 139 257 222 131 62 127 63 193 95 111 49 116 59 157 84
IM 202 73 236 94 361 101 207 70 218 72 283 66 185 49 209 48 256 58
CM 179 64 202 116 335 127 157 54 185 70 242 58 137 48 154 44 224 48
OM 186 62 217 109 389 96 160 53 197 68 293 65 141 46 167 46 273 52
RI 281 85 479 219 1117 291 221 72 351 94 829 182 188 50 319 55 770 145
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researcher has to specify the number of factors in advance, we used the EM
algorithm to obtain separate one-, two, three-, and four-factor solutions.

First, we discuss general results for imputation methods.  For Mix 1:0,
Table 9 shows that the first two mean eigenvalues were well over 1, and that
the first mean eigenvalue was roughly two times the second mean eigenvalue.
The third, the fourth, and the fifth mean eigenvalues were close to 1, and
probably would be ignored by most researchers using the eigenvalue criterion.
For Mix 3:1, the first mean eigenvalue often was very high, that is, in several
cases it was higher than 15, whereas the second mean eigenvalue was
approximately 2.  The first mean eigenvalue was higher for Mix 3:1 than for
Mix 1:0 because for Mix 3:1 all 20 items contributed to the first eigenvalue,
whereas for Mix 1:0 only 10 items explicitly contributed to the first eigenvalue.
For Mix 3:1, the third, the fourth, and the fifth mean eigenvalues were mostly
lower than 1.  Thus, they would be ignored in practical research.  For Mix 1:1,
in most cases the first eigenvalue was well over 1, whereas the other
eigenvalues mostly were below 1.  Again, researchers would draw the correct
conclusion with respect to the number of factors to be retained.

 For high percentage of missingness (20 percent), the eigenvalues were
not that much different from eigenvalues obtained under low percentage of
missingness (5 percent) so as to reach other conclusions concerning the
number of factors to be retained.  As for individual imputation methods, the
differences between mean eigenvalues were not very impressive.  Even
method RI often led to eigenvalues that roughly reflect the correct number
of factors.  Finally, Table 10 shows that method EM led to results that reflect
the correct number of factors underlying the data.

Discussion

In general, based on statistical considerations the EM algorithm has to be
preferred over the other missing data methods studied for handling missing data
in questionnaires when factor analysis of the data in envisaged.  A version of the
EM algorithm is available (see the Appendix) for estimating factor scores if
questionnaire data are suffering from missing item scores.  A drawback of the
EM algorithm is that it converges slowly, and that convergence further slows
down when the sample size and the percentage of missingness increase.  With
the ongoing increasing power and speed of computers, in the near future
slowness is expected to become less of a problem.  However, practitioners
probably will continue having trouble understanding the algorithm and,
moreover, because it is not readily available in statistical packages, use of the
algorithm is problematic unless practitioners implement it themselves.  Since
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Table 9
Mean value Across 50 Replications of First Five Eigenvalues for Data Matrices Based on Imputed Scores.

Percent Missingness

5 20

Eigenvalue number

Mix Method 1 2 3 4 5 1 2 3 4 5

1:0 PM 13.00 5.87 1.09 0.98 0.89 13.64 4.45 1.07 0.93 0.84
IM 11.72 5.88 1.12 0.99 0.90 8.70 4.54 1.12 1.00 0.91
CM 12.11 5.91 1.13 1.00 0.91 10.16 4.60 1.18 1.04 0.93
OM 11.74 5.91 1.15 1.02 0.93 8.79 4.61 1.23 1.09 0.98
RI 11.90 6.00 1.33 1.18 1.05 9.22 5.00 1.93 1.70 1.55

3:1 PM 17.29 2.17 0.57 0.36 0.31 17.70 1.58 0.66 0.44 0.38
IM 15.58 2.20 0.60 0.39 0.34 11.32 1.70 0.66 0.55 0.48
CM 16.10 2.21 0.62 0.41 0.36 13.25 1.73 0.78 0.58 0.51
OM 15.59 2.22 0.66 0.44 0.38 11.43 1.78 0.89 0.67 0.58
RI 15.65 2.34 0.80 0.60 0.53 11.80 2.19 1.46 1.24 1.10

1:1 PM 15.20 0.76 0.58 0.51 0.47 15.60 0.78 0.60 0.54 0.48
IM 13.64 0.78 0.60 0.54 0.49 9.73 0.82 0.69 0.62 0.56
CM 14.12 0.81 0.61 0.55 0.50 11.32 0.91 0.75 0.66 0.60
OM 13.65 0.85 0.65 0.57 0.52 9.80 1.01 0.86 0.74 0.66
RI 13.78 0.99 0.79 0.70 0.63 10.24 1.56 1.36 1.19 1.07
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Table 10
Mean Value Across 50 Replications of First Five Eigenvalues for Data Matrices based on Score Imputation Using the
EM algorithm.

Percent Missingness

5 20

Eigenvalue number

Mix #f 1 2 3 4 5 1 2 3 4 5

1:0 1 12.81 6.11 1.07 0.94 0.85 13.09 4.23 0.96 0.85 0.78
2 12.95 6.31 1.03 0.91 0.83 12.87 6.21 0.87 0.75 0.68
3 13.18 6.38 1.09 0.92 0.82 12.77 6.12 1.10 0.79 0.71
4 12.84 6.29 1.08 0.96 0.84 13.18 6.25 1.13 0.94 0.72

3:1 1 17.20 2.01 0.51 0.32 0.28 17.81 1.51 0.43 0.29 0.25
2 17.93 2.14 0.54 0.31 0.27 17.61 2.30 0.39 0.26 0.22
3 17.75 2.15 0.56 0.30 0.27 17.49 2.22 0.53 0.26 0.22
4 17.76 2.19 0.58 0.32 0.27 17.87 2.18 0.57 0.32 0.22

1:1 1 15.86 0.72 0.54 0.48 0.44 15.44 0.57 0.46 0.41 0.37
2 16.04 0.76 0.54 0.48 0.44 15.95 0.75 0.45 0.40 0.37
3 15.61 0.74 0.55 0.48 0.43 15.49 0.75 0.55 0.41 0.36
4 15.79 0.74 0.57 0.50 0.44 15.54 0.77 0.59 0.49 0.37

#f Displays the Number of Factors Retained
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imputation is easier to understand and to implement, in practice a simple
imputation method may thus be preferred.

The performance of the other methods mostly agreed with the expectations
as expressed in the section entitled "Implemented Missing Data Methods".
Method PM came out as the best imputation method, and thus is the method to
be recommended for use in practical research when the researcher may not be in
the position to use the superior EM algorithm.  Method LD had the greatest
variability in performance.  It performed worst for Mix 1:0, where method RI
even performed better.  Also in agreement with the expectations was the result
that, with the exception of method LD, missing data methods led to better results
when the missing data mechanism was MCAR rather than MAR.

Other researchers (Brown, 1983; Finkbeiner, 1979; Lee, 1986; Muthén
et al., 1987) also found that of the studied methods the maximum likelihood
method, here implemented as an EM algorithm, performed best.  It may be
noted that these conclusions were not based on data generated under an IRT
model and, moreover, with the exception of Finkbeiner’s (1979) none of the
other studies included imputation methods in the comparisons.  Finkbeiner
(1979) further concluded that method IM performed nearly as well as
maximum likelihood estimation.  We found that method PM was the second
best method; this method was not studied by any of the other authors
mentioned.

Our simulation study varied several factors believed to be important for
comparing methods and held other factors constant, mostly because the
design had to be manageable, but not because all fixed factors are
unimportant.  For example, we chose the latent trait distribution and the
separation parameters (Equation 1) to be fixed.  It can be argued, however,
that in the unidimensional case increasing the variance of the latent trait
relative to the separation parameters may lead to an increase of the variance
of the item scores and an increase of the correlation between items.
Increasing the spread of the separation parameters relative to the latent trait
distribution will have the opposite effect.  Since method PM uses the relation
between the items and method IM does not, PM is expected to perform better
when the variance of the latent trait increases and worse when the spread
of the separation parameters increases, but IM will be unaffected.  This
example only shows the complexity of the problem under consideration, and
also stresses the need for further research.

It was found that the results of the missing data methods with respect to
D2  and s(D2) were the same for maximum likelihood factor analysis and
principal component analysis.  Moreover, varimax rotation of loadings
matrices and procrustes rotation of a loadings matrix based on a missing data
method to the complete data loadings matrix also led to the same results for
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all methods with respect to D2  and s(D2).  Thus, our conclusions are valid for
principal component, factor analysis followed by varimax rotation, which is
the factor analysis method most frequently used in psychological research.

When the researcher has no idea about the number of dimensions
underlying the data, the extraction of the wrong number of factors on the
basis of an imputed data matrix may lead to different results compared with
results had the complete data been available.  Fortunately, our analyses
showed that the use of the popular eigenvalue-higher-than-1 criterion led to
the correct conclusion about the number of factors to be retained.  Since this
result was obtained in the particular design studied here, however, the
generalizability of the result to other situations is an open problem.

The present simulation study was based on missing data methods applied
to multidimensional latent trait data.  Cases of missingness were generated
according to the MCAR and the MAR assumptions.  Deviations from these
assumptions introduce additional parameters, for example,  describing the
dependence of the probability of nonresponse on the item score and, as a
consequence, additional decisions have to be incorporated in the design.  This
is left for future research (Bernaards & Sijtsma, 1999).  The present study,
however, revealed directions in which to turn when dealing with missing item
scores from multidimensional questionnaires: (a) use the EM algorithm if
possible; otherwise (b) impute the Person Mean.
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Appendix

The EM algorithm (Anderson, 1984; Bentler & Tanaka, 1983; Dempster,
Laird & Rubin, 1977; Little & Rubin, 1987; Rubin & Thayer, 1982, 1983)
always yields maximum likelihood estimates.  EM treats the factor scores and
the missing data as missing.  Recall the classical exploratory factor analysis
model,

(7) X
i
 = Lf

i
 + U,   i = 1, ..., N,

where f
i
 ~ N(0,I ) and U ~ N(0,C) and the X

i
 variables are centered around the

mean m.  Under this model, assuming that the data and the factor scores
(x

i
,f

i
), ..., (x

N
,f

N
) are jointly observed, the parameters to be estimated are L

and C.  Note that given the factors, the variables are independent (conditional
independence).  Consequently, given (L,C) the loglikelihood to be
maximized is equal to

(8)

L N

N

i

i

N

i

xx

= − ′ + − ′ ′ +

= − ′ + − ′ +
=

−

−

∑/ log| | /

/ log| | / ,

2 1 2

2 1 2

1

1

1

LL C LL C

LL C LL C

  

  tr Cov

x xb g

b g
where Cov

xx
 is the sample covariance matrix of the data.  This likelihood is

derived under the model and assumptions described here.  It is not the
likelihood of the MPLT model described in the section entitled "Generating
the Data" which was used solely to generate the data.

The EM algorithm has two steps.  First, in the E step the expected
complete data sufficient statistics of the factor scores f

i
 and the data X

i
 are
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calculated given the data x
i
 and the current estimates of the parameters L and

C.  That is, the following expected matrices are calculated in the E step,

E

E

E

xx N xx

xf N xx

ff N xx

Cov Cov

Cov Cov

Cov Cov

| ,..., , ,

| ,..., , ,

| ,..., , ,

x x

x x

x x

I

1

1
1

1
1 1

1

L C

L C LL C L

L C L LL C LL C L

L LL C L

b g
d i b g
d i b g b g

b g

=
= ′ +

= ′ ′ + ′ +

+ − ′ ′ +

−

− −

−

Second, in the M step the expected loglikelihood resulting from the E step
is maximized just as if the factor scores were observed, that is,  as if the
expected covariance matrices from the E step were the observed ones.
Using the distribution of the observation resulting from Equation 7, the
estimators for L and C can be calculated from the conditional distribution
of X

i
 given f

i
, using standard theory (Anderson, 1984, p.  37; Morrison, 1990,

p.  92), resulting in

L

C

=
= − ′

−

−

Cov Cov

Cov Cov Cov Cov
x f f f

x x xf f f xf

1

1 .

Using the new value of the parameters, the missing data is estimated via

(9) $ ,x I xi i= ′ + ′ ′− − −L L C L L C1 1 1d i
the minimum variance estimator of the conditional expectation of x given f,
L, and C.  The missing observations are replaced by their estimates from
Equation 9, and we return to the E step.  Iteration between E step and M step
continues until convergence of the loglikelihood (Equation 8).


