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Discrete-time discrete-state latent Markov models with

time-constant and time-varying covariates

Abstract

Discrete-time discrete-state Markov chain models can be used to describe individual

change in categorical variables. But when the observed states are subject to mea-

surement error, the observed transitions between two points in time will be partially

spurious. Latent Markov models make it possible to separate true change from mea-

surement error. The standard latent Markov model is, however, rather limited when

the aim is to explain individual differences in the probability of occupying a particu-

lar state at a particular point in time. This paper presents a flexible logit regression

approach which allows to regress the latent states occupied at the various points in

time on both time-constant and time-varying covariates. The regression approach

combines features of causal log-linear models and latent class models with explana-

tory variables. In an application pupils’ interest in physics at different points in time

is explained by the time-constant covariate sex and the time-varying covariate physics

grade. Results of both the complete and partially observed data are presented.

Key words: panel analysis, categorical data, measurement error, time-varying co-

variates, log-linear models, logit models, modified path analysis approach, latent class

analysis, latent Markov models, modified Lisrel approach, EM algorithm
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Discrete-time discrete-state latent Markov models with

time-constant and time-varying covariates

1 Introduction

Discrete-time discrete-state Markov chain models are well suited for analyzing cat-

egorical panel data. They can be used to describe individual change in categorical

variables. However, when the observed states are subject to measurement error, the

observed transitions between two points in time will be a mixture of true change and

spurious change caused by measurement error in the observed states (Van de Pol and

De Leeuw, 1986; Hagenaars, 1992). Therefore, Wiggins (1973) proposed the latent

Markov model which makes it possible to separate true change from measurement er-

ror (see also Van de Pol and Langeheine, 1990). The latent Markov is strongly related

to the latent class model proposed by Lazarsfeld (Lazarsfeld and Henry, 1968).

The standard latent Markov model is, however, rather limited when the aim is

to explain individual differences in the probability of occupying a particular state at

a particular point in time. The only way that observed heterogeneity can be taken

into account is by performing a multiple-group analysis as proposed by Van de Pol

and Langeheine (1990). A disadvantage of multiple-group models is, however, that

they contain many parameters when several explanatory variables are included in the

analysis. Moreover, they can only be used with time-constant covariates, while the

availability of information on time-varying covariates is one of the strong points of

longitudinal data. Thus, what we actually need is a model for the latent states that

allows to include both time-constant and time-varying covariates.

Goodman’s causal log-linear model (Goodman, 1973) can be used to specify a

regression model for the observed states. This model, which uses a priori informa-
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tion on the causal order among a set of categorical variables, consists of a recursive

system of logit models in which a variable that appears as a dependent variable in

one equation can be used as an independent variable in one of the subsequent equa-

tions. Goodman’s causal log-linear model assumes, however, that all variables are

observed. Also the latent class model has been extended to allow for explanatory

variables influencing the latent variable (Haberman, 1979; Dayton and Macready,

1988). These extended latent class models are, however, not very well suited for

estimating covariate effects when we have data on more than one occasion.

This paper presents a latent Markov model in which the latent states are regressed

on time-constant and time-varying covariates by means of a system logit models. The

model is an extension of Goodman’s causal log-linear model in that the states occu-

pied at the different points in time are latent variables instead of observed variables.

Moreover, it extends Haberman’s and Dayton and Macready’s latent class models

with explanatory variables in that it makes it possible to specify an a priori causal

order among the variables included in the model. Hagenaars (1990, 1993) showed

how to combine a causal log-linear model with a latent class model, which led to what

he called a modified Lisrel approach (see also Vermunt 1993, 1996, 1997). Here, it is

demonstrated that this modified Lisrel approach makes it possible to specify latent

Markov models with covariates.

The problem that we are going to attack is depicted in Figure 1. At denotes

repeated measurements of a categorical variable at three time points considered as

an imperfect indicator of a categorical latent variable denoted by Wt. The Wt follow

a first-order Markov chain and, in addition, depend on a time-constant covariate (X)

and a time-varying one (Zt). In the application to be reported in Section 5, variables

A,X, and Z are interest in physics, sex and grades in physics.

Include Figure 1 about here



Discrete latent Markov models with covariates 5

To introduce our notation and because the presented approach builds on a large

set of models (e.g., manifest Markov model, latent class model, latent Markov model

and multiple-group Markov model) that have been previously proposed in the litera-

ture we briefly review these models in section 2. The new approach, logit regression

models for latent states, is presented in section 3 by following Hagenaars’ extension

of Goodman’s causal log-linear models. Section 4 discusses maximum likelihood es-

timation of the extended latent Markov models by means of the EM algorithm and

presents the `EM program (Vermunt, 1993, 1997) which can be used for this purpose.

An application using data from a German panel study is presented in Section 5.

2 Markov models

2.1 Manifest Markov model

Suppose we have repeated observations on a particular categorical or discrete variable,

such as, for instance, marital status, occupational status, the choice among brands,

or the grades in English of pupils. This kind of data, which is generally collected

to describe individual change in the variable concerned, can very well be analyzed

by means of Markov models. When the variable of interest is discrete and when

measurements took place at particular points in time, the models are called discrete-

time discrete-space Markov models (Bishop, Fienberg and Holland, 1975: Chapter

7).

Let T denote the time variable, t a particular point in time, and T ∗ the number

of discrete time points for which we have observations, or in other words, the number

of occasions or panel waves. The variable indicating the state that a person occupies

at time point T = t is denoted by Yt, a particular value of Yt by yt, and the number

of states by Y ∗.
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For sake of simplicity, it will be assumed that only information on three occasions

is available, or in other words, that T ∗ = 3. The data can be organized in a three-way

frequency table with observed frequencies ny1y2y3 . The probability of having Y1 = y1,

Y2 = y2, and Y3 = y3 is indicated by πy1y2y3 . So, πy1y2y3 denotes the probability of

belonging to cell (y1, y2, y3) of the joint distribution of Y1, Y2, and Y3.

When specifying a model for πy1y2y3 it is natural to use the information on the

time order among the variables Y1, Y2, and Y3. The most general model for πy1y2y3 is

πy1y2y3 = πy1 πy2|y1
πy3|y1y2

. (1)

Here, πy1 denotes the probability that Y1 = y1, πy2|y1
the probability that Y2 = y2,

given that Y1 = y1, and πy3|y1y2
the probability that Y3 = y3, given that Y1 = y1 and

Y2 = y2. The model represented in Equation 1 is a saturated model since it contains

as many observed cell counts as parameters.

A Markov model is obtained by assuming that the process under study is without

memory, that is, the state occupied at T = t depends only the state occupied at

T = t − 1. Such a model is sometimes also called a first-order Markov model. The

general model given in Equation 1 is not a first-order Markov model since Y3 does

not only depend on Y2, but also on Y1. Actually, this model is a second-order Markov

model because Yt depends on Yt−2. A (first-order) Markov model for πy1y2y3 can be

written as

πy1y2y3 = πy1 πy2|y1
πy3|y2

. (2)

As can be seen, in this model it is assumed that πy3|y1y2
= πy3|y2

.

A more parsimonious Markov model can be obtained by assuming the transition
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probabilities πyt|yt−1
to be independent of T . This gives a so-called time-homogeneous

or stationary Markov model. The model given in Equation 2 becomes a stationary

Markov model by restricting

πy2|y1
= πy3|y2

.

2.2 Latent class model

Above, it was implicitly assumed that the variable of interest is measured without

error. But, since in most situations such an assumption is unrealistic, it is important

to be able to take measurement error into account when specifying statistical models.

The problem of measurement error has given rise to a family of models called latent

structure models, which are all based on the assumption of local independence. This

means that the observed variables or indicators which are used to measure the unob-

served variable of interest are assumed to be mutually independent for a particular

value of the unobserved or latent variable.

Latent structure models can be classified according to the measurement level of

the latent variable(s) and the measurement level of the manifest variables (Bartholomew,

1987; Heinen, 1993). In factor analysis, continuous manifest variables are used as in-

dicators for one or more continuous latent variables. In latent trait models, normally

one continuous latent variable is assumed to underlie a set of categorical indicators.

And finally, when both the manifest and the latent variables are categorical, we have

a latent class model (Lazarsfeld and Henry, 1968; Goodman, 1974; Haberman, 1979).

Suppose we have a latent class model with one latent variable W with index w

and three indicators A, B, and C with indices a, b, and c. Moreover, let W ∗ denote

the number of latent classes, and A∗, B∗, and C∗ the number of categories of A, B,
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and C, respectively. The basic equations of the latent class model are

πabc =
W ∗∑
w=1

πwabc , (3)

where

πwabc = πw πa|w πb|w πc|w (4)

Here, πwabc denotes a probability of belonging to cell (w, a, b, c) in the joint distri-

bution including the latent dimension W . Furthermore, πw is the proportion of the

population belonging to latent class w. The other π-parameters are conditional re-

sponse probabilities. For instance, πa|w is the probability of having a value of a on

A given that one belongs to latent class w.

From Equation 3, it can be seen that the population is divided into W ∗ exhaus-

tive and mutually exclusive classes. Therefore, the joint probability of the observed

variables can be obtained by summation over the latent dimension. The classical pa-

rameterization of the latent class model, as proposed by Lazarsfeld and Henry (1968)

and as it is used by Goodman (1974), is given in Equation 4. It can be seen that the

observed variables A, B, and C are postulated to be mutually independent given a

particular score on the latent variable W .

2.3 Latent Markov model

By combining the Markov model given in Equation 2 and the latent class model

given in Equation 4, one obtains a model which can be used for analyzing change,

but in which the states occupied at different points in time may be measured with

error. This model, which was originally proposed by Wiggins (1973), is called a latent
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Markov model. Poulsen (1982), Van de Pol and De Leeuw (1986), and Van de Pol

and Langeheine (1990) contributed to its practical applicability.

It is well known that measurement error attenuates the relationships between

variables. This means that the relationship between two observed variables which are

subject to measurement error will generally be weaker than their true relationship.

For the analysis of change, this phenomenon implies that when the observed states

are subject to measurement error, the strength of the relationships among the true

states occupied at two subsequent points in time will be underestimated, or in other

words, the amount of change will be overestimated. When the data are subject to

measurement error, the observed transitions are, in fact, a mixture of true change

and spurious change resulting from measurement error (Van de Pol and De Leeuw,

1986; Hagenaars, 1992). The latent Markov model makes it possible to separate true

change and spurious change caused by measurement error.

To be able to formulate the latent Markov model, the notation has to be ex-

tended. Let Wt be the latent or true state at T = t having three indicators which

are denoted by At, Bt, and Ct. Like above, lower case letters will be used as in-

dices. Assume again that one has observations for three occasions, that is, T ∗ = 3.

Note that now the observed data is organized into a nine-way frequency table with

cell counts na1b1c1a2b2c2a3b3c3 . The probability of belonging to a particular cell in the

joint distribution of the three latent variables and the nine indicators is denoted by

πw1a1b1c1w2a2b2c2w3a3b3c3 . The latent Markov model for three points in time and three

indicators per occasion can be defined as

πw1a1b1c1w2a2b2c2w3a3b3c3 = πw1 πa1|w1
πb1|w1

πc1|w1
πw2|w1

πa2|w2
πb2|w2

πc2|w2

πw3|w2
πa3|w3

πb3|w3
πc3|w3

. (5)
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For details on multiple indicator Markov models see Langeheine (1991, 1994), Collins

and Wugalter (1992), Langeheine and van de Pol (1993, 1994).

In contrast to the latent class model, it is also possible to estimate a latent Markov

model with only one indicator per occasion. For instance, when we have only At as

indicator for the latent state Wt, the latent Markov model simplifies to

πw1a1w2a2w3a3 = πw1 πa1|w1
πw2|w1

πa2|w2
πw3|w2

πa3|w3
. (6)

To identify the parameters of the multiple indicator latent Markov model represented

in Equation 5, it is not necessary to impose further restrictions on the model param-

eters. The single indicator latent Markov model can, however, not be identified

without further restrictions (Van de Pol and Langeheine, 1990). The model for three

points in time given in Equation 6 can be identified by assuming the response proba-

bilities to be time-homogenous, in other words, by imposing the following restrictions

πa1|w1
= πa2|w2

= πa3|w3
.

When there are at least four points in time, a latent Markov model with a single

indicator per occasion can also be identified by assuming stationarity of the transition

probabilities.

2.4 Heterogeneity

In most cases, it is unrealistic to assume that the process under study is equal for

all members of the population under study. For instance, males will not have the

same probability of being or becoming employed as females, persons with different

educational levels will have different divorce and married rates, the choice of brand
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in purchasing a particular product will depend on someone’s income, and school

grades will depend on pupils’ social backgrounds. Therefore, it is important to be

able to specify latent Markov models which take observed heterogeneity into account

(Böckenholt and Langeheine, 1996).

Analogous to the extension of latent class analysis for dealing with data on several

subpopulations (Haberman, 1979; Clogg and Goodman, 1984; Hagenaars, 1990), Van

de Pol and Langeheine (1990) proposed multiple-group latent Markov models. These

Markov models involve the inclusion of one additional variable indicating a person’s

subgroup membership. This variable will be denoted by G, with index g and G∗

categories. In its most general form, the multiple-group version of the latent Markov

model with one indicator per occasion given in Equation 6 is

πgw1a1w2a2w3a3 = πgπw1|g πa1|w1gπw2|w1g πa2|w2gπw3|w2g πa3|w3g . (7)

In this model every parameter is assumed to be subgroup specific. Of course, it is

possible to restrict this model by assuming particular parameters to be equal among

subgroups. For instance, in most applications, it will be assumed that measure-

ment error is equal among subgroups. But, it is also possible to assume the initial

distribution or the transition probabilities to be the same for all subgroups.

Although the multiple-group extension of the latent class model is very valuable,

its applicability is limited in several respects. When applying statistical methods, re-

searchers are interested in detecting the effects of a number of independent variables,

or covariates, on the phenomenon under study. In the case of latent Markov models,

one may be interested in determining the effect of particular covariates on the initial

position and on the transition probabilities. When using the multiple-group analysis,

the only thing that can be done is crossing all covariates and using this joint covariate
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as a grouping variable. It will be clear that this approach is only feasible when the

number of cells of joint distribution of the independent variables is not too large,

because otherwise a huge number of parameters has to be estimated.

Another limitation of the multiple-group approach is that it does not allow to

make full use of the dynamic character of the data. A strong point of longitudinal

data is that it does not only contain information on the changes in the dependent

variable of interest, but also in the independent variables. In other words, variables

which may influence the states occupied at the different points in time may be time-

varying. It is very difficult to use such time-varying covariates in multiple-group

latent Markov models.

What we actually need in order to be able to explain a person’s latent state at

T = t is a regression-like model which can deal with both time-constant and time-

varying covariates. The next section presents such a model.

3 Logit regression models

3.1 Causal log-linear models

Several strongly related approaches have been proposed for specifying regression mod-

els in the context of Markov modeling (Spilerman, 1972; Muenz and Rubinstein, 1985;

Clogg, Eliason, and Grego, 1990; Kelton and Smith, 1991). One of these approaches,

which can be used when all variables are categorical, is Goodman’s modified path

analysis approach (Goodman, 1973). Goodman demonstrated how to specify a causal

log-linear model for a set of categorical variables using a priori information on their

causal ordering. Because of the analogy with path analysis with continuous data, he

called the model a modified path analysis approach.

Goodman’s approach will be illustrated by introducing a time-constant covariate
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X and a time-varying covariate Zt into the general manifest model described in

Equation 1. In its most general form, the modified path model for the relationships

among the variables X, Z1, Y1, Z2, Y2, Z3, and Y3 can be written as

πxz1y1z2y2z3y3 = πx πz1|x πy1|xz1
πz2|xz1y1

πy2|xz1y1z2
πz3|xz1y1z2y2

πy3|xz1y1z2y2z3
. (8)

Thus, the joint distribution of the variables, πxz1y1z2y2z3y3 , is decomposed into a set

of conditional probabilities on the basis of the a priori causal order among these

variables. Note that in this case, the causal order can almost completely be based

on the time order among the variables. Only the order between Zt and Yt must be

determined in another way. Like the general model given in Equation 1, the above

model for πxz1y1z2y2z3y3 is a saturated model which can be restricted in various ways.

As demonstrated by Vermunt (1996, 1997), the general model given in Equation 8 can

easily be restricted by assuming particular variables to be (conditionally) independent

of some of its preceding variables. Suppose, for instance, that the Markov assumption

holds for the dependent variable Y , that Z is independent of the previous values of

the dependent variable Y , and that there are no time-lagged effects of Z on Y . These

assumptions imply that the general model represented in Equation 8 can be simplified

to

πxz1y1z2y2z3y3 = πx πz1|x πy1|xz1
πz2|xz1

πy2|xy1z2
πz3|xz1z2

πy3|xy2z3
. (9)

When we are not interested in the relationships among the independent variables, it

can also be written as

πxz1y1z2y2z3y3 = πxz1z2z3 πy1|xz1
πy2|xy1z2

πy3|xy2z3
. (10)
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Note that the Markov assumption, the assumption of non-existence of time-lagged

effects of Z on Y , and the assumption of non-existence of direct effects of Y on Z

can be relaxed and therefore be tested.

The structure of the model given in Equation 10 is similar to a manifest version

of the multiple-group latent Markov model given in Equation 7. The main difference

is, however, that the grouping variable is composed of two variables, one of which is

time-varying. This means that one of the two disadvantages of the multiple-group

Markov model, namely, that the grouping variable has to be time-constant, has been

overcome. The other weak point of the multiple-group approach has not been resolved

so far since every value of the joint independent variable still has its own set of initial

probabilities and transition probabilities.

However, Goodman’s modified path analysis approach does not only involve spec-

ifying a causal order among the categorical variables which are used in the analysis,

but it also involves specifying logit models for the probabilities appearing at the right

hand side of the general model represented in Equation 8. Vermunt (1996, 1997)

showed that it is also possible to apply the logit parameterization to a restricted

model such as the model given in Equation 10. This means that the conditional

probability structure can be restricted by both assuming particular variables to be

conditionally independent of other variables and by specifying a system of logit mod-

els.

Suppose, for instance, that Yt depends on Yt−1, X, and Zt, but that there are no

interaction effects. This assumption can be implemented by specifying logit models

for the probabilities πy1|xz1
, πy2|xy1z2

, and πy3|xy2z3
appearing in Equation 10, i.e.,

πy1|xz1
=

exp
(
uY1

y1
+ uY1X

y1x + uY1Z1
y1z1

)
∑

y1
exp

(
uY1

y1 + uY1X
y1x + uY1Z1

y1z1

) , (11)
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πy2|xy1z2
=

exp
(
uY2

y2
+ uY2X

y2x + uY2Y1
y2y1

+ uY2Z2
y2z2

)
∑

y2
exp

(
uY2

y2 + uY2X
y2x + uY2Y1

y2y1 + uY2Z2
y2z2

) , (12)

πy3|xy2z3
=

exp
(
uY3

y3
+ uY3X

y3x + uY3Y2
y3y2

+ uY3Z3
y3z3

)
∑

y3
exp

(
uY3

y3 + uY3X
y3x + uY3Y2

y3y2 + uY3Z3
y3z3

) , (13)

where the u parameters are log-linear parameters which are subject to the well-known

ANOVA-like restrictions. Note that the model described in Equations 10-13 gives

just one of the possible set of restrictions that can be imposed on the general model

presented in Equation 8. It is also possible to specify models containing interaction

effects, which relax the Markov assumption, which contain time-lagged effects of Z

on Y , and which contain direct effects of Y on Z.

It is well known that logit models with categorical independent variables are

equivalent to log-linear models in which an effect is included to fix the marginal dis-

tribution of the independent variables (Goodman, 1972; Agresti, 1990). For instance,

the logit model given in Equation 12 is equivalent to the hierarchical log-linear model

log mxy1z2y2 = αxy1z2 + uY2
y2

+ uY2X
y2x + uY2Y1

y2y1
+ uY2Z2

y2z2
, (14)

where mxy1z2y2 is an expected cell frequency in the marginal table formed by the

variables X, Y1, Z2, and Y2, and αxy1z2 is the parameter that fixes the marginal

distribution of the independent variables. The probability πy2|xy1z2
can simply be

obtained from mxy1z2y2 by

πy2|xy1z2
=

mxy1z2y2∑
y2

mxy1z2y2

Goodman (1973) presented his causal log-linear model by specifying log-linear



Discrete latent Markov models with covariates 16

models for different marginal tables, where every subsequent marginal table had to

contain, apart from the dependent variable, all variables of the previous marginal

table. More precisely, Goodman’s approach involves restricting the general model

in Equation 8 by specifying log-linear models for the marginal frequency tables

with expected cells counts mx, mxz1 , mxz1y1 , mxz1y1z2 , mxz1y1z2y2 , mxz1y1z2y2z3 , and

mxz1y1z2y2z3y3 . These marginal tables can be used to obtain the probabilities appear-

ing at the right hand side of Equation 8. The way we specified the Markov model

with covariates is slightly different from Goodman’s original formulation of the causal

log-linear model because the logit models were specified for the probabilities of the

restricted model given in Equation 10 instead of the probabilities of the general model

given in Equation 8. The advantage of our approach is that it is computationally

more efficient as a result of a reduction of the dimensionality of the marginal tables

involved in the analysis (Vermunt, 1996, 1997).

It will be clear that the causal log-linear model provides us with a flexible regres-

sion approach which overcomes the limitations of the multiple-group Markov model.

However, in Goodman’s causal log-linear models it is assumed that all variables are

observed, while we are interested in regressing latent states on previous latent states,

time-constant covariates, and time-varying covariates.

3.2 Causal log-linear models with latent variables

In the context of latent class analysis, models have been proposed which can be

used to explain class membership by means of a number of observed covariates.

Haberman (1979) parameterized the latent class model as a log-linear model with

one or more latent variables. When using this log-linear latent class model it is

straightforward to regress the probability of belonging to a particular latent class

on a set of categorical covariates by means of a log-linear, or equivalently, a logit
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model. Dayton and Macready (1988) proposed latent class models with continuous

concomitant variables, in which class membership was regressed on the covariates

by means of a logistic regression model. Van der Heijden, Mooijaart and De Leeuw

(1992) proposed a so-called latent budget model in which a categorical latent variable

is explained by a joint independent variable using a logit model.

These strongly related extensions of the standard latent class model, which are all

based on specifying a logit model for class membership, are, however, not well suited

to specify logit regression models for repeated observations. What we need here is

a regression modeling approach which, like the above-mentioned latent class models,

allows to regress a latent variable on a set of covariates, and, like the causal log-

linear models discussed above, allows both the dependent variable and the covariates

to change with time. Such a model can be obtained by combining Goodman’s causal

log-linear model with a latent class model. Hagenaars (1990, 1993) showed how to

specify simultaneously a system of logit equations for a set of causally ordered latent

and manifest variables and a latent class model for the latent variables which are used

in the logit models (see also Vermunt, 1993, 1996, 1997). Because of the analogy with

the well-known LISREL model for continuous data, he called this causal log-linear

model with latent variables a modified Lisrel model. Below, it is shown that this

causal log-linear model with latent variables makes it possible to include covariates

into a latent Markov model.

Suppose that we have a Markov model for the latent states Wt having the same

structure as the manifest Markov model for Yt given in Equation 10. Moreover,

assume that, like in the latent Markov model described in Equation 6, each Wt has

only one indicator, At. In that case, the probability structure of the causal log-linear
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model with latent variables W1, W2, and W3 is

πxz1w1a1z2w2a2z3w3a3 = πxz1z2z3 πw1|xz1
πa1|w1

πw2|xw1z2
πa2|w2

πw3|xw2z3
πa3|w3

.(15)

In fact, the only difference with the manifest Markov model given in Equation 10

is that it contains, apart from a structural part, a measurement part in which the

relationships between the latent states Wt and the observed states At are specified.

This measurement part consists of a set of conditional response probabilities πat|wt
.

Note that, like in the manifest case, the structural part of the model given in Equation

15 is already a restricted model. In the most general model, the structural part of the

model has the same structure as the model given in Equation 8. The measurement

part is restricted as well since it is assumed that the relationship between Wt and At

is independent of X, Wt−1 and Zt. This assumption can easily be relaxed, namely

by replacing πat|wt
by πat|xwt−1ztwt

. When using such a general specification of the

measurement part of the model, πat|xwt−1ztwt
has to be restricted in some way to

avoid identification problems. Note that although the measurement part of the model

given in Equation 15 contains only one indicator per occasion, it is straightforward

to specify models that, like the latent Markov model given in Equation 5, contain

several indicators per occasion.

As mentioned in the discussion of the latent Markov model, when the model con-

tains only one indicator per occasion, the response probabilities have to be assumed

to be time-homogeneous, i.e.,

πa|w = πa1|w1
= πa2|w2

= πa3|w3
. (16)

As in the manifest case, the probabilities of the structural part of the model may
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be parametrized by means of a logit model. For instance, if for the latent states

Wt we assume the same kind of model as for the observed states Yt (see Equations

11-13), πw1|xz1
, πw2|xw1z2

, and πw3|xw2z3
have to be restricted as follows:

πw1|xz1
=

exp
(
uW1

w1
+ uW1X

w1x + uW1Z1
w1z1

)
∑

w1
exp

(
uW1

w1 + uW1X
w1x + uW1Z1

w1z1

) , (17)

πw2|xw1z2
=

exp
(
uW2

w2
+ uW2X

w2x + uW2W1
w2w1

+ uW2Z2
w2z2

)
∑

w2
exp

(
uW2

w2 + uW2X
w2x + uW2W1

w2w1 + uW2Z2
w2z2

) , (18)

πw3|xw2z3
=

exp
(
uW3

w3
+ uW3X

w3x + uW3W2
w3w2

+ uW3Z3
w3z3

)
∑

w3
exp

(
uW3

w3 + uW3X
w3x + uW3W2

w3w2 + uW3Z3
w3z3

) , (19)

Although for the sake of simplicity, only hierarchical log-linear models were presented,

it is also possible to specify non-hierarchical log-linear models.

4 Estimation by means of the EM algorithm

Goodman (1974) showed how to estimate latent class models by means of the EM

algorithm (Dempster, Laird and Rubin, 1977). This algorithm was implemented by

Clogg (1977) in his MLLSA program. Poulsen (1982) was the first one who showed

how to obtain maximum likelihood estimates for the parameters of the latent Markov

model by means of the EM algorithm. Van de Pol, Langeheine and De Jong (1991)

implemented this algorithm in their PANMARK program which can be used for

estimating latent and mixed Markov models. More recently, Vermunt (1993, 1997)

developed a program called `EM for estimating causal log-linear models with latent

variables which is based on the EM algorithm as well. With `EM any type of log-

linear model can be specified, including latent Markov models with time-constant
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and time-varying covariates.

Assuming a multinomial sampling scheme, maximum likelihood estimates for the

parameters of the extended latent Markov model described in Equations 15-19 have

to be obtained by maximizing the following log-likelihood function:

L = nxz1a1z2a2z3a3 log
∑

w1,w2,w3

πxz1w1a1z2w2a2z3w3a3 , (20)

where nxz1a1z2a2z3a3 denotes an observed cell count in the cross-tabulation of the ob-

served variables. The nxz1a1z2a2z3a3 and the above log-likelihood function are some-

times also called the incomplete data and the incomplete data likelihood, respectively.

The EM algorithm (Dempster, Laird and Rubin, 1977) is a general iterative

algorithm which can be used for estimating model parameters when there are missing

data. In the case of the latent Markov models, the scores on the latent states Wt

are missing for all persons. The EM algorithm consists of two separate steps per

iteration cycle: an E(xpectation) step and a M(aximization) step. In the E step of the

algorithm, auxiliary estimates for the missing data are obtained using the incomplete

data and the ‘current’ parameter estimates, that is, the parameter estimates from

the previous EM iteration. For the model concerned, the E step involves

n̂xz1w1a1z2w2a2z3w3a3 = nxz1a1z2a2z3a3 π̂w1w2w3|xz1a1z2a2z3a3
. (21)

Here, n̂xz1w1a1z2w2a2z3w3a3 is an estimated cell frequency in the table including the la-

tent dimensions, sometimes also called the completed data. Furthermore, π̂w1w2w3|xz1a1z2a2z3a3

is the probability of having particular scores on the latent variables, given someone’s

scores on the observed variables, calculated using the parameter estimates from the

last EM iteration.
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The M step involves obtaining maximum likelihood estimates for the model pa-

rameters using the completed data as if it where observed data, that is, maximizing

the complete data log-likelihood function

L∗ = nxz1w1a1z2w2a2z3w2a3 log πxz1w1a1z2w2a2z3w3a3 . (22)

The simplest situation occurs when no further restrictions are imposed on the (con-

ditional) probabilities appearing in the model for πxz1w1a1z2w2a2z3w3a3 described in

Equation 15. In that case, maximum likelihood estimates of the model parameters

can simply be obtained by

π̂xz1z2z3 =
n̂xz1..z2..z3..

n̂..........
,

π̂w1|xz1
=

n̂xz1w1.......

n̂xz1........
,

π̂a1|w1
=

n̂..w1a1......

n̂..w1.......
,

π̂w2|xw1z2
=

n̂x.w1.z2w2....

n̂x.w1.z2.....
,

π̂a2|w2
=

n̂.....w2a2...

n̂.....w2....
,

π̂w3|xw2z3
=

n̂x....w2.z3w3.

n̂x....w2.z3..
,

π̂a3|w3
=

n̂........w3a3

n̂........w3.
,

where a ‘.’ means that the table with estimated observed frequencies is collapsed

over the dimensions concerned.

Particular (conditional) probabilities can be made equal to each other by means

of a simple procedure proposed by Goodman (1974). For instance, the restrictions
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on the response probabilities which are described in Equation 16 can be imposed by

π̂a|w =
n̂..w1a1...... + n̂.....w2a2... + n̂........w3a3

n̂..w1....... + n̂.....w2.... + n̂........w3.
.

What is actually done is calculating a weighted average of the unrestricted estimates

of the response probabilities. It must be noted that, as demonstrated by Mooijaart

and Van der Heijden (1992), this simple procedure for imposing equality restrictions

among conditional probabilities does not always work properly because it does not

guarantee that in all situations the probabilities still sum to unity after imposing the

equality restrictions (see also Vermunt, 1997). However, in this case, Goodman’s pro-

cedure, which is also implemented in the above-mentioned MLLSA and PANMARK

programs, works properly.

When logit models are specified for particular conditional probabilities, the M step

is a bit more complicated. The probabilities π̂w1|xz1
, π̂w2|xw1z2

, and π̂w3|xw2z3
, which

are restricted as described in Equations 17-19, can be obtained by estimating the log-

linear models concerned for the marginal tables with estimated cell counts m̂xz1w1 ,

m̂xw1z2w2 , and m̂xw2z3w3 , respectively. For that purpose, standard algorithms for

obtaining maximum likelihood estimates of the parameters of log-linear models can be

applied such as the Iterative Proportional Fitting Algorithm (IPF) and the Newton-

Raphson algorithm (Goodman, 1973; Hagenaars, 1990; Vermunt, 1993, 1997).

In the `EM program (Vermunt, 1993), hierarchical log-linear models are estimated

by IPF and non-hierarchical log-linear models by a variant of the one-dimensional

Newton algorithm as proposed by Goodman (1979). The latter algorithm differs

from the well known Newton-Raphson algorithm in that, like in IPF, parameters

are updated subsequently instead of updating them simultaneously (Vermunt, 1997).

Therefore, the algorithm implemented in the `EM program is actually an ECM al-
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gorithm (Meng and Rubin, 1993).

5 Application

5.1 Data

The data that are used to illustrate the extended latent Markov model presented

in the previous sections are taken from a German educational panel study among

secondary school pupils, which was performed at the Institute for Science Education

in Kiel (Hoffmann, Lehrke, and Todt, 1985; Hoffmann and Lehrke, 1986; Häussler

and Hoffmann, 1995). In this panel study, a cohort of pupils was followed during

their school careers and interviewed once a year with respect to several themes, such

as their school grades and their interest in physics as a school subject (called ‘interest

in physics’ in what follows).

As it is well-known from cross-sectional studies (Ormerod and Duckworth, 1975;

Gardner, 1985; Hoffmann and Lehrke, 1986), interest in physics declines over time

with girls showing a generally lower level of interest than boys. Cross-sectional stud-

ies, however, do not allow to make statements about individual change from one

point in time to the next. This is why we use Markov methodology. Because the

interest variable is not free of measurement error, we use a latent Markov model,

adding a time-constant covariate to allow for differences between girls and boys. The

reason for including physics grades as a time-varying covariate is that, according to

motivation theory (e.g., Deci and Ryan, 1985), interest (or intrinsic motivation) is

regulated by feelings of competency which should be high in the case of good grades.

In the application, the variable interest in physics measured at three points in

time (grades 7 to 9) is used as the dependent variable. The observed variable interest

in physics at T = t is denoted by At, while the latent variable interest in physics is
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denoted by Wt. Two covariates are used in the latent Markov models to be specified:

the time-constant covariate sex, denoted by X, and the time-varying covariate grade

in physics, denoted by Zt. Since the time-varying covariate Zt represents a pupil’s

grade in physics at the end of the school year preceding the interview date, it can be

assumed that Zt influences Wt. What we want to investigate is whether interest in

physics at T = t depends on interest in physics at T = t− 1, on sex, and on grade in

physics at T = t.

The sample available for this analysis is of size 645, 320 out of whom are girls and

325 are boys. 541 students have complete measurements on all variables. These data

are reproduced in the Appendix and the results for this group are reported in Section

5.2. In section 5.3 we take another look at the data by analyzing the completely as

well as partially observed data. The partial observations are a result of temporary

drop-out, panel attrition, or item non-response and consist of a total of 637 students.

Because we wanted to avoid sparseness problems when using the Pearson’s chi-

squared statistic and the likelihood-ratio chi-squared statistic to test the fit of the

models to be estimated, the observed variables At and Zt were dichotomized, with

the categories ‘low’ and ‘high’. The variable sex has categories ‘girls’ and ‘boys’. The

total number of cells in the observed table is 27 (128).

The fact that the variables were dichotomized does not mean that these kinds

of models cannot be used with polytomous variables. The problem is that model

testing can become very difficult because of sparseness of the observed frequency

table. Although in that case nested models can still be compared against each other

by means of likelihood ratio tests, models cannot be tested anymore against the data

(Haberman, 1977, 1978; Agresti, 1990).
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5.2 Results - Complete Data

The test result for the models that were estimated by means of the `EM program

are presented in Table 1. As a model selection strategy we started from a plausible

restricted model and subsequently added parameters to see whether the fit could be

improved. Model 1, which subsequently is referred to as the basic model, is given by

Equations 15-19 and depicted in Figure 1. As already mentioned when presenting the

causal log-linear model with latent variables, Model 1 is obtained by imposing some

restrictions on the most general model that is possible. That is, it is assumed that

someone’s interest in physics at a particular point in time (Wt) depends only on the

interest in physics at the previous occasion (Wt−1), on sex (X), and on the physics

grade at the same point in time (Zt), when there are only two-variable effects. In

other words, it contains the Markov assumption, it assumes that there are no time-

lagged effects, and it assumes that the effects of sex and grade are independent of

previous interest. Another assumption, which is necessary to make a single indicator

latent Markov model identifiable, is that the measurement error is the same among

time points. And finally, Zt is postulated not to be influenced by the preceding values

of W . Below it is demonstrated how to relax some of these assumption.

[INSERT TABLE 1 ABOUT HERE]

As can be seen from the test results, Model 1 does not fit. This indicates that at least

one of its underlying assumptions has to be rejected. In each of the Models 2-6, one

of the above-mentioned assumptions is relaxed. Models 3-5 are rejected according to

both X2 and L2 whereas Models 2 and 6 are accepted at the 5% level according to X2

but rejected as per L2. Obviously, sparseness leads to conflicting results in the two

latter cases suggesting to consider Models 2-6 as incorrect. As a consequence, strict

testing for improvement of fit of these models over Model 1 is not possible. However,
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comparisons of both chi-squared statistics and the BIC descriptive fit index (Schwarz,

1978) of Models 2-6 and Model 1 indicate that Models 3-5 do not better than Model

1 whereas Models 2 and 6 seem to yield a better fit.

Model 2 contains a direct effect of W1 on W3. This means that the Markov

assumption does not hold. Models 3 and 4 contain three-variable interactions among

Zt, Wt−1, and Wt and among X, Wt−1, and Wt, respectively. Neither of these

interaction effects appear to be relevant. This means that the effects of grade and

sex on interest at T = t do not depend on the interest at the previous occasion. Model

5, which contains time-lagged effects of Z on W , does not fit better than Model 1

as well. And finally, Model 6 contains an effect of interest at T = t − 1 on grade

at T = t. This model, which relaxes the assumption that grade is not influenced

directly by interest, seems to do better than Model 1.

In sum, both the Markov assumption and the assumption that Zt is not influenced

by Wt−1 had to be rejected, while the no three-variable interaction assumptions

and the no time-lagged effects assumption were confirmed. Model 7 contains the

additional effects that were found to be relevant, that is, the effects of W1 on W3, of

W1 on Z2, and of W2 on Z3. As can be see from the test results reported in Table 1,

this model fits the data very well: L2 = 107.88, df = 96, p < .192.

Model 7 may still contain more parameters than necessary because so far we did

not impose restrictions on the effects among time points. In Model 8 (depicted by

Figure 2), the effects of Wt−1 on Wt, the effects of X on Wt, the effects of Zt on

Wt, and the effect of Wt on Zt+1 are assumed to be time independent. These time-

homogeneity restrictions do not deteriorate the fit significantly compared to Model

7: ∆L2 = 9.31, df = 6, p < .157.

[INSERT TABLE 2 ABOUT HERE]
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Table 2 gives the parameter estimates for Models 7 and 8. The πa|w are the estimated

parameters of the measurement part of the model. It can be seen that in both models,

the degree of measurement error is negligible since for Wt = 1, the probability that

At = 1 equals 1.000, while for Wt = 2, the probability that At = 2 equals .969.

INSERT FIGURE 2 ABOUT HERE

To see whether measurement error is negligible, a model was estimated which is

equivalent to Model 8 except for the fact that response probabilities were fixed at

π1|1 = π2|2 = 1, thus assuming perfect measurement. This model has an L2 of 117.66

with 104 degrees of freedom. Note that since the parameters are fixed to be equal to

their boundary values, it is not allowed to test this model against Model 8 by means of

a likelihood-ratio test. Nevertheless, the rather similar L2 values, 117.19 and 117.66,

indicate that interest in physics is measured without error. However, it is implausible

that the variable interest in physics is really measured without error. Although the

results are not reported here, a number of latent Markov models with sex as the only

covariate were estimated using the same data set. In all these models, the probability

of having the same value on an observed state as on a latent state was around .9 for

both latent classes. Thus, what happens is that the inclusion of the time-varying

covariate grade in physics decreases the amount of ‘measurement error’. The reason

for this is probably that in the models without Z, the ‘measurement error’ also

captured unobserved heterogeneity in the states occupied at the different occasions

which disappeared by including Z as a covariate in the model. This indicates that in

latent Markov models with a single indicator per occasion it is difficult to distinguish

measurement error from unobserved heterogeneity. To detect measurement error it

is preferable to use several indicators per occasion since in that case the relationships

among the indicators provide information on the reliability of each of the indicators.



Discrete latent Markov models with covariates 28

For the structural part of the model, Table 2 reports the two-variable log-linear

effects. Since both the independent variables and the dependent variable appearing

in the various logit equations are dichotomous, these parameters are not difficult

to interpret. The parameters indicate the effects of belonging to category 1 of the

independent variable on the probability of belonging to category 1 of the dependent

variable (see Equations 17-19). By taking twice the reported parameters, one obtains

the effect for category 1 of the independent variable on the log odds of belonging to

category 1 rather than category 2 of the dependent variable. And finally, 4 times the

reported log-linear parameter gives the log odds ratio between categories 1 and 2 of

the covariate concerned, within the levels of the other covariates.

The parameter estimates show that there is a strong dependence among the in-

terest at subsequent points in time: persons who have a low interest have a high

probability of remaining in the category “low interest”, while persons who have a

high interest have a high probability of remaining in the category “high interest”.

Also, the second-order Markov effect from W1 on W3 is quite strong, and it works

in the same direction. The fact that, controlling for W2, W1 has a positive effect

on W3 means that persons who moved to another state between T = 1 and T = 2

tend to move back to their position at T = 1 between T = 2 and T = 3. As can

be expected, the effect of the time-varying covariate grade is positive as well, which

means that pupils with higher grades are more interested in physics than pupils with

lower grades. And finally, the effect of sex on interest at the different points in time

shows that girls are less interested in physics than boys.

Table 2 also reports the effects of W1 on Z2 and W2 on Z3. Note that although

the parameters are not reported here, Models 7 and 8 also contain all interaction

terms among X, Z1, Z2 and Z3. The effects of Wt−1 on Zt indicate that interest has

a positive effect on the grade at the next point in time. This means that interest
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at T = t is not only influenced directly by interest at T = t − 1, but also indirectly

via grade at T = t: Pupils who are more interested in physics get higher grades in

physics and have therefore a high probability of remaining interested.

Supplementing the log-linear effects (u-parameters of Table 2) we report the con-

ditional probabilities in Table 3. This table shows (a) that boys have better grades

in physics than girls (.817 vs. 655) and (b) that – at T = 1 – boys have more interest

in physics than girls for both low (.378 vs. .182) and high grades (.663 vs. .420).

However, the distribution in physics interest (W1) for girls with high grades is about

equal to the one for boys with low grades.

INSERT TABLES 3 AND 4 ABOUT HERE

Table 4 gives transition probabilities for changes in interest in physics from T = 1 to

T = 2, given grades at T = 2 and sex, which reveal: (a) boys have a higher probability

to change from low to high interest than girls (.182 vs. .075, .418 vs. .209); (b) boys

have a higher probability to keep their high interest than girls (.593 vs. 349; and .825

vs. .634); (c) girls with high grades have about the same probabilities to change as

have boys with low grades.

To save space, we refrain from giving the table for the transition from W2 to W3,

given W1, Z3 and X. Overall, these results follow the patterns given in Table 4 with

more differentiation between the 8 groups defined by W1, Z3 and X, however.

In summary, our analysis showed that the first-order Markov assumption does

not hold for pupils’ interest in physics, that there are time-homogeneous effects of

the time-constant covariate sex and the time-varying covariate grade on interest in

physics, and that there is an indirect relationship between interest in physics at

subsequent points in time via grade in physics. Moreover, the estimated amount of

measurement error in the observed states is negligible. Since it is implausible that
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interest in physics is really measured without error, this may be the result of the fact

that only one indicator was used per occasion.

5.3 Results - Complete and Partially Observed Data

What we have done in the previous section may be called common practice, that is

listwise deleting subjects with missing data and analyzing the completely classified

subjects (or complete data). This approach is equivalent to the assumption that

subjects with (partial) nonresponse (for whatever reason) are a random sample of all

subjects. Violations of this assumption may lead to biased estimates.

Fortunately, for categorical data there is a well-developed methodology for ana-

lyzing both completely and partially observed data that allows one to specify and

test models for the missing data mechanisms. According to the terminology of Little

and Rubin (1987; see also Rubin, 1976; Little, 1982) data may be missing completely

at random (MCAR) or missing at random (MAR). If data are not MCAR or MAR,

they are NMAR (not missing at random) so that the missing data mechanism is

non-ignorable.

The meanings of MCAR, MAR or NMAR may be best understood by referring to

a simple example. Assume A, B, and C denote observed or structural variables, and

B and C are partially observed. Now introduce two response indicators, R and S,

where R indicates whether B is observed (coded 1) or not (coded 2) and S indicates

whether C is observed (1) or not (2). This enables one to specify four subgroups

depicted by Table 5:

INSERT TABLE 5 ABOUT HERE

The analysis of these stacked tables using log-linear models defined on the variables

A,B, C, R, and S allows one to evaluate whether the data are
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• MCAR: R and S are completely independent of A, B, and C. The probability

of data being missing is independent of both observed and missing data.

• MAR: R and S may depend on A but not on B or C. The probability of data

being missing may depend on observed, but not on the missing data. (Note that

a weaker definition of MAR holds for so-called monotone or nested patterns of

nonresponse; cf. Fay, 1986.)

• NMAR: R and S depend on their own structural variable or on another struc-

tural variable with missing data.

Fuchs (1992) showed how to use log-linear models (without working with response

indicators, however) to test whether non-response is MCAR or MAR. This approach

has been extended to log-linear models with latent variables by Hagenaars (1990).

Approaches that explicitly use response indicators are more flexible because they

allow testing a priori assumptions about the response mechanisms by specifying rela-

tionships between the structural variables and the response indicators. Little (1985)

and Winship and Mare (1989) do so by using hierarchical log-linear models. Fay

(1986) and Baker and Laird (1988) use recursive log-linear (or modified path) mod-

els. Rindskopf (1992) mentions the potential advantages of nonstandard models.

Vermunt (1996, 1997), finally, has made Fay’s method applicable to log-linear path

models with latent variables that may be fitted using the `EM program (Vermunt,

1993).

For the data analyzed here the missing responses for the single variables are as

follows: Z1 = 49, A1 = 6, Z2 = 20, A2 =2, Z3 = 39, A3 = 1 cases. In what follows,

we will ignore the few missing data in variable A which results in the subtables given

in Table 6 (where a 0 indicates that data are missing in this variable or combination

of variables).
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INSERT TABLE 6 ABOUT HERE

Note that though these are panel data, where nonresponse at time point t often

implies nonresponse at time point t+1, in our data set nonresponse does not follow a

monotone pattern. Unfortunately, no information is available to explain why grades

are missing for some pupils.

Fitting the MCAR model to these data gives X2 = 348.0 and L2 = 200.3, df

= 244 (corrected for fitted zero cells and fitted zero marginals). Model 8 (the final

model in the analysis of the complete data) plus MCAR results in X2 = 474.8 and

L2 = 308.9, df = 353. Both of these models are thus completely rejected by X2

whereas they are well accepted according to L2. This discrepancy is obviously due

to massive sparseness added to the complete data by the five tables of incomplete

data making it impossible to decide about acceptance/rejection of a model based

on the asymptotic χ2-distribution. An option then is to test some other models for

nonresponse. We therefore specified some ignorable and some nonignorable response

models, none of which, however, did improve model fit considerably. Based on these

results we conclude that the data are MCAR or – at least – not far from MCAR.

Further support for this conclusion is provided by the estimated parameters of Model

8 plus MCAR which are virtually identical to those reported for the complete data

in Table 2.

6 Discussion

In this paper, an extension of the latent Markov model was presented. It was shown

how to specify parsimonious logit regression models for the latent states occupied

at the different points in time, in which both time-constant and time-varying cate-

gorical covariates can be used as regressors. In fact, the extension, which is based
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on the use of the causal log-linear modeling approach presented by Goodman (1973)

and Hagenaars (1990), leads to a model which is analogous to LISREL models for

continuous panel data.

The causal log-linear modeling framework, which was used to formulate the latent

Markov model with covariates and which is implemented in the `EM program, can be

used to extend the model in several ways. One possible extension is to use more than

one indicator per occasion together with a logit parameterization of the conditional

response probabilities (Formann, 1992, Vermunt, 1997). This makes it possible to

specify measurement models which are discrete approximations of latent trait models

(Heinen, 1993). In the latent Markov model that was presented, it was assumed that

only the dependent variable is subject to measurement error. However, the model

can easily be extended to deal with measurement error in the covariates as well.

Furthermore, like in the mixed Markov model, an unobserved time-constant covariate

can be included in the model to correct for unobserved heterogeneity (Van de Pol

and Langeheine, 1990; Vermunt, 1997). Another extension is to use also continuous

time-constant covariates (Vermunt, 1997), but it must be noted that in that case the

fit of a model cannot be tested anymore by means of chi-squared statistics. Although

in latent Markov models it is generally assumed that the measurement error is not

correlated among occasions, or, in other words, that the observed states are mutually

independent given the joint latent variable, it is possible to specify models with

direct effects between indicators (Bassi, Croon, Hagenaars, and Vermunt, 1995). And

finally, the approach implemented in `EM makes it possible to use partially observed

data in the analysis and to specify a model for the mechanism causing the missing

data (Vermunt, 1996, 1997). For the data analyzed here, the potential benefit of this

extension could not be fully exploited because nonresponse turned out be ignorable.

There are two main limitations with respect to the use of latent Markov models.
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First, a general problem associated with the analysis of categorical data is that when

sparse tables are analyzed, the theoretical χ2 approximation of the Pearson chi-

squared statistic and the likelihood-ratio chi-squared statistic is poor. Although

in such situations the significance of parameters can still be tested by means of

conditional likelihood-ratio tests, the fit of a model cannot be assessed anymore

(Haberman, 1977, 1978; Agresti, 1990). A possible solution for this problem is to use

bootstrap procedures for model testing ( Collins, Fidler, Wugalter, and Long, 1993;

Langeheine, Pannekoek, and Van de Pol, 1996).

A second limitation is that although much bigger problems can be dealt with

than the application that was presented, the size of problems that can be handled

with the current computer capacities is limited. In latent Markov models, the size

of a problem depends mainly on the number of cells of the joint latent dimension

since in the E step of the EM algorithm the contribution to the complete table has

to be computed for each non-zero observed cell count. When the latent variables

are dichotomous, depending on the internal memory of the computer that is used,

the current working version of the `EM can deal with eight to ten panel waves. But

when each latent variable has five categories, three or four waves is the maximum. A

possibility to deal with bigger problems may be the use pseudo-likelihood methods

which do not use information on the joint distribution of all variables included in the

analysis but only on some marginal distributions (Westers, 1993).
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Figure Captions:

Figure 1. A causal diagram of the basic model (see equations 15-19 and Model 1 of

Section 5.2)

Note: Because the relationships between independent variables X and Zt are consid-

ered fixed, the respective arrows are omitted.

Figure 2. A causal diagram of Model 8

Note: Because the relationships between independent variables X and Zt are consid-

ered fixed, the respective arrows are omitted.
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Table 1: Test results for the estimated models

Model X2 L2 df p(X2) p(L2) BIC

1. Basic (Equations 15-19) 139.45 142.94 99 .005 .003 4446

2. Basic + uW1W3
w1w3

118.35 127.27 98 .079 .025 4456

3. Basic + uW1Z2W2
w1z2w2

+ uW2Z3W3
w2z3w3

141.35 140.69 97 .002 .003 4476

4. Basic + uXW1W2
xw1w2

+ uXW2W3
xw2w3

137.99 142.69 97 .004 .002 4478

5. Basic + uZ1W2
z1w2

+ uZ2W3
z2w3

140.08 142.52 97 .003 .002 4478

6. Basic + uW1Z2
w1z2

+ uW2Z3
w2z3

119.28 123.08 97 .062 .038 4459

7. Basic + uW1W3
w1w3

+ uW1Z2
w1z2

+ uW2Z3
w2z3

95.23 107.88 96 .503 .192 4450

8. 7 + time-homogeneous effects 105.38 117.19 102 .390 .144 4421
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Table 2: Estimates of the most important parameters of Models 7 and 8

Parameter Model 7 Model 8

πa|w
π1|1 1.000 1.000
π2|2 .969 .969

πw1|xz1

uXW1
11 .261 .251

uZ1W1
11 .274 .294

πw2|xw1z2

uW1W2
11 .423 .471

uXW2
11 .320 .251

uZ2W2
11 .388 .294

πw3|xw1w2z3

uW1W3
11 .293 .305

uW2W3
11 .551 .471

uXW3
11 .142 .251

uZ3W3
11 .208 .294

πz2|xz1w1

uW1Z2
11 .162 .180

πz3|xz1z2w2

uW2Z3
11 .202 .180
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Table 3: Conditional probabilities of the latent distribution of interest at T =1 given

grades at T=1 and sex (Model 8)

πw1|xz1

X Z1 πz1|x low high

girls low .345 .818 .182
high .655 .580 .420

boys low .183 .622 .378
high .817 .337 .663

Table 4: Conditional probabilities of the latent distribution of interest at T =2 given

the distribution at T = 1, grades at T=2 and sex (Model 8)

πw2|xw1z2

X Z2 W1 low high

girls low low .925 .075
high .651 .349

high low .791 .209
high .366 .634

boys low low .818 .182
high .407 .593

high low .582 .418
high .175 .825
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Table 5: Subtables of missing data

R S (sub)table

1 1 ABC – complete data
1 2 AB – C missing
2 1 AC – B missing
2 2 A – C and B missing

Table 6: Subtables of missing data

X Z1 A1 Z2 A2 Z3 A3 N

1 1 1 1 1 1 1 541
1 1 1 1 1 0 1 31
1 1 1 0 1 1 1 16
1 1 1 0 1 0 1 0
1 0 1 1 1 1 1 39
1 0 1 1 1 0 1 7
1 0 1 0 1 1 1 3
1 0 1 0 1 0 1 0
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Table 7: Appendix

Complete data: Response pattern and non-zero observed frequencies

X Z1 A1 Z2 A2 Z3 A3 obs. f. X Z1 A1 Z2 A2 Z3 A3 obs. f.

1 1 1 1 1 1 1 31 1 1 1 1 1 1 2 1
1 1 1 1 1 2 1 14 1 1 1 1 2 1 2 1
1 1 1 2 1 1 1 9 1 1 1 2 1 1 2 1
1 1 1 2 1 2 1 12 1 1 1 2 1 2 2 3
1 1 1 2 2 2 1 2 1 1 1 2 2 2 2 1
1 1 2 1 1 1 1 4 1 1 2 1 1 2 1 1
1 1 2 1 2 1 2 2 1 1 2 2 1 1 1 1
1 1 2 2 1 1 2 1 1 1 2 2 1 2 1 3
1 1 2 2 1 2 2 1 1 1 2 2 2 2 1 1
1 1 2 2 2 2 2 3 1 2 1 1 1 1 1 15
1 2 1 1 1 1 2 2 1 2 1 1 1 2 1 8
1 2 1 2 1 1 1 13 1 2 1 2 1 2 1 40
1 2 1 2 1 2 2 6 1 2 1 2 2 1 1 3
1 2 1 2 2 1 2 2 1 2 1 2 2 2 1 9
1 2 1 2 2 2 2 8 1 2 2 1 1 1 1 4
1 2 2 1 1 2 1 2 1 2 2 1 1 2 2 2
1 2 2 1 2 1 1 1 1 2 2 1 2 2 2 3
1 2 2 2 1 1 1 4 1 2 2 2 1 1 2 1
1 2 2 2 1 2 1 12 1 2 2 2 1 2 2 5
1 2 2 2 2 1 2 4 1 2 2 2 2 2 1 10
1 2 2 2 2 2 2 21 2 1 1 1 1 1 1 9
2 1 1 1 1 2 1 5 2 1 1 1 1 2 2 2
2 1 1 1 2 2 1 1 2 1 1 1 2 2 2 4
2 1 1 2 1 1 1 2 2 1 1 2 1 1 2 1
2 1 1 2 1 2 1 2 2 1 1 2 1 2 2 1
2 1 1 2 2 1 1 1 2 1 1 2 2 2 1 1
2 1 1 2 2 2 2 2 2 1 2 1 1 1 2 2
2 1 2 1 1 2 2 1 2 1 2 1 2 1 2 1
2 1 2 1 2 2 2 2 2 1 2 2 1 1 1 1
2 1 2 2 1 2 2 1 2 1 2 2 2 1 2 4
2 1 2 2 2 2 1 1 2 1 2 2 2 2 2 6
2 2 1 1 1 1 1 7 2 2 1 1 1 2 1 7
2 2 1 1 2 1 1 1 2 2 1 1 2 1 2 1
2 2 1 2 1 1 1 5 2 2 1 2 1 2 1 17
2 2 1 2 1 2 2 8 2 2 1 2 2 1 1 4
2 2 1 2 2 1 2 4 2 2 1 2 2 2 1 11
2 2 1 2 2 2 2 15 2 2 2 1 1 1 1 4
2 2 2 1 1 2 1 4 2 2 2 1 1 2 2 1
2 2 2 1 2 1 1 2 2 2 2 1 2 1 2 3
2 2 2 1 2 2 1 1 2 2 2 1 2 2 2 6
2 2 2 2 1 1 1 11 2 2 2 2 1 1 2 1
2 2 2 2 1 2 1 7 2 2 2 2 1 2 2 6
2 2 2 2 2 1 1 4 2 2 2 2 2 1 2 7
2 2 2 2 2 2 1 13 2 2 2 2 2 2 2 74


