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Abstract. This paper studies a class of delivery problems associated with the Chinese postman problem and
a corresponding class of delivery games. A delivery problem in this class is determined by a connected graph,
a cost function defined on its edges and a special chosen vertex in that graph which will be referred to as the
post office. It is assumed that the edges in the graph are owned by different individuals and the delivery game
is concerned with the allocation of the traveling costs incurred by the server, who starts at the post office and
is expected to traverse all edges in the graph before returning to the post office. A graph G is called Chinese
postman-submodular, or, for short, CP-submodular (CP-totally balanced, CP-balanced, respectively) if for
each delivery problem in which G is the underlying graph the associated delivery game is submodular (totally
balanced, balanced, respectively).

For undirected graphs we prove that CP-submodular graphs and CP-totally balanced graphs are weakly
cyclic graphs and conversely. An undirected graph is shown to be CP-balanced if and only if it is a weakly
Euler graph. For directed graphs, CP-submodular graphs can be characterized by directed weakly cyclic
graphs. Further, it is proven that any strongly connected directed graph is CP-balanced. For mixed graphs it
is shown that a graph is CP-submodular if and only if it is a mixed weakly cyclic graph.

Finally, we note that undirected, directed and mixed weakly cyclic graphs can be recognized in linear
time.

Key words. cooperative games ~ Chinese postman problem

1. Introduction

A class of delivery games was introduced by Hamers et al. [7] to analyze a cost allocation
problem which arises in some delivery problems on graphs. These delivery problems are
associated with the Chinese postman problem [14,2] and can be described as follows.
A server is located at some fixed vertex of a graph G, to be referred to as the post office,
and each edge of G belongs to a different player. The players need some service, e.g.
mail delivery, and the nature of this service requires the server to travel from the post
office and visits all edges (players) before returning to the post office. The cost allocation
problem associated with this delivery problem is concerned with a fair allocation of the
cost of a cheapest Chinese postman tour in the graph. That is, the cost of a cheapest
tour, which starts at the post office, visits each edge of G at least once and returns to the
post office. Following what is by now an established line of research, Hamers et al. [7]
formulated this cost allocation problem as a cooperative game (N, c), referred to as
a delivery game, where N is the set of players (edges) in the graph, and ¢ : 2V > Ris
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the characteristic function. For each S € N, ¢(S) is the cost of a minimal (i.e. cheapest)
S-tour, which starts at the post office, visits each edge in S at least once and retums to
the post office. Solution concepts in cooperative game theory were then evaluated as
possible cost allocation schemes for the above delivery problem.

One of the most prominent solution concepts in cooperative game theory is the core
of a game. It consists of all vectors which distribute the costincurred to N, ¢(N), among
the players in such way that no subset of players can be better off by seceding from
the rest of the players and act on their own behalf. That is, a vector x is in the core of
a game (N, ¢) if Zjeij = ¢(N) and Zjesxj < ¢(S), forall S C N. A cooperative
game whose core is not empty is said to be balanced, and if the core of any subgame of
it is nonempty, it is said to be totally balanced.

In general, a delivery game associated with an undirected graph could have an empty
core. However, Hamers et al. [7] have shown that a delivery game induced by a connected
weakly Euler graph is balanced. Here, a graph G is called a weakly Euler graph if after
the removal of the bridges in G, the remaining components are all Euler graphs or
singletons. Alternatively, we can say that G is a weakly Euler graph if each biconnected
componentin G is eulerian. Further, Hamers [6] has shown that if a connected undirected
graph is weakly cyclic, that is, every edge therein is contained in at most one circuit,
then the associated delivery game is submodular. That is, the characteristic function ¢
is submodular.

In this paper we study the class of delivery games induced by undirected, directed and
mixed graphs. We define a graph to be Chinese Postman-submodular, Chinese Postman-
totally balanced or Chinese Postman-balanced (or, for short, CP-submodular, CP-totally
balanced and CP-balanced), if the corresponding delivery game is submodular, totally
balanced, or balanced, respectively, for all edge costs and all locations of the post office.
We prove that an undirected graph is CP-submodular if and only if it is CP-totally
balanced, which holds if and only if it is weakly cyclic. An undirected graph is shown to
be CP-balanced if and only if it is a weakly Euler graph. In contrast with the undirected
case, we prove that any connected directed graph is CP-balanced. Further, we prove that
a delivery game induced by a directed graph is submodular if and only if the directed
graphis weakly cyclic. In a directed weakly cyclic graph each arc is contained in exactly
one circuit. For a connected mixed graph, G is CP-submodular if and only if G is a mixed
weakly cyclic graph. That is, each arc or edge therein is contained in at most one mixed
circuit. Finally, we observe that undirected, directed and mixed weakly cyclic graphs
can be recognized in linear time.

Our ability to characterize submodular delivery games is significant because sub-
modular games are known to have nice properties, in the sense that some solution
concepts for these games coincide and others have intuitive description. For example,
for submodular games the Shapley value is the barycentre of the core [19], the bar-
gaining set and the core coincide, the kernel coincide with the nucleolus [12], the
7-value [22] can be easily calculated and there is a polynomial algorithm for computing
the nucleolus [10].

Some examples of submodular games which were studied in the literature include
airport games [11], tree games [13,5], sequencing games [1,8] and certain communica-
tion games [15].
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Finally, we note that results obtained in this paper are in similar vein to those derived
in [9] and [4]. In particular, in [4], delivery games associated with the traveling salesman
problem are investigated, and directed graphs which give rise to submodular delivery
games are characterized.

The paper is organized as follows. Section 2 introduces the delivery problem and the
associated delivery game. Section 3 investigates the delivery game when G is undirected,
and Sect. 4 is devoted to delivery games defined on directed and mixed graphs.

2. Delivery problems and delivery games

We present in this section a class of delivery problems associated with the Chinese
postman problem and a corresponding class of delivery games. However, before a for-
mal description of the models is presented, we need to provide some background in
cooperative game theory and recall some elementary graph theoretical definitions.

A cooperative (cost) game is a pair (N, ¢), where N is a finite set of players, c is
a mapping, ¢ : 2V — IR, with c¢(#) = 0, and 2" is the collection of all subsets of N.
A subset of N will be sometimes referred to as a coalition. A function & : 2V — IR is
said to be subadditive if h(S) + h(T) > h(S U T) whenever SN T = @ and it is said to
be submodular if

T U{jH —hr(T) =h(SU{jhH —h(S) 1)
forall j € N with S C T € N\{j}. Equivalently, & is submodular if
A(SUT)+h(SNT) < h(S)+ h(T) 2)

for all coalitions S, T € 2V. A game (N, ¢) is submodular or concave if and only if the
map ¢ : 2V — IR is submodular.

An allocation x = (x;);ey € RY is a core-element of (N, ¢) if > ien *i = c¢(N) and
Yiesxi <c(S)forall S e 2N The core of a game (N, c) consists of all core elements.
A game is called balanced if its core is non-empty and it is totally balanced if for each
S C N, (S, cs) is balanced, where cg is the restriction of ¢ to the family of subsets of .
It follows from Shapley [19] that concave games are totally balanced.

Let G = (V(G), E(G)) be an undirected (directed) graph where V(G) and E(G)
denote the set of vertices and the set of edges (arcs) of G, respectively. An edge,
{u, v}, in an undirected graph joins vertices u and v therein. If (i, v) is an arc from
u to v in a directed graph (digraph), we will refer to u and v as the tail and head of
arc (u, v), respectively. A (directed) walk in G = (V(G), E(G)) is a finite sequence of
vertices and edges (arcs) of the form vy, e1, vz, ..., €, Vgt1 With k£ > 0, vy, ..., V] €
V(G), €1, ..., € € E(G) such that €j = {vj, Uj+1} (ej = (Uj, vj+1)) for all ] €
{1, ..., k}. Such a walk is said to be closed if vi = viy1. A (directed) path in G is
a (directed) walk in which all vertices (except, possibly v; and vg+;1) and edges (arcs)
are distinct. A closed (directed) path, i.e., a path in which v; = vk41, containing at least
one edge (arc) is called a (directed) circuit. An undirected (directed) graph G is (strongly)
connected if there is a (directed) path (from) between any vertex to any other vertex
in G. An edge b € E(G) is called a bridge in a connected graph G = (V(G), E(G))
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if the graph (V(G), E(G)\{b}) is not connected. The set of bridges in G is denoted
by B(G).

Let G = (V(G), E(G)) be a (strongly) connected undirected (directed) graph, and
let vo € V be an arbitrary vertex in V(G), which will sometimes be referred to as the
post office of G. An S-tour w.r.t. vg associated with § € E(G) is a closed walk that
starts at the post office vp, visits each edge (arc) in S at least once and returns to vo.
Formally, we have:

Definition 1. Ler G = (V(G), E(G), vo) be a (strongly) connected undirected (dir-
ected) graph in which vo € V(G) is the post office. An S-tour w.r.t. vo in G is a closed
(directed) walk vy, e1, v1, ..., Vk—1, €k, Vo Such that S C {ej | j € {1, ..., k}}.

The set of S-tours associated with S € E(G) is denoted by D(S).

Alternatively, we can associate with an S-tour a eulerian multigraph H, that contains
k copies of edges (arcs) which are traversed k times by the S-tour, k£ € {0, 1,2, ...,
| E(G) |}.Lett : E(G) — [0, 00) be a travel cost function associated with edges
(arcs) of G. The travel cost of an S-tour vg, €1, V1, ..., Vk—1, €k, Vo is naturally equal to
Z?:l t(ej )‘

The class of delivery problems we analyze in this paper and the corresponding class
of cost allocations problems arise in G when it is assumed that edges (arcs) therein
belong to different players. Explicitly, assume that each edge (arc) in G belongs to
a different player and that a server, located at vg, is providing some service to players
in G. The nature of this service requires that the server will travel along the edges (arcs)
of G and return to vp. The corresponding cost allocation problem is concerned with the
allocation of the cost of providing the service to the players.

Formally, let ' = (E(G), (V(G), E(G), v), £) denote a delivery problem, where
E(G) is the set of players (edges, arcs), (V(G), E(G), vo) is a (strongly) connected
undirected (directed) graph in which vorepresents the post officeand ¢ : E(G) — [0, co)
assigns travel costs to the edges (arcs).

Definition 2. The delivery game (E(G), c) corresponding to the delivery problem I =
(E(G), (V(G), E(G), vo), ?) is defined for all S € E(G) by

k
c(S) = min tlej). 3
vo,ex,..-ek,voeD(S); ( ]) ®

Obviously,if £(S) is the set of eulerian multigraphs that correspond to the set of delivery
tours D(S), we have that

() = H;Ielii'r%S) (Hs). “

Note, if G is a connected undirected graph then a multigraph that optimizes (4) contains
0,1 or 2 copies of every edge of E(G).

Clearly, c is subadditive. Moreover, since the travel cost function ¢ is non-negative,
delivery games are also monotonic, i.e. c(S) < ¢(T) forall S ¢ T € E(G).
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3. Submodular, totally balanced and balanced undirected graphs

We characterize in this section CP-submodular graphs, CP-totally balanced graphs and
CP-balanced graphs, when the underlying graph G in the delivery problem is undirected.
Explicitly, we prove that both CP-submodular graphs and CP-totally balanced graphs
are weakly cyclic graphs, where an undirected graph is said to be weakly cyclic if it is
connected and every edge therein is contained in at most one circuit. Or, alternatively,
each biconnected component! is a circuit in this graph. Further, we prove in this section
that an undirected graph is CP-balanced if and only if it is a weakly Euler graph.

Theorem 1. For a connected undirected graph G, the following statements are equiva-
lent:

(i) G is weakly cyclic.
(ii) G is CP-submodular.
(iii) G is CP-totally balanced.

Proof. (i) — (ii): LetT = (E(G), (V(G), E(G), vp), ?) be a delivery problem and let
(E(G), c) be the corresponding delivery game. Let S, T € E(G), then we have to show
that

cSUT)+c(SNT) <c(S) + c(T). (5)

We prove (5) by induction on the number of edges | E(G) |. Obviously, if | E(G) |=1,
then G is CP-submodular. Assume that a weakly cyclic graph G, with | E(G) |< n,
is CP-submodular, and let G be a weakly cyclic graph with | E(G) |= n. Let Hs
and Hr be eulerian multigraphs that optimize (4) for coalitions S and T, respectively.
Suppose first that some edge e is used by neither Hg nor Hz. Then, G’ = G\{e} contains
a weakly cyclic graph G*, with | E(G*) |< n, which contains the tours corresponding
to Hs and Hr. By the induction hypothesis, G* is CP-submodular. Consider the delivery
problem (E(G*), (V(G*), E(G*), vo), tjE(G*)), Which is the restriction of I" to G*, and
its corresponding delivery game (E(G*), ¢*). Then

c(8) + ¢(T) = c*(S) + c*(T)
> c*(SUT)+c*(SNT)
>c(SUT)+c(SNT),

where the first equality holds since Hs and Hr do not contain e, the first inequality
follows from the induction hypothesis applied to G* and the last inequality holds since
the removal of e can only increase the cost of an S U T-tour or S N T-tour in G. Hence,
to conclude the proof, we may assume that Hs + Hr contains every edge of G with
multiplicity at least 1, and every bridge therein with multiplicity at least 2. Let Hy be
an optimal multigraph induced by an N-tour in G. Then Hy contains one copy of every
edge belonging to a circuit in G and two copies of each bridge in G. Now, one can easily
verify that for each vertex v incident to an edge ¢ € SN T, Hs + Hr contains 4 edge-
disjoint paths between vg to v. Hence, there are at least two edge-disjoint paths between

1" A biconnected component of a graph G is a maximal subgraph of G in which for each triple of distinct
vertices v, w, Z there exists a path between v and w not containing z.
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v and vp in the multigraph Hs + Hy — Hy. We conclude that there exist S N T-tours
in G for which the corresponding multigraph Hsnr is contained in Hs + Hr — Hn,
implying that ¢(SN T) < #(Hs + Hr — Hy) = t(Hs) + t(Hr) — t(Hy). Further, since
delivery games are monotonic we have that ¢(SU T) < c¢(N) = t(Hx). Hence,
c(SUT)+c(SNT) < t(Hy) + (H(Hs) + t(Hr) — t(HnN))

= t(Hs) + t(Hr)

= c(S) + (T).
(i) — (iii): Follows immediately, since each submodular game is totally balanced.
(iii) — (i): Let (E(G), (G, vg), 1) be adelivery problem and let (E(G), ¢) be the corres-

ponding delivery game. Suppose G is not weakly cyclic. Then, G contains a connected
subgraph G* of the form shown in Fig. 1.

V) K@ - - -

Let E(G*) = E1 U E2 U E3 in which Ej, E; and E3 are the edge sets as depicted
in Fig. 1. Let vo, as indicated in Fig. 1, be the post office, let ¢ be a travel cost function
satisfying ZeeEj t(e) > Ofor j = 1, 2, 3 and #(e) is arbitrarily large fore ¢ E1UE,UE3,
andlet (E(G™), cg(G+)) be the subgame of (E(G), ¢) correspondingto E(G*). We claim
that with the above choice of vy and the cost function ¢, the core of (E(G™), cg(c*)) is
em%ty. Indeed, if the core is not empty, then there exists a vector x, x € IRF(G™, such
that

x(E(G")) = ce% (E(G")),
x(E1U Ep) < t(E1) + t(E2),
x(E1 U E3) < t(E1) +1(E3) and O
x(Ez U E3) < t(E2) +t(E3).
Summing the inequalities in (6) we obtain that

x(E(G™)) < #(E1) + #(E2) + 1(E3) < cpo (E(G™)),

where the last strict inequality follows since #(E ;) > Ofor j = 1, 2, 3. We have obtained
a contradiction, since it was assumed that x(E(G*)) = cg(g+) (E(G*)), and we conclude

2 Foravector y € RY and § € N we let y(S) = Zjes)’j~
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that (E(G™), cg(*)) is not balanced. Consequently, G is not CP-totally balanced.
O

Let us briefly consider the recognition problem of a weakly cyclic graph. The
connectedness of any graph can be checked in linear time. Tarjan [21] showed that
the biconnected components of a graph can be found in linear time with respect to the
number of vertices and edges. In a weakly cyclic graph, the biconnected components
are circuits. Since it can be checked in linear time whether a biconnected component is
a circuit, we have proved the following proposition.

Proposition 1. The computational complexity of determining whether a graph G is
weakly cyclic is O(| E(G) |, | V(G) |).

We conclude this section with a characterization of undirected CP-balanced graphs.
Explicitly Hamers et al. [7] proved that a connected undirected weakly Euler graph is
CP-balanced, and we prove below that an undirected CP-balanced graph must, in fact,
be a weakly Euler graph.

Theorem 2. A connected undirected graph G is a weakly Euler graph if and only if G
is CP-balanced.

Proof. If G is a weakly Euler graph, then x € R", defined by

x(e) = 2t(e) if e € B(G),
x(e) = t(e) otherwise,

is in the core of any delivery game that arises from G.

Suppose G is CP-balanced and assume, on the contrary, that G is not a weakly
Euler graph. Let ¢ be defined by #(¢) = 1 for all e € E(G) and let Hy be an eulerian
multigraph corresponding to an optimal CP-tour in E(G), independent of vg. Let D
be the set of edges with multiplicity 2 in Hy. Since G is not a weakly Euler graph,
there exists a non-bridge eop € D. Let (E(G), (G, vp), t) be the delivery problem in
which ey = {vg, v1}, and let (E(G), ¢) be the corresponding delivery game. Suppose
that x € Core((E(G),c)). For any e € E(G), x(¢) = x(E(G)) — x(E(G)\e) >
c(E(G)) — c(E(G)\e) = 0, since (E(G), ¢) is monotonic. Thus, x(e) > 0 for all
e € E(G). Now, let T := Hy\2eg denote the multigraph derived from Hy by removing
two copies of the edge eg therefrom. Since ¢g is a non-bridge, we can split T into two
multigraphs Tp and 77, corresponding to the two walks between vg to v1. Then

x(E(Ti) Ueo) < c(E(Ti) U eo) = 1(E(T3)) + t(eo) (i=0,1),

where E(T;) € E(G) is the set of edges used by 7;. Adding these two inequalities
yields:

x(E(G)) + x(D) < t(Hn) = x(E(G)).

Hence x(D) < 0. Since x(e) > 0, we have that x(e) = 0 for all e € D. In particular, we
have that x(eg) = 0. Now,

x(E(G)\eo) < 1(E(T)) = t(Hy) — 2t(e0) = x(E(G)) — 2,

which implies that x(ep) > 2, contradicting our earlier conclusion that x(ep) = O.
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4. Submodular and balanced directed graphs

A strongly connected digraph is said to be weakly cyclic if each arc therein is contained
in precisely one directed circuit. We prove in this section that CP-submodular digraphs
are weakly cyclic and conversely, and we further show that any strongly connected
digraph is CP-balanced.

Let G; = (V(G1), E(G1)) and G2 = (V(G2), E(G2)) be two connected graphs
with V(G 1) N V(G,) = @. A I-sum of G1 and G, is obtained by coalescing one vertex
in G1 with another in G».

Proposition 2. A weakly cyclic directed graph is a 1-sum of directed circuits.

Proof. Clearly, a 1-sum of directed circuits is a weakly cyclic directed graph. To prove
the other direction, let G be a weakly cyclic directed graph and assume, on the contrary,
that it is not a 1-sum of directed circuits. Consider all subgraphs of G which do
not contain one node cutsets. That is, subgraphs not containing a single node whose
removal will disconnect the subgraph. Observe that all these subgraphs are strongly
connected. Since G is assumed not to be a 1-sum of directed circuits, there exists one
such a subgraph, A, of G which contains a directed circuit, C, and anode v; on C whose
degree is strictly larger than two. We claim that there exists another node v2 on C and
a directed path, P, in A which traverses v; and v, and such that E(P) N E(C) = 0,
where E (P) (respectively E(C)) is the arc set of P (respectively C). Indeed, assume that
such a directed path does not exist, and let e = (v1, v3) be an arc incident to v; which
isnot on C. Then, any directed path from v3 to v; can only have node v; in common
with C. Similarly, if (v3, v1) is an arc incident to v;, v3 ¢ C, then any directed path
from v; to vz will only have node v; in common with C. But this implies that v; is a one
node cutset in A, which is a contradiction. Thus, A and therefore G contains a directed
circuit C and a directed path P traverses v; and vy, where v; and v are nodes on C,
such that E(P) N E(C) = @. This implies the existence of an arc in G which belongs to
two directed circuits, contradicting our assumption that G is weakly cyclic.

O

The following Proposition demonstrates that a CP-submodular graph is weakly
cyclic.

Proposition 3. A CP-submodular digraph is weakly cyclic.

Proof. Let (E(G), (G, v), 1) be a delivery problem and let (E(G), ¢) be the corres-
ponding delivery game. Suppose G is not weakly cyclic. Then, by Proposition 2, G is
not a 1-sum of directed circuits. Hence, as it was demonstrated in the proof of Proposi-
tion 2, there exist a directed circuit C in G with nodes w1, w5 therein and a directed path
P :wy; — wy with E(P) N E(C) = {w1, wy}. Suppose C is oriented clockwise. Then,
there exist three internally vertex-disjoint directed paths P : w1 — ws, Py : w; — wp
and P3 : w2 — wi in G. Let E, E> and Ej3 be the sets of arcs contained in Py, P,
and Ps, respectively. Let w; be the post office, let t(e) = 1 for all arcs contained in
Py, P, and Ps, and let #(e) = max{| P |,| P, |, | P3 |} + 1 for all other arcs e, where
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| Pj |, j =1, 2,3 denotes the number of arcs in P;. Then

C(E1yUEUE3)+c(E3)=(PL|+ | P |+2| P3 )
+( P3|+min{| P ,| P2 |})
>(P+IPD+AP I+ P
= c(E1 U E3) +c(E2 U E3),

implying that ¢ is not a submodular function, contradicting our assumption that G is
CP-submodular.
]

Let G be a weakly cyclic digraph and let vp be an arbitrary vertex therein. By
Proposition 2, G is a 1-sum of directed circuits. Therefore, we can associate a directed
tree T(G, vo) with (G, vg) as follows. All arcs in the tree T(G, vg) are directed towards
vo, the root of the tree. A directed circuit in G, consisting of the arc set .S, corresponds
to an arc as in T(G, vp), and vertex vg in T(G, vg) is the tail of arc ag therein. Further, if
two directed circuits, C; and C3, consisting of arc sets S; and §; in G have a common
vertex and the directed path from any node in C7 to v in G contains some arcs in Cs,
then vg, is the head of arc ag, in T(G, vp). The directed circuit, C, that contains vg
corresponds to arc a; in 7(G, vp) whose head therein is vp.

LetT' = (E(G), (G, vp), t) be a delivery problem associated with G. Its correspond-
ing directed tree problem is defined to be 7,7 = {E(G), T(G, vo), t*}, where T(G, vp)
is the directed tree associated with (G, vg) and t* is the cost function in T(G, vg) satisfy-
ing *(as) = Y_,egt(e), for every directed circuit consisting of arcs § in G. The players
E(G) are assigned to vertices in T(G, vp). Explicitly, if S is the set of players (arcs) in
a circuit of G, its corresponding vertex, vs, in T(G, vp) contains the set of players S.

Let (E(G), c) be the delivery game correspondingto I' = (E(G), (G, vp), ?) and let
(E(G), c*) be the game corresponding to 7 = (E(G), T(G, vp), t*), where, for each
S C E(G), c*(S) is the total cost of all arcs in the minimal subtree of T(G, vg) that is
rooted at vg and contains all vertices which contain players in S. By construction of the
tree graph 7(G, vo), there is a one-to-one correspondence between arcs in the tree and
circuits in G. From this observation and the location of the players at vertices in the tree
it follows that

c(S) = c*(S) forall S C E(G). @)

Display (7) implies that delivery games which arise from weakly cyclic digraphs are
equivalent to the class of tree games, introduced by Megiddo [13].3 Granot et al. [5]
observed that tree games are submodular, which, in combination with Proposition 3,
results in the following Theorem.

Theorem 3. A connected digraph G is weakly cyclic if and only if G is CP-submodular.

3 Megiddo’s [13] (standard) tree games were defined for situations 7" = (E(G), T(G, vp), #*) in which
T(G, vg) is a directed tree with vy as the unique root and ¢* is the arc weight function. Players reside in
vertices of the tree, except for the root vertex, and the cost function c(.) in the tree game assigns to each set of
players, S, the cost of 2 minimal subtree rooted at vy, which contains all vertices which contain players in S.
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Megiddo [13] proved that for tree games Shapley value can be computed in O(n) and
the nucleolus can be computed in O(n3), where n is the number of vertices in the tree.
Galil [3] improved Meggido’s algorithm and demonstrated that the nucleolus of a tree
game can be computed in O(nlogn). In [5] and [18] other algorithms are developed for
computing the nucleolus of a tree game. Obviously, all these algorithms can be used to
compute the nucleolus of delivery games that arise from CP-submodular digraphs.

By contrast with the undirected case, the class of CP-totally balanced digraphs
properly contains the class of CP-submodular digraphs. Indeed, in the following example
we present a digraph for which the corresponding delivery game is totally balanced but
not submodular.

Example 1. Consider the graph G with V(G) = {vo, v1, v2} and E(G) = {(vp, v1),
(v1, v2), (v2, vo), (v1, v)}. Let (E(G), (G, vp), t) be the delivery problem in which
t(e) = 1forall e € E(G) and arcs (vo, v1), (v1, v2), (v2, vo) and (v1, vo) are identified
with players 1, 2, 3 and 4, respectively. Then, it is easy to verify that the corresponding
delivery game (E(G), ¢) is totally balanced. However, it is not CP-submodular, since

c({1,2,4h) —c({1,4)) =5-2=3>1=3-2=c({1,2} — c({1D.

Similarly, the following theorem demonstrates that, by contrast with the undirected
case, a connected digraph is always CP-balanced.

Theorem 4. A connected directed graph is CP-balanced.

Proof. Let G be a connected digraph, with an associated delivery problem I' =
(E(G), (G, vp), 1) and a corresponding delivery game (E(G), c). We have to show
that (E(G), c) is balanced.

For § € E(G), consider the following linear programming (LP) problem:

c*(S)=min Z 1ijXij

i,j€EG)

subject to ®)
> xji— Y xiy=0forallic E(G)

JEE(G) JEEG)

Xij = 1 for all arcs (v,-, vj) €S,
x;; = 0 for all arcs (v;, vj) € S,

where #; denotes the cost of arc (v;, v;) and x;; denotes the flow in arc (v;, v;). For
S = E(G) an optimal solution for (8) is a minimum cost circulation in G such that the
flow in each arc is at least one. In fact, the optimal value of (8) for S = E(G) is the
cost of an optimal Chinese postman tour in G with cost function ¢ (cf. [16]). Therefore,
we conclude that ¢*(E(G)) = c¢(E(G)). For S # E(G) an optimal solution to (8) will
consist of minimum cost circulations on G which may be disconnected. In fact, ¢*(S)
is equal to the total cost of minimum cost (sub)tours that visit each arc of S at least
once. In a minimal delivery tour of coalition S, each arc of S is also visited at least once.
However, this tour has to be connected and must contain vg. We conclude therefore that
c*(8) <c(S) forall S C E(G).
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For a set of players (arcs) § € E(G), let b5 denote the right hand side vector in (8).
Then, one can easily verify that 55 = 3", 5 bGP, where b0-) = 1 if (v;,v)) € S
and b? = 0 otherwise. Thus, (8) presents a linear production game formulation of
(E(G), ¢*), and by Owen [17] it follows that (E(G), c*) is totally balanced. Since
c*(E(G)) = c(E(G)) and ¢*(S) < ¢(S) foreach S C E(G), it follows that (E(G), ¢) is
balanced.

O

We note that it follows from Owen that if u;; is an optimal dual variable associated
with the lower bound constraint in the LP problem (8) associated with S = E(G), then
u = ((ui;) : (v, v5) € E(G)) is in the core of the delivery game (E(G), ¢). Therefore,
it follows from Tardos [20] that a core point in a delivery game associated with an
arbitrary digraph can be found in strongly polynomial time.

Finally, we note that the recognition problem of a weakly cyclic digraph G can
be solved by considering the undirected underlying graph associated with G. Then
essentially the same procedure for the recognition problem in the undirected case can
be applied to the directed case. The only difference lies in the last step where one has
to verify if each biconnected component is a directed circuit. However, this step can
also be done in linear time. Hence, we conclude that the recognition of a weakly cyclic
digraph can be done in linear time.

We conclude this section by considering briefly the case where the underlying graph
G = (V(G), E(G)) is mixed. That is, an element in E(G), which will be referred to as
a connection, is either an arc or an edge. P is said to be a mixed path from v tov2 in G
if the underlying undirected graph associated with P is a path between v; and v;, and
all arcs in P are directed from v; to vy. A mixed circuit in G is defined similarly.

A strongly connected mixed graph G is said to be weakly cyclic if each connection
therein is contained in at most one mixed circuit. Then, using essentially the same proof
technique as that used in Proposition 2, one can prove that if G is a strongly connected
weakly cyclic mixed graph, then all subgraphs of G which do not contain one node
cutset are mixed circuits. Further, we can show:

Theorem 5. A strongly connected mixed graph G is weakly cyclic if and only if G is
a CP-submodular graph.

The proof of the only if part of Theorem 5 is similar to the proof that (i) implies (i7)
in Theorem 1. The proof of the if part of Theorem 5 can be obtained using essentially
Proposition 3 and the extension of Proposition 2 discussed in the previous paragraph.

Finally, we note that as in the undirected and directed cases, mixed weakly cyclic
graphs can be recognized in linear time.

Acknowledgement. The authors thank Walter Kern for his alternative proofs of Theorem 3.1 (part (i)—(ii))
and Theorem 3.3.
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