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Abstract

This paper introduces a new class of cooperative games arising from cooperative decision making problems in a
stochastic environment. Various examples of decision making problems that fall within this new class of games are
provided. For a class of games with stochastic payoffs where the preferences are of a specific type, a balancedness
concept is introduced. A variant of Farkas’ lemma is used to prove that the core of a game within this class is non-
empty if and only if the game is balanced. Further, other types of preferences are discussed. In particular, the effects the
preferences have on the core of these games are considered. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Game theory; Stochastic variables; Core; Balancedness; Preferences

1. Introduction

In general, the payoff of a coalition in cooperative games is assumed to be known with certainty. In
many cases, however, payoffs to coalitions are uncertain. This would not raise a problem, if the agents can
awalit the realizations of the payoffs before deciding which coalitions to form and which allocations to settle
on. But if the formation of coalitions and allocations has to take place before the payoffs will be realized,
standard cooperative game theory does no longer apply.

Charnes and Granot (1973) considered cooperative games in stochastic characteristic function form. For
these games the value V(S) of a coalition S is allowed to be a stochastic variable. They suggested to allocate
the stochastic payoff of the grand coalition in two stages. In the first stage, so called prior payoffs are
promised to the agents. These prior payoffs are such that there is a good chance that this promise will be
realized. In the second stage the realization of the stochastic payoff is awaited and, subsequently, a possibly
non-feasible prior payoff vector has to be adjusted to this realization in some way. This approach was
elaborated in Charnes and Granot (1976), Charnes and Granot (1977) and Granot (1977). Most of the time
the adjustment process is such that objections among the agents are minimized.

" Corresponding author,
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In this paper we will not follow the route set out by Charnes and Granot. Instead we will introduce a
different and more extensive model. The main reason for this is that the model used by Charnes and Granot
(1976) assumes risk neutral behaviour of all agents. The model we introduce allows different types of be-
haviour towards risk of the agents. Moreover, each coalition possibly has several actions to choose from,
which each lead to a (different) stochastic payoff.

In Section 2 we introduce our model of a game with stochastic payoffs. Furthermore we give examp16§>
arising from linear production problems, financial markets, and sequencing problems, which fall ip this
class of games with stochastic payoffs. Also the core of such a game is defined. In Section 3 we consider a
specific class of preferences. The ordering of stochastic payoffs for these preferences is based on the a-
quantile of the stochastic payoff. So, these preferences are determined by the number «. Moreover, different
kinds of behaviour towards risk of the agents will result in a different value for « for each agent. For games
with these preferences we provide a new balancedness concept, which is an extension of the balancedness
concept for deterministic games (cf. Bondareva, 1963; Shapley, 1967).

We show that the core of a game with stochastic payoffs is non-empty if and only if this game is bal-
anced. This is done by arguing that the core is non-empty if and only if a well-defined system of linear
equations has a solution. Consequently, a variant of Farkas’ lemma is used to show that this system of
equations has a solution if and only if the game is balanced.

In Section 4 we look at other types of preferences of the agents. Examples illustrate the effect of the
preference relation on the core of the game. Furthermore, we show that for some preferences a similar
result as obtained in Section 3 can be derived, if the balancedness concept is slightly adjusted.

2. The model and some examples

In this section we will introduce a general framework to model cooperative games with stochastic
payoffs. Moreover, we will give some examples of situations which can be captured within this framework.

A game with stochastic payoffs is defined as a tuple (N, (ds)scns (Xs)scns (Zi)ien), Where
N ={1,2,...,n} is the set of players, As is the set of all possible actions coalition § can take, and
Xs: As — LY(R) a function assigning to each action a € 4 of coalition S a real valued stochastic variable
Xs(a) with finite expectation, representing the payoff to coalition S when action a is taken. Finally, =,
describes the preferences of agent / over the set L!(R) of stochastic variables with finite expectation. For any
X,Y € L'(R) we denote X 7, ¥ when the payoff X is at least as good as the payoff ¥ according to agent 7,
and X »; Y when agent 7 strictly prefers X to Y. The set of all games with stochastic payoffs and player set N
is denoted by SG(N). An element of SG(¥) is denoted by T".

If we compare a game with stochastic payoffs to a deterministic game, we can distinguish two major
differences. First, the payoffs can be random variables, which is not allowed in the deterministic case.
Second, in a game with stochastic payoffs the actions a coalition can choose from are explicitly modelled as
opposed to the deterministic case. In the deterministic case coalitions possibly can choose from several
actions, but since the payoff they want to maximize is deterministic there is no doubt about the optimal
payoff. Therefore, the actions of a coalition can be omitted in the description of a deterministic game.

A first application concerns linear production problems. Linear production games were introduced by
Owen (1975). In a linear production game each agent i € N owns a resource bundle b; € R’,. The resources
can be used to produce quantities xy,xs,...,x, of goods 1,2,...,m according to some technology matrix
M e R™", which can be sold for prices ¢y, ¢a,. .., c,y. The deterministic value of a coalition S of agents then
equals the maximal revenue this coalition can obtain given their resources, i.e.

m
v(S) = max {Zc,x, |Mx < Zb,,x = (X1,X2, .., X)) 2 0}.
=

ies
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Now suppose that the compositions of the resource bundles are not known with certainty, i.e., the resources
of agent 7 are represented by some non-negative stochastic variable B’ € L'(R, ). Moreover, agents are not
allowed to await the realizations of these variables, before deciding upon a (joint) production scheme.
The above situation cannot be modelled as a deterministic game. However, it can be modelled as a game
with stochastic payoffs in the following way. Let N be the set of agents, and define the set of actions of a
coalitionS C Nbyds = {a € R"|a; 2 0,/ =1,2,...,m}, the set of all possible production bundles, Now we
define the payoff of a coalition § C N with respect to the actiona € A4y as the stochastic variable Xs(«) given by

cla if Mag,.cB
X — = eSS~
s(a) { 0 otherwise.

Hence, the payoff Xs(a) equals ¢"a for any realization of resources for which the production scheme is
feasible and it equals zero otherwise. As a consequence coalitions could decide on going for a production
plan which is feasible with little probability but vields relatively high revenues when feasible, or, a pro-
duction scheme which is feasible with high probability but yields relatively low revenues when feasible.
Obviously, this decision is highly influenced by the agents’ valuation of risk.

In the case considered above, only the resources were assumed to be stochastic, Clearly, one could also
assume that prices and/or technology are stochastic. These situations can be modelled as games with
stochastic payoffs in a similar way.

The second application concerns financial markets. For a general equilibrium model on financial
markets the reader is referred to Magill and Shafer (1991). The examples we provide will show some
substantial differences with the model considered by Magill and Shafer (1991). First, our models focus on
cooperation between the agents, and second, the assets we consider are indivisible goods.

In the first example, we have a set N of agents with each agent having an initial endowment m' of money.
Furthermore, we have a set F of assets, where each asset f € F has a price n; and stochastic revenues
R/ € I'(R). Now, each agent can invest his money in a portfolio of assets and obtain stochastic revenues.
We allow the set F to contain identical assets, so that we do not need to specify the amounts agents buy of a
specific asset. For example, if a firm issues & shares of type f, then all the shares f1, f3,. .., /% are contained
in F (cf. Modigliani and Miller, 1958). Instead of buying portfolios individually, agents can also cooperate,
combine their endowments of money, and invest in a more diversified portfolio of assets. This behaviour
can, on the one hand, result in a less risky investment, but, on the other hand, creates a problem, namely,
how to divide the returns and the risk involved over the participating agents. This situation can be modelled
as a game with stochastic payoffs by defining for each S C N, S # @,

v

As = {A CcF
fed ies

as the set of all possible portfolios coalition S can afford, and for all 4 € 4

fed

the stochastic revenues with respect to the portfolio A4.

In the second example, we assume that each agent i already possesses a portfolio A; of assets with
stochastic revenues R € L' (R). Again, it is allowed for the agents to combine their portfolios and redis-
tribute risk. In that case, each coalition § C N only has one action with stochastic payoff X = >, R". Of
course, the problem of how to divide the returns and the risk remains, just as in the first example.

The final application we consider arises from sequencing problems. In a one machine sequencing
problem a finite number of agents all have exactly one job that has to be processed on a single machine,
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which can process at most one job at a time. Moreover, each agent incurs costs for every time unit he has to
wait for his job to be completed. Further, we assume that there is an initial processing order of the jobs and
that each job has a ready time, this means that the processing of a job cannot start before its ready time.
Corresponding to such a sequencing problem one can define a cooperative game, where the value of a
coalition equals the cost savings this coalition can obtain with respect to the initial order by rearranging
their positions in an admissible way; we refer to Curiel et al. (1989) for the case with affine cost functions
and all ready times equal to zero, and Hamers et al. (1995) for ready times unequal to zero.

However, the results obtained by Curiel et al. (1989) and Hamers et al. (1995) only apply for the case
that processing times are deterministic. When processing times and ready times are uncertain, a sequencing
problem can be modelled as a game with stochastic payoffs in the following way. Let N be the set of agents
and let P € L'(R) and R’ € L'(R) describe the stochastic processing time and ready time of agent i, re-
spectively. Denote by o: N — {1,2,...,n} a processing order of the jobs, where (i) denotes the position
of job i in the processing order ¢. In particular, oy denotes the initial processing order. Finally, denote by
k': R, — R the cost function of agent i. Then '(¢) equals the cost agent i incurs when he spends ¢ time units
in the system. The set 4y of actions of coalition § will then be the set of all processing orders which are
admissible for coalition S. Here, admissible can be defined in several ways, for instance, a processing order
o is admissible for coalition S if no member of § passes an agent outside S (cf. Curiel et al., 1989).

The completion time of agent i in a processing order ¢ is a stochastic variable C/(s) € L!(R) defined by

C'(g) = max{C™ (5),R'} + P,

where i_ is the agent exactly in front of agent i, that is, o(i) = ¢(i_) + 1, and C* (V-(g) := 0. Then the
stochastic payoff Xs(o) for coalition S with respect to an action ¢ € 45 becomes

Xs(0) = => K(C'(a)).

ieS

So the payoff of coalition § equals minus the waiting costs of all members of . Again, the action taken by a
coalition will be influenced by the agents’ valuations of risk.

As was the case for deterministic games, the main issue for games with stochastic payoffs is to find an
appropriate allocation of the stochastic payoff of the grand coalition. For this, however, we first need to
know how an allocation of a stochastic payoff is defined. For deterministic payoffs, the definition of an
allocation is quite obvious. For stochastic payoffs an allocation could be defined in several ways. For in-
stance, let X € L'(R) be the payoff and let N be the set of agents. Then an allocation of X can be defined as
avector (X', X%,...,xV) e L' (R)" such that 3",y X’ = X. So, each agent i gets a stochastic payoff X’ such
that the total payoff X is allocated. This definition induces a very large class of allocations, which, on the
one hand, is nice, but, on the other hand, will give computational difficulties. Therefore we reduce the class
of allocations by adopting a more restrictive definition.

LetS C N, a € Ag and let X5(a) € L'(R) be the stochastic payoff. An allocation for § can be represented
by a tuple (d,r) € R® x RS such that

() Sesd = E(Xs(a)),

(i) >esri=1and r; =0 foralli €S,

with the interpretation that the corresponding payoff to agent [ € S equals
(d,rla); = d; + ri(Xs(a) — E(Xs(a))).

So, an allocation of Xg(a) is described by an allocation of the expectation E(Xs(a)) and an allocation of the
residual Xg(a) — E(Xs(a)), which we will call the risk of the payoff Xs(a). The set of all possible allocations
for coalition S is denoted by Z(S).
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Now that we have the definition of an allocation, we can define the core of a game with stochastic
payoffs. Let I' € SG(N). Then the core of this game is defined as the set of all allocations for N for which no
coalition S has an action and an allocation of the corresponding stochastic payoff such that all members of
S prefer this allocation to the former one. More formally, an allocation (d,7|a) € Z(N) is a core allocation if
there does not exist a coalition § and an allocation (d, 7|&) € Z(S) such that (d, #|d); >; (d,r|a); foralli € S.
The core of a game I' € SG(N) is denoted by Core(TI').

3. Balancedness for games with stochastic payoffs

In this section we introduce a balancedness concept for a specific class of games with stochastic payoffs.
This class consists of all such games with the following type of preferences. Let X, Y € L'(R) with distri-
bution function Fy and Fy, respectively. Take a« € (0,1). Then X, Y if and only if «f > u! with
uy = sup{t| Fy(f) <o} the a-quantile of X. A game where -, represents the preferences of agent i for all
i € N is denoted by I'y where « = (a1, 00,...,a,) € (0,1)".

For relating different values of « to different types of risk behaviour we first need to formalize the
concepts risk neutral, risk averse and risk loving. Therefore, let - describe the preferences of an agent over
the set L' (R) of stochastic variables. Then we say that - implies risk neutral behaviour of the agent if for all
X e LY(R) we have X ~ E(X). So, the agent is indifferent between the stochastic payoff and its expectation
with certainty. Subsequently, we say that »- implies risk averse behaviour if X ZE(X) holds for all
X € L'(R) with strict preference for at least one X € L!(R), and risk loving behaviour if X >~ E(X) holds for
all X € LY(R) with strict preference for at least one X € L'(R). So, a risk averse agent prefers the expec-
tation of a stochastic payoff to the stochastic payoff itself, while a risk loving agent rather has the stochastic
payoff than its expectation. Moreover, let 2, and 3 ; be the preferences of agent i and j, respectively. Then
agent j behaves more risk loving than agent i, or, equivalently, agent / behaves more risk averse than agent
J» if for all X € L' (R) we have that

{Y1Y Z BE(X)} C {Y|Y Z;E(sX)}.

Returning to the 7 -preferences, we can say that agent 7 is more risk averse than agent j if and only if
o; < o;. Note, however, that according to the definitions above the ,-preferences cannot be interpreted as
either risk averse, risk neutral, or risk loving behaviour in the absolute sense.

Before we introduce the balancedness concept we recall the definition of a balanced map. For that we
define for each coalition § C N the vector es € RY with (es), = 1if i € S and (es); = 0if i ¢ S. Then, a map
w2V \ {@} — [0, oo) is called balanced if ZSc{V 1(S) - es = ey. Subsequently, a game I', € SG(N) is called
balanced if for each balanced map u we have

max maxu¥@ > E ((S) max max s,
acdy ieN % & acds  ie§ %

Note that for deterministic TU-games 2 the eXpression MaX,eq, MaXies uf(“) is equal to u(3). So, for de-
terministic TU-games this new balancedness concept coincides with the original balancedness concept for
such games. In order to prove that the core of I' is non-empty if and only if I' is balanced, we need the
following lemma.

! We assume that the maximum over the set Ag of actions exists for all § € N. For the applicability of the forthcoming results,
however, this assumption will hardly be any restriction, since often the set of actions will either be finite or can be modified in that way.

* A deterministic TU-game is an ordered pair (¥, ), where N = {1,2,..., n} (the set of players) and v: 2% — R a map assigning to
each coalition S € 2V a real number, such that s(0) = 0.
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Lemma 3.1. Let Ty = (N, (As)scn> (X8)scws (S )ien) € SGW) and let (d,r|a) € Z(N). Then coalition S has
no incentive to split off i and only if

Z (d; + r'i(zr;:;“(“) - E(X,V(a)))) > max max%‘?‘(&).

Feds ieS
i€s

Proof. Let S C N. We will prove the lemma by showing that the coalition § has an incentive to split off if
and only if

S (dh+ i - E(Xi(a)))) < max maxuli®.

- Zedg (€S
€S
We start with the “only if” part. If S has an incentive to split off then there exists an allocation
(d,Fd) € Z(S) such that
d; + 71 Xs(@) — E(X5(a))) »s di + ri(Xn(a) — E(Xn(a)))
for each i € §. This implies that
t;'i + fi(l[;:S(d) - E(Xg(fl))) >di + f'i(tfg‘(}"(a) - E(XN(a)))
holds for all i € §. Summing over all members of S yields
S (d+ 7~ Bs(@))) > 3 (d+ (8 ~ By (a))))-
i€s ics
Using Y5 d; = E(Xs5(a)) and Y5 7 = 1 results in
S > S (d (' ~ By (@)
ies ies
Since 07 <1 forall i € S we have
maxi@ > ;(d,- + i) — E(XN(a)))>.
Then the result follows from

max maxus® > maxwS@,
ded,  ie§ ' icS !

For the “if” part of the proof, it suffices to show that if

Z(d,- + 1y (¥ — E(XN(a)))) < maxmaxu®,

S aeds €S

there exists an allocation (4, 7:]d) € Z(S) with & € arg max;e,, Max;es u;y,.s(&) such that

d;+ #(5) — E(Xs(4))) > d; + r(u@ — E(Xy(a)))

for all i € S. So, it suffices to show that the system of linear equations L1 (see Appendix A) has a solution
for some ¢ > 0. Without loss of generality we may assume that

1 )
0<e< | (nl;e%xzrf(“) - Z(d; + ri(uv) — E(XN(a)))))~

ies
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Applying a variant of Farkas’ lemma, *> L1 has a solution if and only if there exist no (z),y =0,
D1,02,41,92 2 0, ()5 2 0 such that
z;=0 forallieN\S,

yi(uS@ —~B(Xs(a))) +p ~p2+2z=0 foralli€s,

yi+q—g2=0 foralligs,

Z,Vi (di +rile ) —B(e) + 5) + (91 — 02)E(X5(d)) +p1 —p2 > 0.

HaN

Or equivalently, there exist no p,¢q € R, (),cg = 0 such that

y,-(uff(‘i) —E(X5(a))) +p<0 forallies,

¥+g=0 foralies

> (e + (@ — E(Xw(a) + ¢) +q E(Xs(@)) +p > 0.

i€S
From the equalities above we derive y; = y for all i € S. By combining the two inequalities and substituting
g = —y, the statement above is equivalent to the non-existence of a y > 0 such that for all / € § we have

YD — BXs(@))) <y (dh+ el @ - EQ(@)) +¢) - 7 - E(Xs(@)).
i€s
Equivalently, there is no y 2 0 such that
 maggt® <3 (dr -+l ~ BCtu(a)) + ‘).
Using ¢ < ﬁ (max,-es Ut _ Yics (d,« + (¥ — B(Xy (a))))) yields
y maxids® < y maxis®.
Obviously, such y do not exist. Hence, the system of linear equations L1 has a solution and the proof is

finished. O

Theorem 3.2. Let I'y = (N, (As) s (Xs)scws (o )iew) € SG(N). The core of Ty is non-empty if and only if T'y
is balanced.

Proof. From Lemma 3.1 we know that an allocation (d,r|a) € Z(N) is stable against deviations from
coalition S if and only if

Z(di + r,-(zé"'(") - E(XN(a)))) > max maxuS@,

ieS acdy 1e§

? Farkas’ lemma can be found in (Fan, 1956). The variant of Farkas’ lemma we use here is: Ax 2 b has a solution if and only if there
exists no y = 0 such that y"A = 0and y'5 > 0.
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Hence, there exists a core allocation (d,r|a) € Z(N) if and only if the system of linear equations L2 (see
Appendix A) has a solution.

Applying the same variant of Farkas’ lemma as in Lemma 3.1, L2 has a solution if and only if there exist
10 (2)cy = 0,21,12,91,92 2 0, (1(S))scy = 0 such that

Z ;L(S)(u‘;"’(“) —EXy (@) +pi—pr+2z=0 forallieN,

SCNHeS

Z WS +qg —gp=0 forallien,
SCNies

Zﬂ( ymaxmax w5 + (g1 — ¢2)B(Xy(a)) + p1 = p2 > 0.

SN d€As ieS
Equivalently, there exist no p,g € R, (1(S))scy = 0 such that

Z ;L(S)(u‘c?(“) —B(Xn(a)))+p<0 forallieN,
SCN:ieS

> w(S)=gq forallieN,
SCN:ies§

D H(S) maxmaquS — ¢ - E(Xy(a)) +p>0.
scw aeds ieS

This is equivalent to the existence of g € R and (u(S))g-y = 0 such that for each i € N
> WS~ E(Xi(@)) < 3 p(S) maxmaxids® — g - B(Xy(a))
SCNies 5cN aeds ieS
and
> wS)=q forallieN. (1)
SCN:eS§
Substituting Eq. (1) and rearranging terms yields equivalently that there exist no g € R and (u(S))gcy = 0
such that for all i € N we have

Z u(Shupta) < Z"‘(S ) max maxus*) (2)

SCNHES SCN aeds (€S

Z,U.(S) ces = ey q.

SCN

and

Since #(S) = 0 for all S C N is not a solution of Eq. (2), we must have that g > 0. Hence, we may assume
that g = 1. Then we have that there exists no balanced map u such that for all i € N we have

u @) < Z/.L(S max max s,
' SN acds ieS %

Or equivalently, there is no balanced map p such that

maxu @ < Z;t S) maxmaxtiS(‘
ieNn ™ ] deds IeS

[ O
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Again, this is equivalent with the fact that for all balanced maps ¢ we must have

max (@ Z 1(S) max maxus® (3)

l
s acds €S

So, there exists a core allocation (d,r|a) of the payoff Xy(a) if and only if Eq. (3) holds for all balanced
maps u. Hence, the core is non-empty if and only if for each balanced map u we have

maxmax u"@ > > " u(S)maxmaxu®. O
a€dy IEN g Scn acds ieS %

Example 3.3. Consider the following three-person situation, where agents 1 and 2 possess the same
technology and agent 3 possesses some resources. To produce a good out of the resources of agent 3 the
technology of agent 1 or 2 is needed. Moreover, the good can be sold for a price, which is not known with
certainty beforehand, but is uniformly distributed on the interval [0, 6]. This situation can be modelled as a
game with stochastic payoffs, with N = {1,2, 3}, and |45| = 1 for all coalitions S C N. Since each coalition
only has one action to take, the action a will be omitted as an argument in Xg(a) and (d,r|a). Clearly,
Xg=0for S = {3} and forall S ¢ N with 3 € S, and Xy = X ~ U(0, 6) otherwise. Now, let the preferences
of the agents be such that «; = ay = a3 = a € (0,1). Then (d,r) € Z(IN) is a core allocation if and only if no
coalition has an incentive to leave the grand coalition. Applying Lemma 3.1 yields that

S (ds+ i~ B(X)) > o

ies

has to hold for all S C N. If §' = {i},i € N this results in d; + r;(6a — 3) > 0 for all i € N. Rewriting then
gives d; = (3 — 6a). If § = {1,2} we get

di +ds+ (1) +r2)(60c—3) 2 0.

Substituting d) +ds =3 —ds and r +r =1 —r; and rearranging terms yields ds < 6o+ r3(3 — 6x). If
S ={1,3} we get

dy +ds + (r1 -+ V})(60€ - 3) > 6a.

Substituting d, +ds =3 — d, and |+ = 1 — ry and rearranging terms yields d» <# (3 — 61). Similarly,
one derives for § = {2, 3} that d) < #(3 — 6«). Combining the results above, (d, ) is a core allocation if and
onlyif d| = (3 - 60(), dy = r2(3 — 60() and dz = 6a + 1‘3(3 — 60()

Now let us try to interpret these results. Because «; = o,i € N all three agents have the same behaviour
towards risk. Let us take a = 10 Next, consider the core allocation with d = (——11, '212,5+—13) and

enti=1,720,i=1273 Then the payoff for agent I equals 27 4+ r (X — 3). Moreover,
u(ll%s)"Jr”(X %) = 0. So, for a core allocation, agent 1 is with probability {5 worse off than his initial situ-
ation, that is, payoff zero. The same reasonlng holds for agent 2. For agent 3, the payoff equals
1412y +r3( —3). Consequently, uls/lg (12/S)rsrs(X=3) =3 So, agent 3 is worse off than payoff 5 3 with
probability & 15+ Since all agents have the same behaviour towards risk, we may say that agent 3 is shghtly
better off than the other two agents. Hence, a more or less similar result is achieved if we consider the core
of this same situation with deterministic expected payoffs, i.e. v(S) =0 if 3 ¢ S or |S| <2 and v(S) =3
otherwise, Then the core equals {(0,0,3)}, and indeed for that case agent 3 is also better off than the other
two agents.

We conclude this section with some 1en1arks First, note that the action taken by the grand coalition ata
core allocation maximizes max;ey uf V9 with respect to a. Indeed, if u(S) =1 when S =N and u(S) =0

otherwise, the balancedness condition implies for a core allocation (d,r|a) € Z(N) that maxey uﬁ(" =
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MmaXszedy max,g\;u;Y . Moreover, it follows from Lemma 3.1 that for a core allocation (d, r|a) the rlgk

N
Xu(a) - (XN(a)) must be allocated over the most risk loving agent(s), i.e. the agents who maximize u5"".
For, if this is not the case, we get

g v (a) va) < m qu’V
;V:(d, + r,(u E(Xy(a)) ) ’6er uX < maqu gé%i xe%l
This, however, contradicts the fact that the allocation must be Pareto optimal for coalition N (cf. Lemma
3.1 for § = N).

For our final remark we take a closer look at the balancedness condition. If we define for each game
I' € SG(V) a corresponding deterministic TU-game (N, vr) with vr(S) = max,eqs MaXies uf 5() for each
S C N, then I is balanced if and only if (¥,vr) is balanced, A similar reasomn% holds for allocations. An
allocation (d,rla) € Z(N) is a core allocation for I if and only if (d; + #( ua," (a E(Xv(a))));en 1s & core
allocation for (N, vr). This result follows immediately from Lemma 3.1. Note, however, that the relation
between the allocation (d,7ja) and the vector (d; + (13" — E(Xy(a)))),cy is not a one-one correspon-
dence.

In Section 4 we consider other types of preference relations. We show how the results obtained in this

section can be extended.

4. Preferences on stochastic payoffs

A natural way of ordering stochastic payoffs is by means of stochastic dominance. Let X, ¥ € L' (R) be
stochastic variables and denote by Fy and Fy the distribution functions of X and Y, respectively. Then X
stochastically dominates ¥, in notation X -z, Y, if and only if for all € R it holds that Fy(t) < Fr(2).
Moreover, we have X >r Y if and only if for all ¢ € R it holds that Fy(f) < Fy(¢) and Fx(f) < Fy(t) for at
least one ¢ € R. Intuitively one may expect that every rationally behaving agent, whether he is risk averse,
risk neutral or risk loving, will prefer a stochastic payoff X over Y if X = Y. However, this preference
relation is incomplete. Many stochastic variables will be incomparable with respect to 7. As we will see in
the next example, this incompleteness will lead to a relatively large core.

Example 4.1. Consider the situation described in Example 3.3, but now with stochastic domination as the
preference relation for all agents. One can check * that (d, #) € Z(N) is a core allocation for this game if and
only if for i = 1,2 it holds that

d; € (—3]’;,37‘,‘) if ;>0 and
d,'=0 if i‘i=0

and

dy > —=3r; if r3>0and
dy =0 if 3=0.

# These conditions for a core allocation are not obvious, Although it is not difficult to check them, including the proof would
lengthen the example with quite a few pages. A sketch of the proof goes as follows. Consider an arbitrary allocation (4,r) € Z(N) and
check for each coalition S separately, if there exists a better allocation (d, ) € Z(S). For one person coalitions this is straightforward.
For two person coalitions it is 2 bit more difficult. In that case, one has to distinguish nine different cases, namely, 7; > r; and 7 >,
7 = r; and 7; > ry, etc. Then, using the same variant of Farkas’ lemma as in the proof of Theorem 3.2, one can derive for each case
separately conditions on the existence of a better allocation. Then combining these conditions will give the abovementioned result.
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Now let us compare the core of a game with > p-preferences with the core of a game with ,-preferences.
First, note that the core of the first one no longer needs to be closed. Second, the core of a game with >p-
preferences depends on the core of a game with 7 -pleferences in the following sense. Denote by I'r the
game I' with > p-preferences, and by I', the game with 2, -preferences, where o = (0,0, . vy Ol Smce
X >r Y implies X 77, Y it follows that Core(I',) C Core(l‘p) Moreover, this holds for all « € (0,1)".
Hence, U, 1yv Core(I's) C Core(I'r). The reverse however need not be true, as we will show in the next
example.

Example 4.2 Consider again the situation described in Example 3.3. From Examples 3.3 and 4.1 we know
that for d = ((3 — 6a)ry, (3 — 6a)ry, 60 + (3 — 60)r3) both (d,r) € Core(Iy) and (d,r) € Core(I'r). From
the results of Example 4.1 we also know that d = (—1,1,3) and r = {(7,4,1) is a core allocation with
respect to »p-preferences. This allocation, however, cannot be a core allocation for the game with 2Z,-
preferences. To see this, suppose that (d,r) is a core allocation. Then rj,r2,#3 >0 implies that
oy = o = o3 = «. Similarly from Example 3.3 one can derive that (c?, F) is a core allocation if
d = (3—-6x)f, dy=(3—6a)f» and ds = 6o+ (3 —6x)’3. However, there exists no « satisfying
~1=(3—6a) % and 1 = (3 — 6x) $5. Hence, (d,r) & Core(I,) for any « € (0, v,

A straightforward way of ordering stochastic variables, is looking at the expectation. Then, for two
stochastic variables X,Y € L'(R) we have X 77 Y if and only if E(X) > E(Y). Note that X ;- ¥ whenever
X o Y. This preference relation is complete and implies risk neutral behaviour of an agent. Hence, risk
averse and risk loving attitudes cannot be modelled. If, however, we adapt preferences 2 in the following
way, also these types of attitudes can be modelled.

Let X, Y e L! (R) be StOCh'lSth variables with finite variance and let 5 € R be arbitrary. Then X2-2Y if
and only if E(X) + b/ V(X) 2 E(Y) + b/ V(Y ), where V(X) denotes the variance of X. Note that if 5 =0
the preference relation >' comc1des with 2. For these type of preferences, b < 0 implies risk averse be-
haviour, » = 0 risk neutral behaviour and b > 0 risk lovmg behav1our Moreover, we can derive coun-
terparts of Lemma 3.1 and Theorem 3.2. For this, we replace um ) by E(Xs(a)) + bir/V(Xs(a)) foralli e N
and all § ¢ N, The balancedness condition then becomes

max max E(Xy(a)) + bin/ ¥V (Xy(a Z,LL( - maxmax E(Xs(a)) + b/ V (Xs(a)

acdy IEN S acds ieS

for all balanced maps p.

Theorem 4.3. Let I' = (N, (4s)scns (Xs)sens (5 View) € SG(NV). Then the core of T is non-empty if and only if
I is balanced.

Although >" is complete and distingnishes different kinds of behaviour with respect to risk, it is not
implied by . For example, let X ~ U(0,6) and Y ~ U(0,2). Then X 7 ¥ but ¥ > X whenever b < — 2.
Although an agent with such preferences is risk averse, it is still natural to expect that he prefers X over Y.

Another way of ordering stochastic variables is by the use of von Neumann-Morgenstern utility
functions. In that case, an agent prefers one stochastic payoff to another if the expected utility of the first
exceeds the expected utility of the latter. More formally, let X, Y € L'(R) be stochastic variables and let
#: R— R be the agent’s monotonically increasing utility function, then X = ¥ if and only if
E(u(X)) > E(u(Y)). Moreover, a concave utility function implies that the agent is risk averse, a linear utility
function implies that he is risk neutral and, finally, a convex utility function implies that he is risk loving.
The analysis of games with stochastic payoffs and von Neumann~-Morgenstern preferences turns out to be
significantly different from the above analysis. We refer to Suijs and Borm (1996), for a study on StOChaStIC
games with von Neumann—-Morgenstern preferences.
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5. Concluding remarks

This paper introduces a new class of cooperative games, with the aid of which various cooperative
decision making problems in a stochastic environment can be modelled. Besides a discussion on the ap-
plications of the model and the preferences of the agents, our interests were focused on the core of the game.
Farkas’ lemma is used to show that, for specific classes of games the core is non empty if and only if the
game is balanced.

Remaining questions concern solution concepts. How to define a Shapley value or nucleolus for games
with stochastic payoffs? In answering these questions one has to know what is a marginal vector and how to
compare the complaint of one coalition to the complaint of another coalition.

Appendix A

A.l. System of linear equations L1

(zf)ieN .................. ] I}_vr 0 [y ] i 0 1
Dreererereeneannaann, e 0 7 1
pz ..................... "eS q_ ! —1
GLoverereee e 0 eST ; E(Xs(a))
P 0 —eg ;1' > —E(X5(4)) ,
. 1 .
Yi(d) : . dy B
Oiies Vies (“(a-'s - E(XS(&))) el e : d; + r‘,-(zzé(f(a) —EXy(a))) + &
i 5 3 N R : |

where Iy denotes the N-dimensional identity matrix and es denotes the vector with {es), = 1 if i € S and
(es); = 0 otherwise. The variables on the left denote the dual variables. Note that for notational reasons we
have included r; and d; for i & S. Since the corresponding coefficients for these variables are equal to zero,
this does not affect the result. ’

A.2. System of linear equations L2

(@i e [ —’r_vr 07 1 T 0 i
........................ Eyn 0 - 1
P T )
P2 ........................ _eN Qr : “‘].
Qoo O eNT * E(XN(G))
Gorerrenr i 0 —ey ol s —E(Xn(a))
. di .

. d . N

Xvla) _ , T T 2 Xs()
(S gy VSCN %(“a: E(Xy (‘0)) g e . 102%( max Uy

d, |
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