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Artificial Intelligence Review 11, 407-423, 1997IGTree: Using Trees for Compression and Classi�cationin Lazy Learning AlgorithmsWalter Daelemans(i), Antal van den Bosch(ii), Ton Weijters(ii)(i) Walter.Daelemans@kub.nl (ii) fantal,weijtersg@cs.rulimburg.nlComputational Linguistics MATRIKSTilburg University, The Netherlands Maastricht University, The NetherlandsAbstractWe describe the IGTree learning algorithm, which compresses an instance base intoa tree structure. The concept of information gain is used as a heuristic function for per-forming this compression. IGTree produces trees that, compared to other lazy learningapproaches, reduce storage requirements and the time required to compute classi�ca-tions. Furthermore, we obtained similar or better generalization accuracy with IGTreewhen trained on two complex linguistic tasks, viz. letter{phoneme transliteration andpart-of-speech-tagging, when compared to alternative lazy learning and decision treeapproaches (viz., IB1, information-gain-weighted IB1, and C4.5). A third experiment,with the task of word hyphenation, demonstrates that when the mutual di�erences ininformation gain of features is too small, IGTree as well as information-gain-weightedIB1 perform worse than IB1. These results indicate that IGTree is a useful algorithmfor problems characterized by the availability of a large number of training instancesdescribed by symbolic features with su�ciently di�ering information gain values.keywords: lazy learning, eager learning, decision trees, information gain, data com-pression, instance base indexing 1



1 IntroductionIn previous research, we have applied lazy learning techniques to a variety of problemsin language technology (e.g., converting spelling to phonetic transcription, stress assign-ment, predicting morphological su�xes, and assigning syllable structure to words). SeeDaelemans (1995) for an overview, and Cardie (1993) for a similar case-based approach.This type of linguistic problem can be characterized by the following observations:1. The problem can be described as �nding a mapping from a pattern of symbolic(nominal and unordered) features (letters, phonemes, part-of-speech tags, etc.)to a symbolic class (phonemes, boundary symbols, a�xes, tags, etc.).2. The problem can be described as classi�cation in context: given a target symboland its immediate local context, produce one of a �nite number of possible classesfor that symbol. For example, given a spelling symbol and its three left and threeright neighbor letters, decide which phonetic symbol it corresponds to.3. The instance features display an outspoken variation in their relevance to solvingthe task, and can be ordered according to this relevance. In general, the furtheraway a feature (representing context) from the target, the less relevant it is.4. The instance space is reasonably large (e.g., seven features with 27 possible valueseach, in the spelling-to-phonetic-transcription problem) and, typically, there arealso many training instances available (on the order of 100,000 or more).5. The problem is usually described (in terms of linguistic rules) as noisy and com-plex, with many subregularities and (pockets of) exceptions. In other words,apart from a core of generalizations, there is a relatively large periphery of irreg-ularities.In lazy learning (e.g., the IB1 algorithm in Aha, Kibler, and Albert, 1991), sim-ilarity of a new instance to stored instances is used to �nd the nearest neighbors ofthe new instance. The classes associated with the nearest neighbor instances are thenused to predict the class of the new instance. In IB1, all features are assigned thesame relevance, which is undesirable for our linguistic problems. We noticed that IB1,when extended with a simple feature weighting similarity function, sometimes out-performs both connectionist approaches and knowledge-based \linguistic{engineering"2



approaches (Daelemans and Van den Bosch, 1992, 1994; Van den Bosch and Daele-mans, 1993). The similarity function we introduced in lazy learning (Daelemans andVan den Bosch, 1992) consisted simply of multiplying, when comparing two instances,the similarity between the values for each feature with the corresponding informationgain for that feature (information gain is also implemented in C4.5, Quinlan, 1993, toguide decision tree building). We will call this version of lazy learning IB1-IG.To compute similarity in IB1-IG, the similarity function sim in Equation 1 is used,in which X and Y are two instances of which the similarity must be computed, G(fi) isthe information gain of the ith feature, and �(xi; yi) is the overlap between the valuesof the ith feature in instances X and Y . Both instances contain n features.sim(X; Y ) = nXi=1 G(f i)�(xi; yi) (1)As we are only investigating the learning of instances with symbolic features, theoverlap function proposed by Stan�ll and Waltz (1986) is used (Equation 2).�(xi; yi) = 1 if xi = yi; else 0 (2)The main idea of information gain weighting is to interpret the training materialas an information source capable of generating a number of messages (the classesassociated with stored instances) with a certain probability. Data base informationentropy is equal to the average number of bits of information needed to know the classgiven an instance. It is computed by Equation 3, where pi (the probability of class i)is estimated by its relative frequency in the training set.H(D) = �Xpi pilog2pi (3)For each feature, its relative importance in the data base can be calculated bycomputing its information gain. To do this, we compute the average informationentropy for this feature and subtract it from the information entropy of the data base.To compute the average information entropy for a feature (Equation 4), we take theaverage information entropy of the database restricted to each possible value for thefeature. The expression D[f=v] refers to those instances in the database that have valuev for feature f , where V is the set of possible values for feature f . Finally, jDj is thenumber of instances in data base D. 3



H(D[f ]) = Xvi2V H(D[f=vi]) jD[f=vi]jjDj (4)Information gain is then obtained by Equation 5.G(f) = H(D)�H(D[f ]) (5)The classi�cation function of IB1-IG computes the similarity between a new in-stance and all stored instances, and returns the class label of the most similar instance.During experimentation, we noticed that accuracy (generalization performance)decreased considerably when instance memory was pruned in some way (e.g., using IB2,Aha et al., 1991, or by eliminating nontypical instances). Storing all training items bylazy learning (e.g., IB1) seems essential for achieving a high generalization performancein many linguistic tasks we investigated. The observation that the problems exhibita lot of sub-regularity and exceptions may explain why full memory produces betterresults than an approach in which not all training items are kept in memory (cf. Aha,1992).Unfortunately, as the prediction function in lazy learning has to compare a testinstance to all stored instances, and our linguistic data sets typically contain hundredsof thousands of instances, processing of new instances is prohibitively slow. Hardwaresolutions to this problem have been proposed (e.g. data-level parallelism on massivelyparallel machines, Stan�ll and Waltz, 1986; or wafer-scale integration, Kitano, 1993).We will not discuss these here as we focus on comparing implementations of di�erentalgorithms on serial machines. What we needed was an algorithmic variant of IB1-IGin which the instance base is reorganized (by compression rather than by pruning) insuch a way that access to relevant instances is faster, and no generalization performanceis lost.We developed an algorithm, IGTree (a �rst version is described in Van den Boschand Daelemans, 1993), which uses the di�erences in information gain of features forordering the instance base and optimizing access to the instance base. For the typeof problem described above, IGTree produces a tree structure which is considerablysmaller than the original data base; furthermore, tree retrieval is considerably fasterthan retrieval in IB1-IG. 4



In Section 2, we describe the IGTree model and its relationships to k-d trees anddecision trees. Section 3 describes comparative experiments with IGTree, IB1, IB1-IG,and C4.5 on learning the linguistic tasks. We present our conclusions in Section 4.2 IGTreeThe positive e�ect of using information gain weights in the overlap function to de-�ne similarity in IB1 for our tasks, prompted us to develop an alternative approachin which the instance memory is reorganized, using Information Gain as a heuristicguide, in such a way that it contains the information essential for retrieval, but is com-pressed into a decision tree structure. In this Section, we will provide both an intuitiveand algorithmic description of IGTree, discuss its relations to k-d trees and top downinduced decision trees, and provide some analyses on complexity issues.2.1 The IGTree modelIGTree combines two algorithms: one for constructing decision trees, and one forretrieving classi�cation information from these trees. During the construction of IGTreedecision trees, instances are stored as paths of connected nodes. All nodes contain atest (based on one of the features) and a class label (representing the default class atthat node). Nodes are connected via arcs denoting the outcomes for the test (featurevalues). Information gain is used to determine the order in which instance featuresare used as tests in the tree. This order is �xed in advance, so the maximal depth ofthe tree is always equal to the number of features, and at the same level of the tree,all nodes have the same test. The reasoning behind this reorganization (which is infact a compression) is that when the computation of information gain points to onefeature clearly being the most important in classi�cation, search can be restricted tomatching a test instance to those stored instances that have the same feature value atthat feature. Instead of restricting search to those memory instances that match onlyon this feature, the instance memory can then be optimized further by examining thesecond most important feature, followed by the third most important feature, etc. Aconsiderable compression is obtained as similar instances share partial paths.Instead of converting the instance base to a tree in which all instances are fully5



represented as paths, storing all feature values, we compress the tree even more byrestricting the paths to those input feature values that disambiguate the classi�cationfrom all other instances in the training material. The idea is that it is not necessaryto fully store an instance as a path when only a few feature values of the instancemake the instance classi�cation unique. This implies that feature values that do notcontribute to the disambiguation of the instance classi�cation (i.e., the values of thefeatures with lower information gain values than the the lowest information gain valueof the disambiguating features) are not stored in the tree. Although one could optfor storing these features, not storing them does not a�ect the accuracy of IGTree'sgeneralization performance.Leaf nodes contain the unique class label corresponding to a path in the tree. Non-terminal nodes contain information about the most probable or default classi�cationgiven the path thus far, according to the bookkeeping information on class occurrencesmaintained by the tree construction algorithm. This extra information is essential whenusing the tree for classi�cation. Finding the classi�cation of a new instance involvestraversing the tree (i.e., matching all feature-values of the test instance with arcs in theorder of the overall feature information gain), and either retrieving a classi�cation whena leaf is reached, or using the default classi�cation on the last matching non-terminalnode if a feature-value match fails.A �nal compression is obtained by pruning the derived tree. All leaf-node daughtersof a mother node that have the same class as that node are removed from the tree,as their class information does not contradict the default class information alreadypresent at the mother node. Again, this compression does not a�ect the accuracy ofIGTree's generalization performance.In sum, in the trade-o� between computation during learning and computationduring classi�cation, the IGTree approach chooses to invest more time in organizingthe instance base using information gain and compression, at the gain of considerablysimpli�ed and faster processing during classi�cation, as compared to lazy learningapproaches that maintain instances in a at �le rather than using an reorganizingscheme.A tree produced by the IGTree algorithm is oblivious because all nodes at a certainlevel in the tree test the same feature. The IGTree approach di�ers in two aspectsfrom other oblivious decision tree (cf. Langley and Sage, 1994) and oblivious decision6



graph (cf. Kohavi and Li, 1995) approaches. First, in IGTree, information gain offeatures is used to determine the order in which they are expanded in the decisiontree. The second di�erence is more fundamental, and is also related to the use ofinformation gain as a guiding function in IGTree: in trees generated by IGTree, leavesare not necessarily stored at the same level. During tree building, expansion of thetree is stopped when all instances in the subset indexed by a node are of the sameclass. At that point, which may be at any level in the tree, all remaining features witha lower information gain value are ignored. Similarly, IGTree classi�es a new instanceby investigating a variable and often limited number of features, rather than a �xednumber of (relevant) features, as in Kohavi and Li (1995).The recursive algorithms for tree construction and retrieval are given in Figure 1.2.2 Asymptotic complexityAs far as an asymptotic analysis of the complexity of storage, search and tree-buildingis concerned, it should be noted that only worst-case results are given. The actual com-pression (on which complexity of search, building, and storage depend) is completelytask-dependent, and should be observed in empirical tests such as those in Section 3.The worst-case complexity of searching an instance in the tree is proportional toF � log(V ), where F is the number of features (equal to the maximal depth of the tree),and V is the average number of values per feature (i.e., the average branching factor inthe tree). This complexity presupposes alphabetic sorting of the values so that binarysearch and storage are possible. Retrieval by search in the tree is independent from thenumber of training instances, and therefore especially useful for large instance bases.In IB1, search complexity is O(N � F ) (with N the number of stored instances). Inthe grapheme{phoneme transliteration experiment described in Section 3, the averagebranching factor V is 2.3 (the number of possible values for each feature is 41).The number of nodes necessary in the worst case to store the instances of thetraining set is N (maximal number of leaves) + (N � 1) � (V � 1) (number of non-terminal nodes). For each non-terminal node, a default class label and a pointer foreach occurring value of the feature denoted by the node should be stored. This makesthe storage requirements proportional to N (compare O(N �F ) for IB1). In Section 3,we show that trained on the grapheme{phoneme transliteration problem, the IGTree7



Procedure BUILD-IG-TREE:Input: � A training set T of instances with their classes (start value: a full instance base),� an information-gain-ordered list of features (tests) Fi:::Fn (start value: F1:::Fn).Output: A subtree.1. If T is unambiguous (all instances in T have the same class c), or i = (n + 1), create a leaf nodewith class label c.2. Otherwise, until i = n (the number of features)� Select the �rst feature (test) Fi in Fi:::Fn, and construct a new node N for feature Fi, andas default class c (the class occurring most frequently in T ).� Partition T into subsets T1:::Tm according to the values v1:::vm which occur for Fi in T(instances with the same value for this feature in the same subset).� For each j�f1; :::;mg:if not all instances in Tj map to class c, BUILD-IG-TREE (Tj ; Fi+1:::Fn),connect the root of this subtree to N and label the arc with vj.Procedure SEARCH-IG-TREE:Input: � The root node N of an subtree (start value: top node of a complete IGTree),� an unlabeled instance I with information-gain-ordered feature values fi:::fn (start value: f1:::fn).Output: A class label.1. If N is a leaf node, output default class c associated with this node.2. Otherwise, if test Fi of the current node does not originate an arc labeled with fi, output defaultclass c associated with N .3. Otherwise,� new node M is the end node of the arc originating from N with as label fi.� SEARCH-IG-TREE (M; fi+1:::fn)Figure 1: Algorithms for building IGTrees (`BUILD-IG-TREE') and searching IGTrees(`SEARCH-IG-TREE') 8



decision trees use on the average 95% less memory than the IB1 instance bases.Finally, the cost of building the tree on the basis of a set of instances is proportionalto N � log(V ) � F in the worst case (compare O(N) for training in IB1).2.3 Relation to k-d trees and induced decision treesThe IGTree approach has strong similarities to both decision tree learning (Top DownInduction of Decision Trees, TDIDT, used for abstraction of knowledge from instancesbases or indexing instance bases) and k-d trees (used for indexing instance bases).A fundamental di�erence with decision trees concerns the purpose of IGTrees. Thegoal of Top Down Induction of Decision Trees, as in the state-of-the-art program C4.5(Quinlan, 1993), is to abstract from the training examples. In contrast, we use decisiontrees for lossless compression of the training examples. Pruning of the resulting treein order to derive understandable decision trees or rule sets is therefore not an issuein our approach. By lossless, we mean that the classi�cations of the training instancescan be completely reconstructed, not that all feature-value information in the originaltraining set can be reconstructed. Generalization is achieved by the defaults at eachnode, not by pruning. It should be noted here that IGTree decision trees can easilybe expanded in such a way that compression is also lossless in terms of feature-valueinformation, when node construction is not halted at the point where classi�cationbecomes unambiguous. However, we will refer in this paper only to the variant ofIGTree in which features not relevant to classi�cation are not stored.A simplici�cation of IGTree as opposed to TDIDT approaches such as C4.5, isthat IGTree generates oblivious decision trees, i.e., it computes information gain onlyonce to determine a �xed feature ordering. TDIDT approaches, in contrast, recomputeinformation gain (or similar feature selection functions) at each arc of the tree to guideselection of the next test. Finally, in IGTree, defaults are computed at each node ofthe tree (i.e., defaults are local), whereas in TDIDT, global defaults are used (althoughin C4.5, a similar local default assignment procedure is used).In terms of high compression without generalisation performance loss, C4.5rules(Quinlan, 1993) appears a strong alternative to IGTree. However, C4.5rules, whichextracts compact rule sets from trees generated by C4.5, becomes disproportionallyslow when the C4.5-tree is large, as in our experiments: e.g., a C4.5-tree of > 30; 0009



nodes, generated within about a half hour (which is similar to IGTree's processingtime), takes several days to be processed by C4.5rules.K-d trees (Friedman, Bentley, and Finkel 1977) are binary trees that have beenproposed for indexing databases of instances (with ordered feature values, e.g., numericvalues) for use in k-nearest neighbor approaches. The basic idea is to make use ofthe observed density of the instance space to structure it for e�cient retrieval of them nearest neighbors of a new (query) instance. To build the k-d tree, the originalinstance space is partitioned into disjoint subsets by selecting a feature (e.g., the onewith the highest inter-quartile-distance) and a threshold value, and creating nodes foreach of these subsets. Instances with values for that feature less than or equal tothe threshold are stored in one daughter, the others in the other daughter. Nodestherefore represent subsets of the instances. This process is recursively repeated untilthe number of instances in a node becomes less than a parameter called bucket size(maximal allowed number of instances in a leaf node), in which case a leaf node isconstructed. The leaf node does not contain class information, as in IGTree, butpointers to the instances in the original instance base that are captured in the bucket.During retrieval of nearest neighbors, given a query instance, the k-d tree is traversed asin decision trees and IGTrees, and at leaf nodes, a queue with the m nearest neighborsis updated. Two tests, based on the similarity of the most similar instance in thequeue to the query, are used to determine whether it is necessary to inspect the sisterof the current leaf node, and whether all nearest neighbors have been found (if not,backtracking is necessary). Recently, there has been renewed interest in k-d trees andrelated approaches for e�ciently indexing instance bases in lazy learning (Omohundro,1991; Deng & Moore, 1995; Wess, Altho�, & Derwand, 1994; Wess, 1995).In contrast to k-d trees, the purpose of IGTrees is classi�cation, not e�cient nearestneighbor search. IGTrees cannot be used to �nd the nearest neighbors because thedefaults on the leaf nodes do not contain information about the number nor the identityof instances on which they were based. Instances sharing the same subset of feature-value pairs and having the same class in the training set, are not di�erentiated. Anotherdi�erence between k-d trees and IGTrees is that the former are restricted to orderedfeature values, while the latter are restricted to unordered symbolic features.E�orts are under way (Wess et al., 1994; Wess, 1995) to extend k-d trees withsymbolic values. However, extending the test determining whether backtracking is10



needed for the case of symbolic features signi�cantly increases the computational costof executing this test, and the test can perform poorly under certain circumstances.There is no gain in retrieval time because the test has to verify each dimension of theattribute space, which can be high for unordered symbolic attributes (Altho�, personalcommunication). No empirical studies addressing this issue have been published yet.Although we developed IGTree to deal with the nominal, unordered features withwhich we describe our linguistic instances, IGTree can be extended to handle continuousfeatures by means of discretization techniques (cf. Dougherty, Kohavi, and Sahami,1995).Figure 2 graphically shows the di�erences between k-d trees, IGTrees and C4.5decision trees on a small symbolic dataset. On the basis of size, shape, and number ofholes, an object is to be classi�ed as nut, screw, key, pen, or scissors. The instance basecontains 12 instances. It should be noted that (i) instances 5 and 10 are ambiguous (i.e.,they have the same feature values but map to di�erent classes); (ii) the informationgain, computed over the full set of instances, of feature `size' is 0.75, of `shape' is 0.90,and of `number of holes' is 1.10; (iii) in the case of k-d trees, `size' and `shape' are nottreated as numeric features as their values in the instance base are not numeric; inFigure 2 the situation is shown of a k-d tree algorithm which tests a symbolic featureby expanding the tree for every occurring value of that feature. As can be seen inFigure 2, the tree generated by IGTree di�ers from the tree generated by C4.5 in thenumber of tests (i.e., IGTree performs less tests than C4.5), and in the number ofnodes and leaves (e.g., the sum amount of nodes and leaves is smaller in the case ofIGTree than in the case of C4.5). The di�erence between IGTree and k-d tree is thatthe buckets in the k-d tree point to instances in the instance base, whereas the nodesand leaves in IGTree do not denote instances, but classi�cations.Section 3 describes experiments illustrating the comparative performance (i.e., gen-eralization accuracy and storage requirements) of IGTree, IB1, IB1-IG, and C4.5, forseveral linguistic tasks.3 ExperimentsIn this Section we describe in detail empirical results achieved with IGTree on theletter{phoneme transliteration problem for Dutch. We compare the performance of11
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Figure 2: K-d tree, C4.5 decision tree, and IGTree decision tree constructed on the basis ofa small instance base.IGTree in terms of generalization accuracy and storage to IB1, IB1-IG, and C4.5. Weprovide similar but less detailed results on two other tasks: part-of-speech tagging andhyphenation.3.1 Letter{Phoneme TransliterationLetter{phoneme transliteration is a well-known benchmark problem, �rst discussed inthe context of Machine Learning by Sejnowski and Rosenberg (1987). They reporton several experiments with the standard connectionist Back-propagation algorithm(Rumelhart et al., 1986) on the NETtalk data. In our experiments, we employ thesame encoding scheme that Sejnowski and Rosenberg used to generate their instances(i.e., by moving a �xed-length window over a spelling word, and generating an instanceby taking a snapshot of the word visible in the window). Each instance contains a targetletter (in the middle) surrounded by left and right context letters. The class associatedwith the spelling input window is, in our case, the phonemic mapping of the target12



Table 1: Example generation of �xed-length window instances (3 left context characters, 3right context characters) from the word-pronunciation pair <boek> - /buk/. Underscoresdepict word boundaries. The `{' is the phonemic null mapping to the <e>.Letter in Context Phonemeb o e k bb o e k ub o e k {b o e k kletter. As with Sejnowski and Rosenberg (1987), a class may be any of the phonemesin the phonemic alphabet, or a phonemic null inserted at points where a cluster oftwo or more spelling letters maps to one phoneme. An example of the generation ofinstances from a word-pronunciation pair, <boek> (book) - /buk/, is shown in Table1. Automatic learning of letter{phoneme transliteration of English (NETtalk, Se-jnowski & Rosenberg, 1987) has been claimed as a success story for Back-propagation(but see Stan�ll and Waltz, 1986, Wolpert, 1990, Weijters, 1991, and van den Bosch& Daelemans, 1993 for examples of k-nn algorithms outperforming Back-propagation).The connectionist approach was replicated for Dutch in NetSpraak (Weijters & Hop-penbrouwers, 1990).From celex, a lexical data base of English, German, and Dutch, we derived a database consisting of 20,000 Dutch word-pronunciation pairs. Words and phonemic tran-scriptions were made of equal length by inserting phonemic nulls (`{') in the phonemictranscriptions (by an alignment algorithm described in Daelemans and Van den Bosch,1994). By using the windowing technique described above, the 20,000 word set wasconverted into a data base containing 218,594 instances. Each instance thus containsseven feature values (each of which is one out of 41 values: the alphabet includingletters with diacritics, and the space that occurs before and after words), and is asso-ciated with one out of 55 possible phonemes. In our experiments, we used a 10-foldCV setup: i.e., we trained and tested each algorithm on ten di�erent partitions (90%training material, 10% testing material) of the full data base. All performance results13



reported below are averaged over these experiments.In Table 2, the performance scores on correctly classi�ed test instances (i.e., cor-rectly transliterated phonemes) and their standard deviations are displayed. We re-port the scores of IG-Tree, IB1 with the overlap similarity function, IB1 with theinformation-gain-weighted similarity function (IB1-IG), C4.5 without pruning, andC4.5 with pruning (C4.5-p). It should be noted that C4.5 was run with (i) theinformation-gain-criterion rather than the gain-ratio-criterion (as our data does notcontain value variance anomalies which would be handled by the gain-ratio-criterion,and as this is the same function as used in IG-Tree), (ii) when pruning, the defaultpruning con�dence level of 10% is used, and (iii) a minimum number of instances oneither side of a test is set at 1, which is similar to IGTree, rather than the default valueof 2. Furthermore, Table 2 reports the average number of bytes needed to store theinstance base or decision tree in memory. Given the fact that in our problem feature-values and classes are represented by one byte, the memory allocated by IB1 (andIB1-IG) can be computed by multiplying the number of instances with the number offeatures plus one (the class). In our implementation of IGTree, seven bytes per nodeare used: a 4-byte pointer, a feature-value, a (default) class, and one byte indicatingthe number of daughter nodes. If the same compact memory storage method wouldbe implemented in C4.5, this algorithm would need eight bytes per node (includingone byte to denote the feature number). However, in C4.5 (version 7), each featureis expanded for all its possible values, leading to a very large number of `empty' endnodes that contain no feature-values. Needing only seven bytes per node in this case,the results in Table 2 are based on the numbers of nodes reported by C4.5.Table 3 indicates the signi�cance levels of the di�erences between the generalizationaccuracy scores reported in Table 2.The performance results in Table 2 and Table 3 indicate that IB1 with the overlapdistance similarity function and C4.5 with pruning are at a signi�cant disadvantage ascompared to IGTree, IB1-IG, and C4.5 without pruning. IB1-IG outperforms, with aslight but signi�cant margin, both IGTree and C4.5.The average memory usage displayed in Table 2 demonstrates the considerable com-pression (95.1%) obtained with IGTree as compared to IB1-IG, without losing muchgeneralization performance. In comparison, with pruning, C4.5 obtains 82.3% com-pression. 14



Table 2: Average generalization performance in terms of correctly transliterated phonemesof unseen Dutch word-pronunciation pairs, with standard deviation, and average memoryusage in bytes needed to store the instance base or decision tree in memory, for IGTree, IB1,IB1 with an IG-weighted similarity function (IB1-IG), C4.5 without pruning, and C4.5 withpruning (C4.5-p). Generalization accuracy Standard Memory usageAlgorithm on test phonemes deviation (bytes)IGTree 97.07 0.11 77,749IB1 92.11 0.15 1,573,885IB1-IG 97.17 0.13 1,573,885C4.5 97.03 0.14 992,047C4.5-p 96.21 0.15 278,537As a second illustration of accuracy, we mention the results of a comparison betweenIGTree trained on a set of 70,000 Dutch word-pronunciation pairs, and Morpa-cum-Morphon (Nunn and Van Heuven, 1993), a state-of-the-art \linguistic{engineering"system for Dutch. Tested on an identical test set (provided by the developers ofMorpa-cum-Morphon), IGTree produced 89.5% correctly transliterated words, whereasMorpa-cum-Morphon only converted 85.3% words correctly (Van den Bosch and Daele-mans, 1993).3.2 Hyphenation and Part-of-Speech TaggingIn order to obtain a better insight into the properties of IGTree, we provide someadditional results obtained with IGTree on di�erent datasets.HyphenationThe problem of hyphenation (assigning syllable structure to the spelling of a word)is de�ned as a classi�cation problem by using windowing as in grapheme{phonemetransliteration. For each target symbol (with a context of letters to the left and to theright of it), the class is either yes (start of a syllable at that position) or no (no startof syllable at that position). The experiment was based on 10-fold cross-validation on15



Table 3: Signi�cance levels of the di�erences between the generalization performances ofIGTree, IB1, IB1-IG, C4.5, and C4.5-p. One or two asterisks (`*') in a cell in this Tableindicate that the algorithm in the row is signi�cantly better than the algorithm in the column.`**' indicates a probability of a Type-I error of 0.001 (t>3.61); `*' indicates a Type I-errorprobability of 0.05 (t>1.73). A blank cell indicates that the di�erence is not signi�cant.IB1 C4.5-p C4.5 IGTreeIB1-IG ** ** * *IGTree ** ** {C4.5 ** ** { {C4.5-p ** { { {a dataset derived from 20,000 hyphenated English words.The performance results indicate that IGTree (94.53%) performs signi�cantly betterthan C4.5 (94.38%) and C4.5 with pruning (92.68%), but performs signi�cantly worsethan IB1 (95.30%) and IB1-IG (95.21%). Interestingly, there is no signi�cant di�erencebetween IB1 and IB-IG. The information gain weights (reecting feature accuracy) areinsu�ciently di�erent in this case to make a di�erence.The averagememory usage again demonstrates the considerable compression (91.1%)obtained with IGTree as compared to IB1 and IB1-IG. In comparison, with pruning,C4.5 obtains 72.5% compression.Part-of-Speech TaggingIn part-of-speech tagging, the task is to disambiguate the syntactic category of a wordon the basis of preceding and following context. Again a windowing approach can beused to translate a corpus of tagged sentences into an instance base. The experimentwas based on a single partitioning of a dataset into a training set of 100,000 instances,and a test set of 10,000 instances.The performance results indicate that IGTree (95.1%) performs signi�cantly betterthan IB1 (85.7%) and IB1-IG (94.7%). In this experiment we used Quinlan's (1993)gain ratio criterion rather than information gain, as not all features have an equal num-ber of values in this problem. Memory compression with IGTree was 91.9% compared16



Table 4: Information gain values of the seven input features (the focus letter F surroundedby context letters) of the grapheme-phoneme-transliteration task and the hyphenation task,and the gain ratio values of the four input features of the part-of-speech-tagging task.Task F-3 F-2 F-1 F F+1 F+2 F+3Grapheme-phoneme transliteration 0.185 0.280 0.711 3.059 0.857 0.381 0.218Hyphenation 0.040 0.093 0.083 0.047 0.081 0.035 0.013Part-of-speech Tagging { 0.06 0.23 0.69 0.21 { {to IB1.In Table 4, the information gain values of the seven input features of the grapheme-phoneme-transliteration task (cf. Section 3.1) and the hyphenation task (cf. Section3.2) are displayed, as well as the gain ratio values of the four input features of thepart-of-speech-tagging task (cf. Section 3.2).4 ConclusionsWe have shown that for two tasks, which are typical for a large class of real-worldproblems in natural language processing (cf. the characterisation of these problemsin Section 1), IGTree performs only slightly worse or better in terms of generalizationperformance than IB1 augmented with an information-gain-weighted similarity func-tion (IB1-IG), gaining considerably in memory resources needed for storage (91.9% and95.1% compression in our experiments), and in search complexity (O(F �log(V )) ratherthan O(F �N), which becomes especially favorable when N, the number of instances,is very large). Comparing IGTree with C4.5, which is aimed more at abstracting fromtraining examples, we note that the current implementation of C4.5 (with pruning) gen-eralizes less accurately than IGTree and IB1-IG, and uses more memory than IGTree.For a third task, viz. word hyphenation, in which there is no outspoken variation in theinformation gain values of the features, we have shown that both IGTree and IB1-IGgeneralise worse than IB1 with the overlap similarity function.IGTree's tree building procedure is not aimed at indexing individual cases, as with17
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