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On the Cores of Cooperative Games and the Stability
of the Weber Set!
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Abstract: In this paper conditions are given guaranteeing that the Core equals the D-core (the set of
unDominated imputations). Under these conditions, we prove the non-emptiness of the intersection
of the Weber set with the imputation set. This intersection has a special stability property: it is
externally stable. As a consequence we can give a new characterization (th. 3.2) for the convexity of
a cooperative game in terms of its stability (von Neumann-Morgenstern solutions) using the Weber
set.

1 Introduction

We will follow the notations and terminologies of Driessen’s book [1988]. Let
N ={1,...,n} be a finite set, the players set. A cooperative n-person game in
characteristic function form is an ordered pair (N, v), where v:2¥ >R is a real-
valued function on the set 2V of all subsets of N such that v(¥) = 0. The class
of all cooperative n-person games with player set N will be denoted by G*. By
I'*(v) and I(v) will be denoted the classical pre-imputation and imputation sets,
ie, I*(v):={xeR"/x; + - +x,=x(N)=0v(N)} and I(v) = {xe I*(v)/x; > v(i)
Vi =1,...,n}. Given a vector xe R" and a coalition S, x(S):= X, s X;if S # S and
x(¢) =0.

For each permutation ¢S, over N, we define the marginal worth vector,
myeR" such that mj(i) = v(P,,U{i}) —v(P,;) where P,,={je N/0(j)<0(i)} is
the set of predecessors of i by 6. The convex hull of the marginal worth vectors is
called the Weber set, W(v):= convex{mj},.; . Each marginal worth vector is an
efficient payoff vector (a pre-imputation): mj(N) = v(N). It is well-known that the
Weber set always contains the core of a game, which is defined by

C(v):={xel(v)/x(S) = v(S) VSe2"} (1)
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Given two imputations x, ye I(v) we say that x dominates y, in short x dom®y,
if there exists an Se2¥, 2 <|S| < n— 1 such that:

I x;>y;,, VieS
2. x(S) < v(S)

If we need to specify the game or/and the coalition used in a domination
then we will write x domy y. If no confusion arises then we will use the notation:
x dom y or x domg y.

For X = I(v) we will denote by Dom? X (or, DomX), the set of all imputations
dominated by some imputation of the set X, i.e.,

Dom® X = {yel(v)/ixeX, x dom® y}.

A set of imputations V< I(v) is a stable set (or von Neumann-Morgenstern
solution) if it is internally stable: VnDomV = and externally stable
Vo DomV =I(v). Therefore, stable sets are the fixed points of function
H:2'® 210 H(X) = I(v)\Dom X, see Lucas (1992).

2 The Core and the D-Core of a Game

Thereexist in the literature two core concepts. One core, C(v), is the solution set of
a system of linear inequalities (1). The second core, called the unDominated core,
DC(v), is precisely the set of undominated imputations. Formally,

DC(v):= I(v)\DomI(v), for any veG".

The core is always included in the undominated core, C(v) = DC(v). Neverthe-
less there are games where both concepts are different (see example 3.1).

If a game has a nonempty undominated core (otherwise both are the same) it is
easy to see that the weak condition,

YSSNuS)+ > v(i)<v(N), 2)
ieN\S
is a characterization for the coincidence of both cores. Formally we have

Proposition 2.1: Let veG" such that DC(v) # (J. Then the following statements
are equivalent:

1. C(v)=DC(v)
2.VSSNo(S)+ Y v(i)<v(N). O

ieN\S
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Itis well-known that superadditivity or balancedness are sufficient conditions for
the coincidence between the core and the D-core. Nevertheless, they can also be
easily deduced from the above proposition.

We would like to point out that condition (2) is equivalent to the fact that in the
0-normalized game, vy(S):=v(S)—Y, (v(i),VS S N, the grand coalition is the
largest in value, i.e.

ieS

¥S < Nuy(S) < v,(N) 3)

A game will be called a 0-normalized N-monotonic game, if it satisfies
condition (2) or the equivalent condition (3) and we will denote this class of games
by

ZN:={veGN/VS§Nv(S)+ 3 v(i)ﬁv(N)} )

ieN\S

This class of games, Z", will play an important role in the next section. Let us
remark that if veZ", then I(v) # &. Moreover, superadditive games (i.e. veGY
such that VS, Te2V if SA T= ¢ then v(S) + v(T) <v(SuT)), balanced games
(i.e. veG" such that C(v) # ), convex games (ie. veG" such that VS, Te2"
v(S)+v(T)<v(SUT)+ (SN T)) and 0-monotonic games (veG" such that ie.
VST v(S)+ X, cnsv(i) <v(T)) are all included in Z".

In spite of the fact that the core and the undominated core are in general not
equal, we are going to prove that under the non-emptiness condition DC(v) # &,
the undominated core can be seen as the core of a new associated game.
Compactness and convexity of the undominated core will be a direct conse-
quence of the following theorem.

Theorem 2.1: For any game veG" such that DC(v) # & follows DC(v) = C(v')
where v/ (S):=min(v(S), v(N) — X s v(1)) vSe2M\{&} and v' (&) = 0.

Proof: Let us point out that v'(N) =v(N), I(v') = & and, given ieN, v'(i) = v(i) if
and only if I(v) # . As a consequence, if I(v)# & then I(v')= I(v) and the
converse is also true. Moreover, DC(v') = C(v') because v'e ZV:

By assumption, DC(v) # &, which implies I(v) # & or I(v) = I(v').

Let xeDom” I(v). Then there exists a yeI(v) such that y dom” x or equivalently
there exists an S€2¥, 2 <[S|<n— 1, such that y,> x; VieS and y(S) <v(S). By
the efficiency of the vector y, we know

yS$)=y(N) = ¥ yi<o(N)= Y v(i)
ieN\S ieN\S

Then y(S)<v'(S) and yel(v') which implies that xeDom” I(v'). So Dom®
I(v) € Dom” I(v').
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The converse inclusion obviously holds and therefore Dom’I(v) = Dom™ I(v')
which implies DC(v) =DC(v')=C("). O

To end this paragraph we are going to study which is the behaviour of two
well-known results devoted to the core C(v) when we replace the core by the
undominated core DC(v). First, we will see that the coincidence between the
undominated core and the Weber set is a characterization of the convexity of the
game.

Corollary 2.1: Let veG". The following statements are equivalent:

1. vis a convex game.
2. DC(v) = W(v).

Proof:

1—2) See Shapley (1971 ) and take into account that C(v) # ¢J for convex
games.

2 1) If DC(v) = W(v), then DC(v) # & and W(v) < I (v) which implies veZ".

Using theorem 2.1, DC(v) = C(v) = W(v) or equivalently v is convex. [

On the other hand, Weber (1978) proved that the core is always included in the
Weber set. This result is not preserved if we replace the core by the undominated
core, as we can see in the next example due to an anonymous referee.

Take the 4-person game v with v(S)=0 if [S| <1, v(S)=1 if [S|=2 and
S#{3,4}, v(3,4) = -2, v(1,2,3)=v(1,2,4) =2, v(1,3,4) =v(2,3,4)= —1 and
»(N)=0. Then the imputation set only cointains the zero allocation and
DC(v)={0,0, 0,0}. Furthermore, if player 1 or 2 enters a non-empty coalition
then the value of that coalition increases, implying that the sum of the payoffs to
player 1 and player 2 is positive in any marginal worth vector and, therefore, in
any element of the Weber set. This proves that the zero allocation is not an
element of the Weber set.

3 Stability and the Weber Set

It is a well-known result that for a convex cooperative game the core is the unique
stable set, but the reverse is not true in general. Since for convex games the Weber
setis equal to the core, we obtain, in the convex case, the stability of the Weber set.
The main objective of this paragraph is to characterize the convexity of a game in
terms of the stability of its Weber set.

To show this we are going to study a stability property of the Weber set.

First of all we will prove that if a game is N-monotonic (i.e. VS= N v(S) <
v(N)) then its positive Weber set W, (v):= W(v) "R is non-empty.
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From this result we will be able to show: if a game ve ZV, then the intersection
between the imputation set and the Weber set is non-empty, externally stable and
C(v)w Dom(I(v)nW(v))=I(v) which means that each imputation either be-
longs to the core or else it is dominated by some imputation of the Weber set, but
never both.

With the aid of these results a new equivalence will be proved: a game is convex
ifand only if the Weber set is a stable set (the unique one). In fact we will be able to
simplify the above characterization for the convexity of a game, only requiring
the internal stability of the Weber set.

Lemma 3.1: Let veG" such that v(S) < v(N) VSe2” (in particular, 0 = v(&f) <
v(N).) Then '

W, (v) # J.

Proof: If W, (v) # & then, by the hyperplane separation theorem, we know that
there exists an a€ R" such that{mj, «) > {x,a) V0eS, and VxeR’,.

Let o be a permutation such that, o ;) > o, > -+ > . Then:

n—1

M-y o = by UIN) + Y, (05— Oiy ) 0(0(1), .. (1))

i=1

n—1

<y 0(N) + > (@t — g 1)) UIN) = 0ty v(N) =
i=1
= <U(N)'ea'(])’a>
where v(N)e, ;€ R, and e, ,, is the corresponding canonical vector i.e.

0 j#a(l),
Loy = {1 j‘:f;u).

As a consequence of the above result we can prove.
Lemma 3.2: Let veZ™. Then
Wv)n I(v) # &.

Proof: Defining the zero normalized associated game vy (S):= v(S) — X, v(i), we
can show in a straightforward way: vy(i) =0 VieN, vy(N) = vo(N)— 2,y v(i) =0
and vy(S) <vo(N), VSe2". Using lemma 3.1, W, (v,) # & or equivalently
W(vo) N I(vy) # . Now using the fact that I(v)=I(vo) + {(v(1),..., v(n))} and
W) = W(vy) + {(v(1),...,v(n))} we obtain Iv)n Wv) # &. O

Once established these previous lemmas we state the main result of this
paragraph.
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Theorem 3.1: Let veZ". Then

1. C(v)v Dom(I(v)n W(v))=I(v).
2. I(v)n W(v) is externally stable.

Proof:

1) Note first that we only have to prove that C(v,)w Dom™ (I(ve) N W(ve)) = I(v,).
In fact, we only have to show that I(vy) < C(vy)w Dom®™ (I(vy) N W(v,)). Let
xel(vy)\ C(v,) we have to prove that xeDom” (I(ve) N W(v,)). Since x¢C (v,), let
T be a coalition of minimal cardinality such that x(T) < vy(T). Let us define w:
2MT R, w(S) = v,( TUS) — vy( T). Let us point out that w is N\ T-monotonic,
which means w(S)=v,(TUS)—vo(T) < W(IN\T) =0o(N)—0v,(T) VS S N\T.
This is true by the assumption that veZ". By lemma 3.1 W, (w) # & and let
ze W, (w). We define ye R" as follows:

0o(T) = x(T)
z, if i¢T 7l

{xi—l—a if ieT where a=
Y=

Let us point out the following properties for the vector y.

1. yel(vy)
IfieT then y, = x; + a > x; > v,(i) = 0.
If i¢ T then y, = z; > 0 = v, (i) because ze W, (w).
2. Y(T) = vo(T).
3. yre W(UOU_).
Since T is a minimal cardinality coalition such that x(T) < vy(T), then
VS « Tweknow x(S) = vy(S) and then y(S) = x(S) + |S|o = x(S) = v4(S). We
know y,,€C (UOIT) < W(v,,)-
4. ydom¥% x.
5. yeW(v,).
By 3 we know y, . € W(v,,) and also y,y, ;= z€ W(w) where w(S) = vy (T US)
—vo(T)forevery S = N\T. Using Weber’s original argument when proving
the inclusion C(v) € W(v) (Weber (1978)), we know
V1= Zpesy Fome  and -y p=3s  Hgmy  where 1, >0, 1;>0,
Dpesy Ao =1and X ps=1.Forevery 0€S,; and 0S y,  we can define
anatural way a permutation ¢ appending both, ¢ = (6, §) and we will obtain
easily y = Zg:s(z,@esN T(/lg - iy) m2° or equivalently ye W(v,).
We have just proved the existence of yel(vy) N W(v,) such that y domi x and then
xeDom®(I(vy) N W(v,)).

2) Since I(v)= C(v)uDom(I(v)nW(v)) = (W) I(v))uDom(I(v)n W(v))
we have obtained the external stability of I(v)n W (v).
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As a consequence of the above result we can give a new proof for the
well-known result about the stability of the core for convex cooperative games
proved by Shapley (1971).

Corollary 3.1: 1f a game veG" is convex, then C(v) is (the unique) stable set.

Proof: We have only to point that a convex game is 0-normalized N-monotonic
(i.e.veZN)and W(v) < I(v). We know that, in general, C(v) is internally stable. By
theorem 3.1 W(v) is externally stable. Since W(v) = C(v), due to the convexity of
the game v, we have finished the proof. [

For those games where W(v) < I(v) it can be checked that veZ" and conse-
quently we can apply theorem 3.1. The consequence will be that the Weber set has
to be externally stable.

Corollary 3.2: The Weber set W(v) is externally stable if the game ve GV satisfies
one of the following equivalent conditions:

1. W)= I(v)
2. YieN VS < N\i o(S)+v(i) <v(Sui)
3. vis O-monotonic [ ‘

Let us point out that the converse implication in the above corollary obviously
holds. In fact, if the Weber set is externally stable then implicitly, in the definition
of external stability, we are taking the inclusion of the Weber set in the imputation
set. The above corollary can be summarized then as follows: the Weber set is
externally stable in the largest class of games where the external stability makes
sense (i.e. the 0-monotonic class of games).

We can prove now the second main result of this paragraph. The internal
stability of the Weber set is a necessary and sufficient condition for the convexity
of a game.

Theorem 3.2: Let ve GV, The following statements are equivalent:

1. visa convex game.
2. W(v) is internally stable.
3. W(v)is a stable set.

Proof:

1 —2) It is well-known since for convex games C(v) = W(v) and the core is the
only stable set.

2 — 3) By the definition of the internal stability, W(v) = I(v), which implies that
veZN. By Corollary 3.2, W(v) is also externally stable, and then W(v)is a stable set.

3—1) If W(v)is a stable set then W(v) < I(v). We can use now theorem 3.1 to
see C(v)uDom(W(v))=I1(v). But C(v)nDom(W(v))= &, since C(v) < DC(v).
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Then C(v) =I(v)\Dom(W(v))= W(v) using the fact that W(v) is stable. But
C(v) = W(v) implies that v is convex. []

Let us finish the paper by connecting paragraphs 2 and 3. As we see in the
second paragraph, some games have C(v)= J and DC(v) # &. We want to
describe some games v where DC(v) is the unique stable set and DC(v) # C(v)
(of course, C(v) = &).

Corollary 3.3: Letve G" such that DC(v) # . Ifv' is convex (see for the definition
of v’ theorem 2.1), then

DC(v) is the unique stable set of v.

Proof: I(v)# & since DC(v) # ¢ and then I(v) = I(v'). In this case the identity
map: Id: I(v)—>1(v') = I(v) is a domination isomorphism i.e. Vx, yeI(v) x domy y if
and only if x dom} y as the reader can easily check. By hypothesis v’ is convex and
then C(v) is the unique stable set for v’. But using theorem 2.1 we know
C(v")= DC(v) and then DC(v) is the unique stable set of v" and using the domina-
tion isomorphism we can obtain that DC(v) is the unique stable set of v. [J

Let us show now an example where the above result can be used to check stable
sets. Nevertheless, the applicability of the above corollary related to the class of
non-convex games with convex derived game v' it is to be expected rather limited.

Example 3.1: Let ve G!"*¥ such that (1) =v(2) =0, v(3) =1, v(12) = 2, v(13) = 1,
v(23)=1, v(123)=2.

This game has an empty core, is non convex and DC(v) # . Checking the
gamev:v'(1) = v'(2) = 0,v'(3) = 1,v'(12) = min{v(12), »(N) — v(3)} = min {2, 1} =
1, v(13)=v(23)=1 and 0v'(123)=2 it is easy to see that v’ is convex. As
a consequence, DC(v) =[(1, 0, 1), (0, 1, 1)] is the unique stable set for v.

Let us point out that if want to use the Gillies’ method to make the original
game, v, superadditive using partitions i.e.

v%(S) = max { > v(P;)/{P;},.o partitions ofS}
e

then the value of the grand coalition will change to 3. As a consequence both
games will have different imputation sets.

Another approach to solve the example is to make use of the monotonic cover
ofvie.

vM(S) = max {v(T)}

TeS
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butin our example the game is monotonic and then the monotonic cover does not
give more information about its stable sets.
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