

Tilburg University

A Language-Action Perspective on the Design of Cooperative Information Agents

Verharen, E.M.

Publication date:
1997

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Verharen, E. M. (1997). A Language-Action Perspective on the Design of Cooperative Information Agents. [n.n.].

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021

https://research.tilburguniversity.edu/en/publications/0c804507-1110-4088-80f6-de4df8e661e9

A Language-Action Perspective
on the Design of

Cooperative Information Agents

UNIVERSITEIT VAN TILBURG
BIBLIOTHEEK

TILBURG

A LANGUAGE-ACTION PERSPECTIVE
ON THE DESIGN OF

COOPERATIVE INFORMATION AGENTS

A LANGUAGE-ACTION PERSPECTIVE

ON THE DESIGN OF

COOPERATIVE INFORMATION AGENTS

Proefschrift ter verkrijging van de graad van

doctor aan de Katholieke Universiteit Brabant,
op gezag van de rector magnificus, prof. dr. L.F.W. de Klerk,

in het openbaar te verdedigen ten overstaan van een
door het college van dekanen aangewezen commissie

in de aula van de Universiteit op
vrijdag 14 maart 1997 om 14.15 uur

door

Egon Marc Verharen

geboren op 7 juni 1965 te Abcoude

Promotor: prof.dr.ir. M.P. Papazoglou
Copromotor: dr. H. Weigand

1.0.
 UNIVERSITEIT *1 e. VAN TILBURG |1-"9" I

SIBLIOTHEEKI
1 TILBURG

© Egon M. Verharen, 1997.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission from the publisher.

Cover design: Edgar Grimbergen

CIP-GEGEVENS KONINKLUKE BIBLIOTHEEK, DEN HAAG

Verharen, Egon Marc

A language-action perspective on the design of cooperative information agents /
Egon Marc Verharen. -
Proefschrift Katholieke Universiteit Brabant Tilburg. - 111.
Met lit. opg. - Met samenvatting in het Nederlan(is.
ISBN 90-9010286-8
NUGI 855
Trefw.: communication modelling /language.action perspective / intelligent agents.

TABLE OF CONTENTS

Prefnre ix

Chapter 1. Introduction 1
1.1 Motivation and Justification 1

1.1.1 Information systems evolution 2

1. The changing role of Information Systems 2
Organizational change 3, The role of communication 4: CIS as normative
systems 6

2. Changing modelling methods............ 7
Business process modelling 7, Communication semantics 8

1.1.2. Taking a Language-Action Perspective 9

1. Basic assumptions. 9
2. The application to business process modelling 12
3. LAP and conceptual modelling........... 13

1.1.3. Cooperative ISs as intelligent agents 15

1, Cooperative information agents... 15
2. Computers as agents, directing human behaviour.................. 18
3. Agent specification18

1.2. Goals of the thesi< 19

1.2.1. Research questions 20

1.2.2. Research approach 20

1.3. Scope 71
1.3.1 Language Action Perspective..21

1.3.2. Artificial Intelligence 21

1.3.3. Logic· 22

1.3.4. Information Systems Engineering 22

1.4. Relevanrp.

1.4.1. Electronic commerrp 23
1.4.2. Business Process Modelling 24

1.5. Contribution of this thesis 24

1.6. Outline of this thesis 75

Chapter 2. Background and Related Work 27
2.1. The Language-Action Perspective 27

2.1.1. Speech act theory 27
1. Austin 27
2. Searle 29
3. Illocutionary logic........ ...,... 11

1!locutionary act. force and point 32; Successful and non-defective
illocutionary acts 35

4. Habermas..................... ···· 38
36

2.1.2. LAP criticism
1. Adequacy of speech act theory forthe design of IS.......................................39

How to apply speech act theory in modelling and design ? 40;
When is speech act theory application appropriate ? 43

vi A language-Action Perspective on tbe Design of Cooperative Information Agents

2.1.3. LAP approaches .. 44

1. Origins 44
2. Business process modelling frameworks 45

DEMO 45, Action Workflow 47, Business as Action game Theory 48:
Discussion 48

2.2. Intelligent agents .49

2.2.1. Definitions of agent 49

2.2.2. Agent theories,-...,,....-...52

1. Intention, action and communication....... 53
2.2.3. Agent architectures 54

2.2.4. Agent languages ss

2.2.5. Multi-agent systemQ 57

1. Commitment and convention. 57
2. Probability and utility 58
3. Negotiation............................. 59
4. Multi-agent system approaches. 59

FCSI agents 59. MultiAgent system framework 60: Vivid agents 60;
COSY 61; Adept 61

2.2.6. Discussion 62

Chapter 3. Business logic framework 63
3.1. Business as Action game Theory. 63

3.1.1. Messages.. 63

3.1.2. Business logic 65

3.1.3. Comparison with other frameworks . 70

3.2. Running example 71

Chapter 4. CIA Architecture 73
4.1. Basic terminology 73
4.2. Architecture ..77

4.3. Knowledge bases ..78

4.3.1. Agenda................ .. 79

4.3.2. Contracts..80

4.3.3. Tasks RO

4.3.4. Transactionc 80

4.3.5. Services RO

4.3.6. Database ..81

4.3.7. Lexicon 81

4.3.8. Comparicon $13

4.4. Interpreter .. 83
4.4.1. Contract Manager RS

4.4.2. Task Manager 87

4.4.3. Service Execution Manager 88

4.4.4. Communication Manager Rq

4.5. Agent specification Language CoLa...89

Table of Contents vii

Chapter 5. Communication Framework. 91
5.1. Transactions

 91

5.1.1. Description 91

5.1.2. Failure handling 93

5.1.3. Dearilines 95

5.1.4. Transaction specification language (Trans) ... 96

1. Business trip transaction examples 99
Special cases 101

2. Transaction types. 103

5.2. Contracts 107

5.2.1. Properties of contrnrtf 107

5.2.2. Creating contracts..······························ 107

5.2.3. Relationships between contracts 109

5.2.4. Contract Specification language (coLa) 113

5.3. Tasks 116

5.3.1. Task Specification language (TaLa) 116

1.Contingencyplan.............. 121

5.3.2. Task Manager 124

1. Planning..125

Agenda 126
5.4. Comparison with other transaction models 130

Chapter 6. Formalizing the Communication Framework 133

6.1. Introduction and motivation 133

6.1.1. Deontic Logic 135

1. Reduction to dynamic logic........137
6.2. Logical foundation for modelling communication 138

6.2.1. The static language I <,2, 139

6.2.2. The dynamic language Lact 140

6.2.3. The transaction language Ltract.. 141

1. Transaction expression semantics. .141
Algebraicactionsemantics 141: State-transitionactionsemantics 145

6.2.4. The dynamic deontic language Ldd 146

6.3. Speech acts and dynamic deontic logic 149

6.3.1. Illocutionary logic for formal communication 149

6.3.2. Ldd extended with speech ar,Q 152

1. Authorization relations 152
2. Speech acts.......................... ············ ·· 154
3. The dynamics of authorization 157

4. Deontic logic axioms and speech acts160
5. Examples..........................161

6.3.3. The illocutionary language I ill 163

1. Semantics of formulas 164
2. Obligations and deadlines. 166
3. Modelling deadline examples. 168
4. Frame axioms. 169

6.4. Conclusionc 171

Viii A Language-Action Perspective on tbe Design of Cooperative Information Agents

Chapter 7. Towards a design methodology 173
7.1. Methodology overview 174

7.1.1. Relationship between models 175

7.2. UoD/EoD separatinn 177
7.2.1. Environment of Discourse example 179

7.3. Methodology StepS 179
7.3.1. Organization analysis 179
7.3.2. Organizational (re)design 180

1. Changing the communication structures 181
2. Modelling the new situation 186

7.3.3. Communication design 187
7.3.4. Task design 187
7.3.5. UoD analyds 188
7.3.6. Specification and database design 189
7.3.7. Implementation 190

7.4. Modelling techniques 191

7.4.1. EoD modelline 191
..,

1. Authorization diagram . .. 192
2. Communication diagrams. 196

Contract diagram 196, Transaction diagrain 198
7.4.2. Task modelling 701
7.4.3. UoD modelling 703

1. NORM 203
7.5. Comparative analysis of business process models 206

7.5.1. DEMO Models 207
7.5.2. BAT-SIMMQ 209
7.5.3. Action Workflow 710
7.5.4. Commodious...

210
7.5.5. 211Electronic contracting..

Chapter 8. Epilogue 213
8.1. Results and Conclusions 713
8.2. Future research..218

Appendix A CoLa EBNF Grammar 721

Appendix B Agent algorithms 723

Appendix C Implementation architecture 777

Glossary 735

Literature 741

Summary 761

Samenvatting 965

Curriculum Vitae 769

PREFACE

Someone once said: "Doing research is a state of mind". For me this prevailed in 1988
while working on my master' s thesis project on deductive databases at the research
department of Hollandse Signaalapparaten BV. After I realized I wanted to do research, I
was offered a research position at the now demised Institute for Language Technology
and Artificial Intelligence (ITK) at Tilburg University. Here I had the chance to gain
experience working on several projects and was allowed the freedom to work on my own
ideas, with as a pinnacle the development of the LEDA (Legislative Design and Advisory)
system, a hypertext-based authoring system that supports legislators in developing
legislative policy and drafting legislative documents for the Dutch Department of Justice.

Although many people urged me to write my thesis on this subject, my interest was (and
still is) more with the application of language technology for the development of
information systems. This really took off with the arrival of Hans Weigand at the Infolab.
From that moment on we started working on the ideas of which the results lie before you.

At the end of 1995 the ITK ceased to exist. I was fortunate enough to be offered an
assistant professor position at the Department of Informatics and Accountancy (BIKA) of
the Faculty of Economics, under the condition that I finished the thesis as soon as possible
(which, by the way, is my favorite deadline). This allowed me to keep on working on the
thesis in a stimulating environment, discussing the ideas with fellow researchers, and
providing me the infrastructure needed to write this dissertation.

The whole exercise took 'a little longer' than originally planned and hoped for, because

of several reasons, that are all part of the life and work of a PhD student, however. Some
fun but time-consuming, such as teaching classes, and setting up and maintaining
computer facilities in the Infolab. I found out (sometimes the hard way) that Parkinson's
Law: "work expands to fill the available volume" does not apply to PhD students; it often
exceeds the available volume. Another reason was my style of writing. To show the
progress and results of the research, papers have to be published. The final goal for every
junior researcher, however, is to publish a dissertation in which all ideas (or at least most)
can be presented without page limitations. I took this too literally, and to the shock of my
supervisors (prof. Michael Papazoglou and dr. Hans Weigand) produced large piles of
paper. I had to learn the hard way that "in der Beschrankung zeigt sich der Meister".
Although still weighing in well over 200 pages, I feel the end result is a balanced book,
that shows my ideas and state-of-the-art research. Probably the main reason however, was
(and for some, is) my unbridled interest in new technological developments. Although
such inquisitiveness might be a good quality for a researcher, the more important and
needed quality is the ability to go deep into the subject matter and stick with it until new

x A LAnguage-Action Perspective on the Design of Cooperative Information Agents

insights can be gained. Finally, this prevailed with the current research on the Language-
Action Perspective and its application in the design of cooperative information agents, and
my hope is that when you read this thesis it provides you with such insights.

Of course, this research would not have been possible without the help of many
people. And this preface would not be complete without thanking them. First of all, I
would like to thank the committee: prof· Mike Papazoglou, my promotor, who at a late
stage took on the job of supervisor and pointed out interesting details, worked
conscientiously through my versions and showed me what writing is all about; prof. Kees

Takkenberg, for supporting my work, the process guidance and discussions; prof. Jan
Dietz, for his comments, and for being an indirect motivator with his work on business
process design and communication modelling that was a great example for this work;
finally special thanks to dr. Hans Weigand, my co-promotor, and dr. Frank Dignum, for
their inspiring thoughts, day-to-day supervision, the discussions, and for being true
mentors, showing me what doing research is all about.

I would also like to thank dr. Peter Braspenning for introducing me to the world of
research, and prof. Robert Meersman for allowing me all the freedom to follow my own
thoughts and interests. Furthermore. thanks to my colleagues from the Infolab: Olga De
Troyer, Jeroen Hoppenbrouwers, Leo Remijn, Winfried Minnaert, Hennie Daniets and the
other inhabitants of the Lab for taking over some of my tasks while producing this thesis
and the collaborative spirit in the process, and thanks to Alice Kloosterhuis for the

secretarial support. I would also like to thank the Vakgroep BIKA and Faculty of
Economics for giving me the opportunity to finish the job at work. Furthermore. thanks to
Sander Bos, who took on the job of implementing the ideas and in the process pointed out
some 'details' that had to be smoothed. Parts of this research have been carried out within
the framework of the LICS (Linguistics in Information and Communication Systems)
project. I would like to thank the participants from the Free University and Delft
University of Technology for the discussions and being a sounding-board for some of the
ideas. Also thanks to the illustrious MMUIS community. Our regular meetings over the
years were an adequate and sometimes much needed exhaust-valve and escape from the
PhD life.

Finally. I would like to thank my roommate Peter Flach for being a motivator, patient
listener, and until now always said the right thing at the right moment, and for technical
hints in finishing this thesis. Thanks to my family and friends for the patierice and I'm all
yours again. Thanks to my parents who gave me the opportunity to take up a study and
supported me in my choices. Special thanks to Edgar Grimbergen, computer artist
extraordinaire, for designing the cover which translates my ideas in pictures. And of
course. my eternal gratitude to Monique, the woman by my side. for the stable home base
where everything seemed to just happen by itself, her support in times it didn't seem to
work. and just for being with me.

Egon Verharen
Vught, januari 1997

CHAPTER 1

INTRODUCTION

Every research project starts with an idea; something to be investigated or worked out. In
this case it was a number of factors. First, the realization that Information Systems today
are used in an entirely different way than in the last decades. Second, the important role
that communication plays in our everyday life and the emergence of the Language-Action
Perspective to describe communication. And third, the next silver bullet in software
design: agent technology. The goal is to combine these three in a new approach to
Information Systems development.

This chapter provides the reader with an overview of the motivation for this research,
its goals, research questions and approach, the scope, application possibilities, and a
description of the contributions this thesis makes, and an outline this thesis.

1.1. MOTIVATION AND JUSTIFICATION

This section explains my view on the world of Cooperative Information System
development. Triggered by technological developments and insights in organizational
theory the role of Information Technology (IT) in general and Information Systems (IS) in
particular in supporting the business activities of organizations has shifted. Especially the
important role of communication is getting increasingly accepted in both informatics and
organizational theory.

Taking this perspective has consequences both for the perception of what an IS is and
does, and for the design of such systems (1.1.1) Communication here is not seen as just
the exchange of information but as the means to bring about coordination of activities of
the communicating parties. This thesis proposes the use of the Language-Action
Perspective as a theoretical foundation for looking at business communication and the
design of ISs that support the coordination of activities, called Cooperative ISs (CIS)
(1.1.2). Although it is possible to implement a CIS in a variety of ways in my view an
agent architecture that supports design based on the Language-Action Perspective is
important and can guide both the specification and implementation of CISs (1.1.3)

1 A language-Action Perspective on tbe Design of Cooperative Information Agents

1.1.1 INFORMATION SYSTEMS EVOLUTION

In this section we take a look at the evolution of ISs and their development. Subsection 1
describes how the role of IS within organizations has changed. As a consequence also the
modelling methods for developing such systems have changed (subsection 2).

1.1.1.1 THE CHANGING ROLE OF INFORMATION SYSTEMS

Over the years the role that ISs play in supporting the activities of an organization has
changed. The schema below shows the changing role of ISs and their typical applications.

processing of data (batch systems)
integration of data (DBMS)
exchange of data (interoperable DBMS)
business process support (workflow)
collaboration support (CSCW)
coordination of actions (CIS, normative system)

table 1. The changing role of IS and typical applications

Traditionally an IS was a means of storing. processing and retrieving data for a
specific function. Later, the IS was supposed to integrate different viewpoints on the
Universe of Discourse of the organization as a whole. An IS was considered to be one
central database and a set of users accessing it through application programs or directly
via a query interface (cf. [Date. 19901). In the mean time, a number of technological and
organizational developments has challenged this viewpoint. The most far-reaching has to
do with communication. In the technological infrastructure of organizations, the database
is no longer a centralized commodity. Nowadays, they are often decentralized and the
integrating function has been taken over by the network, the (information) systems are
connected to each other and have to be accessed using electronic networks, while still
maintaining their autonomy. The purpose of such interoperable databases is to support the
exchange of information within one organization or company or between organizations.

Organizational developments had a more profound impact on the role of ISs.
Organizational changes force an organization to focus on its business processes. The role
of ISs now is to support these business processes, e.g. as is done in workflow applications.
In parallel there is a development to support collaboration between people in performing
their tasks. The common aspect in these developments is the coordination of activities.
Recent years have shown a growing interest in cooperative systems (cf. IPower, 1993}).
More and more applications, like EDI, Workflow management and collaborative
computing or CSCW, are being developed to access different independent resources
inside and outside an organization. Since complete integration of the various resources
might not be possible for technical or organizational reasons, the applications rely on
interaction between the systems. As is described below this can be achieved by
communication.

Introduction 3

To account for this evolution from central database to communicating IS that supports
the coordination of activities in and between organizations the term Cooperative
Information System (CIS) ([Papazoglou et al., 1992]) is used. [De Michelis et al., 1997]
describe in their "Cooperative Information Systems: A Manifesto" that in the literature
CIS are being described primarily as "next generation information systems". Taking a past
call for papers for the CoopIS conference as an example, the emergence of CIS is
described as: "...The paradigm for the next generation of ISs will involve large numbers of
ISs distributed over large, complex computer/ communication networks. This paradigm
ranges from the vast and visionary Electronic Superhighway, to the large and complex
billing system of a telephone company, an even to the small patient IS in a one-doctor
office. Such ISs will manage or have access to large amounts of information and
computing services. They will support individual or collaborative human work.
Computation will be conducted concurrently over the network by software systems that
range from conventional to advanced application systems including expert systems, and
multiagent planning systems. Information and services will be available in many forms
through legacy and new information repositories that support a host of information
services. Communication among component systems will be done in a centralized or
distributed fashion, using communication protocols that range from conventional ones to
those based on distributed AI. We call such next generation IS cooperative information
systems....' [CoopIS. 1994]

The focus in this thesis is on Cooperative Information Systems. The main role of CIS
is the coordination of activities. I view a CIS as a kind of normative system, in which the
coordination is governed by making commitments, described by authorizations and
obligations of the communicating partners. In line with this development also the
modelling methods for the design of these kinds of systems have changed. This will be
discussed in the next section. Below the main reasons for the development of ISs:
organizational change and the role of communication are described in more detail,
followed by a description of a CIS as normative system.

1.1.1.1.1. Organizational change

Rapidly changing products, markets, stronger competition, governmental regulations and
deregulations, and technological developments force organizations to change their shape
and the way in which they conduct business constantly ([Spewak and Hill, 1993]). To keep
up with these changes an organization should be flexible and be able to adapt their
activities to new requirements. Organizations, therefore. organize their activities around
business processes.

Goldkuhl ([Goldkuhl. 1995]) defines a business process as a series of coherent activities
that creates a result with some value for an external or internal customer, through solving

a problem or task for him. The business process is a meaningful wholeness of value

adding activities (value chain), and usually cuts across organizational boundaries within
an organization. The process view emphasizes ,vhat is done in order to satisfy customers.
It gives the organization better insight in their processes. The aim of the organization is to
make their business processes as effective and efficient as possible. A second change in

4 A language-Action Perspective on tbe Design of Cooperative Information Agents

doing business is that organizations focus on their core activities and rely on other
organizations to provide additional but related functions, thereby forcing cooperation
between the organizations. This is also true for large organizations that are split up in
autonomous organizational units.

IT is generally seen as an enabler to achieve new forms of organization ([Hammer,
1990]. [Scott Morton. 19911) However, ISs are no longer used as passive data storage
systems only. but they structure and support the way organizations do business. Their role
is to support the coordination of activities in order to improve the business processes.

The coordination of activities can be done by establishing business rules and standard

procedures. Although efficient, it is not very flexible. The introduction of workflows
makes it more flexible, however they are usually aimed at describing the work within one
organizational unit only, while today's business practice requires not only the
coordination of activities within the organization (e.g. between several unit), but also
between organizations. The most flexible and effective way of coordinating activities in a
dynamic environment where the parties (organizational units or different organizations)
have a strong autonomy is by communication.

1.1.1.1.2. The role of communication

Ivan Reijswoud. 1996] mentions the work of [Hooff, 1995] that describes that business
processes demand effective and efficient business communication. In line with the
research of Rice ([Rice. 1987], [Rice and Shook, 1990]) the article investigates the commonly
accepted hypothesis that, nowadays, businesses need IT in general, and communication
technology in particular, to develop the communication processes and the business
processes to their full potential. Figure 1.1 depicts this relation.

1
IT

+
 Communication

Technology -, 0 4demand () enable
\0-

 ,
Communication Processes

demand(, 4 enable
'.. Business Processes '

4
Business

figure 1.1. The relationship between IT and Business (after [Hooff. 1995])

The idea that communication is responsible for the coordination of action in an
organization is increasingly accepted in informatics and organizational theory. E.g.,

Introduction 5

[Luhmann. 19851 and [Bennett. 1991] consider communication the essential, constituting, or
defining feature of all forms of social organization. Also the organizational theories of
[Galbraith, 19771 , [Morgan. 19861 and [Mintzberg. 1989] emphasized the central role of
communication.

The traditional informatical perspective on communication (being the common
viewpoint in the IS community since the information theory from Langefors [Langefors and

Samuelson. 19761) was the exchange of information between intelligent actors (cf. [Senn.

1978]. [Davis and Olson, 19841. [Reynolds, 1988], [Beek and Jager. 1993]). However, there is an
increasing awareness that communication forms the backbone of organizations and is the
means by which organizations are organized (cf. [Winograd and Flores, 1986], [Medina-Mora
et al.. 1992]. [Dietz, 19928], [Taylor, 1993]). [Taylor, 1993] explains the link between
organization and communication as follows: "At the most elementary level, the purpose of
an organization is to coordinate the efforts of people working on a collective task that has
been broken down into a set of specialized activities. The sum of these activities
represents the capacity of the organization. Coordination is achieved through
communication. Communication is the glue of the organization. A productive
organization, therefore, is a good communication system-ne that achieves coordination
with the least effort and minimal control cost".

[Gmytrasiewicz and Durfee, 1993] describe a 'meaningful' act of communication as the
ability to judge what messages should be sent, to whom, and in what way, given a

particular situation. Communication, in the definition used here, is not just information
exchange, its essence is to commit the partners in communication (called subjects or
linguistic agents) to a course of action so that one can rely on the other.

As described in section 2, a language-action perspective is taken, which says that by

communicating (using language) one is not only exchanging information, but also
performs actions that change the state of affairs. This communicative action framework
emphasizes that information does not only has a content but also an action aspect,
information says something about something, and what is stated, is communicated by
someone to someone else. In this framework communication is the means by which
mutual understanding is reached, which is a prerequisite of successful coordination. The
goal is the coordination of actions through the commitments of the communicating
partners to perform some action.

One has to realize that the way people communicate is changed when ISs are
introduced in the organization. An IS in the communication perspective can be
characterized as a vehicle for human communication ([Goldkuhl. 19931) People use ISs for
sending and receiving messages through the system, which in addition, can be used to
store messages, process information. and create and present new messages ([Eriksson,
19961). The ISs become information and communication systems. Such systems, here
referred to as Cooperative ISs, can be seen as normative systems that manage the
commitments made through communication in order to improve cooperation and support
the coordination of business activities.

6 A l.anguage-Action Perspective on tbe Design of Cooperative Information Agents

1.1.1.1.3. CIS as normative systems

When coordination of business activities is achieved by commitments of communicating
actors, we can use an IS to store and manage the commitments resulting from the
communicative acts of the actors. A commitment is something one must fulfil. The very
nature of commitments implies that one must record them in some way, otherwise they
cannot be 'true' commitments. In case one makes a promise and then forgets it, the
commitment is broken. When a company makes business commitments there is need for
keeping them in order, otherwise they might easily be broken. However, data records are
often not viewed that way. E.g., take a credit limit field as a data record. The duration of
the limit is part and result of a communicative action performed by a bank clerk. It is not
just a description of an objective state of the world, but records a commitment made, and
in this way governs future business actions by the bank and its employees.

[Jones and Sergot. 1993} argues that, at the appropriate level of abstraction, law,
computer systems, and many other kinds of organizational structure may be viewed as
instances of normative systems. They give the following definition of normative system.
"A normative system refers to any set of interacting agents whose behaviour can usefully
be regarded as governed by norms. Norms prescribe how the agents ought to behave, and
specify how they are permitted to behave and what their rights are. Agents may be human
individuals or collections of human individuals, or computer systems or collections of
computer systems. Normative systems include systems of law, abstract models of
computer systems, and hybrid systems consisting of human and computer agents in
interaction". A normative system is guided by explicit norms and enforces them in order
to achieve the rationalization of administration ([Weber, 19561), improvement efficiency in
coordination ([Galbraith. 1973]. [Lee. 19851) and social equity ([Ryu and Lee, 1992]) Norms
have the common feature that they regulate behaviour, e.g., organizational regulations are
the means of structuring and regulating administration.

In order to describe or specify systems in the behaviour of which norms play a role
normative concepts such as the authorizations (permissions and prohibitions) and
obligations of communicating partners are needed. An obligation is the result of a
commitment to perform a certain act and authorizations restrain or allow the commitment
to and operation of an act (including doing other communicative acts). In a
communication situation, the authorization is mainly used to grant permission to the
effective operation of a communicative act, i.e. an authorized speech act has direct effect
on the obligations. knowledge and belief of the hearer (see section 6.3). Despite the
growing interest in the behaviour of normative systems (e.g.. see [Meyer and Wieringa.
19931), little has been said about how norms that govern these systems are established.
Many of the obligations and authorizations in normative systems exist as a result of
conimunication with users and/or other systems, e.g., an accepted order for a certain
product results in the obligation to deliver that product.

Cooperative Information Systems can be seen as normative systems that manage the
commitments made through communication. Although not all activities can be fixed once
and for all, due to uncertainties in the environment and the freedom of the actors, it is
nevertheless a constant organizational effort to explicate commitments (both intra- and

Introduction 7

inter-organizational) in order to improve the cooperation and support the coordination of
the business activities. CISs are instrumental in this effort, not only by taking over certain
routine tasks, but most importantly by explicating, up to the level of formalization, the
rules of the communicative actions.

1.1.1.2. CHANGING MODELLING METHODS

In line with the change in role of the IS also the modelling methods used in designing
these new systems changed.

In the field of IS-design the dominating perspective has been a "data storage
paradigm" [Lyytinen, 1985]. Traditionally only the static data was modelled. The most
fundamental activity of system design is seen as the mapping of a Universe of Discourse
into abstract symbolic models describing a portion of the world, using a graphical diagram
technique such as Entity-Relationship (ER). The application logic (transforming input into
output) is modelled using Data Flow Diagrams (DFD). These models also are a means for
software design, where the conceptual model is viewed as an early version of a database
schema. The need for more flexibility and the shift towards radical modularization of
system and system specification led to Object-Oriented modelling methods. Although
these approaches have advantages, such as ensuring the reliability of a future system,
understanding for non-computer-experts and, when given a formal and precise
interpretation, suitability for software specification, it can be critized for presupposing that
all information is used for one purpose only, i.e. to describe things. This is labelled "the
descriptive fallacy" ([Austin, 1962]). The approach is likely to have problems with non-
descriptive information, like customer contracts, promises and orders. It is difficult, if not
impossible, to understand the meaning of a contract without taking into account how it is
used. More generally, the descriptive approach provides little theoretical support in
analyzing why certain types of information are needed. However, all these methods have
problems modelling the business processes and communicative behaviour of the systems.
A theory is needed that describes how and why people use information. Therefore
communicative aspects of IS-usage and design need to be stressed more.

1.1.1.2.1 Business process modelling

Business process is a central concept in the field of Business Process Modelling and
Reengineering (or Redesign) (BPR, [Davenport, 1993,1995], [Hammer and Champy, 1993]).
In the development of the BPR model concepts were borrowed from organisational
science and economics, such as industrial organization economics for strategic
management ([Porter, 1980]) like Porter's Value Chain ([Porter, 1985]). But as [Dietz, 19948].
[Davenport and Stoddard, 1994], and [Goldkuhl, 1995] state, current approaches to BPR lack
the ability to support communication in the more specific aspects of systems design,
creating "more myth than practical methodology" ([Dietz and Mulder, 1996]). As van
Reijswoud shows in his thesis ([van Reijswoud, 1996]) "the use of methods for BPR and
TQM in which business communication is considered fixed instead of variable results in
sub-optimal solutions".

8 A language-Action Perspective on tbe Design of Cooperative Information Agents

On the other hand methods from computer science were introduced to model the
business processes. These design methods (of which many are still used today) are based

on the idea of similarity between business and computer software processes. Business
processes were seen mechanistically as if they were computer programs ([Taylor. 19931).

These methods therefore are an extension of software engineering principles. This
implementation driven approach focuses on the documental and informational level for
increasing the efficiency of the current organization only and not on the 'essential' level,
describing the core business processes where new facts are created ([Dietz and Mulder,

1996]). As Dietz describes, "One of the rules of thumb [for developing IS] became:
automation has to fit precisely in existing organizational procedures and documental
flows. This rule is contrary to the approach of business redesign".

In order to improve business a new paradigm for BPR is needed. Since business
processes structure the work of people in the organization the social and communication
aspect is important. As we will see in section 2 the language-action perspective describes
how language and communication can be used for this.

1.1.1.2.2 Communication semantics

The communication aspect has been largely ignored in IS development methods (e.g., it is
virtually absent in the [ISO. 19821 report on conceptual modelling methods). The main
focus was on information content only. Now, the field of IS engineering and research has
switched its focus from data to communication. This has consequences for what is called
data semantics, which traditionally was the way the UoD was captured in the form of
conceptual models and dealt with the static and dynamic integrity rules of database
systems ([ISO, 1984]) However, now a database must be able to communicate as well.
Thus data semantics should include semantics of the communicative behaviour. The focal
object of data semantics is no longer the fact, or proposition, but the message. The
contents of the database become less interesting than the interfaces between systems. For
the organization, it is of utmost concern that the various systems inside and outside can
cooperate, and that the semantics of this interaction is well-defined. The systems can be of
various types and the management is often decentralized, causing their local semantics to
be less important. Since interfaces often have to reconcile conflicting viewpoints, and
have to be established by different, autonomous, parties there is an increasing need for
standards. This is evident on lower levels of communication, for which standards have
been developed already, but also applies to the semantic aspect (OSI's 7th layer).

In conventional modelling techniques the idea of information sharing is
conceptualized as data flows (e.g., see [Olle et al.. 1988]). Communication is considered as
a black box that has a certain input and output that is defined as the sharing of information
between different actors. However, it is recognized that it is not enough to view data tlow
and its control when redesigning organizations and developing ISs ([Verharen et al..
1996b]). Or as Goldkuhl states ([Goldkuhl. 19961): "An 'information factory' metaphor of
an organization has its severe restrictions. since -when focusing on data objects and data
flows- it tends to neglect human actors and their action and co-action". What is needed
is a way to describe this coordination of actions. A good way of doing this is by looking at
the communication in organizations.

Introduction 9

1.1.2. TAKING A LANGUAGE-ACTION PERSPECTIVE

Recent years have shown a growing awareness that besides organizational, social, and
mathematical theories also linguistic theories can be relevant for IS design in general, and
CIS design and the modelling of communication patterns in particular. The introduction of
the Language-Action Perspective (LAP) in the field of ISs by Flores and Ludlow ([Flores
and Ludlow. 1980]) has proven to be a new basic paradigm for a new generation of IS
design methods and BPR Models ([Dietz. 1994a]). This section describes first the LAP
approach in general, and after this is described how taking a language-action perspective
influences my approach to business communication modelling and the design of CIS.

1.1.2.1. BASIC ASSUMPTIONS

Much of the work in today's organizations is performed through language. We attend
meetings, talk to colleagues, make promises, negotiate with customers, speak in mobile
phones, send faxes and email. The core of much work has come to be communication and
social interaction. The basic concern of the language-action perspective is to understand
why people need to communicate at work for different purposes. In contrast to traditional
views of data flow, the language-action perspective emphasizes what people do while
communicating; how they create a common reality by means of language and how
communication brings about a coordination of their activities. Flores and Ludlow propose
the following claim as the basis for the language-action perspective ([Flores and Ludlow,
1980]): "Human beings are fundamentally linguistic beings: action happens in language in
a world constituted through language".

As [Holm.. 1996] states: "The explosive development of networking and infrastructure
enables innovative usage of information technology (IT) to support communication and
cooperation in organizations and work settings. This calls for theory and methodology to
inform design". The theoretical foundations for the language-action perspective, first
proposed by Flores and Ludlow ([Flores and Ludlow, 1980]) and developed in greater detail
by Winograd and Flores ([Winograd and Flores. 19861), have remained relatively stable over
the years. A set of methods, techniques and software artefacts have evolved, that may be
seen as a kind of "communication paradigm" in the way [Winograd and Flores, 1986] argued
for a 'new foundation for design', and are collectively referred to as the Language-Action
Perspective (LAP).

This new orientation in design is directed towards the development of computer
software for organizational communication and action. Organizations are viewed as
networks of commitments and undertakings ([Flores et al., 1988]). [Hirscheim, 1985]
describes the LAP as one of the views on organizations, that looks at organizations in
terms of social action mediated through communication. The focus is on language actions
as a means to understand organization. The physical attributes of a given human activity
and the rules of the human interaction are framed as linguistic phenomena ([van Reijswoud,
19961). The analysis of organizations is performed on the basis of the communication that
is used by the workers in an organization.

10 A Language-Action Perspective on tbe Design of Cooperative Information Agents

The basic assumptions underlying the LAP are ([Lyytinen, 1985], [Holm, 1996]):

- the primary dimension of human cooperative activity is language. Action is
performed through language in a world constituted through language. Natural
language sentences correspond to the performance of social acts.

- the meaning of sentences for the actors in a social setting is revealed by
describing the kinds of acts that have been performed through their utterance.

- cooperative work is coordinated by the performance of language actions, called

speech acts.
- the speech act is the basic unit of communication.
- speech acts obey socially determined rules. Since these rules govern the

performance of speech acts, they permit the systematic study of meaning, and
more generally, linguistic behaviour.

- the design of IT has a focus on getting things done, whenever work involves
communication and coordination among people. The act of doing something, the
recurrent patterns of interaction, and the articulation of these are what concerns
the designer of information systems.

- whenever a task is being performed for a customer, a generic sequence of speech
acts occur. The sequence typically starts with a request from a customer, then the
performer makes a promise, etc.

- worker accountability and customer satisfaction are made explicit.

The core of the theoretical foundation of the LAP is formed by Speech Act Theory. On
the basis of this philosophy, organizational communication is seen as the exchange of
speech acts for the purpose of coordinating organizational activities. Although different
theories of speech acts have been proposed, the most dominant is Searle's Speech Act

Theory ([Searle, 1969,1979], described in more detail in chapter 2). Speech Act Theory
provides a means to analyze the communication in detail at three levels: content
(propositions), intention (illocution) and effect (perlocution). Form (syntaxis) of the
communication is of less importance here than 'why' and 'what' is communicated. Speech
Act Theory is based on the initial work of Austin ([Austin. 1962]) on performative use of
language. He described that although one usually thinks of conversations as exchanges of
information, in certain kinds of conversation the communications may not only be
informative but also performative in that they change the state of affairs and commitment
among the parties.

The introduction of the LAP in the area of ISs has grown to a mature line of research,
and has become a well-known framework and foundation for modelling and design of
computer support for communicative action. The first results of taking a LAP to the
development of ISs were laid down in the communication supporting tool the Coordinator
([Winograd and Flores. 1986]. [Winograd, 19881, [Flores et al., 1988]) Based on speech act
theory and the performative use of language Winograd and Flores developed what is
called the 'conversations-for-action' theory Examples of such conversations-for-action are
negotiations, where each of the parties ends by committing to a certain plan. Kensing and

Introduction 11

Winograd articulate its relevance for the analysis of cooperative work ([Kensing and
Winograd, 1991]): "Cooperative work is coordinated by the performance of language
actions, in which parties become mutually committed to the performance of future actions
and in which they make declarations creating social structures in which those acts are
generated and interpreted".

CSCW and computer mediated communication systems still are main areas of
application for the LAP (e.g., [Gasparotti and Simone, 1990], [Dietz and Widdershoven, 1991 1,
[Agostini et al.. 19941, [De Michelis and Grasso, 1994]). The use of speech act theory for the
development of ISs has further been explored and discussed extensively. Examples are the
CHAOS system ([De Cindio et al.. 1986]), the SAMPO method ([Lyytinen, 19851, [Auramiiki.
1988], [Auramaki et al., 1988,1992a. 1992b]) and the Ordit approach ([Blyth et al., 1992]).
From the early applications of the LAP in IS development its use has also spread to
application in analyst-user communication (e.g., [Janson and Woo, 19921, [Tan, 19931),
workflow management (e.g., [Schal and Zeller. 1993a.b]. [Schal, 19951), electronic commerce
(e.g., [Covington, 1996]), business process modelling (e.g., [Dietz, 1994a. 1994b]. Ivan
Reijswoud and van der Rijst. 1995]) and organizational modelling for the purpose of IS
design (e.g., [Holm, 1994,1996], [Johannesson, 1995], [Goldkuhl. 1995], [Dignum and Weigand,
1995bl, [Weigand et al., 1995]. [Verharen et al., 1996], [Verharen and Dignum, 1997]).

The more widespread the LAP has become, the more it has also been debated and
critized, e.g., see [Bowers and Churcher, 1988], [Dietz and Widdershoven, 1992], [Bowers, 1993],
[Schmidt, 1993], [Suchman, 19941, [CSCW, 1995]. Part of this criticism came from disciplines
such as the philosophy of language, linguistics, sociology and ethnomethodology, and is
purely conceptual, i.e. it is not grounded in specific empirical studies of the LAP in use. I
will not go into the critique here in detail, but refer to section 2.1.2 for this.

Much of the critique does not really denounce Speech Act Theory, but Searle's version
of it. Especially its adequacy for describing human communication is criticized. The
criticism is not on the use of speech act theory for the design of IS as we are interested in
here. In this thesis Speech Act Theory is not used as a descriptive framework, but instead
its elements are used to model communication for the design of automated systems.
Section 2.1.2 describes how Speech Act Theory is adapted to be used for this purpose.

However, since the interest is with supporting the coordination of activities based on
the mutual commitment of the communicating partners that arises from performing
communicative actions the critique of Habermas must be taken into account ([Habermas.
19811). Habermas makes a distinction between communicative actions that are directed
towards mutual understanding of the communicating partners, and strategic action where
people strive after their own goals. He also criticized the one-sidedness of Speech Act
Theory in only paying attention to the role of the speaker and not so much the role of the
addressee. Furthermore, he makes a distinction into three reference worlds: objective
world (referential), subjective world (individual), and social world (social). These worlds
describe the different intentions of people when communicating. In a social situation these
can be questioned and may be negotiated. In section 2. 1.1.4 a n overview of the work of
Habermas is presented, and in the next subsection the consequences for the approach
taken are described.

12 A language-Action Perspective on tbe Design of Cooperative Information Agents

1.1.2.2. THE APPLICATION TO BUSINESS PROCESS MODELLING

Here some of the important modelling decisions that are made when following a LAP are
described and the consequences this has for the design of business communication and
supporting IS.

Inspired by the LAP, methods like DEMO ([Dietz, 19928,19944b]), Action Workflow
([Medina-Mora et al., 1992]) and BAT ([Goldkuhl, 1995]) focus on communication processes
to understand the business, instead of on the current organisational structures or
documental flows. The LAP argues that the core of an organization is the network of
discrete recurrent communicational actions (or conversational transactions). Taking this
approach I also aim at capturing the essence of organizations by analysing the business

processes as discrete recurrent (communicative) transactions.
The generic model for business transactions (based on Goldkuhl's BAT (chapter 3)

and the communicative action theory of Habermas (section 2.1.1.4) that are adopted in
this thesis provide an ontology which serves as a foundation for design, specifying the
mechanisms which have to be supported. Instead of only focusing on the exchange of
speech acts the focus is on rational coordination of action leading to mutual agreement by
negotiation about the conditions for it. This approach is described by [Hirschheim, 1985] as
the transactional view on organizations. It perceives organizations as arenas of
information exchanges which operate on the basis of contracts. Organizations are viewed
as stable networks of transactions which are regulated through processes of coordination
and control, by a set of contracts.

IS development is considered to be development of action and communication in the
organization. It is also the development of business relations. Taking a LAP has
consequences for the way to delimit business processes in the development of them and
their supporting ISs. The supplier has its business process, and this process is interlinked
with the business processes of the customers. When describing a business process one
should focus on the initiation of them through offers and orders and the termination of
them through fullilment of commitments. One should also take into account the
achievements of customer and supplier satisfaction.

In this thesis the focus is on a theory for the design of (automated) ISs as instrument
for organizational change. As in BPR the processes are not viewed to be rigid and the
organization to be a strict bureaucracy where the actors' behaviour is predetermined and
predictable. Taking a LAP does not allow for the design of all organizational
communication, but is applicable in situations where routinization and control of a set of
activities is desirable, such as an ordering procedure in organizations.

The application of Speech Act Theory here differs from an attempt to describe all
kinds of organizational communication in terms of speech acts. Here, some of its basic
ideas are applied to organizational communication related to the use of ISs. Furthermore,
the focus is on institutionalized behaviour, not on everyday use of natural language. It is
in this light that the business logic framework should be seen as a practical building block
in IS design and not as ultimate theory about human coordination. By imposing customer

Introduction 13

and supplier roles in situations where these labels are not naturally used, I believe (as
[Winograd. 1994]) that in BPR organizational effectiveness is increased because of the
possibility to describe communication structures by the use of explicitly identified, clear
and unambiguous speech acts which lead to a more effective coordination.

Although not all activities in a business situation can be fixed once and for all it should
be a constant organizational effort to explicate commitments (both intra- and inter-
organizational) in order to improve the cooperation and support the coordination of the
business activities.

1.1.2.3. LAP AND CONCEPTUAL MODELLING

This subsection describes the different views on the discourse to be modelled, and the
formal framework for the modelling techniques.

IS development begins with an understanding of the organization. It is important to
understand both the information context (the business processes) and the information
content (the information the processes work on). Taking a LAP we not only focus on the
information structures but also how they are used in the business processes and the
communication within and between organizations to improve the coordination of the
processes. To be most useful, ISs must be derived from this base of knowledge about the

organization.

The central task in IS design is building a Conceptual Model (CM) of the domain for
purpose of problem understanding and system design. It is an explicit description of the
domain. Since the CM should describe all relevant aspects, rules, etc., of the specific
domain (environment of the organization, or a part of it), taking a LAP two aspects or
'projections' of the CM should be distinguished: on the one hand, the IS will be situated
in some organizational environment where it supports the communication and
coordination (information context as it was called before). On the other hand the system
holds information (data, rules) about the domain (the information content). The former is
represented in the Environment of Discourse (EoD) and the latter in the universe of
Discourse (UoD).

The EoD describes the discourse as a process without going into the contents. What is
said, and more in particular the meaning of these terms, is described in the UoD. Typical
objects in the EoD are the linguistic agents (human or computerized), the message types.
and the rules that prescribe and describe the communication (authorizations and
obligations). In the UoD typical objects are domain related objects like 'order form',
'product description' and their relationships. Whereas the IS itself is usually not found in
the UoD -the IS takes an objective stance- it is the central object in the EoD. Of
course, the two domains are closely intertwined, because the discourse going on in the
EoD is about the UoD. The EoD is not worked out in traditional IS design methods and is
also largely missing from today's popular 00 design methods. In chapter 7 the separation
between EoD and UoD and the modelling techniques based on it are described in more
detail. Figure 1.2 gives a graphical representation of the relationship between EoD and
UoD and IS.

14 A language-Action Perspective on tbe Design of Cooperative Information Agents

*90 0
O UOD

11*1\ 1 6.6. 10
u s e r. : user. -

60 Information system . 0

figure 1.2. Environment of Discourse, Universe of Discourse and the IS

The analysis of the domain is important to obtain a better insight into the problem. If
the goal is to design an automated IS the analysis models are used as input for a design
phase. To be able to verify that the IS will work as anticipated a formal design
specification is desired. In the previous section it was argued that taking a LAP to design
of CIS can be valuable. The major thrust of this approach is the description of
communication models. Although a number of methods have appeared that follow this
line of thinking (see section 1.1.2.2 above and section 2.1.3.2) there is not much
convergence yet on the formal and logical underpinnings of the models.

Speech Act Theory has been given a formal framework with illocutionary logic
([Searle and Vanderveken, 1985]), described in section 2.1.1.3. However, the basic idea
behind the theory (and logic) is the description of human communicative behaviour. In the
approach taken here the basic concepts of the theory are used to describe the
communication between formal systems. Therefore some adaptations are made to the
original Speech Act Theory (described in more detail in section 2.1.2.1). This also means
an adaptation of the original illocutionary logic. How the changes influence the formal
framework is described in detail in chapter 6.

A second observation is that in the LAP the important concepts of authorization and
obligation, needed for the successful description of coordination of business activities,
have not been worked out. While authorizations are not new either in Speech Act Theory
(e.g. the conditions for illocutionary force of Searle, in section 2.1.1.3) or computer
science, it is surprising to see that almost none of the methods to IS design for
communication support (e.g. DEMO ([Dietz, 1994a,b]), Action Workflow ([Medina-Mora et
al.. 1992]), SAMPO ([Auramaki et al., 1992al). and BAT ([Goldkuhl. 1995])) explicitly model
the authorizations. Not only the approach presented here explicitly does, also the
dynamics of authorizations (and obligations) have been worked out in more detail.

In order to be able to reason about, and manage, and even enforce, authorizations and
obligations deontic logic is used. Deontic logic is a variant of modal logic which refers to

Introduction 15

the logical study of normative use of language in which the statements of "it is obliged...",
" it is permitted..." etc. occur. It can be used to describe what it means and what should
happen if illegal but possible behaviour occurs. To this end, special modal operators are
used that indicate the status of behaviour, i.e., whether it is legal (normative) or not. The
fundamental reason for the use of deontic concepts is that coordination of behaviour
always requires some form of agreement and mutual commitment. Under the action-
oriented framework of communication, it is vital that obligations and authorizations of
service providers and customers are modelled and enforced for cooperation. In this way it
is possible to reason over any uncooperative action rather than classify them as true
failure (leading to unnecessary rollback or recovery actions). Essential here is that deontic
logic is valuable whenever it is necessary to make explicit, and then reason about, the
distinction between what ideally is the case on the one hand, and what actually is the case

on the other.

This thesis claims that the combination of illocutionary logic (the logical formalization
of speech acts theory, describing the types and effects of the messages) and deontic logic
(the logic to reason about obligations and authorizations) can contribute in modelling the
communication processes and resulting norms, and reason about the communication
structures. The use of deontic logic also makes it possible to describe the course of action
in the cases that the communication protocol fails, which is of particular interest for the
specification of flexible transactions in the context of CISs. In chapter 6 the formal
framework for the specification technique for business communication modelling and
their supporting ISs is discussed.

1.1.3. COOPERATIVE ISS AS INTELLIGENT AGENTS

In this thesis CISs are seen as intelligent agents. This section clarifies my choice for using
the agent concept as design metaphor. First is described how a CIS can be seen as an
agent, being an active participant in the communication processes. Many LAP researchers

object against attributing human properties like communication and commitment powers
to automated systems. In their view ISs are only supporting communication between
human agents. Subsection 2 contains some of my thoughts on seeing computer systems as
communicating agents and their role in directing human behaviour. The third subsection
describes how such agents can be specified.

1.1.3.1 COOPERATIVE INFORMATION AGENTS

For ISs to be able to cooperate they must have an intelligent interface that can cope with
all types of requests for information from users or other systems. In this light ISs actively
maintains its information; it communicates with other systems and reasons about the
information it contains. It might decide to search for information it needs by enquiring for
it from other ISs, preferably in ways it negotiates with (and lays down in contracts with)
those other systems. It can respond intelligently to messages explaining why a request

16 A Izinguage-Action Perspective on tbe Design of Cooperative Infonnation Agents

does not have an answer, propose alternatives, or it can negotiate about which requests it

responds to and which ones have no effect. For this purpose the IS should contain a task
module that plans the taSks it has to fulfil. Active interoperability of IS in the sense of
task-oriented cooperation between intelligent front-ends has led to the development of
CISs. I refer to the autonomous, intelligent CIS with tasks and communicating according

to contracts as a Cooperative Information Agent (CIA).
The interest in CIAs from the (cooperative) IS-. database- and distributed artificial

intelligence research communities has led to the organization of the first international
workshop on Cooperative Information Agents in Februari 1997, where also the approach
described in this thesis is presented ([Verharen and Dignum. 1997]).

As described above I propose to take a Language-Action approach to designing CIAs.
Looking ahead to the design methodology (chapter 7) in my eyes the best way to
generalize over the use of communicating and cooperating systems, is by modelling the
communication structures in the domain in terms of (human) agents and the
communication lines between them. Each communication line can be viewed as an
authorization, e.g. the authorization to place an order or ask for payment. The automation
of a communication model assigns a CIA to each agent (assuming here that the
communication is automated totally, which need not be the case of course). Each of these

CIAs falls under the responsibility of the respective agent. The original communication
structure can then be replaced by communication between the CIAs.

CIA . CIA

CIA agent - - -

* W- · 'CIA

figure 1.3. Communicating agents

It is considered important that the IS contains the one and only correct version of the
data. hence reducing redundancy and possible conflicts resulting from that redundancy.

As a consequence, the responsibilin· of the system is a company concern, typically
delegated to a central person or department. In the case a traditional database exists, and
we do not want to reengineer the business processes. it is possible to 'agentify' the
database by encapsulating it in a CIA (akin [Shoham. 1993]) thereby integrating it in the
agent architecture as described in section 4.2.

In this thesis the term 'agent' is often used both for human users (e.g. supplier and
customer in a contracting situation), following the normal usage in linguistically oriented

Introduction 17

methods, and for a CIA. From an analysis point of view the agent is a real-world person or
company. From a design point of view the agent can also be a piece of software to which
the person or organization has delegated some of his tasks. The CIA is to be distinguished
from the objects stored in the database. The CIA communicates with other agents and
executes actions on its objects on the basis of the incoming messages or on its own
initiatives according to the tasks delegated to it.

Recent years have shown a growing interest in intelligent agents. Although there is no
consensus in the research community on what an agent is precisely, in this thesis an agent
is defined as follows: An agent is an autonomous compumtional entity and its behaviour
is not predefined but based on commitments to other agents.

The choice of agents as the solution technology was motivated by the following
observations (also described in [Jennings et al.. 1996a]):

- the typical application domains, like banking, health care, agriculture, and the
example used throughout the thesis of booking a trip involve an inherent
distribution of data, problem solving capabilities, and responsibilities;

- the integrity of the existing organisational structure and the autonomy of its
subparts needs to be maintained;

- interactions can be fairly sophisticated, including negotiation, information
sharing, and coordination:

- the problem solution cannot be entirely prescribed from start to finish, the
problem solver needs to be responsive to changes in the environment and to
unpredictability in the business process and pro-actively take opportunities when
they arise.

Other candidate solutions like distributed object systems have the encapsulation but
not the reasoning capabilities required for social interaction and pro-activeness, and
distributed processing systems deal with the distributed aspect of the domains but not with
the autonomous nature of the components. The set of requirements leaves agent
technology as the strongest solution candidate.

An agent is seen as an autonomous entity with certain tasks that communicates with
other agents by means of messages. Each agent has certain capabilities, actions that it can

perform. These actions can be conventional, such as opening a window, or
communicative, such as providing some piece of information. Each agent also has an
agenda (or a set of 'obligations'. 'things to be done') containing the actions to be
performed by the agent, instantly or at some designated point in time. The agenda is not
fixed but can be manipulated. New obligations can be added to the agenda, e.g., at the
request of another agent. Other obligations stem from the agent's personal tasks.
Obligations can also be removed by performing the obligated actions or by violating the
obligation. In the latter case the agent usually is obliged to perform some new action that
compensates for the violation. The life cycle of the agent consists of processing incoming
messages, checking the agenda, and performing the actions due at that time. The
architecture of a CIA is described in section 4.2.

18 A language-Action Perspective on tbe Design of Cooperative Information Agents

1.1.3.2. COMPUTERS AS AGENTS, DIRECTING HUMAN BEHAVIOUR

In the LAP research community, there is a sound aversion against attributing human
qualities to machines. It rightly maintains that interpretations and commitments are not
made by systems, but by the users and designers. However, there are two reasons why I
think the agent conceptualization is applicable: as a metonym and as a metaphor.

By a metonymic use of 'agent' is meant that the computer typically plays a role as
"active structured communication medium" ([Winograd and Flores, 1986]), and its 'tasks'
and 'commitments' are just shorthand for the tasks and commitments of its users. I agree
with [Auramaki and Lyytinen, 1996] that "agreement cannot be coerced by computer support
but computers can give spaces for representation where people can compare their views
and negotiate, help them to recall commitments and contracts, track the states of
commitments, and also remind people of their roles in (routine) workflows". Also for us
humans as linguistic agents, 'agent' is a useful design metaphor rooted in our own
experience and richer than other design metaphors such as 'object' or 'desktop'.

The same more or less holds for my view of CISs as normative systems and the use of
deontic logic. Most of the applications of deontic aspects in computer science involve the
prescription of human behaviour in deontic logic. As [Wieringa and Meyer, 1993] describe:
"The specification of norms for user behaviour, of organization policies, or organizational
behaviour are all applications in which norms applicable to the behaviour of people are
specified in deontic logic. If the specification is implemented in a computer, then we have
the novel situation that computers may actively deduce permissions, obligations or
prohibitions applicable to people".

Although it is not new to let computers direct human affairs, e.g. payroll programs
apply law in their computation of tax deductions or the use of traffic lights that regulate
traffic, the breadth and complexity increases if we implement deontic logic specifications
in computers. Wieringa and Meyer [ibid.] give conditions under which the application of
computers to interpret norms becomes possible and practically feasible. An important
principle here is delegation. As Wieringa and Meyer say, delegation of authority to a
machine is possible, and even necessary, if the machine is to issue instructions to people,
as long as the final responsibility for the acts of the delegate (the one delegated the task
to) remains with the principal of delegation (the one delegating). As described above the
user can delegate some tasks to the CIA, but the responsibility always rests with that user.

1.1.3.3. AGENT SPECIFICATION

Intelligent agents have gained much interest in recent years. Research in agent technology
mainly focused on devising formal theories with which (mental) component of agents as
intentional systems can be described. Architectures for agent systems that are proposed
range from purely theoretical, based on the formal theories, to hardware architectures for
robots. The next chapter discusses several approaches.

Most theory and architectures are based on a form of belief, desires and intentions
framework. The task of providing a complete model of an agent in terms of mental
attitudes is highly complex. It is beyond the scope of this thesis and left for future work.

Introduction 19

Instead I focus on reasoning about interactions. For this a model of reasoning about
actions is needed. The aim is to describe a formal model and language that captures the
required properties of actions and can give formal definitions to useful concepts, such as
deadlines. The action logic is combined with deontic logic for specifying and reasoning
about obligations and authorizations, and should lead to a clear way of computing with
these concepts. The framework proposed here applies a designer-oriented perspective of
agent-oriented systems. This approach is similar to for instance [Wagner, 19961 whose
vivid agent model is both logical and operational, describing knowledge bases and rule
sets for action, commitment and interaction. I attempt to define and formalize agent to
agent commitment. Based on the theory, a set of rules is developed which specify under
what conditions commitments are formed and maintained, and under what conditions an
agent needs to communicate certain facts, to which agent. The basis for the agent-to-agent
communication is the theory of communicative action in which agents strive after mutual
understanding and agreement. This is in contrast with many agent theories that are based
on economical decision science and game theory. Their main concern is rational choice of
resources and goals. Both start with the assumption of strategically acting agents that
strive after the satisfaction of their own goals.

In designing CIAs a traditional approach to IS specification can be taken, giving DFDs
as functional specification, ER Diagrams for database specification and transforming them
into a C++ implementation. However, I opt for an architecture of a CIA that is closer to
the analysis models used, following the language-action approach, i.e., support for tasks
and contracts, and the obligations and authorizations for the agents following from them.
(This does not mean however I claim it cannot be done using traditional design techniques
and implementation architectures). An architecture for a CIA is described in chapter 4.

1.2. GOALS OF THE THESIS

The starting point is clear: as the role of ISs is rapidly changing from central data
repository to cooperation and communication system, new techniques for the design of
such systems are needed. I propose to take a LAP to the design of CISs.

This dissertation has four goals. First it aims at contributing to the discussion on the
fundamental concepts and logics for communication modelling, thereby gaining further
insight in the use of the LAP in IS design in general and CIS design in particular. The
thesis tries to build a bridge between two rather discrete worlds: the research on complex
interoperable. flexible transactions, where the focus is on the global consistency of
distributed systems, and the research on business process models, where the focus is on
identifying recurrent patterns of business communication. The goal is to provide useful
structuring mechanisms for transactions describing the interaction between CIAs.

In order to be able to describe the meaning of communication models, a logic is
needed with which it is possible to reason about the obligations and authorizations that are
created during communicative processes. The second goal is to show that formalizing the
communication between the agents using a combination of illocutionary and deontic logic
provides for a natural and sound framework and integrated semantics for CIAs and their
design. as well as for Business Modelling specification.

20 A Language-Action Perspective on tbe Design of Cooperative Information Agents

Third goal of the thesis is to describe conceptual modelling and specification
techniques founded in logic for the design of Cooperative Information Agents.

The fourth goal is to provide for a complete and implementable agent architecture to
be used in developing Cooperative Information Agents.

1.2.1. RESEARCH QUESTIONS

Having established the goals, the main research question is formulated as follows:
How can a Language-Action Perspective contribute to the design of
Cooperative Information Systems ?

In this thesis the hypothesis is tested that the LAP and the underlying speech act
theory can be successfully applied to the design of Cooperative Information Agents by
bringing over the research on how people communicate to the field of IS engineering

As derived research objectives I focus on:
• the role of the combination of illocutionary and deontic logic for use of formal

specification techniques:

Can we develop a formal specification technique (and semantics) for the
specification of CISs based on illocutionary and deontic logic ?

• an architecture that supports the design of CISs:

What does an agent-oriented architecture for Cooperative Information
Systems look like ?

• and a methodology for designing CISs:

Can we give a design methodology for Cooperative Information Systems
based on the agent architecture and formal specification techniques ?

1.2.2. RESEARCH APPROACH

As little research has been carried out in this field before (but more and more is done right
now), I can hardly lean on prior·reports, or utilize and test ready at hand theories and
hypotheses on the subject. The approach taken in this thesis is design-oriented rather than
an empirical research of IS development.

The starting point is the observation of the changing role of ISs, and also the
awareness that linguistic theories are relevant for IS design on the one hand. On the other
hand there is the interest in the possibilities of agent technology for the development of
ISs. It is reasoned that formally defined techniques for the specification of cooperative
information agents can be a solution to the problem. Furthermore, the combination of
illocutionary and deontic logic can give the formal underpinnings of the techniques.

A method is constructed in which the different techniques are integrated. The
applicability of the concepts is demonstrated by working out selected cases and providing
a prototypical implementation of a CIA, with which our ideas are tested.

Introduction 11

1.3. SCOPE

This thesis describes a multidisciplinary research, combining perspectives from
Linguistics. Artificial Intelligence, Logic and Information Systems Engineering. Here a
brief overview of the different fields is given.

1.3.1. LANGUAGE ACTION PERSPECTIVE

Recent years have shown a growing awareness that linguistic theories can be relevant for
IS design. especially where communication plays an important role. This approach, that
has become known as the Language-Action Perspective, has proven to be a new basic
paradigm for IS design in general and CISs in particular. Most of the work within the LAP
is based on the Speech Acts theory as developed by Austin [Austin, 1962] and Searle

[Searle. 1969], which starts from the assumption that the minimal unit of communication is
the performance of kinds of language acts, such as requests and promises. Illocutionary
logic [Searle and Vanderveken. 1985] is a logical formalisation of the speech acts theory and
is used to formally describe the communication structure, i.e.,the types and effects of the
messages. Since then there has been commented upon Searle's approach both from the
linguistic and philosophical sciences, of which the best known is Habermas.

This thesis hopes to contribute to the discussion of the formal underpinnings of the
LAP by combining illocutionary logic and deontic logic and also show the applicability of
linguistic theories like speech act theory for the design of CIAs.

1.3.2. ARTIFICIAL INTELLIGENCE

The need fur more intelligence in computer systems, e.g.. to assist the user in his work, or
to make the system be able to adapt to its environment, has led to a strong impulse for
research in Artificial intelligence (AI). AI can be described as "the field that aims to
automate human cognitive abilities, in order to improve the usefulness of computers„1

[Flach. 19951. Or, from an engineering point of view, the design and implementation of
algorithms and software that exhibits intelligent behaviour. Much AI research today
focuses on techniques and formalisms for describing knowledge and behaviour of
intelligent agents. Until the mid 1980s mainstream AI researchers gave relatively little
consideration to the issues surrounding agent synthesis. However, since then there has
been a flowering of interest in the subject.

I follow [Wooldridge and Jennings. 1994] that define AI as: "the subfield of computer
science which aims to construct agents that exhibit aspects of intelligent behaviour". This
does not mean however, that all fundamental concepts of agents are fixed and understood.
On the contrary, there still is not a single universally accepted definition of what an agent
precisely is. The research on agents is threefold. Agent theorists are concerned with the
question of what an agent is. especially what cognitive properties an agent has, and how to
reason about them. Agent language designers are concerned with designing software

1 1 regard Al as a subfield of computer science rather than cognitive science.

12 A language-Action Perspective on tbe Design of Cooperative Information Agents

systems for programming and experimenting with agents. Finally, those working on agent
architectures are concerned with the problem of devising software (using agent languages)

and hardware systems that satisfy the properties specified by agent theorists. The work of
the last group has not received as much attention as the other two. Most agent theorists are
not concerned with the implementation of their agent properties, and most agent language

designers are not concerned with fundamental agent principles and properties. However,
in my view, the work on architectures is of key importance to the acceptance of this
discipline and its applicability in mainstream computer science in general, and IS
engineering in particular. This thesis tries to contribute to this by giving an agent
architecture and a formal specification technique for its design.

1.3.3. LOGIC

Logic, as the science concerned with questions regarding the patterns underlying human
reasoning, has always been seen as belonging to philosophy. However, since the
breakthrough in the formalization of mathematical reasoning, logical investigations have
become more technical and less philosophical. Logic today is a technical discipline with
the mathematics of deductive logic as its main subject [Flach. 1995]. This technical view
on logic also explains the heavy use of logics in AI, e.g., formalisms for representing the
properties of agents and reasoning over them.

In classical logics the denotation, or semantic value, of an expression depends solely
on the denotations of its sub-expressions. However, this does not hold for logics to
describe the use of language. As will be explained in chapter 2 and as Wittgenstein wrote
"language is an instrument" and "for a large class of cases ... the meaning of a word is its
use in the language" ([Wittgenstein. 1958]). The elements of language -words, sentences,
propositions- cannot be treated only as things that represent things that are true or false.
Speech act theory speaks about believes, intentions and commitments of speakers and
hearers and classical logics are therefore not suitable in their standard form for reasoning
about these intentional notions expressed by (elements of) language. One way logicians
have overcome this problem is by introducing modal logics, which contain non-truth
functional operators. Also other types of logics are devised (often by or on the request of
Al researchers looking for a formal framework to define a set of properties describing

intelligent behaviour), like non-monotonic logics, higher-order logics and meta-languages.
This thesis is not a philosophical one, nor contributes to the general question regarding

the patterns underlying human reasoning. Here I follow the 'modern' use of logic, i.e.,
logic is used to give a uniform and formal semantics to the concepts and languages used,
that can also be used to give the (software) agents elementary reasoning capability or
intelligent behaviour. This thesis does describe work in modal logic, specifically deontic
logic, and its combination with illocutionary logic.

1.3.4. INFORMATION SYSTEMS ENGINEERING

The research in this thesis is restricted to the class of ISs called Cooperative Information
Systems. These systems are seen as the next step in the evolution of IS. The evolution

Introduction 23

follows the need for more intelligence in the systems and the changed use of the systems
within and especially between organisations. Of course I do not state that there is no use
anymore for the other types of ISs, but for an organization to be flexible and support the
coordination in and between organizations the new class of ISs is much more appropriate.

For the IS development process I restrict myself to the core stages: (requirements)
analysis, design, and implementation. This thesis does not concern itself with project
management, or testing and maintenance of the system, although these are important
aspects of the development and success of an IS. In the analysis stage conceptual models
of the discourse are made. The models are used as input for a design stage in which the
architecture of the desired IS is determined and the internal working of the system is
specified. Finally, code has to be generated (manually or automagically) to implement the
system. A common problem with this process is that different techniques, based on
different concepts or, even worse, different paradigms are used in the different stages. For
verification purposes ("where does this object come from T') and the possibility to give
automated support (CASE tools) to the development process it is required that the
concepts of models and specifications are formally defined. Although formal specification
languages exist their use is usually limited to the design stage and is still not yet common
practice. The development process can be improved upon by basing the different models
on the same formally defined concepts, which is one of the goals of this thesis.

1.4. RELEVANCE

Besides scientific contributions I feel that (parts of) this work also have a practical
relevance, especially in the fields of Electronic Commerce (and EDI), and Business
Process Modelling (and Redesign).

1.4.1. ELECTRONIC COMMERCE

The notion of electronic or digital commerce is gaining widespread popularity. Much
more fundamental improvements to (global) commerce are possible, but are presently
being overlooked for lack of adequate furmal theories, representations and tools. In both
[Kimbrough and Lee, 1996] and [Covington, 1996] the role of language and communication
modelling in electronic commerce is discussed, emphasizing the use of speech act theory.
They also focus on the role of logic as a means to formalize the relationships in electronic
commerce, with special attention to the use of deontic logic, in particular for modelling
and formalizing (contractual) commitment. Also [Oliver, 1996] describes the possibilities
of intelligent agents in electronic commerce, especially in negotiating contracts.

Although this thesis is not about electronic commerce, the concepts mentioned above
(speech act theory, deontic logic and intelligent agents) are. Therefore, in my view the
same principles that are developed and used for the design of cooperative information
agents are applicable for the design of electronic commerce systems. Even stronger, by
filling the knowledge and rule bases of the CIA with electronic commerce knowledge and
business rules it becomes an electronic commerce agent. In this way this thesis can be
seen as contributing to the development of formal frameworks for electronic commerce.

24 A language-Action Perspective on tbe Design of Cooperative Information Agents

1.4.2. BUSINESS PROCESS MODELLING

In the IS society Business Process Redesign (BPR) is attracting much interest. The
common theme is the effective usage that can be made of IT if the redesign and
reengineering of a company's IS is performed together and in harmony with the redesign

and reengineering of its business functions ([Dietz. 19948, 1994b]). Although the notion

BPR lacks a commonly accepted definition the claim that organizational change is

necessary to maintain flexibility and competitiveness is clear ([Teng et al.. 19921). As in
Dietz' DEMO method (IDietz. 19923]), the core of this thesis' approach is the modelling of
tasks and relevant transactions between actors, independent from IT infrastructure,
applications, and organizational structure, abstracting from the implementation or
realization of information processes and flows, but focusing on the pragmatic purposes of

these processes and flows (the 'core' of the business). A communication model and an
information model are described, based on the LAP. These models give a better
understanding of the 'core' of the business, which is an essential precondition for BPR.
The approach taken here even goes further and provides not only models but also a formal
framework for describing the business functions, and an architecture (CIA) for the ISs.

1.5. CONTRIBUTION OF THIS THESIS

Traditional IS development methods do not pay much attention to (design aspects of)
communication and coordination. Their basic assumption is that ISs are used only to
describe a current state of affairs. When viewing ISs as communication media they fall
short. To remedy this I propose to take a Language-Action Perspective and focus on using

speech act theory to describe this aspect of business activity. Important concepts in
modelling for the class of ISs focused on in this thesis, Cooperative Information Systems

(CIS), are the separation of Environment of Discourse and Universe of Discourse, and
authorizations and obligations. In order to better describe the communication a three-level
framework consisting of (interoperable) transactions, contracts, and tasks is proposed.

Taking a LAP gives us the opportunity to describe what it is that people and systems

do while communicating and what it means to commit to the performance of some
business activity. A formal framework is provided for the precise description of the
concepts, based on the combination of deontic and illocutionary logic, which also serves

as a basis for a formal specification technique for CIAs. Where the LAP was developed to
better describe what humans do while communicating and support that with automated
systems, with this approach I try to bring over the theory of communicative action to the
communication of formal systems.

The communication supporting systems are not integrated but rather function
autonomously. For this the notion of software agents (autonomous entities that perform
activities in compliance with tasks delegated to it by a human user) is introduced. In AI-
based agent theories little attention is paid to authorization specification so important for
CISs. The agent architecture proposed here is not an architecture based on a theory of
mental attitudes but instead based on a theory of interactions of the agents.

Introduction 25

The goal is not to provide an agent theory as a metaphor for human activity, but to
provide a system design architecture that supports the activities in an organization. The
design methodology is based on the agent architecture. Such architecture gives an
implementation that follows the specification closer than a traditional implementation.

The three topics "communication", "intelligent agents" and "CIS design" make for an
interesting combination that in my view describes one of the future paths IS development
is taking. Hence the title of this thesis: "a language-action perspective on the design of
cooperative information agents".

1.6. OUTLINE OF THIS THESIS

The thesis contains the parts: Background, CIA Framework, Methodology, and Epilogue.

Background

In the first part the work in the LAP, and agent-oriented paradigm that is relevant for the
investigations described in this thesis is reviewed (chapter 2). Speech act theory and its
logical formalization illocutionary logic, but also the critique on speech act theory, are
discussed. This includes a discussion how speech act theory is adapted when used for the
modelling and design of communication between formal systems. The agent-part briefly
discusses agent theories and gives specific agent architectures that resemble aspects
described in this thesis.

CIA Framework

The second part makes up the core of this thesis. It consists of four chapters. In chapter 3
an overview is given of the business logic framework that describes communication
structures in organizations. This chapter also includes the example of booking a business
trip that is used throughout this thesis. Chapter 4 first introduces the communication
framework consisting of transactions, contract and tasks. After this it discusses the CIA
Architecture built up around this framework. The knowledge bases and the interpreter that
make up the CIA are described. In the Communication Framework, chapter 5, the major
elements Transactions, Contracts and Tasks are discussed in more detail. Also a formal
specification language for these elements is worked out. In chapter 6 the logical
formalisation of the communication framework based on the combination of dynamic
deontic logic and illocutionary logic is given.

Methodology

This part consists of chapter 7 that describes the methodology for analyzing business
communication and the design of Cooperative Information Agents.

Epilogue

The final part recapitulates the main achievements and conclusions of the research
(chapter 8). Also pointers to improvements and further research are given.

CHAPTER 2

BACKGROUND AND RELATED ORK

It is not wise to do research without taking the bodies of work previously performed into
account. Furthermore, many 'innovative' ideas are (at least partly) based on older ideas
but often applied to different settings. That is true for this work too. To gain a better
understanding of the ideas and concepts introduced in the next part, an overview of basic
theories and related research are given. Section 1 describes work done in the Language-
Action Perspective (LAP). This includes a discussion how LAP in general and speech act
theory in particular can be used (after adaptation) for the design for automated
communication supporting ISs. In section 2 the agent-oriented paradigm is discussed. I do
not claim to give a complete overview of the subjects. Instead, this chapter concentrates
on work that provides some of the foundations upon which this thesis is built.

2.1. THE LANGUAGE-ACTION PERSPECTIVE

In this section, first an overview of Speech Act Theory is given, the theory on which most
work in the LAP is based. This is followed by a summary of the criticism on Speech Act
Theory and the LAP. The overview ends with a description of several methods for
business modelling and IS development rooted in the LAP, that influenced my work.

2.1.1. SPEECH ACT THEORY

The research in speech acts is discussed, starting with Austin who initiated it, followed by
a description of the work of Searle, including an informal description of illocutionary
logic, the logical formalization of speech act theory. This section ends with a overview of
the work of Habermas, whose theory of communicative action is a valuable contribution
to the speech act theory.

2.1.1.1. AUSTIN

Austin is widely regarded as the inventor of the speech act concept. He examined
performative uses of language, the research into the differences between declarative
utterances (constatives) and performative utterances: "The constative utterance ... has the

18 A Language-Action Perspective on tbe Design of Cooperative Information Agents

property of being true or false. The performance utterance, by contrast, can never be
either: it has its own special job, it is used to perform an action. To issue such an utterance
is to perform the action-an action, perhaps, which one scarcely could perform ... in any
other way" (Austin in [Searle, 19711). One of the classical examples of a performative
utterance is: "I name this ship the Queen Elizabeth" (as uttered when smashing the bottle
against the stem). "It seems clear that to utter the sentence (in, of course, the appropriate
circumstances) is not to describe my doing ...it is to do it. ... [The performative] indicates
that the issuing of the utterance is the performing of an action-it is not normally thought
of as just saying something" ([Austin, 196211).

The distinction between utterances which are sayings (statements, declarations;
constatives) and utterances which are doings (e.g promises, bets, warnings;
performatives) was attacked by Austin himself. Both in 'Performatif-Constatif 2 and
[Austin, 1962] he shows that constatives turn out to be language acts as well. Making a
statement or giving a description is as much performing a language act as making a
promise or giving an order. This realisation led to the theory of language as action, or as
Austin says: "a new doctrine, both complete and general, of what one is doing in saying
something. in all the senses of that ambiguous phrase, and of what I call the speech-act,
not just in this or that aspect abstracting from all the rest, but taken in its totality" [ibid].

Austin considered how many senses there are in which to say something is to do
something, or in saying something and even by saying something we do something. He
summarized the different senses of 'the use of language as actions' as follows ([Austin.
1962, p. 1091): "We first distinguished a group of things we do in saying something, which
together we summed up by saying we perform a locutionary act, which is roughly
equivalent to uttering a certain sentence with a certain sense and reference, which again is
roughly equivalent to 'meaning' in the traditional sense. Second, we said that we also
perform illocutionary acts such as informing, ordering, warning, etc., i.e. utterances which
have a certain (conventional) force. Third, we may also perform perlocutionary acts: what
we bring about or achieve by saying something, such as convincing, persuading, and even,
surprising or misleading". Austin claimed there were over a thousand expressions in
English ([ibid.. p. 1491) indicating speech acts, such as "assert", "warn", "comment",
"order". "request". He classified the speech acts into five categories. However. this was
criticized for overlap and too much heterogeneity of categories, ambiguous definitions of
classes, and misfit between the classification of verbs and definition of categories ([Searle
and Vanderveken, 1985], [Ballmer and Brennenstuhl. 1981]).

Austin took a different approach than most language philosophers at that time in that
he emphasized the 'use' of expressions more than the 'truth' of the elements of language.

l The theory of speech acts is worked out in a series of lectures Austin presented at Ox ford
between 1952-54 under the title "Words and Deeds" and as the William James Lectures at Harvard
University in 1955. After his death these were published as a book: "How to do things with words"
which is thought of as the standard reference to Austin's work on speech acts.

2 In [Searle. 1971] a straightforward English translation by G.J. Warnock of the paper Austin
wrote in French and presented at an Anglo-French conference held at Royaumont in March 1958 is
reprinted.

Background and Related Work 19

Not only questions like 'what is it for something said to be true (or false) ?' but also
questions of 'how is it possible that when a speaker stands before a hearer and emits an
acoustic blast such remarkable things occur as: the speaker means something; the sounds
he emits mean something, the hearer understands what is meant; the speaker asks a

question, or gives an order ?' are interesting.
Such questions form the subject matter of the philosophy of language. This (as Searle

explains in [Searle. 1969]) has to be distinguished from linguistic philosophy which is
primarily the name of a method which attempts to solve philosophical problems by
attending to the ordinary use of particular words or other elements in a particular
language, analysing the meanings of words, and analysing logical relations between
worlds and natural languages. Philosophy of language is trend in philosophy and consists
in the attempt to analyse general features of language such as meaning, reference, truth,
verification, speech acts and logical necessity ([Searle. 1971])3.

Without going into the history of the philosophy of language (see [Searle. 19711 'The
Philosophy of Language' for a summary of this) we now concentrate on the work of one
of the most influential language philosophers: John R. Searle.

2.1.1.2. SEARLE

Searle, a student of Austin, published many standard works on speech acts, the most
famous of which is 'Speech acts: an essay in the philosophy of language' [Searle, 1969]. As
Austin, Searle states the hypothesis that "Speaking a language is performing speech acts,
acts such as making statements, giving commands, asking questions, making promises,
and so on; and more abstractly, acts such as referring and predicating. These acts are in
general made possible by and are performed in accordance with certain rules for the use of
linguistic elements" ([Searle, 19691). He states that linguistic communication involves
linguistic acts, the unit of which is not the symbol, word or sentence, but rather the
production of the word or sentence in the performance of the speech act. Speech acts
therefore are considered to be the basic or minimal units of linguistic communication.

Searle distinguished between different kinds of speech acts, which by way of example
are described below. Imagine a speaker and a hearer and suppose that in appropriate
circumstances the speaker utters one of the following sentences:

1. The airline makes the reservation.
2. Does the airline make the reservation ?

3. Airline, make the reservation.
4. I wished the airline made the reservation.
5. If the airline made the reservation. I will leave today.

In uttering 1 a speaker is making an assertion (or stating a fact), in 2 asking a question, in
3 giving an order, in 4 expressing a wish or desire, and in 5 a hypothetical expression of
intention. In the performance of each of these five different acts the speaker performs also

3 Both should also be distinguished from linguistics. which attempts to describe the actual
structures-phonological, syntactical. and semantic- of natural human languages.

30 A I.anguage-Action Perspective on tbe Design of Cooperative Information Agents

other acts which are common to all five: the speaker refers to (or mentions or designates)
a certain object ('airline'), and he predicates the act of'making the reservation' (or one of
its inflections). In the utterance of all five the reference and predication are the same,
though in each case they occur as part of a complete speech act different from any of the
other four. The notions of referring and predication can be detached from that of complete
speech acts as asserting, questioning (or requesting), commanding, etc. Searle calls the
complete speech acts 'illocutionao· acts'. The common content (reference to some object
and the predication of the same thing) is called ("for lack of a better word" as Searle says)
a proposition.He describes this feature by saying that in the utterance of each of 1 -5 the
speaker expresses the proposition that 'the airline makes the reservation'.

Note that it does not say that the sentence expresses the proposition, but in the
utterance of the sentence the speaker expresses a proposition.

In uttering any of the five example sentences a speaker is characteristically performing
at least three distinct kinds of acts:

- the uttering of words (morphemes, sentences): performing utterance acts

- referring and predicating: performing propositional acts
- stating, requesting, commanding, etc.: performing illocutionary acts.

Utterance acts consist simply in uttering strings of words. Illocutionary and
propositional acts consist in uttering words in sentences in certain contexts, under certain
conditions and with certain intentions. Searle distinguishes between the illocutionary act4
and the propositional content of an illocutionary act. Searle furthermore adds Austin's
notion of perlocutionary act. Since these acts deal with subsequent effects it is not
possible to linguistically determine that an utterance counts as the performance on an

perlocutionary act, e.g. convincing or annoying. In the following only speech acts proper
are discussed, i.e. illocutionary acts.

Illocutionary acts are characteristically performed in the utterance of sounds or the
making of marks. One difference between just uttering sounds and uttering them in the
performance of an illocutionary act is that the in the latter case one is said to mean
something by uttering those sounds. Searle claims that the intended effect of meaning
something is that the hearer should know the illocutionary force and propositional content
of the utterance, not that he should respond or behave in such and such ways, i.e., not
perlocutionary. Said differently, uttering something and meaning it are closely connected
with intending to produce certain (illocutionary) effects on the hearer. Understanding the

speaker's utterance is closely connected with recognizing his intentions. The bridge
between the speaker's side and the hearer's side is provided by their common language
(and knowledge of the rules of constructing meaningful sentences thereof).

4Searle employs the expression 'illocutionary act' which was first given by Austin, with some
misgivings. since he does not accept Austin's distinction between locutionary and illocutionary acts.
He shows that no sentence is completely (i Ilocutionary) force neutral. i.e. every sentence has some
illocutionary force-potential built into its meaning. Searle states that although the concepts of
locutionary an illocutionary acts are different. the conceptual difference is not sufficient to establish
a distinction between separate classes of acts, and in fact every locutionary act is an illocutionary
act.

Background and Related Work 31

Searle distinguishes between the propositional content and illocutionary force showing
how the proposition is to be taken. He describes rules for expressing propositions, rules

for referring and predication (not discussed here, see [Searle, 1969] for an in-depth
analysis), and rules for illocutionary force indicating. These rules can be extracted from a
set of conditions that are necessary and sufficient for a speech act to be successfully and
non-defectively performed in the utterance of a sentence. Illocutionary acts, like all human
acts, can succeed or fail. E.g., an act of firing can be successful only if the speaker has the
institutional power to fire someone by his utterance. Otherwise, it is a complete failure.
There are various kinds of defects of illocutionary acts but not all of these are sufficient to
vitiate the act in its entirety. Searle calls such an act defective. Ideally a speech act is both
successful and non-defective. For each illocutionary force conditions can be given to
determine if that type of speech act is both successful and non-defective. The conditions
([Searle, 19691, [Searle and Vanderveken. 19851) are described in more detail below.

Summarizing the theory of speech acts we recognize that the minimal units of human
communication are speech acts of a type called illocutionary acts. Examples are
statements, questions, declarations, and promises. Whenever a speaker utters a sentence in
an appropriate context with certain intentions, he performs one or more illocutionary acts.
The meaning of an illocutionary act (in general consisting of a illocutionary force and a
propositional content) is a function of the meaning of the sentence and the intended effect
of meaning something is that the hearer should know the illocutionary force and
propositional content of the utterance.

Important here is to note that the concept of commitment is important in Searle's work.
When someone performs a speech act he or she commits to what he/she is saying.
However, in contrast to the approach presented in this thesis the commitment is speaker-
oriented only, and it relates to the success of the speech act.

2.1.1.3. ILLOCUTIONARY LOGIC

Illocutionary logic [Searle and Vanderveken. 19851 is a logical formalisation of the theory of
speech acts. Its main objective is to formalize the logical properties of illocutionary
forces. The illocution (= illocutionary force) of a speech act is what the contents of that
speech act indicates that the speaker intends the hearer to recognize him to be doing in
uttering the speech act. Illocutionary logic studies the properties of illocutionary forces
(e.g. assertion, promise) without worrying about the various ways these are realized in the
syntax of a natural language. No matter whether and how an illocutionary act is
performed, it has a certain logical form which determines its conditions of success and
relates it to other speech acts. Illocutionary logic tries to characterize that form
independently of the various forms of expression that may exist in actual natural
languages for the expression of that act.

Here, an (informal) overview of the main concepts of illocutionary logic is given. In
section 6.3 a logical formalization of the communication between formal systems is given.
describing the differences with the logic described here.

32 A language-Action Perspective on tbe Design of Cooperative Information Agents

2.1.1.3.1. Illocutionary act, force and point

The basic concept in illocutionary logic is the illocutionary act. The illocutionary act
consists of three parts:

• propositional contents
• illocutionary context
• illocutionary force

The propositional contents of the illocutionary act is the part that expresses what the
speech act is about. For instance, the propositional content of the illocutionary act "I
promise that I will go to the meeting" is "I will go to the meeting".

The illocutionary context indicates the relevant knowledge about the situation in which
the speech act is made. This knowledge can be factual, about the place the speech act is
performed, but also epistemic. about the intentions and believes of the participants in the
speech act. It also includes the speaker and addressee of the speech act themselves.
Formally, the context of an illocutionary act consists of five elements:

• speaker

· addressee
• time

• location
• circumstances (world knowledge)

The illocutionary force determines (for a large part) the reasons and the goal of the

communication. The central element of the illocutionary force is the illocutionary point. It
indicates the type of effect for which the act is performed (the point or purpose). The
illocutionary point describes what it is for the speaker to mean the utterance. The speaker
intends to produce a certain illocutionary effect by means of getting the hearer to
recognize his intention to produce that effect. E.g., the point of statements and
descriptions is to tell people how things are. the point of promises and vows is to commit
the speaker to do something (it counts as the undertaking of an obligation to do
something), the point of orders and commands is to try to get people to do things, and so
on. Five different basic illocutionary points (see 'A taxonomy of illocutionary acts' in
[Searle. 19791) are distinguished5:

• assertives

• directives
• commissives
• declarations

• expressives

5 Although the basic illocutionary types are assert. direct. commit. declare. and express ([Searle.
19791. [Searle and Vanderveken, 1985], [Lehtinen and Lyytinen, 19861). many more can be
distinguished (cf. [Habermas, 1984], [Balmer and Brennenstuhl, 1981].. [Chang and Woo. 19941)
We will not go into other taxonomies of illocutionary types here.

Background and Related Work 33

The distinction between the five different basic types is directly related to the
'direction of fit' of speech acts [Austin. 1962b]. Four6 directions of fit are distinguished:

• word-to-world: The propositional content of the speech act has to fit an existing
state of affairs in the world.

• world-to-word: The world is altered to fit the propositional content of the speech
act.

• double direction. The world is altered by uttering the speech act conform to the
propositional content of the speech act.

• empty direction. There is no relation between the propositional content of the
speech act and the world. Success of fit is presupposed by the utterance.

An assertive speech act has a word-to-world fit. The assertive point is to say how
things are. Such an act simply makes a statement about the state of affairs in the world,
and commits the speaker to the truth of the expressed proposition. Therefore the
propositional contents should conform with the (represent an actual) state of affairs in the
world. E.g. "The ticket is on my desk".

Both directive speech acts and commissive speech acts have a world-to-word fit. They
try to change the situation in which they are uttered to fit the propositional content of the
speech act. The directives lay the responsibility of this fit with the addressee. The
directive point is to try to get the addressee to do things (carry out a course of action
represented by the propositional content), e.g. "Book me a flight, please". If successful
and non-defective, the hearer commits himself to do it. The commissives lay the
responsibility of the fit with the speaker. The commissive point is to commit the speaker
to a future course of action, e.g. "I promise to pay you".

Declarations have a double direction of fit. By making a declaration the world is
changed according to it, it brings about some new state of affairs of the world. The
declarative point is to change the world by saying so, e.g. "Hereby you are fired". If
performed by someone with the right authority this causes the addressee to be fired.

An expressive speech act has the empty direction of fit. The expressive point is to
express the speaker's psychological state, feelings and attitude about the state of affairs.
E.g. "I am glad you can make it to the conference".

Besides the illocutionary point, the illocutionary force contains six more elements.
These elements are all dependent on the illocutionary point. They either indicate the
strength of it or the effect of it in some way.

• degree of strength of the illocutionary point
• mode of achievement
• propositional content conditions
• preparatory conditions
• sincerity conditions

• degree of strength of sincerity conditions

6Searle asserts that there are only four directions of fit. with two possible agents for the world-to-
word direction of fit (the speaker and the hearer). thus leading to five basic illocutionary points.

34 A Language-Action Perspective on tbe Design of Cooperative Information Agents

The degree Of strength indicates how strong the direction of fit is made. E.g., one can
command "book a hotel" or ask "can you please book a hotel". The first speech act has a
stronger illocutionary force than the second one. There are different sources of degrees of

strength. E.g., both pleading and ordering are stronger than requesting, but the strength of
pleading derives from the intensity of the desire expressed, while the strength of ordering
derives from the fact that the speaker uses a position of power or authority over the hearer.

The mode of achievement indicates that some conditions must hold for the
illocutionary act to be performed in that way. E.g., a command makes use of a position of

power or authority of the speaker, while an request does not. To be a successful command
the speaker must not only be in a position of authority or power, he must be invoking his
authority in issuing the command. Also a statement of a person as a witness testifying has
a different effect than when that person makes the same statement somewhere else.

In many cases the illocutionary point forces some conditions on the propositional
content of the speech act. E.g., if a speaker makes a promise the propositional content

must be that the speaker will cause some condition to hold in the future, or the speaker
will perform some future course of action. One cannot promise to have done something in
the past or that someone else will do something.

There are basically three types of preparatory conditions. First, those dependent of the
illocutionary point. E.g., requesting someone to do something while it is obvious that he is
already doing or is about to do it independently of the request, is pointless and to that
extent defective. Also, in promises something, it is presupposed that what is promised is
beneficial for the addressee. the addressee wants the speaker to do it, and also that the
speaker can fulfil the promise. Secondly, there are preparatory conditions that depend on
the propositional content of the speech act. E.g., if I order someone to open a window I
presuppose that the window is closed. The third kind of preparatory conditions state that
the speaker should be in a position of authority over the hearer.

In the performance of a speech act the speaker presupposes the satisfaction of all the
preparatory conditions. This does not imply that preparatory conditions are psychological
states of the speaker, rather they are certain sorts of states of affairs that have to obtain in
order for the act to be successful and non-defective (see next subsection).

in the performance of an illocutionary act, the speaker expresses some attitudes to the

propositional content, e.g., in making a promise one expresses an intention. These
attitudes, or psychological states, of the speaker are called sincerity conditions ([Searle.
19691). If the propositional content of a speech act conforms with the actual psychological
state of the speaker, we say the act is sincere. But, it is also possible to perform a speech

act without actually having the expressed psychological state, called an insincere speech
act. E.g.. if I state that the sun shines while I know it is raining then the statement is
insincere (a lie). Insincere speech acts are defective but not necessarily unsuccessful. The
distinction between sincere and insincere acts is that, in the case of a sincere illocutien,
the speaker intends to do a certain predicated act by expressing something will hold in the
future; in the case of an insincere illocution, he does not intend to do that act. Also. in
sincere illocutionary acts, the speaker believes it is possible for him to do such act.

Background and Related Work 35

The last element of the illocutionary force is the degree of strength of the sincerity

conditions. Similar to the strength of the illocutionary point, the same psychological state
can be expressed with different degrees of strength. E.g., a request expresses the desire
that the addressee performs a certain act. However. if the speaker 'begs' a stronger desire
is expressed than if he just requests. Often the degree of strength of the illocutionary point
and that of the sincerity conditions are related.

2.1.1.3.2. Successful and non-defective illocutionary acts
1

Another issue of interest is the success of the performance of an illocutionary act. We
therefore take to look at the conditions of performing a successful and non-defective
illocutionary act. With the help of the definition of illocutionary force the successfulness
and non-defectiveness of an illocutionary act can be described.

A successfully and non-defective performance of a speech act concerns more than just
the speaker's intentions. It includes conditions on 'illocutionary uptake' [Austin, 1962] or
'input-output' conditions [Searle. 19691. 'Output' covers the conditions for intelligible
speaking and 'input' covers the conditions of understanding. Examples are that the hearer
must be awake and paying attention, the speaker and hearer both know how to speak the
language, both are conscious of what they are doing, and have no physical impediments to
communication such as deafness. Since these conditions for understanding are of little
theoretical interest we concentrate here on the conditions concerning the seven features of
illocutionary force, which reduce to four different types of necessary and sufficient
conditions for the successful and non-defective performance of an illocutionary act. These
are given by example.

A speaker succeeds in issuing a successful and non-defective command to the hearer
iff:

- the point of his utterance is to attempt to get the hearer to do an act A
(illocutionary point). This attempt is made by invoking his position of authority
over the hearer (mode of achievement), and with a strong degree of strength of
illocutionary point (degree of strength).

- he expresses the proposition that the hearer will perform a future act A
(propositional content condition)

- he presupposes both that he is in a position of authority over the hearer with
regard to A and the hearer is able to do A. He also presupposes all of the
propositional presuppositions i f there are any. And all his presuppositions, both
illocutionary and propositional, in fact obtain (preparatory and propositional
presuppositions).

- he expresses and actually has a desire that the hearer do A (sincerity condition)
with a medium degree of strength (degree of strength).

7although this describes only the definition of a successful and nondefective performance of an
elementary i l locutionary act. for reasons of simplici ty 1 wi l l take this as the definition for
illocutionary acts in general and do not go into the more complex issue of complex illocutionary
acts. see [Searle and Vanderveken. 19851 for this.

36 A language-Action Perspective on tbe Design of Cooperative Information Agents

In Searle's view there are only two ways a speech act can be successful but defective: if
some of the preparatory conditions do not obtain and yet the speech act might still be
performed; and if the sincerity conditions not obtain, i.e., the speech act can be
successfully performed even though it is insincere. The focus of speech act theory is on
the speaker. The success of a speech act depends on the speaker' s ability to perform a
speech act that should be understandable and successful. The conditions require that the
speaker presents a speech act that is valid in the context: he should be sincere, have the
authority to perform the speech act. and his proposition should be possible in the context.

2.1.1.4. HABERMAS

Founded in the speech act theory, Habermas proposed an alternative theory of
communication, called the Theory of Communicative Action ([Habermas. 1981], English
translation: [Habermas. 1984], [Habermas. 1987]) that concerns linguistic coordination of
action in social systems. Habermas critized Searle's work concerning three topics
discussed below: communicative versus strategic action. validity claims for a speech act.
and the classification of speech acts. For a more thorough discussion of the theory of
communicative action and its differences with speech act theory see for instance [van
Reijswoud, 19961 and IDietz and Widdershoven. 19911

Habermas identifies two mutual exclusive mechanisms for coordinating social actions:
consensus and influence. His thesis is that consensus is the fundamental mechanism of
social coordination. Consensus is connected with the idea of Verstandigung. A
notoriously difficult word to translate, Verstandigung refers both to linguistic
understanding and to the process of reaching agreement, extending across a spectrum of
meanings ranging from comprehension to consensus ([Cooke, 1994]) English translations
of Habermas favour "understanding", presumably because it may also be used to imply
both comprehension and agreement. I will use it here too.

Corresponding with the distinction between influence and consensus, Habermas
distinguishes between strategic actioli and conititutiicatize actioti.

In strategic action each agent has its private goals and plans. Depending on the
reaction of other(s) they will try to compromise or strive to 'defeat' them Their motivation
is empirical and they try to maximise their profit and minimise their losses. Coordination
is based on empirical contingencies, especially on a claim to, or use of power.

In communicative action coordination is brought about by a mutual understanding of
the situation and goals pursued. Communicative action should be interpreted as an
'interaction between subjects that engage in a social relationship' with the aim of reaching
a mutual understanding of the situation in order to be able to coordinate their actions.
Their motivation is rational: people respond to requests because they presuppose that
these requests can be justified when asked for.

The success of communicative action depends on the hearer's agreement to three
validity claims raised: truth. justice. and sincerity. The claim to truth entails that the

speaker contends to represent the factual contents of the speech act as they are. The claim
to justke regards the adequacy of the interpersonal relation between speaker and hearer.
The claim to st,icerity' entails that the speaker is genuine in performing the speech act.

Background and Related Work 37

Validity claims define conditions for the creation of commitments. In principle each of
the claims can be questioned. When the hearer disagrees on a claim, the speaker must
supply reasons to support the validity of the claim. E.g., a hearer can challenge the truth
claim ("what reasons do you have for saying that ?"). He can also challenge the speaker's
right to say what he says. disagreeing with the legitimacy of the normative context of the
utterance (claim ofjustice), e.g. by saying "what reasons do you have for saying that to me

now ?". Another possibility is that the hearer questions the speaker's sincerity, e.g. "what
reasons do you have for expecting me to believe you mean that ?" ([Cooke. 19941).

In the claims three worlds of reference are distinguished: the objective , social and
subjective world . The claim to truth refers to the objective world (how things are), the
claim to justice refers to the social world (how the participants stand towards each other),
the claim to sincerity refers to the subjective world (how the speaker perceives the world).

Habermas' critique concerns mostly Searle's earlier work ([Searle, 1969], ISearle,
19791), which Searle later improved upon in [Searle and Vanderveken. 19851 where
discussion on conditions for speech acts provide a means for dealing with validity claims.
The basic critique remains the same however ([Habermas, 1991]): Searle's speech act
theory puts in the foreground only the speaker's role in presenting a successful speech act
and actually hides the negotiation about the validity claims, by this failing to see the
principle which underlies and explains successful communication: the orientation of the
participants towards mutual agreement,

Another point of critique is the speech acts classification. Habermas criticizes Searle in
that he misses the distinction between speech acts based on power claims and those based
on validity claims, and also the distinction between speech acts which express a claim to
justice (such as promises) and those expressing a claim to sincerity (such as intentions).
Habermas presents a classification based on one dimension only, namely the dominant
claim put forward by the speaker. I will not discuss Habermas' classification here, see e.g.
[Dietz and Widdershoven, 19911, where Searle's and Habermas' taxonomies are compared.

Habermas' distinction between empirical and rational orientation of communication
means that direct orders can be distinguished from polite requests which are open to
discussion. The distinction between strategic and communicative action is exemplified by
the distinction between a claim to power and a validity claim. E.g., the success of an
imperativa ("I want you to") is based on a claim of power (e.g. fear of sanctions), and the
success of a directive (e.g., command) is based on a validity claim (e.g. prevailing social
regulations). In this way only speech acts to which the speaker assigns criticizable validity
claims motivate the hearer to accept the speech act offer, and because of this foundation
do they become the mechanism for effective coordination of action ([Habermas, 19811)

However. Habermas has also been criticized for his taxonomy. [Auramaki and Lyytinen.
1996] summarize some critique: "Despite the focus on dyadic relationships through the
notion of validity claims Habermas' classification is too narrow in dealing with larger
communication contexts. Moreover the classification of directives and commissives into
regulativa speech acts is not always reasonable. It seems to be useful to know if we are
commanding or promising. Use of power is a part of everyday action, and we do not want
to exclude communication based on the use of power (strategic action) from the analysis
of communication".

38 A language-Action Perspective on tbe Design of Cooperative Information Agents

2.1.2. LAP CRITICISM

The Language-Action Perspective has received some critiques from areas like
ethnomethodoloy, sociology and linguistics. Most of the criticism however concerned
critique on Searle's speech act theory. This section describes some of this criticism.

The criticism the LAP received concerns mainly its claim to give a theoretical
foundation for the coordination of actions through the use of language, thereby providing
the possibility to reorganize work. Most of the criticism, however, is critique on Speech
Act Theory, the basis most of the work in the LAP is built.

Representing and redesigning work is a complex and difficult task. The LAP is
frequently related to BPR efforts ([Keen. 1991], [Medina-Mora et al., 1992], [Dietz and Mulder.

1996]). However, not giving enough attention to actual work practices and
underestimating the complexity of these practices willlead to defective design. Examples
of such failures are found in [Bowers, 1993], [Sachs. 1995], [Suchman, 1995]. As [Holm, 1996]
summarizes: "The main argument is that taking a Language-Action Perspective provides a
too simple picture of what really goes on in work, with respect to the contingent character
of work practice. It imposes a categorization scheme upon a user community, ruling out
that community's own scheme. Furthermore it is claimed to be based on a rationalistic
view of communication, and work organization. It represents a managerial perspective,
with discipline, surveillance, and control of workers on the agenda".

A number of arguments against the LAP that can be found in the literature (e.g., [De
Michelis and Grasso. 1994], [Holm, 19961) can be summarized as:

- the normative use of the illocutionary force (implicit in the idea of categorizing
utterances by their illocutionary points and making intentions explicit) is the basis
for developing tools for the discipline and control over organization members'
actions and not for supporting cooperative work among equals ([Suchman, 1994]);

- the LAP supports the creation of tools usable only in some organizational

settings, generally hierarchical, authoritarian organizations ([Robinson. 19911);

- the LAP does not recognize that embedded in any conversation is a process of
negotiating the agreement of meaning ([Robinson. 19911);

- the LAP is too much oriented towards discourse analysis and not conversation

analysis (!Allwood. 1977]. [Levinson, 19831);
- the LAP misses locality and situatedness of conversations, because it proposes a

set of fixed models of conversations for any group without supporting the ability
to design its own conversation models (1Bowers and Churcher. 19881)

- a taxonomy of speech acts from the illocutionary viewpoint is wrong in that it
assumes a one-to-one mapping between utterances and illocutionary acts, which
is not recognizable in real life conversations ([Bowers and Churcher. 19881)

Much of the critique on the LAP is rooted in sociological and ethnomethodological
traditions ([Suchman. 1987.1994]. [Lynch. 19951) or influenced by it ([Bowers. 1988.1993].
IKaplan et al., 19921. IRobinson. 19911). As IDe Michelis and Grasso. 1994] point out this is, in
a certain sense. surprising. for ethnomethodology shares with the proponents of the LAP

Background and Related Work 39

the same theoretical grounds: a rejection of the Tayloristic approach to work analysis and
design; an attention to the complexity (contextuality) of work processes; and a reference
to 20th century European philosophy, in particular to phenomenology and hermeneutics
(cf. IWinograd and Flores, 1986]).

The debate on the validity of speech act theory as a basis for computer systems for
workflow and communication support reached a high point with the Winograd-Suchman
debate ([Suchman. 19941. [Winograd. 1994]. [CSCW. 1995]). Although I do not want to repeat
that debate here I agree with Winograd who acknowledges Suchman for three
observations: i) explicit representation of intentions and commitments are appropriate
only in certain social/organizational situations, and applicable to certain work structures;
ii) the people 'who live the situations being represented' must participate in the generation
of the abstractions; iii) no abstractions will capture all meaning of a complex
organizational situation. The categorization system used for making the abstraction of
work, imposes a set of constraints on the workers, when they are describing and
representing their own work activities. This can cause a dangerous form of blindness (as
[Winograd, 1994] admits) but it is inherent in any form of method for structuring
organizations, work and ISs.

In the next subsection is described how these remarks have been taken into account
when using speech act theory for the design of cooperative ISs.

To resolve some of the differences there are attempts to synthesize the LAP with other
approaches, e.g. ethnomethodology ([DeMichelis and Grasso, 19941), conversation analysis
([Bowers and Churcher, 1988], [Ljungberg and Holm, 1996]). Also alternative communication
models have been proposed as a foundation for the design of communication systems, e.g.
[Shepherd et al.. 19901, [Bowers, 1988, 19931, [McCarty and Monk, 1994], [Schiffrin, 1994]. Also
attempts to enrich the LAP by including ideas from the Scandinavian tradition of
participatory design have been made ([Kensing and Winograd, 1991]).

2.1.2.1. ADEQUACY OF SPEECH ACT THEORY FOR THE DESIGN OF IS

Much of the speech act theory criticism, given by linguists and language philosophers,
concerns the question whether speech act theory is an adequate theory for the description
of human communicative behaviour. However, here the task is not to search for an
ultimate "true" philosophy or linguistic theory about communication or social interaction.
Instead the focus is on what needs to be articulated about communication (and work) to
improve current praxis in the development and usage of ISs. Where linguistic and
philosophical theories are descriptive by nature, design is prescriptive. The basic premise
here is that philosophers and also linguists are passive observers, describing social
interaction, while IS developers are active designers of such interaction. In defence of
using a LAP and speech act theory I follow [Holm, 1996] in that one must consider that we
now are using both in a new context, i.e. that of designing ISs.

Since this work is based for a large part on speech act theory I must address the
adequacy of using speech act theory (and that of the LAP in general) for the design of ISs.
A ptire communicative view may have shortcomin s. However, a communicative oriented

40 A language-Action Perspective on tbe Design of Cooperative Information Agents

view may be rewarding, since a large part of work is performed through language, and ISs
are used to support communicative activities. Speech act theory has played an important
role in the context of IS design. However, it appears that it needs to be used with caution
and to be adapted for an IS context. The adaptations are described below.

[Ljungberg and Holm. 19961 and [Holm. 1996] give an extensive description of aspects of
the shortcomings of speech act theory for the design of IS. This subsection follows their
framework discussing the applicability and adequacy of speech act theory for designing
IS. With every aspect the choices I have made or adaptations that are described in this
thesis are given. The main points to address are: When ISs are viewed as mediator and
support for communication, how should we apply communicative theories in modelling
and design ? When is it appropriate to apply a speech act perspective and when not ?

2.1.2.1.1 How to apply speech act theory in modelling and

design ?

This subsection lists aspects that should be taken into account when applying speech act
theory in modelling and design of ISs for the support of communication in organizations.
With every aspect the solutions chosen in this thesis are described.

Articulation of work

The situated character of work is discussed in the theory of articulation of work ([Schmidt.
19931) developed to handle the fact that cooperating actors have to articulate (allocate,
coordinate, schedule) who is doing what, where, how, by means of what, and under which
constraints. Dimensions of articulation include actors, responsibilities, tasks, activities,
conceptual structures, and information-, material-, and technical resources. It goes beyond
a communicative approach and has a broader scope than speech act theory.

There is no real conflict between the two i f the latter is viewed as one way in which
communicative aspects of work can be articulated. However, I feel the other aspects are
important too, and. as is shown in chapter 4 and 7 attention is paid to these aspects. in
particularly tasks. responsibilities, activities, and conceptual structures.

Discourse vs. Conversation

Discourse analysis and conversation analysis are two different approaches to the study of
language usage. When speech act theory is adopted for IS design the terms 'discourse'
and 'conversation' are often used as synonyms. A discourse is viewed as a generic goal-
oriented task (cf. [Flores et al.. 1988]. [Auramaki et al.. 19881). It is a globally managed
sequence of speech acts forming a coherent and predetermined course of action leading to
a goal. Conversation analysis states that conversational sequences are rarely structured.
Instead. certain kinds of utterances go together in pairs, like question-answer, and offer-
acceptance ([Levinson. 19931). In many situations the natural response to a request is
complying with it (or rejecting it) without any explicit promising in between.

While the course of action in a discourse is globally managed by means of constituting
rules. that in conversations is locally managed by the participants. i.e.. -who talks and
what gets talked about is decided then and there. by the participants in the conversation.

Background and Related Work 41

through their collaborative construction of the conversation course" [Suchman, 1987]. An
office procedure can be anywhere between strict globally controlled discourse and free
unrestricted conversation. The contact with a customer may follow a predefined format
(generic discourse) or there may be room for creativity and improvisation. In designing IS
support for contracting and negotiation we need to handle both situations.

Here I follow a business logic based on the Business as Action game Theory
([Goldkuhl, 19951) which describes a communicative action model of business relations and
processes. In the framework (chapter 3) communicative actions between suppliers and
customers can be set up with the goal of establishing a business relation. However, it is
not a rigid framework in which all steps have to be taken. Instead, it should be regarded as
an editable reference model in a design situation. The approach presented here is
discourse oriented and I view communicative transactions (logical groupings of speech
acts with constraints between them and a predefined goal) as the basic unit. Transactions
are grouped together in contracts, that describe the communicative behaviour between two
agents, and tasks that describe how the agent can reach his goals by performing private
actions and initiating communicative transactions. Transactions, contracts and tasks and
the relationships between them are described in section 4.1 and chapter 5.

Multi-functionality of speech acts

Searle's classification has been critized for not taking into account the multi-functionality
of communicative acts. In the conversation-for-action schema a one-to-one mapping
between specific messages and illocutionary acts is used. A message will either count as a
request, or a promise, or a declaration etc. However, the one-to-one mapping is designed,
it is decided beforehand how the actions should be interpreted. Again, there is the
difference between describing and designing interaction. The discussion about multi-
functionality of speech acts now turns into the question of what specific classification of
speech acts is needed in a design situation.

Here I adopt the Searlian classification, however with one adaptation. Based on
Habermas' ideas a claim (describing the relationship between speaker and hearer) is
attached to the illocutionary acts. I distinguish between power, authorization and charity.

The speech acts and claims are described in detail in chapter 6.

Context

Speech act theory is also critized for its limited possibilities of referring to the wider
social context in which the conversation is embedded. The focus is on the performer of an
idealized utterance. It has a sender perspective rather than a receiver or social-
interactional perspective. The notion of context may be quite complex.

In this thesis the focus is on the supplier-customer conversation in the context of
business transactions. The business logic framework mentioned above is symmetric in the
way that both the supplier and customer role are emphasized. See chapter 3 for details.

Social roles

Our design view should also answer questions on social roles in organizations. According
to [Flores et al.. 1988] a typical office comprises a structure of recurrent conversation

41 A Uinguage-Action Perspective on tbe Design of Cooperative Information Agents

patterns associated with formally declared roles. such as group manager, assistant etc. The
roles and power relations among the users are assumed to be stable. This view leads to a
notion of organizations as bureaucracies and away from the powerful view of
organizations as networks of commitment (also put forward by [Flores et al., 19881). The

question is whether one should design for stable structures or change. If language is
considered to be social, inter-subjective and a means through which a social reality is
created, a language oriented view on design should have a dynamic concept of roles.

The business logic framework rests upon the assumptions about the social roles of
supplier and customer. however some freedom is allowed by the use of the authorization

concept with which new possibilities for communicative action can be created

dynamically. This is described formally in section 6.3.2.

Cognitivism and individualism

A classical problem within philosophy of language is the relation between the private and
socially public world. Beliefs and intentions belong to the private realm, conventions
belong to the social. In speech act theory both intentions and social conventions play
crucial roles. but the focus is on the intentions of the speaker. Although in philosophy of
language it is often claimed that we should only refer to public items, many people find it
counter-intuitive not to take intentionality into account. The question is whether appealing
to intentions is relevant when using speech act theory in the design of IS.

IWinograd and Flores. 19861 state that social and conventional aspects of communication
are more relevant to consider in designing ISs for organizational communication, and I
agree. However, I feel intentions cannot be left out. This is conform the currently popular
cognitivistic trend in AI. Agent design gives the possibility to include intentions. In
contrast with AI-based approaches the focus is not on a theory of intentionality, leading to
a narrow individualistic view, but see agents as social cooperating communicative entities.

Organizational agents

In IS design it is relevant to consider organizations as responsible agents. A promise may
create a commitment for an organization or a department, not (only) for individuals
performing speech acts. E.g.. when a person acting "on behalf of' the organization makes
a promise (or accepts a customer order) a commitment is made for the whole organization.
In Action-Workflow. e.g., sub-commitments are created within the organization from one
department to another. SAMPO (IAuramaki et al.. 1988.19921) illustrates the relationship
between commitments in the notion 'coordination of commitments'.

I agree with [Ljungberg and Holm. 1996] that this aspect needs further elaboration. In
section 1.1.3.2 (delegation of authority) and section 6.3.2 (delegation of obligation and
relations between contracts) some thoughts and examples are presented.

Propositional content

In the conversation-for-action approach the information content of speech acts is ignored.
The schema focuses on „·ho is communicating „·he,1. and not on ivhat is communicated.
However. in speech act theory propositional content plays a crucial role. The separation of
the concern for information content and information context is often imposed by

Background and Related Work 43

modelling-administrative problems, e.g., redundancy. [Holm, 1996] points out that any
approach combining models of information content with models of information context
demands a non-conventional formalization of the used models.

I follow Searle in that the propositional content is important. The separation of content
and context is accounted for by the distinction between, respectively, UoD and EoD
(sections 1.1.2.3 and 7.2) Modelling techniques applying this are described in chapter 7,
while the formal framework underlying the modelling concepts is given in chapter 6.

Conclusion

In the discussion about the applicability of speech act theory and LAP as a foundation for
IS design it is important to be aware of the adaptations that are made to the original theory
when applied in this field. The adaptations I propose deal with the formal description of
obligations and authorization, and the different claims made on basis of the relationship
between agents. Furthermore a new way of structuring the communication is presented.

2.1.2.1.2. When is speech act theory application appropriate ?

Related to this question is criticism on speech act theory concerning issues of power,
control and rational design of work organization and IS support. "This criticism concerns
problems with rigid work design versus needs for flexibility, and issues of power
relations, such as authority and control versus autonomy. Designing for change and
flexibility will entail possibilities of learning, while routinization may lead to deskilling
and alienation" [Holm, 1996]. These issues raises the question to what extent it is possible
and desirable to achieve a rational design of work ? The need for skill, flexibility and
social responsibility may prevent the possibility of achieving a rationalistic work design.

One can consider all social activities to be designed. Everyone is affected by social
conventions and rules in ones actions, in other words all activities are situated and
performed with a certain freedom and responsibility. It is important to consider that in
introducing new ISs in a change process, decisions must be made regarding the character
of the structure, plans and control of work, i.e. how work is (re)designed. Some work
characteristics, like utilization and development of human skills and continuous learning,
utilization and development of social competence and responsibility, and a rich and
diversified human interaction make a strict rationalistic design of work less desirable (and
possible) ([Ljungberg and Holm, 1996]).

This thesis only looks at the design of ISs supporting the communication in
organizations, thereby coordinating business activities. In this sense it is limited. One
should take into account that this is only one aspect in the (re)organization of work.

When applied to situations that can be routinized and controlled, and when taking into
account the adaptation of speech act theory, taking a language-action perspective to the
design of business communication and the support of IS can be both appropriate and
applicable (but as described above. only for that)

44 A 1.anguage-Action Perspective on tbe Design of Cooperative Information Agents

2.1.3. LAP APPROACHES

In 1996 the first international workshop on the LAP was organized ([Dignum et al., 1996cl).

Existing applications were reviewed and also new developments were presented. This
section describes and comments upon some of the older and newer approaches that bear
similarities with the work presented here.

In the Netherlands, LAP research has been performed within the framework of the
Dutch SION-funded LIKE (Linguistic Instruments in Knowledge Engineering) project.
Previous publications this work is partly based on include the following. The use of
linguistics for ISs was described in [Dignum. 1989], [Weigand, 19901, [Weigand. 199 lal and

[Weigand et al.. 1996]. Communication aspects have been described in [Weigand. 19901.

[Weigand. 19931. [Dignum and Weigand. 1995a, 1995b], and [Weigand et al.. 19951, [Verharen

and Dignum, 1997]. Semantics and multimodal logics have been described in [Wieringa et
al.. 1989]. [Weigand et al., 19951, and [Dignum et al.. 1996a. 1996b], while modelling methods
for modelling Information and Communication Systems based on linguistics were
described in [Verharen et al.. 1994]. [Verharen and Weigand, 1994], and [Burg and vdRiet. 19951.

2.1.3.1. ORIGINS

The initial impetus of Flores and Ludlow ([Flores and Ludlow. 1980]) has resulted in a first
wave of applications within the LAP. The most important results were laid down in the
Coordinator. a communication supporting tool (IWinograd and Flores, 19861). They
developed a model of communication in a work environment, and the 'conversation for
action' schema is a well-known model of commitment management. They point to the
fact that every conversation is governed by rules, which constrain the actions of the
participants, e.g. a request must be followed by an accept or decline, a question by an
answer, and so on. The schema has been criticized and modifications of it have been
suggested or realized, e.g [Dietz and Widdershoven, 19911, [Medina-Mora et al., 1992]

Another (early) application of the LAP is the office communication analysis method
SAMPO by Lyytinen and colleagues ([Lehtinen and Lyytinen, 1986], [Auramaki et al.. 1988,
19928.bl) Based on Searle's speech act theory and discourse analysis, it does not instigate

any predefined model for communication, but is an approach for modelling
communication enabled through ISs, for which it provides concepts and notations. Its
view of commitments and conversations is broad, and not only covers conversations,
speech acts and their perlocutionary effects, but also physical acts.

This thesis follows their recognition of the need to understand commitment
negotiations and contracts between people, but the approach here offers a higher level of
abstraction by concentrating on the essential communication. In [Auramaki and Lyytinen.
1996] a new theory on speech act understanding, acceptance and mutual commitment is
proposed. based on the speech act theories of Searle and Habermas and looking into the
conditions for speech act success, taking into account context. They emphasize the
importance of listening and learning, and understanding of the work processes. The work
however is still in its infancy. Like in this approach the concept of contract as set of
mutual commitments plays a central role.

Background and Related Work 45

The increasing importance of communication, CSCW, and technological development,
is responsible for the second wave of applications within the realm of the LAP.

The Milan Conversation Model ([De Michelis and Grasso, 1994]) resembles the CHAOS
model ([De Cindio et al., 19881) and even the Coordinator, however the commitment
negotiation is made more explicit. The model includes the steps: requesdoffer, modified
request/offer, counter request/offer, agreed on request/offer, delivered, accepted/refused,
and cancelled. The approach taken here is based on a different negotiation pattern, based

on Goldkuhl's BAT approach described below, and worked out in the next chapter.
[Chang and Woo, 1994] present the speech act based negotiation protocol SANP,

informed by the speech act classification of [Ballmer and Brennenstuhl, 19811. I agree with

their critique on existing agent negotiation protocols as being inflexible and not based on
existing negotiation models. However, SANP seems to be based on a strategic action
approach in which agents strive after the accomplishments of their own goals. This is in
contrast with our approach where the focus is on cooperation and coordination instead of
trying to resolve conflicts. The approach in this thesis is broader, and negotiation between
the agents is only a small (but not unimportant) part of the communication between them.

Another difference with the approaches above is that here the deontic aspects

(authorization and obligation) are modelled explicitly and have one underlying logical
framework (based on deontic logic) that describes the semantics of the models.

2.1.3.2. BUSINESS PROCESS MODELLING FRAMEWORKS

The Language-Action Perspective gives content to a new generation of Business Process
Models ([Teufel and Teufel, 1995], [Goldkuhl, 1995]) and communication modelling
([Johannesson, 19951) Examples are DEMO (also participant in the LIKE project), Action
Workflow, and Business as Action game Theory, discussed below.

2.1.3.2.1. DEMO

DEMO (Dynamic Essential Modelling of Organizations) ([Dietz, 1992a.b. 1994a, 1994b]) is
a business process modelling method based on social theory, grounded in the philosophy
of Searle and Habermas. The motivation behind DEMO is the strongly felt need to have a
theory about the dynamics of activities in organizations for IS analysis. The following
description of DEMO is based on [Steuten and van Reijswoud, 1996]and [Dietz et al., 19961.

DEMO starts from the understanding that an organization is a social system,
consisting of communicating actors. An actor is a particular function or activity to be
performed by a social individual. We share the distinction between object world and
subject system (conform the separation between UoD and EoD). The state of the subject
system represents the progress made in performing activities, the state of the object world
represents only the result of these activities (represented by facts). In studying
organizations three levels of abstraction can be distinguished:

- the documental level. An organization is viewed as a system of actors that
produce, store, transport and destroy documents;

- the informational level. Here one focuses on the semantic aspect of information.
An organization is viewed as a system of actors that emit and receive messages

46 A language-Action Perspective on tbe Design of Cooperative Information Agents

and reproduce and derive information. Here most current methods (e.g. DFD and
ER) aim to be helpful, or as Dietz states, can only be helpful, in spite of farther
reaching claims;

- the essential level. Here the focus is on pragmatic meaning of messages, i.e. their
role in carrying on the business activities. An organization is viewed as a system
in which actors perform performative conversations, i.e. conversations resulting
into a subject system or object world state change. Because only performative
conversations create original new facts, they are considered to represent the
essence of an organization.

In initial analysis of an organization this essential level is modelled by an essential
model, an integrated whole of four partial models: the Communication, Process, Fact and
Action Model, discussed in more detail in section 7.5.1. In DEMO a communication act
consists of a proposition, represented by a predication (description of the desired result of
an utterance) and a time-for-completion. It also contains an action-coordinating indicator,
composed of the verb of the utterance extended with the illocutionary class to which it
belongs (e.g., declaration, promise, request, or order), and the action-type as proposed by
Habermas' theory of communicative action (strategic, communicative, or discursive),
possibly indicating the validity claim (truth, justice, or sincerity) under discussion.

According to Dietz communicative acts in business communication are related to each
other according to a specific pattern, called the transaction pattern. The pattern consists of
a communication part and an action part (see figure 2.1)

actor
A B B A

|
agendum | fact 11 1

tl e S t4 time

1 11 '1
order execution result

phase: phase: phase:

actagenic essential factagenic
conversation action conversation
(inception) (conclusion)

transaction

figure 2.1. Transaction pattern
(after [Dietz, 1994b, pp. 831)

The transaction starts with a request of the initiator A (at time tl). The participants
involved in the transaction, called actors, reach (at t2) a commitment for a future action,
called agendum (thing-to-do), added to the agenda for the actor involved. Next, the action
agreed upon is executed by the executor (t2-t3). Finally, the parties try to reach an
agreement about the result of the action. When the initiator accepts the result, the
transaction succeeds and a fact is created (t4). The fact corresponds with the predication
of the communication act as mentioned above.

Background and Related Work 47

According to Dietz, the essence of the behaviour of an organization consists of the
continuous accomplishments of such transactions between actors.

Dietz starts the modelling without taking into account the existing ISs in an
organization. This originates from the idea that essential conversations and actions can
only be performed by responsible, authorised subjects and not automated systems. Other
activities could (often more efficiently) be performed by artefacts. This holds especially
for all actions that are purely and only informational. This are actions of reproduction (the
actions usually performed by databases) and derivation (mathematical or logical
computation, otherwise said, the processing of information).

The approach taken in this thesis does take into account legacy systems. Although
CIAs fall under the responsibility of a user (subject), in my view more tasks than the
purely processing and storing ones can be delegated to a CIA. There is no formal logic
describing the DEMO models, and they especially lack deontic concepts. At the moment
it is unclear how the DEMO models can be used as input for the design phase of an
(automated) IS. Another difference is the grouping of transactions in contracts, describing
their deontic effects. However, DEMO models can be used within the methodology,
presented in chapter 7, in the analysis phase to model the business communication. Since
they are based on the same principles of the LAP they can be taken as the input for the
formal specification phase for an CIA.

2.1.3.2.2. Action Workflow

Action Workflow ([Medina-Mora et al.. 1992}, [Action Technologies, 1993], [Denning and Medina-

Mora. 1995]) is a theory about the organization of work taking a LAP and relies on
theoretical work of [Flores and Ludlow, 19801, [Winograd and Flores, 19861, [Winograd, 19881

Action Workflow can be seen as generic business framework, or a business process
and workflow analysis and modelling method, and is also the name of a supporting
software tool. It uses the 'work is a closed loop' idea (figure 2.2).

Preparation Negotiation

Customer <Workflow Performer

Acceptance Performance

figure 2.2. Action Workflow
(from [Action Technologies, 1993])

Business processes are split up in elementary transactions between a customer and
performer and consist of the steps: preparation, negotiation, performance, and acceptance.
The first two steps aim at the establishment of a commitment of the addressee to perform
an action. The last two steps aim at the establishment of the performed action. The action
itself is not modelled, only its results. In both parts there is negotiation aimed at mutual

48 A Language-Action Perspective on tbe Design of Cooperative Information Agents

agreement of what has to be established. The Action Workflow theory (with its roles and
phases) can be seen as a generic blueprint for the organization of work.

Action Workflow is a 'one-way-round model'. it starts (generally) with a customer

request. and through a performer's commitment and work it ends up with customer
satisfaction. It is rather one-sided in actor (only customer) focus and action focus. The
business logic presented in the next chapter emphasizes the mutual character of the
transactions. it is an exchange process with mutual commitments, fulfilments and
satisfactions, or a 'two-directions co-action model' ([Goldkuhl. 1996]).

2.1.3.2.3. Business as Action game Theory

[Goldkuhl, 19951 and [Goldkuhl. 19961 describe the Business as Action game Theory (BAT).
BAT is a generic framework for business transactions between companies. It describes the
roles of two actors (a supplier and a customer of products (goods or services)) and their
communicative and material actions which build up a business logic. It is strongly
influenced by communicative action theories and therefore a business transaction is not
mere information transfer, but a truly communicative action.

For the modelling of business transactions BAT uses (enhanced) Action Diagrams
from the SIMM method ([Goldkuhl and Rostlinger. 19881. [Goldkuhl. 1992]), a method for
business modelling (BPR) However, there is not a direct correspondence between the
underlying theoretical framework and the modelled work flow maps in Action Diagrams
Cas for instance is the case in Action Workflow and DEMO). The framework of BAT is
not enforced in a strong way, which is a disadvantage.

This thesis follows BAT. In contrast to speech act theory and Action Workflow, the
focus is on the satisfaction of both supplier and customer. The emphasis is on mutual
commitment (laid down in contracts). There are differences in the models used (e.g.. our
contracts can describe the mutual commitments in all phases of the business relation, not
only in the execution phase). Like DEMO, BAT is aimed at the analysis and redesign of
business processes. It lacks the possibility of (formal) specification of information agents.

2.1.3.2.4. Discussion

Action Workflow (like DEMO) emphasizes communicative actions in every phase, also in
the performance phase. I follow [Goldkuhl. 19961 which states: "this is an overemphasis on
communication. The most important is the (often material) actions ... leading to the
delivery of products. In many situations there is no separate message of delivery. The
delivery itself has an informative character to the customer" In BAT the focus is on the
wholeness of communicative and material actions and their business logic.

The techniques described in this thesis aim at providing a formal way of specifying
business process models such as DEMO, Action Workflow and BAT. The approaches
however have different scopes. E.g., DEMO offers a rigid methodology, but only on the
transaction level. BAT is a generic task model that is particularly aimed at free market
exchanges (and business transactions between two companies), whereas Action Workflow
is a generic task model (and perhaps transaction model) that is more oriented towards an
organizational context. The models do not pay much attention yet to failure handling.

Background and Related Work 49

E.g., Goldkuhl only recently added claim management in BAT ([Goldkuhl, 1996]), but it is
not worked out in any way, especially the mentioning in the contract of what should
happen in the case of claims is missing. Although the models recognize the importance of
commitments they lack an underlying formal logical framework in which such deontic
aspects can be described. Furthermore, not much attention is paid to authorizations.
Section 7.5 contains a more detailed discussion on the modelling methods.

2.2. INTELLIGENT AGENTS

In this thesis ISs are considered to be intelligent communicating agents. Agents have
gained considerable interest, especially from the Distributed AI community. In this
section we look at what we perceive the most important issues related to the design and
construction of intelligent agents. It describes aspects of multi-agent systems and gives an
overview of some of the approaches taken and architectures developed in the agent
research community. The structure of this section partly follows the excellent agent-

paradigm overview of [Wooldridge and Jennings, 1995].
The agent concept has become important in both AI and mainstream computer

science. In fact, the term has been used in such diverse ways that it has become
meaningless without reference to a particular notion of agenthood. The term 'agent'

certainly is not exclusive to computer science disciplines. In general, an agent is a person,
or entity, which performs some tasks, usually on behalf of someone or something else.
This original meaning still exists in e.g. intelligent-interfaces, where 'software agents'
carry out the user's wishes, and also in the agency theory in economics. In this thesis the
focus is on agents that intelligently perform their tasks. And although some of the theories
presented here are applicable to agents in general, the focus is on artificial agents, i.e.

agents within automated systems.

2.2.1. DEFINITIONS OF AGENT

This subsection is concerned with the question of what an agent is. As was (or, is) the case
with Object-Orientation almost every researcher has a different definition of agent.
[Wooldridge and Jennings. 1995] describe how Carl Hewitt remarked (at the 13th
international workshop on Distributed AI) that the question "what is an agent ?" is as
embarrassing for the agent-based computing community as the question "what is
intelligence T' is for the mainstream AI community. In AI the term 'agent' often refers to
an entity that functions continuously and autonomously in an environment in which other
processes take place and other agents exist. Although there is no single universally
accepted definition of what an agent precisely is, there seems to be some consensus on the
properties that make up an agent8:

BAnother classification could be one along the lines of [Goodwin, 19931; an agent should be:
successful (R accomplishes the specified task in the given environment), capable 01 possesses the
effectors needed to accomplish the task), perceptive (it can distinguish characteristics of the
environment, needed for its effectors), reactive Cable to respond sufficiently rapid to events in the

50 A language-Action Perspective on tbe Design of Cooperative Information Agents

, al tO/lOniy agents operate without the direct intervention of humans or others. and
have control over their actions and internal state ([Castelfranchi, 19951);

•social ability agents interact with other agents (and possible humans) via some
kind of agent-communication language ([Genesereth and Ketchpel. 1994]);

• reactivity: agents perceive their environment (which may be the physical world, a
user, a collection of other agents, the internet, or perhaps all of these combined),
and respond in timely fashion to changes that occur in it;

• pro-activeness: agents do no simply act in response to their environment, they are
able to exhibit goal-directed behaviour by taking the initiative.

This. what is often called weak notion of agency, is also used in the emerging discipline of
agent-based software engineering. Often agents following this description are called
softbots (e.g., [Etzioni et al.. 1994])

However, for researchers working in AI the term 'agent' has a stronger and more
specific meaning. The strong notion of agency usually starts from the notion of an agent
as an entity "whose behaviour can be predicted by the method of attributing beliefs,
desires and rational acumen" ([Dennett. 19871),or intentional system, as he coined it.
Searle saw speech act theory as leading to a theory of intentionality ([Searle, 19831)
"Intentionality is that property of mental states and events by which they are directed at or
about objects and states of affairs in the world.....I Icall this] feature of directedness or
aboutness 'Intentionality

...

Dennett chose to refer to these attitudes as intentions instead of intentionality. He gave
a good account of intentional systems as starting point in the explanation of the behaviour
of complex systems ([Dennett, 19811) "Intentional explanations have the action of persons
as primary domain, but there are times when we find them and predictions based on them
not only useful but indispensable for accounting for the behaviour of complex machines".

McCarthy (IMcCarthy. 1979]. quoted in [Shoham. 19931), has argued that taking the
intentional stance is appropriate and not just anthropomorphism: "To ascribe beliefs, free
will, intentions, consciousness, abilities, or wants to a machine is legitimate when such an
ascription expresses the same information about the machine that it expresses about a
person. It is useful when the ascription helps to understand the structure of the machine,
its past or future behaviour, or how to repair or improve it. ... Theories of belief.
knowledge and wanting can be constructed for machines in a simpler setting than for
humans.... Ascription of mental qualities is most straightforward for machines of known
structures, such as thermostats and computer operating systems, but is most useful when
applied to entities whose structure is incompletely known".

The standpoint 'agents as intentional systems' is taken by most agent theories
developed today, however, mainly for pragmatic reasons. [Singh, 1994} also supports the
intentional stance for describing agent systems with this in mind. He argues that: "the
intentional stance makes available such abstractions as the intentions and know-how of

environment), reflexive (behaves in stimulus-response fashion); and the deliberative properties:
predictive (its model of how the world works is sufficiently accurate to allow it to correctly predict
how it can achieve the task). interpretive (it can correctly interpret its sensor readings), rational lit
chooses to perform actions that it predicts will achieve its goals), and sound (an agent is sound if it
is predictive. interpretive and rational).

Background and Related Work 51

agents, and the communication that takes place among them ... These abstractions no
doubt have much conceptual appeal. Furthermore, there are simple pragmatic and
technical reasons for considering them seriously. They (i) are natural to humans, who are
not only the designers and analyzers of (multi)agent systems, but also the end users and

requirements specifiers; (ii) provide succinct descriptions of, and help understand and
explain, the behaviour of complex systems; (iii) make available certain regularities and
patterns of action that are independent of the exact physical implementation of the agents
in the system; (iv) may be used by the agents themselves in reasoning about each other".

The strong notion of agency, in addition to the properties given above, characterizes an

agent using mentalistic notions, or intentional attitudes, like knowledge, belief, desire,
goal, intention and obligation, or commitment.

[Kiss, 19921 classifies intentional attitudes into three groups:

• cognitive, referring to epistemic issues, such as beliefs, knowledge, awareness;
• conative, referring to action and control, denoting an attempt to perform an

action. To this category belong intention, commitment, plan.
• affective, referring to those attitudes which correspond to the dynamics of an

agent's behaviour, classifying goal, desire and preference.

A different classification is given in [Shoham and Cousins, 1994] where intentional attitudes
are divided according to their relevance to computational applications:

• informational, they concern the information available to agents. Belief,
knowledge and awareness belong to this category

• motivational, "are in some sense directly linked to the agent's selecting one
among the various possible actions available to it" [ibid.]. Attitudes include
intention, choice, plan, goal, desire, commitment, preference, and wish. As the
authors observe some are better understood than others, and the meaning of all of
motivational terms is far less clear than those for knowledge and belief,

• social. these are related to the motivational attitudes but give social, moral and/or
rational reasons for behaving in a certain way. To this category belong obligation,
and permission.

The authors state that for other emotions such as fear, joy etc. their relation to
computational applications is not yet obvious.

Other attributes sometimes discussed in the context of agency are:

• mobi/io': the ability to move around on an electronic network ([White, 1994]);
• veracity: the assumption that an agent will not knowingly communicate false

information ([Galliers. 19881);

• benevolence: the assumption that agents do not have conflicting goals, and every
agent will therefore always try to do what is asked of it ([Rosenschein and
Genesereth. 19851);

• rationality: (crudely) the assumption that an agent will act in order to achieve its
goals, and will not act in such a way as to prevent its goals being achieved -at
least insofar as its beliefs permit ([Galliers, 1988])

52 A language-Action Perspective on tbe Design of Cooperative Infonnation Agents

There is an ongoing discussion about the rationality of agents. Most researchers follow
Dennett' s interpretation of rationality which refers to the quality of following the rules of
logic, and provide a status for the beliefs that a rational agent holds.

2.2.2. AGENT THEORIES

This subsection is concerned with (logical) formalisms for representing and reasoning
about agent properties. An agent theory is regarded as a specification for an agent, it
captures the desirable properties represented by formalisms.

Although there is no consensus in the AI community about precisely which
combination of information attitudes (related to the information an agent has about its
environment, e.g. knowledge and belief) and pro-attitudes (attitudes that in some way
guide the agent's action, e.g. goals, desire, intention, commitment, choice, ... [Bratman,
1990]) are best suited to characterize agents, a number of approaches have gained much
support. Whatever attitudes are chosen, a complete agent theory defines how the attributes
of agency are related, e.g., it will need to show how an agent's information and pro-
attitudes are related; how an agent's cognitive state changes over time; how the
environment affects an agent's cognitive state; and how an agent's information and pro-
attitudes lead it to perform actions.

Cohen and Levesque ([Cohen and Levesque, 1990a]) developed a theory of intention
which the authors required as a pre-requisite for a theory of speech-acts ([Cohen and
Levesque, 1990bl)

Rao and Georgeff ([Rao and Georgeff. 199 la]. [Rao and Georgeff, 199 lb], [Rao and
Georgeff, 19931) developed a logical framework with three primitive modalities: Belief,
Desires and Intention. They distinguish between goals and desires in that: (i) desires can
be inconsistent with one another. but goals must be consistent. In other words, goals are
chosen desires of the agent that are consistent; (ii) the agent should believe the goal is
achievable. Although in [Rao and Georgeff, 19921, and [Kinny et al.. 1992] the potential for
adding (social) plans is considered. the BDI framework considers agents in isolation; it
ignores communicative aspects that are central in this thesis approach.

Another influential approach is the one taken by Shoham ([Shoham, 1993]) in which he
uses the mentalistic notions belief. obligation and capability to characterize an agent. He
also describes a new programming paradigm based on this notion of agents: agent-
oriented programming, see also section 2.2.4.

An interesting formal framework, consisting of the attitudes intention, belief,
knowledge, know-how and communication, has been developed by Singh ([Singh. 1994])
and will be briefly discussed in section 2.2.5.4.2.

Yet another interesting framework is the Information-Motivation-Action-Social
(IMAS) model ([Dignum and van Linder, 19961) based on the intentional attitudes
classification of [Shoham and Cousins. 19941, but with emphasis on the capabilities of
agents as inherent attitudes of agents. [Thomas. 19931 and also [Belnap and Perloff, 19891.
[Elgesem. 19931 support the view that capability should be taken as a primitive notion not
reducible to other notions. In IMAS Information corresponds to knowledge and belief

Background and Related Work 53

attitudes. Motivation to the desires and intentions of the agent (represented by goals and
plans), the Action component gives a description of the capabilities and actions of an
agent (specified in a dynamic logic). and finally the Social component describes the
communication and cooperation attitudes.

Agent theories and formalisms do not have to be rooted in logic as Werner shows. In
IWerner. 1989.19911 he laid the foundations of a general model of agency which draws
upon work in economics, game theory. situated automata theory, situation semantics and
philosophy. The properties of this model. however. fall beside the scope of this thesis.

See [Wooldridge and Jennings, 19951 for an overview of yet other approaches.

2.2.2.1. INTENTION. ACTION AND COMMUNICATION

Most problems with respect to logics that combine different attitudes relate to intentio,1.
[Wooldridge and Jennings. 19951 state that the relationship between intention and action has
not been formally represented in a satisfactory way, although recent work of Singh and
van Linder shows some perspective (see below). The problem to tackle is that having an
intention to act makes it more likely that an agent will act, but does not generally
guarantee it. While it seems straightforward to build systems that appear to have
intentions (e.g., [Wooldridge. 19951) it seems much harder to capture this relationship
formally. Other problems include the management of multiple, possibly conflicting
intentions, and the formation, scheduling and reconsideration of intentions. In sections 5.2
and 5.3 an alternative approach is taken, concerning contracts and tasks.

Several theories of action have been proposed, many including quite restrictive
assumptions like: only one event happens at a time, events have precisely determined
effect, events are necessarily associated with a state change. Dynamic logics provide a
rich syntax for actions, but generally do no consider time. On the other hand temporal
logics contain operators to deal with time, but do not explicitly consider actions. Only few
consider the ability to perform an action as essential to an agent. Moore ([Moore. 1980.
1985.1990J) studied the question of what an agent needs to know in order to be able to
perform some action. He formalised a model of ability in a logic containing a modality for
knowledge, and a dynamic logic for modelling action ([Harel. 19841)

Singh (ISingh. 19941) gives a dynamic logic variant in which actions are explicitly
related with time. Intentions correspond to the courses of events preferred by the agent.
Singh states that intentions are determined not only on the basis of the goal the agent is
currently pursuing, but also on the basis of the actions it can perform (plans), its abilities
and 'know-how'. Know-how refers to the knowledge of how to act and knowledge of
skills, which Singh distinguishes from 'know-that' which refers to the knowledge of facts.

The KARO (Knowledge, Ability, Result, Opportunity) framework Ivan Linder. 19961
incorporates many of the aspects described above. Besides knowledge it emphasizes
actions and events. Action are descriptions of causal processes, which upon execution turn
one state of affairs into another. An event is the performance of a particular action by a
particular agent. The focus is on three aspects of actions and events: result, opportunity
and the agent's abilities. Based on this a logic of capabilities is developed in which non-
deterministic actions can be considered.

54 A lkinguage-Action Perspective on tbe Design of Cooperative Information Agents

Formalisms for representing conimunication in agent theory tend to be based on a
simple interpretation of communication: the exchange of information. Work on agent
communication has mostly been done in agent architectures and languages and not in
agent theories. However recent multi-agent theories (e.g., [Singh, 1994]. [Haddadi. 19961)

include formal theories of communication in the lines of Searle's speech act theory, and
pay special attention to the commitments resulting from communication. See also section
2.2.5.4 for a short discussion of their work.

2.2.3. AGENT ARCHITECTURES

Agent architectures can be thought of as software engineering models of agents. They
represent the move from specification to implementation.

Maes defines an agent architecture as: "A particular methodology for building agents.
It specifies how the agent can be decomposed into the construction of a set of component
modules and how these modules should be made to interact. The total set of modules and
their interactions has to provide an answer to how sensor data and current internal state of
the agent determine the actions and future internal state of the agent. An architecture
encompasses techniques and algorithms supporting the methodology" [Maes, 1991].

The most common view to build intelligent agents is to see them as a particular type of
knowledge-based system. Three approaches can be distinguished: the deliberative,
reactive and hybrid architecture.

Deliberative architectures describe 'deliberative agents' ([Genesereth and Nilsson,
1987]) meaning a specific type of symbolic architectures. [Wooldridge and Jennings, 19951

define a deliberative agent or architecture "to be one that contains an explicitly
represented symbolic model of the world. in which decisions (e.g. about what actions to
perform) are made via logical (or at least pseudo-logical) reasoning, based on pattern
matching and symbolic manipulation". It is clear that there is a close relationship between
deliberative architectures and theories based on mathematical logic.

Examples of deliberative architectures are:

- IRMA (Intelligent Resource-bounded Machine Architecture) ([Bratman et al..
1988]). an agent architecture based on the BDI framework of Rao and Georgeff.

- GRATE* (1Jennings. 1993bl), a deliberative architecture that takes multi-agent
worlds into account, based on beliefs. desires. intentions and joint intentions.

- DESIRE ([Brazier et al.. 19961). Although not truly an agent architecture it is
mentioned since it focuses on the study of compositional multi-agent systems for
complex (and distributed) tasks and development methods for these systems.

A reactive architecture is one that does not include any kind of central symbolic world
model and does not use complex symbolic reasoning, and therefore usually reacts much
faster to events in its environment. [Wooldridge and Jennings. 19951 list a number of reactive
architectures. Examples are:

- the subsumption architecture ([Brooks. 1986. 199 Ia.b]). used frequently in robot
approaches. A subsumption architecture is a hierarchy of task-accomplishing
behaviours that 'compete' with others to exercise control over an agent.

Background anti Related Work 55

- the situated automata paradigm ([Rosenschein. 19851, [Rosenschein and Kaelbling.
19861, [Kaelbling and Rosenschein, 1990]. [Kaelbling, 1991]). An agent is specified in
declarative terms which is then compiled down to a digital machine.

- the Agent Network Architecture ([Maes. 1989,1990.1991]). An agent is a set of
competence modules, specified in pre- and post-conditions and an activation level
giving a valued indication of the relevance of the module in a particular situation.
The higher the level the more likely it will influence the behaviour of the agent.

Many researchers argue that hybrid systems, neither completely deliberative nor
completely reactive, are most suitable for building agents. An obvious approach is to build
an agent with two subsystems: a deliberative one containing a symbolic world model
which develops plans and makes decisions in a symbolic way; and a reactive one capable
of reacting to events in the environment without engaging in complex reasoning,
preferably with precedence over the deliberative one to provide rapid response to
important events.

Examples of hybrid architectures are:

- TOURINGMACHINES ([Ferguson, 1992a,b]).
- PRS (Procedural Reasoning System) ([Georgeff and Lansky, 1987]).
- COSY ([Burmeister and Sundermeyer. 19921. [Haddadi. 1995]).
- InteRRap ([Muller and Pischel, 1994], [Muller, 1994], [Muller et al., 1995]).

The main problem with hybrid systems is to combine the interacting subsystems
(deliberative and reactive) cleanly in a well-motivated control framework. Often, hybrid
systems tend to be ad-hoc: their structure is well-motivated from a design point of view,
but it is not clear how to reason about them, or what their underlying theory is. Especially
architectures that contain subsystems that compete to get the control over the agent seem
to defy any attempt at formalisation [Wooldridge and Jennings, 1995].

2.2.4. AGENT LANGUAGES

Agent languages are software systems for programming and experimenting with agents.
These systems may embody principles proposed by theorists and follow guidelines or
design rules set out by agent architectures. Such languages often include (some of) the
attributes of agency (mentalistic or otherwise) as described above. Beforehand we can say
that most agent languages developed today support the weak notion of agency, delivering
kinds of 'softbots', while languages supporting the strong notion of agency mostly are
based on the logics developed for agents.

Nowadays agent languages gain much attention and new languages are designed
almost on a monthly basis. Therefore no up-to-date overview can be given. Here I only
want to mention an agent communication language, based on speech acts and the only
standardized language today. and AOP, a new agent programming paradigm.

Most work in agent communication languages focused on developing protocols for
communication (as message sending and information exchange) ([Genesereth and Ketchpel.

56 A 1.anguage-Action Perspective on tbe Design of Cooperative Information Agents

19941). The best known is the ARPA knowledge sharing effort ([Patil et al.. 19921) to
develop three related languages: KQML (Knowledge Query and Manipulation Language)

([Finin et al.. 1993.1994]) for communication to and between knowledge based systems,
describing a standard syntax for messages and a number of performatives (e.g. tell, ask,
reply) that define the force of the message, based on speech act theory; KIF (Knowledge

Interchange Format) ([Genesereth and Fikes. 19921) a standardized knowledge representation
language, describing a syntax for message content (first-order predicate calculus recast in
a LISP-like syntax). and Ontolingua, a language for specifying standard ontologies.

One of the most influential developments is the agent-orierited programming (AOP)
paradigm ([Shoham. 1993]), as a successor to object-oriented programming (OOP), based

on a 'societal view of computation' of multiple interacting agents. Whereas OOP views a
computational system as a set of modules that can communicate with each other and that
have individual ways of handling incoming messages. AOP specializes the framework by
programming the state of the modules (agents) directly in terms of mentalistic, intentional
notions. An AOP system has three components: (i) a logical system defining the mental
state of agents: (ii) an interpreted programming language for defining and programming
the agents; (iii) an 'agentification process', for compiling agent programs into low-level
executable systems, and converting neutral devices into programmable agents.

A restricted formal language is provided with clear syntax for describing the mental

state. The logic contains the modalities belief (beliefs about the world, about itself, and
about one another), and decision Cor choice). A third category which is not a mental
construct per se is capability (things the agent can do, including private actions and
sending messages). Instead of taking decision as basic, Shoham starts with the notion

obligation or commitment, and treats decision as an obligation to oneself.
Shoham's first attempt was the AGENT-0 system. The mental categories described

above appear in the language itself, and the semantics of the programming language is
related to the semantics of the mental constructs. Although no formal semantics are given
in IShoham. 19931 it appears to be based on IThomas et al.. 19911.

Although Shoham's work has been an inspiring example (I used AGENT-0 to build a
prototype implementation. [Verharen et al.. 19941). I feel that there are shortcomings to his

approach of speech acts in general and commitments and obligations in particular. Agents
communicate in different ways. and as said before. communication is more than
information transfer or message sending. The speech acts Shoham uses (Request. Inform
and Cancel) are too simple to set up good communication. Although in [Shoham, 19931 he
stresses the importance of commitment as a result of communication he never enforces the
obligations resulting from it. Instead of a logical semantics to his language. (pointers to)
an operational semantics are given. The reason for this is that Shoham requires that the
language be efficiently executable, and a logical semantics for the language would require
a multimodal. temporal theorem prover, which would become notoriously inefficient.

However, AOP should be acknowledged as the first approach to make computational
agents. paying attention to both the abilities of an agent and the importance of good
communication structures (beyond mere message sending and network protocols). In that
way it has been an inspiration for many agent research. including this one.

Background and Related Work 57

AGENT-0 was only intended as a prototype, to illustrate the principles of AOP.
PLACA (Planning Communicating Agents) ([Thomas. 19931) is a more refined
implementation of the AOP ideas and overcomes one severe drawback of AGENT-0: the
inability of agents to plan, and communicate requests for action via high-level goals. The
development of plans means that multiple actions (private actions, message sending, etc.)
are composed into plans, which are compared with the agent's environment. Once the
agent has determined a suitable plan, it will make a commitment to execute it. The agents
in PLACA are programmed in terms of mental change rules, and the logical component is
similar to that of AGENT-0 but includes operators fur planning and intentions (achieve
goals, or a commitment to achieve a state of the world). In [Thomas, 1993] a detail
semantics of the logic and its properties are examined. Like AGENT-0, PLACA is only an
experimental language.

Another extension of the AGENT-0 system is the Agent-K system ([Davies and
Edwards. 19941) that integrates the ideas of AOP with the communication language

KQML. The work is motivated by the limited set of the communicative messages in
AGENT-0. The system includes a modified interpreter that is able to deal with all KQML
messages, and is implemented in Prolog and a library of C-routines that allow an agent to
send KQML messages using TCP/IP, HTTP or email.

2.2.5. MULTI-AGENT SYSTEMS

In most agent approaches (especially theories) described above only agents in isolation
are considered. The last couple of years a tremendous amount of research has been done
on Multi-Agent Systems (MAS) (see e.g. the many conference proceedings of agent
related conferences and workshops (MAS, MAAMAW, AAAI, DAI, ... [0'Hare and
Jennings, 19961). When looking at societies of agents interesting problems occur, such as
joined commitments, coordination, and negotiation. This section describes some of the
approaches taken in solving multi-agent coordination.

2.2.5.1. COMMITMENT AND CONVENTION

If a society of agents is to function successfully, global constraints must be imposed,
including social rules and social roles, both reducing the problem solving required by
agents and the communication overhead. Examples of literature on computer societies are

Minsky's informal Society of Mind metaphor [Minsky, 1986], Winograd's studies of
societal roles ([Winograd. 1988]), and the work of Shoham and others [Shoham and
Tennenholtz. 19921 investigating the off-line design of social laws.

The research in Distributed Al (DAI) focuses on distributed problem solving, and
often DAI systems are modelled as distributed goal search problems. The key issue in
joint problem solving is coordination, defined as the process by which an agent reasons
about its local actions and the (anticipated) actions of others to try and ensure the
community acts in a coherent manner.

58 A language·Action Perspective on tbe Design of Cooperative Information Agents

[Jennings. 1993a, 19961 argues that commitments and conventions form the foundation

of coordination for joint problem solving. Conventions are defined as general policies for
governing the reconsideration of commitments, indicating whether to retain, rectify, or

abandon commitments. In pursuing a joint goal cooperating agents must make joint
commitments. Since a shared mental state of the joint commitment is impossible without
sacrificing autonomy, social conventions are specified to keep all agents informed of
changes in the joint commitment. Designing them is difficult, since it is important that

relevant information pertaining to changes in commitment is disseminated as soon as
possible. But, agents should not broadcast information about their commitments every

time they change, but only those relevant to the joint commitment or action.

[Durfee et al.. 1989] identifies three ingredients for successful coordination: (1)
structures that enable the agents to interact in predictable ways; (2) flexibility so agents

can operate in dynamic environments and can cope with their inherently partial and
imprecise view of the community; (3) knowledge and reasoning capability to exploit the

available structure and flexibility. Based on this Jennings ([Jennings, 19961) argues that

commitments provide the necessary structures for predictable interactions, conventions
provide the flexibility needed to operate in dynamic environments, and social conventions
provide the necessary degree of mutual support. Thus

coordination = commitments + conventions + social conventions + local reasoning

The agents described in this thesis are not joint problem solvers and do not have joint
goals. They have their own tasks and only need to cooperate if a service is required from

another agent (or if another agent requires a service) for fulfilling a goal. Coordination of
activities is reached by mutual agreement on the services required. However, the mutual

agreement, laid down in a contract, can be seen as containing social conventions, since the

contract describes the mutual obligations (commitments) of the communicating parties

and also how they change if one of the parties does not adhere to an obligation, or how
they change in case a certain state is obtained. Furthermore, a contingency plan can be

specified as part of the task that contains local knowledge of how the goals are affected if
something unforeseen happens. Chapter 5 describes contracts and tasks in detail.

2.2.5.2. PROBABILITY AND UTILITY

In most work on knowledge and belief a very crisp notion of mental attitude is adopted;
there is no representation of graded belief or commitment. This stands in contrast to

game-theoretic work on rational interaction among agents in economics ([Aumann. 1976].

[Geanakoplos. 1988]) and Al ([Rosenschein and Genesereth. 19851) where uncertainty and
utility functions play a key role. E.g., [Narazaki et al.. 19951 and 1 Klusch. 19961 describe

strategies based on utility functions for selecting communication structures (network use)
in cooperative search. Much DAI research (especially that on agents as distributed
problem solvers) base their models for cooperation among autonomous agents on these

concepts. They start from the idea that cooperation may be mutually beneficial even if
agents are selfish and try to maximize their own expected payoff ([Sycara. 1990]. IZIotkin

and Rosenschein. 19911. [Kraus. 19931)

Background and Related Work 59

2.2.5.3. NEGOTIATION

Negotiation is one of the notions most often stressed in DAI. The common idea in DAI is
that agents use negotiation for conflict resolution and coordination.

[Muller, 19961 describes the general aim of negotiation to be modification of local
plans, in the case of negative (harmful) interactions between agents, and identification of
situations where potential interactions are possible. It is used for task and resource
allocation, conflict recognition and solving, goal disparity resolution, the determination of
organizational structure. See [Muller, 1996] for an overview, [Bond and Gasser, 19921 for an
indexed bibliography of negotiation protocols, and [Rosenschein and Zlotkin. 1994]for a
overview of automated negotiation. One of the oldest and widely used approach is the
Contract Net Protocol ([Smith. 1980], [Smith and Davis, 1980]). Contract Nets use
negotiation among a limited set of participants and a fixed protocol in order to select a
course of action. The original contract nets were based on broadcasting contracts and
soliciting bids, as opposed to the intimate communication in AOP, or the negotiation
process from the business-as-action framework of Goldkuhl ([Goldkuhl, 1996]) that is
adopted in this research. Furthermore contract nets have no other notion of mental state,
no range of communicative speech acts, nor any design aspects.

In negotiation strategies often probability and utility functions, mentioned above, are
used. both to assess the agent's own as well as the negotiator's standpoint.

2.2.5.4. MULTI-AGENT SYSTEM APPROACHES

Below the state of the art multi-agent approaches are described that take into account
some of the concepts and techniques discussed above.

2.2.5.4.1. FCSI agents

[Klusch, 1994,1995],and [Klusch and Shehory, 1996] describe an approach to cooperative
information agents that has its basis in federated database systems, called FCSI
(Federative Cell System for discovery of Interdatabase dependencies). It is an approach
for recognizing interdatabase dependencies in an environment of decentralized and
autonomous rationally cooperating information agents. It utilizes DAI-techniques and
terminological knowledge representation and reasoning to develop agents as front-ends to
autonomous databases. Each agent has a local information model (LIM) that entails a
terminological description of a set of views of database schema-objects. Each FCSI agent
is able to detect interdatabase dependencies by a mutual classification of terminological
view descriptions in the LIM of another information agent and projecting that to the local
schema of the uniquely associated database. This is similar to the idea of incrementally
building and using some shared ontology for contextual interchange.

The architecture of FCSI agents is similar to that discussed in chapter 4. The main
difference (except for different representations) is that cooperation between FCSI agents

is performed via a decentralized, utilitarian coalition formation process, based on utility
functions of the production-oriented approach of [Shehory and Kraus, 1993] that is informed
by game theory, and a decentralized, bilateral coalition formation algorithm.

60 A 1.anguage-Action Perspective on tbe Design of Cooperative information Agents

2.2.5.4.2. Multi Agent system framework

Singh developed a family of logics for representing intentions, beliefs, knowledge, know-
how, and communication in a branching-time framework ([Singh, 1994]). The formalism is
extremely rich, and considerable effort has been devoted to establishing its properties.

Singh based his protocols (as interaction specifications) on Searlean speech act theory.
In the formal model speech acts are taken as actions and include a set of illocutionary
forces (including permissives and prohibitives). His theory to capture an objective
semantics of the messages is based on specifying the satisfaction conditions of speech

acts. E.g., his theory specifies that "a directive is satisfied if (1) its proposition becomes
true at a moment in the future of its being said. and (2) all along the scenario form now to
then the hearer has the know-how, as well as the intention to achieve it". His theory is an
objective criterion for evaluating the correctness of different scenarios (the possible runs
of executions of a multi-agent system). Prescriptive specifications are required that tell
agents what to do given their beliefs and intentions, so only correct scenarios can emerge.

Although Singh also recognizes the importance of permissives and prohibitives they
are not linked to deontic states but are explained in increase in know-how of the agent:
which actions can or cannot be performed. Nothing is said what should happen if the
permissions or prohibitives are violated. Although there are similarities in the architecture
the underlying framework of Singh's and the one presented here are different, both in the
dynamic logic used. and the lack of deontic logic in his system.

2.2.5.4.3. Vivid agents

[Wagner. 19961 proposes a model of agents that is both logical and operational. The vivid
agents model takes into account that besides the ability to draw inferences agents also
need the ability to update their current knowledge state. They should be able to represent
and perform (and simulate the execution of) actions in order to generate and execute
plans. and to react and interact in response to perception and communication events.

The behaviour of the agents is represented by means of action and reaction rules. It is
possible to specify a set of communication acts and associated communicative action
rules. similar to Shoham's AOP approach. It extends this by basing the theory on
knowledge systems (allowing for negation-as-failure in the query language), adopting a

genuine action concept, which can account for epistemic effects, and allowing
asynchronous message passing. Wagner uses the meta-logic programming formalism
(IKowalski. 19951) to define an execution model for the agent specifications. The approach
combines static knowledge in the form of a declarative knowledge base with dynamic
knowledge in the form of action and reaction rules.

Wagner's approach is more elaborate than the one presented in this thesis in that he
provides a theoretical foundation for hybrid agent architectures. However, he admits that
more work should be done on the communication component, especially since he hopes
the vivid agents model can serve asa basis for the formalization of high level concepts
such as social structures, which is also the aim of our approach.

Background and Related Work 61

2.2.5.4.4. COSY

COSY (COoperating SYstems) ([Burmeister and Sundermeyer. 1992], [Haddadi, 1995]) is a
hybrid BDI architecture. Haddadi describes cooperation protocols as a general means of
designing and analyzing dialogues in pairwise interactions. She follows [Singh, 19941 in
that to achieve meaningful dialogues, it is required to specify under what conditions
individual agents may choose to perform a particular speech act. These conditions are
specified in terms of beliefs, goals, and intentions of individual agents and their belief
about the intentional states of their communicating partners.

Communicative action is considered in the context within which a dialogue may take
place, and according to rules and conventions governing the interactions in that context.
Reasoning about communication therefore not only involves reasoning about when and
what speech act to perform, but also what is involved after a message is received (the
perlocutionary effects). The message types supported are inform, query, reject, demand,
command, request, offer, accept, propose and report. The perlocutionary effects are
described by commitments an agent enters into. The communication seems to be a
strategic one, potential for cooperation and commitments are made with the goal of task
delegation or adoption. Commitments are defined by beliefs, desires and intentions.

Although there are some similarities in the architecture, the underlying framework of
tasks and communication is different from the one presented here. COSY is broader in the
sense that context is taken into account. which is not (yet) done in our approach.

2.2.5.4.5. Adept

Adept (Advanced decision environment for process tasks) ([Alty et al.. 19941. [Jennings et

al.. 1996al) aims at developing agent-based infrastructure for managing business processes.
The agents are negotiating, service providing, autonomous agents. Each agent is able

to perform one or more services, which corresponds to some unit of a problem solving
activity. Simple services can be combined to form complex services by adding ordering
constraints and conditional control. Services are associated with one or more agents which
are responsible for managing and executing them. Each service is managed by one agent,
although it may involve execution of sub-services by a number of other agents. Since
agents are autonomous there are no control dependencies between them, therefore, if an
agent requires a service which is managed by another agent it cannot simply instruct it to
start the service. Rather the agents must come to a mutually acceptable agreement about
the terms and conditions under which the desired service will be performed (called
Service Level Agreements (SLA), or 'contracts' in our approach).

The agent architecture is based on GRATE ([Jennings, 1993b, 19951, [Jennings et al.,
19921) and ARCHON ([Jennings et al. 1996bl) agent models. It involves an agent head
responsible for managing the agent's activities and interacting with peers, and an agency
representing the agent's domain problem solving resources. It allows for a nested
(hierarchical) agent system in which higher-level agents realise functionality through
lower level agents.

Our approach is similar to the ideas presented in [Jennings et al., 199681, although
different techniques are used (e.g., BAT as generic framework, and one formal language

62 A l,anguage-Action Perspective on tbe Design of Cooperative Information Agents

to describe the actions of the agents). Especially the role of the situation assessment
module corresponds to our task manager, and the role of the service execution module to
the contract manager. For negotiation between the agents the negotiation model of
ADEPT is adopted and is discussed in more detail in section 5.2.2. The main difference is
in contract (SLA) specification and the use (and enforcement) of deontic constraints.

2.2.6. DISCUSSION

Research in DAI focuses on the knowledge of agents, rather than on their capabilities.
However, the representation of the capabilities of agents (not what they think and know,
but what they can and will do) is of great importance. Recent years have seen a shift to
research in intentions and making commitments to act. However none of the approaches
combines this with the theory of deontic logic to obtain a method to describe what it
means that an agent enters into a commitment and be able to provide (formal) techniques
to reason about and enforce deontic constraints, or at least describe what should happen if
constraints are violated. Shoham recognizes the importance of obligations but focuses on
single agents only and treats actions as facts.

Several approaches emphasize the importance of communication structures, and base
their work on (mainly Searlean) speech act theory. However, most of them only use the
basic illocutionary types to classify messages. They do not pay much attention to the rules
of making speech acts work (or only very superficially, like Singh). The semantics of the
speech acts usually are restricted and do not lead, like in our approach, to obligations of
the agents. Communication is regarded as necessary for negotiation, and the negotiation
protocols employed are mostly strategically oriented whereas in the approach taken in this
thesis favours the communicative action cooperation over the strategic one.

The approach taken here has many similarities in agent architecture with those
described above, especially the ADEPT system ([Jennings et al., 199681). In fact all
deliberative agents that behave in a social way have a general architecture, of which a
graphical representation is given in [Moulin and Chaib-draa. 19961. The only differences are
that some (hybrid) architectures contain more or less reactive components, especially fur

handling incoming data (via sensors) and performing physical actions.
Most differences between the work described here and the other approaches mentioned

come from the adoption of a different logical framework. This bears consequences for any
specification languages developed to support the basic constructs. Here a dynamic deontic

logic approach is adopted. Although actions are a central concept, e.g., Haddadi's and
Singh's approach do not allow for negation of actions. This is important if one wants to

reason about what it means if an agent has not done an action. Other differences are the

possibility to form longer transactions by combining actions and specifying constraints on
them. The formal logic should give an explicit semantics to such constructs. Finally,
semantics of speech acts are given by obligations and not by intentions to act.

Important to repeat here is that I do not provide a complete agent theory or model (as
e.g. Singh and Haddadi) based on intentional properties. The agent architecture proposed
here is mainly used to guide the design of cooperative information systems and is based
on the communication framework developed.

CHAPTER 3

BUSINESS LOGIC FRAMEWORK

This chapter introduces a framework for describing business communication. It describes
a generic business logic that can be used to model business communication, following the
communicative action theory, between a supplier of services (or goods) and a customer
needing this. The business logic is based on the Business as Action game Theory of
Goldkuhl and is explained in section 1. Section 2 describes the example of booking a
business trip that will be used throughout this thesis.

3.1. BUSINESS AS ACTION GAME THEORY

Goldkuhl proposes the Business as Action game Theory (BAT) ([Goldkuhl, 1995,1996]) as
a generic business framework describing a business logic. In the first subsection the work
that led to BAT is described, especially the influence of the LAP. The second subsection
contains the business logic framework itself, adapted to the approach proposed in this
thesis. The final subsection contains a comparison of this framework with other
frameworks used in business modelling.

3.1.1. MESSAGES

In the traditional infological approach ([Langefors. 1966]), communication is seen as the
exchange of information only. It represent a content view of data and information, or
referential aspect ([Holm, 1996]). This has been the basis for, for instance, the relational
data model ([Codd, 1970]) the entity/relation approach ([Chen, 1976]), and the ISAC
approach to IS design ([Lundeberg et al , 1981]). The main concept in Langefors' approach
is the elementary message (e-message). It describes the object (what is talked about),
property (something pointed out, a comment or proposition, on the object) and time
(usually of the message sent) of the message. Instead of words or a sentence, the message
is the smallest meaningful unit which communicates information. When taking a
Language-Action Perspective two differences should be noted. Both concern the use and
structure of elementary information units ([Goldkuhl, 1995])

64 A jtanguage-Action Perspective on tbe Design of Cooperative Information Agents

knowledge pre-knowledge
intention motivation

0
0 ToersmsB

interpretation.#

figure 3.1. Information in relation to action and interpretation
(after [Goldkuhl, 1995] fig.3)

The first difference comes from the interpretation of a message (figure 3.1). In the
context of ISs the interpretation of information (and messages) seems to be 'linguistic
sentences with the purpose to in form people'. Goldkuhl proposes a different conceptual
usage. His interest concerns what it means to produce information (or a message). From
the LAP we learned that to produce information (a message) means to act, to perform a
linguistic action with a certain purpose and meaning (section 1.1.2) Pragmatic aspects are
disregarded in many content oriented views of messages ([Goldkuhl, 1995]). Goldkuhl
repeats that there are pragmatic aspects in the message itself and not only in the
consequent actions. There is an action component in the message (figure 3.1)

This corresponds with the approach taken in speech act theory and LAP and as
Goldkuhl explains "is a rejection of the classical 'objectivistic' information view in many
database approaches (e.g. [ISO. 19821. IMartin. 19891). The contents (information) in the
database is seen as a mapping of an 'objective reality'...This objectivistic information
conception seems to be an example of what Austin (IAustin. 19621) calls 'the descriptive
fallacy'. i.e. the fallacy that language is only or mainly used for descriptive purposes"
([Goldkuhl. 1995]). In section 2.1 we saw that Austin, Searle and Habermas have shown
many other uses of language, and especially that the production of information is
considered to be a communicative action. The e-message is therefore extended with an
action component, describing the speech act (illocutionary) type.

The second difference comes from the concept of infological equation ([Langefors,
19931): to acquire knowledge, a receiver must perform an act of interpretation of data (the
message), using his pre-knowledge (figure 3.1). However, in the infological equation only
the role of the information user (receiver and interpreter of messages) is stressed. There is
no explicit reference to the producer or formulator of the messages. On the other hand, in
speech act theory the role of the speaker is emphasized (section 2.1) Speech act theory
added to the infological equation makes it symmetrical. Goldkuhl expanded the e-message
with a communicator role describing the actor responsible for the production of the
message. This expansion to make the process more symmetrical also bears consequences
for the interpretation of a business process: in a communicative business transaction not
only the customer has to be satisfied, but also the supplier of the information.

These two differences lead to a model of symmetrical communication as action
between a supplier and a customer, introduced in the next subsection.

Business Ingic Framework 65

Figure 3. I is called the linear communication process model ([van Reijswoud. 19961),
based on the work of [Shannon and Weaver. 1949]. Van Reijswoud argues that human
communication cannot be understood as being a linear process.

In the first place feedback has to be integrated in the process. Communication means
that a speaker sends a message with a certain meaning expressing his mental state to a
hearer that must interpret the message and extract the meaning from it (forming a mental
state of the hearer). In order to be successful the expressed mental state of the speaker
must be isomorphic to the generated mental state of the hearer ([Taylor, 19931). The linear
model does not provide an explicit way of checking whether this has been achieved. The
model should be extended with a feedback communication from the hearer to the speaker,
confirming the understanding of the message (meaning).

A second problem with the linear model van Reijswoud notices, is that communication
is more than the utterance of isolated speech acts. Some speech acts are related to each
other, e.g. a promise to act from a hearer as an answer to a request from a speaker. In
terms of conversation analysis the two speech acts form a kind of adjacency pair ([Taylor,
19931). It can even be argued that the first speech act is meaningless without the second.

In order to overcome these problems van Reijswoud proposes the cyclic
communication process model as a model to understand the structure of human
communication (Ivan Reijswoud, 1996]).

As already stated in section 2.1.2.1 we are not interested in analysing and explaining
human communication, but instead focus on the design of communication between
automated systems. For this the linear model as a technical model of communication,
considering the source and destination of communication as rationally acting subjects
(machines), can be used. Furthermore, communication does not always have to be two-
way in that a response of the receiver of the message is necessary. In case the sender of
the message has power or authority over the receiver the message (e.g. a command) has
effect (e.g. the obligation of the receiver to perform an action) independent from its reply,
as will be explained in detail in section 6.3.

3.1.2. BUSINESS LOGIC

In this thesis we are interested in communicative action in relation to business processes.

As Goldkuhl points out many business processes can be seen as having a mixed
cot,imunicative action character, as opposed to the single category approach of Searle.
E.g.. when making an offer one performs a mixed communicative action; in this case both
an attempt to influence the future action of the receiver (potential buyer) ("I want you to
buy this product", a directive in Searle's classification) and a commitment of own future
actions ("I will sell this product to you under these conditions", a commissive). The same
holds for an order ("I want you to sell this product", and "I will buy this product from you
under these conditions"). This means a communicative act cannot be viewed as an
isolated entity. Different communicative acts are related to each other. "The different
actions get their meaning from the business context: the roles and relations of the parties
and the other business actions and the total action logic of the business transaction"

66 A I.anguage-Action Perspective on tbe Design of Cooperative Information Agents

([Goldkuhl. 1996]). Wittgenstein's concept of 'language game' ([Wittgenstein, 1958]) is
useful to describe such circumstances, since it describes communication as actions
performed and interpreted according to different intersubjective rules. There are rules for

single acts, relationships between different acts, and an institutionalized communication
(consisting of different acts) as a whole. A business transaction is seen not only as a

language game, but as an action game. since it involves both communicative and material
actions. Material actions, e.g. the delivery and transportation of physical goods. have a
communicative character, they are in itself informative of the delivery, but are not reduced
to only communication. By this, Goldkuhl stresses that usually communicative acts are

parts of an integrated wholeness of different actions.

SUPPLIER CUSTOMER

Capacity, know-how Problems, objectives

/\ Needs -
+

Offers (Negotiation)
(available, < Purchase interest

possible) - (inquiries, bid
- Order A-

- (= request for
Confirm order .4------------ delivery +

(= commitment 0. - commitment
of delivery) (mutual

-\ Contract of payment)

 commitment)

Fulfil commitment Receive delivery
(delivery)
+
Invoice Fulfilment commitment
(request for payment) (payment)

Receive payment

Customer h//
Supplier •+ Acceptance 4 satisfaction P
satisfaction - Acceptance -+ Or
or Claim4- dissatisfaction

dissatisfaction -* Cls><CIL
3. ClaimClaim -

management management

figure 3.2. Business as Action generic business framework
(after [Goldkuhl. 19961. fig. 3.1)

The Business as Action game Theory (BAT, IGoldkuhl. 1995. 19961) is a generic
framework for business transactions between actors. It describes the roles of two actors (a
supplier selling, and a customer buying products (material goods or immaterial services,
or a combination of both)) and their communicative and material actions that build up a

Business Logic Framework 67

business logic. It is strongly influenced by the Language-Action Perspective and therefore
communications of a business transaction are not mere information transfer, but truly
communicative actions building up business relations between the parties. Figure 3.2
gives a graphical representation of the business logic framework.

Fundamental in this approach is the concept of commitment. A commitment is
something that one must fulfil. From the work of Searle we learned that when someone
performs a speech act he or she commits to what he/she is saying. As [Winograd and Flores.

1986] state it is "the specification of the meaning in terms of commitment entered into by
speaker and hearer by virtue of taking part in the conversation", and it defines "the
possibilities for what a speaker can do with an utterance, the possibilities for how words
can be related to the world". A business relation and cooperation can only commence after
the actors have come to an agreement and made a commitment to one another that they
will indeed cooperate on the agreed terms. It is a mutual promise to the future conduct of
the actors involved. The commitments are laid down in a contract, which is the central
construct of the theory. Another basic principle steering the action game is the business
transaction: "the business transaction is an interchange process between supplier and
customer and it involves the creation and sustainment of business relations" ([Goldkuhl.
1995]).

Goldkuhl identifies four phases in this interchange process ([Goldkuhl, 1995.1996]):

\) proposal phase. This in turn can be divided into three sub phases:

a) business identification phase: on the supplier side, the development of offers
(and corresponding products) together with the identification of potential
market and customers; on the customer side, identification of problems and
needs leading to purchase interest:

b) exposure and contact search phase: (supplier side) the offers (capacity to sell
actual products) must be communicated (exposured) to potential customers
(search for contact); (customer side) the customer can try to get into contact
with potential suppliers,

c) contact establishment and negotiation phase: after finding each other the
supplier and customer must establish contact and exchange their business

possibilities and expectations (offers and inquiries).
There are certain action conditions necessary for establishing a business
transaction. There must be an °ffer by the supplier and an order by the

customer. The supplier's offer is based on a capacity and know-how to produce

and sell offered products. The customer's order is based on some needs. which

in turn can be based on problems and objectives within the customer, and a
purchase interest in the supplier's offer. Often there is a negotiation process
between supplier and customer, including for instance a bidding with offers and
counter-offers, or more complex, an elicitation of customer needs and also an
investigation of the available and possible supplier product capacity and know-
how. The negotiation ends by a definitive rejection of the offer or an acceptance
of an offer (an order), in the latter case resulting in a contract between supplier
and customer expressing the mutual commitments.

68 A language-Action Perspective on tbe Design of Cooperative Information Agents

1) commitment (contractual) phase. This phase consists of the communicative
actions of setting up the contract (the order and confirmation);
The basic notion in BAT is the contract. The offer and order together form a
contract. Such a contract is a mutual commitment, i.e. a supplier commitment of
delivery and a customer request for delivery and commitment of payment, and
possibly other commitments of other related business conditions.

3) fulfilment phase. This phase includes on the supplier side the delivery of goods
and sending of invoice. and on the customer side the payment,
This part of the business process involves fulfilment of commitments (such as

delivery and payment) and related communicative action like invoicing (which
is a request of customer fulfilment of the payment commitment).

4) completion (acceptance/claim) phase.
In the final phase the delivered products can be accepted by the customer,
leading to customer satisfaction or dissatisfaction. On the supplier's side the
satisfaction consists of acceptance of the fulfilments of the customer, e.g.,
payment. In business settings this is a necessity for carrying on the business
activity! The supplier satisfaction can also be a learning effect in performing
business activities, improving know-how of the supplying organization. If the
customer is not satisfied (i.e. there is perceived difference between the supplier's
commitments and fulfilments) there might be claims towards the supplier. If the
supplier does not get paid or is otherwise dissatisfied, actions for a claim can be
undertaken. Claims are handled by the claim management at either side. It
should be noted that no specific messages or actions for the satisfaction stage are
given in the model. This is perhaps because satisfaction is often implicit, and
only dissatisfaction leads to communicative acts, such as appeals to warrant.

It is important to notice that the pattern of different business acts is ordered in a generic
pattern. In specific business transactions the order can be altered, e.g., there might be
payment in advance. Also. the different acts do not need all to be made explicit. In many
cases there will be no explicit writing of a contract. the order and its confirmation can
together form the contract, or it can be oral mutual commitments, followed by a hand
shake. Or in more simpler cases, like buying a newspaper, the contract is made implicit in
the order process, or iTiade implicit in the fulfilment of commitments (taking out a
newspaper and putting money on the counter). In simple cases some of the generic acts
within the business transaction are made implicit and taken for granted (but nevertheless
are made, either by convention, or higher level contract, see chapter 5). This is also a way
of decreasing the transaction costs on both sides.

In general it can be said that the doing-tasks of a contract are actions of two types:
physical and linguistic actions. E.g., physical actions in the performance of a contract
include the transport of goods. Linguistic actions are performative acts, e.g. the formation
of a contract and the offer, acceptance, retraction etc. Physical actions can also be part of
the contract formation phase, e.g. deliverance of goods means the acceptance of the goods
if no other acceptance communication is made. Also linguistic actions may be part of the
contract performance. e.g.. an investment broker may buy/sell stocks for investors ([Lee.
19961).

Business Logic Framework 69

In my view the Business as Action game Theory gives the best description of business
oriented communication, and is therefore adopted for the research presented in this thesis.
However, I feel that the BAT not only is applicable iIi business settings. but in every
situation where one agent (system or person) needs a service from another agent, even if
these agents belong to the same organization or organizational unit, i.e. in every
communication a supplier and customer role can be distinguished. Also, every
communication can be seen as consisting of the four phases of communication:
negotiation. contracting, fulfilment and satisfaction. As indicated above not all phases
have to be explict, especially within organizations there will exist pre-arranged contracts
(or agreements) on how to provide the service and how to fulfil the commitments
following from it. But providing a framework in which it is possible to specify all phases
gives more meaning to the communication process and possibilities fur changing it.

The adaptation of the framework made in this thesis is that the contract not only
describes the order and acknowledgement of it, but also (and especially) the following
phases: fulfilment and satisfaction. This is in accordance with real-life contracts that
describe the role of both supplier and customer regarding the business transaction. The
contracts as specified in this thesis also include clauses about what should happen if the
customer is not satisfied after using the product (warranty), or if something goes wrong
along the way (e.g., not obeying delivery times or conditions). Also special contracts can
be set up that regulate the negotiation process as is described in section 5.2.2.

In the communication framework proposed in this thesis we also specify relationships
between the agents that influence the type of contract that can be negotiated between
agents. Three relation types can be distinguished: power, authority and charity (for
relations between peers). Only if there exists a peer relationship between agents the
symmetric contracts can be used. This aspect is discussed in more detail in chapter 6.

The approach in this thesis goes further than BAT in respect that a communication
framework describing transactions, contracts but also tasks of the agents is given
(including a specification language. chapter 5) and a formal framework for these concepts
is provided (chapter 6). Furthermore an implementable agent architecture is described
(chapter 4). Finally a modelling methodology is given (chapter 7) that uses different
modelling techniques. Goldkuhl only provides the theory, he does not give an underlying
formal framework. In [Goldkuhl. 19961 he proposes to use SIMMs for modelling the
process. Comments on this are made in section 7.5.2.

What makes the agent system as proposed here different from most other cooperating
systems described in the literature is that also in the fulfilment phase of communication
the agents are autonomous. They can at any moment decide not to honour the contract
they agreed upon. Of course this will have repercussions, but an agent might decide they
are less damaging to it than following the contract. So. even though an agent agreed upon
disclosing some information to another agent it might decide later to withhold some of it
because it is too secret.

70 A l.anguage-Action Perspective on tbe Design of Cooperative Information Agents

3.1.3. COMPARISON WITH OTHER FRAMEWORKS

This model can be distinguished from other BPR models on three accounts:

1) the focus on interactivity, rather than input-output transformations. A business
process is not only an input-output transformation process (as defined e.g. in

[Hammer and Champy. 19931). Its interchange character should be emphasized.
When describing and redesigning business processes different business acts (of
generic communicative character) should be recognized.

2) its generic communicative logic .'iE. ., once an order is defined as a mutual
obligation (to deliver and to pay, respectively), the fulfilment is a logical
consequence, as is the (undesirable) possibility of non-fulfilment. The
commitment must be mutual because of the very nature of a business
transaction. It is also quite natural that mutual commitments can only be
established after a stage of negotiation.

3) this model with clear emphasis on the actor roles of both supplier and customer
is called a two-directions co-action model, since it emphasizes the mutual
character of the business transaction. It is an exchange process with mutual
commitments, fulfilments, and satisfaction. Goldkuhl stresses that it should not
be conceived as a denial of the need for customer focus. However, the need for
the mutual satisfaction of the supplier and the customer should not be disgarded.
It is important to let the supplier be visible too. To disregard the commitments
of the supplier is to cut away necessary parts of the business transaction, and
hence, reduce it from its generic business character. "The business transaction is
built from the business interchange relations and the different business acts
which must be formed in a communicative congruent pattern"[ibid.1.

In comparison, Action Workflow for instance is rather one-sided, since it only emphasizes
the customer role. As described above, a contract can be "symmetric", but also establish
an asymmetric power relationship, in the same way as an employer can contract a new
employee. We then arrive in a situation in which the critique on Action Workflow - that it
is rather one-sided in its customer(initiator) emphasis - is no longer valid. The one-sided
Action Workflow loops fit well in an organizational setting with existing power and
authorization relationships. whereas the symmetric business process model fits well in the
free market context of autonomous negotiating agents. So both models have their value,
depending on the context.

The four phases: proposal. commitment (contractual), fulfilment, and completion
(acceptance/claim) are rather similar to the Action Workflow model which also has four
phases: preparation, negotiation, performance. and acceptance. The differences are in the
division in the first two phases and the different definition of acceptance in the fourth
phase, which in Action Workflow is defined as only customer acceptance/satisfaction.

Also two major differences between the infological and communicative action
approach to systems development can be distinguished.

First. the infological approach distinguishes a managing and an operational system.

Business Logic Framework 71

The managing system gives directive information (control signals) to the operational
system and from the operation system status information is fed back to the managing
system. This is a closed loop approach as in BAT and Action Workflow, however with the
assumption that there is only one managing system. This means that in an organization
only the management is responsible. In today's business process models these loops
reoccur at several places. This is a big difference between organizations in the seventies
and nineties concerning organisational ideas and decentralised responsibility.

A second difference between the infological and communication oriented approach is
that in the latter there is room for negotiation. An order is more than a trigger with which
a receiver can be put to work. It is possible the receiver refuses. The sender of the
directive has to try to convince him. According to [Habermas, 1981], communication
always requires a common background, or 'life world' of the participants, which consists
of common knowledge, shared institutions and mutually known competences. Since the
life world is at the same time the basis for and the outcome of the communicative action,
none of its parts is principally excluded from negotiation and debate.

The distinctions made by Habermas gives us the means to distinguish between
different information and communication theories. It seems the classical organisation and
information theories are based on the theory of strategic action. Also in other closed-loop
approaches it is not clear what stance is taken (strategic or communicative). Although
they do distinguish negotiation, as said above the basic transaction is rather one sided and
aimed at the satisfaction of the customer. The satisfaction of the supplier is not taken into
account. Here a true communicative action perspective is taken, emphasizing the roles of
both supplier and customer and the need for mutual understanding and commitment.

3.2. RUNNING EXAMPLE

The example that is used throughout this thesis is the well-known example from
interoperable transaction literature: planning a business trip (figure 3.3).

al It

..Ol.Jithi

flight hotel check

reservation ervation

creditcard

payment

. =ilil h iii A

figure 3.3. Planning a business trip

72 A I.anguage-Action Perspective on tbe Design of Cooperative Information Agents

The actor at the left bottom has the task to plan a business trip. He/she has to
communicate with an airline company about ticket reservation and with a hotel about
hotel reservation. Furthermore he/she must pay for both ticket and hotel, e.g. by using a
credit card. In the process of paying, the hotel must check with the credit card company
for authorization. Many aspects of the framework presented above and discussed in more
detail in the next chapters can be illustrated with the business processes of this example.

The interaction between actors can most easily be seen in the cases where a particular
service is rendered from one actor to the other. A (prototypical) example of such a service
is illustrated in the following picture (which contains a simplified version of the
framework presented in figure 3.2).

Inquiry and negotiation stage etinfo
<-> authorizations -quot-==

Contractual stage . r <->obligations : nvoice= _ - :=:.
Fulfilment stage ,;1/ =--------Raymen

ick
<-> obligations ---

Satisfaction stage --b
<-> authorizations

figure 3.4. Communication in a (prototypical) business procedure

We recognize the four phases of communication. The first phase is the inquiry about
services and negotiation about the terms of the contract. In this phase authorizations can
be established on the basis of which actions can be performed in the following phases. In
figure 3.4 this corresponds to the requesting and sending of a quotation (proposal).
Sending a quotation implies authorizing the customer to order some products on some
specified conditions. The second phase is the contractual phase, the establishment of the
contract, i.e. the obligations (and authorizations) pointing out mutual commitments. In the
example this is included in the order, which implies an acceptance of the quotation, and
also the sending of the invoice that creates an obligation for the client to pay. The third
phase is the fulfilment of the contract. i.e. following a protocol according to the terms
agreed upon in the contract. trying to live up to the obligations. In the example this
corresponds to the delivery of the ticket and payment sequence (in non-specific order).
The last phase is the completion phase. This contains the acceptance of both partners of
the fulfilment of the commitments by the other. This phase usually describes the
authorizations on basis of which the parties can put forward claims in case of
dissatisfaction (but might also include rewards in case of great satisfaction). Often there
are no explicit messages in this phase. In the example above the client can. for instance.
claim some compensation from the airline company if the flights get cancelled.

In the remainder of this thesis the focus is on such,what are called, contracting
discourses.

CHAPTER 4

CIA ARCHITECTURE

In the introduction was described how information systems in my view evolve into
Cooperative Information Agents. Also was pointed out that providing an architecture for
such systems based on a theory of communicative action can support the design of such
systems. In this chapter this architecture is given. First the basic terminology is given on
which the communicative action theory and parts of the architecture are based. In section
2 the knowledge bases are described that contain the knowledge about the information
context and information content, the agent uses for functioning. How these are operated
upon by the agent-interpreter and its functional components is described in section 3.

4.1. BASIC TERMINOLOGY

In section 1.1.3 a n agent was already defined as "an autonomous computational entity
with certain tasks and capabilities (action it can perform) that communicates with other
agents by means of messages and whose behaviour is not predefined but based on
commitments to other agents". Based on what we learned from the Language-Action
Perspective and agent theory we can now give a more detailed description of what an
agent and its behaviour are (the structure follows the agent definition of the Open
Distributed Processing group ([ODP. 1992]):

• an agent is an application independent concept used from an organizational
viewpoint of businesses, or business processes. This means that an agent can help
to define organizational work.

• an agent is an object which can initiate a 'performative' action (as opposed to an
artefact which does not initiate actions). It does not only reply to requests from
other agents, but it should be able to make a decision to execute an action. Since
an agent is an object, it encapsulates a state and offers an interface to other
agents.

• a 'performative' action is an action that changes policy for one or more objects
involved in the action. Performative actions that can be distinguished consist of
private and communicative actions according to the language-action framework:

74 A language-Action Perspective on tbe Design of Cooperative Information Agents

- an agent incurs an obligation to another one

- an agent fulfils an obligation to another one

- an agent requires permission from another agent to perform some action

- an agent is forbidden (and forbids) to perform an action

- an agent performs some private (physical) action.

• Obligation, and authorizations are types of policies. A policy is a prescriptive
relation between two or more agents which establishes a norm for the correct

behaviour of these agents. Agents deal with such policies, so it is performing
actions according to an established policy. It has to deal with its own obligations
(commitments it made) and authorizations, and contractual relationships.

It is important that an agent can prove its behaviour is compliant to the policies that are
specified (e.g., for users to trust their agents), and therefore needs a formal framework.
The CIA framework proposed is based on the theory of communicative action and uses

dynamic deontic logic extended with illocutionary concepts for its formal logical system
(chapter 6).

Before a description of the architecture can be given first the different levels that can
be distinguish in the communication framework must be explained.

The two basic activities that an agent can perform are:

• An action is a non-communicative activity that is performed by an agent. It is
treated as an atom and not further analyzed.

• The atomic communicative action is the message. A message is a speech act that
describes the illocutionary force of the message (whether it is a directive,
assertive, commissive or declarative) together with its authorization claim (be it
power, authority or charity). and a content (a proposition or action).

The model consists of three levels, which are shown (from top to bottom) in figure 4.1.
The figure gives from left to right the name, discriminating parts and how they are related.
e.g., a contract is described by 'deontic states'. and 'transactions' describe the transition
between the states. The concepts are explained in detail below.

IP
TASK goals/ dependencies [b [5

means

CONTRACT deontic transactions ««states

TRANSACTION messages temporal
constraints

figure 4.1. Three-level communication modelling

CIA Architecture 75

CIA behaviour can be described by means of interoperable transactions defined as a
logical unit of work (on communication and authorization level, not on technical database
transaction level), involving different autonomous systems. Interoperable systems
cooperate by means of message passing. The specification of an interoperable transaction
consists of a set of communicating subjects (called agents), elementary actions, the
possible message types provided by each agent to support its role, and temporal
constraints on the synchronisation of the actions (communicative and non-
communicative). Furthermore a deadline before which the transaction has to end can be
specified. Here it is sufficient to mention that a message (speech act) can be implemented
by embedding it into a traditional ACID transaction ([Gray, 19811. [Ozsu and Valduriez.
19911), and that their execution is serializable. Transactions, as defined here, however, are
not database transactions and cannot be seen as an ACID unit of work. Especially failure
handling is done differently and handled at the contract and task level. Transactions are
described in more detail in section 5.1.

The specification of interoperable transactions needs structure for the sake of
complexity reduction and reusability. Flexibility and extensibility in specification is even
more important in a cooperating IS than in traditional isolated ISs, because the
transactions typically span several organizations. To achieve a desirable level of
flexibility of interoperable transaction specification, I propose:

• the use of an additional concept, called contract, to specify and manage the
failure due to agents not honouring their obligations in interoperable transactions,

• the separation of transactions and contracts from the agent's task.

Figure 4.2 gives a graphical representation of the relation between the three concepts task,
contract and transaction.

contract
Obl 1 Atith.2
in: trans.1 in: trans.4

agent A goal: trans.2 goal: trans.5 agent B
exit: trgns.3 exit: trans.6

 - Y task task -_j
 trans.3

goal 1messagel
l \4* messag,2 4-+

fail
messaqe3

figure 4.2. Tasks, contracts and transactions

A task is a meaningful unit of work assigned to an agent. A task is specified as having
a goal. it can be decomposed into subtasks, and can include alternative means for
achieving the goal. Furthermore a deadline before which the goal should be reached, and

76 A Language-Action Perspective on tbe Design of Cooperative Information Agents

constraints on the execution of the subtasks (dependencies) can be specified. Elementary
subtasks are either executed by the agent as an internal procedure (an action) or involves
initiating communicative transactions with another agent. Tasks are managed by the Task
Manager of the agent (see section 4.4).

An important part of the task specification concerns the failure handling method, or
compensation and contingency. As part of the task specification the dependencies
between results created by subtasks can be given. E.g., in the case of a business trip it can
be specified that a hotel reservation should be cancelled (compensating action) if a flight
reservation (made in a separate subtask) is cancelled. Also update relations can be given,
e.g. if the flight is delayed, the hotel reservation should be updated. As a separate part a
contingency plan can be given, describing actions that can be taken in order to reach the

goal if a subtask fails, e.g., book a flight with a different airline company if the original
flight is cancelled. Only if this fails dependent results (such as the hotel reservation)
should be compensated (rolled-back). In the case of a business trip one might also speci fy
alternatives, e.g., that the destination can be reached also by train instead of by airplane.

Tasks are described in more detail in section 5.3.

A contract is specified as a set of deontic states. It specifies obligations and
authorizations between different parties about services provided to each other. Following
the business logic framework a contract describes the interaction (possible transactions).
together with the obligations and authorizations, but also the consequences if either agent
does not adhere to its obligations.

For instance, in the case of the business trip example, the ticket-order contract can
specify the obligation for the airline company to answer to an inquiry by the travel
agency, either by giving a quotation for a ticket or a refusal. It furthermore specifies the
obligation for the airline company to deliver the ticket if the travel agency orders it under
the conditions specified in the quotation. The contract also specifies the obligation of the
travel agency to pay for the ticket (within a certain time) after it has ordered it.

Based on the agreement reached between the airline company and the travel agency,
the contract can also specify what should happen if the ticket is not delivered in time, or if
the travel agency does not pay in time. or what should happen if the flight for which the
ticket is issued is cancelled. In the last case. the contract may specify that a fine should be
paid by the airline company. But, following the business logic concerning satisfaction, the
contract can also specify what course of action to follow if the travel agency is not
satisfied with the delivered ticket.

This last note also means contracts have a longer lifespan than tasks. After the product
(e.g., the ticket) is received the goal is reached for the customer (travel agency) and the
task succeeds, however the contract might have options that describe the course of action
if the customer becomes dissatisfied at a later stage or if the result is invalidated. So
reaching a goal does not mean the contract can be forgotten. Invalidation of established
results also has the effect that the goal becomes invalidated and the contingency plan
should be triggered

Contracts are described in more detail in section 5.2.

CIA Architecture 77

The task specification and updates thereof concern the agent in question only, they are

the responsibility of the user or agent only, whereas changes in the possible transactions

(involving other agents) can only be made by consent of the other agent.'For this reason, a
distinction is made between task and contract, where the contract corresponds to the
agreements between the two agents and the task draws on this potential for fulfilling an

agent's individual goal.
As said above, contracts specify the obligations of agents about services provided to

each other, it is a mutual promise to the future conduct of the agents involved. If an
obligation is not fulfilled (e.g. the order is not payed), it is possible to reason over this
violation and take a remedial action without forcing the whole task to abort. It is the job of
a Contract Manager to impose these violation policies. It would complicate the task
specifications and lower the reusability if the communication about obligation violation is
included in the task. It is a matter concerning the agreements behveen the agents and

should therefore be part of the contract specification. The agent's Task Manager should
only be responsible in ensuring that a task is brought to its goal, not how violation of
commitments is being dealt with. In this way, the process is more reactive to failures.

Working out the business trip example further, the task of the travel agency might
contain subtasks of flight-reservation and hotel-reservation and constraints between them
(e.g. hotel-reservation after flight-reservation, meaning we want to be sure to have a flight
to the destination before booking a hotel there). The subtask flight-reservation initiates a
transaction between the agent and an airline company. The interaction is part of the
contract between the travel agency and the airline describing the procedure of ordering
tickets (the result of a flight-reservation). The selling of tickets can be part of the task of
the airline company. If, at a later stage, the flight gets cancelled the result achieved
becomes invalidated. In the contract can be specified that the airline in that case is obliged
to pay the travel agency a fine. In the contingency plan of booking a business trip
triggered by the violation can be specified that the hotel-reservation should be cancelled
too (the hotel booking task is started after the flight-reservation task succeeded before).
Also, since the result is invalidated it may be retried, either by booking another flight with
the same airline, or a different one, or choosing an alternative, e.g. travel by train.

4.2. ARCHITECTURE

Figure 4.3 gives a graphical representation of the basic architecture of a CIA. In the next
subsections the knowledge bases, and the functional components of the interpreter are
explained in more detail. Here first an informal description of the components is given.

As stated above an agent is typically a piece of software that has certain capabilities,
actions that it can perform (described as services) that can be requested for by other

agents, and certain tasks and responsibilities (delegated to it by a human agent). The
actions can be database actions such as updates, or communicative (transactions), such as
providing some piece of information, or sending a request to another agent. An important

component is the contracts-base, which contains standard contracts or contracts that
resulted from negotiation with other agents, and that govern the interaction between the

78 A language-Action Perspective on tbe Design of Cooperative Information Agents

agents. The interaction itself is described by transactions. Each agent also has an agenda
containing the actions to be performed by the agent, instantly or at some designated time.
The Lexicon is the system that stores and manages the terminology of the domain, it
corresponds to the Conceptual Model describing a particular Universe of Discourse and
also the Environment of Discourse (e.g. communication rules). The instantiation of this
model is stored in the database.

mcI Jreply

. 1.1 111 ,
interpret er 4 i messagesto/

11

1/1 -il *b m other CIAs

figure 4.3. CIA architecture

The following section describes the knowledge bases of the CIA in more detail, and in
section 4.4 the interpreter (and its functional components) is described.

4.3. KNOWLEDGE BASES

A CIA has local autonomy and its behaviour is not predefined but based on commitments
to other agents (created either statically at design time or dynamically during execution).
In order to be able to function properly the CIA needs knowledge about the domain.
Taking a LAP this not only includes knowledge about the objects in the domain (UoD)
but also knowledge about the communication processes and structures in the discourse
(EoD). Three kinds of knowledge can be distinguished:

1. contractual knowledge
Knowledge about tasks. contracts, and authorizations and obligations resulting
from them. organized and managed in the agenda. It also includes some self
knowledge and knowledge of peer CIAs and their services. The knowledge
bases containing this knowledge are Tasks, Contracts, Agenda and Services.

2. semantic knowledge
Knowledge about the object types dealt with. Their structure is defined in the
Lexicon, and the instantiations are recorded in a database. Since both UoD and
EoD are modelled, it includes knowledge about the speech acts and meaning of
the illocutions made (knowledge about the communication structures).

CIA Arcbitecture 79

3. communication knowledge
This constitutes pragmatic knowledge about communicating. When the CIA
receives messages, e.g. a request, it should somehow answer, either a result,
based on his knowledge or "don't know", or a discussion on the appropriateness
and validity of the request. This knowledge does not have a separate knowledge
base in the architecture, but is partly contained in the Services knowledge base
and the Communication Manager. The CIA should also know how to send
messages to (initiating transactions with) other agents. This is captured in the
transactions-base.

4.3.1. AGENDA

Intelligent agents have an agenda that is monitored continuously to decide what action is
to be performed. Formally, an agenda is a set of deontic temporal constraints. It is deontic
since the agenda specifies what the agent should do (its obligations). It also has temporal
properties since the obligation is usually to be performed before a certain deadline, or as
soon as possible. An example of an agenda item might be the obligation to pay $635,- for
the ticket before next week. In chapter 6 the logic that facilitates reasoning about
obligations and deadlines is presented. The logic is an extension of deontic dynamic logic,
in which one can specify that an obligation starts at a certain time or event, that it must be
done immediately, as soon as possible, before a deadline. or periodically.

We assume the agenda is not fixed but can be manipulated by the agent. The agent can
add new obligations to the agenda (typically done on the request of another agent) and can
reason about them. Obligations can be the result of the (sub)task of the agent, describing
what (private) actions have to be performed or what transactions have to be initiated (e.g.,
ask the airline company for a flight-schedule), but can also result from the contract (the
mutual obligations agreed upon, e.g., payment of the bill for the ticket within two weeks)
or the transactions that have to be followed according to the contract (e.g., acknowledge
the receipt of the ticket). A special agenda-item, put on the agenda by the contract
manager, is a check whether the other party has fulfilled its commitments and thereby
followed the contract (see section 4.4.1).

The agent can also remove items from the agenda by performing actions or it may
violate an obligation. In the latter case it usually has to perform some compensatory action
(e.g., payment of a fine).

Taken from this viewpoint the agenda defines the normative space, describing all
temporal deontic aspects that influence the behaviour of the agent. This differs from most
other agent approaches that use the agenda only to record tasks the agent has to perform.

In section 5.3.2.1 the structure of the agenda is described in more detail. Here it
suffices to say that with every agenda item the specific subtask or contract that created it
is recorded. This is important since the agent can be engaged in interaction with several
agents at the same time. Also, for planning purposes the agenda items can be extended
with priorities, representing preferences in goal satisfaction.

80 A language-Action Perspective on tbe Design of Cooperative Information Agents

4.3.2. CONTRACTS

The Contracts-base not only contains the contracts between the agent and other agents,
but also contains some standard contracts. describing a preferred way of doing business,
that the agent can offer to others that want to make use of the services the agent provides.

Also contracts about previous interactions are stored, as they can be reused to conduct
the same business again (possibly changing some of the conditions). As is described in
section 5.2.2 the process of setting up a contract with another agent (by negotiating) is in
itsel f a service the agent can offer. Existing contracts are then instantiations of a standard
contract, or perhaps an instantiation of a subtype of a standard contract. Sometimes
conditions have to be changed. or if the other party does not want to work according to a
standard contract a new one has to be set up. The Contracts-base therefore also is the
place to store knowledge about negotiating processes, that are used in setting up. or
changing a contract. The contracts are consulted and managed by the Contract Manager.
Contracts are specified in the contract specification language, described in section 5.2.4.

4.3.3. TASKS

The Tasks-base contains all tasks of the agent. A task has a goal. can be decomposed into
subtasks. and describes the actions that have to be performed to achieve the goal.
Elementary tasks are either executed by the agent as an internal procedure or involves
communication transactions. It can also specify (temporal) constraints, and precedence
relations between the subtasks The task specification thereby becomes a plan for
achieving the goal. The preferred order of execution of subtasks (partial plans) can be
stored separately for reuse purposes. More importantly, one can specify alternatives for
subtasks that can be tried if the original subtask cannot be satisfied. A task specification
can also include a contingency plan that describes what should happen if an already
committed result becomes invalidated e.g. by cancellation. The tasks together with the
task specification language are described in section 5.3.

4.3.4. TRANSACTIONS

The Transactions-base is an auxiliary database that contains all the transaction
descriptions. i.e. the messages and the constraints between them. Both the contracts and
tasks refer to the transactions in the Transaction-base.

4.3.5. SERVICES

The Services-base consists of four parts:

1. knowledge about the services the agent can provide to others. and the conditions
under which these can be provided. A service is a publicly accessible interface
of the agent, comparable to a method-interface in 00-programming. A supplier
agent can for instance provide the service of giving an offer for a specific

CIA Architecture 81

product. Another service can be the offering of a standard contract according to
which two (or more) agents can conduct their business.

2. the 'private' services or elementary actions. This is a specification of the private
actions the agent can perform. These do not have to be the same as the services
provided to other agents. They are usually more low level. E.g., an agent can
offer to provide hotel reservation information to others, however the internal
database actions to get that information are private. This is especially the case if
the agent acts as a broker. It offers services to others, but for the execution of
them, it needs the knowledge and capabilities of other agents.

3. knowledge about services provided by other agents. E.g., in the case where one
wants to conduct business with a specific travel agency (maybe because one has
done business with it before) and knows that it can offer good alternatives for
flight and hotel reservation. This information can be used in the contact-search
phase as it was called in section 3.1.2.

4. knowledge about the authorizations, or what may or may not be done. E.g., the
authority to order another agent to book a business trip.

4.3.6. DATABASE

The Database contains the population of the domain model and can be used to store
intermediate results of calculations. As was described in section 1.1.3.1 the CIA can also
contain an existing database that has been encapsulated (the CIA functions as a wrapper
for the original database, extending it with the functionality of the CIA). Following
[Shoham. 19931 I call this process 'agentifying'.

4.3.7. LEXICON

As described above, the Lexicon is the system that stores and manages the terminology of
a certain domain. It describes the information of the discourse including the message
types and the static and dynamic structure of the domain. The Lexicon can be compared
with a data dictionary in traditional ISs.

In the remainder of this subsection the Lexicon is described in more detail. While the
other knowledge bases are implemented in the prototype the Lexicon is not (yet). The
following is a description of the Lexicon as it is foreseen.

From the linguistically motivated point of view taken in this thesis the Lexicon is
interesting. In general a Lexicon has two major functions. First, it explicitly represents the
mutual understanding about a certain concept of all agents involved. This can be used in
the initial phase (negotiation) of setting up the contract. The second major function of a
Lexicon is the input it can provide to the software development process. The more formal
structure the Lexicon exhibits, the more can be derived from it in terms of entity types,
relationships, actions etc. One research project in Tilburg University investigates to what
extent NIAM object models can be derived automatically from a lexical specification.

81 A Language.Action Perspective on tbe Design of Cooperative Information Agents

In [Weigand. 19901 a linguistic approach is presented in which the lexical definition of
concepts as well as the lexical structures in the Lexicon are based on linguistic primitives.

The Lexicon defines the possible predicate frames describing the domain. 1.e.

grammatical information 1, such as gender, word category, stem, etc.; structural
information, in particular the taxonomic relation, designating subsumption or subtyping,

but also semantic sets and pre- and postconditions for dynamic predicates; and conceptual
in formation (predicate schemata, i.e. 'stereotypes', including essential but not necessary
characteristics of a concept). This information can be specified in for instance the

linguistic representation formalism Functional Grammar ([Dik, 1978,1989]).

In such a Lexicon, no distinction is made between entities, relationships, actions,

attributes, identifiers. in so far as all of them have a lexical entry. Following linguistic
theory, the concepts are organized in a taxonomy and around prototypes. The higher

levels of this taxonomy form a basic ontology, including primitive concepts like 'entity',
'event', 'state' The lexical entry abstracts from the various word forms and inflections of
a certain word, as in normal dictionaries. In the case of complex concepts, such as actions,
the lexical entry includes a frame containing the roles of the participants. such as 'agent',
and 'recipient'. The definition of a concept is in principle simply the (natural language)

dictionary entry. It can be parsed and stored internally in a linguistic representation
formalism like FG, which allows formal treatment. Moreover. lexical research has shown

that definitions typically make use of a small array of basic structures. such as 'isa'.

'partof' relation and 'purpose'. This allows for even more formalization and hence

computational processing, while the definition can still be expressed in natural language.

An example of some lexicon definitions is the following. The italicised noun phrase

indicates a taxonomic link to a superconcept, arguments are given between parentheses:

ticket: a printed proof or reservation for a certain flight
registration number(ticket): a string of 4 alphanumeric characters and 2 digits

uniquely identifying the reservation for which the ticket is made
serial number(ticket): a string of 12 digits uniquely identifying a ticket of a certain

airli,ze company
issuer(ticket): the airline company that issued the ticket with a specific serial number

Below is an example in which the semantic structure of a concept is explicit. sell is a
transfer action with three semantic roles (the object has an empty label, ag stands for
agent and rec for recipient). It describes pre- and postconditions using predicates from the
same Lexicon, such as own. The incondition says that the action includes a payment
action of the recipient.

sell(ag X:human)(P:thing)(rec Y:human)
isa transfer
pre own(ag X)(P), price(P) = D
post own(ag Y)(P)
inc pay(ag Y)(D)(rec X)

1 Note that lexical definitions should not be considered as exhaustive characterizations of a
concept. A definition is made relative to a certain context. Within the context. the definitions must
differentiate different concepts, and provide a basis for mutual understanding.

CIA Architecture 83

In circumscribing the terminology for a particular application domain, the knowledge
engineer might draw on available terminologies for the generic domain. Such generic
terminologies might draw in turn on more general dictionaries. Hence, it seems useful to
organize the Lexicon as a collection of related sublexicons. A Lexicon Management
System is a system that can handle multiple lexicons. In this way, it is possible to Set Up

application architectures in a consistent way.
We assume that the Lexicon is filled first by a knowledge engineer (backed by a

domain expert). Dynamic negotiations between CIAs about concepts is still an idea to be
worked out in the future. However, when more ontologies, ISO standards and domain
lexicons become available, it is possible for negotiating CIAs to set up a mutual
understanding by making a reference to such a given set of concepts. It could also use a
bilingual (certified) Lexicon that translates Dutch business concepts to French, for
example. It should be clear to which definitions both CIAs commit themselves .

4.3.8. COMPARISON

When we compare this architecture with the standard concepts knowledge, belief and
intention from the agent literature, it can be observed that the knowledge of the agent is
contained in both the Lexicon (domain and world knowledge) and the Services-base (the
self-knowledge), the beliefs are contained in the Database (which contains all instances of
the agent's domain knowledge) and partly in the Services-base (the beliefs about the
possibilities of others). The intentions are related to the items on the agenda, which is
described in more detail in section 5.3.2.1.

The framework can be related to Habermas' theory of communicative action (section
2.1.1.4). When involved in communicative action the agents are oriented towards mutual
agreement, and it is considered essential that they achieve a common definition of the
situation in which they find themselves. The CIA framework materializes this common
definition in the form of the Contract (agreement on authorizations and obligations) and
the Lexicon (agreement on concepts). With regard to the contents of a speech act,
Habermas distinguishes between three worlds of reference: the objective, social, and
subjective world. Although CIAs do not take part in the human discourse and we do not
want to blur the distinction between the human and the artificial, the same principles of
rationality apply. A CIA also refers to an objective world (Lexicon), a social world
(Contracts) and a subjective world (Tasks).

4.4. INTERPRETER

The interpreter or agent-engine (the central component in the architecture of figure 4.3)
consists of a number of functional components responsible for each of its main activities
(see figure 4.4): task management. contract management, communication and interaction
management, and service execution. These components are explained in more detail in the
following subsections.

84 A language-Action Perspective on tbe Design of Cooperative Information Agents

..h

Contract :
.-.

Manager

- 1 Peer Cl

A Peer Cl A

tf r \ /
Task 1 Communication *---f'-Carimunicati -"i

Manager Manager - and negotiation ,1
4*-4* 0- -..

.t T
-f--

Peer CIASe,vice
- Execution

- Manager
Interpreter

P''ll
Km

figure 4.4. Functional CIA architecture

Here we give an informal description of the operation of an agent concerning tasks,
contracts and transactions. Figure 4.5 gives a graphical representation of the working,
based on figure 4.2. The figure takes the viewpoint of agent A, agent B has a similar view
(also a Task and Contract Manager). In the text the numbers between brackets, e.g. (2),
correspond to the numbers in the figure.

An agent has a certain task that can be split up in subtasks that the agent tries to fulfil.
In doing so the agent initiates the necessary transactions ((1)). In case of an unrecoverable
failure ((2)) the Task Manager of the agent should be notified so that it can pursue an
alternative, if necessary by rescheduling (sub)tasks.

The communication behaviour between the agents concerning some business relation
and process is described by a contract. The contract also specifies what should happen in
case of violation of one of the obligations or cancellation (cancel) by one of the agents
(by notifying the Contract Manager), possibly leading to other obligations or
authorizations ((3)) described by another transaction in the contract and triggering a
'contingency' plan ((4)), describing what should happen in order to get the subtask
fulfilled, managed by the Task Manager.

CIA Architecture 85

contract
Obl. 1 Auth.2
in: trans. 1 in: trans.4
goal: trans.2 goal: trans.5
exit: trans.3 exit: trans.6

agent A cviolation>/(3) agent B

 task (4) - contract manager' 1 i - \., .,
7 trans.2goal 6(1) message 1

444$ message2
cont n fail
ency , messaqe3 -FEE I

-Illy(2)

task manager

task manager

figure 4.5. Task and Contract Manager

4.4.1. CONTRACT MANAGER

The contracts are managed by the Contract Manager. The following gives an overview of
the processes supported by the Contract Manager.

(a) creating new contracts, and adapting existing ones.

The agent can play two roles, either as customer (receiver of services) or supplier
(provider of services). In the role of customer the Contract Manager can consult the
services-base to check if it knows of a provider of the service required. If so it sends out a
request for the service to that other agent (possibly including already some conditions
under which it wants the service to be provided). If not it can see if it knows a broker
agent that can find out who provides the service, or it can broadcast the request to all peer
agents. The request can be answered with a refusal (from the directed agent or all agents)
after which the Task Manager should be notified that the subtask can not be fulfilled, or
with an offer (possibly with a standard contract offer). The agent can then try to negotiate
some conditions of the contract (including making counter-offers). If both agents agree on
the conditions the Contract Manager sends out the order, which should be acknowledged
by the other agent. The above scheme follows the business logic (described in section
3.1). but different negotiations protocols can be implemented, see section 5.2.2.

In case the agent plays the supplier role and a request for a service comes in, the agent
checks if there already exists a contract with the requesting agent about the service. If so,
it replies to the request with an offer and this contract. If not, the agent checks whether
there exists a standard contract for the requested service which is returned. Otherwise the
agent replies with an offer (and possibly some conditions), and also offers the service of
setting up a new contract.

86 A I.anguage-Action Perspective on tbe Design of Cooperative Information Agents

Another situation that may occur is the adaptation ot an existing contract. This usually
concerns contracts the agents have been engaged in before, and that should be adapted to
the new situation (this specific order). Normally the agents do not return on the mutual
agreements reached earlier in the negotiation phase (unless that possibility is explicitly
expressed in that phase of course). In this way the negotiation phase can be shortened
(usually saving time and communication costs).

(b) transaction management, including contractual commitment.

The protocol that is specified is independent from applications, but in contrast to
traditional communication protocols, captures the complete communication logic, not just
a (ordered) set of messages. Aspects of faulty message delivery on the technical level do
not have to be specified in the contracts themselves, e.g., what should happen if a message
does not arrive through some hardware failure. Handling this kind of communication
problems is typically a task for the underlying infrastructure and can be specified
(generically) in that place. (However, if because of this failure the task cannot be
completed, the Task Manager should be notified).

A contract describes authorized communication behaviour among the receivers and
providers of services. In initiating transactions obligations are formed, based on the
illocutionary force of the messages (speech acts). E.g., an authorized request yields an
obligation for the receiver of the request to give an answer concerning the proposition of
the message. If the receiver does not adhere to the obligation, it is the job of the Contract
Manager to detect the violation and trigger the violation policies. This is done by
consulting the contract with the other agent, and recording the obligations of other agents
in connection with the CIA itself. For example, an order contract can specify that the
airline company is obliged to deliver a ticket for a fixed price before the end of the month.

The contract also specifies that the travel agency has to pay the bill before a certain
date. This is an obligation of the trave; agent, that of course should record and maintain it.
But since the travel agent has to check if the other agent fulfilled the commitment (i.e. if it
delivered the ticket before the date specified). the travel agent also has to record it. It
therefore adds this check (with the appropriate deadline) to the agenda. It is then possible
to undertake actions if the other agent violates the commitment and thereby the contract.
Furthermore we want to be able to reason about what to do if something happens that is
not supposed to happen (in the case of prohibitions). The contract may describe what
should happen in case a violation occurs. E.g.. in the case above, cancel the ticket, or
asking for a fine. In case of a fine, this leads to new obligations of the client agent.

In case the agent is dependent on the fullilment of the obligation for reaching a goal,
violation of the obligation by the other agent means the goal cannot be reached through
this transaction. In that case the Task Manager is notified. so it can pursue alternatives.

A reached goal state can become invalidated if the other party cancels a process, e.g.
the airline company cancels a booked flight. In this case again the contract should be
consulted what remedial actions should be taken. However. cancellation also means that
any partial results becomes invalidated (e.g. the ticket is no longer valid). This means that
also the Task Manager should be notified, triggering a contingency plan that can contain
actions on how to revalidate the results (e.g. book a new flight).

CIA Architecture 87

c) claim management.

The final task of the Contract Manager concerns the final phase of business
communication, the acceptance/claim phase (see section 3.1.2), dealing with satisfaction
of the agents. Contracts live longer than tasks. Although a goal can be reached and the
(sub)task is finished, at a later stage the customer (or supplier) can become dissatisfied
with the service. For instance, if upon arrival a booked hotel is no good (not according to
the conditions negotiated and laid down in the contract before) the customer can appeal to
the warranty agreed upon.

The communication about the warranty is not setting up a new contract or performing
a new subtask. It is directly related to the communication performed when reserving a
room. Although the task of booking a hotel is finished, the contract still holds, and the
supplier should take care of the problem and try to satisfy the customer (again). If this is
not possible (or is not done by the supplier) the Task Manager should be notified that the
(partial) result has been invalidated, triggering the contingency plan of the original task. In
the case of the hotel reservation this now becomes a new task, since the customer is
already at the place of destination and not finding a hotel is now a vital part (as it was not
when trying to book a business-trip).

In section 5.2.2 the negotiation process is described in more detail.

4.4.2. TASK MANAGER

The Task Manager has three main roles:

a) scheduling and planning.
The Task Manager collects all the subtasks specified in the task specfication and
puts them in the right order for execution. Based on the constraints, deadlines
and priorities specified, a plan is furmed and the subtasks (including the
communication transactions and private actions) are put on the agenda and

called one by one. This step continues recursively.

b) agenda management.
As described above obligations stemming from contracts are put on the agenda.
The Task Manager (in its role as Agenda Manager) forms plans of action to
bring about what is specified by the obligation. In this conflicting obligations
can arise (e.g., according to plan A action a should be executed, but an
obligation states that action a may not be executed). It is the Task Manager's
role to resolve such conflicts (e.g., based on the strength of the obligations, or on
priorities given to the actions).
Before executing the action on top of the agenda the Task Manager has to check
if all conditions (still) hold, including authorization checks and checks for
changes in the environment. If the state of the world (the environment of the
agent) has changed it might not be necessary anymore to perform that action (or
other actions on the agenda). The Task Manager should then reorganize the
agenda.

88 A Language-Action Perspective on tbe Design of Cooperative Information Agents

c) failure management.
The Task Manager handles failures due to subtasks that cannot be fulfilled, and
due to invalidating actions like cancellations. In many cases it is notified by the
Contract Manager (see above). In the first case alternatives are tried, if no
alternatives are specified or if they fail, it means the subtask fails and
backtracking is tried (seeking alternatives for the parent task). In the second case
a contingency plan is triggered that specifies how to revalidate the result of the
subtask again, or what should happen if it cannot, e.g. compensation of
dependent results.

The working of the Task Manager is explained in more detail in section 5.3.2, and
algorithms for these processes are given in appendix B.

4.4.3. SERVICE EXECUTION MANAGER

The Service Execution Manager is responsible for managing the services the agent
provides throughout their execution. This includes both services rendered to other agents,
as well as private actions. It involves three main roles:

a) service execution management.
The Service Execution Manager start executing services if notified by the Task
Manager (that controls the agenda).

b) exception handling.
The Service Execution Manager monitors the execution of tasks and services for
unexpected events and then react appropriately. In case the execution of the
action depends on constraints being satisfied, the execution can be halted and
the constraints can be checked at a later time (however, before any possibly
specified deadline) and i f satisfied the action can be retried. Alternatively, if the
action fails the Task Manager should be notified, so an alternative can be tried.
This will usually mean monitoring the database that stores information about
run time application/service specific information, e.g. the services which are
currently active and the current number of invocations of each active service. or
the up-to-date information about the upper limit the agent will pay for a service
that is negotiated.

c) information management.
If the agent is implemented using traditional database techniques the Service
Execution Manager can also be seen as the database management system for the
Services database, routing information between and assisting the Task and
Contract Manager i f they want to consult the Services database.

The Service Execution Manager is not specified further, since they are of less interest
to the communication process. Appendix C describes a prototype in which the Service
Execution Manager is implemented.

CIA Architecture 89

4.4.4. COMMUNICATION MANAGER

The main task of the Communication Manager is routing messages between:

(i) the agent and its peers, e.g. between the Contract Manager and other agents
during negotiation. It also distributes incoming messages to the appropriate
manager, e.g.. a cancellation message is forwarded to the Contract Manager. In
order to be able to communicate successfully with other agents (the messages
must be understood by both sender and receiver) a communication protocol
and a information sharing language is needed. Such a language must consists
of a number of semantically grounded speech acts that specify the intention of
the message (illocution). The meaning of the objects refered to comes from a
domain specific reference ontology (e.g. the General Transport Conditions for
passengers and luggage from an airline company) that is described in the
Lexicon. This meaning can also be negotiated in the negotiation phase.

(ii) the agent and its responsible human counterpart. In this role the
Communication Manager is the interaction manager of the human-computer
interface. This is not worked out in this thesis any further.

Both types of communication draw from knowledge about communication (e.g., a
request should always be answered, this can be seen as a politness rule), including
knowledge about predefined protocols (e.g., the negotiation protocol mentioned earlier).
E.g., if a request for a service comes in, the Contract and Service Managers should be
consulted, and based on their answer a reply to the request is formulated. This can also be
a counter request for more specific information about what is needed.

4.5. AGENT SPECIFICATION LANGUAGE COLA

For the specification of an agent program the language CoLa, short for Communication
and cOoperation Language, is defined. Following the three-level communication model,
the transactions the agent can take part in, the contracts governing the communication and
also the agent's tasks can be specified. For easy reference these separate parts of the
specification are called Trans, coLa and TaLa respectively and are described in section
5.1.4, section 5.2.4 and section 5.3.1. Parts of the grammar are given there, accompanied
by examples from the business-trip situation. The full (EBNF) grammar of CoLa is given
in Appendix A.

CHAPTER 5

COMMUNICATION FRAMEWORK

This chapter describes the three-level communication framework consisting of the
transactions (section 1), contracts (section 2) and tasks (section 3) of the agents. In all
sections the characteristic elements of the concepts are given, together with the
specification language part of CoLa. In the contracts and tasks section also the Contract
and Task Managers responsible for the management of respectively contracts and tasks
are described. Finally, section 4 gives a comparison of the proposed framework with other
transaction and workflow specification frameworks.

5.1. TRANSACTIONS

As described in chapter 1, more applications are being developed that access different
independent resources (databases, knowledge bases), or are designed as being composed
of different cooperative components. In many cases, integration of the various resources
might not be possible, which motivates the support of interoperability, i.e. the technology
necessary for combining multiple resources in a cooperative fashion using explicit
communication facilities. Such a system that supports interoperability was called
Cooperative Information System (CIS) before. Behaviour of a CIS is described by means
of interoperable transactions. Below first a description of transaction is given. In
subsection 2 the failure handling of failing transactions is described. Subsection 3
describes deadlines, an important point in specifying interoperable transactions. After this
the transaction specification language part (Trans) of CoLa is given, using examples from
the business trip case.

5.1.1. DESCRIPTION

An important aspect of an interoperable transaction is the specification of the coordination
between operations in different autonomous agents. Coordination can be modelled as a
communication process. Interoperable agents cooperate by means of message passing.
Each agent participating in the process has certain obligations to fulfil depending on the
role it is playing. The obligations of agents are made visible in the messages each agent

92 A language-Action Perspective on tbe Design of Cooperative Information Agents

agrees to provide in the context of a particular interoperable transaction. The agents
exchange messages in the order specified by communication constraints. These include
sequences of actions that must occur together, conflicting actions, and triggers causing

other actions to be taken. Through the messages, true cooperation within an interoperable
transaction is achieved without violating the autonomy of the agents. It is for that reason
that the specification of communication is emphasized, and focus on the synchronization
of messages rather than operations in CISs.

It is a characteristic of messages that they seldom stand on their own. For example, a

request is typically followed by an acknowledgement, commitment or refuse message
(figure 5.1). Therefore messages can be organized in transactions. The request and
confirm (or refusal) together form a transaction that results in an obligation of the service
provider. E.g., the request to reserve a room can be confirmed, creating a commitment of
the hotel to reserve a room, or can be refused.

 - CONFIRM (reserve(X))

1
.-

REQUEST (reserve(X)) -

1 - A
1

REFUSE (reason R)

V
./FliCANCEL (reserve(X)) CANCEL(X)

figure 5.11. Transaction

In contrast to other approaches (e.g., DEMO and BAT, section 2.1.3.2) that take
material actions into account, this work focuses only on communicative actions. Material
actions. like the delivery of goods, Still exist but are outside of the view of the agents.
Only the performance of a material action can be recorded. The agents do not have
sensors that can observe changes in the world other than communicative ones. This means
that real-world events, such as 'flight landed' do not play a role directly, but only via
messages such as 'assert(flight landed)' by means of which a particular agent
communicates the fact that the flight has landed. Moreover, since the message interface
encapsulates the local database actions of the agent, the latter do not play a role either.
Provided that there is agreement on the semantics of the messages exchanged, the
specification of these messages is the only concern for a designer of an interoperable
transaction. To put it sharply, for an agent sending a flight reservation request to an airline
company, what counts is that the airline company replies by a positive confirmation, and
not what it does in its database. This can and must be sufficient to let the transaction
succeed. However, in order to get the actions done, the invocation of the actions is
recorded as a message to the agent performing the action itself (this places the action on
the agenda).

Communication Framework 93

A specification of an interoperable transaction consists essentially of a set of
communicating agents, elementary actions, for the communicative elementary actions
(messages) the possible message types provided by each agent to support its role of either
customer or supplier of services (or goods), constraints on the synchronisation of the
actions (communicative or non-communicative), and the goal and exit states. According
to speech act theory all messages are specified as an illocution function, such as request,
and a propositional content (an action or proposition).

A transaction execution leading to a goal state means that the transaction succeeds,
whereas an execution leading to an exit state means that the transaction fails. "States" are
identified here by message occurrences.

Interoperable transactions can be nested. Higher-level transactions are aggregations of
subtransactions, and can specify (temporal) constraints on the subtransactions. The
constraints are propositional temporal logic formulae based on [Ngu et al., 1994]. It is also
possible to allow more fine-grained constraints between subtransactions, e.g., that one
subtransaction should occur after a certain message specified in another subtransaction.
However these issues are not pursued here.

5.1.2. FAILURE HANDLING

The interoperable transactions used here differ from traditional database transactions in
their longer time-span and larger structure. They introduce a unit of work and control that
does not consist of individual database state transitions, but they define a control
mechanism above ACID transactions.

Classical transactions are seen as a control mechanism that has the well known ACID
properties ([Gray, 19811, [Haerder and Reuter, 1983], [Ozsu and Valduriez, 19911): Atomicity,
Consistency, Isolation, and Durability. Despite their advantages for many straightforward
database applications there are aspects of classical ACID transactions that limit their use
in non-standard applications. As [Wachter and Reuter, 1992] describes: "they only perform
well when the controlled units of work are small, access only a few data items, and
therefore have a short system residence time".

For one thing it means that i f there is a unit of work that has a structure which needs to
be maintained by the system, it cannot be modelled as a transaction. However, the most
fundamental drawback of traditional transaction systems in the context of long-lived
applications is their notion of transactions being concurrent and completely unrelated
units of work. As a consequence, any existing interrelations between individual
transactions, like control flow dependencies and other semantic connections cannot be
implemented by the system.

ACID transactions control concurrency by isolating atomic state transitions against
each other in order to create a serializable schedule. To achieve this, nearly all
concurrency control methods delay updates of the database until the commit of a
transaction. However, this is not feasible for long-lived transactions because it leads to
tremendous performance degradation because holding long locks block other activieties. It
also leads to a high rate of transaction aborts due to conflict and deadlock resolution
([Wachter and Reuter, 19921).

94 A language-Action Perspective on tbe Design of Cooperative Information Agents

The elementary actions (communicative or non-communicative) that make up the
interoperable transaction as defined here can be implemented by embedding them into a
traditional ACID transaction, and their execution is serializable. The non-communicative
elementary actions have all of the ACID properties but they preserve only local
consistency for the manipulated objects. A whole interoperable transaction however is not
an ACID unit of work. Although the interoperable transactions break isolation and
atomicity because of there long-livedness, they do maintain consistency (and even on a
larger scale) and durability (the global effects installed at the end of the transaction are
durable and can be undone only by running another transaction). In this respect the
transaction approach as described here is similar to the ConTracts approach ([Reuter.
19891, [Wachter and Reuter, 1992]).

Since transactions cannot be seen as ACID units and therefore the failure handling and
recovery mechanisms based on this cannot be used, we must say something about the
failure handling in our system.

Interoperable transactions are prone to more types of failures, caused by the longer
time-span and the multiple parties being involved. Here we do not discuss (traditional)
system failures such as crashes and failures of the network, but we focus on other
semantical failure types (dealing with the meaning of the transactions) that cannot be
ignored. These are:

• cancellations - one of the parties undoes an achieved effect, which necessitates
either failure of the (sub)task or a rescheduling.
A notorious problem with interoperable transactions, is that isolation cannot be
maintained because of the long life-span. This means that partial results can
become invalid later. E.g., where a flight reservation has been made, but the
airline company cancels the flight. Alternatively also the original requesting agent
can cancel, e.g. cancel the hotel reservation because no flight can be booked (and
there are no other alternatives to make it to the hotel on time). See figure 5.1. The
cancel messages are not part of the transaction, but undo the result obtained.
Since they are part of the communicative behaviour between two parties the
contract should specify remedial actions if such cancellations occur.

• violations - where the other agent does not comply to the agreements, which may
cause "sanctional" actions on the one hand, and rescheduling of the subtask on
the other.
"Weak conflicts" (succeeded subtransactions that later fail, [Nodine et al., 1994])
usually originate from a violation of an obligation. For that reason, this approach
insists that obligations and authorizations of service providers and receivers are
modelled. However, here it is assumed that the cooperating agents will always try
to honour their obligations, i.e. the communication is always reliable. In this way
it is possible to reason over any non-cooperative action rather than classify them
as a true failure (leading to unnecessary rollback or recovery actions of
transactions).

Communication Framework 95

Specifying the obligations and the way violations are handled in the interoperable
transactions will not only complicate the specification, but also hinder the reusability of
the transaction specification. Therefore the framework posits a separate layer on top of the
transactions in which the deontic effects of transactions are described and these kind of
failures are dealt with. Since these deontic effects are of immediate concern to both
communicating parties, this specification is seen as a bilateral agreement. In order to
ensure flexibility of interoperable transaction specifications, the use of a separate concept
contract for modelling the obligation of an action in action-oriented communication
processes is proposed. The contract is not the specification of a task of one of the agents.
Rather it provides a basis for task specifications that involve cooperation with other
agents. The user in most cases is only interested in the fact that the goal of the transaction
is being achieved. Contracts and tasks are described in the next sections. The failure
management itself is a task of the Task Manager of the agent. Besides a contingency plan
that describes what steps to take in order to reach the goal of a subtask (again) also
compensation tasks can be specified, that 'roll-back' results obtained so far.

5.1.3. DEADLINES

An aspect that plays an important role in flexible transactions is deadlines. In situations
where several systems have to cooperate, deadlines are a means to specify expectations of
the behaviour of the other parties. E.g., if a company delivers a product it expects a
payment of the customer within a certain time. It is not difficult to develop a program that
checks whether deadlines are met. The main idea is to wait until the deadline has passed,
which usually can be checked easily, and then check whether a certain action has taken
place. However, many difficulties arise when one tries to transform this procedural
account of deadlines into a formal one.

In an intelligent agent system one would like to be able to reason about deadlines in
order to check whether they can be fulfilled at all. This holds especially for combinations
of different deadlines. Deadline constraints can also be used to influence the behaviour of
the agent. The combination of deadlines can be used to plan the actions of an agent. Of
course, this is only possible if the system has some formal description (besides a
procedural one) of the deadlines.

A related issue is the occasion that a certain deadline is not met and what the
consequences of such failure are. If one sees the failure to meet a deadline as a constraint
violation, in some systems this would mean that the system reaches an inconsistent state.
In these systems (most database systems currently in use) the constraints have to be
fulfilled at any moment in time. Of course this can easily be enforced for static
constraints. Any update of the system that violates a constraint is rejected. However,
deadlines are constraints with a fundamentally different nature. Whether a deadline is met
depends on an action that must have taken place. If the action is a local (database) action
the planning system of the intelligent system can make sure the action is performed before
the deadline. The performance of the actions is enforced and the deadlines would not have
to be checked afterwards because they would be met by default (if possible of course).

96 A language-Action Perspective on tbe Design of Cooperative Information Agents

Several problems can arise using this method. Take for instance the specification that
an order should be placed before the stock falls below a certain level. It is not known at
what point in time the stock falls below that level. It is therefore difficult to plan the
action (ordering). We argue that the enforcement of the deadline and the planning
problem are two separate issues and the enforcement of deadlines should not be
implemented by a planning procedure. Of course, the deadlines do influence the planning
of the actions of the intelligent agent, however they should not be enforced by it.

A second problem that arises with the enforcement of deadlines is that the system is
not always capable of enforcing the performance of a certain action (if it is not a local
action). E.g., upon delivery of the product the customer has to pay the bill within 30 days.
The system can base its plans on the fact that the customer has paid within 30 days, but it
has no way to enforce this payment (directly).

A last problem is the case where no specific deadline has been set. A certain action
should take place "as soon as possible". E.g., after an accident has been reported, the
ambulance has to go to the place of the accident as soon as possible. However, it might be
that the ambulance first has to deliver another patient at the hospital or that the accident is
not very serious and the ambulance does not switch on its siren. In these cases there is no
definite point in time where one can check whether the action has been performed or not.

These examples show that deadlines cannot always be enforced. Not keeping a
deadline should not result in the system being in an inconsistent state. Rather it should
arrive at a state in which it is clear that a deadline has passed, but other (corrective)
actions are still possible. (In case of the customer the system could send a reminder or a
court order for payment). In the next section (5.2) is discussed how a contract can specify
what should happen if a deadline is not kept.

5.1.4. TRANSACTION SPECIFICATION LANGUAGE (TRANS)

The communication between agents is described by messages, transactions and deontic
states. Messages are defined using (speech act) primitives such as request, assert, and
authorize. In this section the first part of the communication language CoLa, the
transaction specification language Trans is defined. Section 5.2.4 describes coLa (contract
specification language) for specification of the deontic states.

Messages that are aimed at establishing (or adapting) a certain deontic state (i.e., a
conjunction of obligations and authorizations) are grouped together in transactions. The
agents that are involved in the communication and the messages that each of them uses as
explicit speech acts during the execution of the transaction are specified at the start of the
transaction. For each transaction, there is a successful termination, indicated by the goal
of the transaction, and non-successful terminations or exits. A transaction execution
leading to a goal state means that the transaction succeeds, whereas an execution leading
to an exit state means that the transaction fails. "States" are identified here by message
occurrences. Furthermore temporal constraints on the synchronisation of messages can be
specified. As we have seen above, deadlines can play an important role in the
coordination between agents and optionally can be specified in the transaction.

Communication Framework 97

The following gives an EBNF definition of a transaction declaration in Trans.

transaction_decl: 1RANSACI'ICN trans_head trans.Jxx%
END-'IRANSACTICI ' ; '

trans_head: trans_name [' (' arg ' : ' type [{ ' , ' arg ' : ' type}] ') ']

trans_body: AGENTS ' : ' {agent ' : ' type ' ; ' }

{agent CAN SEND MESSAGES ' : ' {message_Spec ' ; ' } }
CCNSTRAINTS '.' { trans_constr ' ; ' }
[DEADLINE ':' {trans_deadline ' ; ' }1

GOAL ' - ' message [{ (AND IXOR) niessage}}
EXIT ' = ' message [{ (AND IXOR) rressage}]

message_spec: message TO (agent I self)

The messages correspond to the speech acts that are used in the communication. All
messages are specified as an illocution function, such as request, and a propositional
content (an action or proposition). This is in accordance with common practice in the
Language-Action Perspective. The advantage of using these illocution functions is that
otherwise the illocution is hidden in the message name (e.g. req_room). so that no
generalization is possible over the semantics.

Each message type also includes the claim to authority, indicating the relation between
the communicating agents. The three relations between agents that can be distinguished
are: power, authority and charity. Power means that an agent A has some strong authority
relation over agent B (e.g. boss and secretary). Authority means that an agent A can
perform a speech act of which the intended effect is accepted by agent B based on the
authority granted to agent A (either by agent B itself or by an agent that stands in a power
relation with agent B). Charity is chosen as term for all 'free' peer-to-peer communication,
where no relationship between agent A and B exist (or is not appropriate), e.g., a
"request_quotation", where no relations have been established between agent A and B
before, is defined as a requestc. Since we assume the agents to be benevolent, agent B will
have the obligation to answer somehow, be it a quotation sent to agent A or a refusal, or a
"don't know" which means agent B does not understand the request.

In section 6.3.2 these relations are defined formally, including the deontic effects the
different speech acts in combination with the different claims have.

Besides the standard message types. like request and assert, some special message
types are introduced, e.g., AUTHORIZE used by agent B to authorize agent A to perform some
act. Also the reverse of authorize. RETRACT, the retraction of a granted authorization is
included. Since the obligations of agents play such an important role in this approach
some explicit message types indicating these deontic effects are included, such as FORBID
and PERMIT. Furthermore abbreviations of some special message types can be given, e.g.,
the CONFIRM which is an abbreviation of the assertions of the special proposition 'received
and understood'. Lastly, explicit messages to the agent self are included. Following
[Shoham. 1993] these can be used for reasoning about its beliefs and actions. Finally, an
'action' (to SELF) message can trigger the performance of some private action.

These message types all have pre-defined semantics in terms of obligations and
authorizations, as is described in section 6.3.

98 A Ikinguage-Action Perspective on tbe Design of Cooperative Information Agents

nessage: REQUEST ' (' acticn ') ' /* DIRc */

COMMAND ' (' acticn ') ' /* DIRa */

ORDER '(' action ')' /* DIRP *1

RE EST ' (' AIJIHORIZE ' (' actian ')' ')'

COMMIT ' (' acticn ') ' /* CCM */

SUGGEST ' (' prcposition ') ' /* ASSc */

ASSERr '(' prapositian ')' /* ASSa */

CLAIM '(' proposition ')' 1.,692 It

ASSENT '('REFUSE-TO '(' action [', ' reascinl')")'
ASSERT ' (' ACCEPT ' ((action propositian) ')' ')'

NEr·I[ARTE ' (' prcposition ') ' / * rimrT • */

DBZLARE ' (' propositicn ') ' /* DECLa */

ESTABLISH '(' proposition ')' 1. Dfilp .1

AUIHERIZE ' (' message ')
RETRACT '(' actian ')'

FORBID '(' actian ')'

PERMIT ' (' actian ') '
CCNFIRM ' (' acticn ') '
actian

For the specification of the temporal relationships in the constraints, Linear Time
Logic can be used. Since we want to specify constraints on the possible execution paths of
actions and constraints (things that have to be done) a small subset of the logic is used,
specifically only those operators that deal with (possible) future actions, and leave out the

operators that specify history. This means only the operators NEXT and UNTIL are used.

Definition 5.1. (Temporal precedence relations)

NEXT 0 0 should be initiated next
$1 UNTIL (1,2 execute (> 1 UNTIL $2 is initiated
And the derived operators:
SOMETIMES 0 = true UNTIL (t)
ALWAYS 0 = -SOMETIMES -0

The operator NEXT guarantees an event to occur after the current one. SOMETIMES
conveys the message to honour the event at a later state. The unary operator ALWAYS is
used to express cyclic sequences. E.g., ALWAYS T3 means that the formula T3 will
always have the value true, this is because the condition T3 is always being regenerated.

In [Ngu. 19901 it is shown that the composition of the various operators provides all the
basic control constructs required in transaction modelling. The following example shows
two mutually exclusive events A and B specified in the propositional temporal logic:

ALWAYS (A => NEXT (-(A OR B) UNTIL A_trigger))
ALWAYS (B =>NEXT ((A ORB) UNTIL B_trigger))

Instead of the frequently used: --;I'2 UNTIL T I, that expresses that event T2 cannot
happen until event T I has happened, the paraphrase: T 1 BEFORE T2 is used.

In [Ngu et al.. 19941 a temporal logic specification style for the precedence relations is
used and it is shown how constraint specifications can be verified by constructing a
dependency graph by applying tableau decomposition rules ([Wolper, 1981]). This is not

Communication Framework 99

restricted to a directed graph structure, since the temporal operators provide the means to
specify both partial order and cyclic dependencies. The paths in the graph correspond to
possible execution sequences if the original specification is correct. Thus, the execution
path provides the information as to the execution order of operations within an
interoperable transaction. It provides a modelling mechanism which has a polynomial
algorithm to prove the correctness of the specification.

trans_ccnstr : message_list BEFORE message_list
ALWAYS ' (' message ' = > ' terp_tr_constr ') '

message_list : message
' (' rnessage { (AND IXOR) nessage} ')'

terp_tr_canstr (NEXT I SCMEITMES) ' (' trans_constr_el ') '

trans_ccnstr_el : message [{ (AND I)DR) message}]

message_list BEFCRE message_list

terp_tr_constr

As described in the previous section, deadlines are an important part of transaction and
task specification. The deadlines that can be specified are the general deadline (something
must be done after something else has been done or holds, including a specific time, and
before something else is done or holds, including a specific time), the immediate deadline
(something should be done now, as the next action), the deadline that specifies something
should be done as soon as possible, and finally the periodic deadline (a reoccurring
deadline, specifying something should be done periodically if some condition holds).

trans-deadline: ['P' } [deadl_cond ' < < '] message ' < < ' deadl_cond

Inessage ' ! ' /* irrmediate */
message ASAP /* As soan as possible */

dead[L_ccnd: proposition|message| time|message '+' time|now '+' time

Below we specify some transactions that can be found in the business-trip situation.

5.1.4.1. BUSINESS TRIP TRANSACTION EXAMPLES

We consider again the communication between agents involved in planning a business
trip; this consists of transactions involving the travel agent and agents from an airline
company, a credit card company and a hotel. The agents can come from different
databases/systems such as an airline database or a hotel chain's database. The example
below is from the specification of the hotel-agent and describes the hotel-reservation
transaction with the messages that the other agent can send and the possible replies from
the hotel-agent. Furthermore the constraints on these message exchange are given.

transaction hotel_reservation
agents:

u: user; /* all the potential customers in the network */
h: hotel;

u can send
messages:

request(reserve(room)) to h;
h can send

messages:

100 A language-Action Perspective on tbe Design of Cooperative Information Agents

reserve(room) to self;
confirm(reserve(room)) to u;
assert(no_available(room)) to u;
assert(refuse-to(reserve(room))3 to u;

constraints:
request(reserve(room)) BEFORE reserve(room);
request(reserve(room)) BEFORE assert(refuse-to(reserve(room)));
reserve(room) BEFORE confirm(reserve(room));
reserve(room) BEFORE assert(no_available(room));
ALWAYS(request(reserve(room)) => NEXT(SOMETIMES

(confirm(reserve(room)) XOR assert(no_available(room))
XOR assert(refuse-to(reserve(room)))));

Goal = confirm(reserve(room)) XOR assert(no_available(room))
Exit = assert(refuse-to(reserve(room)))
end-transaction;

The ALWAYS constraint states that whenever the hotel agent receives a request for a
reservation, sometimes later it will send a message back to the customer which is either to
confirm the reservation, or that there are no available rooms, or that he refuses to take the
request into consideration.

As shown by figure 5.1 both the hotel and the customer can cancel the reservation (at a
later stage). The cancel message is not part of the transaction, but instead is specified in
the contract. In the contract is described what should happen if one of the agents violates
an obligation resulting from a commitment made (the confirm of the reservation and
acceptance by the customer, the last one being implicit here).

The examples specify respectively: a flight-reservation transaction for a travel agent,
including the messages than can be exchanged, the triggering of a private action
(check (f light-schedule)) and the specification of an 'as soon as possible' deadline; a
hotel-reservation transaction from the travel-agent points of view; and a creditcard
payment transaction, including the specification of an immediate deadline.

transaction flight-reservation
agents:

a: airline;
t: travel-agent;

a can send
messages:

confirm(reserve(ticket)) to t;
assert(no_available(ticket)) to t;
assert(flight-schedule) to t;
assert(refuse-to(reserve(ticket)) ,reason) to t;

t can send
messages:

request(reserve(ticket)) to a;
request(get(flight-schedule)) to a;
check(flight-schedule) to self;

constraints:
request(get(flight-schedule)) BEFORE check(flight-schedule);
check(flight-schedule) BEFORE request(reserve(ticket));

deadline:
request(reserve(ticket)) ASAP;

Goal = confirm(reserve(ticket))
Exit = assert(no_available(ticket)) XOR

assert(refuse-to(reserve(ticket)) ,reason)
end-transaction;

transaction hotel_reservation /* for the travel-agent */
agents:

h: hotel;

Communication Framework 101

t: travel-agent
h can send

messages:
confirm(reserve(room)) to u;
assert(no_available(room)) to u;
assert(refuse-to(reserve(room))) to u;

u can send
messages:

request(reserve(room)) to h;
constraints. [OMITTEDl
Goal = confirm(reserve(room))
Exit = assert(no_available(room)) XOR

assert(refuse-to(reserve(room)))
end-transaction;

transaction creditc_payment
agents:

u: user;
c: card company;

u can send
messages:

request(pay_with(creditcard)) to c;
request(increase(credit)) to c;

c can send
messages:

validate(creditcard) to self;
pay_with(creditcard) to self;
assert(accept(pay_with(creditcard))) to u;
assert(not_enough(credit)) to u;
assert(invalid(creditcard)) to u;
assert(refuse-to(increase(credit))) to u;

constraints:
validate(creditcard) BEFORE

assert(accept(pay_with(creditcard)));
IOMITTEDl

deadline:
validate(creditcard) !;
assert(accept(pay_with(creditcard))) !

Goal = assert(accept(pay_with(creditcard)))
Exit = assert(not_enough(credit)) XOR assert(invalid(creditcard))

XOR assert(refuse-to(increase(credit)))
end-transaction;

Note that we take a functional approach to the specification of messages. For example,
request(reserve(room)) and request (get (f light-schedule)) use the same generic
action request () . This gives the provision to state general constraints, such as that
commit(a) cannot precede request(a), for any action a.

5.1.4.1.1. Special cases

Another example is a more general one and describes the transactions in the case of an
ordering procedure. It states that the transaction quotation is a specialization of the
transaction get_authorization. This transaction is defined as a request to get
authorization. followed by an authorization or a refusal. Specialization means inheritance
of the message set, the constraints, the Goal and the Exit. All these parts can be extended
(not overruled) in the specialization. The message authorize is predefined and creates an
authorization for a certain action. Note that the constraint here is so self-evident that it is
better built-in in the language as an axiom. See also the next subsection about instant and
delayed services.

102 A language-Action Perspective on tbe Design of Cooperative Information Agents

transaction quotation
isa get_authorization(order(Partno,Quantity,Price),self,provider)
end-transaction;

transaction get_authorization(a:action,c,s)
agents:

c: customer;
s: supplier;

c can send
messages:

request(authorize(a)) to s;
s can send

messages:
authorize(a) to c;
assert(refuse-to(authorize(a))) to c;

constraints:
request(authorize(a)) BEFORE authorize(a);

Goal = authorize<a)
Exit = assert(refuse-to(authorize(a)))
end-transaction;

The order transaction below is defined for the cases where no quotation is given
before. The request to deliver a product is therefore based on charity. If answered the
company commits itself to deliver the product (if available) against a certain price after
which the price has to be accepted by the customer.

transaction order-product
agents:

c: customer;
s: supplier;

c can send
messages:

request(deliver(Partno,Quantity, Price)) to s;
s can send

messages:
commit(deliver(Partno,Quantity, Price)) to c;
assert(not_available(Partno,Quantity)) to c;

constraints:
request(deliver(...) BEFORE commit(deliver(...));
request(deliver(.) BEFORE refuse(not_available(...));

Goal = commit(deliver(...))
Exit = assert(not_available(.))
end-transaction;

The following example shows a typical transaction, in which the two partners express
agreement about a situation by means of two messages. In most cases, the accept is
essential, since delivery is more than saying the order is delivered, it is also more than just
putting the containers in front of the entrance. Only when the customer accepts the goods
as such (a speech act), the delivery succeeds.

transaction order-delivery(0: order)
agents:

s: supplier;
c: customer;

s can send
messages:

assert(delivered(0)) to c;
c can send

messages:
assert(accept(delivered(0))) to s;

Goal = assert(accept(delivered(0)))
end-transaction;

Communication Framework 103

In the following example, the request to transfer money is a request based on authority
following from the relation between bank and customer. The result is that the bank must
Commit to the money-transfer unless there is some other condition that violates the
agreement (such as not enough credit). The refuse message is extended to include the
reason for the refusal.

transaction payment(s:supplier,$:amount)
agents:

c: customer;
b: bank;

c can send
messages:

command(transfer_money(s,$)) to b; /* =DIRa */
request(increase_credit) to b;

b can send
messages:

commit(transfer_money(s,$)) to c;
assert(credit(c,$)) to c;
assert(refuse-to(transfer_money(s,$)), "not enough

credit") to c;
constraints:

assert(refuse-to<transfer_money(s,$), "not enough
credit")) BEFORE request(increase_credit);

request(transfer_money(..) BEFORE commit(transfer_money);
Goal = commit(transfer_money(s,$))
end-transaction;

5.1.4.2. TRANSACTION TYPES

As described above a transaction is a set of messages and constraints between them. This
section starts with an analysis of the example business trip transactions of the travel-agent.
The goal of this analysis is not to improve on the syntax, or extend the expressivity, but to
obtain a better understanding of what is going on, and how flexibility and modularity can
be improved. Three observations can be made, the first regarding the transaction process,
the second regarding prototypical transactions, and the third regarding modularity.

1. transaction process

Although transactions often take the form of a request followed by a commit, or an
assert followed by an accept, sometimes intermediary messages are allowed, as with
increase_credit in the credit-card payment example, and sometimes the response is
superfluous, because the request/assert was already authorized. In DEMO ([Dietz,
1994a,b]), communication is modelled exclusively by means of so-called actageneous and
factageneous conversations, creating an agendum and a fact respectively (see section
2.1.3.2.1). Between those conversations the essential action, the act that is requested in the
actageneous conversation and that the addressee committed itself to, is performed. Each
of these conversations is required to have at least two messages (requesUcommit,
assert/accept). A limited set of additional messages, to be used in the negotiation, such as
refuse, and counter offer, and discussion about validity claims (based on [Habermas, 1981])
are allowed as well. The structure of this transaction process can be represented by the
Transaction Process Model (TPM) of van Reijswoud ([van Reijswoud, 1996]),

104 A kinguage-Action Perspective on tbe Design of Cooperative Information Agents

Actageneous and factageneous conversations are not specified explicitly in the

transaction specification given above, but the basic idea is incorporated and worked out in

the formal framework where the intended effects of certain speech acts are defined, e.g.

the obligations that arise for the addressee after an authorized directive of the speaker, or

the belief about a fact that is created in the addressee after the assertion of the fact by the

speaker. In an agent-oriented setting the obligations of an agent are put on his agenda as

things to do or bring about.
We do not force the specification of all reply messages, unless the acceptance of some

specific service is described (see the order delivery example above). The reason for this is

the focus on the contract between two parties. A contract gives rise to a certain

communication process or protocol and these protocols are based on the essential speech

acts given in the contract. So in the transaction specification we only focus on those

transactions and communicative actions that have some deontic effect.

The transaction specification given here mainly deals with the success layer of the

TPM. Failures due to agents not obeying their obligations are being dealt with in the
contract specification (section 2). Failures due to cancellation are dealt with in task
specification (section 3) and are not described on the transaction level.

Discussion about validity claims often boils down to discussion about the conditions

under which certain acts can be performed. This iS therefore part of the negotiation

process of setting up (or modifying) a contract describing the mutually agreed actions of

the partners in the communication. However, in analyzing a situation the TPM can be

used to model the different transactions that are going on and which ones should be

accounted for in the contracts and which one in the task's manager failure handling.

2. prototypical transactions

A second observation that can be made is the close similarity between the f light -

reservation and hotel-reservation transaction. Both Contain request (reserve ()) .

confirm(reserve ()) . assert (not_avai lable ()) , where the only difference is in the

object, be it a ticket or a room. There are some non-essential syntactic differences in

expression, but the basic structure is the same. The Goal and Exit conditions of both
subtransactions are similar as well. What this suggests is that we can have a generic case,

a "parameterized" transaction that is characterized as "reservation". This generic

transaction is customized according to the object of reservation. From a software
engineering point of view, the parameterized transaction would be a good candidate for

reuse, to be handled as a kind of generic superclass in an object-oriented framework.
Derived subclasses are then allowed to specialize by adding constraints or other messages,

such as, those about the flight-schedule in the case of flight-reservation.
Although this is only one example, the number of different parameterized transactions

is rather limited, making it worthwhile to look for a basic set that could cover 90% of the

cases. Below two prototypical transactions are modelled. called DELAYED_SERVICE
and INSTANT_SERVICE. The INSTANT_SERVICE transaction type is applicable when

the service is offered by the other party instantly. In that case, reply coincides with the
offering of the service, as for example the providing of a flight-schedule.

Communication Framework 105

transaction i_sv(service(object), agentA, agentB)
agents:

agentA: customer;
agentB: supplier;

agentA can send
messages: request(service(object)) to agentB;

agentB can send
messages:

service(object) to self;
assert(object) to agentA;
assert(no_available(object)) to agentA;

constraints:
service(object) BEFORE assert(object);
service(object) BEFORE assert(no_available(object));

Goal = assert(object)
Exit = assert(no_available(object))
end-transaction;

The DELAYED_SERVICE transaction is applicable if the service offered by the other
party is an external event, and the essence of the transaction is the commitment of the
other party to deliver that service. An 'order' of goods is a typical example. An interesting
subtype is when the service is a reservation. In that case, the action contians granting of an
authorization with respect to another service. The object of the reservation might be a
hotel room, a flight seat, a book rental, a transport. An example is the get_authorization
transaction given above. The generic DELAYED_SERVICE describes the possible
messages and their synchronization. In real-life examples, the specialization of such
transactions will typically include extra conditions on these actions.

transaction d_sv(action, agentA, agentB)
agents:

agentA: customer;
agentB: supplier;

agentA can send
messages: request(action) to agentB;

agentB can send
messages:

action to self;
confirm(action) to agentA;
authorize(service) to agentA;
assert(refuse-to(action),reason) to agentA;

constraints:
request(action) BEFORE confirm(action);
request(action) BEFORE assert(refuse-to(action),reason);
request(action) BEFORE authorize(service);

Goal = confirm(action) XOR authorize(service)
Exit = assert(refuse-to(action), reason)
end-transaction;

Applying the parameterized transaction framework to the flight-reservation
transaction, we can simplify it to be an aggregation of an INSTANT_SERVICE with
object flight-schedule, and a DELAYED_SERVICE with object reserve (ticket).
The resulting representation below models the transaction as a subclass of the delayed
service (inheriting its constraints and goal), and including the instant service (inheriting its
constraints, but not its goal). The notation d_sv is used for DELAYED_SERVICE and
i_sv for INSTANT_SERVICE. Both d_sv and i_sv are interoperable transactions.

106 A I.anguage-Action Perspective on tbe Design of Cooperative Information Agents

transaction flight_reservation
isa d_sv(reserve(ticket),t,a)

agents:
t:travel-agent;
a:airline;

include:
i_SV(get(flight-schedule),t,a);

constraints:
i_sv(get(flight-schedule),t,a) BEFORE

d_sv(reserve(ticket),t,a);
check(flight-schedule) BEFORE d_sv(reserve(ticket),t,a);

deadline:
d_sv(reserve(ticket),t,a) ASAP;

end-transaction;

Notice the simplified representation of this transaction as compared to the original
flight-reservation transaction. In the flight-reservation, it seems likely that the
temporal constraint between check(f light-schedule) and request (reserve (ticket))
and also the deadline is specific to the transaction, and hence should not be included in the
generic d_sv and i_sv transactions.

Although important from a software engineering point of view, parameterized
transactions are not yet implemented in the specification language.

3. modularity

A third observation is the modularity in the specification. Instead of one big business
trip transaction, different transactions that each deal with a bilateral relation ((travel
agency - airline company), (user - credit card company)) are specified. This modular
approach is useful because the agreements/obligations between travel agent and airline
company can change now without affecting the other agents' parts (such as tasks).
Another potential advantage is that the same subtransaction, e.g. credi tc_payment, Can

be used in quite different applications.
In fact, the transaction creditc_payment Call be remodelled as a contract between user

agent and credit card company. It describes a number of services offered by the credit
card company, which are made use of in the task of planning a business trip. We can think
of a cooperative environment as having an indefinite number of applications, identified by
interoperable transactions. Each of these transactions depends on the action-oriented
communication by drawing on several contracts to achieve its goal.

Communication Framework 107

5.2. CONTRACTS

This section describes contracts, and its basic concepts: authorizations and obligations.
We start of with a desciption of contract and contract creating, followed by a discussion
about relationships between contracts. After this the contract specification language part
coLa of the communication specification language is described.

5.2.1. PROPERTIES OF CONTRACTS

In this thesis a contract is defined as a set of related authorizations (permissions and
prohibitions), and mutual obligations, together with conditions on the relationship
between them, and rules governing violation of authorizations and obligations.

A contract is set up by two or more agents when communicating, usually through a
process of negotiation (see below). It describes the authorized communication behaviour
among the receivers and providers of services in terms of interoperable transactions. The
purpose of the contract is to clarify the position of the communicating (business) partners
and should be consulted whenever there are problems with or questions about the
authorizations and obligations of one of them. The contract does not address problems
about the meaning of the objects the communication is about (semantic problems), for this
purpose the lexicon should be consulted. The actual obligations are created by individual
messages, which are usually justified by authorizations laid down in the contract. But a
contract can also cause the creation of an obligation in the absence of a directive message,
e.g. because a certain state has arrived. The specifications of the authorizations and
obligations are modelled using dynamic deontic logic. E.g., if a message is directive, the
source of the directive is supposed to be authorized to command these actions, and the
receiver is committed to follow the resulting obligation. If the receiver does not adhere to
the obligation, it is the job of the Contract Manager to impose violation policies.

5.2.2. CREATING CONTRACTS

Whenever an agent requires a service provided by another agent it cannot simply instruct
it to execute that service, since agents are autonomous entitites and there are no control
dependencies between them ([Jennings et al., 199681). This is exactly one of the main
differences between agent systems and more traditional forms of distributed processing

([Smith and Davis, 1980]) Instead, the service requesting and service providing agents must
come to a mutual agreement about the terms and conditions under which the desired
service will be performed. Such an agreement is defined here as a contract. As we have
seen in the business logic framework (section 3.1) a contract is the result of a negotiation
process. [Muller, 1996] defines negotiation as: "a joint decision making process in which
the parties verbalise their (possibly contradictory) demands and then move towards
agreement by a process of concession or search for new alternatives".

108 A Ikinguage-Action Perspective on tbe Design of Cooperative Information Agents

In order to be able to negotiate a protocol is needed describing the role of the current
message exchange, i.e. whether the agent is making a proposal, or if it is accepting or
rejecting a proposal ([Jennings et al.. 1996al). Based on the business logic a model of the

negotiation process can be developed. This is similar to the approach taken in the ADEPT
framework ([Jennings et al., 19963], and [Alty et al., 1994] for more detail). The protocol is
based on speech-act performatives (section 2.1)

The protocol consists of a initial phase of finding out what services an agent can
provide, by simple requesting and answering (asserting) speech acts. This information can
be stored in the Services-base for reuse, in which case this phase can be skipped.

The following phase is the phase of coming to an agreement. In the ADEPT
framework four illocutions are used: propose, counterpropose, accept and
reject. [Dignum. 1997] shows how these basic illocutions can be modelled within our
logical framework (described in the next chapter). It describes how each of the speech acts

mentioned above can be expressed in the basic speech act types adopted here:
commissives, declaratives and directives. Furthermore it specifies precisely what
permissions and especially what obligations are raised for the negotiating agents.

Each type of speech act (and its effects) should be interpreted within the background

of the relationship between the speaker and the hearer of the speech act. We distinguish
three types of relations between agents that have an effect on the negotiation: a charity

relation (or a peer relation), a power relation, and authorization relation. The first two are
similar to the ones used in the ADEPT framework.

The power relation is used to model hierarchical relations between agents. We assume
that these relations are fixed during the lifecycle of agents. Within such a relation less
negotiation is possible about requests and demands. E.g., if there is a power relation
between one agent and another the last one cannot reject any proposals from the first one
outright. This reduces the amount of communication and therefore increases the efficiency

of agents.
The peer relation exists between agents that have no prior contract or obligations

towards each other (with respect to the present communication). This relation permits
extensive negotiations to allow a maximum of autonomy for the agents. The agents must

negotiate in a cooperative (rather than in a competitive) manner.
The authorization relation is a type of temporary power relation that can be build up

by the agents themselves, e.g. one agent explicitly permits another agent to direct it from
now on to accept any offer that agent makes. The relations are described in more detail in
section 6.3.2.

The protocol furthermore contains a management phase of actually invoking the
agreement and making sure the service is provided, which is guided by both the Contract
Manager and the Service Execution Manager, as described in section 4.4.

IMoller. 19961 describes that, besides the communication protocol, a negotiation model
consists of a decision component describing the reasoning of the negotiators. This
component usually contains utility functions, preferences, and negotiation strategies.
Existing work on this aspect of negotiation can be divided into two camps.

Communication Framework 109

On the one hand, much theoretical work (e.g. [Nash, 1950], [Raiffa, 1982], [Rosenschein
and Zlotkin, 19941) is based on game-theoretic and economic notions, providing insight into
how agents should negotiate to produce 'optimal' solutions. However, as [Jennings et al..
1996al state, a number of unrealistic assumptions are common in these models, such as:
the availability of complete action descriptions, a utility function that can order all
alternatives in all contexts, and perfect rationality of the agents when selecting actions.

On the other hand, more practical work typically adopts a superficial approach to
negotiation. For instance in the Contract Net protocol ([Smith, 1980], [Smith and Davis,
1980]) the Manager sends out a request to a number of potential contractors to provide a
given service with a given degree of quality. The potential contractors return a bid if they
are capable of fulfilling all the requirements. The Manager then selects the best bid.
However, this model fails to capture many intuitive and important aspects of the
negotiation process, e.g. bidders cannot counter-propose better options, and cannot
modify any of the contract parameters, and it is one-sided in that it only emphasizes the
responsibility and satisfaction with the requesting agent.

Therefore Jennings ([Jennings et al.. 1996a]) propose a deep and explicit model of the
negotiation process. The model contains declarative and procedural knowledge.

The declarative knowledge models what is being negotiated for and why negotiation is
taking place (it sets the negotiation context), e.g., negotiation over the start-time of a
service if a proposal conflicts with an agent's existing commitments This knowledge
draws on previous contract knowledge and task knowledge.

The procedural knowledge is represented as a set of strategies, and mechanisms for
selecting between them. It specifies which actions should be taken given the declarative
knowledge, e.g., if the agent has a long time to reach an agreement or if there are many
potential suppliers of a service the Contract Manager may indicate that Boulware (a
strategy in which the negotiator makes a reasonable initial offer and then sticks firm with
it throughout the negotiation [Raiffa, 1982]) can be adopted.

5.2.3. RELATIONSHIPS BETWEEN CONTRACTS

In this subsection we will take a look at different relationships that can exist between
contracts. We examine contracts not only from a technical viewpoint but also from an
organisational one. From a technical point of view, a contract is nothing but a protocol
binding different parties to their commitments by explicitly specifying the type of services
agreed upon, the obligations resulting from it and the violation recovery methods. From
an organizational point of view, however, a contract between interoperable systems
involving different organizations also has the purpose of laying down a formal (and legal)
agreement. This means for instance contracts should be "grounded" in other 'higher-level'
contracts or (international) business laws. Below these ideas are described.

It should be noted that more research should be done on this aspect and in the next
subsection where the specification of contracts is described we are only dealing with the
technical view of a contract, i.e. the specification of the lowest level of contract, the
agreements between two communicating parties.

110 A Izingtiage-Action Perspective on tbe Design of Cooperative Information Agents

Contracts, in the general sense of agreements between commercial partners, can be
more or less elaborate and defined on two levels.

procedural
contractf \

no ,- orderrelationship contract

figure 5.2. Contracting on two levels

Starting from a situation where no (business-)relation between the agents exists (figure
5.2), agents have the possibility to offer services. A service can be seen as a publicly
accessible interface of the agent, comparable to a method interface in 00 programming.

In the first subsection, a contract was defined as a set of services that specify
authorized messages (in transactions) and their deontic effects (authorizations and
obligations of the communicating parties). Nowadays it is considered an economic
advantage when business relations can be tied closer with some preferred supplier or
customer. In that case the two parties can make agreements beforehand, e.g. about a
guaranteed delivery time. We assume that such a contract is set up by the two partners
only once and then frequently used. We call this a procedural contract.

In the business logic model a contract is the result of negotiation, and in a business
setting implies a commitment to deliver a product and a commitment to pay. A supplier
agent can provide the service of giving an offer. When a customer agent requests for this
service. the supplier can refuse or accept. If he accepts, he sends an offer, that is. an
authorization to order the product with the obligation to pay for it. If the customer agent
uses this authorization a contract has been accomplished. We call this an order contract.

If the agents have done business before then in setting up the order contract the agents
can take into account the agreements made before and laid down in a procedural contract.

Composition of contracts corresponds to traditional composition of modules, and
contract specifications should have the possibility to "include" other contracts. For
instance, in a contract between a travel agency and airline company about the ordering of
tickets a generic contract about the order procedure, delivery and payment could be
included so that only the agreements have to be specified on getting flight-schedules,
changing requests (e.g., non-smoking seat instead of smoking-seat) and what should
happen in case of cancellation by one of the partners.

Another relationship between contracts, mentioned above, is that between the business
contract and a grounding contract, i.e., a contract that states the value of the contract
actions in a higher-level context. By grounding the contract in other contracts or business
law, it can obtain legal status. For organizations it is important that the highest level of
contracts are ultimately grounded in (inter)national (business) law. E.g., laws of

Communication Framework 111

commerce usually contain an article that if a commercial contract imposes a penalty on a
party for non-compliance with the contracted obligations, the affected party may demand
fulfilment of the contract.

There are basically two ways of defining a "grounding" relation: bottom-up, where a
higher order contract or institution stipulates the legality or validity of lower order
contracts; or top-down, where lower order contracts or transactions state explicitly that the
obligations and authorizations from this level are validated or have a legal status by some
higher order law or contract. Which one should be preferred is not clear at the moment,
but a software engineering point of view is preferred where lower order contracts
explicitly point to higher order contracts for the validation of the obligations and
authorizations. These higher contracts can be used in case of conflicts when a party that
violates an obligation questions the sanctions that are laid upon him.

Contracts describe the obligations and authorizations of the communicating agents. As
mentioned in chapter 1 (and worked out in chapter 6) deontic logic is used for the
specification of these concepts. Also the relations between contracts can be described
using deontic logic. Some work on this aspect has been done in [Royakkers and Dignum.
1994]. For describing relations between contracts two logics can be distinguished:

(i) the intra-deontic logic, common to all contracts. This logic is described in
section 6.1.1,

(ii) the inter-deontic logic that is about relations among deontic units. [Castaneda.
1982] describes four different inter-deontic structures:

1. deontic adjunction

This is the simple union of two contracts that are not in conflict with each other,
e.g., the procedural and order contract relation.

2. sanctional dovetaiting

A dovetailing contract contains actions that can or must be undertaken when the
other party violates an obligation (the punitive type) or what must be done when an
obligation of the other contract is fulfilled (the rewarding type).

It seems useful to have a 'sanction' link between contracts. If, as the result of a
violation, a new obligation is created, e.g., give a refund if the original flight is
cancelled, there is no way to enforce the fullilment of the new obligation.
However, we do not want to clutter the contract specification with several levels
stating what should happen if the other party does not adhere to the new obligation.
Instead it should be possible to point to a higher level contract (law) that specifies
what sanctions can be taken (e.g. go to court if the fine is not paid, the laws of
commerce under which both parties work specifies what should happen).

Sanctional dovetailing has some analogy in the use of exception handlers. It has
the advantage that the process remains more transparent, although problems may
arise how the process should continue after the exception handler has returned. In
the contracts described in this thesis We try to specify what actions are necessary to
return to the success-line leading to a preferred goal state.

112 A language-Action Perspective on tbe Design of Cooperative Information Agents

3. delegational expansion

A delegational expansion contract specifies that certain other agents can perform

actions that have normative power for the contracting agents. E.g., by the contract

between an airline company and its sales-department employee, the employee is

delegated the power to set-up contracts between the airline company and a travel-

agent. All obligations arising from the contract are not obligations for the
employee (although he/she might be the one performing actions to adhere to the

obligation), but formally they are the obligations for the airline company. See also

section 6.3.2.3 for matters concerning the delegation of authorizations. More about

this type of contracts can be found in [Dewitz, 1991].

4. conflict-resolving expansion

Such a contract contains rules that say what must be done in the situation where

another contract contains conflicting duties for the contracting agents.

Conflict-solving expansion occurs in an IS environment when conflicts cannot

be solved by adapting the systems (e.g. because the systems are legacy systems).

E.g., if there exists a contract between an airline company and a travel agency

about the ordering of tickets that specifies the policy of the airline to offer
alternative flights (and not pay fines) in case of cancellation, and a new contract is

set up for certain flights that contains the obligation of the airline company to pay a

fine if the flight gets cancelled. In case a flight gets cancelled the question is which

contract prevails. A third contract might specify rules for deciding which
obligation holds for the airline company.

In the present framework, the "do veta iIing" contract is included in the contract itself.

Other inter-contract references are not yet taken into account.

Overall there are three ways agents can interact in business communication: directly
(e.g., the request for a service); following a standard or permanent contract (e.g., for

preferred business relations); and, by setting up a new contract (e.g., for a one-time

service under some conditions). Figure 5.3 gives a graphical illustration.

on-the-fly-contract

El

bottom-line
communication

persistent contract
agent

figure 5.3. Three types of communication lines

Communication Framework 113

5.2.4. CONTRACT SPECIFICATION LANGUAGE (COLA)

The reader may have noted that the term 'contract' is sometimes used for the specification
of the transactions plus the way failures are dealt with, and sometimes for the latter part
only, separated from the transactions. This is to avoid inventing yet another term. In the
following, the restricted meaning is intended.

Contracts are defined as units of cooperation between two or more agents. coLa (the
contract specification language part of CoLa) provides a means to describe the
communications between agents and the resulting obligations and authorizations in a
structured way. A contract is therefore specified as a set of deontic clauses. A deontic
clause describes the status of an interaction of the two partners in terms of obligations,
authorizations and accomplishments. Logically speaking, this is a complex deontic logic
formula. This formula can be put into a conjunctive normal form, where ach clause is a
disjunction of literals. The contract describes the deontic clauses and their dynamics, that
is, a clause is created by one or more transactions, and is removed by other transactions.
The EBNF grammar of coLa is as follows:

cantract : CCNIRACT Cantract_narre contract-body END+CCNTRACT ' ; '

contract_nanie : idelt
contract-kdy: SENTS ' : ' {agent ' : ' type ' ; ' }

CLAUSES ':' {clause ';'}
clause: clause_name ':' COEL AUr '(' agent'.'action_spec')') 1

ACC '(· agent ')'

IN ':' transaction [{',' transaction}]

IDEADLINE ' : ' obl_deadline]
[GOAL': '{action_spec'=>' clause_name [{ ' & ' clause_name}] }]
[EXIT ' : ' { (cancel ' (' action ') ' 1 transaction)

' = > ' clause_neme [{ ' & ' clause_nane}]}]
[MODIFIED-BY { (action_spec message)}1
END clause_name

action_spec : transaction I action

The status of the interaction can be represented by a set of clauses, as in a Petri Net,
where a state is identified by a set of token placements. A Petri Net consists of a set of
places, a set of transitions, an input function and an output function from the set of
transactions to the set of places. Petri Nets have been widely used in process modelling
([Murata, 1989]), but the interpretation of the states can vary. In this case, states are
identified with a deontic clause and the transitions are interoperable transactions that
create or remove the deontic clause.

The clause is identified by a clause name (unique within the contract). Its content is
specified as a deontic formula. The IN part refers to the transactions that lead to this state,
provided they have been closed successfully. The GoAL and EXIT transactions have the
effect of moving to another deontic clause. The current state is then no longer valid. The
difference between GOAL and EXIT is that one involves the fulfilment of the obligation
whereas the other involves a violation or cancellation.

114 A language-Action Perspective on tbe Design of Cooperative Infonnation Agents

Optionally, a deadline can be specified on the obligation, using the specification style
of the transaction deadline (section 5.1.4). Violation means the deadline has passed
without fulfilment of the obligation.

obl_deadline: [
C action_spec I time l action_spec '+' timelnow' +'time) '<<']

action_spec '<<'
(action_spec l time l action_spec ' + 'time I now' +'time)

action_spec ' ! '
action_. pec ASAP

The contract also allows the specification of update transactions (indicated by
MODIFIED-BY) that do not invalidate the deontic content but only modify certain parameters

(e.g. a smoking seat instead of a non-smoking seat).
The following example illustrates deontic states for a f light_reservation. It is a

contract between the airline company and the travel agency.
By a flight-reservation states S 1 and S2 are reached. S 1 denotes that the airline

company has the obligation to fly (alternatively it can be specified as the authorization of
a person to board the plane), and S2 that the travel agency has the obligation to pay. If the
ticket is cancelled by the travel agency, state S8 is reached where the agent should pay a
fine to the airline company. Alternatively the airline might cancel the flight, leading to
state S6 specifying that the airline has to pay a fine, or state S5 if the ticket was already
paid for. Finally, the travel agency's goal state S3 can be reached if the airline flies to its
destination and/or the airline paid the fine. The airline's goal state S4 is reached if the
travel agency has fulfilled all its obligations (to pay the ticket or the fine if the ticket is
cancelled). If both parties are satisfied (reached their goal states) the contract ends.

contract airline
agents:

a: airline;
t: travel agency;

clauses:
/* obligation of airline after transaction flight reservation */
Sl· obl(a,A.fly)
in T.flight_reservation(flight-schedule)
goal A.fly => S3
exit cancel(reserve(ticket)) => S7 & SB

cancel(flight) => SS & $6
end Sl;

/* obligation of travel agency after flight reservation */
S2: obl(t,T.pay(ticket))
in T.flight_reservation(flight-schedule)
goal T.pay(ticket) => S4
exit cancel(reserve(ticket)) => S8

cancel(flight) => S6
end S 2;

/* accomplishment of travel agency */
S3: acc(t)
in A.fly,T.pay(fine),T.payback(ticket),cancel(reserve(ticket))
goal end-contract
end S 3;

/* accomplishment of airline */
S4: acc(a)
in T.pay(ticket), cancel(flight), T.pay(fine)
goal end-contract

Communication Framework 115

exit cancel(reserve(ticket)) => S7
cancel(flight) => S5

end S4;

/*obl of airline in flight cancellation after travel agency paid*/
SS: obl(a,T.payback(ticket))
in cancel(flight)
goal T. payback(ticket) => S6
end S 5;

/* obligation of airline after cancellation */
S6: obl(a,T.pay(fine))
in T.payback(ticket), cancel(flight)
goal T.pay(fine) => S3
end S 6;

/*obligation of airline after cancellation and payment of ticket*/
S7: obl(a,T.payback(ticket))
in cancel(reserve(ticket))
goal T.payback(ticket) => S3
end S 7;

/* obligation of travel agency after cancellation of ticket */
S8: obl(t, T.pay(fine))
in cancel(reserve(ticket))
goal T.pay(fine) => S4
end S 8;
end-contract;

Although read sequentially the contract does not look complicated, section 7.4.1.2
shows that modelling deontic states and satisfaction for both parties is a complex process.

The contract does not only specify the "success line" of the interaction, but especially
the exceptions. In some cases, it is possible to return to the success line. E.g., (not
specified above), the airline company might have the obligation to offer an alternative
flight when it cancels a flight. If this is acceptable (if the transaction succeeds), we are in
state S 1 again (this can be handled by the Contract Manager). This is not a true
cancellation, but a "revalidate transaction". If the airline does not offer an alternative
flight, or when it is not acceptable, it is no longer possible to reach the final state, and the
interaction fails (the reservation transaction fails, and true cancellation is performed).
Such a failure has to be handled by the Task Manager. Note that this is done only when
the contract has no solutions to offer anymore.

During the execution of the interaction, other obligations may be instantiated, e.g., the
obligation to pay a fine or the authorization to warrant. These obligations can be
represented explicitly in the framework. However, the further processing of these "side-
effects" should not interfere with the task execution. To achieve this independence, the
execution of the interactions should take place in an agent environment. When the
execution of the interaction leads to an obligation of the travel agency to pay a fine, this
obligation is automatically put on the agent's agenda. Since by definition the agent
recurrently checks its agenda and executes its tasks, the fine will also be paid in due time.
On the other hand, if it is the airline company that has a liability, it is up to the agent to
see to it that the payment is actually made.

A final remark on the contracts is that not all actions are specified that are used in the
contract, but only the speech acts that have some deontic result (obligation or
authorization). For instance, the action 'deliver' is not specified at this place.

116 A Uinguage-Action Perspective on tbe Design of Cooperative Information Agents

5.3. TASKS

This section describes tasks, the task specification language TaLa (subsection 1) and also
the working of the Task Manager is described in more detail (subsection 2).

A task is a meaningful unit of work assigned to an agent. Performing the task often
involves executing some of the possible communication transactions, besides the
execution of private actions. The transactions and contracts level specified so far are
neutral with respect to the tasks to be executed. They only describe the possible messages
and message sequences, as well as the deontic effects. They are the same for both parties.
On top of the contract level, a task level is defined that specifies the task(s) that the agent
wants to perform. The task level is not shared, the task specification and updates thereof
do concern the agent in question only, whereas changes in the possible transactions
(involving other agents) can only be made by consent of the other agents.

As an example consider the business trip domain. The task layer of the airline
company specifies its marketing and sales efforts. At the task layer of the travel agency,
we might specify the task of planning a business trip, including the decomposition into
subtasks such as "flight reservation". This includes communication with the airline
company (as laid down in the contract), but presumably also with hotels, clients, and
banks or credit card companies.

The separation of transactions and tasks achieves a desirable level of flexibility in
interoperable transactions specification. A task can be considered as a meaningful work
unit which schedules appropriate sequence of transactions and actions for execution to
achieve a business goal and for managing failures due to non-fulfilment of obligations,
cancellation of an achieved transaction, and the usual system failures.

5.3.1. TASK SPECIFICATION LANGUAGE (TALA)

Tasks are typically described in a task language (e.g. [Nodine et al., 1994], [Rusinkiewicz and
Sheth. 1994]. [Georgakopoulos and Hornick. 1994bl). It typically allows the specification of
tasks and subtasks, alternatives and temporal constraints. What is crucial in this context, is
the way failures are dealt with. Transactions are prone to many types of failures, as
described in section 5.1.2. We focus here on the failures that occur when a transaction (as
one subtask) is initiated but does not commit, but also when the transaction commits first,
and the resulting deontic state is violated later (e.g., the airline does not deliver the ticket),
or because of cancellation (e.5, the airline cancels the flight), whereby the other party
undoes a previously made commitment. These features of transactions directly influence
the task specification. For a CIA, it is important that tasks are not embedded in application
code. but are made explicit so that the Task Manager can use them in scheduling or
rescheduling the work. Rescheduling is necessary when a subtask fails or a planned
subtask becomes superfluous.

Below, TaLa (the task specification language part of CoLa) is described, and examples
from the business trip domain are given. In section 5.3.1.1 special attention is paid to the
contingency plan, or how failures are dealt with.

Communication Framework 117

A task can be described using a structure similar to a transaction specification.
Depending on the level of abstraction, a task may consist of a number of subtasks, and
each subtask can itself be a task (with its own task specification) consisting of other
subtasks, or it can be an elementary subtask, which has to map to a particular
communication transaction or pri vate action. TaLa allows for the specification of the
Goal (what makes the task succeed), the Exit (what makes the task fail - abort), (temporal)
constraints on the execution sequence of subtasks and transactions, and possibly
deadlines for the subtasks. Furthermore a contingency plan can be given, specifying
compensating and contingency tasks. When specifying contingency plans it is essential
that also dependencies between (created results of) subtasks are specified. This is needed
to specify that if result A is invalidated what other results (that are dependent on A) are to
be compensated. The EBNF grammar for task specification is:

task: TASK task_name taskbody END·-TASK ' ; '

task maIne : ident

taskbody SUBTASKS ':' {subtask ''}

[CCNSIRAINTS ' : ' {constraint ' : ' }]
[DEADLINE ' : ' {deadline ' ; ' }]
[DEPENDENZIES ' : ' {deperfency ' ; ' }]
[CCNTIN3ENZY ' : ' {contingency ' ; ' }1
GOAL '=' goal
[EXIT ' = ' subtask [{XOR subtask)]]

subtask: subtask_name

I

transaction

action

| ACCEPT ' (' trans-/laIre ') '

The ACCEPr () means that this transaction is not initiated by the customer agent itsel f.
Executing the subtask ACCEPT () implies executing that part of the transaction that the
customer is supposed to do, in response to the prompt of the supplier.

Below the different elements of a task specification are worked out, respectively the
goal, the constraints, and the deadlines. Contingency plan and dependencies are explained
in more detail in section 5.3.1.1.

In specifying the goal of a task the following relations are defined (drawing on
previous work in extended transaction models [Elmagarmid, 1992])

Definition 5.2. (Subtask relations)

Ts = (Tl AND T2 AND ...) (task/subtask relation)
Ts = (Tl XOR T2 XOR ...) (alternative set)
Ts = (TI XOR ... XOR skip) (non-vital part)

XOR (or choose) prompts for seeking an alternative way to make the subtask run to a
successful state (similar to the concept of contingency transaction in DOM [Buchmann et
al.. 1992]). skip indicates that the subtask is ,ion-vital. The task can be resumed as if the
subtask has succeeded.

118 A language.Action Perspective on tbe Design of Cooperative Information Agents

Also combinations of these are possible. The goal of the task corresponds to the
AND/XOR formula (in conjunctive normal form). A task can therefore also be seen as an
AND/XOR graph of possible subtasks.

In [Dignum and van Linder, 1996] an attempt in implementing tasks is made by giving
preferences to goals. This gives the opportunity to reason over preference relations on
(sub)tasks and how they influence each other. This possibility simplifies the scheduling

(and conflict resolution) job of the Task Manager and is included in the goal specification:

goal : goalspec [{XOR goalss:ec}l

[{AND goalspec [{XOR goalspec:} 1 } 1 XCR SKIP]

goalspec : subtaskspec ['('pref ')']

pref: value

For the temporal precedence relations between subtasks the temporal logic

specification style of transactions (section 5.1.4, definition 5.1) can be used.

constraint : subtaskspec_list BEFORE subtaskspec_list

ALWAYS ' (' subtaskspec ' = > ' tq_constr ') '
subtaskspec_list : subtaskspec

' (' subtaskspec {(AND XOR) subtaskspec} ')'
tenp_canstr : (NEXTISCMEI'IMES) ' C constr_el ')'

constr_el : Subtaskspec [{(ANDIXCR) subtaskspec}]

subtaskspec_list BEFORE subtaskspec_list
tip_cctistr

(for subtaskspec see next subsection)
The business-trip case is again used to illustrate the task specification. The

following example specifies the business trip task and its subtasks flight-reservation

and hotel-reservation and the constraint between them:

task business-trip
subtasks:

flight_reservation;
hotel_reservation;

constraints:
flight_reservation BEFORE hotel_reservation;

Goal = flight_reservation AND hotel_reservation
Exit = T.cancel(trip)
end-task;

task hotel_reservation = T.hotel_reservation XOR skip
end-task;
/* not a vital part */

task flight_reservation = T.flight_reservation(klm) XOR
T.flight_reservation(quantas)

end-task;

The explanation of the specific parts is as follows:

- The subtasks are either tasks or transactions specified elsewhere. Elementary
subtasks are the private actions the agent can perform (e.g. database retrieval).

- The goal of the task business-trip iS " f light_reservation AND

hotel_reservation", even though the hotel_reservation iS a non-vital part.

Communication Framework 119

The constraint specifies that first the f light_reservation and then the
hotel_reservation should be pursued.

- The main task business-trip contains two parts, one of which the
hotel_reservation is non-vital. By default, the other is vital. This means that if
f light_reservation fails and no alternative is left, the main task fails as well.

- In the case of the f light_reservation and hotel_reservation subtask
specifications a short-hand notation is used in which the Goal is put immediately
after the task name since there are no constraints.

- The Exit line in the main task is added for illustration purposes: if the whole trip
is cancelled, then no backtracking should be done.

The alternative set of f light_reservation COntainS two transactions (distinguished from
task names by the prefix T). In the example, only two alternative suppliers are taken into
account. A better approach would be to first collect a list of possible suppliers. The
flight_reservation subtask specification can be more convenient expressed using a
dependent parameter. The parameter specification and unification mechanism and the
goal-seeking procedural interpretation of Prolog suggests itself as a natural choice (cf.
[Kuhn et al.. 1992] that describes a logic language VPL for multidatabase transactions). The
f light_reservation specification could then look as follows:

task flight_reservation
subtasks:

select_flight;
T.get(flight-schedule);
T.flight_reservation(flight);

constraints:
T.get(flight-schedule) BEFORE select_flight;
select_flight BEFORE T.flight_reservation;

Goal = T.get(flight_schedule(S)) AND select_flight(S,A) AND
T.flight_reservation(A))

end-task;

task select_flight([Head Tail],A)
Goal = A=Head XOR select_flight(Tail,A)
end-task;

task select_flight([],A) = XOR()
end-task;

On the basis of a retrieved f light-schedule S, the subtask select_f light selects
one possible candidate. T. f light_reservation is executed with the selected candidate as
a parameter. If it fails, the next alternative from the select_flight subtask is tried.

An example including a complex temporal constraint is the task of the travel agency in
after-sales service to always check with the customer if the trip went well:

task after-sales
subtasks:

follow-up;
business-trip;
T.complaint();

constraints:
ALWAYS (business-trip -> SOMETIMES(follow-up);
follow-up BEFORE T.complaint(airline);
follow-up BEFORE T.complaint(hotel);

Goal = follow-up
end-task;

120 A language-Action Perspective on tbe Design of Cooperative Information Agents

Also for the deadline specification the deadline specification style of the transactions

(section 5.1.4) can be used. Here too the general deadline, the immediate deadline, the as

soon as possible deadline and periodic deadline can be specified.

deadline: ['p'] [condition '<<'] goal '<<' condition

goal '!'

goal ASAP

condition: proposition j subtask 1 time 1 subtask ' + ' time l now ' + ' time

An example of a deadline specifying something should be done before a condition
holds from the business-trip case is where a hotel must be paid up front, and within 15
days after the reservation is made:

task hotel_reservation
subtasks:

inquiry;
ACCEPT(quotation);
make_reservation;
ACCEPT(reservation);
payment;

constraints:
inquiry BEFORE make_reservation;

deadline:
payment << ACCEPT(reservation) + 15 days;

Goal - ACCEPT(reservation) AND payment
end-task;

The normal constraint ACCEPT (reservation) BEFORE payment is incorporated in the
deadline specification.

A more complex example that shows combinations of different type of deadlines in the
case of the travel agency is the following.

In order to apply for a special rate. a reservation should be made between the first of
November and the first of December. The reservation should be accepted within a week
after the request for it and the ticket should then be paid as soon as possible:

task special_rate_reservation
subtasks:

T.flight_reservation(klm):
ACCEPT(reservation);
payment;

constraints:
ACCEPT (reservationt BEFORE payrnent ;

deadline:
date(Nov.,1) << T.flight_reservation(klm) << date(Dec.,1);
ACCEPT(reservation) << T.flight_reservation(klm) + 1 week;
payment ASAP;

Goal - T.flight_reservation(klm) AND ACCEPT(reservation) AND payment
end-task;

In section 3.1 we have seen that the business logic explicitly includes the problems
and objectives of the customer and the capacity of the supplier. By embedding the
transactions in an agent task, the link to the objectives are now explicit. and relationships
with other tasks of the customer company can be described. As far as the supplier is
concerned. Goldkuhl makes no reference to objectives, only to capacity. The symmetry

Communication Framework 121

between the parties the author argues for is not maintained at this point. In my point of
view, the supplier has objectives as well, including producing goods and making money.
These can be modelled as supplier tasks. On the other hand, the capacity and know-how
do play a role, as constraining factors, but so do they at the customer side, in particular,
the financial capacity or liquidity. Therefore we propose a symmetric treatment of
supplier and customer also as far as objectives and constraints are concerned. The
particular task of the supplier can be modelled as follows:

task sell
subtasks:

ACCEPT(get_quotation);
give_quote;
ACCEPT(order_product);
delivery;
ACCEPT(payment);

constraints:
give_quote BEFORE ACCEPT(order_product);
ACCEPT(order_product) BEFORE delivery;

Goal = ACCEPT(payment)
end-task;

5.3.1.1. CONTINGENCY PLAN

An important part of a task specification is the contingency plan. A notorious problem
with contingencies is that when a subtask is invalidated, later (dependent) subtasks may
already have committed, and their result might become obsolete. Whether they have to be
retried (after being compensated) or not depends on the kinds of results they produced.
The designer should be given the opportunity to specify a separate contingency plan.

Different kinds of contingencies can be distinguished. First, it may be that a certain
action has to be u,idone (compensation). E.g., a hotel reservation has to be cancelled
because the flight schedule has changed. Since in long-lasting interoperable transactions a
simple rollback is no longer possible, the action has to be compensated, in this case by
cancelling the hotel reservation. Secondly, it is possible that a certain action has to be
redone.E.g.,a flight is booked and linked to a bus schedule from airport to city. When the
flight schedule changes, and another airport is selected, another bus schedule must be
retrieved. The Task Manager monitors the execution of the tasks. This means it also keeps
records of how far a task is in its execution (which subtasks are already executed and
which results are created for it, and which ones still have to be executed).

A possible contingency part for the business trip example specifies that if the
f 1 ight_reservation is cancelled by the other party, the Task Manager has to find an
alternative (as it flight_reservation had failed). This will involve finding another
supplier. Any contractual matters that need to be resolved (e.g., collecting a fine) are not
specified here, since they are handled by the contract between the agent and the airline
company (section 5.2). However, dependent subtasks, e.g. hotel_reservation, if any, are
cancelled (or if already succeeded, compensated) by the Task Manager in accordance with
the contingency plan.

The CIA contingency plan consists of a set of results (e.g. bus schedule, ticket,
reservation) that have an internal object structure, and associated methods that specify:

122 A Uinguage-Action Perspective on tbe Design of Cooperative Information Agents

a) the transactions (or tasks) that can be used to create the result;

b) the transactions that can be used to close the result, meaning that after this

(trans)action the result cannot be invalidated anymore;

c) the transactions that can be used to compensate the result; and

d) transactions that invalidate (and possible revalidate) the result.

This is motivated by the recognition that tasks can be of two kinds: procedural tasks

that specify a set of actions to be done, such as producing different beeps, and object-
oriented tasks that create or work on a certain object. Pure procedural taSks cannot be
compensated. so we do not need to bother, whereas compensating or revalidating object-
oriented tasks means compensating or revalidating the result object. These actions are
most conveniently encapsulated in the result object structure.

The grammar of a result with its methods is:

contingency: RESULT result

CREATED-BY subtask_narre
CLOSEE»BY action_spec
UPDAYFD-BY action_spec
INVALIDATED-BY actian_spec I{ ', ' actionspec }1
[REMALIDATED-BY action_spec]
CC:MPEBEATEI>-BY action_spec
END-RESULT

actian_spec : transactian 1 action

If a result becomes invalidated a task can be triggered to repair the damage. This task
can make use of the fact that all the essential results obtained so far (and not invalidated)
are explicit. E.g., in the case where a hotel-reservation is dependent on the flight-
reservation, and the flight is cancelled, the contingency plan can try to repair the damage

by trying another airline. Only if that fails the hotel-reservation has to be cancelled (or
compensated if it already succeeded). An example of a contingency plan for the results in
the case of the business trip is the following:

result airline-ticket
created by flight_reservation /* a task, see above */
Closed by T.boarding
updated by T.change_flight
invalidated by T.cancel_flight
compensated by T.cancel(reserve(ticket))
end-result;

result hotel-reservation
created by hotel_reservation
Closed by hotel_stay
updated by T.change_date
invalidated by T.cancel_room
compensated by T.cancel(reserve(room))
end-result;

result bus-table
created by T.get_bus-table
closed by T.boarding
updated by T.get_bus-table
compensated by skip
end-result;

Communication Framework 123

The created by line of the result object specifies a task that creates the result. The
task is not only called when the result has to be created for the first time, but also when it
is to be revalidated. The closed by line indicates the task or transaction that freezes the
object. This is typically done when the corresponding event has taken place, e.g., when
the flight has been taken.

Since we want to allow for freedom in task specification the result objects can be used
polymorphically. E.g., in the business-trip task, flight_reservation Can be replaced
by airline-ticket.

In the grammar this is expressed by the rule:

subtaskspec : result I subtask

Executing airline-ticket means executing its create method. In general, we
distinguish the following object operators: create, close, compensate, update, and
fail. In the example of airline-ticket, coropensate(airline-ticket) iS equivalent to
T. cancel (reserve (ticket)) , and so on.

Essential in task specifications with contingency plans is the specification of
dependencies. The dependencies specify other results need to be compensated i f a result is
invalidated. E.g., a bus-table is dependent on an airline-ticket, in the sense that a
change in the latter has a bearing on the former. Various dependencies can be
distinguished. At the moment we distinguish: create, update and fail.A create
dependency between A and B means that if A is created, automatically B is created (by
means of the task create (B)) .A fail dependency means that if A fails, so does B and
compensate (B) is triggered to achieve this. An update dependency means that if A is
modified, so is B (by means of update (B)).

The object operators can be used in the specification of these dependencies as
constraints on the level of the task (we could have specified the dependencies at the level
of the result objects, but this will lower the reusability of these objects, so we prefered to
specify them on task level).

dependency: result DEPENDS-CN result '('[CREATE] FAIL [UPDATE}')'

The new task specification of business-trip can then be as follows:

task business-trip
subtasks:

airline-ticket; /* = create(airline-ticket) */
hotel-reservation; /* = create(hotel-reservation) */

constraints:
airline-ticket BEFORE hotel-reservation;

dependencies:

bus-table depends-on airline-ticket (create,fail,update);
hotel-reservation depends-on airline-ticket (fail,update);

Goal = airline-ticket AND hotel-reservation
Kxit = T.cancel(trip)
end-task;

124 A Uinguage-Action Perspective on tbe Design of Cooperative Information Agents

(Note that the dependencies defined here could be implemented straight-forward by

means of database triggers (ON MODIFY etc.) in a conventional DBMS).

We can now describe what happens when an airline-ticket has been issued (created).

but the flight is cancelled: The transaction cancel_f light (initiated by the other party) is

executed and invalidates the airline-ticket object, as specified. As a result, the
airline-ticket object will try to revalidate itself by choosing the next alternative in its

create task, that is, in flight_reservation. If this succeeds, parameters may have

changed, thus causing an update of the object itself and (via the update dependency) of

the hotel-reservation and bus-schedule. If the revalidation fails, the result fails and

the other fail-dependent objects are forced to fail as well, which means the execution of

the compensation task, if any.

If the create task of a result ends with a skip option, the result is not vital. Such a

result can never fail. So the invalidation of a result object can have various effects. If an

alternative is found locally, no other result or subtask needs to be aborted. If it is not

found, and the result is vital, only those results are forced to fail that are said to be
dependent. This makes the contingency handling quite flexible.

It is also possible to allow the user to specify contingency plans at the object level that

override the default "next alternative" search algorithm,. E.g., the user may want to
specify that in the case of a cancellation, the same airline company should be requested

for an alternative flight (this may be agreed upon in the contract), and not the next
alternative airline company. To allow for such specifications, an optional revalidated by

method can be added to the object specification. This method would overrule the default

of proceeding with the create method.

We should keep in mind that specifying contingencies is difficult, since it is
impossible to foresee every problem and every context. For that reason, contingency plans

are not obligatory, dependencies can be given, but if they are not specified it is assumed

that the other results are not affected. A contingency plan can be given, but if it is not
specified, the default search proceeds.

5.3.2. TASK MANAGER

The role of the Task Manager is twofold. First, the Task Manager can be considered as the

runtime module where users submit their task specification. This includes planning (and

scheduling the subtasks, transactions and actions). The Task Manager processes the

specification. Second, if a subtask fails, an alternative must be sought and dependent
invalidated subtasks must be compensated. The user can specify a contingency plan that
the Task Manager can execute. In other words, the contingency plan at the level of the
tasks is what the contract is at the level of the transactions. Violation of commitments (to
other parties) are being dealt with by the Contract manager, while compensation of
subtasks is handled by the Task Manager.

Communication Framework 125

The execution model of the Task Manager is as follows:

• when a task is called, the Task Manager collects the subtasks, puts them into a
right order according to precedence relationships (such an ordering can be stored
to save computing time) and puts them on the agenda The subtasks are then

called one by one. This step continues recursively.
• when a subtask cannot be fulfilled, the next alternative is chosen. If no alternative

is available, it means that the subtask fails. It does not mean directly that the
parent is aborted, since it is possible that the subtask can still be fulfilled by
choosing an alternative in the preceding subtasks. This is tried first
(backtracking). Only when no alternative is left, the parent fails. The parent also
fails when an exit state is reached.

• when an exception occurs (a subtask is invalidated), the contingency plan (if
specified) will be executed first. Otherwise, the next alternative is taken, or, if no
alternative is left, backtracking is attempted. To keep the task specification
simple, we give the designer the opportunity to specify a contingency plan
separately. If no contingency plan is specified, and no alternatives for
backtracking are left, the task fails, but its parent may have alternatives or
contingency plans of its own. Every time a task fails, the Task Manager goes up
one level in the task hierarchy and the process is repeated.

The execution model enforces a "structured approach" in the task specification. It does
not allow for arbitrary abort or commit dependencies between subtasks over the
boundaries of the parent tasks. This modularity is enforced to keep the specification
transparent and maintainable.

Below this model is refined. First the planning process is described and then the
agenda knowledge base is described in more detail. In appendix B high-level algorithms
for these processes are given.

5.3.2.1. PLANNING

An important job of the Task Manager is planning. Several planning strategies can be
implemented, they are however not the focus of this work. Planning is difficult, since the
best plans will be made when all information is available, but has the hazard they cannot
be produced in time to execute them. Early planning often leads to replanning (or
abandonment) if more information comes available (e.g., about the execution and failure
or result of other subtasks). But as [Thomas, 1993] argues, "as long as plans can be
retracted. and as long as little or no otherwise-useful time is expended in earlier-than-
necessary plan refinement, and as long as the decision to retract a plan can be made
quickly and appropriately when new information is received, there is no reason not to go

ahead and plan".
In this thesis a simple strategy is used (see below) and the general problem of deciding

when to decide is ignored. The retraction of plans is more problematic. The Task Manager
should include special-purpose reasoning to detect when new information requires the
agent to give up an already-defined plan and re-plan for the same goal. If execution of a

126 A Izinguage-Action Perspective on tbe Design of Cooperative Information Agents

particular plan already has started then the plan cannot simply be retracted in its entirety.
However, the contingency plan can be consulted for what and how already instantiated
results can be compensated, and also what should happen if the goal cannot be reached

anymore.

In this work a naive planning strategy is adopted, in which we start with the
presupposition that there are unbounded resources, i.e. unbounded computing resources.
Of course, in case of a hotel, the number of rooms is bounded. All actions can be
performed in parallel (if no order or temporal constraints exist between them) and all
actions take the same amount of time to execute. The agent should try to perform all
actions (fulfil all obligations) before the deadlines associated with them, so it should plan
the action whose deadline expires first as the first action to perform 1.

To be able to order the items on the agenda precedence relations or priorities can be
specified. This is needed for some form of risk analysis, e.g. reservations for the flight and
hotel can be made in parallel, however if the flight reservation does not succeed, the hotel
reservation becomes useless and has to be stopped, or cancelled if already succeeded, and
should therefore be delayed. It is also important for conflict resolution in case of
conflicting activities (e.g. conflicting obligations). If there is an obligation 0(a) that says
a should be done, and another obligation 0(a) that states that a should not be done (a
prohibition F(a), a is forbidden), than it depends on where the obligation resulted from.
The simple strategy here is to give obligations resulting from contracts priority over
obligations resulting from tasks. This follows from the cooperating nature of the agents
that gives high priority to the maintenance of business relations and adhering to the
general business logic (or as said before: communicative action rather than strategic
action). Furthermore, the agents are designed to be "sincere", i.e. they will try to hold
their promises (commitments). As a result the goal might not be possible to reach and the
task execution is aborted (it fails). An agent should not drop its goal easily, but should try
to salvage it through re-planning. Of course, it is required that an agent's plans are
sufficiently refined to enable the agent to achieve its goal. If an agent's goal can only be
achieved if the agent begins acting now, it must at least know what its first action should
be, and plan to do that action (now or at least as soon as possible).

5.3.2.1.1. Agenda

In this subsection the agenda is described in more detail, using the popular agent concepts:

plans and intentions.
As with the definition of agent itself there are many interpretations of what plans and

intentions are. Here my own interpretation is given, and these concepts are related to
obligations and goals as introduced in this thesis. The ideas presented here can also be
used as input for future research in which a formal agent theory along the lines of the BDI
framework is formulated. A first attempt to do this has been described in [Dignum and van
Linder. 1996]. [Dignum. 1996], IDignum et al . 1996b], although some concepts differ slightly.

From Operational Research (and personal experience) we might deduce that this does not always
lead to optimal (or even acceptable) plans, unfortunately.

Communication Framework 127

As described in section 4.3.1, the agenda defines the normative space (or obligation
and commitment space) of all things that have to be done. Based on the formal framework
(chapter 6), the obligation is the primitive concept, and the other concepts are related to
that. The agent in its actions is guided by three things:

- social obligations. or the things he has to do because he committed himself to
others to do, as described in the contracts;

- private goats, or the things he wants to achieve, as described by its tasks (these

can also be seen as commitments to itself, along the lines of [Shoham, 19931);
- necessities, things he has to do in order to keep the database(s) consistent.

This division is guided by Habermas distinction of social, subjective and objective
world, respectively. This division of the three worlds can also be used to describe the
reasons of an agent not to perform an certain action. First there are the impossibilities in
the social world, called prohibitions (as opposed to the obligations in the necessity
situation) following the norms of the world the agent operates in. Secondly, the
impossibilities of an agent derived from the subject world are those that are in conflict
with the agent's own values (the things you don't want to happen). Thirdly, we have the
impossibilities in the object world (it is just not possible, the agent cannot do it).

Following [Shoham, 1993], an agent is designed to be able to:

• request anything from anyone (including authorization to do something)
• inform anyone of a fact it beliefs or knows
• inform itself (this is useful to implement reasoning in the agent)

• declare a fact (if it has the authority or power to do so)
• commit itself to perform some action

• perform any private action (if the static/dynamic integrity constraints hold)
• perform a service on the request of another agent (including replyint to
messages)

However, it is possible the agent does not know how to perform a requested action (it
is not a serviceof the agent, and it does not know where to obtain it).

Related to these concepts is the concept of achievability. Something is achievable if it
has to be done (obligated, wanted, necessary) and is possible in all worlds. In the
approach presented here the (im)possibilities and desires from the subject world are left
out. In [Dignum and van Linder, 1996]. [Dignum, 1996] those are specified by wishes of the
agent: it should have both the capability and wish to establish a certain goal, before acting.

Both tasks and contracts have goals defined. In order to be able to reach a goal or fulfil
an obligation plans have to be constructed. A plan is defined as a precise order of steps
(actions or the initiating of transactions) that lead to the goal. In tasks this is specified by
the subtasks, actions and transactions and the constraints (including deadlines) between
them. As we have seen in section 5.1.4 a dependency graph can be set up which describes
all possible paths that lead to goal and exit states. This ordering of actions etc. also has to
be done for al 1 subtasks specified. These plans can be stored for later reference and reuse

128 A language-Action Perspective on tbe Design of Cooperative Information Agents

(e.g., the ordering subtask has a fixed plan that does not have to be 'calculated' each time
an ordering subtask is specified, only the correct parameters should be substituted).

The goals of contracts are mainly expressed by transactions (see the examples) and

therefore have a simple plan. In case a more complex goal is formulated the plan database

is consulted whether it contains a plan for the task with this goal. If not a new "subtask" is
formulated based on the knowledge of its private actions and results of communicative
actions. This new subtask should be distinguished from the subtasks derived from the task
specification of the agent, since it comes from an obligation described in a contract.

Two things the planner must do before the plan is submitted are:

- check if the agent can perform the actions specified in the plan, in other words: if
it is achievable (no conflicts between things it has or wants to do, but cannot do
because of lack of authorization, or incompetence). If this constraint cannot be
met it means the goal cannot be reached by this plan and a failure is reported.

- check whether the goal already has been reached, e.g. by a previous (trans)action.
A success can be reported and the planner can proceed with the planning of
dependent actions. Instead of submitting the original plan execution now the
result should be monitored to see if it is not invalidated by other (trans)actions.

After the formulation of plans (or choosing an already existing plan) for both obligations

and (sub)tasks a decision is made which plans to place on the agenda.
As described in the previous subsection this can be a complex process. A simple

strategy is adopted here: the agent should try to perform all actions (fulfil all obligations)
before the deadlines associated with them, so the plan whose deadline expires first is
chosen as the first action to perform and put on the agenda. The choice made can have
repercussions for other plans. The tasks are not yet abandoned, since at a later stage the

prohibition might not hold anymore (e.g.. the agent becomes authorized to perform the
action). Only if the deadline cannot be met, or the goal cannot be reached remedial actions
(re-planning or looking for alternatives, with associated new plans) should be taken. In
case one obligation from a contract is chosen over another this means that (although the

agent tried) there is a violation (the other obligation cannot be met) and the contract

manager is notified to see what should happen. Further choices between the plans are

made on the basis of priorities specified and the strength (e.g. is the obligation the result
of a power, authority, or charity relation).

The decisions can be informed by the ideals of the agent ([Dignum. 19961). Ideals are
higher order goals that provide a motivation for the choice and the ordering of the plans.

Ideals are personal goals and say something about (and provide higher order strategies

for) the desired behaviour of the agent. The ideals incorporated in the agents proposed

here are "being communicative" (as opposed to strategic) and "being sincere" (obeying

commitments, and mean what is communicated). As a result the agent tries to fulfil al!
obligations and commitments to others and itself.

The distinction between plans and agenda can be illustrated with the following
example: suppose the travel-agent has a deadline to order a ticket after it has been paid for
by a client, and it should be done before the end of the month. Although this yields an

Communication Framework 129

obligation for the agent it is of no use to put this on the agenda yet, since it is impossible
to know when the ticket will be paid for exactly. Instead a plan can be formulated how to
order the ticket before the second deadline that can be executed as soon as the payment is
in. A trigger can be placed in the database that signals this event and then the plan can be
placed on the agenda for execution, which should be done before the end of the month

(which again can be signalled by a trigger).
When using the general form of this obligation (deadline) conditionl << action <<

condition2 as given in the TaLa grammar above (or formally 0((1) <a<W)a s will be
defined in section 6.3.3) the agent can be notified of conditionl holding in three ways.
First if condi tionl is a constraint on the agent's database a trigger can be defined.
Secondly, if conditionl is a time it is a function of the clock to trigger the action if the
time has passed. The third way is if condi tionl cannot be controlled by the agent but is
an external factor. Only when the agent receives a message (from an agent j) that
conditionl holds (formally: [ASSj i (4))]0i (0(<41)) actions can be taken. In fact what
happens is that a new deadline is specified (action << condition2) and the plan for this
can be put on the agenda (if the obligation does not conflict with others).

normative space
contracts tasks

/social / 1
 obligations < - goals

6-K
planner

-- plans c 3E)ideals -- decision -

 currentintention

agenda

figure 5.4. Agenda, obligations and plans

The agenda (object) thus holds the plans it has decided to perform (and also has to and
is able to perform). Here these are called the intentions of the agent. The items (actions)
on the agenda are ordered according to their deadline and priority. We can conceive the
agenda as containing interleaved plans of actions. The current intention points to the
action on top of the stack (or front of the queue). Figure 5.4 gives a graphical overview in
which the concepts are related.

The execution model is now a loop containing the following steps:

- execute the first agenda item (current intention);
- after every step see if the environment has changed. This includes processing of

incoming messages, and responding to triggers and passing of time (clock ticks);
- check i f the goals are still achievable (or, if the plans still lead to the goals);

130 A language-Action Perspective on tbe Design of Cooperative Information Agents

if not: remove plans (the thread of actions) from the agenda, notify the failure and
look for alternatives (re-plan), or in case of a failure to adhere to an obligation
from a contract, notify the contract manager of the violation, otherwise continue;

- check if already obtained results are invalidated, and if so trigger the contingency
plan (if specified);

- check if new plans can be made because of the input, trigger the planner.

5.4. COMPARISON WITH OTHER TRANSACTION MODELS

This chapter described how we distinguish between the specification of communication
aspects, the scheduling aspects and the failures aspect of interoperable transactions. This
not only achieves extra flexibility, but also provides a structured and formal approach to
specifying interoperable systems. We introduced the concept of "contracts" for specifying
and managing failures due to violations. and "tasks" for managing the failures due to
cancellation and execution strategies (such as backtracking, firing of contingency plan
etc.). This section compares this approach to others for specifying (interoperable)
transactions and workflows and describes what the advantages of our approach are.

In [Alonso et al, 19961 a comparison is made between advanced transaction models and
workflow models. It is argued that transaction models are too much centered around
databases, too theoretical and that (in many respects) workflow models offer a superset of
transaction models. The paper describes the FlowMark workflow model and how it can be
used to emulate advanced transaction management. This implies, as is argued also in this
chapter, that ACID properties, in particular consistency, should no longer be viewed as
technical issue, under the responsibility of a global or local transaction manager, but as
organizational issue, directly having to do with the responsibilities of human agents. In
contrast to Flowmark, the model presented here is based on business process models and
the LAP. As a result, the notions of obligations and authorizations are made explicit. The
model abstracts from information flows and goes to the business essentials, what is
actually achieved by communication.

The Flexible Transaction Model ([Elmagarmid et al.. 1990]) allows specification of work
flow control in the form of int[a-transaction dependencies (where classical transaction
model deals only with int&.[-transaction concurrency) and success/failure conditions, but
the verification of such dependencies is not supported. Therefore, a consistent and correct
specification is expected to be the input to the underlying rule-based scheduler, based on
first order temporal logic. Another difference with the FTM is that the basic units in the
approach presented here are communicative messages (speech acts) while theirs are
(database) operations. It is for that reason that here the deontic effects of actions can be
modelled, since the semantics of messages are limited while operations can do anything.

In comparison with the Interaction model ([Nodine et al., 1994]) and ConTracts model
([Wachter and Reuter. 1992]) the failure handling presented here uses backtracking as well,
but is goes further in two respects. First, later (dependent) subtransactions are not aborted

Communication Framework 131

immediately, but only when the corresponding result cannot be maintained. The
contingency plan may also provide specific alternatives; if these succeed, no abort or
backtracking is necessary. Secondly, in our model focus is on the notion of compensation
in two ways: compensation of the other party as specified in the contract, and
compensation or contingency handling of a result. By separating task and contract to
handle different aspects of failures, we are able to treat task management as a local issue,
as contrasted to being global as in Interaction. In this way. the global control is kept to a
minimum, which makes the specification and implementation much more flexible.

In the Action Workflow [Medina-Mora et al., 1992], commitments are explicitly
modelled by speech acts. However, it does not support reasoning over deontic effects,
thus violation of commitments cannot be enforced. Neither does it support (and
distinguish) the specification of tasks. Nevertheless, Action Workflow could be useful as
a method for structured analysis of the transactions and contracts (see chapter 7).

Summarizing, our framework has the following advantages:
• Although the task specification is closely related to other extended and flexible

transaction models (cf. [Elmagarmid. 1992]), none of them attempts to model the
effect of transactions in terms of obligations and authorizations. This means that
transactions can only be classified as either a success/failure in those models; it is
not possible to enforce and reason over violation of obligations or to re-adjust the
original goal to avoid the failure.

• Communication specification can be done using the most suitable formal
framework that can be verified. E.g., transactions can be specified with
propositional temporal logic, which lends itself to a well-proven verification
method. Transactions are also specified as having a deontic effect, which is in
accordance with the effects of messages in the transaction. This means that
operational semantics of messages can be given formally. The specification
makes all failures (including violation of commitments) explicit. It is easy to
verify whether each failure state is handled properly, i.e. whether it is always
possible to arrive in a non-failure state a-priori.

• The framework supports efficient re-design of interoperable systems as compared
with for instance [Elmagarmid et al.. 1990] and [Georgakopoulos et al., 19941. E.g.,
when business-needs change, the only new component that needs to be
redesigned could be the task execution strategies. The contract can remain stable.
The reverse is also possible. The task remains the same, but the communication
partners change, and hence the contract(s).

CHAPTER 6

FORMALIZING THE
COMMUNICATION FRAMEWORK

This chapter describes the formal framework underlying the specification language and

modelling techniques. The formal framework integrates illocutionary logic of formal
communication between automated systems with the dynamic deontic logic used to
specify obligations and authorizations over actions. Special emphasis is put on the
dynamics of authorizations and obligations, i.e. how authorizations are created and
deleted and how they influence obligations among agents. Parts of the formal framework
have been described by others and myself before (see below).

The first section clarifies our choice for the basic logics used and gives an introduction
in Deontic Logic. In section 2 the focus is on the basic (dynamic) action logic, describing
the basic logical languages with their semantics. Section 3 describes how the dynamic
deontic logic can be extended with illocutionary logic, giving the illocutionary dynamic
deontic language Lili

6.1. INTRODUCTION AND MOTIVATION

This section introduces the reader to the logics that are the basis for the formalization:
deontic logic, and its reduction to dynamic logic.

In this thesis a language-action perspective is taken to communication modelling and
the design of CIAs. The specification of an agent includes the specification of the possible

messages it can exchange with other agents. The focus here is not on information
exchange but on what agents do while communicating and how they influence each others
actions by using language. The basic units of communication (messages) are seen as
speech acts. Illocutionary logic is used to describe these speech acts formally. Since we
want to formally describe what the effects of actions and transactions (groupings of
speech acts) are, dynamic logic (the logic of actions) is used. One of the effects a (speech)
action can have on an agent is that obligations (to act, or to obtain a certain state) are
created. Since actions of others cannot always be enforced (e.g., the other agent might
decide not to perform an action that is requested) it should be possible to state that a
certain action should take place without getting an inconsistency when the action does not

134 A I guage-Action Perspective on tbe Design of Cooperative Information Agents

take place. Furthermore it is important to look at when actions (including speech acts)
may or may not be performed. Deontic logic is the logic that describes the obligations and
authorizations of actions, and makes it possible to reason about violations of the
obligations and authorizations. The use of deontic logic makes it also possible to specify

deadlines, the combination of deadlines and the detections of inconsistent deadlines
(deadlines that cannot be kept jointly).

The logic can be used to model the norms that result from the communication between

agents in a normative system. The combination of illocutionary and dynamic deontic logic
can be used to build communication protocols or contracts, that define the subsequent
steps in the communication and how these steps are related, i.e. which are the allowed
reactions to a certain action. The contract between two agents describes the interactions
and their effect, i.e. the factual or deontic temporal constraints that are created or deleted.

The aim is to describe the whole business communication protocol using the logical
formalism, making it possible to reason about properties of the protocol. For instance, to
prove that, given certain preconditions, after the order protocol has been followed one
party has the obligation to deliver a product while the other party has the obligation to pay
for it. The use of deontic logic within the protocol also makes it easy to describe the
course of action in the cases that the communication protocol fails.

deontic logic LAP

von Wright '58
Anderson '58

-Austin '62
von Wright '64 -

- Searle '69

- Winograd/Flores '86
Meyer '88 -

Shoham '93

Weigand '93
Diqnum/Weiqand '95

Assenova/Johannesson '96
Diqnum/Weigand/Verharen '96

figure 6.1. Historical perspective on combining deontic logic and the Language-Action Perspective

Figure 6. I gives an historical perspective on work that influenced the research
described in this thesis. On the left side. work on deontic logic (described in more detail in
the next subsection), and on the right side the Language-Action Perspective (especially
speech act theory, including illocutionary logic) Shoham was the first to include speech
acts and deontic concepts like commitment and obligation resulting from them in
specifying the communication between agents. The application of deontic logic to
communication modelling was first suggested in [Weigand. 19931 Communication aspects
have been described in [Dignum and Weigand. 1995a], [Dignum and Weigand, 1995b], and

Formalizing tbe Communication Framework 135

IWeigand et al., 19951, and semantics and multimodal logics for communication have been
described in IWieringa et al.. 19891, [Weigand et al., 1995], and [Dignum et al., 1996a]. The use
of linguistics for ISs was described in [Weigand et al., 19961.

A similar approach to the one presented here is described recently in [Assenova and
Johannesson. 1996]. They give a first order action logic (FAL) that includes deontic and
illocutionary constructs for the modelling of communication between agents. Their
approach differs from ours in that they explicitly represent time (although in [Dignum and
Kuiper. 19961 the approach presented here is extended to also include explicit references to
time). The FAL approach can be given a simple logic programming semantics and has a
relatively simple implementation. On the other hand, they lose the possibility to reason
over the obligations and authorizations, since they do no describe axioms.

6.1.1. DEONTIC LOGIC

For the semantics of communication models, we use Dynamic Deontic Logic ([Meyer.
1988], [Wieringa et al., 1989]). Here only a short overview of this logic is given. The
interested reader is referred to [Meyer. 1988] for a comprehensive description.

Deontic logic is a branch of modal logic that is concerned with (reasoning about)
norms and normative versus non-normative behaviour. Deontic means 'as it should be'.
Typically deontic logic has operators for deontic/normative modalities such as permission
obligation, and prohibition. Originally used in philosophy to formalize (reasoning about)
notions in ethics and philosophy of law, recently it has become apparent that deontic logic
can also be useful in certain areas of computer science and AI. It provides an adequate
too| to describe integrity constraints of ISs (e.g. [Wieringa et al., 1989]), particularly those
dealing with obligations and prohibitions, but also in other applications as diverse as
office systems (e.g. [Kimbrough et al., 19841. [Lee. 1988a,b]), fault-tolerant systems (e.g.
[Khosla and Maibaum, 1987]), security policies (e.g., [Minsky and Lockman, 19851, [Glasgow et
al.. 1989]), and of course, in legal expert systems (e.g., [Sergot, 1990], [Jones et al., 1979],
IBiagioli et al.. 1987]) [Wieringa and Meyer. 1993] describes the application of deontic logic
to organizations, which can be divided into two groups:

• policy specification. Deontic logic is used to prescribe behaviour of organization
components and the ISs that support it. The policies are guidelines for behaviour
that are meant to be followed up by whomever they are directed at. Deontic logic
can be used to make the policies unambiguous and to explore the consequences of
different specifications. In many cases, policy designers are interested in what
would happen i f their policies are not followed up. The system is not to break
down in the situation something occurs that does not follow regulations. Instead
we want to be able to reason about it and take appropriate action.

• normative organization behaviour, which prescribes the behaviour of the
organization in its environment using deontic logic. The analysis of contracting
given in section 5.2 is an example of this. Because the behaviour of an
organization should comply with the law, this can be viewed as a special kind of
legal application of deontic logic.

136 A Language-Action Perspective on tbe Design of Cooperative Information Agents

Also [Jones and Sergot. 19931 indicates the value of adopting the normative systems
perspective and illustrates the role of deontic logic (and also that of a logic of action) in
the formulation of models of computer systems.

There have been many attempts to try and capture deontic notions in a formal manner
and describe axioms and rules for deontic logic. Historically, the first was by Ernst Mally
([Mally. 1926]), followed by the system of von Wright ([von Wright, 1951]) (called Old
System). The first axiomatized deontic logic system that has been widely accepted is the
Standard Deontic Logic of von Wright.

In standard deontic logic the notion of deontic primitive 'obligation' is captured by a
monadic modal operator '0'.

'Op' is read that p is obliged. The others (P 'permission', and F 'prohibition') are
defined below. The following axioms and rules (called the standard deontic logic system,

or KD, because of the prominent place of the K- and D- axioms) are taken from [Meyer
and Wieringa, 19931 (rules and derived rules are in the form 91, (P2 / W)

(KDO) All (or enough) tautologies of Propositional Calculus
(KDI) 0(p D q) D (Op D Oq) the K-axiom

"Obligation is closed under logical implication"
(KD2) Op D Pp the D-axiom

"Obligation implies permitted"
(KD3) p E -7 -7 Permission is the dual of obligation" "

(KD4) FpS -Pp "Forbidden is not permitted"
(KI)5) Modus Ponens: p, P D q/q
(KI)6) 0-necessitation: p / Op

(KD6 must not be confused with the (invalid) assertion p D Op. It states that if p is
established as a theorem. then we may also derive Op).

As with other modal logics. the semantics of the standard system is based on the
notion of possible worlds. Given a Kripke-model M= (S, 7[, R) and a world s€S w e give
the following semantics to the modal operators:

(M. s) E Op iff Vt IR(s.t) => (M, t) 5= pl
(M. s) E Pp iff 3t [R(s.t) & (M. t) 5= p]
(M. s) E Fp iff Vt [R(s,t) =* (M. t) 1/' pl

The operator 0 is treated as the basic modal operator: for Op being true in world s we
have to check whether p holds in all alternatives of s. as given by the relation R This
reflects the idea that something is obligated if it holds in all (ideal) worlds (relative to the
world where you are). The operator P is the so-called dual of 0: Pp is true if there is some
alternative world where p holds. The F-operator is very similar to the 0-operator:
something is forbidden (in a world) if it does not hold in any alternative (to that world).
Validity is as usual in modal logic: formula p is valid with respect to a class C of Kripke-
models, denoted CAp, if p is true in every world of every Kripke-model in C, that is.
(M.s) 5= p for every M = CS, x, R) €C and every s € S. One can prove that the system KD
is sound and complete.

Formalizing tbe Communication Framework 137

The theorems derived from KD contain a number that are considered paradoxes, since
they are counter-intuitive to a greater or lesser degree (see [Castaneda, 1981] and [Meyer and
Wieringa. 19931 for a list). Many researchers proposed systems to overcome these
difficulties. Von Wright himself proposed the New System ([von Wright. 1964]) to capture
conditional obligations (which later in Ivon Wright. 1965] was amended by himself). In the
mean time Anderson [Anderson. 19581 proposed to reduce deontic logic to alethic modal
logic, i.e. without deontic content, except for a special propositional atom V, indicating a
liability to some sanction or punishment. Others have proposed to incorporate aspects of
time to overcome some of the difficulties with 'traditional' deontic logic. [Thomason. 1981]
even argues that deontic logic requires a foundation in temporal logic, reducing the
obligation of p to a temporal statement that p holds in all future courses that would be
morally acceptable. Ivan Eck. 1982] enriches deontic logic with temporal operators, and
[Fiadeiro and Maibaum. 19911 propose a (semantical) reduction to temporal specifications.

6.1.1.1. REDUCTION TO DYNAMIC LOGIC

As von Wright already states in [von Wright, 1963,1968] the sense of the deontic operator
relies on what is meant by an actio,1, or doing something. What is under a deontic
predication is a statement of an action. 0(p should be read that a certain agent is obliged to
do (p. [Castaneda. 1981] also points at the fact that many of the paradoxes of deontic logic
could be solved by distinguishing propositions (assertions) from actions (practitions).

Inspired by the observations of obligations on actions and Anderson's unsatisfactory
reduction to alethic modal logic, Meyer ([Meyer, 1988]) proposed a reduction of deontic
logic to propositional dynamic logic, using Anderson's violation atom V, indicating that
in the state of concern a violation of the deontic constraints has been committed. In
Meyer's approach the concern is with, what is called in deontic literature, "Tunsollen"
rather than "Sei,isollen" (cf. [Von Wright, 1980]). [Meyer and Wieringa, 1993] gives a good
introduction of the reduction of deontic logic to dynamic logic.

Propositional dynamic logic ([Harel, 19841) consists of the normal propositional logic
extended with modal operator [a] for every action a in the language. An expression [a](p
is read as "the performance (execution) of action a leads necessarily to state (possible
world) in which (p holds". The formal semantics is given by means of a Kripke structure
where there are accessibility relations Ra associated with each action a. In this approach,
a is forbidden (F), a is permitted (P) and a is obligated (0) are reduced to dynamic
expressions as follows:

Fa E [a]V
action a is forbidden iff the performance of (x yields a state where V holds;

Pa E Fa (E [a] ,V)
action a is permitted iff a is not forbidden (iff there is some way to perform a
that leads to a state where V does not hold);

Oa E FC--a) (- [--a]v)
a is obligatory iff not-doing a is forbidden (iff not-doing a leads to a state of
violation (V holds)).

138 A language-Action Perspective on tbe Design of Cooperative Information Agents

(although the negation of the action a, denoted -a, expressing the non-performance of

this action, may be intuitively clear, it is not entirely trivial to define this notion in a
formal manner, see [Meyer. 19881. [Dignum and Meyer, 19901 for this).

Other dynamic logic approaches were taken by [Khosla and Maibaum. 1987], [Khosla.

19881 and [Fiadeiro and Maibaum, 19911 Meyer's approach is similar to [Khosla and
Maibaum, 1987] who define an extension of modal action logic called Deontic Action
Logic (DAL). The similarity is that every state of the world is labelled as either forbidden

or permitted. One difference is that in Meyer's logic, every action that leads to a forbidden

state of the world is forbidden, and every action that leads to a permitted state of the world
is permitted. Another difference is that the reason for violation can be represented in the

violation predicate, which provides information to specify the appropriate corrective
action and to give informative error messages. Furthermore, action negation is heavily

used to define the relation between the three modal operators. Other differences concern

the use of propositional negation (to enforce deterministic processes) and the kind of
semantic structure for specification ([Meyer and Wieringa, 19931)

Recently some new approach to combine dynamic logic and action logic have been

undertaken (see e.g. [Herrestad and Krogh, 19951, [Santos and Carmo, 1996] and [Tan and

Thoen, 19961) but these will not be discussed here.

6.2. LOGICAL FOUNDATION FOR MODELLING
COMMUNICATION

In order to model the communication between agents in a distributed system the

illocutionary language Lili is developed. The language is presented bottom-up. First a
static language Lstat is given, that describes the predicates that are part of all message and

action specifications, after which the language of actions Lact (a variant of dynamic logic

([Harel. 19791) and transactions language Ltract· is described. Then the dynamic deontic

language Ldd is introduced. In section 3 this language is extended with speech acts, and

temporal operators in order to model deadlines, to form the illocutionary logic Liu.

An important note is that when we speak about an "action" we do not mean the
elementary action as used in dynamic logic. Instead a more generalised action, or
transaction as it is called here, is meant. Typically, where we speak about actions we also
mean transactions, e.g., in the case of a directive speech act DIR(a) (which itself is an

action). a can be a transaction. The action logic therefore is a logic of transactions. One
reason why the elementary action concept does not suffice lies in the specification of
deadlines, which means the incorporation of temporal aspects in the logic. In [Dignum et

al . 1996a] we have done this by extending the dynamic logic with transactions. The
incorporation of time in dynamic logic is a complex matter that we leave for future work.
A first attempt at specifying temporal aspects of actions is given in [Dignum and Kuiper.

1996]. In my view changing the names as used in traditional dynamic and deontic logic
will lead to more confusion than just taking into account that whenever we speak about

actions, the generalised form is meant.

Formalizing tbe Communication Framework 139

This standpoint, however, has some consequences for the specification of deontic
modalities. As described in section 1.1.2.3 the fundamental reason for the use of deontic
concepts in communication modelling is that coordination of behaviour always requires
some form of mutual commitment. Committing to something is specified as having the
obligation that that something is the case in the present state. However the standard
Anderson reduction cannot be used to specify the meaning of this, because of the many
paradoxes it contains. In Meyer's reduction to dynamic logic the deontic operators reach
over actions only. Because the action should be executed in the future, it cannot be
guaranteed, so the interpretation "it will happen in all future courses of events" is too
strong, but the interpretation "it will happen in some course of events" is too weak.
Therefore the formula "a is obligatory" is interpreted as: "not doing a leads to violation".
However now not only actions should be taken into account but also transactions, and it
should be possible to specify that something should have been done or happened before a
certain deadline. By expressing that a violation is created if something is obligated and not
the case in the present state we get a more precise meaning of what it is that something is
on an agent's agenda. Violations do not cause logical inconsistency, but can be the trigger
for sanctions or repair actions.

6.2.1. THE STATIC LANGUAGE Lstat

To describe the semantics of communication processes, first the meaning of the messages
is specified.

Definition 6.1. (message)

A message has the following structure. First, it consists of an illocution and a
proposition. A proposition, in turn, consists of an action involving one or more
objects. Illocution type, action type and object type draw on a given set of
predicates.

Lstat ([Wieringa et al., 1991]) is a simple first-order language with variables, constants,
function symbols and predicate symbols. Two special predicates are the unary predicate E
(existence) and the binary predicate = (equality). Terms and formulas are built in the usual
way using A, v, 1 , 4, 4,3, and punctuation symbols '(', ')'. '[' and '1'. We use infix
notation for '='. The existence predicate E is used by convention to single out the set of
existing objects among the set of possible objects. The following abbreviations are used:

VE x[$(x)] == Vx [E(x) => 0(x)] and
3Ex[$(x)] == 3x [E(x) 0(x)1.

We presuppose the usual model concept from first-order predicate logic.

The language can be given a Herbrand-Kripke possible world semantics which is
omitted here. The interested reader is referred to [Weigand et al., 1995].

140 A language-Action Perspective on tbe Design of Cooperative Information Agents

If knowledge is expressed as closed statements about objects of a certain type, then we
must be able to talk about types. We follow Sowa ([Sowa, 19841; see also [Guanno, 1992])

in using an explicit type predicate to declare the type of a term.

Definition 6.2. (Typed Logic)

Let T be a finite set of constants not occurring in Lstat· The elements of T are

called type names and T is used as meta-variable over T Lstat is extended to the

typed language 7Lstat as follows:
1. TLstat contains a special binary predicate type and the set Tof type names. The

only well-formed atomic formulas that can be built with type are of the form
type(t. T) for a term t and a type name t, and the only place where r can occur is
as the second argument of type. type(x. T) \S called a declaration of x.

2. We introduce the abbreviations

Vx : r (4(x)) == Vx(type(x, t) -* $(x)) and
3x: r (0(x)) == 3x(type(x, r) A 0(x))

3. The language TLstat is the set of all c/osedstatements that can be built this way
and which have all their variables typed. The inference relation f-- is defined as
usual for first-order logic. We only consider formulas in prenex normal form, i.e.

Qlx 1 Qnxn($(xl, ...,xn)). where x/. xn are all the free variables in $ and
Qi are quantifiers. Because all variables are typed, we can write this as Qix / : 'rl

Qnxn : Tn (tYx/. xn)) with 'ri e T

The type and role semantics are omitted here, see [Wieringaetal.. 1991 land [Weigand et

al.. 19951 for this. In giving a semantics to the type names, there is a choice of keeping the
extension of a type name constant in each world, or varying it. This choice has an intuitive
meaning. e.g. compare the types Pe rson and Employee. Some objects can become
employees or cease to be employees without coming into existence or ceasing to be. There
is life before being hired by a company, as well as after terminating a contract. On the
other hand, there is no kind of object that can become a person without coming into
existence, or that can cease to be a person without ceasing to exist. Apparently, being a
person is an essential property of objects in the way that being an employee is not.
[Wieringa et al.. 1991] calls types like Person natural kinds and types like Employee roles.

6.2.2. THE DYNAMIC LANGUAGE Lact

Definition 6.3. (Action Logic)
The language Lact of parameterized actions ([Wieringa et al.. 19891) is given by the
following BNF:
a ::-alal +Oclal&021 al anylfail

a stands for the atomic action expression, like "order(ij,p)", which states that agent i
orders p from agent j. The first parameter indicates the subject of the action. The meaning

Formalizing tbe Communication Framework 141

ofal +a 2 isa choice between al and 0(2.0(1 & 0(2 stands for the parallel execution of
al and 02·The expression a stands for the non-performance of the action a. The any
action is a universal or "don't care which" action. The fail action is the action that always
fails (deadlock). This action does not lead to a next state.

The semantics of actions can be given in a possible world semantics, cf. [Meyer, 1988].

6.2.3. THE TRANSACTION LANGUAGE L tract

In this section the transaction logic language together with the semantics of (trans)action
expressions is given.

Definition 6.4. (Transaction Logic)

The language L tract Of transaction expressions is given by the following BNF:

P : : - a l 131 + 1 2 1 DI & 132 1 1 lanyl fail 1 Bl;#2

Note that the definition of Lact is almost the same as for Ltract except that we do not
allow for sequence of actions.

6.2.3.1. TRANSACTION EXPRESSION SEMANTICS

The semantics of (trans)action expressions is given in two stages. First an algebra of
uninterpreted actions (called a uniform semantics Ide Bakker et al., 1986]) is defined, which
allows for the interpretation of equalities between action expressions without taking their
effect into account. Next, a state-transition semantics of action expressions is given in
which the effect of steps On the state of the world are defined.

6.2.3.1.1. Algebraic action semantics

With every atomic action expression a € Act we associate an event a in a given class a of
events, with typical elements a,b,c.... Different atomic action expressions are associated
with different events in a. Events are the semantical entities on which we shall base our
interpretation of action expressions. We further assume a special event 6, which is not an
element of a, called failure (comparable to deadlock in process algebra [Baeten and
Weijland. 19901). The relation between an action expression a € Act and the associated
event a€a i s more involved than just interpreting g a s a.W e shall interpret atomic action
expressions 9 € Act in a more sophisticated way, which we call "open": the meaning of
an atomic action expression a€ Act will be the event a c a corresponding with it, in
combination with any other subset of the events in a. Thus a expresses that a occurs, but
it leaves open which other events occur simultaneously (in the same step) with a. The
intuitive motivation for this is that if we say that an event a occurs, we do not mean that
nothing else occurs in the world.

142 A Izinguage-Action Perspective on tbe Design of Cooperative Information Agents

Definition 6.5. (Steps)

1. The set {6} is a step.
2. Every non-empty finite subset of a is a step. The powerset of non-empty finite

subsets of a will be denoted by p +(a).

Notation: In concrete cases we write the sets indicating steps with square brackets, in
order to distinguish them easily from other sets that we will use. So, the step consisting of

6 is written as [6] and the step consisting of the events a and b is written as

a

b

The above definition prevents the simultaneous execution of the special event 6 with
other events, because it is not in a. This is necessary, because it is not possible to perform
an event and at the same time have a deadlock.

To denote the subsequent execution of actions we make use of sequences of steps.
These sequences can be finite or infinite. We will call these sequences of steps traces

conform the terminology used in the semantics of concurrent programming [Broy, 1986].

The definition of a trace is given as follows:

Definition 6.6. (Traces)

A trace is a finite or infinite sequence S /S2...Sn ··· of steps.

E stands for the empty trace.
Only the last step of a trace may be [6].
The number of steps in a trace t is called the length or duration of t, denoted by

dur(t).
dur(£) = 0

Notation: We use t.ti.t2,···,tr... to denote traces. We use A* to denote the set of all traces

that can be formed from a.

Definition 6.7. (Domain)
The domain ID for our model of transaction expressions from Tract is the collection
of sets of traces. An element of fl is called a choice set and is denoted with T, T/,....

The use of choice sets as elements of the domain indicates the inherent non-
determinism of the performance of the actions. Only when the semantics of a transaction
expression consists of a choice set with one element will the transaction be deterministic
(see also [Dignum et al., 1994]). Just as for traces we can define the length of a choice set

(which will indicate the length of the transaction expression):

Definition 6.8. (Duration of choice set)

The length or duration of a choice set T, denoted by dur(T) is defined as:
dur(T) = max(dur(t)\ t E Tl

Formalizing tbe Communication Framework 143

Below, we interpret transaction expressions in terms of choice sets. In order to do this
we define the semantical counterparts of the syntactic operators in Tract (+, &, - and ;).
Before we give the definitions of these operators, some helpful functions are defined.

We start with the definition of prefixes of traces.

Definition 6.9. (Prefixes of traces)

pref(t) = t' 1 t' o t" - tl

Note that E is an element of the p ref of any trace. The 'o' operator denotes
concatenation of traces and is defined formally in definition 6.12 below.

The next function defines the longest common prefix of two traces.

Definition 6.10. (Longest common prefix)

Let tl= Sl...Sn... and t2=Sit..Sm'.
Then maxprefttl,t2) is the longest trace t such that t € pre«ti) and t € pref(t2).

Note that if Sl 4/ :, maxpref(t 1,12)= E.
Finally we define an operator (74) on choice sets, which removes traces ending in [6].

These traces are only removed if there is another trace that is the same but with [6]
replaced by another trace.

Definition 6.11. (Trace ending removing)
Let Tbe a choice set then
16 =T \{tit= t'[6]A 3t" ET:t"get At' €pref(t") J

The operator 76 is closely related to what is called "failure removal" in [de Bakker et
al., 1986]. The idea is that failure is avoided when possible, i.e. when there is a non-
failing alternative. In [Broy, 1986], this is called angelic nondeterminism.

We will now define the semantical counterparts of each of the syntactic operators. We
start with the simplest, the ";". The semantical counterpart of this operator is the
concatenation of choice sets (representing the semantics of the transactions that are
performed in sequence).

Definition 6.12. (Concatenation operator)

1. Let t= Sl...Sn and t'= Sl=*...Sm= be two traces (possibly infinite) then

uys= 16]
t o t'

SI'..Sm, if sn 0 [6]
If tisaninfinite trace, then t ot'=tforany trace t'.
t o E=E o t=t.

2. Let Tand T' be choice sets, then To T' is defined as the choice set
{tot'It€T,t'€ T'}.

Note: To {E} = {E} o T=Tand {[6]} o T={[6]} and To{[6]} = {to [6] I t€T}

144 A 141nguage-Action Perspective on tbe Design of Cooperative Information Agents

For the parallel operator "&" we use a set-intersection m, which is almost the same as
the normal set-intersection, except that a trace can appear in the intersection not only if it
appears in both sets, but also if it appears in one set and the other set contains a prefix of
it. The definition assures that if two transactions are compatible, then the length of the
transaction that results from performing them simultaneously is equal to the length of the

longest transaction.

Definition 6.13. (ParalleI operator)
1.Let tand t'be traces:

t if maxpref(t,t') = t
I AN< t' ifmaxpref(t,t') = t

maxpref(t, f) o IS) otherwise
2. Let T.T'€ 1

TMT' =(u{tNt' It€T, t'ET'})6

The semantical counterpart of the choice operator is defined as follows:

Definition 6.14. (Semantic counterpart of choice operator)

For T, T'€ 51:

T T'=((TUT) \(u{ t mt' I r€ T. t'€T' A t#t'1)6

The above definition states that the choice between two choice sets is the union of
those two choice sets minus some type of intersection. However, it is not the actual
intersection of the two choice sets that is subtracted, but those traces that only appear in
one set and have a prefix in the other set.

This complicated definition is needed to secure equalities like: al + (al;a2) = al

Finally, we define the semantic counterpart of the negation operator.

Definition 6.15. (Negation operator)

The definition of "-" is given as follows:
1.For a step S

s-=p+Ca){si
2. For a non-empty trace t= S /...Snl...

r = 1 IS o o S"V / .-
nfdurt /)

3. Foranon-empty set TES)

7-= tS ETS-

That is. for a step the negation just yields the set-theoretic complement of {Sl with
respect to 10 +(a). The negation of a trace consists of all the traces that start with a prefix
and end with the negation of the step following that prefix. The negation of a choice set T

is the "special" intersection of the sets(!) of the negations of all the traces contained in T.

Formalizing tbe Communication Framework 145

We can now give the algebraic semantics of action expressions:

Definition 6.16. (Algebraic semantics)

The semantic function [] EAct -00 is given by:

[a]={sEP+(a) laEst
[(i 1 + 02] = [Ot i] ls, [0:2]

[Ot i & 02] = [al] (A [02]
[0: i ; a21 = [Oft] 0 [0(2]

[a] = [ot]
[fail] = { [61}
[any] = 10+Ca)

The first clause of the above definition expresses that the meaning of the action
expression a is exactly as we have described informally before: it is the set of steps that
contain the event a, representing a choice between all (simultaneous) performances of sets
of events which at least contain the event a, so that the performance of a is guaranteed but
also other events may happen simultaneously. The meaning of the action expression fail is
comparable to a deadlock. The only event that can be performed is 6. The action
expression any is the complement of fail. It stands for a choice of any possible
combination of events.

Finally we define duration, equality and implication between action expressions.

Definition 6.17. (Duration, equality, implication of action expressions)

The duration of a is defined as du,(a) = dur ([a])
Action expressions al and a2 are equal, written al =0 0£2, iff [al] = [O(2].
al involves or implies al written al > 0(2 iff [al] C [0(2]

6.2.3.1.2. State-transition action semantics

To get a state-transition semantics, we postulate what effects events have in terms of state
transformations (we do this relative to a set X of states).

We assume that there is a function e#: a -* (52 -4 I), such that e#(a) is a function
from states to states. (For simplicity, we assume events to be deterministic. Elsewhere, it
is shown how nondeterministic events can be incorporated [Meyer. 1988]) Two events are
called compatible if their joint effect is independent of the order in which they occur.

Definition 6.18. (Accessibility relation)

Let S -[a/.an] c abeastep consisting of pairwise compatible events. The
accessibility relation RS c I x X i s defined as follows:

RS (C,a') **def eff(a 1) 0 ··· eff(an)(G) = C'

146 A Language-Action Perspective on tbe Design of Cooperative Information Agents

On the basis of the accessibility relation RS we also define an accessibility relation
based on traces.

Definition 6.19. (Accessibility relation on traces)

Let t and t' be traces then:
Rtot(a .C') **def 3a" Ria .a")A Rtic",c')

6.2.4. THE DYNAMIC DEONTIC LANGUAGE Ldd

Now that the basic languages of actions and transactions are defined we can introduce the
dynamic deontic language. This includes the dynamic operator [], and the deontic
operator 0 for obligation. The intuitive meaning of [a]* is that after the execution of of
* necessarily holds. The formulas defined by 0($) define the "classical" deontic formulas
as introduced by von Wright ([von Wright. 19511. [Aqvist, 1984]). The informal meaning of

0(0) is that 0 should be the case in the present state. If both the obligation for $ and -,0
hold in the same state we call this a violation, expressed by the special predicate
Violation. The other deontic operators can be introduced using the usual abbreviations:

F(0)- 0(-0)
P(0) E -,F($)

The language Ldd is defined with the following assumptions:

1. We introduce a special class Ag of agents. The agents in the distributed system
can be humans (as in Workflow Management) or database applications (as in

EDI) or the CIAs defined before that have been delegated certain tasks;

2. actions are parameterized, the first parameter represents the agent of the action.
The formal introduction of parameterized actions can be found in [Dignum and
Meyer, 1990];

3. the operators deontic operators 0, F and P are indexed with the Superordinator
and Subordinator agents. Thus Oij($) should be read as: "agent i is obliged to
agent j that 0 holds". The violation corresponding to this obligation can be
indexed accordingly.

Definition 6.20. (Dynamic Deontic Logic)
The language Lddof dynamic deontic logic is given by the following BNF:
* : : -0 1 *vT I *Ag' 1 -, $ 1 [a] * 1 0(0) 1 B(i,$) 1 I(i,0) 1 I(i,a)

Where 0 is a first order logic formula from Lstat, and a an element of Ltract, i is an
element of Ag. The language Lst:it is supposed to contain a special predicate Violation.

The formal semantics of v, A, i are standard and omitted here. The formal semantics
of the other formulas are based on the semantics of action expressions given in the
previous section and special accessibility relations:

Formalizing tbe Communication Framework 147

Definition 6.21. (Dynamic Deontic Logic semantics)

a K [a]* : Vt E [a] Vae X Rt(a,C') => C' A *
a K 0(0) : 40'€ I ROCC,C') => a' 5= ()
a M B(i,4)) : Vc'eE RBi(a,a') => C' M (1)
a 1= I(i,4)) : Va'€ E RIi(a .a') =* a' 5= 4)
a A= ICi,of) : Va'e E RIi(c .c') => c' A a

Instead of giving properties of the accessibility relations Rt, Ro, RBi, RIi some useful
axioms are given. In section 6.3.3 a more complete semantics is given.

We use the following axioms concerning the use of the action construction:

Axiom 1. (Action 1)

L [a](01 -4 02) -1 ([a]$1 -1 [a]02)
2. [al + a210 ++ [al]$ A [a2]0

3 10,1 + 0,21*„Ii & 6 10

4 10,1 & «210„Ii + 6;1*
5. [fail 10 ++ true

The meaning of al -0 02 is that the performance of al involves the performance of
0(2. For instance, "drinking coffee" involves "drinking" and "washing and singing"
involves "singing". It is a kind of implication between actions. Of course this relation is
reflexive and transitive. We have the following axioms:

Axiom 2. (Action involvement)
1. a -ia
2. (a 1 -+ 0(2) A (0(2 -* 06) -* (a i -* a3)
3. (al -# oc) 1 ([0(1]0 -* [a2]0)

We also use the following abbreviation:

Definition 6.22. (Equality)

al =a2 iff al -, a2 A a2 -*al

For the deontic operators the system KD (section 6.1.1) holds:

Axiom 3. (Obligations)

1. tautologies of Propositional Calculus
2. Modus Ponens
3.0-necessitation
4. K: 0(9-#W) -> (0((P)-*0(\11))
5. D' -70((PA -79)

148 A language-Action Perspective on tbe Design of Cooperative Information Agents

From above axiom system the theorems

0((PAW) -1 (0((p)A 0(\11)) and
0((pv w) -+ (0(9)v 0(W)) can be derived.

Besides the obligation over propositions also obligations over actions 0(a) can be
specificied. The intuitive meaning of the deontic operations over actions is as follows: the
action a is obliged if not doing a leads to a violation state, a is forbidden if doing a leads
to a violation state, and a is permitted if it is not forbidden to do a.

To show we can still talk about violation when a certain action is not performed we
jump ahead to section 6.3.3 and borrow the temporal operator PREV (the intuitive
meaning of PREV(a) is "the present state is actually reached by performing a") and apply
proposition 6.1.0(a) can then be defined as:

0(a) - [any]0(PREV(a))

or, after whatever action you do, the obligation that the previous action performed was a
should hold. We can now also look at what it means to not do 0(:

- by definition we have: IalpREV(R) "181-PREV(«)

- from the obligation we have: 0(a)=[any]0(PREV(00 -> a 0(PREV(a))

- which means that we have: Ial--7 PREV(a) A 0(PREV(a))
or, after the non-performance of a the obligation that the previous action is a and the
previous action was not a will hold, which is a violation.

The Belief and Intention operators do not play a very important role, as for instance in
many other agent theories, but they are used in section 6.3.2.2 for the representation of the
intended effects and sincerity conditions of speech acts.

The meaning of B(i,$) is that agent i believes $. We use the "standard" axioms for
believes:

Axiom 4. (Belief)

1. B(i,(01 -+02)) -#(B(i,01) -*B(i,$2))
2. «B(i,$)A B(i.-4))
3. B(i.$) -* B(i,B(i,$))
4.-B(i,$) -4 B<i,-78(i,0))

*i,a) means that agent i intends to perform oc and *i.$) means that agent i intends to
bring 0 about. These are very weak notions for which only the following axioms hold:

Axiom 5. (Intention)

1.(a 1 -* OL2) --4 (I(i,ai)-+ 1(i,a2))
r. (01 -*02) -4(1(i,0 1) -*I(i,4)2))

2. --i(I(i,a) A I(i, a))
2'. -,(I(i,$) A I(i,-$))

Formalizing tbe Communication Framework 149

6.3. SPEECH ACTS AND DYNAMIC DEONTIC LOGIC

In this section the logical formalism that incorporates the speech acts into dynamic
deontic logic is described. Before this can be done we revisit the illocutionary logic, as
defined by ISearle and Vanderveken, 1985] and introduced in section 2.1.1.3. and look how
this applies to communication between formal (computer) systems.

Again it is stressed that communications in multi-agent systems are considered to be
speech acts and the aim is to provide a semantics for such communicative actions. We do
not focus on the natural language aspects of the problem. In other words, we do not
provide a theory of what a given natural language utterance may be interpreted as. The
research described here on communication and traditional work in natural language
processing are complementary in that the former is concerned with the content and
structure that different communications must have, while the latter is concerned with the
form they must take to accurately correspond to that content.

6.3.1. ILLOCUTIONARY LOGIC FOR FORMAL COMMUNICATION

It is important to make the distinction between informal (human) communication and
formal (computer) communication, because many aspects that are important for informal
communication do not occur in formal communication or have no impact on the effect of
the communication. For instance, the concept of 'sincerity', which indicates whether the
speaker actually means what he is saying or not, has no influence on the communication
between formal systems. Here the elements of illocutionary logic that are necessary to
describe formal communication are described.

The illocutionary act with its three components is taken as starting point. So, an act of
communication between formal systems will also be described by:

• propositional contents
• illocutionary context
• illocutionary force

The propositional contents of the illocutionary act expresses what the speech act is
about. It describes objects and actions of which the meaning is described in the lexicon.

The illocutionary context indicates the relevant knowledge about the situation in which
the speech act is made. From section 2.1.1.3.1 we learned that this can be factual
knowledge about the place where the speech act is performed, but also epistemic
knowledge about the intentions and believes of the participants in the speech act. It also
includes the speaker and addressee of the speech act themselves.

From the five elements of illocutionary context only the speaker and addressee are
used. The speaker and addressee are part of the speech act itself and are incorporated in
the formal representation of the speech act. These two elements seem to be closer related
to the communication than the other elements of the context. The time and circumstances

150 A liinguage-Action Perspective on tbe Design of Cooperative Information Agents

are not incorporated in the illocutionary act itself but are indeed seen as the (independent)
context in which the act is performed. Time is relevant, however the interest is not with
the specification of the moment in time the speech act is performed, but with the
specification of deadlines (see below). In formal network-based communication, location
seems to be less relevant. A communication between a computer in Australia and a
computer in Holland is not easily located at one point in space. Although the location
might be of importance in communication between two persons that are at the same place,

it is not of any importance in communication between formal systems.

The illocutionary force determines for a large part the reasons and goal of the

communication. It contains seven elements. Besides the illocutionary point, the other
elements of the illocutionary force are all dependent on the illocutionary point. They
either indicate the strength of it or the effect of it in some way. From the seven

components of illocutionary force only five will be used in formal communication:
• illocutionary point
• degree of strength of the illocutionary point
• mode of achievement
• propositional content conditions
• preparatory conditions

The central element of the illocutionary force is the illocutionary point. Of course, this is
also used in formal communication. The illocutionary point indicates the type of effect for
which the act is performed. Five different illocutionary points are distinguished. The basic
illocutionary types that are supported in the framework are assertive, directive,
commissive and declarative ([Austin, 1962], [Searle. 19691, [Searle and Vanderveken, 1985],
[Lehtinen and Lyytinen. 1986]). The fifth illocutionary type Searle distinguished is the
expressive. whose point is to express the speaker's psychological state, feelings and
attitude towards the state of affairs. The expressive is left out of the framework since the
attitude of one of the agents towards some state of affairs has no influence on the
communication in formal systems. An example of a message with a illocutionary force is:
the assertion that a certain flight has been reserved, or the request that a certain flight be
reserved (from agent A to agent B). In these two cases, the proposition is the same, but
because of the different illocutions, the meaning of the two messages is quite different.
Note that an action occurrence referred to in an assertive message means that the action
has taken place. or is taking place, depending on the time of action, and that an action
occurrence referred to in a directive message means that the action must be executed.

The degree cd strength of the illocutionary force in a formal context is not so much
used as a degree of intention of the speaker like in the original analysis of Searle. In that
context. for instance an 'order' expresses a stronger desire to have the propositional
contents of the speech act be realised by the addressee than a 'request'. In a formal
communication context the degree of strength has an influence on the effect of the speech

act and thus on the possible responses to the speech act. lt might be possible that it is not
obligatory to answer an order if the speaker has no authority over the addressee, while a
request is always answered.

Formalizing tbe Communication Framework 151

The mode of achievement indicates that some conditions must hold for the
illocutionary act to be performed in that way. E.g., a directive can be given through a
command or an order. A command makes use of a position of authority of the speaker
while an order does not. Below distinctions in normative grounding of illocutionary points
are described, such as power, authority and charity. They can be viewed as different
modes of achievement.

In many cases the illocutionary point forces some conditions on the propositional
content of the speech act. E.g., the propositional content of a promise must be that the
speaker will cause some condition to hold in the future. One cannot promise to have done
something in the past or that someone else will do something. The propositional content
conditions are not modelled in our illocutionary logic at this moment. They can be
modelled through a refinement of the language of speech acts which renders only those
speech acts syntactically correct that comply to the propositional content conditions. In an
IS environment, the propositional content conditions are contained in the data model.

There are basically two types of preparatory conditions. First, those that are dependent

of the illocutionary point. E.g., if the speaker promises something it is presupposed that
the thing he promises is beneficial for the addressee and also that the speaker can in some
way fulfil the promise. There are also preparatory conditions that depend on the
propositional content of the speech act. E.g., if I order someone to open the window I
presuppose that the window is closed. Both types of presuppositions are included in the
preparatory conditions of the illocutionary force.

The two elements left out of the illocutionary force in a formal communication context
are the sincerity conditions and the degree of strength of these sincerity conditions. In
speech act analysis it is important to be able to determine whether the intentions that are
conveyed in the propositional contents of the speech act coincide with the intentions of
the speaker. That is, one would like to be able to indicate that a certain statement is a lie.
However, in formal communication this is not important. The intentions of the speaker do
not play a role in formal communication except in as far as they are expressed in the
speech acts. E.g., if someone orders a product without having the intention of ordering the
product, all the consequences of the speech act will be exactly the same as when he would
have that intention. This is formalized by making the intention of the speaker a direct
effect of the speech act.

In the framework one component to the illocutionary acts is added, the intended effect.
The intended effect of an illocutionary act is only effectuated if all the conditions of the
act are fulfilled. For instance, the intended effect of ordering a product is the obligation of
the addressee to deliver the product. However, there may be all kinds of circumstances
that prevent this obligation to arise. For instance, when someone can only order a product
if one paid all previous deliveries (a preparatory condition) and the speaker did not
comply to this rule. In this case there is still an effect of the speech act, e.g. the addressee
now knows that the speaker wants to order a product again. But this effect is not equal to
the intended effect. The definition of a successful illocutionary act is an illocutionary act
for which the intended effects are also actual effects of the speech act.

152 A language-Action Perspective on tbe Design of Cooperative Information Agents

6.3.2. Ldd EXTENDED WITH SPEECH ACTS

In order to model the communication between agents in a normative system the language

Ldd has to be extended to incorporate speech acts, as described in illocutionary logic.

However, first we take a closer (formal) look at the authorization relations between
agents. After this the speech acts are formally introduced.

6.3.2.1. AUTHORIZATION RELATIONS

Coordination of behaviour is relatively easy when there exists a hierarchical ordering
between the agents. When agent A is superior to agent B, then a request of A will always
lead to an obligation for B. However, especially when these systems belong to different
organizational units, or in CSCW applications, where the agents are humans standing in a

peer relationship, the coordination requires more effort. Let us suppose that A does send a

request to B. In general, this can lead to an obligation on the part of B for three

fundamentally different reasons ([Dignum and Weigand. 19958]):

1. Charity
2. Power
3. Authorization

Power, authorization and charity can be seen as different validity claims, as were
introduced in section 3.1.2 and 5.2.2.

\. Charity means that B answers A's request without being forced to do so.

We take it for granted that systems that include humans, or are closely intertwined
with human affairs, can never be formalized completely. Such systems should leave
open the possibility of open requests. The request itself does not create an obligation;
an obligation arises only when B replies with a positive commitment.

The charity relation does not have a special notation.

2. Power means that B answers A's request because of some dominance relationship
between A and B external to the communication network.

This is the case in the hierarchical system mentioned above. By "external" we mean
that the dominance relationship is not rooted in the communication process, but by
mutual consent. Regarding power, [Auramaki and Lyytinen, 1996] state: "It seems to be
useful to know i f we are commanding or promising. Use of power is a part of everyday
action, and we do not want to exclude communication based on the use of power from
the analysis of communication". A power relationship can be restricted to a certain
domain or to specific roles of the agents. There exists a power relation between the
agent i and the agent j with respect to action a, if i has the power to order j to perform
the action a. For instance. the boss can order his secretary to reserve a flight for him.
Note that he might not have the power to order his secretary to make coffee for him !
We assume that the power relation is persistent. i.e. it is not changed or finished by the
fulfilment or non-fulfilment of the command; and is only changed in special occasions.

Formalizing tbe Communication Framework 153

like when a manager is appointed. The power relation defines a partial ordering on the
class of agents for every action a. This ordering is reflexive (sel f-power) and transitive
but not necessarily total.
The most important property of the power relation is that it provides a basis to create
obligations from one agent to another. The power relation can also be defined with
respect to a proposition. This means so much as that i has the power to convince j of
the truth of 4. E.g., a student will (usually) consider the statements (assertions) of a
teacher to be true. This power relation has no legal connotation, because it will not be
connected to obligations but to believes of another agent.
Notation: if i has power over j with respect to a we write: j <a i
If i has power over j with respect to the truth of $ we write: j <0 i

The above properties are made formal in the following definition and axiom:

Definition 6.23. (Power relations)
We use PC 1(a)...PCn(a) to indicate the actions that can change the power relation
between two agents with respect to a. PC 1 (0)···PCn($) indicate the actions that can
change the power relation between two agents with respect to 0.

The following axioms hold for the power relation:

Axiom 6. (Power relation)

1. i <ai
1'.1<0 i
2.i<ajA j <ak -*i<ak
2'. i <0 j A j » k -, i » k

3. i <a j -* Ipci (06)u...upcn (a,1 i <a j

3'. i <0 j -+ IPC1 (0)U...UPCn (0)1 i <(1) j
4. (al -# 0(2 A i <al j) -» i <a2j
4: (01 -4 02 A i <41 j) -4 i <(1,2 j

Note. Rule 2 and 2' are introduced to be able to model relationships between contracts.
Although they apply to most real-life cases (e.g., the CEO-manager-employee relation)
there are some cases where the relations do not hold. For instance, in the Dutch legal
system the district attorney can order an agent to arrest someone, and the agent has the
power to make the arrest, but the district attorney can not make the arrest himself.

3. The third relation between agents is the authorization relation. This relation can be
established fur a certain time with mutual agreement (under certain restrictions).
So, when B has committed itsel f to a certain service, a request of A leads to an
obligation when the conditions are met. E.g., I can agree that a company can order me
to pay a certain amount of money after they delivered a product. This relation ends
after I pay the money. A refusal would lead to a violation of the agreement, which
makes this case different from both the first one and the second.

154 A language-Action Perspective on tbe Design of Cooperative Information Agents

See for instance [Dietz and Widdershoven, 1992] for the distinction between power and
authorization claims in CSCW tools such as the Coordinator ([Flores et al., 1988]).

Notation: The authorization relation is modelled using a special predicate.
If i is authorized to do a we write: auth(i,a).

The semantics of an authorized request to do a is that 0(i,a) holds (as a postcondition)
provided that auth(i,a) holds (as a precondition). Although it seems that the
authorization does not establish a relation between two agents, it does so whenever the
action a involves another agent (which is always the case for speech acts as we will

see below). E.g., auth(i,order(ij)) means that i is authorized to order something from j.
See also the next subsection for a discussion on the use and dynamics of authorization.

6.3.2.2. SPEECH ACTS

A speech act is formalised as an illocutionary point (indicating the goal of the speech act)
with three parameters: the Speaker, the Addressee, and the content.

The following basic speech acts are distinguished:

Definition 6.24. (Basic speech acts)

DIR(ij,a) i does a request to j for a
COM(i,j,a) i commits himself to j to do a
ASS(ij,$) i asserts to j proposition $
DECL(ij,(1)) i declares and informs j that 0 holds from now on

From these basic speech acts we can construct other basic speech acts by e.g. using the

logical negation of actions.

Definition 6.25. (Speech acts)

FOR(i,j,a) = DIR(i j, a) i forbids j to do a
PER(i j,a) = DECL(ij,Pji(a(j)) i permits j to do a

The basic speech acts correspond to those given in section 2.1.1.3.1. There might be
some dispute over the question whether the declarative DECL has an Addressee
parameter, since if it succeeds, the effect will be a change of the world and not of the
knowledge of the Addressee only. Depending on the preparatory conditions, it is not
necessary that there is an Addressee at all. However, in general it makes little sense to

perform a declarative speech act and not inform anybody. Hence, the Addressee should be
understood here as the agent (or set of agents) that is informed.

As explained in section 2.1.1.3. L declaratives can only be used for specific
institutionalized speech acts, so the propositional content is usually rather restricted. In
practice. a limited number of specific declaratives will be distinguished, such as the
"authorization" action described above.

Formalizing tbe Communication Framework 155

The language of all acts is now defined in two steps. First the set of all speech acts

LSact is defined.

Definition 6.26. (L act)
1. All basic speech acts are elements of LSact·

2. If a E LSact then also IP(ij,a) € LSactand IP(ij, a) € LSact where
IP e { DIR, COM }

Note that this is a recursive definition. So, we can have speech acts about speech acts,
etc. The following axioms hold for speech acts (for the inference relation on actions used
here, see [Wieringa et al., 1991]):

Axiom 7. (LSact)

1. for IP € {DIR, COM}.
IP(i j,al) & IP(ij,a2) = IP(i j,al & a2)
IP(ij,oct) u IP(ij,a2) -*IP(i,j,al u a2)

2. for IP € { DECL, ASS }:
IP(ij,$1) & IP(i,j,$2) = IP(i,j,$ 1 A $2)
IP(ij,$1) u IP(i,j,$2) -+IP(i j,$ i v $2)

The language Lact of actions is extended to include speech acts and can now be
defined as:

Definition 6.27. (LACT)
LACT= Lact u LSact

Again it should be stressed that although the speech acts are actions themselves the
content of the speech act might be a (logical) transaction (a E Ltract)·

The propositional content conditions are not modelled at this moment. They can be
modelled through a refinement of the language LSact which renders only those speech
acts syntactically correct that comply to the propositional content conditions. In an
Information System environment, the propositional content conditions are contained in the
data model.

The preparatory conditions (4) and the intended effects (W) of a speech act (a) can be
modelled through the following schema:

0 -* Ioclv

which means that if $ is true then W will hold after ahas been performed.
When deontic constraints are specified, this means the constraint can be violated. In

such a case, we usually also want to express what the consequences are in terms of
sanctions or remedial actions. These can be specified in our logic taking the Violation
predicate as precondition.

156 A 1.anguage-Action Perspective on tbe Design of Cooperative information Agents

The intended effects of the speech acts are described by means of deontic and
epistemic operators, while the preparatory conditions refer to either the authorization
relation or the power relation. For instance, a directive (DIR) can be made on the basis of
a power relation (a command) or authorization (in which cases it is an order). For each
basic speech act three variants are distinguished, indicated by a subscript c, p or a, for
charity, power and authority respectively. So, DIRa stands for an authorized request,
whereas DIRp stands for an order based on power. Similarly for assertives and
declaratives. For commissives, the distinction seems to be not very relevant and is ignored

here. Likewise, when the distinction of the powerbase of a speech act is not important, we
will ignore the subscript. We have the following general preparatory conditions and
intended effects for the basic speech acts. Of course, for speech acts mentioning specific
actions there might be more conditions and effects.

Axiom 8. (Intended effects)

1. ([DIRP(ij,a)] Oji(00) 6-j <a i an order based on power creates
an obligation

2.(IDIRa(ij,a)] Cji(a)) f-- auth(i,DIR(i,j,a)) an authorized request creates an
obligation

3. ICOM(ij,a)] Oij(a) a commitment (promise) creates
an obligation

4. [DECLa(i,j,$)] 0 e auth(i,DECL(ij,0)) an authorized declaration creates
a fact

5. [DECLp(ij,$)] (1) e j <0 i a declaration based on power
creates a fact

6. (IASSa(i,1,0)] B(j,0)) e auth(i,ASS(ij,$)) an authorized assertion creates
belief of the fact in the agent

7. ([ASSp(i,j,0)] B(j,0)) e j g i an assertion based on power
creates belief of the fact in the
agent

6 and 7 express the fact that an agent can be authorized to assert some facts. If this
agent asserts such a fact the effect is that the Addressee(s) will believe that fact (which is
not the same as making the fact true. as with a declaration !). That an assertion expresses a
belief can also be described by saying that the effect of the assertion is that the hearer
assumes that the speaker believes such and such. This effect is independent from the
sincerity of the speaker. This is especially useful to create a set of common believes
between several parties, which in the end may trigger some common action of the agents.
For instance, if a bank and a company both believe that it is profitable to invest money in
a new venture, this may result in the actual investment being financed by the bank.

3 describes formally the commitment of agents mentioned so often. As the result of i
performing a COM(i,j,a) (commitment) action Oij(a) becomes true (cf. [Dignum and
Weigand. 199531).i.e. by committing itself to an action, an agent i obliges itself towards j
to perform action a. The commitment is a private one if j is the same as i. Although the
obligation does not ensure the actual performance of the action by the agent, it does have
a practical consequence. If an agent commits itself to an action and afterwards does not
perform the action a violation condition is registered, i.e. the state is not ideal (anymore).

Formalizing tbe Communication Framework 157

The axioms describe the effects of power and authorization speech acts, but not of
those based on charity. A request based on charity (DIRc) does not create an obligation
directly, but may urge the Addressee to commit himself. This is correct, although we
might add some politeness rules that say that a message is always replied tO. Such rules
can be built on sincerity conditions. E.g., a request based on charity would be replied by
either a commissive or an assertion of the effect that the agent does not commit himself:

[DIRc(ij,a)] Oji(COM(j,i,a) u ASS(j,i,-70jia))

Axiom 8 also illustrates how obligations can arise for an agent:

- by means of a command (DIRp) and an existing power frame. In that case, the
obligation arises independent of the commitment of the agent (1)

- by means of an authorized speech act (2)
- by means of a commitment of the agent (3)
- by means of a declaration the obligation exists and an existing power or

authorization frame:
i <a j -* [DECLP(j,i,Oij(a))] Oij(a)
auth(i.DECL(j,i,Oij (a))) -* [DECLa(j,i,Oij(a))] Oij(a)

- by means of a request based on charity, followed by a commitment from the
agent (no authorization is needed, the agent commits itself by free choice):

[DIRc(i,i,a)][COM(ij,a)]Oij (a)

As argued in section 6.3. I the sincerity conditions are left out of the illocutionary force
in a formal communication context. It is assumed that an agent is always sincere, and its
intentions are a direct effect of the speech act used. We can therefore describe the effects
of performing speech acts on the mental states of the agents as follows:

Axiom 9. (Sincerity effects)

[DIR(ij,a)] I(i,a) any DIR speech acts expresses that i intends a to happen
[DECL(i,j,0)] I(i,0) any DECL speech acts expresses that i intends to bring

about 0 (by the speech act)
[ASS(ij,0)] B(i,$) any ASS speech act expresses that i believes 0

So the effect of a DIRc is at least that the receiving agent knows about the speaker's
intention, and this can trigger him to commit himself, or a refusal message.

6.3.2.3. THE DYNAMICS OF AUTHORIZATION

This subsection discusses some aspects of authorization, the granting and retracting, and
in general the dynamics of giving authorizations.

If a subject is not authorized, it cannot issue a DIRa speech act successfully. In that
case. it can try to attain an authorization first. This can be done by means of
DIRc(ij,DECL(i,i,auth(i,DIR(..)))). i.e., a request for authorization of the other party. If
the other party Complies to the request and grants the authorization, the subject gets
authorized from that time on. This example shows that a dynamic normative system

158 A I.anguage-Action Perspective on tbe Design of Cooperative Information Agents

should not only formalize authorized behaviour itself, but also the creation of
authorizations, and, for that matter, the deletion. The basic assumption underlying our
formalization is that authorizations can only be made and retracted by an act of the other
party. In this way, the autonomy of the agents is ensured. Because the establishment of
authorizations is an important and frequently occurring speech act the following notation
is introduced:

AUT(ij,a) == DECLa(ij,auth(i,a))

So, AUT(i,j,a) means that i gives authorization to j to do a. Of course, this speech act
is only successful if i is authorized to give this authorization. For that reason, we have to
presuppose the following axiom:

Axiom 10. (Authorization)
1. auth(i,AUT(ij,DIRa(j,i,a(i))))
2. auth(i,AUT(ij,ASSa(j 'i.p)))

This says that each agent is authorized to authorize other parties as far as actions and
beliefs of the agent himself are concerned. This is irrespective of whether the granting of
authorizations is forbidden by for example a higher power. If that would be the case, the
authorization would still be successful, although the agent might be punished for it.

Authorizations may refer to any action: material actions, communicative actions, and
also to speech acts. An example of such an "indirect" authorization is the following:

auth(i,DIRa(ijAUT(j,i,a)))

This says that i is authorized to direct j to authorize him action oL So i might be not
authorized yet, but he has the possibility to attain an authorization if he wants. From this
example it is clear that quite precise agreements can be made. Such agreements may also
concern the retracting of authorizations.

The ability to retract an authorization should be left to the subject of the authorization.
If i has granted j an authorization, it is only j who can retract the authorization. For this
purpose, we introduce a new declarative RTR:

RTR(i,j,a) == DECLa(ij, auth(i,a))

The preparatory condition of RTR is that the authorization does exist. By axiom 10,
every agent is authorized to retract authorizations given to him. If an agent has first
granted an authorization, and then wants to retract it, he must ask the other party to do so.
Of course, the agents may have made appointments. E.g., the agent who grants the
authorization may ensure himself of the authorization to request the retracting. The effect
is that he can have the authorization retracted whenever he wants.

auth(j,a) auth(i,DIRa(ij,RTR(j,i,a)))

An important question with respect to authorization is whether an authorization can be
passed on. In the axiomatization above, this is possible but not dynamically. New

Formalizing tbe Communication Framework 159

authorizations can be created by means of the AUT action only, and this action can only
be performed by the object of the authorization (the one who becomes obliged). What is
possible, dynamically, is that agent i gives agent j the authorization to request from him to
give authorizations to some agent k. In this way, j can pass the authorization on, but only
via i. That is, j issues the following directive to i:

DIRa(j,i,AUT(i,k,DIRa(k,i,a)))

thus creating for i an obligation to do AUT(i,k,..).
Before that, j must be authorized by i in the following way:

AUT(ij,DIRa(j,i,AUT(i,k,DIRa(k,i,a)))

This speech act succeeds because every agent is, by axiom 10, authorized to grant
authorizations concerning its own behaviour. If j had issued a DIRC instead of a DIRa, he
would not have needed the latter authorization, but then it would depend on i's charity
whether he would commit himself or not.

In the specification language it is possible to stipulate more general authorizations.
E.g., j is authorized to grant authorizations about i's behaviour independently. However,
the question is how such a specification becomes valid in the normative system. In terms
of justification, this can only be done by means of power. An adequate treatment of the
question will lead us to a formal definition of inheritance and delegation. Although no
formal definition is given here I do want to make some remarks about it.

In normative systems, it is usual to organize authorizations and obligations in the form
of roles. In an organization, roles can be secretary, manager, bookkeeper, etc. In the agent

perspective, a role is nothing more than a set of capabilities and deontic rules. The rules
specify the authorizations of the agent as well as the authorizations other agents have with
respect to the agent. Furthermore, they specify obligations, permissions, and prohibitions.
As in database authorization models (e.g., [Bertino and Weigand, 1994]) roles can be
organized in an inheritance hierarchy. So, if secretary "isa" employee, and employees
enjoy a certain authorization, then so does the secretary. For a discussion of problems
related to the inheritance of permissions and obligations, see [Wieringa et al.. 1991].

Inheritance should be distinguished from delegation. Delegation means that an agent
assigns tasks to a subordinated agent, and this can only be done along the power
dimension. From the axioms given above it follows that if i <a j, then j can issue
directives, prohibitions and permissions, and these cause obligations etc. by virtue of the
power relation. The power relation is independent of the inheritance relation between
roles. What needs to be worked out is how delegation interacts with authorization. There
are two cases to consider, one in which the 'lower' agent is the subject of the authorization
and one in which he is the object of the authorization, owned by some third agent k.

When agent j has some authorization, he might want to delegate this to a subordinate i.
E.g., j is the boss, who is authorized to give bank orders and he wants to delegate this to a
clerk. In the normative systems proposed here, this can be done by asking the bank to
authorize the clerk, as described above. So the boss is dependent on the cooperation of the
bank. To retract the authorization, he can order the clerk to do so. We might release the

160 A l,anguage-Action Perspective on tbe Design of Cooperative Information Agents

preparatory condition of retracting a bit by allowing a superordinate to retract

authorizations from subordinates, but since he can achieve the same effect by a power
directive. this complication of the RTR would be redundant.

When agent j wants to give an authorization to k to the effect that k can direct the
subordinate i (for some action), he must order i to grant this authorization to k (use his
power). He might reserve for himself the right to retract the authorization (more precisely,
the right to request the retracting of the authorization).

The final point to consider with respect to delegation is the upward inheritance of
obligations. Again, there are two cases: (i) there exists an obligation of agent k to agent i;
is this an obligation to superordinate j as well ? (ii) there exists an obligation of agent i to
agent k; is this an obligation of superordinate j as well ? A special case of the latter is
when agent i has committed himself.

In contracting we assume the agent that handles the negotiation and commits itself to
perform actions is authorized to do so (as these tasks have been delegated to it). As stated

in section 5.2, we are only interested in the lowest level of contracts, but just the issues of
the inheritance of obligations to superordinates or the organization itself is the focus of
attention when grounding contracts. See also section 5.2.3.

6.3.2.4. DEONTIC LOGIC AXIOMS AND SPEECH ACTS

We will now take a look at some traditional deontic axioms and discuss how they are
interpreted in the context of speech acts.

Axiom 11. Pij(a) == Oij(a)

This axiom (sometimes also seen as an abbreviation) stipulates that everything which
is not forbidden, is permitted. If permitted is interpreted as "authorized", this axiom is too
strong, since authorizations only make sense for actions that affect the behaviour of
others, such as DIR speech acts. In a network of autonomous agents, most of the agent's
capabilities will be private actions, actions that affect the inner state of the agent only. For
those actions, authorizations make no sense. In the weak sense of P as given in Dynamic
Deontic Logic. the axiom is valid by definition.

Axiom 12. Oij(a) 4 Pij(a)

This axiom from the system of Von Wright is not valid in deontic dynamic logic. As
argued in IWeigand. 1993] it is acceptable when it is given a speech act interpretation: a
rational agent cannot request an action that is not permitted by himself. In the
illocutionary logic, this constraint has different interpretations. One interpretation is that
requesting something implies giving permission. Formally,

DIR(a) D PER(a) or, equivalently. [DIR(i.j,a)}Pij(a) e auth(j,i,a)

Note that in the illocutionary/deontic logic authorizations are needed for making
authorized requests, but not for all actions, as mentioned above. For those actions, it is
somewhat overdone to mark them as authorized.

Formalizing tbe Communication Framework 161

Another way to formulate the above axiom in deontic logic is :

-7(0(a) A F(a))

which can be interpreted in the context of illocutionary acts as the fact that one cannot
request an action and forbid it at the same time. Using the axioms for illocutionary acts we
have that:

DIR(a) & FOR(a) = DIR(a &a) = DIR(fail)
If the speaker is authorized to |et the hearer do both a and a it holds that:

[DIR(ij,fail) 10ji(fail) = [DIR(i,j.fail)][any] Vio/ation

This means that the speech act can be successful, but that in the resulting state all
actions lead to "Violation", i.e. are not deontically acceptable. In [Weigand. 1993], the
speech act itself was not legitimate, i.e., DIR(ij,fail) is made equivalent to fail. This is
reasonable when prescribing rational communication, but too strong in a descriptive
system. Requesting and afterwards forbidding makes sense if we take the second action as
overruling the first one. In that case, the inconsistency would be solved by an appropriate
formulation of the frame axioms, that iS, the axioms that define the persistence of
obligations (and other knowledge) from one state to another (see section 6.3.3.4).

6.3.2.5. EXAMPLES

Having given the formal definition of the logical language including speech acts we can
come back to the statement that this would make it possible to model the business logic
model from chapter 3. The communicative business logic can be made precise by
formalising the communicative acts (messages) in the presented logic.

The following gives some examples of a generic business relation written in dynamic
deontic logic:

[DIRc(i,j,give-quotation(j,i,g,p))] Oji(give-quotation(j,i,g,p) u refuse(j))
After a request for a quotation (i.e. a directive based pm charity) the company is obliged
to give the quotation or send a refusal. This follows from the generic business rule that a
request for a service offered is always answered.

Igive-quotation(i,i,g,p)] auth(i,DIRa(i,j,deliver(j,i,g,p)))
If a company gives a quotation for a certain price (p) the client is authorized to order the
product (g) for that price. (i. e. a meaning definition for give-quotation).

auth(i,DIRa(ij,deliver(j,i,g,p))) -* [DIRa(ij,deliver(j,i,g,p))](Oji(deliver(j,i,g,p))
[deliver(j,i,g,p)] auth(i,DIRa(i,i,pay(ij,p))))

If a customer is authorized to order a product for a certain price (i.e. a quotation has
been given for that price) then the company is obliged to deliver the product after the
customer has ordered it. (this follows directly from axioms 8) After delivery of the
product, the company is authorized to order the customer to pay for it.

162 A language-Action Perspective on tbe Design of Cooperative Information Agents

auth(j.DIRa(j,i,pay(i,j,p))) -* [DIRa(j,i.pay(ij,p))]Oij(pay(ij,p))

If an order has been delivered (and authority acquired to request payment) a request for
payment induces an obligation for the customer to pay. (This follows directly from the
axiom 8)

Oij(pay(ij,p)) -4 [pay(i,j,p)] - auth(j,DIRa(j,i,pay(ij,p)))
Finally. after the customer has paid. the company cannot request another payment again.

Note that the obligation to pay is made conditional: it becomes effective only when the
supplier requests for it. This is of course only one way of doing it; the obligation can also
be instantiated directly when the order is given, and even precede the delivery. These
different ways of working can be distinguished in the logic described here.

The logic can also be used to reason about violations. This part is not explicitly
included in the business logic framework, but is part of the business contract as well.

Oij(ij,ship(ij,goods)) --4 [ship(ij,goods)] Oij(ij,pay(100)) A
auth(i,j,DIRa(ij,ship(ij,other_goods))

if i is obliged to ship the goods and he does not do it, he is obliged to pay a fine and the
other party j is authorized to request (other) goods

Oij(ij,ship(i,j,goods)) -,[cancel(ij,ship(ij,goods))] -Oij(ij,ship(ij,goods))
date() == t -# [cancel(ij,ship(i,j,goods))1 Oij(ij,pay(50))

if i is obliged to ship the goods and cancels the shipment after a certain date, he is obliged
to pay a fine. (After a cancellation the original obligation is removed)

Finally. the logic must be precise about the duration of certain authorizations and

obligations. That is, certain frame axioms must be derivable:

Oji(deliver(j.i,g,p)) -* [deliver(j,i.g,p)1 -auth(i,DIRa(ij,deliver(j,i,g,p)))
If a company has to deliver a product and actually does it. the customer is no longer
authorized to request delivery of the product. (One might omit this formula or replace it
with a formula that limits the validity of the quotation to a period of time).

Besides 0 and auth, we include one more primitive operator in the deontic
specification language. This is acc, for accomplishment. acc(a) means that action a has
been executed. As with 0 and auth, it takes typically two messages, one of both parties, to
establish such a fact.

In section 3.1.2 the importance of the satisfaction stage was emphasised and the
mutual satisfaction that must be the goal. In the dynamic deontic logic. two levels of
satisfaction can be distinguished. The basic level of satisfaction is reached as soon as the
obligations of both partners have been fulfilled, that is. acc(a) is true for all actions a in
the contract. However, the contract may also describe authorizations for both partners to
make claims in the case of dissatisfaction. The second level of satisfaction, and the real
end of the interaction, is when these authorizations have expired as well.

Formalizing tbe Communication Framework 163

The borderlines between the other stages can be expressed in deontic logic as well.
The negotiation stage ends with the establishing of certain authorizations. The contractual
stage ends with the establishing of certain (usually, mutual) obligations, making up the
contract. In the case that the authorizations have been negotiated beforehand the
contractual stage can be entered right away.

Although the above formulas describe an exchange between the customer and the
company exact and complete, they lack structure. A contract can be formalized in two
ways. We can consider it as a set of propositions in the dynamic deontic logic language

(in particular, propositions of the form auth(i,a) and 0(a)) or we can consider it as a set
of speech acts. For instance a (very) simple contract in logic:

Oij(pay(ij,$10)) A auth(i, DIR(ij,ASS(j,i,p)))

"e.g., customer must pay $10,- and can ask the travel agency to assert some proposition
about discount flights".

The same contract in speech acts:

COM(i,j,pay(i,j,$10)) & AUT(j,i,DIR(ij,ASS(j,i,p)))

Since what can be done dynamically in the normative system is more restricted than
the language itself, the latter option would imply a limitation on what is possible. This can
be considered an advantage. A nice feature of this option is also that the contract is then a
continuous extension of the atomic speech acts. In fact, it is nothing more than a parallel
execution of atomic speech acts (authorizations, directives,).

6.3.3. THE ILLOCUTIONARY LANGUAGE Lju

We can now bring all the previous together to define the illocutionary logic language Li/1

The language has the same form as Laid except that the transactions B now also include
the speech acts and is based on LACT instead of Lact· In order to be able to specify

deadlines (e.g., a time before which an action should be performed or a certain state
should be obtained) a temporal operator is introduced.

Definition 6.28. (Liu)
LIU the language of logical formulas with typical elements $ and W is given by the
following BNF:

0 : : - p I *AW 1 -$ 1 [13]0 1 <>0 1 PAST(a,i) 1 0(0) 1 B(i,$) 1 ICi,$) 1 I(i,a)1
PREFER(a,a')
with p a proposition; 0 a first order logic formula from L tat,; a, a' actions,
elements of LACT; and 13 a transaction, element of Ltract (as defined above).

Note: other propositional connectives such as v and -+ are assumed to be introduced
as the usual abbreviations. Also the special proposition false is introduced as the
abbreviation of pA--p for some p € Prop (the set of atomic propositions).

164 A Language-Action Perspective on tbe Design of Cooperative Information Agents

The informal meaning of [B]$ is "doing 13 necessarily leads to a state where 0 holds".
The formulas defined by <<D>>4) involve a variant on the standard dynamic logic definition
of the consequence of (trans)actions. <>$ means that after performing the transaction
denoted by 0 the formula 0 holds and it does not hold before 13 is completely performed.
The formula defined by PAST involves a type of temporal operations on actions. To keep
the logic as simple as possible the temporal operators only reach over action expressions
and not over transaction expressions. The meaning of PAST(a,i) is that a has actually
been performed i steps ago. The meaning of PAST(a,0) in that case is "the present state is
actually reached by performing a".

Note that we make a difference between the possible ways that the state can be
reached and the way it actually is reached. Although more approaches exist that combine
temporal and deontic logics (e.g., [Thomason, 1981], [Fiadeiro and Maibaum, 19911, [Maibaum.
19931, [Horty, 19961) these approaches tend to express the deontic concepts in terms of the
temporal operators. Here a different approach is taken. The temporal operators are
actually "added" to the deontic logic that is used as the basis.

The last type of formulas introduce a preference relation between actions, and indicate
that a certain action a is preferred to be performed over an other action a'.

6.3.3.1. SEMANTICSOFFORMULAS

The semantics of formulas in Liu, based on the semantics of transaction expressions, can
be given by means of the Kripke structure Af = (a, I, ir, Ra, S, Ro, RBi, RIi)

a is a finite set of events.
E is a set of states (worlds)
A is a truth assignment function to the atomic propositions relative to a state:

A is a function E » (Prop -* { tt, ft}), where tt and ffdenote truth and falsehood,
respectively. Thus. for p € Prop, ir (a)(p) = tt means that the atomic proposition p
is true in state a.

The accessibility relation Ra specifies how transactions can change states. The
relation Ra is defined as follows: Ra= {Rtlta trace}, reflecting that Rt is the
relevant entity.

C isa function (E x A*) x (E x A*) -*{tt. ff}. The function indicates for two
state/history pairs which of the two is preferred. Here only the preference relation
is used to indicate a preference relation between actions. No logic for the
preference relation itself is given. However, one might intuitively think that an
action a is preferred over an action D if it leads to states in which less constraints
are violated or the violations are considered less harmful (i.e. which are more
ideal in a deontic sense). For a thorough treatment of this type of logic see
[Boutilier, 1994]. Here the preference relation is taken to be primitive.

RO is the deontic relation that with respect to a state c reached by trace y indicates
the ideal situation consisting of state a' and trace 7. Ro resembles the classical
deontic relation in modal interpretations, except that not only states are
considered, but pairs of states and traces. We assume the relation to be serial, i.e.
for every world a and trace Y there exists at least one pair (a',7) such that
RO((a,y)(d,y)) holds.

Formalizing tbe Communication Framework 165

RBi and RIi are relations that indicate belief and intention, respectively. They
express that in the state a' that can be reached from state a for agent i the belief
(respectively intention) of the proposition (or action) hold. As with Ro the
relations are assumed to be serial.

The interpretation of formulas in Liu in Kripke structures is as follows: The formulas
are interpreted with respect to a structure At and a pair (c,y) € Comp(.ilt)

Definition 6.29. (Semantics of Li//)

Given At = (a, I, 1[, Ra, 5, Ro, RB', RI') as above and (a,Y) €Comp(At). we
define:
1. (Af, (G,y)) A= p ** Tr (G)(p) = tt (for p € Prop)
2. (.ili , (a,Y)) 5= 01 A 02 4=> (At, (a,Y)) A= 41 and(.ilt, (ci,y)) k= (1)2

3.(Al, (cr,y)) 5= -0 ** not (At, (a,y)) E $
4.(AL, (cr,y)) E [a]$ ** Vt E [of] Va'e E [Rt(a ,C') =* (.11(, ((f,7 0 t)) A 01

5.(At. (a.y)) » (<a>>0 ** 3(a'.1)€Comp(Af) : 1=y o t A t€ [a] A (At. (Ci'.1)) A 0
A -Bof 1 3£12 : (al :O(2 =9 a) A 3(a'.7)€ Comp(.ilt) :7=y o t A t€ [al] A
(At,(d,Y)) » 0

6.(31, (a,y)) 5= 0(0) *:> V(a",y')€ Comp(.11€) [Ro((a,y),(a',Y)) 4 (.111,(a'.1)) 5= 01
7.(AL (a.y)) A PAST(a,0) ** 3t E [al, Y [7 =Y o t]
8.(·11(, (a,y)) M PAST(a,i) 4 3(d,y)< Comp(At) 3Sca [7 = YOS A (./It,(a',7)) 1=

PAST(a,i-1)]
9. (At, (a,y)) 5= PREFER(a i,02) ** Vt € [0(2]· Rt(C,a2) -4 (3<E [ai] (Rt'(G,al) A

(al,Yo t') 5 (G2.7 0 t))
10. (At. (a.y)) 5- 1*i,(1))** Va'eX [RB'(a,a')=>(At,(C',Y)) 5= 01
11.(At, (a,y)) A I(i,4)) *> Va'£ I [RI (a 'a') ==> (.11(,(a''Y)) A 0]
12.(At, (a,y)) 5= ICi,a) *:> Va'<I [RIi(a .a') => (.ilt,(a'.7)) 1= a]
13.0 is va/id w.r.t. model AL = (a, X, ,r, Ra, 5, Ro), notation .ilt £ 0. if

(Ai,(a,y)) 5= 0 for all a€E and y.
14. $ is valid, notation A $, if $ is valid w.r.t. all models At of the form considered

above.

The first four definitions are quite standard and will not be explained any further here.
In (5) the fact that the condition $ becomes true for the first time after performing the
(complete) transaction denoted by a is defined. The definition of the static obligation (6)
involves both the state and the trace (and '101 just the state). In this way, we can express
that the circumstances described by PAST(a,0) are obligatory. E.g., it might be obligatory
to have just done the action indicated by a. This means that the history (i.e. the trace) of
an ideal world might differ from the history of the present world. This feature is used to
define obligations on actions with deadlines below. It should be noted that using the
semantic definition of [any]0 makes it possible to express the usual temporal operators
over static formulas as given in e.g. [Emerson. 1989] Points (7) and (8) define extra
temporal operators reaching over action expressions. Point (9) defines what it means that
one action is preferred over another.

166 A J.anguage-Action Perspective on tbe Design of Cooperative Information Agents

6.3.3.2. OBLIGATIONS AND DEADLINES

Before a definition of the deontic operators Cover transactions) for deadlines is given, first
a helpful operator is introduced. This operator indicates that a formula $ is true as soon as
a formula \It becomes true. It is defined formally as follows:

Definition 6.30. (When operator)
0 when W E <<7>>W -5 ty](W -5 0)

Using the definitions from LiU one general type of obligations can be introduced: the
obligation with deadlines. Using this general type, some special types of obligations are
defined that are often used to describe all types of deadlines.

Definition 6.31. (General obligation with deadline)

0(0 <a < 9) E 0(a < W) when (1)
with O(a <W) = <<7>>\11 A dur(y) =n -* [y](\11 -* O(3i :O S i<n: PAST(a ,i)))

The most general form 0((1) <a<W) stands for the fact that a should be performed

after $ has become true and before W has become true. Intuitively 0(a <W) stands for the
fact that a should be performed before W holds true. I.e. if W becomes true (sometimes)
for the first time after performing the transaction denoted by y then it is obliged that a has
been performed in the course of y (in the last n steps).

The first specialization of the general obligation is made with respect to the begin and

end conditions of the period in which the action should be performed. The definition in
the general case is somewhat complicated because whether these conditions hold true
might depend on the type of (trans)action that is performed.

In the case we take the conditions to be purely temporal they do not depend on the
transaction performed anymore. We distinguish between relative and absolute time
conditions. For the absolute time conditions we can introduce a special variable time. The
following axiom should hold for the values of this variable:

Axiom 13. (Time variable)

E time=k -+ lany]time= k+I

That is. all actions are assumed to take equal time and the length of an action defines
the basic unit of time.

Using this axiom the general obligation with pure absolute temporal deadline can be
defined as follows:

Definition 6.32. (General obligation with absolute temporal deadline)

0(tempi < a < temp2) - [anyn]templ 1 [anyn]0(a < temp2)

with O(a < temp2) E [anym]templ -1 lanymlo(3 O S i<m: PAST(a .i))

Formalizing tbe Communication Franiework 167

For relative deadlines the definitions are as follows:

Definition 6.33. (General obligation with relative temporal deadline)

0(now+templ <a< now+templ +temp2) E (time=now [anyn]time=now+templ)
 [anyn][anym]time=now+templ +temp2) -)[anyn+m]0(3 05 i <m : PAST(a .i))
and

0(a < now+templ) E (time=now A [anym]time=now+templ)-*
[anym]O(3 O S i<m PAST(a ,i))

The next specialization of the general case is in fact the type of dynamic obligation as
it is used in most dynamic deontic logics. It is the "immediate" obligation, which means
that the action should be performed as the next action. The immediate obligation is
defined as follows:

Definition 6.34. (Immediate obligation)
O!(a)=0(a< now+1)

For the following the abbreviation PREV(a) for PAST(a,0) is used. From the
definitions the following equivalence can easily be proven:

Proposition 6.1. (Immediate obligation)
0!(a) = [any] 0(PREV(a))

So, a is obligated if, whatever one does now, it will be true immediately afterwards
that one was just previously obligated to do a. Le. if one does 06, a state is reached where
a violation occurs, indicated by the fact that both 0(PREV(a)) and PREV(a) hold. Note
that by definition the following formula is valid for all actions a € Act:

[a]PREV(a)

Therefore

0!(a) -0 1 a] (-PREv(a) A 0(PREV(a)))

With the general type of obligation with deadlines it is also possible to describe an
obligation that has to be fulfilled as soon as possible. This obligation is interpreted as
meaning that the action should be performed as soon as no other actions with a higher
"preference" are performed. The definition is as follows:

Definition 6.35. (ASAP obligation)
09(ot) E O(true< a < PREV(B)A PREFER(a,13))

This obligation can be used when no strict deadline is given, but we want the action to
be performed at some time. It resembles the -liveness" property as described in [Fiadeiro
and Maibaum. 19911, except that the obligated action cannot be postponed indefinite. It has
to be performed before an action with lesser importance is performed.

168 A language-Action Perspective on tbe Design of Cooperative Information Agents

The last type of obligation that is described is the periodic obligation. This obligation
returns every time a certain condition holds true and should be fulfilled before another
condition holds true. E.g. an order should be placed after the stock of computers has fallen
below 15 and before the level dropped below 5. Although this seems the same as the
general obligation described above it is a bit different. The condition that the stock falls
below a certain level will be true periodically (one hopes) and every time this happens an

order for replenishment should be made. The periodic obligation is described as follows:

Definition 6.36. (Periodic obligation)
PO(0 <a< \1 1) -V n: dur(y) =n- + [y](0(oc <W) vjustdone(a))
withjustdone(a) = (3 0 5 i<n-k: PAST(a .i)) A y= #1;132 A dur(Bl) =k A [1]0
A (Vil': 11'= 131;113 A dur(B') < n -* --, [B']0))

justdon«ol) states that a has been done after the last time that $ became true. The
definition of PO($<a <\It) states that (from now on) it is always obligated to do a before

W holds true except when a has been "justdone".

6.3.3.3. MODELLING DEADLINE EXAMPLES

The following examples of deadlines can be described in the logical formalism in a
natural and concise form.

When a secretary is hired in the order department, he/she has to pass the exam in
"blind typing" within the first year.

This example is modelled as follows:

M p : PREV(Hired(p,order_dep) -* 0(Pass(p,blind_typing) < now+year)

I.e., i f Hired(p.order_dep) has just been done then there is an obligation to perform the
action Pass(Bblind_typing) between no,t, and a year time. We assume that yearstands for
an integer that indicates how many times an action should be performed to advance the
absolute time with one year.

The,econd example shows soine combinations of different types of deadlines.

After the stock of business trip expenses forms (btef) has fallen below 10 an order
should be made before the stock is less than 6. If an order has been made the

delivery should follow within 5 days. If the delivery is not made in time a reminder
should be sent. After the receipt of the goods payment should be effectuated within
30 days.

This example is modelled by the following formulas:

(1) 0(PREV(th//-stock(btet < 10)) < Order< stock(btef) < 6)
(2) PREV(Order) -4 0(De/ivery < now+5*day)
(3) (PREV(Order) lany5*dayl(-30<i<5*day PAST(Delivery.i))) -6

[any5*dayl0 (Send(reminder))
(4) PREV(Receipt) -+ O(Pay < now+30*day)

Formalizing tbe Communication Framework 169

The third formula is a typical example of how the violation of an obligation triggers
another obligation. This is very natural, because the violation of an obligation should lead
to some rectifying action, which is usually an obligation as well.

The next example illustrates an obligation that should be fulfilled "as soon as
possible".

After the secretary has phoned to register a failing central heating system (during
the winter) a mechanic should try to repair it as soon as possible, but at least within
24 hours. (From a contract between a service company and the organization).

This is an example of having an obligation to perform an action as soon as possible.
In this case it might be that the service company is very busy and got several calls at the
same time. In that case it is not possible to go to all clients at the same time. However, if
the mechanic goes to all the clients one after the other we would say he fulfilled the
obligation of the service company. The above example can be modelled as follows:

PREV(Report(ch)) -* (0?(Try-repai/(mechanic,ch)) A 0(Try-repair(mechanic, ch)
< now+24*hour))

The last example illustrates the use of periodic obligations.
The employees of the company have to be paid their salaries between the 25th and
30th day of each month.

This example can be modelled very simple as follows:
PO(monthday(time) = 25 < PaKsalary,emp) < monthday(time) = 30)

where monthday is a function that returns the day of the month given an absolute point
in time.

6.3.3.4. FRAMEAXIOMS

Instead of definition 6.3 I above, it is also possible to provide frame axioms that specify
whether the obligation is carried over to the next world or not. Here the two approaches
are compared.

An obligation persists until it is satisfied or violated. It is satisfied when the action is
performed, and it is violated when at the time of evaluation (the deadline) it is not
performed. If no deadline is given, the evaluation is assumed to be at the end of history
(Judgement Day).

The frame axioms will be stated as propositions since they can be derived from the
definitions given above. If a should be performed before W holds true then this obligation
still holds if a is not performed and we have not reached the deadline W.

Proposition 6.2. (Frame axioms)

1. »(0(a< 9) A -, W)-i[a]o(a< W)
2. E 0(a < W) -4 (\11 -4 0(PREV(a)))

170 A language-Action Perspective on tbe Design of Cooperative Information Agents

Proof:

According to definition 6.310(a < W) means that (traces in) transactions yleading to

W also lead to 0(PAST(a,i)). Now let 0(a < 111) be true at state sl, and let s2 be a state

reached from sl via some action but not a. Then it is evident that all (traces in)
transactions yl from s2 leading to W also lead to 0(PAST(a,i)), since each (trace in) Yl is
a subtrace of some (trace in) y starting from s i. The only restrictions are (1) that a should
be somewhere in yl, so it should not be done already before s2; and (2) that y was not
empty already, i.e., W did already hold in sl These two restrictions are met by the

conditional part of proposition 1.
The second proposition also follows from definition 6.31. If W holds, it means that the

y in the definition is empty. The definition can be reduced then to

O((3i :O f i<n: PAST(a,i))) for n=0, which is equivalent to PREV(a).

Note that according to the proposition the obligation disappears when a is performed

or when the deadline is reached. This does not mean that 0(a < W) is false afterwards, but
rather it may hold or not. This is specified simply by saying nothing about this case. The
most we can say is that the obligation will not always hold:

A (0(a < \11) A 99)-6 1([a]0(a< W))
Under a Closed World Assumption, this will be interpreted as a negation.
The two propositions can also be take together as follows:

A (0(a< W) A W) -4 [a l (0(a< 41) A (W -1 0(PREV(a))))

Formalizing tbe Communication Framework 171

6.4. CONCLUSIONS

The combination of dynamic deontic logic and illocutionary logic gives a formal
framework and integrated semantics that provides for the precise description of the
concepts used. Although deontic logic has been applied in the field of ISs before, the
dynamics of normative systems have received very little attention. Here we explored the
way deontic statements are created and adapted in communication processes, and the role
they play in the regulation of communication itsel f. It is shown how authorizations can be
requested, granted and also retracted, thereby creating a dynamic environment for the
establishment and derogation of authorized norms.

It is a characteristic of messages that they seldom stand on their own, e.g., a request is
typically followed by an acknowledgement or commitment. Therefore messages can be
organized in transactions on basis of the effect of one message and the preconditions of
the next message. In this way protocols can be built for sequences of messages that appear
often. However, the communication is not limited to protocols that are predefined. With
the logic formulas the exact effects of each message in a protocol can be inferred. Both in
the case when a certain message is expected (and thus usually authorized) as well when it
is unexpected. It is also possible to calculate the precise effects of the complete
communication protocol that is used. This makes it easier to react to breakdowns in the
communication.

Agents have an agenda that contains the actions they are supposed to be performed at
due time, specified by the obligations for those actions. We have shown how these
obligations come about as the result of the performance of speech acts (and the
relationships between the communicating agents). The formal meaning of the agenda is a
set of deontic temporal constraints. In the context of the proposed agent architecture, this
set functions as a program.

The present work opens some areas for further research. In particular the temporal
aspects of the language are rather primitive. We assume that all actions take the same
amount of time, which, of course, is not very realistic. A second area for further research
is the influence of the deadlines on the (planning of) actions of the system. As described
in section 5.3.2.1 here the naive strategy of planning the action whose deadline expires
first as the first action to perform is adopted. However, more intelligent planning
algorithms are called for.

CHAPTER 7

TOWARDS A DESIGN METHODOLOGY

As stated in chapter 1. the way of working of people and organizations changed
drastically the last decade. Most IS development methods do not correspond we|1 to the
new ways of thinking (paradigms) needed for the development of modern ISs (e.g. CIS)
supporting the new way of working. Traditional IS development methods emphasize the
modelling of the object system (that part of reality that represents the data of the domain
and processes that work on it) almost exclusively. Furthermore, they are either based on
too strict a data view, or too strict a process view of the object system. Although 'new'
modelling methods based on the object-oriented paradigm overcome this last problem,
they still suffer from the first one: the strict focus on the object system.

In this thesis the focus is on the use of ISs in and between organizations to support the
coordination of activities. Therefore we are not only interested in the object system but
also in modelling the organization (including users and (existing) ISs), called the subject
system. From the language-action perspective we learned that this means that both
information and communication, and their (coordinating) role in the functioning of the
dynamic organization are to be modelled.

This chapter proposes a modelling methodology describing how to improve the design
of CISs supporting organizational communication. It does not give completely new
cookbook methods with definite steps on how to find all objects and build the system. The
aim is to produce an abstract model of organizational communication as a basis for
formulating requirements of a supporting software system (the envisioned CIA). For
modelling purposes the specification language is complemented with graphical models.
Besides the CoLa models existing LAP-based modelling techniques can be used for
constructing the different models, sometimes adapted to provide a closer match to the
CoLa concepts introduced in chapter 5.

In the first section an overview of the methodology is given, describing the different
models and their relationships. In section 2 we take a closer look at the separation of
Environment of Discourse and Universe of Discourse, which is the basis for the modelling
approach presented here. Section 3 describes the different phases in the methodology, the
modelling processes, in more detail. In section 4 the different diagram techniques for
constructing the models are given and section 5 contains a comparitive analysis with
related work.

174 A limguage-Action Perspective on tbe Design of Cooperative Information Agents

7.1. METHODOLOGY OVERVIEW

This section presents an overview of the proposed methodology for CIA design. The
methodology is strongly communication-driven, and it combines models of organizational
communication with a model of information content of speech acts.

Although the goal is to describe a methodology that can be used to develop automated
IS that support the communication and coordination of business activities in an
organization, the first steps can also be valuable if no automated system is implemented,
in that it clearly describes the authorization and communication relations that can be used
to improve on the way business is conducted. In this respect the methodology can be used
for business process (re)design and is similar to DEMO ([Dietz, 19948,b]), BAT ([Goldkuhl,
1995]) and Action-Workflow ([Medina-Mora et al., 1992]) (section 7.5 contains a
comparative analysis with these methods).

The methodology is strongly influenced by the distinction between EoD and UoD (see
next section) and drives the construction of the different models as is shown below. The
different phases in analyzing organizational communication and developing supporting
systems for it are represented in figure 7.1.

description of
current situation

organizati analysis
current authorization_- context level

model - internal level

organizati al (re)design
new authorization- context level

model - internal level

communication t k UoD
design de ign analysis

communication task UoD

model model model
(contracts, transactions)

 ectfication

-Vt database CoLa specification schema

 en•enta 4,
CIA User Interface

figure 7.1. Methodology for CIA design.

Towards a Design Methodology 175

From a description of the current situation we start with an organizational analysis
phase that describes the communication lines in and between organizations. The goal is to
obtain an overview of present authorizations and obligations of the actors in the
environment. In organizational (re)design we can propose improvements or changes to the
organizational authorization model. This (new) model is the input for the communication
design, task design and UoD Analysis phases, in which we describe in more detail the
communication between actors (the contracts and transactions), the tasks of the actors and
the information they work on from the domain, respectively. The results of these phases

will serve as input for the (formal) specification phase in which the CoLa specification
(chapter 5) and also the database schema are generated. Finally, using this specification,
the system (CIA) can be implemented, preferably based on the provided agent-
architecture (chapter 4).

The phases are represented as being sequential or parallel. Feedback between
successive phases is not represented in the figure. In fact, the process is of a more iterative
nature than a waterfall-like nature; in working out a model one often goes back to a
previous step to refine the models there and then furward changes.

This also concerns the question to what detail concepts should be worked out. If the
techniques are used to obtain models for the goal of analyzing the current situation and
see how to improve on that, not all aspects and details have to be worked out. As an
example in communication modelling we can first look at the success line of
communication, and later add the necessary communication links and communicative
actions (with related authorizations and obligations) in case of failure. In case the models
are used as input for the specification of an automated IS to support the communication it
is required that all relevant details are modelled, i.e., all relevant messages that can be

exchanged should be modelled in detail.
The goal is to obtain models describing the situation understandable for all parties

involved. The order in which the models are obtained is not prescribed, but the process
outlined below is the most logical way of obtaining all the models.

The different steps are described in more detail in subsections 3.1-3.8. The proposed
modelling techniques used to construct the models are explained in section 4. First,
however, the relationships between the different models is explained.

7.1.1. RELATIONSHIP BETWEEN MODELS

The Authorization Model is the first model to construct. Figure 7.1 illustrates this can be
described on a context and an internal level. Initially a high level Authorization Model
will be constructed, specifying only the communication lines between the organization
and others in the environment (context level) and between organizational units and
individual actors (internal level). The communication lines are described by Business
Contracts following the business logic from chapter 3. They can be described by a refined
Authorization Model specifying the actors and authorization and obligation transactions
between them. Here changes can be made in the communication lines (with associated
authorizations and obligations) according to the (re)design phase.

176 A language-Action Perspective on tbe Design of Cooperative Information Agents

From this we can construct the Communication Model, consisting of the Contract
Model and the Transaction Model. The Contract Model specifies each contract in detail,
i.e., the deontic states (authorizations and obligations) and the transactions that create (or
modify or destroy) them (section 5.2.4). The transactions in the Authorization Model and
Contract Model can be decomposed in elementary communicative actions, also called
speech acts (section 5.1.4). These are modelled in detail in the Transaction model.

The tasks of the agents are modelled in the Task Model. The elementary subtasks are
either initiations of transaction, which again are described in the Transaction Model, or
actions, modelled in the UoD behaviour part.

The information content of speech acts (core predicates) is modelled in the UoD.
Speech acts make reference to actions, described in the behaviour part of the UoD Model,
and objects, described in the Object Model part of the UoD Model.

For ease of modelling the models have associated graphical diagrams. The
authorization model can be represented by an Authorization Diagram (AD), the
communication model consists of a contract model represented by a Contract Diagram
(CD) and a transaction model represented by a Transaction Diagram (TrD), the task
model can be represented by a Task Diagram (TD) and finally the UoD model can be
represented by the UoD Diagram (UoD).

The relationships between the diagrams are illustrated in figure 7.2.

AD _ -- - Buss.Logic

cr- b D& a
,

lilli

AD» 71 -
0,4 4

TD
TrD 6 1 trans- A14.y .laction

action 4 0

...'r A --
figure 7.2. Relationships between diagrams

Figure 7.3 illustrates the relationship between communication (speech acts) in the
communication diagram and information in the UoD diagram. On the left side the general
relationship between speech acts and object types is given. Remember that every speech
act has an information content (section 2.1.1 and section 6.3.1). The core predicate of the

Towards a Design Metbodology 177

information content is represented by an object type in the UoD Model. If there is a
relationship between two speech acts, there also is a relationship (represented by a fact
type) in the UoD Model between the object types. The right hand side gives an example
business communication of sending an invoice (request for payment that is followed by
either the assertion that it is paid or a complaint about the invoice, which is followed by
the assertion that it is paid). The associated object types are invoice, payment and
complaint, respectively.

core

predicate -
Invoice

nvoice

speech act 1 C«) 0,1 1 request». is_

1 fact based_

H (attribute)
Y type

speech act 2 --+ r OT2 12ntl„ core \ assert D..
predicate corepayment predicate

payment

figure 7.3. relationship between speech acts and UoD objects
(after [Holm. 1996, fig. Ill-19, p. 155])

Below this separation between modelling communication and modelling what is
communicated about is described.

7.2. UOD/EOD SEPARATION

When analyzing a domain and building a conceptual model of it for purpose of IS design,
it is necessary to make a distinction between two kinds of relationships between the IS
and the domain. On the one hand the IS holds information (data, rules) aboutthe domain

(object world). On the other hand, the IS will be situated in some organizational
environment where it supports the communication and coordination (subject world). Since
the conceptual model should describe all relevant aspects, rules, etc., of the specific
domain (environment of the organization, or a part of it) two aspects or "projections" of
the conceptual model can now be distinguished: the communication structures, and the
content of the communication.

The former is represented in the so-called Environment of Discourse (EoD), and the
latter in the Universe of Discourse (UoD). The EoD describes the discourse (linguistic
agents (human or computerized), message types, and rules that prescribe and describe the
communication) itself as a process without going into the contents. What is said, and more
in particular the meaning of these terms, is described in the UoD. Whereas the IS itself is
usually not found in the UoD -the IS takes an objective stance- it is the central object
in the EoD. The EoD/UoD distinction is important: it separates clearly the activities or
operations of an organization from the things operated upon. Of course, the two domains
are closely intertwined, because the discourse going on in the EoD is about the UoD.

178 A I.anguage-Action Perspective on tbe Design of Cooperative Information Agents

In this thesis an organization is considered to be a system of acting and
communicating actors. A description of the organization consists of the communication
links between the actors and between them and (the actors in) the environment of the
system, represented by the EoD. The part of the world to which the acting and
communicating of the actors is related is represented by the UoD.

The UoD/EoD distinction can be illustrated by modelling practice. E.g., in advanced
EDI (Electronic Data Interchange) specification methods a distinction is made between
data model (to describe the meaning of the content of messages) and message protocol (to
describe the external behaviour of two organizations per transaction) [ISO, 1989].

Traditional analysis methods (cf. [ISO. 19821) and also today's popular 00 analysis
methods do not make the EoD explicit. It is peculiar that the EoD is not worked out in any
of the approaches described in the ISO report. In recent proposals, this is repaired. E.g., in
the field of knowledge acquisition, [Mizoguchi, 19931 describes ontology research for the
sharing and reuse of knowledge bases. He separates content ontology (divided in task and
domain ontology), communication ontology and indexing ontology. Also DEMO ([Dietz.
19948.bl) takes the separation of object (UoD) and subject world (EoD) into account.

The communication modelled in the EoD takes the form of speech acts between
interacting subjects, and the relationships between these speech acts. For this reason, most
traditional methods for dynamic modelling are not appropriate. E.g., State Transition
Diagrams are not very useful since they focus on one object only and hide the
interactions. Data Flow Diagrams (DFDs) make a distinction between processes and data.
However, this distinction breaks down in the case of speech acts since these are actions
and data flows at the same time. We therefore need other modelling techniques.

Existing traditional techniques for UoD modelling, like ER ([Chen, 1976]) or NIAM
([Nijssen and Halpin. 1989]), suffer from the fact that they do not support the modelling of
behavioural aspects or interactions. They only describe the static aspects of the UoD:
objects, attributes, relationships and static integrity constraints. To model the behaviour of
the UoD, different non-integrated techniques have to be used.

Generalization, aggregation and encapsulation of static and behavioural aspects of
objects are techniques that are commonly adopted in conceptual modelling, and are often
combined in the so-called Object-Oriented approach. 'Pure' 00 models allow to describe
the behaviour of the UoD as an integral part of object modelling, but suffer from the fact
that the interactions between objects are hidden in the object definitions (its 'methods').
Interactions between objects are described from a local point of view, each object (type)
describes its own interactions with other objects. As a result it is hard to obtain a global
view of all interactions between objects. This problem is known as the ravioli problem
where there are a lot of tiny well-structured objects that are easy to understand in
isolation, but whose interactions are nearly impossible to decipher ([Taylor 19901)
Distributing the interactions among the object types also reduces the reusability of these
objects in other domains because of the domain-specific interactions incorporated in the
objects. For these reasons an 00 model in which it is possible to make relationships and
interactions between object types explicitly visible is more useful for UoD modelling. An
example of such a model is NORM ([De Troyer, 1991]), described in section 7.4.3.1.

Towards a Design Methodology 179

7.2.1. ENVIRONMENT OF DISCOURSE EXAMPLE

This paragraph illustrates the Environment of Discourse concept. Again let us consider the
business trip case. The EoD model of the business trip case describes:

- the agents, individual like the travel agency, or generic, like "customer":
- the message opes, such as "request for hotel reservation", "assert credit

limit", and "authorize payment";
- obligations and authorizations of the EoD agents, such as the obligation of the

airline company to reserve a seat on the plane after a ticket is issued for it;

- obligations and authorizations of the IS itself as one of the agents of the EoD, in
this case the travel agent CIA, e.g.: "If the airline company requests payment
for a ticket I ordered, then I have the obligation to pay";

In our example the travel agency is the central agent in the EoD; others are the hotel
(with whom reservation requests, etc. are exchanged), the airline company, the
customer and a bank. The airport is not mentioned at all in the description, but since the
airline company has certain responsibilities for making sure the airline can reach the
destination, there must be an agent with which to settle this. E.g., the "permission to
land" is supposedly declared by the airport. Also the insurance company is not
mentioned, but one can imagine that both the customer and travel agency itself are insured
against mishappenings causing the cancellation of the trip. It depends on the tasks and
transactions to model whether these agents should be taken into account. A guideline
might be to identify all possible agents in the high level authorization model. After the
authorizations and obligations are described it can be decided to not model the
communication with them further.

The UoD specification, in this case. looks at the contents of the messages, and finds
terms like "ticket", "hotel room", "flight schedule". It has to explicate whether these
terms represent object types, or attributes, or relationships, and assign them a meaningfull
definition as agreed upon by the agents in the EoD. E.g., the "payment due" is the sum of
the costs of making the reservation, taxes, costs of insurance, etc.

7.3. METHODOLOGY STEPS

In this section the phases that can be distinguished in the methodology are described in
more detail. It follows figure 7.1 from top to bottom and left to right. The diagram
techniques mentioned are described in more detail in section 7.4.

7.3.1. ORGANIZATION ANALYSIS

The purpose of this step is to discover the essential communication structures of the
organization. By essential we mean that we abstract both from technological issues and
reproduction of data, leaving us with 'creative' communications only. Since we are only

180 A Language-Action Perspective on tbe Design of Cooperative Information Agents

interested in authorized communication behaviour, the first step is to model the
authorizations (permissions, prohibitions) and also the obligations of the communicating
actors. This model is usually the most difficult to get, since authorizations and obligations
are often left implicit, but also the most crucial for the success of the business processes
and the IS supporting them in the organization. With every obligation the strength of the
obligation should be recorded, i.e. whether it is the result of communicative behaviour
based on power, authorized, or other (charity) communication. This also holds for the
authorizations.

Both this and the next model can be described at two levels. First the 'environmental
or context level' in which the organization is described as a whole, communicating with
and committing to external actors in the environment. Secondly, the 'internal level' where
the authorization model is decomposed according to distinguishable units in the domain
(e.g. company departments, organization units).

Subtasks of this step are:

- analysis of the organizational environment:

Collecting a description of the current situation, involving the identification of
external parties and the characterization of the kind of authorization links with the
focal subject organization, i.e., an overview of all recurrent communications. This
can be done using the authorization modelling technique.

- analysis of the internal organization:
The focal subject organization is decomposed into units, and ultimately, human
or automated actors. The authorization links from the previous subtask must be
decomposed as well. For this also the authorization modelling technique can be
used. For every actor-pair the communication links between them are modelled in
more detail using the communication modelling technique. This describes the
authorizations, obligations and accomplishments of the communicating partners
and the transactions leading to them.

- analysis of objectives:
This involves the identification of current problems and the setting of goals for
the near future.

Outputs of this step are the current authorization model (context level and internal
level), initial communication model and the objective statement. The current authorization
model describes the current obligations and authorizations of the different actors, also
called subjects (human as well as computerized). in the domain.

7.3.2. ORGANIZATIONAL (RE)DESIGN

In this step changes to the communication structures are introduced. This can be done by
introducing new communication lines, or shifting existing authorizations and obligations
to other actors to improve the efficiency or effectiveness of the business processes, or the
introduction of new actors (in particular an automated system to support the business
process). These three situations are illustrated below.

Towards a Design Metbodology 181

Organizational redesign must be an integral part of system development. Just
automating existing communication lines is often a bad choice, and often much more can
be gained by changing the responsibilities of users and systems. The analyst should not
only envisage and design the new reality, but also has to indicate how the current reality is
transformed to this new reality. The new reality does not fall from heaven. As [van de Weg.

1995] states: "In IS engineering we have to deal with the transition from an existing
(whether or not automated) IS to a future-to-be automated IS. This transition may have an
impact on the way of working and/or the way of thinking of users of both ISs. Modelling
of a to-be automated IS means designing a new reality. The IS is to be implemented
accordingly". E.g., if the new situation involves new obligations (to certain agents), these

have to be assigned. In the case of system development, it is necessary to embed the new
system in the current reality. This is achieved by performing a limited number of
operations on the existing communication structures. These operations· are not only
performed at "design time". but, in a rapidly changing environment, are the subject of
continuous negotiation and adaptation by the partners. The partners do not only
communicate according to the business processes (sending orders, paying etc) but also
change the process itself, e.g., by providing the other party with new authorizations.

7.3.2.1. CHANGING THE COMMUNICATION STRUCTURES

An example of the introduction of new communication lines is the introduction of a Just-
In-Time (JIT) strategy in the organization. Instead of reporting the stock supplies to the
distributor (only) who then notifies the supplier, a goods-selling organization (e.g. a
supermarket) now directly can notify the supplier, cutting out the redirection through the
distributor. This introduces a new communication line between the sales-organization and
the supplier, however this concerns information flow only, no change in the authorization
structure are made. Figure 7.4 gives a graphical representation of the example.

supermarket -*• distributor supermarket » distributor

supplie roducer - supplier roducer

figure 7.4. New communication line example

Figure 7.5 shows an example where a change in communication lines also includes a
shift in authorizations. In the original situation the bank clerk can handle all money
withdrawal requests of customers up to $1000,- (he/she has the authority to process such

requests at all times). However, for requests over $1000,- the bank clerk must ask
permission to the bank manager, who can grant him permission to proceed. If the request
is for an amount over $10.000,- the bank manager himself has to get permission from the
head-office. The head-office can give the bank manager the authority to process the order,
who in his turn can give the bank clerk the permission to proceed (the bank manager
thereby delegates the authority of the head-office to the bank clerk).

182 A language-Action Perspective on tbe Design of Cooperative Information Agents

original situation money request request
withdrawal for permission for permission
request ($ > 1000,-) ($> 10.000,-)

customer C--< bank <-1 bank 6-1< headk-9 clerk 1 manager k-9 office
money permission permission

(includes permission
to withdraw)

possible
improvements request

/ for perm bank

money (1000 < $ < .manager
withdrawal

10.000)
request bank request 4 /permission

cust. --* bank clerk Cust. <-7 banl
 -2 clerk has all 22 clerki 1 for perm.

request

money authonty money \ ($ >10.000)
(includes permission (incl perm) \-Ito withdraw) permission head

office

figure 7.5. Shift in authorizations example

One alternative to improve on this situation (where six communications are necessary)
is that the bank might decide the bank clerk is granted permission (has from now on the
authority) to handle all requests, and justification and evaluation follow afterwards,
including the correction of possible wrong-doings. Of course this introduces a greater risk
for the bank but it takes this for granted, because it expects a greater gain from lowering
the communication costs and freeing the bank manager and the head-office from handling
withdrawal requests and let them concentrate on other business. Another (less risky)
solution is where the bank clerk can direct withdrawal request over $10.000,- directly to
the head office. who then can give the bank clerk the authority directly. (Of course. other
solutions are possible too, but here we want to show how communication and
authorization lines are changed in different situations).

Starting with the current authorization model. we hypothesize that changes in the
communication (authorization) structure are typically of the following types:

- mediation: one communication link is split up in two by putting one new
(assistant) communication subject in between.

- delegation. a communication (and/or authorization) link is moved from one
subject to another (assistant) subject.

The subject that is introduced can be either human or automated.

To support mediation and delegation. we need operations of i,itroducing (and its
counterpart, removing) a subject, authorizing a subjet (and retracting an authorization)
and assig,ii,ig/retracti,ig an obligation (for some task). Note that these operations are not
technical, but organizational in nature.

Towards a Design Metbodology 183

The introduction of an assistant subject can be necessary if in the current situation the
role of one of the actors is overloaded and one wants to separate the different roles the
actor has (with the corresponding authorizations and obligations). This is a standard
operation when decomposing the organization after having modelled the communication
links between the organization and its environment.

1 1-rl si. 4130.14-+- -+46-64+ 6
 7,

f t

6 1

66

figure 7.6. Decomposition of communication roles.

When we apply this to the introduction of automated systems in the business process
to support the communication or tasks of the actors, four situations can be distinguished:

i) Electronic communication support:

A*X B
I.=f)., .;»,»:':i»'.

Here the communication between two actors is supported by an automated
system, e.g. an email system.

ii) Electronic task support:

 6 +-4.-,
A B

Here the task of one of the actors is supported by an automated system, e.g. in the
case where the secretary uses an IS to record appointments for her boss.

In these two cases no shifts in authorization or obligation are introduced. In the second
case there is a new communication line (that between B and the supporting IS), however
this has no influence on the existing communication between the actors. Of course, for
modelling these situations and designing such systems all communication has to be
specified in detail.

184 A language-Action Perspective on tbe Design of Cooperative Information Agents

The two other cases do have consequences for the authorizations and obligations in the
discourse. These are:

iii) Mediation through automated systems:

A JV B\/
:/ Ii#.9:::.4-

3-
6 [o]

Here the communication between two actors is changed into two new
communication lines between the actors and a new system. Often the system falls
under the responsibility of a third party. This case describes the situation where
two actors communicate through a central database in an organization, or, of a
broker in electronic commerce. New authorizations are introduced, e.g. if actor A
stores something in the system (if he has the authority to do so) then actor B must
have the authority to access that information.
A special case is where a system is introduced to support the work of and
communication within a group and the responsibility for the system lies with the

group and not with one person.

'*.....»B
 [ABCD]/\

Cah D

Such solution is only useful if the tasks of the actors shift and now become the
tasks of the group. The authorizations now are delegated to the group too. An
example of such a system is a co-authoring tool. This is a highly complex

situation and we will not go into this here any further.

Towards a Design Methodology 185

iv) Delegation:

A ' 4--*
t

JJB
Here one of the actors is 'replaced' by an automated system. The new
communication line is between actor A and the system. Actor B has delegated
(some of) its tasks to the system. The system falls under the responsibility of
actor B but it manages the authorizations and obligations of that actor. E.g., in the
case of an automated booking system, where the travel agency can book
reservations directly with the system of the airline company.

A special case of this is in (advanced) EDI or electronic commerce where both
actors are supported by automated systems. The communication between the
actors is replaced by communication between the systems.

A
1 1

[A} 17; 4-+ [Bl
The basic types can be combined to account for more complex structures. For

example, the mediation type can be levelled, with one mediator (server database) for each
department, and one global mediator (server database) for the company.

Also, a combination of the delegation and mediation type is possible:

A B

1 1

[A] .<----* [B]f. 2
 [o]

The actors do have responsibility for some data, but there is also a common portion
that is assigned to a third party. Two variants can be distinguished, one where the clients
can communicate directly with each other and the other where they cannot. Note that
when there is no server, we come back to the delegation type again.

186 A Language-Action Perspective on tbe Design of Cooperative Information Agents

Both the mediation and standard delegation type only contain one system. In these

cases, the interfaces between system and human actor should be designed carefully, with
proper attention to the authorizations. In the group mediation and the special delegation
(EDI) type, and also in the combination of the mediation and delegation type there are
several systems. In these cases, the interfaces between the systems are of particular
importance. The interfaces with the human actors, the system owners, are less relevant
because they are responsible for the system themselves.

Although system components are now introduced to the communication, the model is
still abstract in the sense that a 'system' can still be implemented in different ways. E.g., it
can be one DBMS, or one Distributed DBMS, with or without replication etc. These can
be varied to achieve the best possible performance. This is the concern of the technical

design and implementation phase. It is abstracted from here where we only concentrate on
the conceptual level. describing changes in communication and authorization.

7.3.2.2. MODELLING THE NEW SITUATION

Due to the introduction of the (new) IS(s) and other organizational changes the obligations
and authorizations change. To model the impact of these changes and the impact of the
introduction of the IS(s), we can look in the organizational (re)design phase at the
communication between the environment and the IS(s), and changes in the
communication between subjects in the environment.

The new (desired) authorizations are modelled in the new authorization model. As in
the organization analysis, we first consider the organizational environment, after which
the focal subject can be decomposed into smaller units.

Subtasks of this step are:

- design of the organizational environment:
Changes to the focal subject organization are introduced, thereby possibly
changing the authorization model. leading to new or changed recurrent
communications. For this the authorization modelling technique can be used.

- design of the internal organization:
The changes introduced on the organizational environment may have different
implications for the authorizations of and communication between the subjects at
the internal level. However, changes can be limited to the internal level only. For
this the communication modelling technique can be used.

Output of this step is the ne„· authori:atic),1 nic,del (environmental or context level and
internal level) and a new communication model. These model gives the new authorization
links between the agents and obligations that follow from them, again the strength (power,

authority, charity) should be modelled.

Towards a Design Methodology 187

7.3.3. COMMUNICATION DESIGN

Every subject (human or system) can be involved in several communication situations at
any one time, e.g. the travel agency has to deal with the customer, the airline company,
the hotel and the bank. Every communication situation describes the set of speech acts
performed by the communicating subjects. The set of speech acts that is treated as a
logical whole is called a discourse.

Obligations and permissions belonging together logically (agreements belonging
together as a unity, e.g., order and payment) are grouped in contracts. The authorization
model can be described by a set of authorization contracts. These contracts can be
developed for the organization as a whole, but also bottom-up and per occasion, for every
discourse. The authorization model contains high level specifications, it only describe the
obligations and authorizations of the subjects in the EoD with respect to communicative
actions. Each obligation or authorization may require several communicative acts (speech
acts) between the involved subjects. The communicative actions are described by
transactions, specifying the messages and their synchronization (dependencies). The
communication model contains the contracts and transactions for every discourse.

This step aims at describing all communications in detail. Subtasks of this step are:

- completion of the communication model:
All relevant authorizations and obligations and accomplishments are modelled for
every communication link between two actors.

- realization of the communication model:
The communication model is realized (i.e., described by means of transactions).

- construction of the transaction model:
For every transaction the speech acts that are performed and their synchronization
are modelled.

Output of this step is the conintutiication model. consisting of contracts and
transactions for every discourse.

The authorization model together with the communication model(s) give a formal
description of the behaviour and the communication interactions in the EoD. We call this
the EoD model.

Building the EoD model is not a simple task, since we must be clear about the
permissions and obligations of the organizational agents. However, this is considered an
advantage, because it is exactly one of the most important functions of conceptual
modelling and because agreement between the partners on these structures is critical fur
the success of the subsequent phases of design and implementation.

7.3.4. TASK DESIGN

If a subject's tasks are to be delegated to an automated system (the IS) the tasks of the
agent have to be modelled carefully. This consists of identifying both the private actions
the agent can perform and the communicative actions (the initiation of transactions). This

188 A language-Action Perspective on tbe Design of Cooperative Information Agents

step can be repeated for every organizational role that is to be supported by the agent.

Tasks can be described at different levels and consist of a number of subtasks. Subtasks of

this step are:

- hierarchical task analysis:

High level tasks that are delegated to the agents are described and (possibly)

decomposed into subtasks. For each task its goal is specified and also the basic

(temporal) relations between the subtasks are specified. This step is performed

recursively for each subtask.

- detailed task analysis:

For each goal alternatives can be specified. An important aspect in task

specification is the modelling of deadlines (the task has to be performed before a

certain time or event). Furthermore, (result) dependencies between subtasks and a

compensation and contingency plan can be given.

Output of this step is the task model.

7.3.5. UOD ANALYSIS

After the EoD modelling or in parallel. the UoD is modelled.
The first purpose of the UoD modelling is to derive a (formal) description of the

content of the communication in the EoD, being the domain information. The second

purpose is to give operational descriptions for the elementary subtasks of the IS (or
private actions). The description is called the UoD model and is given in terms of objects

(both structural and behavioural properties) and explicit relationships. The UoD model is

more than a static information model, and instead should be viewed as the information
and action model. Behaviour of objects is modelled by means of methods and triggers.

E.g. in the business-trip case the UoD model contains both the object flight-schedule, as
well as the get(flight-schedule) and put(flight-schedule) operations, which are private

actions of the airline company IS. Also in the UoD model the bill (from the hotel) is
described, together with operations to record the result of certain update events, such as
the message from the hotel that the bill is $200,-.

Input for the UoD modelling comes from the authorization models as well as from the
description of the currenUnew situation. There is a close relationship with the task model

in that the elementary tasks are actions that are to be represented in the UoD model.
Subtasks of this step are:

- conceptual object modelling.
For each IS and for each of its discourses, the object type model and the
behaviour of these objects of the UoD are determined.

- integration of the different object models.

After the first subtask, the models of the different discourses of one IS are merged

into one.

Output of this step is the UoD model.

Towards a Design Methodology 189

Although it is not yet integrated in the approach presented here, the Lexicon could
play an active role in UoD analysis. On the one hand (section 4.3.7) the lexicon contains
the terminology of a certain domain, it defines the conceptual definition of the domain
concepts. The UoD model can be used as input for this. The information model describes
a concept in terms of attributes and relationships with other concepts. This can be used to
give a (linguistically expressed) definition of the concept. In circumscribing the
terminology for a particular application domain, the designer might draw on available
terminology for the generic domain, i.e. use general lexicons and dictionaries.

On the other hand the lexicon can be used in UoD modelling, in that only concepts can
be used in domain modelling that have a definition described in the lexicon. See [Burg and
van de Riet. 1995] for a method that applies this idea. However, it means that a lexicon
should be present (and filled) before UoD modelling starts. Using the lexicon this way
does not have to be restricted to UoD modelling, since the lexicon contains all concepts in
the domain including the message types etc., it could also be used in EoD (authorization
and communication) modelling and task modelling.

The three models (communication, task, and UoD model) are closely interrelated. the
communication model describes transactions the tasks in the task model draw from, the
contents of the messages from the communication model is specified in the UoD model,
and also the elementary actions from the task model are described in the 'action-part 'of
the UoD model. All models draw from the restricted terminology from the lexicon.

7.3.6. SPECIFICATION AND DATABASE DESIGN

The communication, task and UoD model are input to the specification phase.
One goal is the formal specification according to CoLa of transactions, contracts and

tasks. In the implementation phase this is used to fill the knowledge bases of the CIA. The
second goal is the specification of the system behaviour, the database schema (the
specification of the objects in the database) and the operations that work on it. As said
above, in order for the IS to function properly its elementary tasks (private actions) should
be specified. Furthermore, the CIA should keep track of what part of the information
model is updated by what speech act, and also how the knowledge bases and agenda
should be updated as the result of speech acts, e.g. the creation of obligations because of a
commitment made. These operations are part of the UoD model and can be specified in a
formal language as is shown in section 7.4.3.1.

Subtasks of this step are:

- CoLa specification:
The transactions, contracts and task models are translated into the formal
specification language CoLa (defined in chapter 5). At the moment there is no
tool available that automagically maps the models to the CoLa specification
language. However, the models contain all concepts from the specification
language. The transaction model can be mapped to Trans, the contract model to

190 A language-Action Perspective on tbe Design of Cooperative Information Agents

coLa, and the task model to TaLa. In the mapping process special attention
should be paid to addition and complete description of constraints and deadlines.

- database schema and operations specification:
For each object in the UoD model, it is determined whether it should be persistent
or not. This can be expressed in the form of epistemic constraints: what the CIA
should know. This includes the acceptability of unknown values. From the UoD
model, the database (information objects) schema is constructed and operations

working on it. Private actions of the agent are specified as software functions.

The UoD model and the database schema may be very similar, however, in the
database schema, design aspects will be taken into consideration, e.g. some
objects from the UoD model will not be persistent. The database schema can be
described with the same technique used for UoD modelling, namely NORM (see
section 7.4.3.1). In fact the database schema is a NORM schema with more detail
and design choices. Also the constraints should be specified in more detail, and
the methods should be described completely.

The outputs of this step are the CoLa specification and the database schema (including
operations specification).

7.3.7. IMPLEMENTATION

This step describes the implementation of the CIA(s) and user-interface(s).
The CoLa specification and the database schema (including the operations

specification) are the starting point for the actual implementation of the IS into the target
hard- and software. As described in section 1.1.3 we feel an agent implementation fits this
design best. If the agent architecture from chapter 4 is used the specifications are used to
fill the knowledge bases of the CIA. In appendix C a prototype CIA is described.

Although not yet done the implementation of the Lexicon deserves some special
attention. It is possible to implement the whole Domain lexicon as part of the agent,
however the tasks of the agent usually concern a restricted set of discourses (e.g. the hotel
agent does not have to know about tickets, that are vital for both the travel agency and the
airline company agent) and therefore we can decide to only implement that part of the
lexicon that concerns the discourses the agent is involved in.

The EoD and UoD models are also input for the implementation of the user-interface
of the CIA. Although not mentioned before, the user-interface is an important part of the
CIA. In the past, interface development has been seen as something that had to be done
after the software was developed, but with the advent of user-centred design approaches
the interface has been given a lot more attention. A Language-Action Perspective on IS
development can contribute to interface development since besides task modelling (as
usual in interface development) we also have the opportunity to describe the
communicative behaviour (both on authorization and obligation level, and transaction and

message level) between user and system.

Towards a Design Metbodology 191

Research is being undertaken to extend the UoD modelling technique to provide an
information model of a basic user interface, along the lines of [van den Boogert. 1996] that
describes research on extending NIAM for interface modelling, but more research has to
be done to fully integrate this with the approach presented here.

Subtasks of the user-interface implementation step are:

determination of I/0 devices:

The 1/O devices with which the electronic subject communicates have to be
determined. They may be paper, light pen, etc.

- specification of the interface objects:
Interface objects are defined as subclasses of interface object types defined in
some library. An interface object typically corresponds with one communication
(speech act).

- specification of the interaction syntax:
For each interaction between the subject and other agents and interfaces, the
syntactic form has to be determined, including keystrokes and other events from
the I/0 devices.

The outputs of this step is the C/A and the User-Interface.

7.4. MODELLING TECHNIQUES

In this section the diagram techniques used to construct models of the domain are
described. The first subsection focuses on techniques for modelling the EoD, consisting of
authorization and communication models. The second subsection focuses on techniques
for modelling the tasks and the third subsection describes the UoD modelling technique.
With every technique examples are given, mainly from the business trip domain. Again it
should be stressed that no new techniques have to be invented, but existing techniques can
be used. At some points, however, these are adapted to get a closer match with the formal
specification concepts from CoLa.

7.4.1. EOD MODELLING

The overview of the methodology showed that EoD modelling starts with high level
models of the domain concerning the essential communication (authorizations and
obligations). The authorization diagram is described in the first subsection. Following
this, a more detailed communication model is constructed, giving the communication
contracts and also the communication transactions.

One should not confuse this approach to communication modelling with conversation
modelling as used in natural language understanding and natural language interface
design. In conversation modelling attention is given to factors such as feedback, turn-
taking, things the communication model tries to abstract from. In the CoLa methodology
presented here, communication is modelled at three levels: first, we have the authorization
model, then, by refinement, the communication model, and then the CIA specifications.

192 A language-Action Perspective on tbe Design of Cooperative Information Agents

A general modelling principle is the use of a classification hierarchy. The subjects in
the EoD can be organised in a specialization hierarchy. E.g., a travel agency clerk IS-A
employee IS-A person. In this hierarchy more specific subjects inherit the authorizations
from their more general parent(s). Subjects can also be decomposed (aggregation
structure). In this way, it is possible to specify authorizations top-down, starting at the
company level and then going down to for instance department level down to the
individual subjects.

Note: The "actors or subjects" here can play what in conceptual modelling is usually
.. -called roles . It is possible that one human or electronic subject acts as many actors.

Some of these subjects are also object types in the UoD, e.g. a travel agency clerk can be
both a subject (interacts with the IS in case of booking a trip) and a UoD object (a
representation of the clerk in an IS for salary administration). Independently, every
subject will also have to occur as an object in the database, because this is needed at least
for user authorization checking. When we refer to a subject in the EoD we therefore

usually describe only a "role" of that subject.

Contracts are also organized in specialization and aggregation hierarchies. This has the

following advantages:

- Contracts can be modelled as complex objects. This allows both for complex
contracts to be split up in smaller parts, and for reference in a contract to another
contract.

- Contracts can be specialized and generalized. A contract is a specialization of
another if it adds new authorizations and/or strengthens the pre- or
postconditions. General contracts can be reused from one application to another.

However, as we have seen in section 5.2.3 specifying relationships between contracts
is a complex matter both from a conceptual and formal point of view and is left for further
research. Since this is not worked out in this thesis no modelling techniques for
specializing or aggregating contracts are given.

7.4.1.1. AUTHORIZATION DIAGRAM

The authorization model of an organization is the specification of the authorized
communicative behaviour of the actors. It specifies communication links between actors

inside and outside the organization and whether or not obligations are created based on
the authorization of the initiating actor. Because this model describes the authorizations
and obligations we can also call this the normative systems model.

An authorization diagram can be given for both the context level and internal level.
When describing the context level the internal structure and working of the organization is
abstracted from. The first step is to identify the actors that play a role in the
communication. For this a very simple diagram can be constructed where actors are
represented by boxes and communication links between them as simple lines with arrows
at both ends. For example, in the case of the travel agency:

Towards a Design Methodology 193

airline
company 3: cy „1-bankl

hotel •4*

:
customer

figure 7.7. Context level Authorization Diagram for travel agency.

The next step is to decompose the travel agency in organizational units or actors that
play a role within the organization:

airline

company
 4 booking

 dep. 4-.1 finance'+..1=21

hotel \=
 dep

customer

figure 7.8. Internal level Authorization Diagram for travel agency.

Each communication line is now worked out in more detail, describing the
authorizations and obligations of the actors.

Several methods can be applied to refine the communication lines, such as DEMO or
Action-Workflow (see section 7.5 for a discussion on these techniques in EoD modelling).
However, we feel that the business logic framework as described in chapter 3 gives the
best possibilities for identifying the transactions that create the authorizations and
obligations between two communicating actors, especially those between actors from
different organizations. In the business logic framework each communication line is seen
as communication between a supplier and a customer of products (goods and services),
consisting of a number of logical steps. The service provided by the supplier (and desired

by the customer) can be as simple as providing a piece of information (e.g., a flight-
schedule). Each communication line between the hotel and the booking department in the
above example can therefore be described as a contract consisting of the four phases:

194 A liinguage-Action Perspective on tbe Design of Cooperative Information Agents

4egotiati"

orderinjl-J
hotel booking

S« dep.
satisfactio,-

>elt

contract

figure 7.9. Business logic contract between booking department and hotel

For each contract a detailed authorization diagram can be constructed specifying the
authorizations and obligations creating transactions.

An example AD for the hotel-booking department is given in figure 7.10. The legend
of the authorization diagram (AD) is given in figure 7.11.

A- Toll--S
/./ \-/ --

Tol: inquiry_1/--_L- Tal- Tal: authority to book
hotel T02: request for reservation\-= - booking

Cla dep Tfl : confirmation of reservation139--
\.c /\ 9
\< Tfly-\/

figure 7.10. Authorization Diagram of hotel reservation

The example shows the interaction between the booking department actor and the
hotel actor. It starts with an initial request (based on charity) for booking information
(Tol), after which the hotel can give an offer (Tal, authorizing the booking department to
make a reservation under certain conditions). The booking department can then make an
authorized reservation (T02), which is confirmed by the hotel (Tf 1). Every interaction
link from the initiating actor is labelled with the authorization claim (be it c (charity), a
(authorization). p (power)).

In section 6.3.2.1 the authorization claims were described. Since they play such an
important role in the modelling of authorizations and obligations the effects of these
claims on the creation of obligations are repeated here:

- charity: the performance of a speech act (a message from actor A to B with an
illocutionary point and some propositional content) is successful and an obligation
for B is created with respect to the content. only if B accepts the point raised. E.g., if
A requests the delivery of goods based on charity. only if B accepts this an

Towards a Design Methodology 195

obligation for B to deliver the goods is created. Alternatively, B can refuse and the
speech act fails. This also implies that a speech acts is successful iff the speaker is
authorized to perform it according to the authorization model [Weigand. 1991 b].

- power: if actor A has power over actor B (e.g. boss - secretary) then every speech

act from A to B creates an obligation fur B (independent of the approval of B). E.g.,
i f the boss orders (requests on basis of power) the secretary to book a trip, an
obligation for the secretary is created to do this.

- authority: in the performance of a speech act an obligation for B is created because
B has agreed to it that A can make such a claim, i.e., B has granted A the authority
to perform a speech act with a certain contents, creating an obligation for B to do so.
E.g., if a hotel has granted the travel agency the authorization to direct the hotel to
reserve a room, a request of the travel agency for a reservation creates an obligation
for the hotel to do so. Refusal or non-performance of B results in a violation of the
agreements and remedial actions should (and can) be taken.

In figure 7.10 only the communication success line between booking department and
hotel is modelled. The next steps are to model the contract in more detail (e.g., the
specification of what should happen if the communication fails) and to work out the
transactions. Both are described in the next subsection.

The AD is inspired by Dietz' Communication diagram ([Dietz, 1992a]) and CSDs
(Communication Structure Diagrams, from an earlier incarnation of DEMO [Dietz, 1990a])
for modelling the EoD. As in DEMO an organization is conceptualized as a system of
mutual influencing actors. Interaction between two actors is said to take place if one of the
actors is the sender (or initiator as Dietz calls it) and the other actor is the receiver of the
transaction type (as defined in section 5.1) creating an obligation or a fact (an update of
the receiver's belief) for the receiver, depending on the type, if the sender has the proper
authority (including power over the receiver).

1-21 63 6 e a,p,c t 11\-/ V
actor obligation fact authorization interaction receiver contract

creating creating transaction link with interaction
transaction transaction authorization link

claim

figure 7.11. Legend of the Authorization Diagram

In the AD an actor is represented by a box. The transaction types distinguished are:
"obligation creating," represented by a circle; "fact creating", represented by a diamond;
and "authorization", represented by a hexagon. Complex transactions can be combined by
drawing the symbols behind each other. The actor initiating a transaction is connected to
the transaction symbol by a sender link, represented by a plain line tagged with the
authority claim of the sender. The receiving actor is connected to the transaction symbol
by a receiver link, represented by a line with an arrow head pointing to the actor box.

196 A I.anguage-Action Perspective on tbe Design of Cooperative Information Agents

7.4.1.2. COMMUNICATION DIAGRAMS

The communication model can be considered a refinement of the authorization model.
Here the transactions are modelled in more detail, specifying all message types (speech

acts) that make Up the transactions. and it describes how these messages are exchanged

between the actors in carrying through the transaction. It furthermore describes the
communication contracts, specifying the obligations that are created in carrying through
the transactions and (trans)actions of what should happen in case an actor violates one of
the obligations that is created for it. The communication model corresponds most closely
with Dietz' idea of essential communication. It describes the obligations and
authorizations of the subjects with respect to the speech acts, and the conditions attached
to them, such as they are agreed upon by the organizational subjects involved.

7.4.1.2.1. Contract diagram

As we learned from the business logic framework (section 3.1.2) some speech acts in the
discourse belong logically together. E.g., the inquiry for a specific service, the ordering of

it, and the delivery and payment. For this the concept of 'contract' was introduced in
section 4.1. A contract is a set of related authorizations and obligations together with
conditions on the relationship between the acts and rules governing the violation of
permissions. prohibitions and obligations.

In modelling the communication transactions between two actors at this level we are
only interested in the deontic effects of the transactions i.e. whether obligations are
created or removed, whether or not some results are accomplished thereby fulfilling an
obligation, and whether authorizations are granted or revoked. A contract therefore is
specified as a set of deontic clauses. A deontic clause describes the status of an interaction
of the two partners in terms of obligations, authorizations and accomplishments. The
contract model (CM) is graphically represented by a Contract Diagram (CD) which is a
Petri Net. The legend is given in figure 7.13.

Figure 7.12 shows an example in which the contract of figure 7.10 is represented in a

CD (Petri Net) (as above, successline only):

cOJ-1-1-l)- · ,- fl hotel: obl(offer + auth)

inquiry T auth

 reservation)
hotel:
obl(reserve)

booking dep. 14
req. confirmation

auth(resen/ation) reservation 'Nrervation)
4/7 booking dep.

L.,1 acc(reservation)

figure 7.12. booking contract diagram (success line only)

Towards a Design Methodology 197

The example shows that after an inquiry an obligation for the hotel is created to make
an offer and grant authorization (permission) to the requester to take on the offer. After
the authorization transaction this permission is created for the booking department. After
the request for reservation (using the authorization) the obligation to make the reservation
is created for the hotel. After the confirmation of this the booking department has
accomplished the reservation.

0 1, -0 »
place transition transition transition

holding deontic a transaction removing one that creates several consisting of two
clause (in terms deontic clause and deontic clauses transactions leading
of obl, auth, acc) creating other to same deontic clause

figure 7.13. Legend of the Contract Diagram

The CD describes the deontic clauses and their dynamics, i.e. a clause is created by
one or more transactions, and is removed by other transactions. The status of the
interaction can be represented by a set of clauses. A Petri Net consists of a set of places, a
set of transitions, an input and an output function from the set of transactions to the set of
places. In this case, states are identified with one deontic clause and the transitions are
interoperable transactions that create or remove the deontic clause.

Petri Nets also allow for the specification of more complex situations, such as where
one message creates several obligations (figure 7.14). E.g., by ordering an obligation for
the supplier to deliver the service is created, and also the obligation for the customer to
pay is created, depending on the agreements between the actors. We can also represent
that only authorized transactions create obligations (figure 7.15). Only when both Obl. 1
and auth. are present the Transaction is carried through successfully and Obl.2 is created.

Transaction

0
1/Vul

Supplier:obl(deliver) Obl.1

T.order C Customer: obl(pay) auth. Obl.2

figure 7.14. Multiple obligation creation figure 7.15. Authorized
obligation creation

Figure 7.16 shows a contract between the travel agency and the airline company
corresponding to the flight-reservation contract specification example in section 5.2.4.

Here 0 denotes the starting state. S 1 denotes the obligation of the airline to fly raised
by the flight reservation. S2 denotes the obligation of the travel agency to pay, also raised
by the flight reservation. S3 is the goal state for the travel agency and S4 the goal state for
the airline company. If both are reached (if both travel agency and airline are satisfied) the
contract ends in state t. In case the success line is left (e.g. by a cancel transaction) it can
be specified how to return to it (in the example by the obligation of the airline to pay a
fine. and the obligation to pay back the ticket if the travel agency already paid).

198 A tkinguage-Action Perspective on tbe Design of Cooperative Information Agents

0(a:payback ticket & fine)- payback
T 1 ticket

S6
- 0(a:pay fine)

151 r
cancel

\,pay fine
flight

.4 1*0(a:fly) f 'ght Acc(t)

flight Sl 1 4 S3
reser- fly
atio

0 payba .1'0tick

Pay contract
S2 1 S4

0(t:pay) Acc(a)

cancel
ticket

aI·lee pay fine

tic

S7 S8

0(a:payback ticket) 0(t.pay fine)

figure 7.16. Contract dynamics of a flight-reservation

Although the coLa specification of the contract as given in section 5.2.4 does not look
complicated. it can be concluded from the diagram that specifying satisfaction of both
parties and all possible exceptions and their deontic effects is a complicated task.

Figure 7.16 does not include alternative flight offers by the airline company after a
flight is cancelled. The inclusion of this would complicate the diagram even further, since
it involves the making of choices. For instance. whether the ticket should be paid back and
a new obligation for the travel agency to pay is raised after an alternative flight is offered
depends on whether the travel agency has already paid or not. In any case the transition to
state S4 (acc(airline)) from the cancel-flight transaction no longer holds and also the
payment of a fine (pay fine transaction from S6) alone does not lead to an acceptance state

of the travel agency (S3).
The modelling of choices is a complex matter in standard Petri Nets. A better option

would be to use an extended form of Petri Nets. e.g Coloured Petri Nets ([Jensen, 19871)

7.4.1.2.2. Transaction diagrani

The transaction model describes communicative behaviour in the EoD in terms of speech

acts exchanged between interacting subjects and relationships between these speech acts.
There are several possibilities for modelling transactions. One alternative is the

construction of a dependency graph as described in INgu et al., 1994], as mentioned in
section 5.1.4. The advantage is that hereby also the (temporal) constraints specification
can be verified. In IVerharen et al.. 1994] we described how extended CSDs ([Dietz. 1990al)
can be used for modelling transactions. A third possibility is to use action diagrams
(remember that speech acts are actions), like SIMM diagrams of BAT (IGoldkuhl. 19961),
or action diagrams from DEMO (Ivan Reijswoud. 19961). However. these methods lack

Towards a Design Metbodology 199

concepts, such as the temporal constraints, and deadline specification, that are part of the
transaction specification as defined in section 5.1.4. Therefore, a technique is chosen that
follows this specification closely. Of course, again one can decide not to model all details
in the initial stages.

The Transaction Model is graphically represented by a transaction diagram (TrD). The
TrD is inspired by the sequence diagram of the Communication Model from Commodious
([Holm, 1996]) Figure 7.18 gives the legend of TrDs. Figure 7.17 gives an example of the
transaction diagram for the hotel reservation (for the travel agency), corresponding with
(but expanding) the transaction specification in section 5.1.4.1.

hotel reservation hotel reservation hotel reservation
negotiation fulfilment satisfaction

<MEiE- reservation information > Request for payment Assert complaint

< Authorize reservation Send reminder

| Assert refuse to handle

request -/
hotel reservation- <EFS' reser'GE:)ordering

<EEPst reserve-SE:>
or

1 Confirm reserve room j
reserve room

| Assert no room available
/........1

Assert no room availa
ble

Assert refuse to 631 Confirm reserve room
reserve room

1 Cancel reservation Assert refuse to
or reserve room

 Cancel room

| Cancel reservation
1 Cancel room +1*cip GB

figure 7.17. Example TD for hotel reservation

Input for the transaction modelling phase are the AD, CD and business logic contract.
The first step is to decompose the discourse for every phase in the business logic contract,
i.e. for every phase one gives the speech acts that make up the transactions that are
identified in the AD. In the example the possible speech acts are given for negotiation
(request, authorization, and refusal), fulfilment (request for payment, reminder
(another request for payment), the private action payment), satisfaction (complaint) and
of course the ordering phase. The ordering consists of the speech acts for requesting a
reservation, the confirmation or refusal of this, and the private action reserve room.
Although not really a part of the transaction (as specified in section 5.1.1) for failure
handling we can also include possible cancel messages.

200 A language-Action Perspective on tbe Design of Cooperative Information Agents

The second step is to construct a sequence diagram in which the speech acts are
connected leading to goal or exit states. For the ordering phase such a sequence is
represented, starting with the request for reservation. Following this the hotel can assert
that no room is available (leading to a goal state of the transaction) or the reservation of a
room, that is confirmed to the requesting party. This also ends the transaction in a goal
state. Alternatively the hotel can refuse to make a reservation leading to an exit (non-
satisfactory) state. The same can happen when the reservation is cancelled (either by the
requesting party or the hotel itself). Reaching an exit state usually triggers remedial or
sanctional transactions (according to the contract).

In the sequence diagram one also can give temporal and deadline constraints on the
connection between speech acts. E.g., in figure 7.17 the temporal constraint is included
that after a request to reserve a room always sometime in the future an answer must
follow which can be one of the assertion no room is available, the refusal to handle the
request or the confirmation of the reservation.

For every speech act its type and authority claim are given. The basic typeS of
messages exchanged between agents in the EoD are based on the illocutionary primitives
as described in section 6.3.1 en 6.3.2. A distinction is made between directive, assertive,
commissive, declarative, authorization (authorize/retract), permission (permit/forbid) and
confirming acts. These are represented by the name of the type, e.g. request reserve
room. Also messages to the actor itself to perform some primitive action or to update its
knowledge and beliefs can be included. These are represented as just the action name, or
as an assertive message to itself, see section 5.1.4. The authority claim is expressed by the
kind of box holding the speech act.

0 @

+ time/cond./ 97
ASAP/!

start goal exit sequence sequence ALWAYS

state state state link link with temporal constraints

deadline (with SOMETIMES,
constraints NEXT label)

 speech act 1-<>
empowered authorized speech act authorization
speech act speech act based on charity speech act

T V44 * 7
alternative parallel merging of
sequence sequence parallel

sequences

figure 7.18. Legend of the Transaction Diagram

Towards a Design Metbodology 201

7.4.2. TASK MODELLING

Besides their communicative behaviour, modelled in the communication model, also the
tasks of the actors in the organization should be specified. This is especially important if
(some of) these tasks are delegated to an automated system. This subsection describes
how the tasks of an agent can be represented.

The task model is graphically represented by the Task Diagram (TD). Figure 7.19
gives the TD for the travel agency, corresponding with the task specification examples
from section 5.3.1 (and 5.3.1.1) Figure 7.20 gives the legend of the TD.

A task may consist of a number of subtasks, and each subtask is itself a task that again
can consist of other subtasks (section 5.3). The elementary subtasks are either transactions
(described in the TrD) or private actions (specified in the UoD model, see below)
represented by their italicized name, or skip in case of a non-vital subtask.

business trip special_rate_reservation
Dec.1

date C-
fliaht reservation hotel reservation Nov.1 +1 w

ASAP payment

Gp
T.cancel_'':i: [I D*iI7[] r-- T.flighL ACCEPT
flight

T.change-mght
% T.hote/_ skip reservation (reservation)

 - reservation
T.cancel(reserve(room))

flight reservation after sales

T.get(flight- select-flight T.flight- business follow T.complaint
schedule) reservation trip up

figure 7.19. Travel agency TD

Tasks and subtasks are linked to each other by simple lines, possibly labelled with the
preference given to the subtask. The goal of the task is the performance of some set of
subtasks. This can be specified by a special node just below the task name labelled AND
or XOR (denoting required task/subtask relations and alternative sets respectively). In
order not to complicate the graph of one task the subtasks can be modelled with their own
graphs. If a subtask is modelled in more detail elsewhere the subtaskname is underlined,
e.g., flight reservation in the example. Furthermore. constraints between the subtasks
can be specified. These are temporal constraints (including deadline specifications),
represented by directed arrows between the links connecting the subtasks to the task, e.g.,
between flight reservation and hotel reservation, specifying that flight reservation
should be performed BEFORE hotel reservation. In case of deadlines these links can be
labelled with the time specification or a proposition to be tested, e.g., in the
special_rate_reservation task the payment should follow as soon as possible (ASAP)

202 A language-Action Perspective on tbe Design of Cooperative Information Agents

after ACCEPT(reservation). Complex temporal constraints (such as the ALWAYS,
SOMETIMES and NEXT constructs described in section 5.3.1) are represented by a dotted
link denoting the ALWAYS constraints, labelled with an '!' denoting ALWAYS(x ->
NEXT y) or a '?' denoting ALWAYS(x -> SOMETIMES y), e.g., the ALWAYS constraint
between business trip and follow up in the after sales task.

A subtask can be tagged with a result. There are several relationships defined between
results (section 5.3.1):

- a dependency, represented by an arrow to the result it depends on, labelled with
the kind of dependency, be it c (create), f (fail), u (update). E.g., in figure 7.19,
the fail and update link between the room (result of the hotel reservation) and
the ticket (result of the flight reservation subtask) meaning that if the ticket
reservation fails or is updated so must the room (hotel reservation). To not clutter
the diagram with long links between dispersed results this can also be represented
by a short arrow connecting the result with the name of the depending result.

- an update relationship, represented by an arrow from the result to itself, labelled
with the transaction that changes the result. For example, the change-flight
transaction updating the result (ticket) of the flight reservation.

- an invalidation relationship, represented by an arrow from the result to itself,
labelled with a '-' and the invalidating transaction. For example, the
cancel_flight transaction for the ticket.

- a revalidation relationship, represented by an arrow from the result to itself,
labelled with a '+' and the transaction that revalidates the result after it has
become invalidated.

- a compensating relationship, represented by a special arrow to the result
connecting the transaction that compensates the result. For example, the
cancel(reserve(room)) transaction for the room.

task task

GED (EE) pref 4-6* C--1/3 ,;
+ time/prop./ !/?
ASAP/!

required alternative decomposition temporal deadline ALWAYS
task-subtask subtask link with constraint constraint constraint

relation set optional on subtask with next/

preference link (BEFORE) sometimes

a/ T. trans_name
FER[1 *3.u 4-1V- action (uj
result dependency compensation invalidate,

object relation link revalidate,
create, update, fail update link

figure 7.20. Legend of the Task Diagram

Towards a Design Methodology 203

Again the question is to what level of detail the concepts should be worked out. In case
of initially analyzing the tasks of an actor one can suffice with only a description of the
subtasks and simple temporal constraints between them. If the model serves as input for
the formal specification phase the models can be worked out in more detail since the
graphical technique contains representations of all elements of the TaLa specification
language (section 5.3.1). A future goal is to build a tool that automates the construction of
the formal specification from the TD.

7.4.3. UOD MODELLING

UoD modelling concerns the modelling of the content of the messages exchanged
between the actors, and the modelling of the private actions of the actor, to be
implemented by an automated system. UoD modelling therefore is more than just
information modelling as done in other methods. For both objectives the same modelling
technique can be used, because the operations will work on objects recorded in the
database(s) of the IS that represent what is communicated about in the discourse.

Depending on the development phase, the result of the UoD modelling is either the
UoD model (analysis phase) or the database schema (design phase). The purpose of the
UoD model is to provide an accurate formal description of the UoD, the database schema
is the model of the object base. The input however will be different. For the UoD model
the input typically consists of the contents of the communications modelled in the EoD.
The input for the database schema comes from the UoD model.

In section 7.2 reasons were given for the choice of NORM as UoD modelling
technique. The next subsection describes NORM in more detail.

7.4.3.1. NORM

NORM (Natural Object Role Model, [De Troyer. 1991]) is an 00 modelling technique with
a formal semantics ([De Troyer and Meersman, 1995]). The NORM model combines the
powerful modelling principles of NIAM (lexical vs. non-lexical objects, is-a subtyping,
binary fact types, constraint types and a graphical representation) ([Verheijen and van
Bekkum. 1982]) with the principles of 00 (behaviour specification, encapsulation,
specialization of inherited properties, definition of ADTs, and type constructors).

NORM supports the following concepts:
1) Object Types are used to classify objects and to describe their properties, as well as

its own properties, the type properties. The structural properties are described by
means of attributes the behavioural properties by means of methods. Constraints
can be specified to restrict the use of the properties. All attributes are encapsulated,
this means that they are not visible outside the object type definition.
a) a distinction is made between local and global object types. Local object types

are defined within the scope of the definition of another object type, calledfocus
object type. They are completely encapsulated in the focus, i.e., they can only be
used within the scope of the focus and are not visible outside this scope, also
their instances are not visible outside the scope. Instances of a local object type

204 A language-Action Perspective on tbe Design of Cooperative Information Agents

cannot exist without being related with at least one instance of the focus object
type. Local object type instances may be shared between focus instances.

Global object types have their own definition schema. In the focus schema only
the relationship with a global object type is encapsulated, not the global object
type itsel f. Instances of a global object type are independent of the instances of
the focus and can only be created and manipulated by methods of its own type.

The distinction between local and global object types is made to reduce the
number of object types and to increase reusability. Only independent meaningful
object types should be defined as global object types. Reuse of object types will
be easier because all dependent object types are already encapsulated in the
object type definition and need not be gathered. In addition, the use of local
object types allows to express a much richer structure than traditional attributes.

b) There is also made a distinction between lexical and non-lexical object types. A
lexical object has a lexical representation which is one-to-one with the objects
identifier. No two different lexical objects can have the same lexical
representation, therefore this lexical representation can be used to identify the
lexical object. Examples of lexical object types are INTEGER, CUSTOMER-
NAME, examples of non-lexical object types are CUSTOMER, AIRLINE.

As with agents and contracts in the EoD model. all object types are organised into a
single subtype hierarchy. The strict IS-A meaning for subtypes is used, meaning that each
instance of the subtype is also an instance of the supertype. The ultimate object type is the
(pre-defined) object type OBJECTS. It describes all possible objects that will occur in the
UoD at their most general level. The object type OBJECTS has two exclusive and total
subtypes: NON-LEXICAL-OBJECTS and LEXICAL-OBJECTS which represent the
distinction between non-lexical and lexical objects. All other object types are either
subtype of NON-LEXICAL-OBJECTS or LEXICAL-OBJECTS.

Exclusion and totality constraints can be specified between subtypes. All properties of
the supertype are inherited by the subtype. Overriding of properties is allowed but only to
make the property more specific. The conceptual meaning of the property should be
retained. Multiple inheritance is supported.

The subtype hierarchy can be extended with user-defined new abstract data that
become "first class citizens" as it is called in object-oriented terminology, meaning they
are treated as any predefined object type. For modelling complex object types type
constructors are provided.

2) Explicit relationships are relationships which are not encapsulated in some object
type. They are used if there is no conceptual reason for considering one object type
as attribute of the other object type or vice a versa.
By using explicit relationships we want to avoid the (in)famous ravioli problem
and increase reusability. Object types can be modelled as general building blocks
or 'general purpose' object types, that only contain the information that is proper to
the object type. This has two major advantages:

a) Important UoD relationships between object types are still visible at a global
level, e.g. (see figure 7.21) the "issuing, issued by" relationship between

Towards a Design Methodology 205

AIRLINE and TRAVEL CONDITIONS in the business trip example is not
hidden in either AIRLINE or TRAVEL CONDITIONS or even in both.

b) The general purpose object type can more easily be reused in other UoD
environments because they do not contain UoD specific information, e.g. the
object type AIRLINE as well as the object type TRAVEL CONDITIONS can
be reused in other environments.

3) Behaviour is expressed by means of two concepts. The behaviour of the objects
of an object type and services to other objects are described by traditional
methods (including type methods). Methods can be private or public. Private
methods cannot be used outside the object type definition, while public can.
Causal relationships between objects are modelled using triggers. Triggers are
usually, but need not be, connected with explicit relationships. Also methods may
be defined for explicit relationships.

The model has an associated graphical representation for the definition of object types,
attributes, explicit relationships and a large range of constraints, such as equality,
exclusion and subset constraints. Methods also have a graphical representation but there
definition is textual. Complex constraints must also be expressed textually.

An example NORM-schema giving explicit relationships for the business trip is given
in figure 7.21. Figure 7.22 gives a NORM-schema for ticket.

- business general travel 42 \7i -1 'dp conditions airline

updated_by updates
 company1.2h -Z-1 governing

\Li li
-,1-1 i -- under_protection_ot issued_by issuing

figure 7.21. Example NORM-schema with explicit relationships

type-attribute fact
1 max Abocat OT- -- r -7stop Numtlerover /Fl f A -

of

ticket attribute fact
F2

, 7. L IDA global OTFocus ssued on F3

containing - 4
F4 airline

of

FB F5 company
part_of withissue-date

-4- ,-1
coupons of date I

&
F6 -

figure 7.22. Example NORM schema for ticket

206 A Language-Action Perspective on tbe Design of Cooperative Information Agents

NORM does not have a graphical representation technique for modelling the
operations. Methods are expressed by means of pre- and post-conditions. Optionally a
body may be given to specify in a more procedural way how the post-conditions should be
realised starting from the pre-conditions. To specify the body of a method an object-
oriented language is foreseen including control structures like assignment, sequential
order, order unspecified, if-then-else instructions, repeat instructions:

LET - BE - assignment
, sequential order
U order unspecified
IF-THEN-ELSE choice

REPEAT; - FOR repeat sequential order
REPEATU - FOR repeat order unspecified

Also techniques from object-oriented design can be used to specify the methods.
Several primitive methods are pre-defined for every object type. Examples are NEW (to
create an object). ADD (to add an attribute value or explicit relationship to an object), IS
(to test on the existence of an attribute link for the object),etc. Also pre-defined methods
are provided for Type Constructors. Pre-defined methods can be used in the specification
of user-defined methods.

The language for the triggers is event driven. Figure 7.23 gives the grammar of the
trigger language:

(ON I AFTER I BEFORE) <events> DO <messages>

<events> ::= <event>
(AND <events> 1

; <events> 1
U <events> 1
OR <events>)

1 T <events> ')

<event> :.= <message> (AND I WHERE <cond>)

figure 7.23. Grammar of trigger language

7.5. COMPARATIVE ANALYSIS OF BUSINESS PROCESS
MODELS

With the increasing interest in the Language-Action Perspective a number of
methodologies has emerged that take this perspective to modelling business processes and
that are aimed at the support of business communication. The most well-known are
Action Workflow, DEMO and BAT, already mentioned in chapter 2. For a comparison
between the methods see for instance [Goldkuhl. 19961 and [Dietz et al.. 1996].

An important role of BAT, DEMO and Action Workflow is that they give structure to
certain communication situations. BAT best describes a market situation with a supplier
and a customer of services or goods. DEMO, starting from a different transaction concept,
describes in more detail the business processes within organizations, and especially the

Towards a Design Metbodology 207

TPM (transaction process model) describes the process structure of communicative
transactions based on the theory of Habermas. Action Workflow on the other hand
concentrates on workflow situations and tries to improve on them.

Although we share many ideas and concepts with these methodologies there are some
differences, the most notably being the formal foundation which is hardly addressed in the
other approaches while it takes a prominent place in the approach presented here. Also the
modelling techniques differ. One major difference is the role that authorizations play in
the CoLa methodology. The other approaches do not explicate authorization and start
mostly from the assumption that the communications are authorized. Another difference is
that in the approach presented here in the design phase the focus is shifted to one of the
actors for which a supporting system is to be implemented. That is why the CoLa
methodology incorporates a Task Model that is missing from the other models which
mainly focus on modelling the domain.

This does not mean however that the other approaches are not valuable. Far from it. As
the reader probably has noticed many of the models described in the previous section are
inspired by models of the other methodologies. To be able to serve as input for the
specification of software systems we need a close connection between the models and the
underlying formal framework. I have therefore adapted some of the existing models in
such a way that they describe all aspects relevant to business communication modelling. If
this could not be done I proposed new ones, such as the task model. But, especially in
analyzing business domains, one can substitute any of the other models for the ones given
here, however I feel this should be done taking into account the situation to describe.

Below some more detailed remarks are made concerning the application of the
different methods and models within or differences with the CoLa methodology.

7.5.1. DEMO MODELS

DEMO focuses on the modelling of conversational moves in business communication. It
is hypothesized that coherence in business communication is to be found in a restricted
number of (initiating and reactive) conversational moves. DEMO specifies the essential
model of an organization that is an integrated whole of the partial models:
Communication Model, Process Model, Facts Model, and Action Model. The models
have an associated graphical representation [Dietz et al., 1996].

The DEMO Communication Model ([van der Rijst and Dietz, 19931, [van Reijswoud,
1996]) contains the identified transaction types and the actors that are involved as initiator
and executor of the transaction. It has inspired our Authorization Model. If one adopts the
DEMO transaction paradigm (described in section 2.1.3.2) then the DEMO
Communication Model can serve as the initial AM. However, one loses the possibility to
model the authority relations, the explicit creation of obligations and the explicit
representation of granting authorization, which in my view are important aspects of
modelling business communication.

208 A Language-Action Perspective on tbe Design of Cooperative Information Agents

The Process Model is graphically described by Process Diagrams. It depicts the
relationship in time between the transaction types as identified in the Communication
Model. The Process Diagram can be compared to the Transaction Diagram, however, it
does not model speech acts but only phases of the DEMO transactions.

The Facts Model is, like the UoD Model presented here, based on NIAM, describing
the object world. the objects the actors communicate about. However, it only provides a
purely statical description of the object structures. Our UoD Model also describes the
dynamics of the objects in the domain and the system behaviour aimed at. Both can be
used for modelling the speech act contents.

The Action Model is the specification of the behaviour rules the actors have to follow
in performing essential actions. The Action Diagram is a flowchart describing per actor
per transaction phase the essential actions, i.e. the conduct of actagenic and factagenic
conversations and execution of objective actions. It is similar to the Task Model in that it
specifies the order of the communicative and private actions. However no deadlines, other
temporal relations between the subtasks, results and dependency relationships between
them can be given.

Van Reijswoud recently extended DEMO with a Transaction Process Model ([van
Reijswoud, 1996]). The TPM is a business conversation process model presenting the
possible communication moves in a business conversation process. It consists of two
partial models, one representing the conversation structure of communicative action and
the other representing strategic action. The communicative oriented TPM is divided into
three layers: the success layer, locating the successful transaction process resulting in the
creation of a fact; the discussion-and-failure layer. formed by the discussion about validity
claims and unsuccessful transaction processes; and the discourse layer, locating the
discourse with the purpose to restore the background conditions for the conversation.

Besides the difference in transaction concept (see below), in the CoLa methodology
the transaction process specification is divided between Transaction Model and Contract
Model. The Transaction Model models al! speech acts from the actors and the Contract
Model describes the communication in terms of obligations, authorizations and
accomplishments and also outlines the transactions that cause a diversion from the success

line (and the transactions how to come back to the success line) together with the
(deontic) effects of leaving the success line.

The basis for most differences lies in the different interpretations of the transaction
concept. The DEMO transaction concept defines a transaction as a whole that consists of
three phases: the inception phase, consisting of an actagenic conversation; the action
phase, consisting of the execution of the objective action; and the conclusion phase,
consisting of a factagenic conversation. Every established fact, that is recorded in a fact
bank, is the result of the successful carrying through of such a transaction. As described in
section 5. I the CoLa transactions are less restrictive in their format than the DEMO
transactions. allowing for more freedom in the specification of different kinds of
transactions. In DEMO a transaction almost exclusively starts with a request of the

performance of an action. whereas in the CoLa methodology the transactions can be of
many different kinds. Although Dietz describes that some phases of the DEMO
transaction can be implicit (if the transaction does not concern a request), thereby

Towards a Design Metbodology 209

allowing more freedom of the transaction types specified, in my eyes this only
complicates the modelling of transactions.

A second difference is that the creation of an agendum, as Dietz calls it, is buried
inside the transaction and not modelled explicitly. Again this is obvious if the actagenic
conversation concerns an authorized request. However, it is not for other transaction
types. and precisely the creations of obligations is one of the most important aspects to be
clear about when modelling business communication for the coordination of activities.

A third difference lies in the inclusion of the execution of the objective action within
the DEMO transaction. Where the action is the content of a speech act that is part of the
transaction (in DEMO, part of the actagenic conversation), in my view the execution of
the action that is requested or ordered is the concern of the receiving actor only and is not
part of the communicative behaviour of the actors. For the initiating actor the creation of
an obligation for the receiver to perform the action is the most important. The result of the
action can take several forms and is not always the creation of a fact that has to be
communicated to the initiating actor. This is especially true in an agent setting if the agent
has reactive components that can sense a change in its environment (e.g. the delivery of
goods). The action itself is described in the Task model (and in case it is a primitive action
on one of the agent's knowledge bases it is described in more detail in the UoD model).

The last difference between the two models is the modelling of authorization
transactions. In the CoLa methodology these are modelled as special kind of transactions
because of the importance that is attached to making the authorization links explicit. In
DEMO authorizations are modelled just like other transaction types.

One can argue that DEMO transactions are higher level than CoLa transactions,
however the goal is to explicate the authorized communicative behaviour leading to
obligations for the communicating actors.

7.5.2. BAT-SIMMS

For modelling purpose according to the general BAT framework ([Goldkuhl. 1995. 1996])
Goldkuhl extended Action Diagrams from the SIMM method for business modelling
([Goldkuhl, 1992])

SIMM action diagrams have material and information flow orientation only, there is
no distinction made in information flow between the contents part (proposition) and the
action (performative) part. Goldkuhl admits that to be used within a communicative action
framework it is important to be explicit about the (communicative) action character, and
therefore has added such descriptional possibilities. In contrast with my approach, he does
not use an established classification scheme for action characterization, such as Searle's
illocutionary classes. In Goldkuhl's view such an approach is too restricted in semantic
expressiveness and is highly dependent on the maturity level of the theoretical basis. In
his opinion there is still a good deal of theoretical controversy about communicative
action classes to be solved, to use them as good characterization. Instead of a pre-defined
approach, the modeller can choose an appropriate (communicative) action denotation.

Goldkuhl admits that there is not a close link between the BAT and Action Diagrams.
The BAT framework therefore is not enforced and this is a disadvantage. But the

210 A Language-Action Perspective on tbe Design of Cooperative Information Agents

communicative action framework is important to rely on as a guide and source for
inspiration. The BAT framework and its underlying communicative action theory should
be used as a basis for this kind of action modelling.

From the approach presented here it should be clear I think along the same line as
Goldkuhl. For me the Business as Action game Theory is the most appealing framework
to work in. However SIMMs have severe shortcomings in modelling the transactions that
make up business communication. Furthermore, in my view, speech act theory and
illocutionary logic can be used for the design of automated systems supporting the

communication and coordination in organizations, under the conditions specified in
chapter 2 and section 6.3.1.

7.5.3. ACTION WORKFLOW

Action Workflow is a methodology that incorporates a theory (generic business
framework), an analysis and modelling method and a supporting software tool.

The Action Workflow theory can be seen as a generic blueprint for the organization of
work. It describes business processes as a loop consisting of four phases (preparation,
negotiation. performance and acceptance), between two actors that play the role of
customer and performer. However, as IGoldkuhl, 1996] describes, the emphasis is on the
customer. As in DEMO it starts with a customer request and the performer's
commitments. Work ends up with customer satisfaction. The focus is on communicative
actions only, especially commitments, no material actions can be specified. The only
model made is the workflow loop where each phase can in itself consist of a new loop.

This method can be compared to the BAT theory, but as Goldkuhl explains in
IGoldkuhl. 19961 BAT is more general in its applications to business communication, while
Action Workflow is better in modelling workflows. A comparison with models from the
CoLa methodology is hard to make. However, it is possible to use the CoLa models in the
specification of the different transactions. Instead of the phases identified by the business
logic the Action Workflow loop with its phases can be used as a generic blueprint that can
help in identifying the transactions.

7.5.4. COMMODIOUS

[Holm. 19961 describes the Commodious (COMmunication MODdeling as an aid to Illustrate
the Organizational Use of Software) Method. The method describes how three interrelated
models for organizational communication can be developed that can be used as a basis
when formulating requirements on a software system. The models are the communication
model, system behaviour model and information model (database schema).

The CoLa methodology corresponds closely to the Commodious method. The
Transaction Model is inspired by the communication model, describing speech acts and
their sequence, only extending this model by the specification of temporal constraints
(including deadlines) and the authorization claims on the speech acts. Holm also makes a

Towards a Design Methodology 211

distinction between discourses and every discourse can be described by a contracting and
an ordering part, similar to the business logic division.

The information model (constituting the database schema) is an ER variant and
describes the static structure of the object world (the contents of the speech acts). The
dynamics are described in the system behaviour model by specifying registration events
and supporting functions. This is similar to the action specification part of the UoD
model, and in my view the two can be exchanged. The only difference between the UoD
model and the information model is the perspective taken, our UoD model is first used to
model the objects in the domain, whether or not they will be part of the software system,
and for database schema specification the same model can be used. Holm's information
model is directly aimed at specifying how the contents of the speech acts can be stored in
the database.

In contrast with the CoLa methodology the Commodious method is supported by an
automated tool, that can also be used to give advice on the completeness of the models.
This is a future goal for this research.

7.5.5. ELECTRONIC CONTRACTING

None of the methods has a model similar to the Contracts model. This is partly because of
the emphasis put here on the authorizations and obligations, following the view of a
system as a normative system. However, we are not alone in thinking that Petri Nets make
a good modelling mechanism for specifying obligations. In his research on systems for
supporting electronic contracting, Lee also uses Petri Nets for specifying contracts ([Lee,
19888,1996]). At this moment it is not clear however (to me) how the deontic clauses that
make up the places in the Petri Net are specified. In [Lee, 1988a,b], [Ryu and Lee. 1992] also
a variant of deontic logic is used as formal framework for specifying contracts, as was
described in chapter 6. Furthermore, in Lee's approach the emphasis is on the logical
modelling of contracts and the contracting process and not on the business communication
(but of which contracts are an important aspect, of course).

CHAPTER 8

EPILOGUE

The research reported on focuses on a new way of designing a class of automated
information systems, called Cooperative Information Systems (CIS).

CISs are systems that are used within and between organizations to support
cooperation and coordination of organizational activities. Both in organizational theory
and computer science it is recognized that this is achieved by communication. Traditional
IS development methods do not pay much attention to the design aspects of
communication and coordination. When viewing ISs as autonomously communication
systems supporting coordination these methods fall short. Therefore, a new perspective is
needed that focuses on the use of communication as a coordination mechanism and that
can be used to obtain a better understanding of the structure of business communication.

In this dissertation I took a Language-Action Perspective (LAP) on the design of CISs.
The LAP describes what actions people and systems do while communicating, and what it
means to commit to the conduct of some activity. It considers an organization as a
network of inter-acting agents that create, maintain, and terminate commitments, and aims
at understanding the communication structures within and between organizations.

This final chapter summarizes the results and conclusions from this investigation and
also gives an agenda for future research.

8.1. RESULTS AND CONCLUSIONS

The main goal of this research (see section 1.2) was to investigate the usefulness of taking
a LAP to the design of CISs. In doing so four derived goals were identified:

1. structuring mechanisms for business communication, based on the LAP.
2. the logical formalization of this communication framework.
3. the conceptual modelling techniques and a specification language based on this

framework, used for analysis and design of CISs.
4. the use of an (intelligent) agent architecture based on the communication

framework for the development of CIS.

Outlined below are the findings related to these goals.

214 A 1.anguage-Action Perspective on tbe Design of Cooperative Information Agents

1. Structuring mechanisms for interaction

Interaction between communicating parties is described on two levels: the business logic
giving the overall context of the communication, and a communication framework
describing the communicative actions of the parties in detail.

a) Business logic framework

For describing business oriented communication a framework is proposed based on
Goldkuhl's Business as Action game Theory. In my view the framework not only is
applicable in business settings between organizations, but in every situation where one
agent (system or person) needs a service from another agent, even if they belong to the
same organization or organizational unit, i.e. in every communication situation a supplier
and customer role can be identified. In a business process context communicative acts
cannot be viewed as isolated entities. They are related to each other, each getting their
meaning from the business context: the roles and relations of the parties and the other
business actions and the total action logic of the business transaction. A business
transaction therefore is seen not only as a language game, but as an action game, hence
the applicability of the Language As Action Perspective.

The framework structures business communication by identifying four phases:

proposal and negotiation (setting up conditions), commitment or contracting (coming to a
mutual agreement), fulfilment (performance of actions), and completion (or satisfaction).

In contrast to Goldkuhl's framework a contract, as defined here, not only describes the
commitment phase, but also (and especially) the succeeding phases: fulfilment and
satisfaction. This is in accordance with real-life contracts that describe the role of both
supplier and customer regarding the business transaction. Important is that this provides a
model of n·mmetrical communication as action between supplier and customer.

For business transaction specification the speech act theory of Searle and the
communicative action theory of Habermas are used. Speech act theory provides basic
speech act types and conditions for their successful use, but is rather one-sided in its
speaker-orientation, and falls short in validation claims for the speech acts. Habermas
provides viewpoints on these issues. In the framework therefore relationships between the
communicating partners are specified that influence both the type of contract that can be
negotiated between them and the effect of the different speech acts performed.

b) Communication framework

Interaction between (autonomous) systems is described by interoperable transactions. The
specification of transactions that span many systems and have a long-life duration should
be flexible. It is argued that traditional transaction models do not suffice since they are too
much centred around central databases, and the standard ACID properties no longer
apply. This also means that in interoperable transaction specification special attention
should be paid to failure management.

Epilogue 215

In this thesis a three-level communication framework consisting of (interoperable)
transactions, contracts, and tasks is proposed. The main contribution of this framework is
the separate specification of failure management, the scheduling and execution
management, and communication management of interoperable transactions. This
provides a structured approach to specifying interoperable systems.

The framework provides for flexible failure handling. Failures include violations,
where one of the agents does not comply to agreements, and cancellations, where one of
the agents undoes a previously made commitment. Contracts manage failures due to
violations, and tasks manage failures due to cancellation. Also the complex concept of
'compensation' is sorted out into two more focused notions: compensation of the other
party, as specified in the contract, and compensation and contingency handling of the task.
As result of the separation, compensation of a transaction can be viewed purely from the
perspective of achieving the goal. The compensation requirement is relaxed compared to
approaches in which the deontic consequences such as liability to claims are part of the
compensation procedure. Although exception handling is a complex issue and will remain
so, the least we can do is try to manage the complexity. This is the most important goal of
the task/contract distinction.

Another advantage of the separation is that task management can be turned into a local
issue, rather than a concern of the (global) multidatabase. In this way the global control is
kept to a minimum, which makes specification and implementation more flexible. A last
advantage is that it is now possible to make use of the most appropriate techniques, such
as deontic reasoning in contract management and goal-seeking in task management.

2. The logical formalization of the communication framework

Because messages have effects on the receiver(s), and the sender must be able to reason
about these effects, it is important that the messages and their effects are formally
described. For this, the notions of obligations and authorizations are made explicit. Also
three perspectives describing the relationship between communicating agents are
distinguished that influence the effect of the messages: power, authorization, charity. As
in human social systems, these perspectives can complement each other in the
organization of interoperable computer systems.

For the semantics of communication models Dynamic Deontic Logic is used. It
provides dynamic concepts for dealing with (communicative) actions and transactions.
The fundamental reason for using deontic concepts is that coordination of behaviour
always requires some form of mutual commitment. If an agent does not execute an action
it committed itself to, it causes a violation of the contract. Violations do not cause logical
inconsistency, but can be the trigger for sanctional or repair actions.

Although deontic logic has been applied in the field of ISs before, the dynamics of
normative systems have received little attention. In this thesis the way deontic statements
are created and adapted in communication processes is explored, and the role they play in
the regulation of communication itself. It is shown how authorizations for specific acts
can be requested, granted and also retracted, thereby creating a dynamic environment for
the establishment and derogation of authorized norms. Also, both the negotiation phase to
establish the contract as well as the contract itsel f can be modelled using this formalism.

216 A language-Action Perspective on tbe Design of Cooperative Information Agents

Dynamic deontic logic is combined with Illocutionary logic to obtain a full logical
framework in which the communicative behaviour of CISs can be specified. To describe

the semantics of communication processes. the meaning of the information and
communication aspects of the messages need to be specified. Illocutionary logic is a
logical formalisation of the speech act theory and is used to formally describe the message

structure, i.e., the types and effects of the messages.

The combination of dynamic deontic and illocutionary logic gives a formal framework
and integrated semantics that provides for the precise description of the concepts used.

With the logic formulas the exact effects of each message in a protocol can be inferred. It
is also possible to calculate the effects of the complete communication protocol. This
makes it easier to react to breakdowns in the communication. Furthermore it can serve as

a basis for the development of a formal specification technique.

3. Conceptual modelling techniques

Based on the communication framework, and supported by the logic, the specification
language CoLa (Communication and Coordination Language) for specifying transactions,
contracts and tasks is developed. The language is complemented with graphical models,
that can be used in the analysis and design stages of the development of a CIS.

The need for flexible ISs that support communication and coordination in
organizations led to the proposed modelling methodology. It does not give complete
cookbook methods with definite steps on how to find all objects and subjects, and build
the system; the aim is to produce an abstract model of organizational communication as
basis for formulating requirements of a supporting software system. The methodology is
strongly communication-driven, and combines models of organizational communication
with a model of speech act information content. Although the methodology can be used to

guide development of automated IS, but can also be valuable if no automated system is
implemented. in that it clearly describes the authorization and communication relations
that can be used to improve on the way business is conducted. In this way, business

processes are no longer seen as fixed, but as evolving and negotiable structures.
In modelling the domain two perspective on the environment are distinguished:

Environment of Discourse (UoD) and Universe of Discourse (EoD). The EoD/UoD
distinction separates clearly the activities or operations of an organization from the things
which are operated upon. Traditional IS development methods emphasize the modelling
of the UoD almost exclusively and do not take the EoD into account.

Based on the separation of EoD and UoD, first the authorizations are modelled at a
high level of abstraction. From this the communication (transaction and contract) models
can be derived, describing the essential communicative acts. This is complemented with
the task model. With the specification of EoD models, the UoD modelling can be relieved,
and we proposed an 00 representation (NORM) for this. Advantages of this approach are

that UoD specifications are easier to understand and more reusable, whereas the EoD
models give an accurate insight in the authorizations and communications of the domain.

Epilogue 217

The main difference with traditional approaches is that the approach presented here
gives proper weight to the demanding problems occurring in CIS design. These are: (i)
problems of conflicting conceptual frameworks used to specify object, functional and data
flow models; (ii) the establishment of authorizations; (iii) the use of standards and
application architectures. All models here use concepts from the related business logic and
communication frameworks, and are supported with one formal logic. They draw from the
restricted vocabulary of the communication terms and their conceptual meaning defined
in a Lexicon. Secondly, the Communication Model highlights who is responsible for a
certain database, and it also contains primitives for assigning and retracting authorizations
dynamically. The deontic language also allows the specification of deviating behaviour
(failure handling, sanctions etc.). Being based on speech act theory, our communication
language contains higher-level primitives than other approaches based on the concept of
communication as data flow, or communication as synchronization. Furthermore, an
architecture supporting the communication framework is provided (see below).

4. Intelligent agent architecture

In this thesis an agent architecture for CISs is described. I refer to an autonomous CIS
with tasks and contracts as a Cooperative Information Agent (CIA).

Work in the agent community mainly focuses on agent theories, formally describing
the (mental) components of agents. Also, in AI-based agent theories little attention is paid
to the authorization specification so important for CIAs. The agent architecture proposed
here is not based on a theory of mental attitudes but instead on a theory of interactions for
which the agents are used.

Although the methodology is independent from implementation, an agent-oriented
implementation fits well in the approach. I feel that providing an agent architecture gives
an implementation that follows the specification closer than a traditional implementation.
The specification method provides a link between agent theory and agent implementations
and can be applied to the understanding and design of Cooperative Information Agents.
An additional advantage of using agent-technology is that agents can be implemented as
wrappers for legacy systems, thereby giving them the functionality of a CIA.

What makes the CIAs different from most other cooperating systems described in the
literature is that also in the fulfilment phase of communication the CIAs are autonomous.
They can at any moment decide not to honour the contract they agreed upon. Furthermore,
the communication protocol that other systems use are more limited than the one proposed
here, or even fixed. Although some of them give more explicit details about the ways
optimal contracts can be formed (using utility functions), once a contract is established
those systems cannot violate the contract anymore, thus loosing some of their autonomy.

Adequacy of LAP for CIA design

Finally we can revert to the main goal of this thesis: the application of the language-action
perspective on the design of cooperative information systems. The LAP was developed to
better describe what humans are doing while communicating. With the approach
described in this thesis I brought over the theory of communicative action to the

218 A language-Action Perspective on tbe Design of Cooperative Information Agents

communication of formal systems. In order to be applicable and adequate as a foundation
for IS design it is important to be aware of the adaptations that are made to the original
theory. The adaptations I proposed deal with the formal and explicit description of
obligations and authorizations, and the different claims made on basis of the relationship
between agents and their effects. Furthermore a way of structuring the communication
process and details is presented, with emphasis on the symmetrical communication
between communicating agents.

Based on the results and conclusions we can conclude that, by bringing over the
research on how people coordinate their activities by communication to the field of IS
engineering, a language-action perspective can be adequately and successfully applied to
the design of cooperative information systems for the support of business communication.

8.2. FUTURE RESEARCH

The agenda for future research concerns research on theory, implementation and practice.

Theory

A topic for further research are the relations between contracts, mentioned in section
5.2.3. One contract can be a specialisation of another contract or an extension of that
contract. Also an agent can have related contracts with different parties at the same time.
We should be able to prove that these contracts are mutually consistent.

Further research can be done to extend the generality of failure handling, including the
re-negotiation of original contracts when failures occur, bringing in a new agent (an
outside "facilitator") to deal with the failures or delegate a failed transaction to others.

My main interest at the moment concerns work on the agent theory. The formal
framework includes the possibility to describe the agent's intentions and beliefs. The goal
is to provide a complete agent theory specifying a set of mental attitudes. [Dignum and van

Linder, 1996] is a first attempt at this. and bears similar ideas as presented in this thesis.
Work should also be done on representing general pragmatic knowledge, in order to
improve the agent's answer capabilities, and ways to model the other agents' knowledge,

beliefs and capabilities (second order mental state).
The agents now behave communicatively as opposed to strategically. Many

Distributed AI research is focuses on strategic behaviour, and especially utility functions
and negotiation protocols. To let the CIAs behave in a strategic way we have to look into
the research on decision science and game theory.

Although the logical framework presented here provides a solid basis for the
formalization of communicative actions, there are some open ends. These include: the
explicit reference to time in dynamic logic, e.g. along the lines of IDignum and Kuiper.

19971; the negation of communicative actions; the combination of certain speech acts with
conflicting obligations and authorizations, and their logical consequences. Also. in the
logic until now all deontic statements were unconditional. In practice, a certain obligation
or authorization only obtains under certain conditions: a specific event, a specific time, or
more interesting another obligation or authorization. This should be worked out.

Epilogue 219

Implementation

First of all additional work should be done on the specification language. In section
5.1.4.2 instant services and delayed services were described. One objective is to refine and
extend this small set of service types by analyzing more case studies, and the second
objective is to implement this in the language. Also the Prolog-like notation for working
through a list of alternatives has not yet been implemented.

Research is being undertaken to extend the UoD modelling technique to provide an
information model of a basic user interface, along the lines of [van den Boogert, 1996]. The
idea is that the communication specification can be used for the generation of intelligent
interface agents. Since the agent knows of the different message types and has knowledge
of what information to get next, with the help of libraries present in User Interface
Management Systems, graphical interface objects can be generated to support the task of
the user (and agent).

Another topic for future work concerns the lexicon. In the lexicon we can describe the
ontology used by the agent. Although it was not described here, the agreement of the
agents about the meaning of the terms that are used in the communication is of prime
importance. This can be supported by using standard lexicons for general terms and
domain lexicons for specific domain knowledge.

Our short-term goal is to enhance the prototype implementation of the CIA so that
9,

more experience can be gained with contingency handling in an "agent-oriented DBMS
to be built as an extra layer around a traditional DBMS. We are currently working on an

implementation using Java as implementation platform (see appendix C).

Practice

I proposed the use of CIAs in different application settings, inter-organizational, as in
Business Computing, EDI, or intra-organizational, as in Groupware and Workflow
Management. An interesting topic for future research is how this view can be applied to
the problem of Open EDI. Business today has a much larger component of rapid project-
based partnerships that are created and dissolved in time scales too small to permit a full-
blown standards process to play out its consensus building. The goal is to sustain ad hoc
and short-term trading relationships using simpler legal codes. It is our contention that to
realize Open EDI, we must first understand, i.e. know, the essentials of such business

processes and communicative action.
Much theoretical research up till now takes a general programming view on

transactions, but it is questionable that this is what is needed in practice. At least it seems
clear that many (basic) transactions and contracts carry over from one application to
another, and the investigation of these reusables is of immediate practical relevance.

APPENDIX A: COLA EBNF GRAMMAR

/* [l= opticnal; {} = sequence (l, or more) ;
I
= or (choice) */

/* C) = grouping, for clarity; tokens in UPPERCASE or bebieen ' quotes */

agentprogram: BEGIN tasks transacticns contracts END

/* tasks specification */

tasks : TASKS [{decl}] {task} E -TASKS
decl: (INI' CHARICHAR* ...) var_name [{',' var_name}l ['-' ident] ';'

var_nane : ident /* = string */
task: TASK task_name taskbody END-TASK '"

task naIre : ident
taskbody: SUBTASKS '.' { subtask ' ; 1 }

[eaSIRADJTS ' : ' {constraint ' ; ' }]
[DEADLINE ' : ' {deadline ' : ' }]
[DEPENDENZIES ' : ' {dependency ' ; ' }1
[CCNI'INSENZY ':' {contingency ';'}]
GOAL '=' goal
[EXIT '-' subtask [{XOR subtask}]1
'=' goal

subtask: subtask_name result I transaction I action 9
ACCEFr ' (' trans_nage ') '

subtask name: ident
transaction: 'T' '.' trans_name ['(' arg [{'.' arg}] ')']

actian :
'A' ' . ' action-Jlame [' (' arg [{ ' . ' arg}] ') ·1

trans_nane : ident

action_name : ident
arg: ident

ccnstraint: subtaskspec_list BEFORE subtaskspec_list
ALWAYS ' (' subtaskspec ' = > ' telp_constr ') '

subtaskspec_list : subtaskspec I ' (' subtaskspec { (ANDIXOR) subtaskspec} ') '
terp_coristr : (NEXTI SCMETIMES) ' (' constr_el ') '
ccnstr_el : subtaskspec [{(AND1XOR) subtaskspec}]

subtaskspec_list BEFORE subtaskspec_list I terp_constr
subtaskspec : subtask

deadline: ['P'][condition ' < < '1 goal ' < < ' condition | goal ' ! ' goal 'ASAP '

condition : prcposition I subtask I time I subtask '+' time row '+' time

proposition : string [' (' arg [{ ' , ' arg }] ') ']

dgerdency result DEP DS-(N result ' (' [CREATE} FAIL [UPDATE} ') '
result : ' " ' ident ' " '

contingency: RESULT result
CREATED-BY subtask_name
r·T A4ED-BY acticn_spec
UPDATED-BY actim_spec
INVALIDATED-BY action_spec [{ ' , ' actionspec }]
[REVALIIlATED-BY actim_spec]

GI4PENSATED-BY acticn_spec
END-RESULT

action_spec : transaction acticn

goal : goalspec [{XOR goalspec}] [{AND goalspec {XOR goalspec}] } | XOR SKIP]

goalspec : subtaskspec ['C' pref ')']

pref : value

/* transactions specification */
transactians : 'IRANSACTICNS [{decl}] {transaction_decl} END-SANSACI'ICNS

transacticn_decl : TRANSACITCN trans_head trans_.» END-'IRNEACTICN ' ; '

222 A language·Action Perspective on tbe Design of Cooperative Information Agents

trans head: trans_riane [' (' arg ' : ' type [{ ' , ' arg ' : ' type}l ') ']

trans_bo# AGENTS '.' {agent ':' type ';'}
{agent CAN SIND MESSAGES ' : ' {message_spec ' ; ' } }
CaNSTRAINTS ':' { trans_constr ' ; ' }
[DEADLINE ' : ' {trans_deadline ' ; ' }]
GOAL '-' nessage [{(AND|XOR) message}l
[EXIT '=' message [{(AND|XCR) nessage}l 1

agent : ident

*Pe . ident
rressage_spec: message 'ID (agent I sel f)
message: REI }UESr ' (' action ') ' /* DIRc */

CaMMAND ' (' action ') ' /* DIRa */

aRDER '(' actian ')' /* DI& */
REJEEr ' (' AUIHORIZE ' (' acticn ') ' ') '
COMMIT ' (' actian ') ' /* 004 ./
SLDSEST ' (' prapositian ') ' /* ASSc */
ASSERT ' (' prcpc)siticn ') ' /* ASSa */

CLAIM '(proposition ')' 1. *Sm. 1
ASSERT ' (' REFUSE-TO'(' action [', ' reasan] ') ' ') '
ASSET ' (' ACCEPT ' (' (action I proposition) ') ' ') '
NOMINATE ' (' prcposition ') ' /* DEZLc */

DBZLARE '(' proposition ')' 1/ * IFrr. i

ESTABLISH '(' proposition ')' /* IZIp */
AL7IHCRIZE ' (' message ')
REIRACr ' (' actian ') '
FORBID ' (' acticn ') '
PERMIT ' (' acticn ') '
CCNFIRM ' (' acticn ') '
actian

reascn : string
trans_constr : message_list BEFORE nessage_list

AUWAYS ' (message ' = > ' terp_tr_constr ') '
message_list : message | ' (

'

message {(AND|XCR) message} ') '

temp_tr_ccnstr (NEXTTSCMETIMES) ' (' trans_constr_el ') '
transionstr-el : message [{CANDI XOR) rnessage}] I message_list BEFORE message_list 1

temp_tr_canstr
trans_deadline: ['P'] [deadl_cond '<<'] nessage ' < < ' deadl_cord message ' ! ' 1

message ASAP
deadl_cond: proposition I message I time I message '+' time | now '+' time

/* contracts specification */
contracts : CCNIRACrS { contract } ND-CCNIRACIS
contract : CONTRACT cantract_narre contract__body END*CCNIRACT ' ; '

contract_name : ident
contract_body: AGENTS ':' {agent ':' type ';'}

CLAUSES ':' {clause ';'}
clause : clause-naxre': ' (OBL| AUr ' (' agent ' ,

'

action_spec ') ') l ACC ' ('agent ') '

IN ':' transaction [{',' transaction}]
[DEADLINE ' : ' obl_deadlinel
[WAL':'{action_spec '=»' clause_name [{'&'clause_name}]}]
[EXIT ':' {(cancel '(' action ')' I transaction) '=>'

clause_name [{ ' & ' clause_name} l}l
[MDDIFIEI»BY { C action_spec i message)}]
END clause_name

clause_name : ident

obl_deadline : [(action_spec I tirre I action_spec ' + ' time I now ' + ' time) ' < < ']

action_spec ' < < ' (action_spec I time lactiaLspec: ' + ' time | now' + ' time)
action_spec ' ! ' actian_spec ASAP

APPENDIX B: AGENT ALGORITHMS

In this appendix high level algorithms are given for the several functions of the Contract
Manager (as described in section 4.4.1), the Task Manager (section 4.4.2, and section
5.3.2), the Service Execution Manager (section 4.4.3), and the Communication Manager
(section 4.4.4). It is by no means a full description of all implemented algorithms. Rather
it shows the interaction between the Managers and describes the data structures used by
them. The implemented agents will be made available on our web site (see colofon).

With the (task, contract and transaction) specification of an agent, also a domain
(UoD) model is made (as described in chapter 7). This specifies both the structure (type)
of the domain entitities as well as the instances. Furthermore the elementary actions (and
services) of the agent are specified. The models are the input for the agent and stored in
the appropriate knowledge bases of the agent.

run interpreter (CoLa specification, domain-model, services-model, planning-
functionTM, scheduleTM, replanTM, contingency-functionTM, contract-functionCM,

violation-functionCM, dissatisfaction-functionCM)
/* fill kb's, db, initiate */
L <- initial-domain-knowledge(domain-model(structure));
B <- initial-beliefs(domain-model(instances));
T <- initial-tasks(CoLa-spec(TaLa));
C <- initial-contracts(CoLa-spec(coLa));
TR <- initial-transactions(CoLa-spec(Trans));
S <- initial-services(services-model);
P <- 0; /* the plans are initially empty */
CP <- 0; /* current plans are initially empty */
A <- 0; /* the agenda is initially empty */
/* MS, (mental) state of the agent contains B, T, C, TR, S, P, CP, A */
for eacht€Tandp€P

P <- planning-function(t); /* generate initial plans */
if not contains-condition(t.p) /* only for plans without time or*/
then CP <- replan(t.p); /* propositions generate current plan*/

endfor;
A <- schedule(CP); /* put plans on agenda */
loop forever /* main loop, initiates managers*/

i = pop(A); /* i=lst agenda-item (intention)*/
case i
action:

r = execute(i); /* r = result of execution */
i f r#0
then update(MS, r); /* update kb's */
else /* the execution of action i failed */

CP <- replan(i.p); /* re-plan, look for alternatives */
transaction:

communication-plan(i); /* initiate trans (message plan) */
obl-check:

r = execute(i),
if r == 0
then violation-function(obl, i.contract);

endcase;
TRIG <- triggers;
for each trig € TRIG

trig.cp = replan(trig.p); /* (re)plan on condition satisfied */
endfor;
time.cp = replan(time.p); /* (re)plan because time passed */
process-incoming-messages;
send-message;
A <- schedule(CP); /* put plans on agenda */

endloop;
end;

224 A Language-Action Perspective on tbe Design of Cooperative Infonnation Agents

/* Task Manager functions */
/* planning function */
planning-function(task)
ST <- collect-subtasks(task);
G <- collect-goals(task);
E <- collect-exits(task);
p = make-plan(ST, G, E, task.constraints, task.deadlines);
for each t €ST

ST <- planning-function(t);
endfor;
return p;
end;

/* make plan, dependency graph construction */
make-plan(ST, G, E, constraints, deadlines)
for each x € constraints, deadlines, ST, G, E

X <- TA(x); /* Tableau decomposition function [Ngu et al,1994]*/
endfor;
return compose_graph(X) /* graph composition [Kieronska, 1991] */
end;

/* decision about which plan to move to agenda */
schedule(CP)
for each cp € CP

if changed(cp)
then conflict-resolution(cp); /* try to add cp to agenda */

endfor;
return order(A, deadline, priority); /* order actions on agenda */
end;

/* decide which obl gets priority */
conflict-resolution(plan)
for each ai € A, pi € plan

if unify(pi,ai) 0 0 /* check actions vs. agenda items */
then /* conflict */

if pi.obl I C
then if ai.obl € C

then exit(conflict-resolution)
else if pi.priority < ai.priority

then exit(conflict-resolution);
else if ai.obl € C

then if pi.priority < ai.priority
then exit(conflict-resolution);

endfor;
for each ai € A, pi € plan

if unify(pi,ai) 4 0 /* delete all conflicting actions on agenda */
then replan(ai.p);

endfor;
A <- add(plan);
end;

/* contingency plan */
contingency-function(result, task)
if revalidate(result, task) == 0
then compensate(result, task);
end;

/* re-plan (sub)task */
replan(plan)
retract(A, plan.cp); /* remove cp from agenda */
for each ai.result E plan.cp

contingency-function(result, ai.t);
endfor;
cp = next(plan); /* choose next current plan */
if cp == 0
then replan(getparent(cp)); /* backtrack */
end;

/* Contract Manager functions */
/* set up contract negotiation */
setup-contract(agent, action)
strategy = choose-negotiation-strategy(agent, action);
negotiate(agent, strategy, action);
end;

/* negotiation */
negotiate(agent, strategy, action)
case(strategy)
simple:

Appendix B: Agent Algorithms 225

case(action)
offer:

if acceptable(offer)
then add-message(agent, accept);

C <- add(offer.contract);
else add-message(agent, counter-offer);

counter-offer:
if acceptable(counter-offer)
then add-message(agent, accept);

C <- add(counter-offer.contract);
else add-message(agent, refuse);

refuse:
cp = replan(action.plan);

accept:
C <- add(accept.contract);

default: /* this agent starts negotiation */
add-message(agent, offer, action);

endcase;
/* other negotiation strategies can be inserted here */
endcase;
end;

/* adaptation of contracts omitted */

/* violation of obligation */
violation-function(obl, contract)
communication-plan(obl.trans); /* initiate transaction */
change-state(obl.trans, contract);
end;

dissatisfaction-function(message, contract)
change-state(message.trans, contract);
end;

/* change state */
change-state(trans, contract)
state = new-state(contract, trans);
if exist state.obl
then for each obl € state

CP <- add(obl-check(state.obl));
endfor;

if exist state.auth
then for each auth € state

Services.auts <- add(state.auth);
endfor;

end;

/* Communication Manager functions */
process-incoming-messages /* handling of incoming messages */
M <- incoming-messages;
for each m€M and tr €M Q /* MQ = message-queue */
case m
cancel(result)

contingency-function(result, result.task); /* trigger contingency */
CP <- replan(result.plan);
change-state(cancel(result), result.contract);
retract(MQ, m.tr); /* retract tr from MQ */

exit(tr):
CP <- replan(tr.plan); /* fail, replan */
retract(MQ, tr);

request(action):
request-execution(m.sender, action);

offer:
negotiate(m.sender, strategy, offer);

counter-offer:
negotiate(m.sender, strategy, counter-offer);

refuse:
negotiate(m.sender, strategy, refuse);

accept:
negotiate(m.sender, strategy, accept);

default:
case origin(m.tr)
task: /* m according to task trans */

update(MS, m); /* process answer */
continue-transaction(m, m.tr);

contract: /* m according to contract trans*/
if m € dissatisfaction-tr
then dissatisfaction-function(m, tr.contract)
else if m E tr.goal

226 A Language-Action Perspective on tbe Design of Cooperative Information Agents

then change-state(tr, tr.contract); /* state change */
else continue-transaction(m, m.tr);
endif;

endcase;
endcase;

endfor;
end;

/* construct MQ (message-queue) */
communication-plan(trans)
MQ <- makeplan(trans);
end;

/* initiate sending messages */
send-message
send(pop(MQ));
end;

/* add message to be send to message queue */
add-message(agent, message, action)
MQ <- add(agent, message, action);
end;

/* Service Execution Manager functions */
/* request-execution */
request-execution(agent, action)
if check-authority(agent, action) == 0
then add-message(agent, refuse-to(action)); /* agent has no authority */
if contract-initiated(agent, actionl /* check if contract with agent */
then cp = add(action, action.contract); /* yes, put on agenda */
else /* no contract with agent */

if check<Services, action) == 0 /* check if service available */
then add-message(agent, dontknow(action)); /* no: tell agent*/
else ** yes */

if check(Contracts, action) == 0 /* contract available ? */
then offer(agent, contract): /* offer existing contract */
else setup-contract(agent, action); /* else set up new contract */

end;

/* execution */
execution(action)
if check(Services, action) == 0
then if check(Services, supplier, action) == 0

then add-message(all, request(action));
else if check(Contracts, supplier) == 0

then add-message(supplier, order(action));
else add-message(supplier, request (action));

else return exec(action);
end.

APPENDIX C: IMPLEMENTATION
ARCHITECTURE

1. INTRODUCTION

This appendix describes a prototype of a Cooperative Information Agents (CIAs) system. its
components and what methods/technology will be used to create them. As a starting point the
architecture from chapter 4 is taken. As will become clear from the rest of this document, the
general idea is to create the system using (separate) Java applications for the different agents.
communicating to each other using KQML on top of the TCP/IP networking protocol and using
persistent objects for their knowledge bases. As much as possible available and suitable components
have been selected to ease implementation.

in section 2 some remarks about the agent components are made. In section 3 the chosen form
of implementation for the system in general and the components will be described and motivated.

My thanks to Sander Bos for implementing my ideas in the prototype.

2. COMPONENT ASPECTS

In chapter 4, a conceptual architecture for Cooperative Information Agents is described. Here some
additional comments are made.

2.1 COMMUNICATION

The different autonomous agents must have a means to communicate with each other. In principle
the only requirement is that a Communication Manager in one agent can send a message. consisting
of a string, to the communication manager of another agent, but several things may be considered:

- Lower Layer, the medium over which the messages are send to each other. Examples are
telephone lines, direct network connections, e-mail, and program procedure calls. The
choice highly depends on the realization of the agent itself.

- Topology, the individual agents must be placed in the total system somehow. The agents
must be able to identify and communicate with each other.

- Protocol, a structured way of communicating. Because existing media may be used and
several systems for agents have been developed, it is wise to adopt existing standards
(provided those match the architecture described here).

2.2 KNOWLEDGE BASES

The knowledge bases must be stored by each agent individually. The managers of the agent
interpreter described above must have access to several of the knowledge bases (several are shared.
e.g. the obligations on the agenda contain tasks of the Tasks Knowledge Base). The amount of
information will likely be large. the structure of the data is diverse (not relational), and is subject to
constant change.

Specifications written in (E)BNF must be converted to the knowledge bases.

228 A Language.Action Perspective on tbe Design of Cooperative Information Agents

3. ARCHITECTURE MAPPING

In this section first a general overview of the proposed implementation methods is given (figure A)
which is followed by a description and argumentation of the implementation of the individual

components. The detailed part starts with an explanation of the different components, which is
followed by sections on communication with other agents and the implementation of the KBs. The
basis of implementation is formed by the Java Agent Template, discussed in section 3.2.2.

3.1 TECHNICAL ARCHITECTURE OVERVIEW

In figure A the architecture is depicted with indications of the means by which we propose to

implement them.

3.2 TECHNICAL ARCHITECTURE PER COMPONENT

There are several issues that must be taken into account when choosing a form of realization for a

particular component:

- It must be feasible to implement the component using the selected technology.

- The selected technical architecture should correspond with the ideas brought forward in
chapter 4. For instance. both the autonomy of and communication between agents should

be safe-guarded.
Helvetica Font = Component

Java Application

User Times Italic Font = Implementation

Java Thread
choice

Contract 1- JAT
- Manager i Java Application (ANS)

Java Threa ; a Thread KQML Agent List

Task
: Communicatior, TCP/IP

Manager -
i

Manager '004 KQML
1 Communication Server CP/IP

Java Threa
Service - ' · · · · · · · · · · · · · · · t\

-* Execubon

. . -\,\ . . .1101, 1.

MR. npr CIA KOML

<=11 -=>I Java Applicatibj

r, T[137[P. Deer CIA
PJava Oblectl

PJava Object

- Services L--+ Contracts
KQ Java Applicatig
TCP/IP \

PJava Ob ect PJav ;Tibject PJava Object; Deer CIA
Tasks Agenda _exicon/DB

- --KAI
Figure A. Technical Agent Architecture

- A short-term realization with the architecture must be possible. Intermediary results are

needed for validation ('are we building the right system').
- Existing standards must be followed. This must be done to comply with existing systems.

and might enable us to use existing components.

- Since the system built will be used for further research. it should be created in a
structured fashion. Relevant are good documentation and a modular approach (so that
created components can be exchanged wilh another implementation).

Appendix C: Implementation architecture 229

The chosen architecture consists of a Java application for each agent. The Java Agent Template.
which offers a basic implementation in Java of autonomous communicating agents, will be used as a
basis for the program. The knowledge bases will be implemented using persistent objects. These
choices are explained in detail below.

3.2.1 AGENTINTERPRETER

How: Every agent will be presented by a separate Java application, meaning that the resulting
system will be a number of separate applications.
(As an added bonus, once the prototype is complete, it will be possible to convert the
applications into applets, creating an easy way to demonstrate the agents on the World Wide
Web. More on this in section 3.2.2).

Why: The choice of implementation language is the most important one to make. Because of the
nature of the agents (which are basically reasoning programs), a language which naturally
supports Al development (Prolog. Lisp) might seem suitable. However, there are a lot of
operational units necessary. and in appendix B the operations are mapped to conventional
(sequential) programming structures. For system maintenance it is best to create all of the
agent interpreter in one programming system, instead of mixing different systems (Java is
not suitable for incorporating different programming languages, if only because that would
loose its portability)
Advantages of using Java are:
- Java is an up and coming language which currently has a lot of momentum. It is

beneficial for the Infolab to get more experience with this language. Also. because of its
current popularity lots of 'add-on' classes are becoming available for general
functionality, such as database access.

- Its easy portability to different systems will mean both that the resulting prototype is
system independent as well as that one of the goals of the CIA-paradigm, agenti fying of
legacy systems. should be easy to accomplish.

- Because of its portability Java is used often for implementing mobile agents. Although
the agents here are not mobile it might be possible that technology developed for those
systems could be applied here (With mobile agents, objects move from machine to
machine. The technique used for this. conversion of objects to data-streams, can also be
used to store objects).

- Java is a rich language, constructs and structures needed should be relatively easy to
accomplish.

The biggest disadvantage is that Java is a sequential language, and therefore not
immediately suited for Al development (e.g. there is no built-in mechanism for
back-tracking in case a task fails). Most of the system to be created will not require those Al
extensions, though.
Another important choice made for the agents is to create a separate application for each of
them. instead of creating different 'threads' for each agent within one application. The great
advantage is that each agent is really autonomous, and that it will be automatically possible
to run the agents on different machines. Of course, this requires inter-application
communication. but this should not present a large problem. What is needed for this
architecture i f multiple agents are to run on one machine. is a platform which allows multi-
tasking |

' Without going into great detail. this might not present a problem for for example a pre-emptive
system such as Microsoft Windows 3.1. because the communication calls will provide automatic
interleaving.

230 A Language-Action Perspective on tbe Design of Cooperative Information Agents

Contract Manager
How: The Contract Manager. one of the parts of the agent interpreter, will be an object

implemented using a thread process. Just like the other managers (except for the
Communication Class) described below. the Contract Manager will be an instance of a class
which inherits the member-variables and methods of a special Manager super-class. When
new contracts must be negotiated, the services database can be queried, or, when the
Services knowledge base does not contain information on the required action, requests for
the execution of an action can be send to the other agents.
Once a contract has been established the Transaction Management part of the Contract
Manager must make sure the Contract is upheld. This functionality is called upon directly by
the Task Manager.

Why: The Contract Manager forms a distinct unit within the agent interpreter, which can be called
upon by the other units (described below). This indicates it should be an object. Setting up
(negotiating) a contract can take quite a while, time in which other tasks may be completed.
This suggests to run the contract manager concurrently with the other units, in a separate
thread.

Task Manager
How: The Task Manager will also be an object implemented using a thread.

One of the important jobs of the Task Manager is to plan (and replan) the tasks on the

agenda. Initially this will be done by using a simple ALAP (As Late As Possible) scheduling
mechanism keeping in mind precedence relations between tasks, giving obligations to other
agents priority. Every change in the agenda (apart from removing the first item of it) should
lead to a renewed ordering of obligations. A graph of all possible execution paths for each
task is stored.

Why: This is a copy of the motivation for the Contract Manager. The Task Manager forms a
distinct unit within the agent interpreter, which for instance must be able to execute tasks

concurrently with other processes. The first point indicates it should be an object, the second
that it should run as a separate process (it needs to be able to start actions by itself. not when
called).
Since agents will be performing one task at a time, a relatively simple scheduling algorithm
can be used. The ALAP approach has the advantage that results of tasks are less inclined to
become obsolete because other tasks fail or become invalidated. Also, other obligations that
come up later but have a shorter deadline can be executed earlier this way. Using an ASAP
(As Soon As Possible) approach would mean that contracts might be handled quicker. This
competitive edge does not play a role as long as all agents use the same scheduling
technique. As long as there are not too many obligations on the Agenda, they can be

completely reordered every time the list of obligations changes significantly. Of course,
after the first version of the CIAs is ready more research must be done on improving the
planning. by using better rules and reordering the obligations on the Agenda less frequently.
The goals of a task might be reached through different combinations of subtasks. actions and
transactions. I f execution of an element of a task fails. another 'path' to the goal must be
selected. To this end a graph is created (through Tableau Decomposition) in which all
possible execution paths (which lead to goal or exit states) ar placed. This will allow the
Task Manager to quickly select and schedule the next possible plan for a task if the current

plan fails.

Appendix C: Implementation architecture 231

Service Execution Manager
How: The Service Execution Manager will also be an object. It can be implemented with a thread.

just like the two managers mentioned above, but it could also simply be an object instance.
The way in which actual tasks will be executed is unknown at the time of writing. Java does
support the exec() function. so that it can start external applications. The way in which these
external applications would be supported depends on the actual application and the system it
will run on.

Why: The Service Execution Manager provides services to the other units of the agent, namely the
maintenance of (public and private) services lists and the execution of actions. It will not
need to act on its own, it will only have to react to requests made by the other units. There
are two reasons to run the Service Execution Manager in a separate process in the
application:
- Conformity: All other units of the interpreter will run in separate threads.

- Because two of the other units might call upon the Service Execution Manager
simultaneously. provisions to handle this event must be made already.

Communication Manager
How: The Communication Manager will provide the communication interface of the agent with

the other agents. It must communicate outgoing messages to the correct agents and route
incoming messages to the correct Manager (may be more than one), depending on the nature
of the message. It will also provide the user with a simple interface to the agent. The
implementation will be with an object running in a thread.
More on the communication between the Communication Managers is described in the next
section. The Communication Manager will not handle the messages between the different
Managers within the agent.

Why: To handle external communication properly. the Communication Manager must deal with
interrupts. One of the ways to do this is by running communications as a separate process
within the application.
Because the communication between the different managers of the agent directly translate to
class-message calls between the different objects there is no need for the Communication
Manager to handle this traffic.

The complete Interpreter

The Interpreter will thus consist of four Manager objects in separate processes. These objects will be
able to initiate actions if the necessary events take place. They can communicate with each other
through message-calls directly to the other objects.

Two important aspects have not been mentioned yet. First of all, the implementation will be
done using an existing agent implementation. which will be described next. The reason why this has
not been mentioned is because the implementation used should match the architecture described
here. and not determine it. The other aspect is the implementation of the Knowledge Bases used hy
the agents. This will be explicated in the last section.

3.2.2 COMMUNICATION

This section will explain how communication between Agents takes place. This directly defines the
external part of the Communication Manager.

232 A Language.Action Perspective on tbe Design of Cooperative I
nformation Agents

Instead of creating a new implementation an existing system for the exchange of messages will

be used. This system will be briefly introduced first. after which its usage for the implementation of

the CIAs is outlined.

Java Agent Template (JAT)

The JAT provides a fully functional template. written entirely in Java. for constructing software

agents which communicate peer-to-peer with a community of other agents distributed over the

Internet. Usage is free for academic use. all sources are provided. JAT is created by Robert Frost at

Stanford.
The agents use KQML as a message wrapper and include the functionality to dynamically

exchange 'resources' (this is the basis of their operation). The JAT includes a user interface (see

example is shown in Figure C), which allows one to evaluate the state of the system and send

(KQML-) messages to it.
-'7'r------I.1 The basic system consists of a central

name server and individual clients. When a
Action' Hes,Be·.R,juirte I' li,lp .1 client starts it notifies the central server of

Servkes. its presence. When two clients want to
A · communicate. they can ask the server the

i address of each other after which they
- --· · -··-······'··· -,·· ·· · ····- ·-··-·-····· ···· communicate directly. The idea is to sub-

Aimm class these agents to provide more specific

Servke Disalotion . services (e.g., the central server could store

information on services that the clients
offer, and a client might offer a bus-
schedule service), not to let the agents

function differently. However, since the
source-code is available and the agent is
built of several objects, this can still be
realized.Redived: 11 Sent ',.:.. 8

System Mdmqa I

Figure C Example of User Interface of J AT

Usage of JAT for the CIAs
The JAT architecture consists of all the components to build an agent:

- A Communication Interface to communicate with other agents through KQML messages.

Connected to this object is the Message Handler object which acts as an interface (buffer)

between the actual agent and the Communication Interface.

- An Agent Context which defines the User Interface and handles the input from the user

(and provides the necessary output for the user).

- A Resource Manager stores information about Network Class Loaders. Languages.

Interpreters, Classes, Files and Addresses.

- The Agent Object itself. which defines how incoming messages (from the user, other

agents and the system) are dealt with.

The Communication Interface object will be used together with the Message Handler and the

Agent Context of this system. Together these objects provide the functionality of the

Appendix C: Implementation architecture 233

Communication Manager of the CIAs. The Resource Manager is somewhat linked to the Services
Execution Manager but the way in which the agents of the JAT execute their tasks is different from
the way that that is done in the CIAs2

To enable the rest of the CIA to work in this template several changes must be made (only a
very brief introduction is given here):

- When an message comes in InterpretMessage is called which creates an interpreter
object for the message which handles it. This method must be overridden to be able to
route the messages to the correct CIA Manager(s).

- When one of the Managers has a message to send it must create a KQML wrapper for it
and call the SendMessage method of the MessageHandler object.

Finally. here are some of the properties of the communication using the JAT:

1. TCP/IP The agents communicate with each other using the TCP/ IP protocol. This protocol is
available for most systems, and it allows the agents to run both on the same system (using
different ports) as well as on different systems.

2. Name ServerThe agents identify each other through a central server. They know the address of

this server, and announce themselves at startup (and unannounce themselves when they quit).
The server keeps a list of names with corresponding addresses. When two agents want to
communicate with each other, they first inquire the (TCP/ IP) address from the central server,
after which they communicate directly with each other. The advantage is that agents kee their
autonomy, a disadvantage is that they must have knowledge about the usage of addresses
The Name Server class will be subclassed, to enable the broadcasting of messages to multiple
agents related to negotiations. The Name Server Agent could be more sophisticated, e.g. by
storing information about what services other agents can provide. This would create more
efficiency in contract negotiation, but would simultaneously increase the dependency of the
agents on the central server, thereby decreasing their autonomy. Special agents providing
services such as the services-database described here could be added of course.

3. KQML The standard for communication between agents is KQML [Finin et al.,1994]. The
content of the message can be easily integrated in a KQML-message, provided a performative is
explicitly added. This will take some work though, because the set of performatives of KQML
do not match those discussed in chapter 5.

3.2.3 KNOWLEDGE BASES

The Knowledge Bases will be implemented using persistent objects (the PJava references in
Figure B are meant to indicate Persistent Java). Each Knowledge Base will have its own object
class. in which the information is stored (in the systems memory). Through object persistence, these
objects will then be stored on disk regularly. Inheritance will be used to give the Knowledge Base
object classes the same basic data manipulation methods, which can then be changed and extended.
The Managers of the CIA access the methods of the persistent Knowledge bases directly. There are
several advantages of using Persistent Objects:

2 when an agent in the JAT needs to perform a task it cannot perform itself it contacts an agent
which knows where the service can be found, and execution of the task is then done by the agent

wt'tich
requires the action itself, after retrieval of the service.

Another disadvantage of direct communication is that the Java applications cannot be turned
into Applets any more. because the security systems of WWW-browsers do not allow this.

234 A Language·Action Perspective on tbe Design of Cooperative Information Agents

- From a design perspective they are easier. Structures have to be defined only once for
usage in both the program and for storage of data. The Managers of the CIA
evaluate/manipulate several of the objects-classes which are stored.

- No separate interface to the database is necessary. The changes for storing data should be
minimal (see later).

- The object-orientation will make it possible to store more difficult data structures than
can be easily achieved with relational tables (this would also require complex conversion

functionality).

There are also some issues to take into account when working with Persistent Objects:

- First of all. there is no standard implementation available at the time of writing, although
a lot of work is done on this:
- Sun, the creators of Java, have released Object Serialization, which

enab es
object

instantiations to be written to streams. They are also working (internally) on PJava,
which will provide a sophisticated mechanism for persistence in Java. Both these

systems require changes to be made to the JVM (Java Virtual Machine), meaning they
can not operate on existing Java Platforms. These techniques will be added to new
versions of the JDK (Java Development Kit).

- JRB from 02 Technology offers persistent storage of objects in relational tables, but
is limited to specific platforms and specific Data Base Management Systems. The

usage license is also limited.
- Objectstore PSE from ODI offers persistent storage in a non-native fashion, and is

freely available. However, the system is based on 'tricks' to implement the object

persistence.
None of these methods seems completely suitable now. Objectstore PSE is available , but

a superior (and more standardized) implementation might very well become available in
a few months. The required changes for introducing persistence later consist of indicating
which objects must be made persistent.

- Unless the persistent object manager is very sophisticated, all of the data will have to be
stored in the system memory. This will of course lead to problems when databases get

larger. When this happens, an Object Oriented Database will have to replace object

persistence.
- As a related issue, i f legacy database systems are used (e.g. if a database is 'agentified')

object persistence might not be an option for such databases.
- Finally. the file-structure used by the persistent object manager is probably proprietary.

which makes it harder for other programs to read this information. However, as long as
the class-definitions are copied. other Java applications can analyze (or convert) the
Knowledge Bases.

To summarize: Because there are no fully suitable object persistence methods for the Java language
at the time of writing. but are expected very soon. the objects will just be stored in memory for now.
Once a suitable persistence technique can be selected, it should be easy to integrate this in the
prototype. Also, because of the reasons mentioned above, when designing the structure of the
Knowledge Base objects the ability to replace the persistent objects with Object Oriented Databases

must be kept in mind. This should not place limitations on the design.

4 internally is meant to say that no official announcement(s) have been made regarding the
product. People involved in development of PJava indicated it would be released soon.

GLOSSARY

A word in SMALLCAP\TALS indicates a cross-reference.

ACID: Atomicity, Consistency, Isolation, Durability. Properties of classical control mechanisms in
databases.

action: non-communicative activity that is performed by an AGENT.

actor: someone or something that can act. Synonym for 'subject' (human as well as computerized),
or 'linguistic agent'.
agenda: a set of deontic temporal constraints that defines the normative space (or OBLIGATION and
COMMITMENT space) of all things that have to be done. It contains the actions to be performed by the
AGENT, instantly or at some designated point in time.

agent: an autonomous computational entity with TASKS and capabilities (actions it can perform),
that communicates with other agents by means of MESSAGES, and whose behaviour is not pre-
defined but based on COMMITMENTS to other agents.

assertive: SPEECH ACT type used to say how things are. It makes a statement about the state of
affairs in the world, and commits the speaker to the truth of the expressed PROPOSITION.

authorize: SPEECH ACT type used to grant AUTHORIZATION to other agents.

authorization: PERMISSION that allows the effective operation of a (communicative) act.

BAT (Business as Action game Theory): a generic business framework describing a BUSINESS

LOGIC, developed by GOran Goldkuhl ([Goldkuhl. 1995,1996]).

BDI (Belief-Desire-intention): influencial agent theory by Rao and Georgeff ([Rao and Georgeff,
199 l a, 1991 b. 1993]), describing a logical framework for intelligent AGENTS based on the primitive
modalities: BELIEF, desire and INTENTION.

belief: epistemic modality describing the notions and views of the AGENT on the domain.

BPM (Business Process Modelling): The process of modelling BUSINESS PROCESSES.

business communication: the network of discrete recurrent COMMUNICATIVE ACTIONS (or
conversational TRANSACTIONS) that form the core of an organization. The focus is on
COMMUNICATION processes to understand the business. instead of on the current organisational
structures or documental flows.

business logic: generic framework for business TRANSACTIONS between actors. describing the roles
of the two actors (a provider, and a customer of goods or services) and their COMMUNICATIVE and
material ACTIONS. It distinguishes the phases: proposal, commitment (contractual), fulfilment, and
completion (acceptance/claim).

business process: a series of coherent activities that creates a result with some value for an external
or internal customer, through solving a problem or task for him. It is a meaningful whole of value

adding activities (value chain).

cancellation: the undoing of a COMMITMENT by means of a cancel-message. The CONTRACT between
the AGENT Cancelling and the agent committed to might specify sanctional actions to be taken.

CIA (Cooperative Information Agent): an autonomous. intelligent COOPERATIVE INFORMATION
SYSTEM executing TASKS and COMMUNICATING following CONTRACTS.

236 A language-Action Perspective on tbe Design of Cooperative Information Agents

CIS (Cooperative Information System): Next generation automated information systems that

supports the coordination of activities in and between organizations.

commissive: SPEECH ACT type used to change the situation in which it is uttered to fit the
PROPOSITIONAL CONTENT of the speech act. The commissives lay the responsibility of the fit with
the speaker. The commissive point is to commit the speaker to a future course of action.

commitment: a promise to a future conduct in order to establish a desired situation

communication: coordination of activities by means of a process of exchanging MESSAGES. In this

thesis, its essence is to commit the partners in communication to a course of action so that one can
rely on the other.

Communication Manager: functional component of the AGENT interpreter that is responsible for
routing MESSAGES between the agent and other agents and the agent and its responsible human

counterpart, using a communication protocol and information sharing language.

communicative action: an "interaction between subjects that engage in a social relationship"

([Habermas. 1984]) with the aim of reaching a mutual understanding of the situation and goals
pursued in order to be able to coordinate their actions. The subject's motivation is rational: they
respond to requests because they presuppose that these requests can be justified when asked for.

compensation: undoing of achieved results and effectuation of sanctional actions.

Conceptual Model: explicit description of all relevant aspects, objects, relationships, and rules of a

specific domain. Constructed for the purpose of problem understanding and as input for automated

systems development. Following the LAP the CM consists of two interrelated models: the
ENVIRONMENT OF DISCOURSE (EoD) model and the UNIVERSE OF DISCOURSE (UOD) model.

contingency plan: plan describing actions that can be taken in order to reach the goal if unexpected

events leading to the failure of a subTASK occur. It specifies how to revalidate the result of the
subtask again. or what should happen if it cannot, including COMPENSATION of dependent results.

A CIA contingency plan consists of a set of results that have an internal object structure, and
associated methods that specify the TRANSACTIONS (or tasks) that can be used to create, close.
compensate, invalidate and revalidate the result.

contract: a set of mutually agreed OBLIGATIONS and related AUTHORIZATIONS (permissions and

prohibitions) between different parties about services provided to each other. together with rules
governing VIOLATION, i.e. consequences and (sanctional) actions to take i f one of the agents does not
adhere to its obligations and authorizations. it describes the effects of TRANSACTIONS, i.e. the factual
or deontic temporal constraints that are created or deleted.
Formally. a contract is a set of tuples, each tuple consisting of a description of the deontic state

(authorizations, obligations and accomplishments), in-transitions (transactions). out-transitions
(transactions), and violation handling methods.

contract-base: a knowledge base that holds the CONTRACTS between the AGENT and other agents lt
also contains old contracts and rules for setting up new contracts (negotiation support).

Contract Manager: the functional component of the AGENT interpreter responsible for managing
the CONTRACTS of the agent. It supports the creation of new contracts. and adaption of existing ones,
contractual COMMITMENT (including transaction) management. and claim management.

deadline: the time by which an action should be performed. or a particular state should be reached.

declaration: SPEECH ACT type used to bring about some new state of affairs of the world. By making
a declaration the world is changed according to it by saying so.

delegation: transfer or assignment of AUTHORIZATION, OBLIGATIONS and control to a subordinate
actor.

Glossary 237

deliberative agent: "an AGENT that contains an explicitly represented symbolic model of the world.
in which decisions (e.g. about what actions to perform) are made via logical (or at least pseudo-

logical) reasoning, based on pattern matching and symbolic manipulation"([Genesereth and Nilsson,

1987], [Wooldridge and Jennings, 19951).

DEMO: Dynamic Essential Modelling of Organizations. A BUSINESS PROCESS modelling method

based on social theory. grounded in the language philosophy of Searle and Habermas. developed by

Dietz ([Dietz. 1992a, 19942,b])

deontic logic: the logic to reason about OBLIGATIONS and AUTHORIZATIONS. A branch of modal logic

that is concerned with (reasoning about) norms and NORMATIVE versus non-normative behaviour.

directive: SPEECH ACT type used to change the situation in which it is uttered to fit the
PROPOSITIONAL CONTENT of the speech act. The directives lay the responsibility of this fit with the
addressee. The directive point is to try to get the addressee to do things (carry out a course of action

represented by the propositional content). I f successful and non-defective. the hearer commits
himself to do it.

dynamic deontic logic: the logic used to specify and reason about OBLIGATIONS and

AUTHORIZATIONS Over actions.

EoD (Environment of Discourse): the projection of the domain concerned with in formation context.

The EoD describes the discourse as a process without going into the contents (what is said. and
more in particular the meaning of these terms. is described in the UOD). Typical objects in the EoD
are the linguistic agents (human or computerized). the MESSAGE types, and the rules that prescribe

and describe the COMMUNICATION (AUTHORIZATIONS and OBLIGATIONS). Also often called

'organizational environment'.

essential communication: a view on COMMUNICATION where one abstracts from technological
issues and reproduction of data.

hybrid agent: a neither completely DELIBERATIVE nor completely REACTIVE AGENT.

illocutionary act: the complete SPEECH ACT, consisting of PROPOSITIONAL CONTENTS.

ILLOCUTIONARY CONTEXT and ILLOCUTIONARY FORCE.

illocutionary context: the relevant knowledge about the situation in which the SPEECH ACT is made.

This knowledge can be factual. about the place the speech act is performed. but also epistemic,
about the INTENTIONS and BELIEVES of the participants in the speech act. It also includes the speaker

and addressee of the speech act themselves.

illocutionary force: that part of the SPEECH ACT that expresses how the PROPOSITIONAL CONTENT of

the speech act is to be taken. It is the expression of the speaker's INTENTIONS, the reasons and the

goal of the communication.

illocutionary logic: the logical formalization of the theory of SPEECH ACTS ([Searle and

Vanderveken, 1985])

illocutionary point: indicates the type of effect for which the act is performed (the point or
purpose). The illocutionary point describes what it is for the speaker to mean the utterance.
The five illocutionary points that Searle distinguished are: ASSERTIVES, DIRECTIVES, COMMISSIVES.

DECLARATIONS, and expressives. Other speech act theorists and language philosophers (cf.

[Habermas. 1984], [Balmer and Brennenstuhl. 1981], [Chang and Woo, 1994]) have proposed
different categorizations of speech acts.

informatics: the interdisciplinary field of science that deals with information and communication
and their role in the functioning of dynamic systems.

238 A language-Action Perspective on tbe Design of Cooperative Information Agents

intention: mental notion used in agent theories that indicate the AGENT's plan to perform an act or to
bring about a certain state (goal).

intentional attitudes: mentalistic notions describing properties of an AGENT by which the agent's
behaviour can be predicted, and that describe how the mental state of the agent is directed at or
about objects and states of affairs in the world.
In agent theory these include the attitudes: knowledge. BELIEF, desire. INTENTION. gOals,

COMMITMENT. choice. decision. plans. preference. wish. ability. opportunity

LAP (Language-Action Perspective): a framework and foundation for modelling and design of
computer support for COMMUNICATIVE ACTION. The LAP emphasizes what people do while
communicating: how they create a common reality by means of language and how communication
brings about coordination of their activities.

lexicon: the system that stores and manages the terminology of a certain domain.

logic: a set of formalisms for representing properties and reasoning over them.

message: a SPEECH Aer that describes the ILLOCUTIONARY FORCE together with its authorization
claim (be it power. authority. or charity) and the content (a proposition or action).

negotiation: -a joint decision making process in which the parties verbalise their (possibly
contradictory) demands and then move towards agreement by a process of concession or search for
new alternatives" [Muller, 1996]
normative system: "A normative system refers to any set of interacting AGENTS whose behaviour
can usefully be regarded as governed by norms. Norms prescribe how the agents ought to behave
(by OBLIGATIONS).and specify how they are permitted to behave and what their rights are
(AUTHORIZATIONS)" [Jones and Sergot, 19931

objective world: the world of reference that tells how things are ([Habermas, 1984]). It supports the
speaker's validity claim to truth in performing a SPEECH ACT. which entails that the speaker contends
to represent the factual contents of the speech act as they are.

obligation: something that one must fulfil. something that should be done or brought about. An
obligation is the result of a COMMITMENT of the actor, or of a command (given by another actor with
power over the actor), or of an request by another actor that is given authority.

permission: the allowance of the COMMITMENT to and/or operation of an act (including
COMMUNICATIVE ACTS).

propositional contents: the part of a SPEECH ACT that expresses what the speech act is about.

reactive agent: an AGENT that does not include any kind of central symbolic world model. It is
capable of reacting to (known) events in the environment without engaging in complex symbolic
reasoning and therefore usually reacts much faster to such events. The best known reactive
architecture is the subsumption architecture ([Brooks. 1986, 199 Ia.bJ).

Service Execution Manager: functional component of the AGENT interpreter that is responsible for
starting. stopping and monitoring service execution. exception handling, and information (database)
management.

services-base: the knowledge base, part of the AGENT architecture. that holds knowledge about the
services the agent can provide to others. private actions it can perform. and also knowledge about
services other agents can provide to it.

sincerity condition: attitudes or psychological states of the speaker towards the PROPOSITIONAL
CONTENTS of a SPEECH ACT ([Searle. 1969]). If the propositional content con forms with the actual
psychological state of the speaker. the act is said to he sincere. 1 f a speaker is sincere. he intends to

Glossary 239

do a certain predicated act by expressing something will hold in the future, and believes it is
possible for him to do such act.

social world: the world of reference that tells how the participants stand towards each other
([Habermas. 1984]). It supports the speaker's validity claim to justice in performing a speech act.
which regards the adequacy of the interpersonal relation between the speaker and the hearer

speech act: an uttance or MESSAGE with a performative nature. According to Austin's language-as-
action theory: what one is doing iii saying something. Speech acts are considered to be the basic or
minimal units of linguistic communication.

Speech Act Theory: a means to analyze COMMUNICATION in detail at three levels: content
(propositions). intention (illocution) and effect (perlocution). Form (syntaxis) of the communication
is of less importance than why and what is communicated.
Speech Act Theory is based on the initial work of Austin ([Austin, 1962]) on performative use of
language: although conversations are usually thought of as exchanges of information, the
communications may not only be informative but also performative in that they change the state of
affairs and commitment among the parties involved. The most prominent speech act theory is
brought forward by the language philosopher J.R. Searle ([Searle, 1969,1979]).
strategic action: interaction between subjects that strive after their own goals and plans (as opposed
to COMMUNICATIVE ACTION) ([Habermas. 1984]). The subject's motivation is empirical: they try to
maximise their own profit and minimise their own losses. Coordination is based on empirical
contingencies. especially on a claim to. or use of power.
subjective world: the world of reference that tells how the speaker perceives the world ([Habermas.
1984]). It supports the speaker's validity claim to sincerity in performing a SPEECH ACT. which
entails that the speaker is genuine in the performance of it.

task: a meaningful unit of work assigned to an AGENT.
Formally. a task is a tuple consisting of a set of subtasks. a set of constraints on the execution of the
subtasks (dependencies). a CONTINGENCY PLAN. a DEADLINE (both possible empty), and goal and exit
states expressed by an AND/XOR graph in canonical form. Elementary subtasks are either executed
by the agent as an internal procedure (an action) or involves initiating communicative
TRANSACTIONS with another agent.

Task Manager: functional component of the AGENT interpreter that is responsible for scheduling
and planning TASKS, AGENDA management (adding and removing items, AUTHORIZATION and
environment checks. and (OBLIGATION) conflicht resolution), and failure handling (including
alternatives and CONTINGENCY PLAN execution).

tasks-base: the part of the AGENT architecture that holds the agent's TASKS.

transaction: logical grouping of (authorized) SPEECH ACTS with temporal constraints between them.
Formally a transaction is a tuple consisting of a Set Of AGENTS. a set of possible MESSAGE types
(speech acts). a set of temporal constraints on the synchronisation of the speech acts, a possibly
empty DEADLINE. and goal and exit states (identified by message occurences).

transaction-base: the part of the AGENT architecture that holds the TRANSACI'IONS the agent can
perform.

UoD (Uni verse of Discourse): the projection of the domain concerned with information content
(data. rules about the domain). It describes what is communicated. and more in particular the
meaning of these terms.

violation: not adhering to OBLIGATIONS. It causes "sanctional" actions described in the CONTRACT to
be triggered on the one hand. and rescheduling of the subTASK on the other.

LITERATURE

[Action Technologies, 1993]. Action Workflow Analysis Users Guide, Action Technologies, 1993.

[Agostini et al., 1994]. A. Agostini. G. De Michelis, S. Patriarca, R. Tinini, "Prototype of an
integrated coordination support system". in: Computer Supported Cooperative Work. vol. 3. no.
3, pp. 209-238,1994.

[Agre and Chapman, 1987]. P. Agre and D. Chapman, "PENGI: An implementation of a theory of
activity", in: Proc. of 6th Nat.1 Conf. on Al (AAAI'87), Seattle, WA,, AAAI Press. Menlo Park,
CA., pp. 268-272,1987.

[Allwood, 1977]. J. Allwood, "A critical look at speech act theory", in: Logic, Pragmatics and
Grammar,0. Dahl (ed.), Studentlitteratur. Lund, 1977.

[Allwood, 19801. J. Allwood, "An analysis of communicative action", in: The Structure of Action.
M. Brenner (ed.), Blackwell, Cambridge, MA., 1980.

[Alonso et al, 19961 G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Gunthor, C. Mohan.
Advanced Transaction Models in Workflow Contexts", in: Proc. of the 12th Int.1 Conf. on Data

Engineering. New Orleans, Lousiana, March 1996.

[Alty et al., 1994]. L. Alty, D. Griffiths, N R. Jennings, E H. Mamdani, A. Struthers, M.E. Wiegand,
"ADEPT - Advanced Decision Environment for Process Tasks: Overview & Architecture", in:
Proc. BCS Expert Systems '94 Conf. (Appl. Track), Cambridge, UK. pp. 359-371,1994.

[Anderson. 1958]. A.R. Anderson, "A reduction of deontic logic to alethic modal logic". in: Mind
67. pp. 100-103,1958.

[Aqvist. 19841. L. Aqvist, "Deontic logic". in: Handbook of Philosophical Logic 11. D.M. Gabbay
and F Guenthner (eds.). Reidel, Dordrecht, pp. 605--714,1984.

[Assenova and Johannesson, 19961. P. Assenova and P. Johannesson, "First Order Action Logic: an
approach for modelling the communication process between agents", in: [Dignum et al., 1996c]

[Aumann, 1976]. R. Aumann. "Agreeing to disagree", in: Annuals of Statistics. 4, pp. 1236- 1239.
1976.

[Auramaki, 19881. E. Auramaki, "Speech act based model for analysing cooperative work in office
information systems", in: Proc. of 6th EFISS Symposium, Atlanta, Georgia, 1988.

[Auramaki et al., 19881. E. Auramaki, E. Lehtinen, and K. Lyytinen, "A Speech Act Based Office
Modeling Approach", in: ACM Transactions on Office Information Systems (TOIS), Vol. 6, No
2, pp. 126-152,1988.

[Auramaki et al.. 19923]. E. Auramaki. R. Hirscheim, and K. Lyytinen. "Modelling offices through
discourse analysis: The SAMPO approach", in: The Computer Journal, vol. 35, no. 4,1992.

[Auramtiki et al., 1992b]. E. Auramaki, R. Hirscheim, and K. Lyytinen, "Modelling offices through
discourse analysis: A comparison and evaluation of SAMPO and OSSAD and ICN", in: The
Computer Journal, vol. 35, no. 5.1992.

[Auramtiki and Lyytinen. 1996]. E. Auramaki and K. Lyytinen. "On the success of speech acts and
negotiating commitments", in: [Dignum et al., 1996cl

[Austin, 19621. J.L. Austin, How to do things with words, Clarendon Press, Oxford, 1962.
[Austin. 1962b]. J.L. Austin. Philosophical Papers. Clarendon Press, Oxford, 1962.
[Baeten and Weijland, 19901. J.C.M. Baeten and W.P. Weijland, Process Algebra, Cambridge

University Press, Cambridge, MA., 1990.
IBates, 1994]. J. Bates, 'The role of emotion in believable agents", in: Communications of the ACM

(CACM), vol. 37. no. 7, pp 122-125.1994.

242 A I.anguage-Action Perspective on tbe Design of Cooperative Information Agents

[Bates et al., 1992]. J. Bates. A. Bryan Loyall. W. Scott Reilly, "An architecture for action. emotion,
and social behaviour", Technical Report CMU-CS-92-144, School of Computer Science,
Carnegie-Mellon University, Pittsburgh, PA., 1992.

Ide Bakker et al., 1986]. J.W. de Bakker, J.N Kok, J.-J.Ch. Meyer, E.-R. Olderog, and J.1 Zucker,
"Contrasting themes in the semantics of imperative concurrency", in: Current Trends in
Concurrency: Overviews and Tutorials. 1.W. de Bakker, W P. de Roever, and G. Rozenberg
(eds.). LNCS 224. Springer-Verlag. Berlin, 1986.

[Ballmer and Brennenstuhl. 1981]. T. Ballmer and W. Brennenstuhl. Speech Act Classification: A
Study in the Lexical Analysis of English Speech Activity Verbs, Springer-Verlag, Berlin, 1981.

[Beek and Jager. 19931. A. Beek and J.J. Jager. Hoofdlijnen informatiekunde, Wolters-Noordhoff,
Groningen, 1993. (in Dutch)

[Belnap and Perloff. 1989]. N. Belnap and M. Perloff, "Seeing to it that: a canonical form for
agentives". in: Theoria, 54, pp 175-199.1988.

IBennett, 1991]. J. Bennett, "How do gestures succeed?", in: John Searle and his critics. E. Lepore
and R. van Gulick (eds.). Blackwell. Cambridge MA. pp. 3-16,1991.

[Bertino and Weigand. 1994]. E. Bertino. H. Weigand. "An approach to authorization modelling in
object-oriented database systems". in: Data and Knowledge Engineering 12, pp. 1-29,1994.

[Biagioli et al., 19871. C. Biagioli, P. Mariani. D. Tiscornia, "ESPLEX: a rule and conceptual based
model for representing statutes", in: Proc. of the lst Int.1 Conf. on Artificial Intelligence and
Law, ACM Press. New York, NY., pp. 240-251,1987.

[Blyth et al., 19921. A.J.C. Blyth. J Chudge, J.E. Dobson and M.R. Strens, "The ORDIT approach
to requirements identification". in: Proc. of Compsac '92.1992.

[Bond and Gasser, 19921. A.H. Bond and L. Gasser. "A subject-indexed bibliography of distributed
artificial intelligence". in: IEEE Transactions SMC (Systems. Man & Cybernetics). 22 (6). pp.
1260-1281.1992.

Ivan den Boogert. 1996]. P. van den Boogert, "Lexitrons", MSc Thesis, Infolab, Tilburg University,
august, 1996.

[Boutilier. 19941. C. Boutilier, "Toward a logic for qualitative decision theory", in: Proc. of 4th Int. 1
Conf. on Principles of Knowledge Representation and Reasoning (KR&R'94), J. Doyle, E.
Sandewall. P. Torasso (eds.), Morgan Kaufmann. San Mateo, CA. pp. 75-86,1994.

[Bowers. 19931. J Bowers. -COSMOS, AMIGO Advanced and MacAll 11". in: Computational
mechanisms of interaction for CSCW. C. Simone and K. Schmidt (eds.). COMIC Deliverable
3.1,ESPRITBRA 6225. Lancaster University, Lancaster, 1993.

I Bowers and Churcher, 1988]. J. Bowers and J. Churcher. -Local and global structuring of computer
mediated communication: Developing linguistic perspectives on CSCW in COSMOS", in: Proc.
of 2nd Conf. on Computer Supported Cooperative Work (CSCW'88), ACM SIGCHI and
SIGOIS. ACM Press. New York, NY., pp 291-302, 1988. (also in Office: Technology and
People, vol. 4. no. 3)

IBratman et al.. 19881. M.E. Bratman, D.J. Israel and M.E. Pollack. "Plans and resource-bounded
practical reasoning". in: Computational Intelligence. no. 4. pp. 349-355.1988.

[Bratman. 19901. M.E. Bratman, "What is intention ?", in: Intentions in Communication. P.R.
Cohen. J.L. Morgan. M.E. Pollack (eds.). MIT Press. Cambridge, MA., pp. 15-32.1990.

[Brazier et al.. 19961. F.M.T. Brazier, B. Dunin-Keplicz, N.R. Jennings and J. Treur, "DESIRE:
Modelling multi-agent systems in a compositional formal framework". in: International Journal
of Cooperative Information Systems. M. Huhns, M. Singh (eds.), special issue on Formal
Methods in Cooperative Information Systems, 1996.

[Brooks, 1986]. R.A. Brooks, "A robust layered control system for a mobile robot", in: IEEE
Journal of Robotics and Automation. vol. 2. no. 1, pp. 14-23.1986.

IBrooks. 1991 al. R.A. Brooks. "intelligence without reason", in: Proc. of 12th Int.1 Joint Conf. on
Al (IJCAl'91). Sydney. Australia. pp. 569-595.1991.

Literature 243

IBrooks. 199!b]. R.A. Brooks. "Intelligence without representation". in: Artificial Intelligence. no.
47. pp. 139-159.1991.

[Broy. 19861. M. Broy. "A theory for nondeterminism, parallelism. communication and
concurrency". in: Theoretical Computer Science. vol.45, pp. 1 -62.1986.

[Buchmann et al.. 19921 A Buchmann. M. Tamer Ozsu. M. Hornick. D. Georgakopoulos. F.
Manola. "A Transaction Model for Active Distributed Object Systems", in: Database
Transaction Models for advanced applications, A. Elmagarmid (ed). Morgan Kaufman. San
Mateo, CA 1992.

[Burg and van de Riet. 19951. J.F.M. Burg and R.P. van de Riet, "COLOR-X: Linguistically-based
event modelling - a general approach to dynamic modelling". in: Proc. of Advanced Information
Systems Engineering (CAISE'95). J. livari. K. Lyytinen. M. Rossi (eds.). LNCS-932, Springer-
Verlag. Berlin, pp. 26-39.1995.

[Burmeister and Sundermeyer. 1992]. B. Burmeister and K. Sundermeyer, "Cooperative problem
solving guided by intentions and perception", in: Decentralized AI 3 - Proc. of the 3rd European
WS on Modelling Autonomous Agents and Multi-Agent Worlds (MAAMAW'91). E. Werner
and Y. Demazeau (eds.). Elsevier Science Publ., North Holland, pp. 77-92,1992.

[Castaneda. 19811. H.N. Castaneda, "The paradoxes of deontic logic". in: New Studies in Deontic
Logic, R. Hilpinen (ed.), Reidel, Dordrecht. pp. 37-85.1981.

[Castaneda, 1982]. H.N. Castaneda, 'The logical structure of legal systems: a new perspective", in:
Deontic Logic, Computational Linguistics and Legal Information Systems, vol. 2. A.A. Martino
(ed.), North-Holland, 1982.

[Castaneda. 1989}. H.N. Castaneda, "The content of legal speech acts and legal deontic logic", in
Ned. Tijdschrift voor Rechtsfilosofie, 18 (2), pp. 108-129,1989.

[Castelfranchi. 1995]. C. Castelfranchi, "Guarantees for autonomy in cognitive agent architecture",
in: Intelligent Agents: Theories, Architectures, and Languages, M. Wooldridge and N.R.
Jennings (eds.), LNAI 890. Springer-Verlag, Heidelberg, pp. 56-70.1995.

[Chang and Woo. 1994]. M.K. Chang and C.C. Woo. "A Speech Act Based Negotiation Protocol:
Design, implementation and Test Use". in: ACM Transactions on Information Systems (TOIS),
vol. 12. no.4. pp 360-382,1994.

[Chen. 1976]. P.P. Chen. "The Entity-Relationship model - toward a unified view of data". in: ACM
Trans. on Database Systems (TODS). vol. 1. no. 1, pp. 9-38.1976.

[Codd. 19701. E.F. Codd, "A relational model of data for large shared data banks", in:
Communications of the ACM (CACM). vol. 13, no. 6, pp. 377-387,1970.

ICohen and Levesque, 199081. P.R. Cohen and H.J. Levesque, "Intention is choice with
commitment". in: Artificial intelligence 42. pp. 213-261,1990.

ICohen and Levesque. 199Ob]. P.R. Cohen and H.J. Levesque, "Rational interaction as the basis for
communication", in: Intentions in Communication. PR. Cohen, J. Morgan and M.E. Pollack
(eds.). MIT Press. Cambridge. MA.. pp. 221-256.1990.

IColeman et al, 19931. D. Coleman et al, Object-Oriented Development - Tile Fusion Method.
Prentice-Hall, 1993.

[Cooke, 19941. M. Cooke, Language and Reason: A Study of Habennas's Prag,natics. MIT Press.
Cambridge. Mass., 1994.

[CoopIS. 1994]. Proceedings of the Second International Conference on Cooperative Information
Systems (CoopIS-94). Toronto, Canada, May 17-20,1994.

ICovington. 1996]. M.A. Covington, 'Toward a new type of language for electronic commerce", in:
Proc. of the 29th Annual Hawaii Int.1. Conf. on System Sciences (HICSS). IEEE Computer
Society Press. pp. 329-336,1996.

ICSCW, 19951. Continuation of the debate on the Language/Action Perspective. in: Computer
Supported Cooperative Work (CSCW). Vol. 3. no. 2. pp. 29-95.1995.

I Date. 19901. C. Date. An introduction to Database Systems. vol. 1, 5th Ed. Addi son-Wesley. 1990.

244 A language-Action Perspective on tbe Design of Cooperative Information Agents

[Davenport, 1993]. T.H. Davenport. Process In,lovation, Harvard Business School Press, Boston,

MA.. 1993.
[Davenport. 1995]. T.H. Davenport, "Business Process Reengineering: Where it's been. where it's

going", in: Business Process Change: Reengineering Concepts, Methods and Technologies, V.
Grover and W J. Kettinger (eds.), Idea Group Publishing, Harrisburg PA., pp. 1-13, 1995.

[Davenport and Stoddard. 19941. T.H Davenport and D.B. Stoddard, "Reengineering: Business
change of mythic proportions ?". in: MIS Quarterly. June. pp 121-127, 1994.

[Davies and Edwards. 1994]. W.H.E. Davies and P. Edwards, "Agent-K: an integration of AOP and
KQML", available as URL: http://www.csd.abdn.ac.uk/-wdavies/Publications/CIKM94/
agentk.html

[Davis and Olson, 1984]. G.B. Davis and M.H. Olson, Management Information Systems:
Conceptual foundations, structure and development. McGraw-Hill, New York, 1984.

IDe Cindio et al., 1986]. F. De Cindio, G. De Michelis, C. Simone, R. Vassalo and A. Zanaboni,
"CHAOS as a coordinating technology". in: Proc. of the 1st Conf. on Computer Supported
Cooperative Work (CSCW'86), 1986.

[De Michelis and Grasso. 19941. G. De Michelis and M.A. Grasso, "Situating Conversations within
the Language/Action Perspective: The Milan Conversation Model,- in: Proc. of the 5th Conf. on
Computer Supported Cooperative Work (CSCW'94), ACM Press, New York, pp 89-100,1994.

[De Michelis et al., 1997]. G. De Michelis. E Dubois, M. Jarke, F. Matthes. J. Mylopoulos, K. Pohl,
J. Schmidt, C. Woo and E. Yu, "Cooperative Information Systems: A Manifesto". in:
Cooperative Information Systems: Trends & Directions, M.P.Papazoglou, G.Schlageter (eds.),
Academic-Press. Sept.. 1997. To appear.

I Dennett, 19811. D.C. Dennett, Brainstorms, Harvester Press, 1981.

I Dennett. 19871. D.C. Dennett, The Intentional Stance. MIT Press. Cambridge. MA.. 1987.
[Denning and Medina-Mora. 1995]. P.J. Denning and R. Medina-Mora. "Completing the loops",in:

Interfaces, vol. 25, no. 3, pp. 42-57,1995.
[De Troyer, 1991]. O.M.F. De Troyer, "The 00-Binary Relationship Model: A Truly Object-

Oriented Conceptual Model", in: Proc. of Advanced Information Systems Engineering
(CAISE'91). R. Andersen. J.A. Bubenko jr. A. Solvberg (eds.), LNCS 498, Springer-Verlag.
Berlin. 1991.

IDe Troyer and Meersman. 19951.0.M.F. De Troyer and R. Meersman. "A logic framework for a
semantics of object-oriented data modelling", in: Proc. of 14th Object-Oriented and Entity-
Relationship Modelling (OOER'95), Gold Coast. Australia, LNCS 1021, Springer Verlag,
Berlin. pp. 238-249.1995.

[De Troyer et al.. 1993]. O.M.F. De Troyer, E Verharen, H. Weigand. "Modelling information
systems dynamics". in: Proc. of the Int.1 ISCORE'93 WS on Inf. Syst.- Correctness and
Reusability. Hannover. sept.'93. U. Lipeck and G. Koschorreck (eds.). informatik-Berichte
01/93. Univ. Hannover. Hannover, 1993.

IDewitz. 1991 1. S.D. Dewitz. "Contracting on a performative network: using information
technology as a legal intermediary: in: Proc. of Collaborative Work. Social Communications
and In formation Systems, R. Stamper et al (eds.). Elsevier Science Publ., North-Holland. 1991.

IDietz, 199081. J.L.G Dietz. "A communication-oriented approach to conceptual modelling of
information systems", in: Proc. of Advanced Information Systems Engineering (CAISE'90). B.
Steinholtz. A. Solvberg and L. Bergman (eds.). LNCS 436, Springer-Verlag. Berlin. 1990.

IDietz, 199Ob]. J.L.G. Dietz. "A communication-oriented approach to conceptual systems
modeling" in: Proc. of the 1990 IFIP Working Conference on Dynamic Modelling of
Information Systems, Noordwijkerhout. pp. 37-60,1990.

[Dietz. 1992a]. J.L.G. Dietz. "Modelling Communication in Organizations", in: Proc. of Linguistic
Instruments in Knowledge Engineering. R.P. Van de Riet and R. Meersman (eds.). North-
Holland. 1992.

Literature 245

[Dietz. 1992bl. J.L.G. Dietz. Leerboek Infor,natiekundige Analyst. Kluwer Bedrijfswetenschappen,
Deventer. 1992. (in Dutch)

[Dietz. 199481. J.L.G. Dietz. "Business Modelling for Business Redesign". in: Proc. of 27th Hawaii
Int. 1. conf. on System Sciences (HICSS),IEEE Computer Society Press, pp. 723-732,1994.

[Dietz. 1994bl. J.L.G. Dietz. -Modeling Business Processes for the Purpose of Redesign". in: Proc.
of IFIP TC8 Open Conference on Business Process Redesign. B.C. Glasson, I.T
Hawryszkiewycs, B.A. Underwood, R.A. Weber (eds.), Elsevier Science Publ., North-Holland.
pp. 249-258,1994.

[Dietz and Mulder, 1996]. J.L.G. Dietz and H.B.F. Mulder, "Realising strategic management
reengineering objectives with DEMO", in: [Dignum et al., 1996c]

[Dietz and Widdershoven, 1991]. J.L.G. Dietz and G.A.M. Widdershoven. "Speech acts or
communicative action?". in: Proc. of 2nd European Conf. on Computer Supported Cooperative
Work (ECSCW'91), L Bannon, M. Robinson, K. Schmidt (eds.), Kluwer, Dordrecht, 1991.

[Dietz and Widdershoven, 19921. J.L.G. Dietz and G.A.M. Widdershoven, "A comparison of the
linguistic theories of Searle and Habermas as a basis for communication supporting systems".
in: Proc. of Linguistic instruments in Knowledge Engineering, R.P. van de Riet and R.A.
Meersman (eds.), North-Holland. 1992.

[Dietz et al.. 1996]. J.L.G. Dietz, N.B.J. van der Rijst, F.L.H. Stollman, "The specification and
implementation of a DEMO supporting CASE-tool", in: [Dignum et al., 1996cl

[Dignum, 19891. F.P.M. Dignum, A language for modelling knowledge bases, Ph.D. Thesis, Vrije
Universiteit (Free University), Amsterdam, 1989.

[Dignum, 19961. F.P.M. Dignum, "Autonomous agents and social norms", in: Proc. of the Int. 1.
Conf. on Multi-Agent Systems (ICMAS'96) Workshop on Norms, Obligations and
Conventions, Tokyo, Japan, dec., 1996 (to be published).

[Dignum, 1997]. F.P.M. Dignum, "Social interactions of autonomous agents; private and global
views on communication", in: Proc. of 3rd workshop of the ModelAge Project, P.-Y. Schobbens
(ed.), Sienna, Italy. January, 1997 (to be published).

[Dignum and Kuiper, 1997]. F.P.M. Dignum and R Kuiper, "Combining Dynamic Deontic Logic
and Temporal Logic for the Specification of Deadlines". Proc. of 30th Hawaii int.1. conf. on
System Sciences (HICSS),IEEE Computer Society Press Hawaii, January 6-10 1997. (to be

published)
[Dignum and Meyer. 1990]. F. Dignum and J.-J.Ch. Meyer., "Negations of transactions and their

use in the specification of dynamic and deontic integrity constraints". in: Semantics for
Concurrency, M. Kwiatkowska, M.W. Shields. and R.M. Thomas (eds.), Springer-Verlag,
Berlin, pp. 61-80, 1990.

[Dignum and Weigand, 1995al. F Dignum and H. Weigand. "Communication and Deontic Logic",
in: Information Systems, Correctness and Reusability, Proc. of ISCORE-94 Workshop, R
Wieringa and R. Feenstra (eds.). World Scientific. Singapore, pp. 242-260,1995.

[Dignum and Weigand, 1995bl. F. Dignum and H. Weigand, "Modelling Communication between
Cooperative Systems", in: Proc. of Advanced Information Systems Engineering (CAISE'95), J.
livari. K. Lyytinen. M. Rossi (eds.), LNCS-932, Springer-Verlag, Berlin, pp. 140-153,1995.

[Dignum and van Linder. 19961 F.Dignum and B. van Linder. "Modelling Rational Agents in a
Dynamic Environment: Putting Humpty Dumpty Together Again", in: Proc. of 2nd workshop of
the ModelAge Project. J.L. Fiadeiro and P.-Y. Schobbens (eds.), Sesimbra, Portugal. January
1996. pp. 81-92.1996.

[Dignum et al.. 1994]. F.P.M. Dignum. J.-J.Ch. Meyer and R. Wieringa, "Contextual permission: a
solution to the free choice paradox' . in: Proc. of 2nd Int. 1 WS on Deontic Logic in Computer
Science. A. Jones and M. Sergot (eds.), Tano A.S., Oslo, pp 107-135,1994.

[Dignum et al.. 1996a]. F. Dignum. H. Weigand and E. Verharen, "Meeting the deadline: on the
formal specification of temporal deontic constraints", in: Proc. of the Int.1. Symposium on
Methodologies for Intelligent Systems (ISMIS'96): Foundations of Intelligent Systems, Z.W.
Ras and M. Michalewicz (eds.). LNAI 1079. Springer-Verlag. Berlin. pp 243-252,1996.

246 A Language-Action Perspective on tbe Design of Cooperative Information Agents

[Dignum et al., 1996bl. F. Dignum. J.-J.Ch. Meyer. R. Wieringa and R. Kuiper. "A Modal approach
to intentions commitments and obligations: Intention plus commitment yields obligation". in:
Deontic Logic, Agency and Normalize Systems, M. Brown and J. Carmo (eds.). Springer-Verlag.
Berlin. pp. 80-97.1996.

[Dignum et al., 199601. F. Dignum, J. Dietz. E. Verharen. H. Weigand (eds.). Proc. of Ist Int.1
Workshop on Communication Modelling - The language/action perspective 1996. Electronic
Workshop in Computing Series, Springer-Verlag, Berlin, 1996. (also pre-proceedings, EIT
Report 96-01. Tilburg University. 1996).

[Dik. 19781. S.C. Dik. Functional Grammar, North-Holland. Amsterdam. 1978.

[Dik. 19891. S.C. Dik. Theory of Functional Grammar. Foris. Dordrecht. 1989.

IDobson et al.. 1991]. J.E. Dobson. M.J. Martin. C.W. Olphert and S.E. Powrie. "Determining
requirements for CSCW: The ORDIT Approach", in: proc. of Collaborative Work, Social
Communications and Information Systems. R. Stamper. P. Kerola. R. Lee and K. Lyytinen
(eds.), IFIP, Elsevier Science Publ.. North-Holland, 1991.

[Doyle. 19881. R. Doyle. "Artificial intelligence and rational self-government". Technical Report
CMU-CS-88-124, Comp. Science Dep., Carnegie-Mellon University, Pittsburgh, PA., 1988.

[Durfee et al.. 1989]. E. H. Durfee, V.R. Lesser, D.D Corkill. 'Trends in cooperative distributed
problem solving", in: IEEE Transactions on Knowledge and Data Engineering, vol. 1, no. 1. p.
63-68.1989.

Ivan Eck. 1982]. J.A. van Eck, "A system of temporally relative modal and deontic predicate logic
and its philosophical applications", in: Logique et Analyse 100. pp. 249-381.1982.

[Edmonds, 19921. E. Edmonds, The separable user interface. Academic Press. London. 1992.

[Elgesem, 1993]. D. Elgesem, Action Theory and Modal Logic. Ph.D. Thesis. Institute for
Philosophy. University of Oslo. Oslo. Norway. 1993.

[Elmagarmid et al.. 1990]. A.K. Elmagarmid, Y. Leu. W. Litwin. and M. Rusinkiewicz, "A
Multidatabase Transaction Model for InterBase". in: Proc. of 16th Int.1 Conf. on Very Large
Databases (VLDB'90). Brisbane. Morgan Kaufmann. Los Altos. CA.. pp. 507-518.199().

[Elmagarmid. 19921 A. Elmagarmid (ed.), Database Transacticin Models for Ad\·anced Applicatioits.
Morgan Kaufman. 1992.

IEmerson. 19891. E.A. Emerson, "Temporal and Modal Logic". in: Handbook of Theoretical
Computer Science. 1. van Leeuwen (ed.), North-Holland, Amsterdam, pp. 995-1072,1989.

[Eriksson. 1996]. 0. Eriksson. "A communicative action analysis of information systems: a sales

.support system and its effects". in: [Dignum et al.. 1996cl.
[Etzioni et al.. 19941. 0. Etzioni, N. Lesh and R. Segal, "Building softbots for UNIX". in: Software

agents - Papers from the 1994 Spring Symposium (Technical Report SS-94-()3). 0. Etzioni
(cd.), AAAI Press, Menlo Park. CA.. pp. 9-16,1994.

[Ferguson, 199281. I.A. Ferguson. TouringMachines: An architecture for cly,iamic. rational, mobile
agents. Ph.D. Thesis. Clare Hall, University of Cambridge. UK, 1992.(also Technical Report
No, 273. University of Cambridge Computer Laboratory)

IFerguson. 1992bl. I.A. Ferguson, "Towards an architecture for adaptive. rational. mobile agents",
in: Decentralized Al 3 - Proc. of the 3rd European WS on Modelling Autonomous Agents and
Multi-Agent Worlds (MAAMAW'91), E. Werner and Y Demazeau (eds.), Elsevier Science
Publ.. North Holland. pp. 249-262.1992.

[Fiadeiro and Maibaum. 1991]. J. Fiadeiro and T. Maibaum. "Temporal Reasoning over Deontic
Specification". in: Journal of Logic and Computation I (3). 1991.

IFinin et al.. 19931. T. Finin. D McKay, R. Fritzson, R. McEntire. -KQML: an information and
knowledge exhange protocol". in: Proc. of Int.1 Conf. on Building and Sharing of Very Large-
Scale Knowledge Bases, dec., 1993. (Also available as: -KQML: an information and knowledge
exhange protocol". in: Knowledge building atid knowledge sliaring, K. Fuchi and T. Yokoi
(eds.), Ohmsha and IOS Press, 1994: and as URL http://www.cs.umbc.edu/kqml/papers/kbks.ps)

Literature 247

[Finin et al.. 19941. T. Finin. R. Fritzson. D. McKay. R. McEntire, "KQML: a language and
protocol for knowledge and information exchange". in: Distributed Al - Papers from the 13th
Int.1. WS, M. Klein and K. Sharma (eds.), AAAI Press, Menlo Park, CA., pp. 93-103,1994.
(Technical Report WS-94-02)

[Flach. 19951. P.A. Flach, Conjectures. an inquiry concerning the logic of induction. PhD Thesis,
Tilburg University, 1995.

[Flores and Ludlow. 1980]. F. Flores and J.J. Ludlow. "Doing and Speaking in the Office". in:
Decision Support Systems: Issues and Challenges, G. Fick. H. Sprague Jr. (Eds.)., Pergamon
Press. New York, pp. 95-118,1980.

[Flores et al., 1988]. F. Flores, M.Graves, B.Hartfield.and T.Winograd, "Computer Systems and the
Design of Organizational Interaction". in: ACM Trans. on Information Systems (TOIS), Vol.6,
No.2,1988.

[Galbraith, 1973]. J.R. Galbraith, Designing Complex Organizations, Addison-Wesley, Reading
MA, 1973.

[Galbraith, 19771. J.R. Galbraith, Organization Design, Addison-Wesley, Reading MA. 1977.
[Galliers, 1988]. J.R. Galliers, A theoretical framework for computer models of cooperative

dialogue, acknowledging multi-agent conflict, Ph.D. Thesis, Open University, UK, 1988.
[Garcia-Molina et al., 1990]. Garcia-Molina, H., D Gawlick, J. Klein, K. Kleissner, K. Salem,

"Coordinating multi-transaction activities". Technical Report CS-TR-247-90. Princeton
University, Dept of Computer Science. Feb 1990.

[Gasparotti and Simone, 1990]. P. Gasparotti and C. Simone, "A user defined environment for
handling conversations", in: Multi-User Interfaces and Applications,S. Gibbs and A.A. Verrijn-
Stuart (eds.), IFIP, Elsevier Science Publ., North-Holland, pp. 271-289,1990.

[Geanakoplos, 1988]. J, Geanakoplos. "Common knowledge, Bayesian learning, and market
speculation with bounded rationality". Memo, Yale Universit. New Haven, CT., 1988.

[Genesereth and Ketchpel, 1994]. M.R. Genesereth and S.P. Ketchpel, "Software Agents", in:
Communications of the ACM (CACM), vol. 37, no. 7, pp. 48-53,1994.

[Genesereth and Fikes, 1992] M.R. Genesereth and R. Fikes, "Knowledge Interchange Format, v.
3.0, Reference Manual", Technical Report Logic-92- 1. Computer Science Department, Stanford
University, June, 1992.

[Genesereth and Nilsson, 1987]. M.R. Genesereth and N. Nilsson, Logical Foundations of Artificial
Intelligence. Morgan Kaufmann Publ.. San Mateo, CA., 1987.

[Georgakopoulos and Hornick. 19941. D. Georgakopoulos and M.F. Hornick, "A framework for
enforcable specification of extended transaction models and transactional workflows". in: Int.1.
Journal of Intelligent and Cooperati ve Information Systems, 3 (3). pp. 225-253,1994.

[Georgakopoulos et al., 1994]. D. Georgakopoulos et al., "Specification and management of
extended transactions in a programmable transaction environment", in: Proc. of the 10th Data
Engineering Conf., Houston. TX.. feb.. 1994.

[Georgeff and Lansky, 1987]. M.P. Georgeff and A.L. Lansky, "Reactive reasoning and planning",
in: Proc. of 6th Nat.1 Conf. on Al (AAAI'87). Seattle, WA., AAAI Press, Menlo Park, CA., pp.
677-682.1987.

[Glasgow et al., 19891. J. Glasgow, G. MacEwen, P. Panangaden, "Security by permission in
databases". in Database Security 11: Status and Prospects, Results of the iFIP WG 11.3 WS on
Database Security, C.E. Landwehr (ed.), Kingston, Ontario, Canada, 1989.

[Gmytrasiewicz and Durfee, 1993] P.J. Gmytrasiewicz and E.H. Durfee, "Reasoning about other
agents: philosophy. theory and implementation". in: Proc. of the 12th Int.1. Workshop on
Distributed Al. AAAI-Press, 1993.

[Goldkuhl, 1992]. G. Goldkuhl. "Contextual activity modelling of information systems", in: Proc. of
3rd Int.1 WC on Dynamic Modelling of Information Systems. H.G. Sol (ed.), IFIP, Delft
University of Technology, Delft, 1992.

248 A I.anguage·Action Perspective on tbe Design of Cooperative Information Agents

[Goldkuhl, 1993]. G. Goldkuhl. "Verksamhetsurveckla Datasystem". Intention. LinkOping, 1993. (in
Swedish)

[Goldkuhl, 1995]. G. Goldkuhl. "Information as Action and Communication", in: The Infological
Equation, Essays in honour of B. Langefors. B. Dahlbohm (ed.), Gothenburg Studies in
Information Systems, Gothenburg Univ., 1995. (Also: Lingkoping Univ. Report LiTH-IDA-R-
95-09)

[Goldkuhl, 1996]. G. Goldkuhl, "Generic business frameworks and action modelling", in: [Dignum
et al.. 1996c].

[Goldkuhl and Rostlinger, 1988]. G. Goldkuhl and A. Rostlinger, F 25 rand r in g sanaly s.

Studentlitteratur. Lund, 1988.
[Goodwin, 19931. R. Goodwin, "Formalizing Properties of Agetns", Report CMU-CS-93-159,

School of Computer Science, Carnegie Mellon University. Pittsburgh, PA, may 1993.
[Gray. 1981]. J.N. Gray. "The transaction concept: Virtues and limitations", in: Proc. of 7th Int. 1

Conf. on Very Large Data Bases (VLDB'81), Cannes, France, pp. 144-154,1981.

[Grossman and Ege. 1987]. M. Grossman and R. Ege, "Logical composition of object-oriented
interfaces", in: Proc. of OOPSLA'87. ACM Press. New York, pp 295-306,1987.

[Guarino, 1992]. N. Guarino, "Concepts, Attributes. and Arbitrary Relations: Some Linguistic and
Ontological Criteria for Structuring Knowledge Bases", in: Proc. of Linguistic Instruments in
Knowledge Engineering, R. v.d. Riet and R.A Meersman (eds), North-Holland, Amsterdam,
pp. 195-211,1992.

[Habermas, 1981] J. Habermas, Theorie des kommunikativen Handelns. Erster Band, Suhrkamp
Verlag, Frankfurt am Main, 1981. (in German)

[Habermas. 1984]. J Habermas. The Theory of Communicative Action: Reason and the
Rationalization of Society, Volume One. Beacon Press. Boston, 1984.

[Habermas, 1987]. J. Habermas, The Theory of Communicative Action: Lifeworld and System: A
critique of»tctionalist reason, Beacon Press, Boston. 1987.

[Habermas, 1991]. J. Habermas, "Comments on John Searle: Meaning, Communication and
Representation". in: John Searle and his Critics. E. Lepore, R. Van Gulick (Eds.), Blackwell.
Cambridge MA, pp. 17-31, 1991.(Searle'sreply to Habermas. pp. 89-96)

[Haddadi, 1995]. A. Haddadi. Communication and Cooperation in Agent Systems: A pragmatic
theon·. LNCS 1056. Springer-Verlag, Berlin. 1995.

[Haerder and Reuter. 1983]. T. Haerder and A. Reuter. -Principles of transaction-oriented database

recovery", in ACM Computing Surveys, 15 (4). pp. 287-317,1983.

[Hammer. 1990]. M. Hammer, "Reengineering work: don't automate, obliterate" in: Harvard
Business Review,july-august 1990, pp 104-112,1990.

[Hammer and Champy, 1993]. M. Hammer and J.A. Champy. Reengineering the corporation: A
manifesto for business revolution, Nicholas Brealy. London, 1993.

[Harel. 19791. D. Harel. "First Order Dynamic Logic, in: LNCS 68, Springer-Verlag. Berlin, 1979.

[Harel. 19841. D. Harel. "Dynamic Logic". in: Handbook of Philosophical Logic. Vol. 11 -
Extensions of Classical Logic, D. Gabbay and F. Guenther (eds.). Synthese Lib. Vol. 164.
Reidel, Dordrecht, pp. 497-604.1984.

[Hartson and Dix, 1989]. H.R. Hartson and D. Hix, "Human-Computer Interface Development". in:
ACM Computing Surveys 21.1. p.5-92.1989.

[Helander, 1988]. M. Helander. Handbook of himicin-computer interaction, North-Holland. 1988.

[Helm et al.. 19901. R. Helm. I.M. Holland and D. Gangopadhyay. "Contracts: Specifying
Behavioral Compositions in Object-Oriented Systems". in: proc. of OOPSLA/ECOOP'90. Conf.
on Object-Oriented Programming: Systems. Languages, and Applications/ European Conference
on Object-Oriented Programming. N. Meyrowitz (ed.). ACM Sigplan Notices vol.25, no. 10. oct.
1990. ACM Press. New York. NY. 1990.

[Hengeveld, 19881. K. Hengeveld, "Illocution, mood, and modality in a Functional Grammar of
Spanish". in: Journal of Semantics, vol. 6. pp 227-269.1988.

Literature 249

[Hengeveld, 1990]. K. Hengeveld, "The hierarchical structure of utterances", in: Layers and Levels

of Representation in Language Theory: a functional view, J. Nuyts, A.M. Bolkenstein, C. Vet
(eds.). John Benjamins, Amsterdam/Philadelphia, 1990.

[Herrestad and Krogh, 1995]. H. Herrestad and C. Krogh, "Deontic logic relativised to bearers and

counterparties", in: 25 Years Anniversary Anthology NRCCL. 1. Bing and 0. Torvund (eds.),
Tano Publ.. CompLex Series, Oslo. 1995.

[Hirscheim. 1985]. R.A. Hirscheim, Office Automation: A social and organizational perspective,
John Wiley and Sons, Chichester, 1985.

[Holm. 1994]. P. Holm, 'The COMMODIOUS Method - COMmunication MODelling as an Aid to
Illustrate the Organizationsl Use of Software", in: Proc. of 6th Int.1 Conf. on Software
Engineering and Knowledge Engineering, Jurmala, Latvia, 1994.

[Holm, 1996]. P. Holm. On the design and usage of information technology and the structuring of
communication and work, Ph.D. Thesis, Stockholm University, april 1996.

[Hooff, 1995]. B. van den Hooff, "For what it's worth: de waarde van communicatietechnologieen
voor organisaties", in: Informatie en Informatiebeleid, vol. 13, no.2, pp. 34-43,1995. (in Dutch)

[Horty, 19961. J.F. Horty, "Combining agency and obligation", in: Deontic Logic, Agency and
Normative Systems, M. Brown and J. Carmo (eds.). Springer-Verlag, Berlin, pp. 98- 122,1996.

[Huhns et al., 1992]. M.N. Huhns, N. Jacobs, T. Ksiezyk, W.M. Shen, M.P. Singh and P.E. Cannata,
"Integrating enterprise information models in Carnot", in: Proc of Int.1 Conf on Intelligent and
Cooperative Information Systems (CoopIS'92), Rotterdam, The Netherlands, pp. 32-42.1992.

[ISO, 1982]. J.J. v Griethuysen (ed.). Concepts and terminology for the conceptual schema and the
information base, Report ISO/TC97/SC5-N695, ISO, 1982.

[ISO, 1984] J.J.van Griethuysen (ed.), Concepts and Terminology for the Conceptual Schema and
the In formation Base. ISO/TC97/SC21 N 197, ISO. 1984.

[ISO, 1989]. ISO/DP 10026-1,2,3. Information Processing Systems, Open Systems Interconnection,
Distributed Transaction Processing. 1989.

[Jacobson, 1987]. 1. Jacobson, "Object-Oriented development in an industrial environment", in:
proc of OOPSLA'87, Conference on Object-Oriented Programming: Systems, Languages, and
Applications, N. Meyrowitz (ed.), ACM Sigplan Notices vol.22, no. 12, dec. 1987. ACM Press,
New York, NY., pp. 183 - 191,1987.

[Jacobson et al., 19921.1. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-Oriented
Software Engineering: a use-case driven approach, ACM Press, Addison-Wesley, 1992.

[Janson and Woo, 1992]. M.A. Janson and C.C. Woo, "Investigating information and knowledge
gathering methods: A speech act lexicon perspective", in: Information Systems Concepts:
Improving the understanding. E.D. Falkenberg, C. Rolland and E.N. El-Sayed (eds.), Elsevier
Science Publ , North-Holland, 1992.

[Janson and Woo, 1995]. M.A. Janson and C.C. Woo, "Comparing IS Development Tools and
Methods: Using the Speech Act Theory". in: Information and Management. Vol. 28. pp. 1-12,
1995

[Jennings, 19938]. N.R. Jennings, "Commitments and conventions: The foundation of coordination
in multi-agent systems". in: Knowledge Engineering Review. vol. 8, no. 3, pp. 223-250,1993.

[Jennings, 1993b]. N R. Jennings, "Specification and implementation of a belief desire joint-
intention architecture for collaborative problem solving". in: Journal of Intelligent and
Cooperative Information Systems. vol. 2, no. 3. pp 289-318. !993.

[Jennings, 19951. N.R. Jennings. "Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions", in: Artificial Intelligence 75 (2), pp 195-240,1995.

[Jennings, 1996]. N.R. Jennings. "Coordination techniques for Distributed Artificial Intelligence".
in: Foundations of Distributed Artificial Intelligence. G. O'Hare and N. Jennings (eds.). John
Wiley and Sons. New York, pp. 187-210,1996.

250 A language·Action Perspective on tbe Design of Cooperative Information Agents

[Jennings et al., 1992]. N.R. Jennings, E.H. Mamdani, 1. Laresgoiti, J. Perez, J. Corera, "GRATE: A
General Framework for Cooperative Problem Solving", in: 1EE-BCS Journal of Intelligent
Systems Engineering, 1 (2), pp 102-114,1992.

[Jennings et al.. 199681. N.R. Jennings, P. Faratin, M J. Johnson, P. O'Brien. M.E. Wiegand, "Using
intelligent agents to manage business processes", in: Proc of lst Int.! Conf. on the Practical
Application of intelligent Agents and Multi-agent technology (PAAM'96), B. Crabtree and N.R.
Jennings (eds.), The Practical Application Company, Lancashire, pp. 345-360,1996.

[Jennings et al. 1996b]. N.R. Jennings, J. Corera, I. Laresgoiti, E.H. Mamdani, F. Perriolat, P.
Skarek. L.Z. Varga. "Using ARCHON to develop real-world DAI applications for electricity
transportation management and particle accelerator control", in: IEEE Expert,december, 1996.

[Jensen, 1987]. K. Jensen, "Coloured Petri nets", in: Petri nets: central models and their properties
(LNCS 188), G. Rosenberg (ed.). Springer-Verlag, Berlin. pp. 248-299,1987.

[Johannesson, 1995]. P. Johannesson, "Representation and communication - a speech act based
approach to information systems design': in: Information Systems, vol.20, no.4, pp. 291-303.
1995.

IJones and Sergot. 1993]. A.J.1. Jones and M. Sergot, "On the characterization of law and computer
systems: the normative systems perspective", in: Deontic Lngic in Computer Science, J.-J.Ch
Meyer and R. J. Wieringa (eds.), John Wiley and Sons Ltd., Chichester. 1993.

[Jones et al., 1979]. S. Jones, P. Mason, R. Stamper, "LEGOL 2.0: a relational specification
language for complex rules", in: Information Systems 4, pp. 157- 169,1979.

[Kaelbling, 19911. L.P. Kaelbling, "A situated automata approach to the design of embedded
agents", in: SIGART Bulletin, vol. 2,no. 4, pp. 85-88,1991.

[Kaelbling and Rosenschein, 1990] L.P. Kaelbling and S.J. Rosenschein, "Action and planning in
embedded agents", in: Designing autonomous agents. P. Maes (ed.). MIT Press, Cambridge,
MA., pp. 35-48,1990.

IKaplan et al., 19921. S. Kaplan, W Tolone, D Bogia, C. Bignoli, "Flexible, active support for
collaborative work with ConversationBuilder", in: Proc. of 4th Conf. on Computer Supported
Cooperative Work (CSCW'92), ACM Press, New York. NY., pp. 378-385,1992.

[Keen. 19911. P.G.W. Keen, Shaping the future: Business design through information technology,
Harvard Business School Press, Boston. MA., 1991.

[Kensing and Winograd, 19911. F Kensing and T. Winograd, "The language/action approach to
design of computer-suppor for cooperative work: A preliminary study in work mapping". in:
Collaborative Work, Social Communications and Information Systems, R.K. Stamper, P. Kerola
and K. Lyytinen (eds.), Elsevier Science Publ., North-Holland, 1991.

[Khosla. 1988]. S. Khosla, System Specification: A deontic approach. Ph.D. Thesis, Imperial
College, London. 1988.

1Khosla and Maibaum, 1987]. S. Khosla and T.S.E. Maibaum. 'The prescription and description of
state based systems", in: Temporal logic in specification, B. Banieqbal, H. Barringer, A. Pnueli
(eds.), LNCS-398. Springer-Verlag, Berlin, 1987.

[Kieronska, 1991]. D.H. Kieronska, A system for the synthesis of concurrent programs: an
algorithinic approach to state graph constructions and transformations, Technical Report. PhD
Thesis. Department of Computer Science, University of Western Australia, 1991.

IKimbrough and Lee. 1996]. S.0. Kimbrough and R.M. Lee, "On formal aspects of Electronic (or
Digital) Commerce: examples of research issues and challenges". in: Proc. of the 29th Annual
Hawaii Int.1 Conf. on System Sciences (HICSS),IEEE Computer Society Press, pp. 3 19-328,
1996.

IKimbrough et al., 1984]. S.0. Kimbrough, R.M. Lee and D. Ness, "Performative. informative, and
emotive systems: The first piece of the PIE", in: Proc. of 5th Int.1 Conf. on Information Systems
(ICIS'84). L. Maggi, J.L. King, K.L. Kraenens (eds.). pp. 141-148.1984.

[King and Novak, 1989]. R. King and M. Novak, "FaceKit: a database interface design toolkit", in:
Proc. of Very Large Databases (VLDB'89), Morgan Kaufmann. Los Altos. CA.. 1989

Literature 251

[Kinny et al., 1992]. D. Kinny, M. Ljungberg, A.S. Rao, E. Sonenberg, G. Tidhar, E. Werner,
"Planned team activity", in: Artificial Social Systems - Selected papers from the 4th European
WS on Modelling Autonomous Agents and Multi-Agent Worlds (MAAMAW'92), C.
Castelfranchi and E. Werner (eds.), LNAI 830, Springer-Verlag, Heidelberg, pp 226-256,1992.

[Kiss. 1992]. G. Kiss, -Variable coupling of agents to their environment: Combining situated and
symbolic automata", in: Decentralized Al - 3, E. Werner and Y. Demazeau (eds.), Elsevier
Science Publ., North-Holland, pp. 231-248.1992.

[Klusch, 1994]. M. Klusch, "Using a cooperative agent system for a context-based recognition of
interdatabase dependencies". in: Proc CIKM-94 WS on Intelligent Information Agents,
Gaithersburg, 1994.

[Klusch, 19951. M. Klusch, "Cooperative recognition of interdatabase dependencies", ACM
SIGMOD Proc. 2. Int. WS on Advances in Databases and Information Systems, Moscow, ACM
Press. New York, NY., 1995.

[Klusch, 1996]. M. Klusch, "Utilitarian coalition formation between information agents for a
cooperative discovery of interdatabase dependencies", in: Cooperative Knowledge Processing,
S. Kirn, G. O'Hare (eds.), Springer Verlag, London, 1996.

[Klusch and Shehory, 19961. M. Klusch and 0. Shehory, "Coalition formation among rational
information agents", in: Proc. of the 7th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World MAAMAW-96. Eindhoven (Netherlands), W. van de Velde, J. Perram
(eds.), LNAI 1038, pp204-217. Springer Verlag, Berlin 1996.
also available as:URL: http://www.informatik.uni-kiel.de/-mkl/papers/f-maamaw96.ps

[Kowalski. 1995]. R.A. Kowalski. "Using meta-logic to reconcile reactive with rational agents", in:
Meta-Logics and Logic Programming,MIT Press, 1995.

[Kraus, 1993]. S. Kraus, "Agents contracting tasks in non-collaborative environments", in: Proc of
Nat.1 Conf. on Al (AAAI'93). Washington, DC.. AAAI Press, Menlo Park, CA., 1993.

[Kuhn et al.. 19921. E. Kuhn, F. Puntigam. A.K. Elmagarmid, "Multidatabase transaction and query
processing in logic". in: Database Transaction Models for advanced applications. A.
Elmagarmid (ed), Morgan Kaufman, San Mateo. CA., 1992.

[Kyng, 1995]. M. Kyng, "Making representations work", in: Communications of the ACM
(CACM), vol. 38, no. 9, pp. 46- , 1995.

[Langefors. 1966]. B. Langefors. Theoretical analysis of information systems, Studentlitteratur,
Lund, 1966.

ILangefors, 1993] B. Langefors, Essays on infology, Dep. of Information Systems, University of
Gl,teborg, GOteborg, 1993.

[Langefors and Samuelson, 19761. B. Langefors and K. Samuelson, Information and Data in
Systems. Petrocelli/Charter, New York, 1976.

ILee, 19851. R.M. Lee, "Bureaucracies as artificial intelligence", in: Knowledge Representation for
Decision Support Systems, Proc. of IFIP WG 8.3 Working Conference, L.B. Methlie, R.H
Sprague jr. (eds.), North-Holland, Amsterdam, 1985.

[Lee, 1988al. R.M. Lee. "Bureaucracies as deontic systems", ACM Transactions on Office
Information Systems (TOIS), 6 (2), p.87-108,1988.

[Lee, 1988b]. R.M. Lee, "A logic model for electronic contracting", in: Decision Support Systems
4. pp. 27-44,1988.

[Lee, 19961. R.M. Lee, Contract Grammars: Computable contract procedures for electronic
contracting. Euridis Report no. WP 96.06.01, Erasmus University, Rotterdam, 1996

[Lehtinen and Lyytinen. 1986]. E. Lehtinen, K. Lyytinen, "Action Based Model of Information
Systems", in: Information Systems, vol. 11, no. 4, pp. 299-317,1986.

[Lepore and Van Gulick, 1991]. E. Lepore and R. Van Gulick (eds.), John Searle and his critics.
Basil Blackwell. Cambridge, Mass.. 1991.

252 A Ikinguage-Action Perspective on tbe Design of Cooperative Information Agents

[Levesque et al.. 19901. H.J. Levesque, P.R. Cohen and J.H.T. Numes, "On acting together". in:
Proc. of 8th Nat.1 Conf. on Al (AAAI'90). Boston. MA.. AAAI Press, Menlo Park, CA.. pp. 94-
99,1990

[Levinson, 19831. S.C. Levinson. Pragmatics. Cambridge University Press, Cambridge, MA., 1983.
Ivan Linder, 1996]. B. van Linder. Modal Logics for Rational Agents, Ph.D. Thesis. Utrecht

University, Utrecht. 1996.

[Ljungberg and Holm, 1996]. J. Ljungberg and P. Holm, "Speech acts on trial", in: Computers in
Context. L Mattiassen and M. Kyng (eds.), MIT Press, Cambridge, MA., 1996.

[Luhmann. 19851. N. Luhmann, The sociology of law. Routledge, London, 1985.
[Lundeberg et al.. 19811. M. Lundeberg, G. Goldkuhl. A. Nilsson, Information systems development

- A systematic approach, Prentice-Hall. Englewood Cliffs, NJ., 1981.
[Lynch, 19951. M. Lynch, "On making explicit", in: Computer Supported Cooperative Work, vol. 3,

no. I. pp. 65-68,1995.
[Lyytinen. 19851. K. Lyytinen. "Implications of theories of language for information systems". in:

MIS Quarterly. March, pp. 61-74,1985.
[Lyytinen and Hirschheim, 19881. K. Lyytinen and R. Hirschheim, "Information Systems as

Rational Discourse: an Application of Habermas' Theory of Communicative Action", in:
Scandinavian Journal of Management, Bd 4. Nr. 1/2, pp. 19-30,1988.

IMaes, 19891. P. Maes, 'The dynamics of action selection". in: Proc. of 11 th Int.1 Joint Conf. on Al
(IJCAl'89), Detroit, MI., pp 991-997,1989.

[Maes, 1990]. P. Macs, "Situated agents can have goals". in: Designing Autonomous Agents, P.
Maes (ed.). MIT Press, Cambridge, MA., pp. 49-70,1990.

[Maes. 1991]. P. Maes. "The agent network architecture (ANA)". SIGART Bulletin. vol. 2. no. 4,
pp. 115-120,1991.

IMaibaum, 19931. T. Maibaum, "Temporal reasoning over deontic specifications". in: Deontic
Logic in Computer Science, Normative System Specification, J.-J.Ch. Meyer and R.J. Wieringa
(eds.). John Wiley and Sons Ltd.. Chichester. 1993.

IMally. 19261. E. Mally. Grundgesetze des Sollens, Elemente der Logik des Willens, Leuschner and
Lubensky, Graz, 1926.

IMartin. 19891. J. Martin. Information Engineering - Introduction. Prentice-Hall. Englewood Cliffs,
NJ.. 1989.

IMcCarthy. 19791. J. McCarthy. Ascribing mental qualities to machines. Technical Report Memo
326, Stanford University Al Lab. Stanford, CA., 1979.

IMcCarty and Monk. 19941. J.C. McCarty and A. Monk. "Channels. conversation, cooperation and
relevance: all you wanted to know about communication but were afraid to ask". in:
Collaborative Computing. vol. 1. no. 1, 1994.

IMedina-Mora et al., 19921. R. Medina-Mora, T. Winograd, R. Flores and F. Flores, "The Action-
Workflow Approach to Workflow Management Technology", in: Proc. of 4th Conf. on
Computer Supported Cooperative Work (CSCW'92). J. Turner. R. Kraut (eds.). ACM Press.
New York, NY., pp 281-288.1992.

[Meyer. 1988 J. J.-J.Ch. Meyer. "A different approach to deontic logic: deontic logic viewed as a
variant of dynamic logic". in: Notre Dame Journal of Formal Logic 29(1), pp 109-136.1988.

IMeyer and Wieringa. 1993]. J.-J,Ch. Meyer and R.J. Wieringa, "Deontic Logic: A concise
overview". in: Deontic gic iii Computer Science, Normative System Specification. 1.-1.Ch.
Meyer and R.J. Wieringa (eds.). John Wiley and Sons Ltd., Chichester. 1993.

[Minsky. 19861. M. Minsky. The Society of Mind. Simon and Schuster. New York, 1986.

IMinsky and Lockman, 1985]. N.H. Minsky and A.D. Lockman, "Ensuring integrity by adding
obligations to privileges", in: 8th IEEE Int.I Conf. on Software Engineering. pp. 92-102,1985.

IMintzberg. 1989]. H. Mintzberg. Mintzberg on Management: inside our strange world of
organizations, The Free Press, New York. 1989.

Literature 253

IMizoguchi. 1993]. R. Mizoguchi, "Knowledge Acquisition and ontology", in: Proc. of Conf. on
Building and Sharing of very large-scale knowledge bases (KB&KS'93), JIPDEC, Tokyo. 1993.

[Moore, 1980]. R.C. Moore. "Reasoning about knowledge and action". Technical Report 191. SRI
International, 1980.

[Moore. 1985]. R.C. Moore, "A formal theory of knowledge and action",in: For,nal theories of the
com,nonsense world. J.R. Hobbs and R.C. Moore (eds.), Ablex. Norwood. pp. 319-358.1985.

[Moore. 1990]. R.C. Moore. "A formal theory of knowledge and action". in: Readings in Planning,
J.F. Allen, J. Hendler. A. Tate (eds.). Morgan Kaufmann Publ., San Mateo, pp 480-519,1990.

IMorgan. 1986]. G. Morgan. images of Organization. Sage, Newbury Park, 1986.
IMoulin and Chaib-draa, 19961. B. Moulin and B. Chaib-draa, "An Overview of Distributed

Artificial Intelligence". in: Foundations of Distributed Artificial Intelligence, G O'Hare and N.
Jennings (eds.), John Wiley and Sons, New York, pp. 3-55,1996.

[Moutaouakil, 19911. A. Moutaouakil, "On representing implicated illocutionary force: grammar or
logic", in: Working papers in Functional Grammar. WPFG. no. 40.1991.

[Muller, 19941. J.P. Muller, "A conceptual model for agent interaction". in: Proc. of 2nd Int.1 WC
on Cooperative Knowledge Based Systems (CKBS'94), S.M. Deen (ed.), DAKE Centre.
University of Keele. UK, pp 213-234.1994.

[Muller, 1996]. H.J. Muller, "Negotiation Principles", in: Foundations of Distributed Artificial
Intelligence. G. O'Hare and N. Jennings (eds.). John Wiley & Sons, NY., pp. 211-229,1996.

IMuller and Pischel. 1994]. J.P. Muller and M. Pischel. "Modelling interacting agent in dynamic
environments", in: Proc. of Ilth European Conf. on Al (ECAI'94), Amsterdam, The
Netherlands. pp. 709-713. 1994.

[Muller et al., 1995]. J.P. Muller, M. Pischel and M. Thiel, "Modelling reactive behaviour in
vertically layered agent architectures", in: Intelligent Agents: Theories, Architectures and
Languages, M. Wooldridge and N.R. Jennings (eds.), LNAl 890, Springer Verlag, Heidelberg,
pp. 261-276,1995.

[Murata, 1989]. T. Murata, "Petri Nets: Properties. Analysis and Applications", in: Proc. of IEEE 77
(4). 1989.

[Narazaki et al., 1995]. S. Narazaki. H. Yamamura and N. Yoshida, "Strategies for selecting
communication structures in cooperative search", in: Int.1 Journal of Cooperative Information
Systems (IJCIS), M. P. Papazoglou. G. Schlageter (eds.). vol. 4. no. 4, pp. 405-422.1995.

INash, 1950]. J.F. Nash, "The bargaining problem", in: Econometrica 28, pp. 155-162,1950.
INierstrasz and Papathomas. 19901. O. Nierstrasz and M. Papathomas, "Viewing objects as patterns

of communicating agents". in: Proc. of OOPSLA/ECOOP'90.1990.
[Nodine et al.. 19941. M.H. Nodine, N. Nakos and S. Zdonik. "Specifying Flexible Tasks in a

Multidatabase", in: ACM SIGOIS Bulletin 16 (1), p. 13-17, 1994. (also in Proc. CoopIS-94)
[Ngu. 1990]. A.H.H. Ngu. "Specification and verification of temporal relationships in transaction

modelling". in: Information Systems. 15 (2). pp. 257-267,1990.
INgu et al.. 1994]. A.H.H. Ngu. R.A. Meersman and H. Weigand. "Specification and verification of

communication for interoperable transactions", in: Int.I. Journal of intelligent and Cooperative
Information Systems, vol. 3, no. 1, pp.47-65,1994.

[Nijssen and Halpin. 1989]. G.M. Nijssen and T.A. Halpin, Conceptual Schema and Relational
Database Design: A Fact-Oriented Approach. Prentice-Hall, Sidney. Australia, 1989.

[ODP. 19921. Open Distributed Processing group documents. ISO 10746- 1. 10746-2. 10747-3. ISO.
Nov. 1992.

IO'Hare and Jennings, 19961. G.M.P. O'Hare and N.R. Jennings (eds.), Foundations of Distributed
Artificial intelligence. John Wiley and Sons, New York, 1996.

101iver. 19961. J.R. Oliver. -On artificial agents for negotiation in electronic commerce", in: Proc.
of the 29th Annual Hawaii Int.1. Conf. on System Sciences (HICSS).IEEE Computer Society
Press. pp. 337-345.1996.

254 A language-Action Perspective on tbe Design of Cooperative Information Agents

10lle et al.. 19881. T.W. Olle, J. Hagelstein, I.G. MacDonald, C. Rolland, H.G. Sol, F.J.M. van
Assche. A.A. Verrijn-Stuart, Information Systems Methodologies: A framework for
understanding. Addison-Wesley. Wokingham, 1988.

[Ozsu and Valduriez, 1991 1. M.T. Ozsu and P. Valduriez, Principles of Distributed Database
Systems, Prentice-Hall, Englewood Cliffs, NJ., 1991.

[Papazoglou et al.. 1992]. M.P. Papazoglou. S.C. Laufman and T.K. Sellis, "An organizational
framework for cooperating intelligent information systems", in: Journal of Intelligent and
Cooperative Information Systems. vol. L no. 1, pp. 169-202, 1992.

[Patil et al., 19921. R.S Patil. R.E. Fikes. P. F. Patel-Schneider. D. McKay, T. Finin, T. Gruber, R.
Neches, "The DARPA knowledge sharing effort: progress report", in: Proc. of Knowledge
Representation and Reasoning (KR'92), C. Rich, W. Swartout, B. Nebel (eds.), pp 777-788,
1992.

[Porter, 1980]. M.E. Porter. Competitive strategy: Techniques for analyzing industries and
competitors, The Free Press, New York. NY., 1980.

\Porter. 19851. M.E. Porter, Competitive advantage: Creating and sustaining superior performance,
The Free Press. New York. NY.. 1985].

IPowell. 1988]. M. Powell, "An input/output primitive for object-oriented systems", in: Information
and Software Technology 30. no. L jan./feb.'88. pp.44-56,1988.

[Power, 1993]. R. Power, Cooperation among organizations: the potential of computer supported
cooperative work, Springer-Verlag, Berlin, 1993.

[Raiffa. 1982]. H. Raiffa. The Art and Science of Negotiation. Harvard University Press, Boston,
MA.. 1982.

[Rao and Georgeff, 1991 a]. A.S. Rao and M.P. Georgeff. "Asymmetry thesis and side-effect
problems in linear time and branching time intentional logics". in: Proc. of the 12th Int.1 Joint
Conf. on Al (IJCAl'91). Sydney. Australia. pp.,498-504.1991.

1
Rao and Georgeff, 199 I b]. A.S. Rao and M.P. Georgeff, "Modeling rational agents within a BDI-

architecture", in: Proc. of Knowledge Representation and Reasoning (KR&R-91), R. Fikes and
E. Sandewall (eds.). Morgan Kaufmann Publishers. San Mateo, CA. pp. 473-484,1991.

[Rao and Georgeff, 1992]. A.S. Rao and M.P. Georgeff, "Social plans: preliminary report", in: Proc.
of Decentralized AI 3 - 3th European Workshop on Modelling Autonomous Agents and Multi-
Agent Worlds (MAAMAW-91). E. Werner and Y. Demazeau (eds.), Elsevier Science Publ..
North-Holland, 1991.

IRao and Georgeff. 19931. A.S. Rao and M.P. Georgeff. "A model-theoretic approach to the
verification of situated reasoning systems". in: Proc. of the 13th Int.1 Joint Conf. on Al
(IJCAI'93). Chambery. France. pp. 318-324.1993.

IReuter. 19891. A. Reuter. "ConTracts: A means for extending control beyond transaction
boundaries". in: Proc. of the 3rd Int.1 Workshop on High Performance Transaction Systems.
Asilomar, Sept., 1989.

IReynolds. 19881. G.W. Reynolds. litformation systems for managers, West, St. Paul. MN, 1988.
Ivan Reijswoud, 1996]. V.E. van Reijswoud. The structure of business communication: theory,

model and application. Ph.D. Thesis. Delft University of Technology, 1996.
Ivan Reijswoud and van der Rijst. 19951. V.E. van Reijswoud and B.J. van der Rijst. "Modelling

business communication as a foundation for business process redesign: a case of production
logistics". in: Proc. of the 28th Hawaii Int.1. Conf. on Systems Sciences. IEEE Computer
Society Press. Los Alamitos. pp 841-850.1995.

IRice. 1987]. R.E. Rice, "Computer mediated communication and organizational innovation", in:
Journal of Communication. vol. 37, no. 4. pp. 65-94.1987.

IRice and Shook. 1990]. R.E. Rice and D.E. Shook, "Relationships of job categories and
organizational levels to use of communication channels. including electronic mail: a meta-
analysis and extension", in: Journal of Management Studies. vol. 27, no. 2, pp. 195-229.1990.

Literature 255

[Robinson, 1991]. M. Robinson. "Computer supported cooperative work: Case and concepts", in:
Groupware 1991: The potential of team and organizational computing. P.R. Hendriks (ed.).
SERC. Utrecht. pp. 59-75,1991.

[Rosenschein, 19851. J.S. Rosenschein. "Formal theories of knowledge in Al and robotics", in: New
Generation Computing, pp. 345-357,1985.

[Rosenschein and Genesereth, 1985]. J.S. Rosenschein and M.R. Genesereth, "Deals among rational
agents", in: Proc. of 9th Int.1 Joint Conf. on Al (IJCAI'85), pp. 91-99,1985.
Also published in Readings in Distributed Artificial Intelligence. A. Bond and L. Gasser (eds.),
Morgan Kaufmann, pp. 227-234,1988.

[Rosenschein and Kaelbling, 1986]. J.S. Rosenschein and L.P. Kaelbling, "The synthesis of digital
machines with provable epistemic properties", in: Proc. of the 1986 Conf. on Theoretical
Aspects of Reasoning about Knowledge (TARK'86), J.Y. Halpern (ed.), Morgan Kaufmann.
San Mateo. CA., 1986.

[Rosenschein and Zlotkin, 1994]. J.S. Rosenschein and G. Zlotkin. "Designing conventions for
automated negotiation", in: Al Magazine, Fall. pp. 29-46,1994.

[Ross. 19731. S. Ross, "The economic theory of agency", in: American Economic Review. 63, pp.
134-139,1973.

[Royakkers and Dignum, 19941. L. Royakkers and F. Dignum, "Deontic inconsistencies and
authorities", in: Proc. of ECAl WS on Artificial Normative Reasoning, Amsterdam, Aug., 1994.

[Rusinkiewicz and Sheth, 1994]. M. Rusinkiewicz ad A. Sheth, "Specification and execution of
transactional workflows". in: The object model, interoperability, and beyond, W. Kim (ed.).
Addison-Wesley, 1994.

[van der Rijst and Dietz. 1993]. N.B.J. van der Rijst and J.L.G. Dietz, "Modelling the essential
activities in Job Shop planning and scheduling for decision support system development", in:
Proc of the 1993 European Simulation Symposium (ESS'93), Society for Computer Simulation.
San Diego, CA.. pp. 198-203.1993.

[Ryu and Lee, 1992]. Young U. Ryu and Ronald M. Lee, A formal representation of normative
systems. A defeasible deontic reasoning approach, EURIDIS Research Monograph no. RM-
1992-08- L Erasmus University, Rotterdam, 1992.

[Sachs, 1995]. P. Sachs, "Transforming work: Collaboration, learning and design", in:
Communication of the ACM (CACM), vol. 38, no. 9, pp. 36-45,1995.

[Santos and Carmo. 1996]. F. Santos and J. Carmo, "Indirect action, influence and responsibility in
deontic logic, agency and normative systems", in: Proc. of DEON'96. Springer-Verlag, Berlin,
1996.

[Schal, 19951. T. Schal, Workflow management technology for process organizations. Ph.D. Thesis

Rheinisch-Westfillischen Technischen Hochschule, Aachen, 1995.
[Schal and Zeller, 1993a]. T. Schal and B. Zeller, "Workflow management sytems for financial

services", in: Proc of the Conf. on Organizational Computing Systems (COOCS'93), ACM
Press. New York. NY., pp. 142-153.1993.

[Schal and Zeller. 1993b]. T. Schal and B. Zeller, "Supporting cooperative processes with workflow
management technology", Tutorial Proc., 3th European Conf. on Computer Supported
Cooperative Work (ECSCW'93), Milano, Italy, 1993.

[Schiffrin. 19941. D. Schiffrin, Approaches to Discourse. Blackwell. Cambridge, MA.. 1994.
[Schmidt. 19931. K. Schmidt. "Modes and mechanisms of interaction in cooperative work", in:

Computational mechanisms of interaction for CSCW, C. Simone and K. Schmidt (eds.).
COMIC Deliverable 3.1, ESPRIT BRA 6225. Lancaster University, Lancaster, 1993.

[Scott Morton, 1991]. M.S. Scott Morton, The corporation of the 1990's: Infor,nation technology
and organizational transformations, Sloan School of Management. Oxford University Press,
New York. 1991.

[Searle, 19691. J.R. Searle, Speech Acts,: An essay in the philosophy of language, Cambridge
University Press, 1969.

256 A language.Action Perspective on tbe Design of Cooperative Information Agents

[Searle. 1971]. J.R. Searle (ed.). The Philosophy of Language. Oxford Univ. Press. London. 1971.

[Searle, 1979]. J.R. Searle, Expression and Meaning: studies in the theory of speech acts,
Cambridge University Press, Cambridge. Mass.. 1979.

[Searle, 19831. J.R. Searle. Intentionality: An essay in the philosophy of mind, Cambridge
University Press. Cambridge. Mass.. 1983.

[Searle and Vanderveken, 19851. J.R. Searle and D. Vanderveken. Foundations of illocutionan·
logic. Cambridge University Press. 1985.

[Senn, 19781. J.A. Senn. Information systems in management. Wadsworth, Belmont CA, 1978.

[Sergot. 1990]. M. Sergot. "The representation of law in computer programs: A survey and
comparison". in: Knowledge based systems in the law. T.1 M. Bench-Capon (ed.). Academic
Press, 1990.

[Shannon and Weaver. 19491. C.E. Shannon and W. Weaver. The Mathematical Theory of
Communications, MIT Press, Cambridge, MA., !949.

[Shehory and Kraus. 1993]. 0. Shehory and S. Kraus. "Coalition formation among autonomous
agents: Strategies and complexity". in: Proc. of the 5th European Workshop on Modelling
Autonomous Agents and Multi-Agent Worlds (MAAMAW'93), NeuchAtel. Springer-Verlag,
Berlin, 1993.

[Shepherd et al.. 1990]. A. Shepherd. N. Mayer and A. Kuchinsky, "Strudel: an extensible electronic
conversation toolkit". in: Proc. of the 2nd Conf. on Computer Supported Cooperative Work
(CSCW'90), ACM Press. New York. 1990.

[Sheth et al., 1990] A. Sheth, M. Rusinkiewicz. G. Karabatis.. "Using polytransactions to manage
interdependent data", in: Database Transaction Models for advanced applications, A.
Elmagarmid (ed), Morgan Kaufman. San Mateo. CA. 1992.

[Siewierska, 1991]. A. Siewierska. Functional Grammar, Routledge, London, 1991.
[Singh, 19941. M.P. Singh, Multiagent systems: A theoretical framework for intentions, know-how,

and communication, LNCS 799. Springer-Verlag, Berlin. 1994.
[Shoham. 19931. Y. Shoham, "Agent-oriented programming", in: Artificial Intelligence 60, pp. 5 1-

92,1993.

[Shoham and Cousins, 1994]. Y. Shoham and S.B. Cousins. "Logics of mental attitudes in Al". in:
Foundations of Knowledge Representation and Reasoning, G Lakemeyer and B. Nebel (eds.),
LNAI, Springer-Verlag. Berlin. 1994.

[Shoham and Tennenholtz. 1992]. Y. Shoham and M. Tennenholtz. "On the synthesis of useful
social laws for artificial agent societies". in: Proc. of the 1 (kh Nat.1 Conf. on Al (AAAI'92). San
Jose. CA.. AAAI Press. Menlo Park, CA.. pp. 276-281.1992.

[Smith, 19801. R.G. Smith. "The contract net protocol: high level communication and control in a
distributed problem solver". in: IEEE Transactions on Computing. 29 (12). pp. 1104-1113.
1980. (reprinted in Readings iii Distribwed Artificial Intelligence, A.H. Bond and L. Gasser
(eds.), Morgan Kaufmann. San Mateo, CA.. 1988)

ISmith and Davis. 19801. R.G. Smith and R. Davis, "Frameworks for cooperation in distributed
problem solvers", in: IEEE Transactions SMC (Systems, Man & Cybernetics), 11 (1), pp. 61-70,
1980. (reprinted in Readings in Distributed Artificial Intelligence, A.H. Bond and L. Gasser
(eds.). Morgan Kaufmann. San Mateo. CA.. 1988).

[Sowa. 19841. J.F. Sowa. Conceptual Structures: Inforinatic,n Processing in Mind and Machine,
Addison-Wesley. Reading. Mass. 1984.

[Spewak and Hill, 19931. Steven H. Spewak and Steven C. Hill. Enterprise Architecture Plunning:
Developilig a blueprint for data, appliccitic}lis citid lech„(,logy. QED Publ.Group. Wellesley.
MA. USA, 1993.

[Steuten and van Reijswoud, 19961. A. Steuten and V.E. van Reijswoud. "The interpretation of
business communication", in: [Dignum et al.. 1996c]

[Suchman, 19871. L. Suchman, Plans and Situated Acticins. Cambridge University Press.
Cambridge. MA.. 1987.

Literature 257

[Suchman, 1994]. L. Suchman, "Do Categories have Politics? The Language/Action Perspective
Reconsidered", in: Computer Supported Cooperative Work (CSCW),Vol. 2, no. 3, pp. 177-190,
1994 (also: Proc of 3rd ECSCW Conf, G. De Michelis, C, Simone, K. Schmidt (eds.), 1993.)

[Suchman. 1995]. L. Suchman, 'Making work visible", in: Communications of the ACM (CACM).
vol. 38, no. 9, pp. 56-70,1995.

[Sycara, 19901. K. Sycara. "Persuasive argumentation in negotiation", in: Theory and Decision, 28,
pp. 203-242.1990.

[Szekely and Myers. 19881. P. Szekely and B. Myers, "A user-interface toolkit based on graphical
objects and constraints",in: Proc. of OOPSLA'88, pp. 36-45,1988.

[Tan, 1993]. M. Tan, "Using communication theory for systems design: A model for eliciting
information requirements", in: Human, Organizational and Social Dimensions of Information
Systems Development, D. Avison, J.E. Kendal, J.1. DeGross (eds.), Elsevier Science Publ.,
North-Holland, pp. 241-262,1993.

[Tan and Thoen, 19961. Y.-H. Tan and W. Thoen, "Modelling the dynamics of transferable
obligations in business procedures", in: [Dignum et al., 1996c].

[Taylor, 1990]. D.A. Taylor, Object-Oriented Technology: A Manager's Guide, Servio-Logic, 1990.
[Taylor, 1993]. J.R. Taylor, Rethinking the Theory of Organizational Communication; How to read

an organization, Ablex Publishing, Norwood, NJ, 1993.
[Teng et al., 1992]. J.T.C. Teng, W.J. Kettinger, and S. Guha, "Business Process Redesign and

Information Architecture: Establishing the Missing Links", in: Proc. of ! 3th Int.1 Conf. on
Information Systems (ICIS), JI. DeGross, J.D Becker and J.J. Elam (eds.), pp. 81-90,1992.

[Teufel and Teufel, 1995]. S. Teufel and B. Teufel, "Bridging Information Technology and Business
- Some Modelling Aspects", in: ACM SIGOIS Bulletin 16 (1), pp. 13-17,1995.

[Thomas et al, 1991]. S.R. Thomas, Y. Shoham. A. Schwartz, S. Kraus, "Preliminary thoughts on an
agent description language", in:International Journal of Intelligent Systems, vol. 5, no.6, pp.
497-508,1991.

[Thomas, 19931. S.R. Thomas, PLACA. an agent oriented programming language, Ph.D. Thesis.
Stanford University, Report No. STAN-CS-93- 1487, Stanford, CA., 1993.

[Thomason. 1981]. R.H. Thomason, "Deontic logic as founded on tense logic", in: New studies in
deontic logic, R. Hilpinen (ed.), Reidel, Dordrecht, pp. 165- 176,1981.

[Vanderveken, 1990]. D. Vanderveken, Meaning and Speech Acts, Cambridge University Press,
Cambridge. MA.. 1990.

[Verharen et al., 1994]. E. Verharen, H. Weigand, and 0 De Troyer, "Agent-oriented information
system design", in: Working Papers. of the Int.1. Workshop on Information Systems.
Correctness and Reusability (ISCORE'94), R. Wieringa and R. Feenstra, (eds), Vrije
Universiteit Report IR-357. Amsterdam. pp. 378-392.1994.

[Verharen and Weigand, 1994]. E. Verharen and H. Weigand, "Agent Oriented Information
Systems Design". in: Poster Proc. of the Int.1. Symposium on Methodologies for Intelligent
Systems (ISMIS'94). Z. Ras and M. Zemankova (eds.), Oak Ridge Nat.1. Lab., 1994.

[Verharen et al., 1996]. E. Verharen, F. Dignum, H. Weigand, "A language/action perspective on
cooperative information agents", in: [Dignum et al., 199601

[Verharen and Dignum, 1997]. E. Verharen and F. Dignum, "Cooperative Information Agents and
Communication", in: Proc. of the First Int.1. Workshop on Cooperative Information Agents, M.
Kiusch (ed.), 27-28 Februari 1997. Kiel, Germany, LNAI, Springer-Verlag, Berlin, 1997. (To
appear)

[Verheijen and van Bekkum, 1982]. G. Verheijen and J. van Bekkum, "NIAM: an information
analysis method", in: Proc IFIP TC-8 Conf. on Comparative review of information systems
methodologies (CRIS- 1), A.A. Verrijn-Stuart, T.W. Olle, H. Sol (eds.), North-Holland, pp. 537-
589.1992.

258 A l.anguage-Action Perspective on tbe Design of Cooperative Information Agents

[Vet, 1990]. C. Vet, "Asymmetries in the use of tense and modality", in: Layers and Levels of
Representation in language Theory: a functional view. 1. Nuyts. A.M. Bolkenstein, C. Vet
(eds.), John Benjamins, Amsterdam/Philadelphia, 1990.

[Wachter and Reuter, 1992]. H. Wachter and A. Reuter, 'The ConTract Model", in: Database
Transaction Models for advanced applications, A. Elmagarmid (ed), Morgan Kaufman. San
Mateo, CA., 1992.

[Wagner. 1996]. G. Wagner. "Vivid agens: How they deliberate. how they react, how they are
verified". report Institut fOr Informatik, Universitat Leipzig, Germany. 1996. (also versions have
been published in proc. of ModelAge'96. and proc. of MAAMAW'96).

[Wasserman and Shewmake, 19851. A.1. Wasserman and D.T. Shewmake, "The role of prototypes
in the user software engineering methodology". in: Advances in Human-Computer Interaction,
vol,/,H. Rex Hartson (ed.), Ablex, 1985.

[Weber, 1956]. M. Weber, Economy and Society, Bedminster Press, New York, NY., 1956.

[van de Weg, 1995]. R.L.W. van de Weg, Analysis and Design of Information Systems based on an

Object-Oriented Framework, Ph.D. Thesis, Universiteit Twente. Enschede, 1993.

[Weigand, 1989]. E. Weigand, Sprache als Dialog Sprechakttaxonomie und kommunikative
Grammatik, Niemeyer Verlag, Tubingen, 1989.

[Weigand. 1990]. H. Weigand, Linguistically Motivated Principles of Knowledge Based Systems,
Foris. Dordrecht, 1990.

[Weigand, 199 la]. H. Weigand. "The linguistic turn in information systems", in: Proc of
Collaborative Work, Social Communications and Information Systems, R. Stamper, P. Kerola.
R. Lee and K. Lyytinen (eds.), IFIP, Elsevier Scientific Publ., North-Holland, 1991

[Weigand, 1991 bl. H. Weigand, "An object-oriented approach in a multimedia database project", in:
Proc. of IFIP DS-4: Object-Oriented Databases: Analysis. Design & Construction. R A.
Meersman, W. Kent, S. Khosla (eds), IFIP. Elsevier Science Publ.. North-Holland, 1991.

[Weigand, 1992a]. H. Weigand. "Assessing Functional Grammar for Knowledge Representation",
in: Data and Knowledge Engineering 8 (1992). pp. 191-203,1992.

[Weigand, 1992bl. H. Weigand, 'Towards a design methodology for interoperable databases", in:
Proc. IFIP WG 2.5 Conf. Semantics of Interoperable Database Systems (DS-5). Lorne Australia.
D. Hsiao, E.J. Neuhold, R. Sacks-Davis (eds.), 1992.

[Weigand, 1993]. H. Weigand, "Deontic aspects of communication", in: Deontic Logic in Computer
Science. J.-J.Ch. Meyer and R. Wieringa (eds.). John Wiley and Sons Ltd., Chichester, 1993.

[Weigand et al., 19951. H. Weigand, E. Verharen. and F. Dignum, "Integrated Semantics for
Information and Communication Systems". in: Proc. of IFIP WG 2.5 Conf. on Database
Application Semantics (DS-6). R. Meersman. L. Mark (eds). Stone-Mountain. Georgia. 1995.

[Weigand et al.. 1996}. H. Weigand. E. Verharen and F. Dignum. "Interoperable transactions - a
structured approach". in: Proc. of 8th Int.1. Conf. on Advanced Information Systems
Engineering (CAISE'96). P Constantopoulos, J. Mylopoulos and Y. Vassiliou (eds.). LNCS
1080, Springer-Verlag. Berlin. 1996.

[Weikum, 19861. G.A. Weikum. "Theoretical Foundations of Multi-level Concurrency Control" in:
Proc. of con f. Principles of Distributed Systems (PODS'86). 1986.

[Werner. 1989]. E. Werner, "Cooperating agents: A unified theory of communication and social
structure", in: Distributed Al, vol. ll. L. Gasser and M. Huhns (eds.). Pitman Publ., London and
Morgan Kaufmann. San Mateo, CA., pp. 3-36.1989.

IWerner. 1991]. E. Werner. "A unified view of in formation, intention and ability: in: Decentralized
Al - 2. Proc. of 2nd European WS on Modelling Autonomous Agents and Multi-Agent Worlds
(MAAMAW'90). Y Demazeau and J.P. Muller (eds.). Elsevier Science Publ.. North-Holland.
pp. 109-126. 1991.

[White, 19941. J.E. White, Telescript Technology: The foundation for the electronic marketplace.
White Paper. General Magic, Mountain View. CA.. 1994.

Literature 259

[Wieringa et al., 19891. R. J. Wieringa. J.-J.Ch. Meyer and H. Weigand, "Specifying dynamic and
deontic integrity constraints", in: Data and Knowledge Engineering 4, pp. 157-189,1989.

[Wieringa et al., 1991]. R.J. Wieringa, H Weigand, J.-J.Ch. Meyer and F. Dignum, "The
Inheritance of Dynamic and Deontic Integrity Constraints", in: Annals of Mathematics and
Artificial Intelligence. no. 3. pp.393-428.1991.

[Wieringa, 1993]. R. Wieringa. "A method for building and evaluating formal specifications of
object-oriented conceptual models of database systems", Rapport IR-340, Free University,
Amsterdam, dec. 1993.

[Wieringa and Meyer, 19931. R.J. Wieringa and J.-J.Ch. Meyer, "Applications of Deontic Logic in
Computer Science: a concise overview", in: Deontic Logic in Computer Science, J.-J.Ch. Meyer
and R. Wieringa (eds.). John Wiley and Sons Ltd.. Chichester, 1993.

[Winograd, 1988]. T. Winograd. "A Language/Action Perspective on the Design of Cooperative
Work". in: Computer Supported Cooperative Work: A Book of Readings, 1. Greif (ed.), Morgan
Kaufmann, San Mateo. CA., 1988. (also Human computer interaction 3(1) , 1987/88, p. 3-30)

[Winograd. 1994]. T. Winograd, "Categories, Disciplines, and Social Coordination", in: Computer
Supported Cooperative Work (CSCW), Vol. 2, no. 3, pp 191-197.1994.

[Winograd and Flores, 1986]. T. Winograd and F. Flores. Understanding Computers and Cognition:
A New Foundationfor Design, Ablex, Norwood NJ, 1986. (Available from Addison-Wesley)

[Wittgenstein, 19681. L. Wittgenstein, Philosophical Investigations, Basil Blackwell & Mott. Ltd..
Oxford. 1968

[Wolper, 1981]. P. Wolper. "Specification and synthesis of communicating processes using an
extended temporal logic", in: Proc. of 9th Annual ACM Symposium on Principles of
Programming Languages (PoP'81), ACM Press, New York, NY., pp. 20-33,1981.

[Wooldridge, 1994]. M. Wooldridge, "Coherent social action", in: Proc. of I ith European Conf on
AI (ECAI'94), Amsterdam, The Netherlands, pp. 279-283.1994.

[Wooldridge, 19951. M. Wooldridge, "This is MYWORLD: The logic of an agent-oriented testbed
for DAI", in: intelligent Agents: Theories, Architectures and Lkinguages, M. Wooldridge and
N.R. Jennings (eds.), LNAI 890, Springer-Verlag, Heidelberg, pp 160-178,1995.

IWooldridge and Jennings, 1994]. M. Wooldridge and N.R.,Jennings, "Formalizing the cooperative
problem solving process", in: Proc. of 13th Int.1 WS on Distributed Al (IWDAI'94), Lake
Quinalt. WA.. pp. 403-417,1994.

IWooldridge and Jennings, 19951. M Wooldridge and N.R. Jennings, "Intelligent Agents: Theory
and Practice". Knowledge Engineering Review 10(2). 1995.

[von Wright, 1951]. G.H. von Wright, "Deontic logic". in: Mind 60, pp. 1-15,1951.
[von Wright. 19631. G.H. von Wright, Norm and Action: A logical enquiry. Routledge and Kegan

Paul, London, 1963.

Ivon Wright, 19641. G. H. von Wright, "A new system of deontic logic". in: Danish Yearbook of
Philosophy L pp. 173- 182,1964.

[von Wright, 1965]. G.H. von Wright, "A correction to a new system of deontic logic", in: Danish
Yearbook ofPhilosophy 2, pp. 103- 107.1965.

Ivon Wright. 19681. G.H. von Wright, "An Essay in Deontic Logic and the General Theory of
Action", in: Acta Philosophica Fennica. Fasc. 2 1, North-Holland, 1968.

[Von Wright. 1980]. G.H. von Wright, "Problems and prospects of deontic logic: a survey", in:
Modern Logic - A Survey: Historical, Philosophical and Mathematical Aspects of Modern Logic
and Its Applications, E. Agazzi (ed.). Reidel, Dordrecht, pp. 399-423,1980.

[Zlotkin and Rosenschein. 1991]. G. Zlotkin and J.S. Rosenschein. "Cooperation and conflict
resolution via negotiation amon autonomous agents in noncooperative domains", in: IEEE
Transactions SMC. 21 (6). pp. 1317-1324,1991.

SUMMARY

The research reported on in this dissertation focuses on a new way of designing a class of automated

information systems, called Cooperative Information Systems.
Cooperative Information Systems (ClS) are seen as the next step in the evolution of information

systems (IS) from central data repositories to systems that are used within and between organizations

to support cooperation and the coordination of organizational activities. This coordination is achieved
by communication. Traditional IS development methods do not pay much attention to design aspects

of communication and coordination within and across organizations. Therefore, a new perspective is

needed that focuses on the use of communication as a coordination mechanism and that can be used
to obtain a better understanding of the structure of business communication.

1n this dissertation a Language-Action Perspective (LAP) to the design of CISs iS taken. The LAP
describes what people and systems do while communicating, how they create a common reality by

means of language, and what it means to Commit to the conduct of some business activity. It considers

an organization as a network of inter·aaing agents that create, maintain and terminate commitments.
The LAP has proven to be a new basic paradigm for a new generation of lS design methods and
business process models. However, there is not much convergence yet on the formal and logical
underpinnings of communication models and the LAP. Here, a formal framework and specification

language are proposed that can be applied for the design of CISs.

In this dissertation ClSs are considered to be intelligent communicating agents. Communication,
in the definition used here, is not just information exchange, its essence is to commit tbe partners in
communication (called subjects or agents) to a course of action so tbat one can rely on tbe otber. It
is a constant organizational effort to explicate commitments (both intra- and inter-organizational) in
order to improve the cooperation and support the coordination of activities. 1Ss are instrumental in

this effort, both by taking over certain routine tasks, and by explicating the rules of the communicative

actions, the meaning of the terms and other kinds of mutual knowledge. Important aspects are the

authorizations and obligations of the communicating agents. In order to structure the communication
both a business logic framework describing the overall interaction process, and a communication
framework describing the communicative actions of the agents, are developed.

For ISs to be able to cooperate they must have an intelligent interface that can cope with all typeS

of requests for information from users or other systems. An IS actively maintains its information; it
communicates with other systems and reasons about the information it contains. lt might decide to
search for information it needs by inquiring for it from other 1Ss, preferably in ways it negotiates (and
lays down in contracts) with those other systems. Therefore the IS should contain a task module that
plans the tasks it has to fulfil. CISs are not integrated but rather function autonomously. The behavior
of the system cannot be entirely prescribed from start to finish, but they have to be responsive to
changes in the environment and pro-actively take opportunities when they arise. For this the notion of

agents is introduced. I refer to an autonomous CIS with tasks and contracts as a Cooperative
Information Agent (CIA).

262 A Language-Action Perspective on tbe Design of Cooperative Information Agents

Recent years have shown a growing interest in intelligent agents. Although there is no consensus

on what an agent is precisely, in this thesis an agent is defined as: an autonomous computational
entity and its behaviour is not predefined but based on commitments to otber agents.

Intelligent agents seem to be suitable candidates for implementing CISs, and in this dissertation

an agent architecture for ClSs is described.

What follows is a brief overview of the different chapters of this dissertation.
Chapter 1 gives the motivation for this research, and justification for the choices of taking a lAP,

the use of dynamic deontic and illocutionary logic, and agent-technology for the design of CISs.

Chapter 2 describes background theory and related work. Most of the work in the LAP is based on

Searle's speech act theory. A valuable addition is given by Habermas' theory of communicative action.

Both theories were developed to describe the way people communicate. In this thesis, however, lam
interested in how these theories can be applied to the design of automated systems. Therefore some
adaptations were made to the theories, which are described in this chapter. Furthermore an overview
is given of related research in the LAP community. The chapter also contains an overview of the
research on agent technology, mainly from the Al discipline. Again, similar approaches are described.

The kernel of this dissertation consists of the chapters 3.6. Chapter 3 describes a framework for
business oriented communication. It gives a generic business logic for modelling business
communication between a supplier of services or goods, and a customer needing the service. The

framework not only is applicable in business settings between organizations, but in every situation
where one agent (system or person) needs a service from another agent, even if they belong to the

same organization, i.e., in every communication a supplier and customer role can be distinguished.
The business logic framework emphasizes the symmetrical roles and relations of the agents and the
total action logic of the business transaction. It structures business communication by identifying four

phases: proposal and negotiation (setting up conditions), commitment and contracting (coming to a
mutual agreement), fulfilment (performance of the actions), and completion (or satisfaction).

Chapter 4 first introduces the three-level communication framework for describing the interaction
between two agents, consisting of (interoperable) transactions, contracts, and tasks. After this an

agent architecture is given. It consists of a number of knowledge bases and functional components
working on them. The knowledge bases that are identified are: Transactions, Contracts, Tasks,

Services, the Lexicon, the Database, and the Agenda. The main functional components are: the
Communication Manager, the Contract Manager, the Task Manager. and the Service Execution

Manager. The working of these components is described.
Chapter 5 describes the three components of the communication framework in more detail.

Interoperable transactions are specified as a set of messages together with (temporal) relations

between them, and a goal identified by particular message occurrences. Following the business logic,
communication behaviour between two agents is described by contracts. The contract outlines the
obligations and authorizations of the communicating systems using interoperable transactions,
together with deontic constraints, and rules for appropriate action when they are violated. A task is a
meaningful unit of work assigned to an agent, specified by a goal and consisting of a number of
subtasks, and relationships and dependencies between them. The task's specification and updates
thereof do concern the agent in question only, whereas changes in the transactions can only be made
by consent of other agents involved. For that reason the distinction between task and contract is
made, where the contract corresponds to tile agreements between the agents and the task draws on
this potential for fulfilling an agent's goal.

Stimmary 263

Besides the characteristics of the components also general features like deadlines and failure
management are described. Special attention is paid to the constructing of contracts, the relationships
between contracts, and the construction of the agenda. Furthermore, the specification language Col.a

(Communication and Coordination Language) is developed in which the components can be
described, and that can be used for the design of CIAs. In the chapter examples of transaction,
contract and task specifications are given.

Chapter 6 describes the formal framework. For the semantics of communication models a
combination of Dynamic Deontic Logic and Hlocutionag logic is used. It provides dynamic concepts
for dealing with (communicative) actions and transactions. Deontic concepts make it possible to
describe the course of action in the CaSe the communication protocol fails. Also the way deontic
statements are created and adapted in communication processes, and the role they play in the
regulation of communication itself is explored. It is shown how authorizations can be requested,
granted and retracted, thereby creating a dynamic environment for the establishment and derogation
of authorized norms. mocutionary logic is a logical formalisation of the speech act theory and is used
to formally describe the message structure itself, i.e., the types and effects of the messages. The
combination of dynamic deontic logic and illocutionary logic gives a formal framework and integrated
semantics that provides for the precise description of (the structure and effects of) communicative
actions. Furthermore, it serves as a basis for the formal specification language.

In chapter 7 a modelling methodology for CIS development is described. The aim of the
methodology is to produce abstract models of organizational communication as basis for formulating

requirements of a supporting software system. The methodology is strongly communication-driven
and inlluenced by the separation between Environment of Discourse (organizational environment)
and Universe of Discourse (information (data, rules) about the domain). It describes stages of

organizational analysis and (re)design, communication modelling and UoD modelling, and system
specification. For modelling purposes graphical models are provided. The methodology can be used
to guide development of automated ISs, but the first steps are also valuable if no automated system is
implemented, in that it clearly describes the authorization and communication relations that can be
used to improve on the way business is conducted.

Finally, chapter 8 gives the results and conclusions of the research and an agenda for further
research. From the conclusions can be derived that a language-action perspective can be adequately
and successfully applied to the design of cooperative information systems for the support of business
communication.

The results from this research can be applied in different application settings, inter-organizational,
as in Business Computing, EDI, or intra-organizational, as in Groupware and Workflow Management.

The three main topics discussed in this thesis: communication, intelligent agents and ClS design,
make for an interesting combination that in my view describes one of the future paths lS development
is taking. Hence the title of the thesis:

"a language-action perspective
on the design of

cooperative information agents".

SAMENVATTING

EEN TAALHANDELING-PERSPECTIEF OP HET ONTWERPEN VAN COOPERATIEVE

INFORMATIE-AGENTENl

Dit proefschrift beschrijft het onderzoek naar een nieuwe manier van het ontwerpen van
geautomatiseerde Coaperatieve Informatiesystemen.

CoBperatieve Informatiesystemen (CIS) worden gezien als de volgende stap in de
informatiesysteem-evolutie van centraal data.opslagsysteem naar systemen die in en tussen

organisaties gebruikt worden voor de ondersteuning van samenwerking en de co8rdinatie van

bedrijfsactiviteiten. Dit wordt bewerkstelligd door communicatie. Traditionele IS-ontwerpmethoden
besteden geen of weinig aandacht aan de ontwerpaspecten van communicatie en coerdinatie. Daarom

is een nieuw perspectief nodig dat zich richt op het gebruik van communicatie als
coardinatiemechanisme en dat gebruikt kan worden om een beter begrip te verkrijgen van de
struktuur van zakelijke communicatie. In dit proefschrift volg ik het taalhandelings-perspectief voor
het ontwerpen van CIS. Het taalhandelings-perspectief beschrijft wat mensen en systemen doen
tijdens communicatie, hoc zij een gemeenschappelijk beeld van de werkelijkheid creeren door het
gebruik van taal, en wat het betekent om zich te verplichten tot het uitvocren van een bepaalde

bedrijfsactiviteit. Vanuit dit perspectief wordt een organisatie gezien als een netwerk van
interacterende agenten die verplichtingen crearen, onderhouden, wijzigen, rapporteren en opheffen.

Het taalhandelings-perspectief heeft zich ontwikkeld tot een paradigma voor een nieuwe

generatie IS-ontwerpmethoden en bedrijfsactiviteitmodellen. Er is echter nog niet veel
overeenstemming over de formele en logische onderbouwing ervan. In dit proefschrift zijn een
formeel raamwerk en specificatietaal ontwikkeld die dienen als basis voor formalisatie van het

perspectief en de communicatie modellen, en die kunnen worden gebruikt bij CIS ontwikkeling.

In dit proefschrift wordt een CIS beschouwd als een intelligente, communicerende agent. Volgens

de hier gebruikte definitie, is communicatie niet alleen maar informatie uitwisseling, maar de essentie
is dat de communicerende partijen zicb verplicbten tot een verloop van activiteiten, zodat zg op
elkaar kunnen vertrouwen en bun activiteiten kunnen coo'rdineren. Het is voor de organisatie van
belang om alle verplichtingen (zowel intra- als interorganisationeel) boven tafel te krijgen, zodat

samenwerking en coardinatie kan worden verbeterd. IS zijn hierbij van onmiskenbaar belang, zowel
door het overnemen van routinetaken, als het expliciet maken en vastleggen van de regels voor
communicatieve actie, de betekenis van de gebruikte termen en andere gemeenschappelijke kennis.
Belangrijke begrippen hierbij zijn 'autorisatic' en 'verplichting'. Om de communicatie te beschrijven

en te structureren worden een bedrijfslogica raamwerk dat het gehele interactie process beschrijft, en
een communicatieraamwerk dat de communicatieve acties van de agenten beschrijft ontwikkeld.

Voor samenwerking tussen systemen is een intelligente interface nodig die overweg kan met
allerlei verzoeken voor informatie van gebruikers of andere systemen. Het IS beheert zijn informatie

1 Nederlandstalige samenvatting van: E.M. Verharen, A Language-Action Perspective on the
Design of Cooperative Information Agents, Proefschrift, Katholieke Universiteit Brabant, Tilburg,
1997. ISBN 90-9010286-8.

266 A language-Action Perspective on tbe Design of Cooperative Information Agents

actief, het redeneert en communiceert hierover met andere systemen. Het kan besluiten andere

systemen om informatie te vragen als het deze nodig heck en zelf niet bevat, bij voorkeur op een
manier die het onderhandeld heeft (en heeft vastgelegd in een contract) met de andere systemen. Het
IS heeft daarom een taakmodule nodig, die de taken plant die het systeem moet en wil uitvoeren. De
CIS kunnen vanwege organisatorische en technische redenen vaak niet geintegreerd worden, maar
functioneren autonoom. De werking van zo'n systeem kan niet volledig beschreven worden van te
voren. In pla:its daarvan moeten ze kunnen reageren op wijzigingen in de omgeving en pro-actief
kunnen handelen als dat uitkomt. Hiervoor wordt het begrip 'agent' geYntroduceerd. Een autonome
CIS met taken en contracten wordt een Cooperatieve Informatie Agent (CIA) genoemd.

De laatste laren is er een groeiende interesse voor intelligente agenten. Hoewel er nog geen

overeenstemming is over wat een agent precies is, wordt een agent in dit proefschrift gedefinieerd als
een autonome computationele entiteit waarvan bet gedrag niet uooraf wordt vastgelegd maar
wordt bepaald door de verplicbtingen die de agent aangaat tegenouer andere agenten.

Intelligente agenten lijken geschikte kandidaten om CIS te implementeren en in het proefschrift
wordt een intelligente agent architectuur voor CISs beschreven.

Hierna volgt een overzicht van de hoofdstukken van dit proe6chrift.
Hoofdstuk 1 geeft de motivatie voor dit onderzock, en een verantwoording voor de verschillende

keuzes, zoals die voor het taalhandelings-perspectief, het gebruik van dynamische deontische en

illocutionaire logica, en agent-technologie voor het ontwerp van CIS.

Hoofdstuk 2 beschrijft achtergrond theorie en gerelateerd onderzoek. Het meeste werk in het
tailhandelings-perspectief is gebasserd op Searle's taalhandelingstheorie. Een waardevolle aanvulling
hierop is Habermas' theorie van communicatief handelen. Beide theorieen beschrijven de manier

waarop mensen communiceren. In dit proefschrift ben ik echter geynteresseerd in de toepassing van
deze theorieen bij het ontwerpen van geautomatiseerde systemen en hun onderlinge communicatie.
Daarom zijn enige aanpassingen gemaakt, die beschreven staan in dit hoofdstuk. Hiernaast wordt ook
een overzicht gegeven van gerelateerd onderzoek naar het taalhandelings-perspectief. Dit hoofdstuk
bevat tevens een overzicht van onderzoek naar agent technologie, vooral vanuit de Kunstmatige

Intelligentie. Ook het gerelateerde onderzoek op dit gebied wordt beschreven.

De kern van het proefschrift bestaat uit de hoofdstukken 3 cot en met 6. Hoofdstuk 3 beschrijft
een raamwerk voor het zakelijke communicatieproces. Het geeft een generieke handelingslogica voor
het modelleren van zakelijke communicatie tussen een leverancier van diensten of goederen en een

klant die hieraan behoefte heeft. Het raamwerk is niet alleen nuttig in zakelijke omgevingen maar kan
toegepast worden in iedere situatie waar een agent (persoon of systeem) een dienst van ten andere
nodig heeft, zelfs als deze tot dezelfde organisatie behoort, d.i. in iedere communicatie situatie kan
een leverancier- en klantrol onderscheiden worden. Het raamwerk benadrukt de symmetrische relatie
tussen de agenten en de totale actielogica van dc zakelilke transacties. Het structureert zakelijke

communicatie en onderscheidt vier fasen: de voorstel- en onderhandelingsfase (voor het opzetten van
handelscondities), de verplichtingen- en contractenfase (waarbij tot een gemeenschappeliike
overeenkomst gekomen wordt), de uitvoeringsfase, en de voltooiings- en voldoeningsfase.

Hoofdstuk 4 introduceert allereerst een drie-lagen communicatieraamwerk bestaande uit
(interoperabele) transacties, contracten en taken, dat gebruikt wordt om de interactie tussen

systemen in detail te kunnen beschrijven. Hierna wordt een agent architectuur gegeven. Deze bestaat

uit een a:intal kennisbanken en functionele componenten die daar op werken. De kennisbanken die

Samenvatting 267

onderscheiden worden, zijn: Transacties, Contracten, Taken, Diensten, het Lexicon, de database, en
de Agenda. De functionele componenten zijn: de communicatie manager, de contract manager, de
taak manager en de dienstenuitvoerings manager.

Hoofdstuk 5 beschrijft de drie lagen van het communicatieraamwerk in meer detail.
Interoperabele transacties worden gespecificeerd als een verzameling boodschappen samen met hun
(temporele) relaties. Het communicatieve gedrag van de agenten wordt, de handelingslogica volgend,
beschreven door contracten. Een contract specificeert de verplichtingen en autorisaties van de
agenten, gebruikmakend van de interoperabele transacties, en regels die specificeren welke acties

ondernomen moeten worden als er een overtreding van het contract plaatsvindt. Een taak is een

betekenisvolle eenheid werk dat is toegewezen aan een agent, bestaande uit een aantal subtaken en
relaties en afhankelijkheden tussen de subtaken. De taakspecificatic en wijzigingen daarvan gaan
alleen de agent in kwestie aan, mair veranderingen in de transacties kunnen alleen gemaakt worden
met toestemming van de andere agenten. Daarom is er onderscheid gemaakt tuSSen taken en
contracten, de contracten corresponderen met de afspraken die gemaakt zijn tussen agenten, en de
taken gebruiken dit potentieel om de doelen van de agent te bereiken.

Naast de eigenschappen van deze componenten worden ook algemene kenmerken zoals
tijdslimieten en foutalhandeling beschreven. Speciale aandacht wordt geschonken aan contract·
constructie en relaties tussen contracten, en aan de opbouw van de agenda. Tevens wordt de
specificatietaal CoLa (communicatie en cotlrdinatie tad) gedefinieerd, die gebruikt kan worden voor
het ontwerp van CIAs. Van transactie-, contract- en taakspecificatie worden voorbeelden gegeven.

Hoofdstuk 6 beschrijft het formele raamwerk. Voor de semantiek van communicatiemodellen
wordt een combinatie van dynamiscbe deontiscbe logica en illocutionaire logica gebruikt.
Dynamische concepten worden gebruikt voor de beschrijving van (communicatieve) acties en
transacties. Deontische concepten maken het mogelijk om te beschrijven wat er moet gebeuren in het

geval het communicatie-protocol faalt. Tevens wordt onderzocht op welke manier deontische
verklaringen worden gecreaerd en veranderd tijdens een communicatieproces, en de rol die ze spelen

in de regulering van de communicatie zelf. Er wordt aangetoond hoe autorisaties worden
aangevraagd, toegewezen en ingetrokken, hiermee een dynamische omgeving creeerend voor het
vaststellen en opheffen van normen. Illocutionaire logica is de formalisatie van Searle 's
taalhandelingstheorie en wordt gebruikt om de boodschapstruktuur zelf, d.i. de t'ypen en effecten van
de boodschappen, formeel te beschrijven. De combinatie van dynamische deontische en illocutionaire

logica levert een formeel raamwerk en semantiek op voor de precieze beschrijving van (de structuur
en effecten van) communicatieve acties. Verder dient het als basis voor de formele specificatietaal.

In hoofdstuk 7 wordt een modelleringsmethodologie voor CISontwerp beschreven. Het doel van
de methodologie is om abstracte modellen van zakelijke communicatie te produceren als basis voor
het formuleren van eisen aan een ondersteunend software systeem. De methodologic is sterk
communicatie-georienteerd en gaat uit van de scheiding tussen 'Environment of Discourse' (de
organisatie-omgeving) en 'Universe of Discourse' (de domein-informatie (data, regels)). Het beschrijft

organisatie analyse en (her)ontwerp, communicatie en informatie modellering, en systeem
specificatie. Voor modelleringsdoeleinden worden grafische modellen aangereikt. Hoewel de
methodologie gebruikt kan worden bij het ontwerp van geautomatiseerde systemen, kunnen de
eerste stappen ook waardevol zijn als er geen geautomatiseerd systeem geimplementeerd wordt. Zij
beschrijven namelijk duidelijk de autorisatie- en communicatie-relaties die gebruikt kunnen worden
om de manier waarop wordt gehandeld te verbeteren.

268 A language-Action Perspective on tbe Design of Cooperative Infonnation Agents

Tenslotte worden in hoofdstuk 8 de resultaten en conclusies van het onderzoek samengevat en
plannen voor vervolgonderzoek beschreven. Het proefschrift brengt de theorie van communicatieve

actie over naar de communicatie tussen formele systemen met het doel om CIS te ontwerpen. De

aanpasssingen die gemaakt zijn bestaan uit: de formele en expliciete beschrijving van autorisaties en

obligaties, de verschillende autorisatierelaties die tussen agenten bestaan en hun effecten. Tevens is er

een handelingslogica, waar nadruk wordt gelegd op de symmetric van de communicatie, en
communicatie raamwerk ontwikkeld. De combinatie van dynamische deontische en illocutionaire

logica resulteert in een formeel raamwerk en geintegreerde semantiek voor communicatie-
modellering. Het maakt het mogelijk om een beter inzicht te verschaffen in de fundamentele

concepten die ten grondslag liggen aan het taalhandelings-perspectief. Een modellerings-
methodologie en specificatietaal zijn ontwikkeld om het ontwerp van CIA te ondersteunen.

Uit de conclusies kunnen we afleiden dat een taalhandelings-perspectief adequaat en succesvol

kan worden toegepast bij het ontwerpen van coaperatieve informatic systemen voor het
ondersteunen van zakelijke communicatie.

De resultaten van het onderzoek kunnen worden toegepast in verschillende applicatie

omgevingen, zoals bijvoorbeeld EDI, bedrijfsprocesmodellering, en groupware en workflow

management.

De drie onderwerpen die in het proefschrift worden besproken: communicatic, intelligente
agenten, en ClS ontwerp, vormen in mijn ogen een interessante combinatie die een toekomstig pad

in informatiesysteemontwikkeling beschrijft. Vandaar de titel van dit proefschrift:

"een taalhandelings-perspectief op

het ontwerpen van
cooperatieve informatie agenten

"

(URRICULUM ITAE

Egon Verharen was born in Abcoude (Utrecht) on June 7, 1965. After graduating
from the St. Nicolaaslyceum (VWO) in Amsterdam in June 1983, he enrolled as a
student of Computer Science at the Technische Hogeschool Twente in Enschede. He

received his ir.-title (MSc.) from the by then renamed Universiteit Twente in June
1988. His master's thesis, written under supervision of dr. Peter Braspenning and
prof. dr. Peter Apers, was on Deductive Semantic Database Systems.

In December 1988 he joint the Institute for Language Technology and Artificial

Intelligence (ITK) at the Katholieke Universiteit Brabant, as a research assistant. Here

he worked on several language-technology related projects, before being responsible
for the design of the LEDA (LEgislative Design and Advisory) System for the Dutch
Department ofJustice.

After the unfortunate demise of the institute he was appointed as assistant professor

at the department of Informatics and Accountancy (BIKA) of the Faculty of
Economics at the Katholieke Universiteit Brabant in January 1996. He is teaching
courses on Information Technology, Programming and Software Engineering. He is
also teaching courses on Interactive Systems in the Hogeschool West-Brabant's MSc.

Development and Application of Information Systems programme.

His research interests concern the application of linguistics and language technology
in knowledge engineering and information system development, human-computer
interfaces, and computer supported cooperative work.

A LANGUAGE-ACTION PERSPECTIVE ON THE DESIGN OF COOPERATIVE INFORMATION AGENTS

Designed by the author using Microsoft Word® for Apple Macintosch®.
Set in Times and AppleGaramond Bk, formulas in Amsterdam, Script MT Bold.
Cover design by Edgar Grimbergen, using Adobe Photoshop® and Quark XPress®.
Composed on a Hewlett Packard Laserjet 'iSiMx

Film by GVK, Alblasserdam
Printed by Offserdrukkerij Ridderprint B.V., Ridderkerk.
Bound by Boekbinderii van Strien, Dordrecht.

Published and distributed by:

Egon M. Verharen
Klein Brabant 132
5262 RR Vught
The Netherlands
phone: +31 (0)73 6561984

Infolab/Tilburg University
POBox 90153
5000 LE Tilburg
The Netherlands
phone: + 31 13 4662767 / ...3020, fax: +31 13 4663069; email: E.M.Verharen@kub.nl

URL: http://infolabwww.kub.nl:2080/infolab/people/egonf

Information about the prototype (including source code) can be found at WWW page:

http://infolabwww.kub.nl:2080/infolab/people/egon/CIA/

Cover justification:
When my good friend Egon asked me to design the cover of his dissertation, lhad to taCkle the problem of
comprehending the complex and to me unknown subject matter, and develop an image that gave form to my
(and Egon's) unclerstanding of it. Several sessions with Egon gave me a better understanding and a basic design

could be set up. Besides the constraint on book size (16.5x24 cm) there were constraints like: it should fit in the
tradition of dissertation covers, yet break with this tradition to attract attention; the title, author, back and spine

text were set. Furthermore, Egon clearly indicated that the three main topics of the dissertation: language-action

perspective (or aimmunication), intelligent agents (both human and automated), and design should be
represented. pre ferably interrelated. since that is the message of this thesis For the agent part i took "human and
automated" as the central theme and created an image (lower left corner) consisting of a thinking man and a

computer printboard (also. See the spine, where another human/computer morph is featured). This idea was
carried over to the communication metaphor (right side). Here, agents with their own environment (represented

by their aura) communicate based on some shared idea/concepts (touching auras). The design aspect finally, is
taken very literally. I scanned one of Egon's design sketches (the one he explained me the thesis with), and laid it
under the title (tc)p). For the basic color. green was chosen. both because it is a smoothing color, and it hasn't

been used much fc)r dissertation covers (to my knowledge) thereby attracting attention. (All colors are made up

of Pantone 300 ancl 584). The several areas (fields) are austere, because this expresses serenity yet seriousness. (It
is also in line with Egon's personal taste for modern and symmetrical design, like applied in his home interior, in
contrast to his office :-)). All titles and texts were designed in concordence with this. In the title furthermore the
separiltion between theory (language/action) and practice (design of computer systems) is represented.

Edgar Grimbe,xen

Stellingen
behorend bij het proefschrift

A Language-Action Perspective on the Design of
Cooperative Information Agents

Egorr M. Verbaren

1. Het taalhandelingsperspectief (LAP) biedt niet alleen een rijk paradigma om
coBrdinatie en communicatie in en tussen organisaties te beschrijven, maar is

tevens een adequaat raamwerk voor het ontwerp van co8peratieve

informatiesystemen. (Hoofdstuk 2)

2. Het opsplitsen van de activiteitenbeschrijving van agenten in transacties,
contracten en taken draagt bij aan de beheersbaarheid van het

communicatieproces. (Hoofdstuk 5)

3. De combinatie van dynamische deontische logica en illocutionaire logica maakt
het mogelijk om communicatie formeel te beschrijven en is daarmee een

geschikte kandidaat voor de formele onderbouwing van het
taalhandelingsperspectief (LAP). (Hoofdstuk 6)

4. Daar het een illusie is om alle uitzonderingen in een communicatie-situatie te
kunnen beschrijven (en formaliseren), is het nuttig om ze algemeen als
'overtreding' (violation) van iets dat gedaan had moeten worden te kunnen

bestempelen. Deontische logica biedt ons dit handvat. (Hoofdstuk 6)

5. Architecturen en ontwerpmethoden voor intelligente software agenten dienen

meer rekening te houden met het taalhandelingsperspectief (LAP).
(Hoofdstukken 4 en D

6. De stelling van Weigand "een informatiesysteem is niet alleen betrokken op een
domein (Universe of Discourse), maar ook op een omgeving (Environment of
Discourse)" wordt nog steeds niet op waarde geschat. (hoofdstuk D

Lit.· H. Weigand, Linguistically Motivated Principles of Knowledge Based Systems,

Proefschrift Vrije Universiteit, Amsterdam, 1989.

7. Wil KQML als volwaardige agent-communicatietaal gebruikt worden dan behoeft
het semantiek, hetgeen tot nu toe vermeden is.

8. In deze tijd van begripsvervaging is er ruimte in het spectrum tussen 'notie'
(beseD en 'definitie' (formele beschrijving) voor de nieuwe woorden:
defi'noteren <ov.ww.; definoteerde, h. gedefinoteerd> 0.1 het niet geheel
eenduidig omschrijven.
def' notie < de - (v.); -s > 0.1 semi-formele omschrijving van de kenmerken,
de betekenis van een begrip of woord 4 begr*sbepaling 0.2 vage omschrijving
van een nieuw ingevoerde term met behulp van andere (soms even vage)
termen 0.3 het definoteren.

9. Daar geautomatiseerde processen door de complexiteit van de gebruikte
informatietechnologie nauwelijks meer worden begrepen door degenen die ze
uitvoeren, zou de term 'automatisch' vervangen moeten worden door
'automagisch'.

10. Veel, om marketingtechnische redenen, 'multimedia' gedoopte producten
verdienen niet meer dan het predicaat 'muddy media' (slecht gestructureerde
informatie van verschillende typen).

11. Het versimpelen van gebruikersinterfaces heeft een averechts effect op het
gemiddelde digibetisme (computer-analfabetisme) van de gebruikers.

12. Promovendi die hun proefschrift niet afkrijgen zijn niet noodzakelijk lui, maar
lijden waarschijnlijk aan het tot nu toe onbekende "taak-uitvoerings-ildele-hoop-
syndroom". (University of Sussex research on laziness project)

Bibliotheek K. U. Brabant

17 000 01569846 8

8, .., ''

00 .8

0 ,

00 00

0,

, , .0

0 0 , 0

'8 0 :.

	TABLE OF CONTENTS
	PREFACE
	CHAPTER 1
INTRODUCTION
	CHAPTER 2 BACKGROUND AND RELATED WORK
	CHAPTER 3
BUSINESS LOGIC FRAMEWORK
	CHAPTER 4
CIA ARCHITECTURE
	CHAPTER 5
COMMUNICATION FRAMEWORK
	CHAPTER 6 FORMALIZING THE COMMUNICATION FRAMEWORK
	CHAPTER 7
 TOWARDS A DESIGN METHODOLOGY
	CHAPTER 8
EPILOGUE
	APPENDIX A:
	APPENDIX B:
	APPENDIX C:
	GLOSSARY
	LITERATURE
	SUMMARY
	SAMENVATTING
	CURRICULUM VITAE

