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Embedding partial geometries in Steiner
designs

Andries E. Brouwer, Willem H. Haemers
Vladimir D. Tonchev

Abstract

We consider the following problem: given a partial geometry P
with v points and k points on a line, can one add to the line set a set
of k-subsets of points such that the extended family of k-subsets is a 2-
(v, k, 1) design (or a Steiner system 5(2, k,v)). We give some necessary
conditions for such embeddings and several examples. One of these is
an embedding of the partial geometry PQ(7,2) into a 2-(120,8,1)
design.

1 Introduction

We consider the question whether, given a partial geometry P = (X, L), there
is a Steiner 2-design D = (X, B) such that £ C B. Clearly, the existence of
such an embedding of P does not depend on the structure of 7, but only on
its collinearity graph and line size.

Troughout P = (X, L) will denote a partial geometry with parameters s,
t and . The number v of points and the number [ of lines of P are given by

v=(s+1)(st+a)/a, l=0t+1)(st+a)/c.

The collinearity graph (or point graph) is strongly regular having eigenvalues
s(t+1), s — @ and —t — 1 with multiplicities

st(s+1)(t+1)  s(s+1-—a)(st+a)
a(s+t+1—a) 9= a(s+t+1—a)

respectively. For these and other results on partial geometries we refer to the
survey paper by De Clerck and Van Maldeghem [3].

Suppose we have a collection C of (54 1)-cocliques in the point graph of P
that cover all non-collinear pairs of points exactly once. Then P is embedded
in the Steiner 2-design D = (X, C U L) with parameters:

L f=

)

v, k=541, r=(st+t+0a)/a, b= (st+a)(st +t+ )/

33
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Clearly a necessary condition for P to be embeddable is that r and b are
integers. A quick inspection of the parameters of the known partial geometries
shows that these divisibility conditions are satisfied very often. The following
result excludes many more parameter sets.

Theorem 1.1 Suppose P is embeddable in o Steiner 2-design D and suppose
that P is not a Steiner 2-design or a net (i.e. a# s+1 and a #t). Then

(s +1)

“t4s+1

If equality holds then of (t — «)9 is the square of an integer.
This result is an immediate corollary of the following ‘Fisher inequality’.

Theorem 1.2 Let I' be o strongly regular graph with parameters (v, k, A, ).
If T is the collinearity graph of a partial linear space with 1 lines of size s+1,
then either the given partial linear space is a partial geometry with parameters
(s;t, ), orl > w. Ifl =, then det(A + (k/s)I) is a square, where A is the
adjacency matriz of .

Proof (of Theorem 1.2). Let N be the v x | point-line incidence matrix of the
partial linear space, and A the adjacency matrix of I'. Then NNT = A+ (¢+
1)I, where t+ 1 := k/s is the number of lines on each point. If [ = v, then IV
is square, and det(A+ (t+1)I) = (det N)2. If | < v, then NN has rank less
than v, so that A has eigenvalue —t—1, i.e., ((+1)2—(u—A)(t+1)+p~k = 0.
In this case, since £+ 1 divides &, it also divides u, say. u = (t -+ 1)a for some
nonnegative integer ¢, and we find A = s—14-«t, so that I has the parameters
of the point graph of a pg(s,t, @), and since the lines are regular cliques, our
partial linear space was in fact a partial geometry. m]

Proof (of Theorem 1.1). Apply Theorem 1.2 to the noncollinearity graph I’
of P. We find either b — I > v, which reduces to (s +t+1) < t(s+1),or T
is the collinearity graph of a partial geometry P’ with parameters (s',#, &),
where s’ = s, t' =s—a, &/ =s—tand (t—a)(s+1—a) = 0. The adjacency
matrix A of I" has eigenvalues st(s +1 ~ @)/, o — 1 — s, ¢ with respective
multiplicities 1, f, g, so if b — [ = v then o/ (s +t+ 1)9 is a square, and since
= (t—a)(s+t+1) also o (t — ) is a square. ]

A strongly regular graph is called imprimitive when it or its complement
is a vertex disjoint union of cliques (i.e., when 4 = 0 or p = k or there
are no (non)edges at all). A union of m-cliques is the collinearity graph of
a partial linear space with lines of size ¢ if and only if a 2-(m, ¢, 1) design
exists. The complement of a union of n m-cliques is the collinearity graph of
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a partial linear space with lines of size c if and only if a group divisible design
GD(c, 1,m;nm) exists. Nothing nontrivial can be said here.

A partial geometry is called improperif a = 1, 5, s+ 1, t or t + 1. For
o = s or a = s+ 1 the point graph is imprimitive. Otherwise, f « =¢+1, P
is a dual Steiner system, which is not embeddable by Theorem 1.1. If a = ¢,
P is a net that we want to embed in a 2-(k?, k, 1) design, i.e. an affine plane.
Therefore P is embeddable if and only if it is the union of some parallel classes
of an affine plane.

Finally we consider the case & = 1. Then P is a generalized quadrangle
GQ(s,t). In this case the divisibility conditions and the conditions of The-
orem 1.1 are always fulfilled. Several of the known generalized quadrangles
are constructed as a set of lines in a projective or affine space and hence are
embeddable by construction, see Payne and Thas [6]. The smallest (with
respect to v) open case is a possible embedding of GQ(5, 3) in a 2-(96,6, 1)
design.

One might ask whether an embedding will be unique. But when there is an
embedding into some Steiner system with lots of subsystems, like a projective
or affine space, then by twisting one or more subsystems one will in general
get lots of embeddings. For example, in the smallest non-trivial case, that
of the generalized quadrangle GQ(2, 2), naturally embedded into PG(3,2) as
the Sp(4,2) quadrangle, each plane contains three lines of the quadrangle
and there are two ways of extending that set of three to a 2-(7,3,1) on that
plane. Thus, a plane can be ‘flipped’. Flipping one plane destroys all other
planes except those that meet it in a line from the quadrangle. An arbitrary
2-(15,3,1) containing the lines of the quadrangle is obtained from PG(3,2)
by flipping 0, 1, 2 or 3 planes on a given line of the quadrangle, and we find
precisely four nonisomorphic 2-(15, 3, 1) designs that contain GQ(2, 2).

2 Proper partial geometries

Let us examine the known families of proper partial geometries for possible
imbeddings.

First, we consider the class S(K). These geometries exist whenever there
is a maximal arc K of degree d in a projective plane of order ¢ = de. The
parameters are s = d(c— 1), t = ¢(d — 1), @ = (¢ — 1)(d — 1). Substitution
in Theorem 1.1 gives d < 1+ ¢/(c — 1)?, which is satisfied only if d = ¢ = 2.
Then P is GQ(2,2), which has four embeddings, as we saw before. Note that
the same conclusion holds for the dual geometries, since they belong to the
same parameter family.

Next we consider the class 7;(K) with parameters s = 2" — 1, t = (2% +
1)(2™ — 1), @ = 2™ — 1. They exist whenever m divides & and consist of all
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the points and a subset of the lines of AG(3,2"), being all translates of the
lines through the origin that correspond to a maximal arc K of degree 2™
in PG(2,2"). So they all are embeddable. For the duals, all our necessary
conditions are fulfilled, but we don’t know whether any embeddings exists
(except, of course, for the trivial case m = h =1). Form =1, h = 2 we get
the open case GQ(5, 3), that we mentioned earlier.

The partial geometries PQ™* (4n— 1, 2) were constructed by De Clerck, Dye
and Thas [2] using a non-singular hyperbolic quadric @ in PG(4n—1,2) with
a spread (i.e a partition of the point set of ¢ into maximal totally singuiar
subspaces). The points of the partial geometry are the points of PG(4n—1, 2)
that are not on @ and the lines are the hyperplanes in the subspaces of the
spread. A point z is on a line L if z lies in the polar space of L with respect to
Q. The parameters of PQ*(4n—1,2) are s = 221 — 1, ¢ = 221 o = 222,

We found, first by computer and later by hand, that for n = 2 this ge-
ometry indeed has an embedding. For an extensive discussion, see the next
section.

Theorem 2.1 The partial geometry PQ*(4n—1,2) is embeddable in a Steiner
2-design if and only if n < 2.

Proof First suppose the geometry is embeddable. Then the blocks of the
embedding are cocliques of size k = 22"~ in the point graph of PQ*(4n—1, 2),
which is the orthogonality graph on the nonsingular points. The Gram matrix
of the vectors spanning the points of any such coclique is J ~ I, which is non-
singular, and hence these vectors are linearly independent and their number
cannot exceed the dimension of the space. That is, 22" < 4n, so n < 2.
The case n = 1 is trivial: K33 can be extended to Kg. It remains to show
embeddibility in case » = 2. That is, we have to construct a system of 8-
cliques, one on each edge, for the nonorthogonality graph on the nonsingular
points for Of (2). As follows: Pick a good system O of ovoids, one on each pair
of nonorthogonal singular points, and pick a good totally singular 4-space V.
For each ovoid O in © we find a unique point O NV = (p), and a base (basis
consisting of 8 mutually nonorthogonal vectors) B = {a +p|{(a) € O, a # p}.
The set of 120 bases thus obtained is the required system of 8-cliques. For
details on the choice of O and V' (not any V will do), see the next section. O

Recently, Mathon and Street [4] and De Clerck [1] have derived new partial
geometries from PQ%(4n — 1,2), but with the same parameters. We don’t
know if any of these admits an embedding. The non-existence argument for
n > 2 doesn’t work anymore, because these new geometries have other point
graphs.

The parameter sets under consideration all meet the bound of Theo-
rem 1.1, but the condition there is always fulfilled. For the related parameter
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sets s = 22 —1, ¢ = 22" and o = 221 no geometry is known, but for m > 1
they may exist. The embedding however, can not exist by Theorem 1.1 (in-
deed, f +g = v — 1 is odd, so 20m-1U+9) is not a square). For n # 1, the
dual parameters never satisfy the conditions of Theorem 1.1.

The partial geometries PQ*(4n —1,3) (the construction method is due to
Thas and is only known to work for n = 1) have parameters s = 32*~1 — 1,
t =321 @ =2-3?""1 These geometries and their duals have no embedding
by Theorem 1.1.

Finally we consider the two known sporadic proper partial geometries.
The one with parameters s = 4, ¢t = 17 and « = 2, constructed by the second
author, does not satisfy the divisibility conditions, so has no embedding,
but the dual may have one. The other one due to Van Lint and Schrijver
with s =t = 5 and o = 2 looks more interesting. An embedding would
lead to a 2-(81,6,1) design and such a design is not known to exist. By
(incomplete) computer search we were able to extend quite far, but not far
enough. Probably the embedding does not exist.

Remark The 120 points and the 120 blocks of the embedding of PQ*(7, 2)
given in Theorem 2.1, form a (flag-transitive) partial linear space, with an
incidence graph that is not a bipartite distance-regular graph of diameter 4 or
5, and yet, both the point and the block graph are primitive strongly regular
graphs (in fact they are isomorphic). This seems to be a remarkable property.
Examples with imprimitive strongly regular graphs are given by the elliptic
semiplanes. :

3 Triality, ovoids, spreads and bases

Let X be an 8-dimensional vector space over a field K, provided with a
nondegenerate quadratic form @ of (maximal) Witt index 4. Let L be the
collection of totally singular (t.s.) lines, and let Zy, Z;, Z5 be the sets of
singular points and of t.s. 4-spaces of the first and second kind, respectively.
Put Z = ZyU Z; U Z,. Natural incidence (symmetrized containment) defines
a bipartite graph I" on Z U L with bipartition {Z, L}. This graph has auto-
morphism group G ~ OF (K).Sym(3). The group G is transitive on Z and
L and preserves {Zy, Z1, Z»}. The subgroup Gy ~ OF (K) preserves the sets
Zy, 2y, Zs. The phenomenon that the three sets Zy, Z;, Z3 can be permuted
arbitrarily is called #riality.

Let Ny be the set of nonsingular points. We need to interpret these in
terms of the graph I' so that we can apply triality and also get sets Ny,
N,. One way of doing that is by representing a nonsingular point {n) by the
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reflection

(z,m)
Q(n)
Let Ry be this set of reflections. There is a 1-1 correspondence between Ny
and Ry. We have Ry C G and Ry is closed under conjugation by Go.2 =
PGOF(K). 1t follows that we can find three sets Ry, Ry, R, of reflections
under conjugation by G, where R; consists of the reflections that preserve Z;
and interchange Z; and Z for {i,4,k} = {0,1,2}.

Ty @ LT — n.

Lemma 3.1 (cf. Tits [7]). Let € R; and s € R; withi # j. Then (rs)® = 1.

Proof We may suppose r € Ry, s € Ry. Since srsrs € Ry it suffices to
show that r and srsrs fix the same singular points. Let p € Z; be fixed by 7,
andput W =spand V=rWsothat V€ Z; and W € Z,. Now m:=V NW
is-a plane containing p and s fixes each line on p in 7 so that V and sV have
at least a plane in common. But sV € Z, s0 V = sV, i.e,, rsp = srsp. o

So far the field was arbitrary, but from now on we take K = F;. The
property that only holds in this case is: If m,n are nonsingular vectors or-
thogonal to the t.s. plane m, then (m,n) = 0. Indeed, 7 is the union of three
totally isotropic (t.1.) 4-spaces on =, of which two are t.s., so m and n are
both contained in the third.

Now that K = Fy, let us use + between projective points instead of the
spanning vectors, and write (a) + () := (a + b).

Let a base be a set of 8 mutually nonorthogonal nonsingular points. Let
an ovoid be a set of 9 mutually nonorthogonal singular points. Let a spread
be a set of 9 pairwise disjoint t.s. 4-spaces. All elements of a spread are of
the same kind, and we talk about a j-spread when the spread is a subset of Z;
( =1,2). If we call ovoids 0-spreads, then i-spreads (i = 0,1,2) correspond
under triality. ‘

If B is a base, then by := ¥y p b is singular, and Og := {bo }U{by+b|b € B}
is an ovoid. Conversely, if O is an ovoid, and p € O, then Bo, == {a +p|a €
O,p # a} is a base. Thus, we find a 9-1 correspondence between bases and
ovoids.

Proposition 3.2 Let S be a 1-spread. Then O := {rS|r € Ry} is a system
of ovoids, one on each pair of nonorthogonal singular points.

These are the sets O called ‘good’ in the previous section.

Proof The numbers fit, so we have to show that no pair of noncollinear
points is covered twice. Interchanging types 0 and 2, we have to show that no
two disjoint 4-spaces W, W’ are contained in both rS and 'S for r, 7' € Ry.
Let r = rm and 7' = r,. Then m* and n' meet W and W' in the same plane
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7 and 7', respectively. Both m and n lie in the t.i. but not t.s. 4-spaces Y
and ¥” on 7 and 7. But then ¥ and ¥ have the line [ spanned by m and n
in common, and [ hits the disjoint planes 7, 7' in distinct points, so has at
least 4 points, contradiction. 0

Proposition 3.3 Take S and O as above, and fiz an element V € S. The set
B of 120 bases Boy, with O € © andp = 0NV is a system of 8-cliques, one
on each edge, for the nonorthogonality graph on the 120 nonsingular points.

Of course the existence of B is the whole point of this section (in fact, of
this paper).

The above description does not show the symmetry between the 120 non-
singular points and the 120 bases. A more symmetric description of the same
configuration: Take a base B and put O := Op. Let §; = {rO|r € Ry} and
8; = {rO|r € R}, and join S € &; to the 8 spreads 7,5 (b € B) in Ss.

Or, in terms of reflections: Take a base B and join » € Ry to the 8

reflections ryrry in Ry.
Proof We have to show that both descriptions are equivalent, and that they
actually work. As to the former, interchanging types 0 and 1 we see that the
spread S with fixed element V, the collection O = {rS|r € Ry}, an ovoid
0 = 78 in O, the point p = ONV and the set of 8 reflections fixing 7 points
of O and interchanging p with the ninth point correspond to, respectively,
the ovoid O with fixed element by, the collection §; = {rO|r € Ry}, a spread
S = 70 in &, the 4-space by € S containing by and the set of 8 reflections
{rrer|b € B}. Since rryr = myrry, and 7,0 = O, this shows that both
descriptions are equivalent.

Since the bases by definition are 8-cliques in the nonorthogonality graph
on the nonsingular points, and the numbers fit, we only have to check that
no two bases Bop have a pair in common, or, equivalently, that no two sets
{rryr|b € B} and {srys|b € B} have a pair in common (for r, s € Ry). But if
TTer = 8138 and rrer = sr48 (a,b,¢,d € B, a # ¢, b # d) then r,rry = 1387,
TePTe = Tg8Td, 1.6, T = ToTpSTyly = Talblalel Tl s e. With § = rO this
means that rorergreS = 5. But if o,b, ¢, d are all distinct, then reryryr. has
order 5 (as is seen by its action on O) hence must fix some element V € S.
On the other hand, both (a,b, ¢,d) and {(a,b,¢, d)J' are elliptic quadrics, and
TaTpTalel = T+ (3, c)c+ (z, ¢+ d)d+ (2, b+ d)b+ (2, a+b)a while a, b, ¢, d and
sums of two of them are not in Zj, so when two of the inner products (z, ¢),
(z, c+d), (z,b+d), (z,a+Db) vanish for z € V, all do. But VN{a, b, ¢, d)* does
not contain a line, contradiction. If a,b,c,d are not all distinct, say o = d,
then roryrare = rarpTare = refe for ¢ = 7,0 = a + b, But if r,7.S = 9, then,
since 7.7, fixes at least a line on each element of S, 7.r. must fix all elements
of 5. But ¢ # e and 7.1z = 2+ (x, c)c+ (z, €)e, so we find that (z, c) = (z,¢)
on each V € 5, so on all of X, so ¢ = e, contradiction. O
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What about the automorphism group of these constructions? The 8 re-
flections 7, (r € B) generate a Sym(9) and clearly this is the full stabilizer of
O in G. The stabilizer of O in Gy is Alt(9), and that is also the full group of
the system @. It follows that the full group of the system B is the stabilizer
of by in the previous, i.e., is Alt(8).

As mentioned earlier, De Clerck-Dye-Thas construct a partial geometry
pg(7,8,4) on the nonsingular points by fixing a spread S and taking the sets
of nonsingular points on the t.i. but not t.s. 4-spaces meeting some element
of S in a plane. (This is the dual of the pg(8,7,4) obtained from . Indeed,
the DDT system has point set Ry, and its lines are the planes in some element
of S, where r is incident with = if rm = 7. If we let S be a 1l-spread, then
these planes can be identified with the elements of Z; containing them, and
interchanging types 0 and 2 we find the description of O.)

I we join our system B to the set of lines of this partial geometry, we
get a Steiner system S(2, 8, 120) with automorphism group (at least) Alt(8),
when both systems were constructed starting from the same spread S. (No
doubt several nonisomorphic 5(2, 8,120)’s arise in this way, but we have not
investigated the details. Several nonisomorphic S(2,8,120)’s were known
already - obtained as the exterior lines and the points off & hyperoval in some
projective plane of order 16, cf. [5].)
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