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Abstract

Decomposable effectivity functions are introduced as an extension of additive effectivity
functions. Whereas additive effectivity functions are determined by pairs of additive TU-games,
decomposable effectivity functions are generated by pairs of TU-games that need not be additive.
It turns out that the class of decomposable effectivity functions does not only contain the class of
additive effectivity functions but it also contains the class of effectivity functions corresponding to
simple games and the class of effectivity functions corresponding to veto functions. We examine
relations between properties of decomposable effectivity functions and the TU-games by which
they are generated. It turns out that a decomposable effectivity function is stable whenever it can
be generated by a pair of balanced TU-utility games. Finally, we provide two characterizations of
decomposable effectivity functions. © 1997 Elsevier Science BV.

Keywords: Effectivity functions; TU games; Decomposability; Revealed power property; Echelon
form

1. Introduction

Choice correspondences and choice functions, which describe the collective choice of
a number of agents, form a central topic of study in social choice theory. It is assumed
that these collective decision rules depend on the preferences of the individual agents.
As these preferences are private information, strategic aspects play an important role: By
feigning or misrepresenting preferences, individuals or coalitions can influence society’s
choice to their own benefit but at the expense of others. This defect of many rules is
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well-known. For instance, Condorcet (1785) already criticized Borda’s rule (Borda
(1781)) on this point.

Using Arrow’s impossibility theory (Arrow (1951)), Gibbard (1973) and Satterthwaite
(1975) independently showed that in the case of three or more alternatives, dictatorial
rules are the only choice functions which do not exhibit this strategic behavior. So when
studying choice functions and choice correspondences in one way or another, we have to
cope with strategic behavior. Therefore it is interesting to know the ‘“‘power dis-
tribution” in society which indicates the opportunities for individual or coalitional
manipulation at a given collective decision rule. A way to model this power distribution
was introduced in Moulin and Peleg (1982) using the concept of an effectivity function.
Formally an effectivity function associates to each coalition a collection of subsets of
alternatives for which the coalition is effective. If a coalition is effective for a certain
subset of alternatives, this means that it is able to force the final outcome of the decision
rule at hand to be among the elements of this set, or formulated otherwise, this coalition
can veto all alternatives outside this set of alternatives.

Possible applications of effectivity functions that are discussed by Moulin and Peleg
(1982) are effectivity functions associated with monotonic simple games, additive
effectivity functions which are related to voting by veto methods (cf. Moulin (1983)),
and neutral and A-monotonic effectivity functions which correspond to veto functions
(cf. Moulin (1982)). Effectivity functions corresponding to monotonic simple games
form a subclass of effectivity functions corresponding to veto functions. However, there
is no inclusion relation between the class of additive effectivity functions and the class
of effectivity functions corresponding to veto functions. In this paper we introduce
another class of effectivity functions, called decomposable effectivity functions, which
comprises the classes mentioned above. In both additive effectivity functions and
effectivity functions corresponding to veto functions, a coalition S is effective for a set
B, if the veto power of S exceeds the veto resistance of A \ B. Here the veto resistance is
an additive measure and the veto power is either an additive measure (in case of an
additive effectivity function) or a TU-game (in the other case). For a decomposable
effectivity function a coalition S is effective for a set of alternatives B if the veto power
of S exceeds the veto resistance of A \ B. But now the veto power as well as the veto
resistance are described by TU-games as being not necessarily additive.

The organization of the paper is as follows. Section 2 defines the concept of an
effectivity function and recalls some basic properties of effectivity functions. Further-
more, we reconsider the before-mentioned classes of effectivity functions, namely
effectivity functions associated with monotonic simple games, additive effectivity
functions, and effectivity functions corresponding to veto functions. In Section 3 we
introduce decomposable effectivity functions. Section 4 examines relations between the
properties of decomposable effectivity functions and the properties of TU-games that
generate these effectivity functions. Among others, it is shown that a decomposable
effectivity function is monotonic if and only if it can be generated by monotonic
TU-games; further a decomposable effectivity function is stable whenever it can be
generated by balanced TU-games. Section 5 and Section 6 provide two characterizations
of decomposable effectivity functions. First, it is shown that an effectivity function is
decomposable if and only if it satisfies the revealed power property. This property can be
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seen as a modification of the more familiar WARP (= week axiom of revealed
preference) condition in revealed preference theory. Secondly, we show that an
effectivity function is decomposable if and only if it is possible to represent the
effectivity function by a {0, 1}-matrix in echelon form.

2. Effectivity functions

We start with some basic notations and definitions.

Let X be a finite set. The power set of X is denoted by 2%, i.e., 2*: = {¥|y C X}, and
P, (X): = 2"\{D}. The cardinality of X is denoted by |X].

Let A be a finite set of alternatives and let N be the set {1, ..., n} (n € N). N is called
a society, members of N are called agents or voters, and non-empty subsets of N are
called coalitions. We assume that each agent i € N has preferences over the set of
alternatives which can be represented by a complete and transitive preference relation R,.
Let a, b€ A and i € N. We adopt the usual notation of a R, b if (@, b) ER,, and a P; b if
a R, b and not b R; a. Also as usual a R, b is to be interpreted as ‘alternative a is at least
as good as alternative b according to R,”. Furthermore, for S € P ,(N), Rg: = (R));es- Ry
is called a (preference) profile on A. The class of all such preference profiles is denoted
by R 4.

An effectivity function (cf. Moulin and Peleg (1982)) is a map E:%P,(N) —2%0* guch
that

(i) EN)=P,(4)
(ii) AEE(S) for all SEP,(N).

The interpretation of E is as follows: If BEE(S), then S can force the final decision
within the subset B of alternatives. By definition the society N can force the outcome to
belong to every (non-empty) subset of alternatives.

An effectivity function E can be represented by means of a [0, 1}-matrix I® of size
2"—1 by 21, where for SEP (V) and BEP ,(A),

I1%(S, B) = 1 if and only if B € E(S).

We will now consider several properties that effectivity functions might satisfy. We will
use these properties later on, but it should be mentioned that this list of properties is
certainly not exhaustive. For more properties of effectivity functions we refer the reader
to Abdou and Keiding (1991).

Let E:22% ,(N)—27° be an effectivity function.

(i) E is A-monotonic if for all SEP(N) and all B, B'EP ,(A) with BCB' and
BEE(S), we have B'€E(S).
(ii) E is N-monotonic if for all S,S'€P,(N) with SCS’, and all BEP(4), with
BEE(S), we have BEE(S').
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(iii) E is neutral if for all SEP,(N), all BEE(S) and all B’ €% ,(A) with |B'|=|B
we have B' €E(S).

(iv) E is superadditive if for all S|, S,EP,(N), with S, NS, =, and all B, €EE(S,),
B,EE(S,), we have ByNB,EE(S,US,).

(v) E is convex if for all §;, S,EP,(N), and all B, EE(S,), B, EE(S,), we have
B,NB,EE(S,US,) or BjUB,EE(S,NS,).

)

It is easy to check that if E is convex, then E is also superadditive, and if E is
superadditive, then E is N-monotonic.

Given an effectivity function that describes coalitional power in society and a profile
reflecting the individual preferences of all agents, the problem of interest is how to find
an alternative, or a set of alternatives, which every agent can agree upon. Since we study
situations in which agents behave cooperatively, a rather natural solution concept is the
core of an effectivity function (Moulin and Peleg (1982)). The core describes whether
the outcome is stable with respect to coalitional deviations.

Let E:P(N)—2 7 be an effectivity function and R, ER, a profile. An alternative
a€A is dominated by a subset BE®P ,(A) of alternatives via a coalition SEP,(N) if
BEE(S) and b P a for all b&B. The core of E at Ry, Core(E, R,) consists of all
alternatives a & A which are not dominated by any subset of alternatives via any
coalition. An effectivity function E is called stable is Core(E, R,)7 for all profiles
RyER,.

Stability of effectivity functions has been studied by several authors. The first general
result on stability of effectivity functions is due to Peleg (1982), who showed that
convex effectivity functions are stable. A complete characterization of stable effectivity
functions is due to Keiding (1985).

In the last part of this section we discuss three subclasses of effectivity functions, all
introduced by Moulin and Peleg (1982), which play an important role in the literature.
Successively, we discuss effectivity functions corresponding to monotonic simple
games, additive effectivity functions, and effectivity functions corresponding to veto
functions.

Example 2.1. Simple games.

A TU-game on N is a pair (N, v) (often denoted simply by v), where v:2" SR is a
function with w(Z)=0. A TU-game v is called a simple game if v(S)E{0, 1} for all
se2” and v(N)=1. A simple game v is monotonic if for all S, TEP ,(N) with SCT and
v(§)=1 it holds that w(T)=1. Let S be a coalition. If v(§)=1, then S is a winning
coalition, and if v(S)=0, then S is called losing.

A way of associating an effectivity function E":® ;(N)—
game (N, v) is the following. For SEP (V)

A . .
2% to a monotonic simple

vron. | Po(A) if S is winning
E (S)'_{ {A}  ifSislosing.

Winning coalitions have the power to enforce every subset of alternatives, whereas a
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losing coalition has no power at all. In Peleg (1984a) this effectivity function is called
the standard effectivity function associated with v. It is clear that E* is A-monotonic and
N-monotonic. Furthermore, if v is proper, i.e., (S)=1 implies v(N\S)=0, then E” is
superadditive, and if v is strong, ie., v(S)=0 implies v(N\S)=1, then E" is maximal.
Finally, if v is balanced, i.e., if the core C(v): ={xER"[Z,,, x,=v(N), =, x,=v(S) for
all $€2"} is non- empty, then E” is stable. A complete charactenzatlon of stable
effectivity functions associated with a monotonic simple games is provided by
Nakamura (1979).

Example 2.2. Additive effectivity functions

Let AER" and u ER* be two positive probability measures on N and A, respectively.
So, ;>0 for all iEN and Z,.,, ,=1, and wu,>0 for all a€A and 2 ., u,=1. The
vectors A and w give rise to an effectivity function E, , in the following way. For
SEP,(N) and BEP (A)

BEE, (S)ifandonlyif 2, A,> 2

ies aEAN\B

The interpretation is that S is effective for B if the total veto power of S (measured by A)
exceeds the total veto resistance of A \B (measured by w). Using the fact that
2.ea M, =1 we see that

BEE, () ifandonlyif 2 A, + 2 p,>1.
€S a€EB
It is left to the reader to check that E, , is indeed an effectivity function. An effectivity
function E:P (N )—>2}"‘A) is called addmve if there exist positive probability measures
AER" and u €R* such that E= E, ,.Itis clear that these probability measures need not
be uniquely determined.

Additive effectivity functions play a prominent role in the literature on effectivity
functions. One of the reasons is that additive effectivity functions are convex and hence,
stable.

An important application of additive effectivity functions is the class of effectivity
functions corresponding to a voting by veto method (cf. Moulin (1983)). Storcken
(1994) characterizes the class of additive effectivity functions by associating a simple
game with each effectivity function and using Elgot’s (Elgot, 1961) characterization of
the class of all weighted simple games. For details on this result the reader is referred to
Storcken (1994).

Example 2.3. Veto functions

A veto function (cf. Moulin (1982)) is a function »:2¥—{0,1,..., |A|—1} with
(D):=0 and ¥(N):=|A|— 1. (Notice that a veto function can be regarded as a TU-game
on N.) Given a veto function z, the effectivity function E” corresponding to v is defined
by
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E’(S):={B € P,(A)|»S)=|A\B[}
for all SEP,(N).

We leave it to the reader to verify that E” is an effectivity function. Again, the
interpretation is that a coalition S is effective for a subset of alternatives if S can veto all
alternatives outside B, where the veto power of coalitions is described by the veto
function » (which is a TU-game). Since in this case the veto power of coalitions need
not be additive, it is clear that effectivity functions corresponding to veto functions need
not be additive effectivity functions.

Several properties of E” can be formulated in terms of the veto function » (cf. Abdou
and Keiding (1991)). For example, E” is superadditive if and only if v is superadditive,
ie., ¥, US,)=vlS)+¥S,) for all S, S,EP V) with S,NS,=. Otten (1995)
shows that, analogous to effectivity functions corresponding to monotonic simple games,
balancedness of v is a sufficient condition for stability of E”.

Contrary to the class of additive effectivity functions, it is rather easy to characterize
the class of effectivity functions corresponding to veto functions. The effectivity
functions E” corresponding to a veto function v is neutral and A-monotonic. Conversely,
every neutral and A-monotonic effectivity function E generates a veto function v*
defined by

v*(S): = max{|A\ B||B € ES)]

for all SEP,(N), such that E*" =E.

Since effectivity functions associated with monotonic simple games are both neutral
and A-monotonic, it follows that this class is a subclass of the effectivity functions
corresponding to veto functions. Additive effectivity functions however, need not be
neutral, so this class is not a subclass of the class of effectivity functions corresponding
to veto functions.

In the next section we introduce another class of effectivity functions, called
decomposable effectivity functions, which incorporates all three classes of effectivity
functions that we discussed in this section.

3. Decomposable effectivity functions

Based on the observation that additive effectivity functions can be generated by
positive probability measures on N and A, which can be regarded as additive TU-games
on N and A, we introduce the following generalization of additive effectivity functions.

Let v:2¥—[0, 1] and w:2* —[0, 1] be TU-games on N and A, which satisfy v(N)= 1
and v(S)>0 for all SEP V), w(A)=1 and w(B)>0 for all BEP ,(A). The games v and
w generate an effectivity function E(v, w):P o(N)—27°* as follows. For SEP ,(N) and
BEP,(A) ’

B € E(v, w)(S) if and only if v(S) + w(B) > 1.
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An effectivity function E:P ,(N) =20 is called decomposable if there exist TU-games
v and w as above such that E=E(v, w). For such TU-games v and w, E(v, w) is called
the effectivity function generated by v and w.

Here the TU-game v represents the veto power of coalitions and w represents the veto
resistance of subsets of alternatives.

It readily follows from this definition that additive effectivity functions are decompos-
able. The following proposition illustrates that also effectivity functions corresponding to
veto functions are decomposable.

Proposition 3.1. Ler E:P (N)—2"* be an effectivity function. The following state-
ments are equivalent

(i) E is decomposable
(it) there exist v:P (N)—[0, 1] and w:P ,(A)—[0, 1] such that for all SEP (N) and
all BE® ,(A) it holds that

B € E(S) if and only if v(S) + w(B) > 1
(iii) there exist v: P (N)—[0, 1] and w:P (A)—[0, 1] such that for all SEP ,(N)
and all BE®P ((A) it holds that

B € ES) ifandonly ifv,(S) +w,(B)=1
(iv) there exists vy:P (N)—[0, 1] and w2:2A—>[O, 1] with w,(): =0 such that for all
SEP,(N) and BEP ((A) it holds that

B € E(S) ifand only if v,(S) = w,(A\B)
(v) there exists vy:P (N)—[0, 1] and w3:2A—>[O, 1] with w4(): =0 such that for all
SEP(N) and all BEP ((A) it holds that

B € E(S) if and only if v4(S) > w;(A\B).

As the proof of this proposition is straightforward, it is omitted.
From Proposition 3.1 (iv) we can derive the following corollary.

Corollary 3.2. Effectivity functions associated with monotonic simple games and
effectivity functions corresponding to veto functions are decomposable.

4. Properties of TU-games and decomposable effectivity functions

In this section we examine relations between properties of the TU-games v and w and
the effectivity function E(v, w).

The following proposition shows that if v and w are monotonic, then E(v, w) is N- and
A-monotonic. The proof is straightforward.

Proposition 4.1. Let E=E(v, w):P ,(N)—27"“ be the decomposable effectivity function
generated by the TU-games v and w. Then

(@) if v is monotonic, then E is N-monotonic
(i) if w is monotonic, then E is A-monotonic.
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With respect to the converse of this proposition it can be seen that if £ is N-monotonic
(A-monotonic) and decomposable, then there exist TU-games v and w with v(w)
monotonic such that E=E(v, w). (The TU-games v and w constructed in the proof of
Theorem 5.4 are monotonic if E is monotonic.)

Proposition 4.2 shows that a decomposable effectivity function is convex if it can be
generated by convex TU-games.

Proposition 4.2. Let E=E(v, w):P (N )=270 pe the decomposable effectivity function
generated by the TU-games v and w. If v and w are convex, then E is convex.

Proof. Let v be convex, i.e., for all S,TEP ,(N): v(S) +v(T)=v(SUT)+v(SNT), and let
w be convex. Let S, TEP,(N), BEE(S) and DEE(T). We have to show that E is
convex, i.e., BODEESUT) or BUDEESNT).

Since v(S)+w(B)>1 and v(T)+w(D)>1, we have

v(S) +u(T) + wB) + wD)>2.
Using convexity of v and w now yields
vSUT)+wBND)+uvSNT)+wBUD)>2.

Hence, v(SUT)+w(BND)>1 or v(SNT)+wBUD)>1. So, BNDEESUT) or
BUDEESNT). O

The next example shows that E(v, w) is not necessarily superadditive, if both v and w
are superadditive.

Example 4.3. Let N={1,2,3} and A ={a,b,c}. Define v:2"—[0, 1] by W(@)=0, v({1})=
vi{2h=v({3H=1/3, v{1, 2H=v({l, 3H=v({2, 3}D=2/3, and v(N)=1, and define
w:2* [0, 1] by w(@)=0, w({a})=w({b)=w{ch=1/4, w({a, bh=w({a, ch=w({b,
c})=3/4, and w(A)=1. Then for all S, TEP V) with SNT= we have v(S)+v(T)=
w(SUT), and for all B, DEP (A) with BND = we have w(B)+w(D)=w(BUD). Sov
and w are superadditive. Furthermore, {a, b}€E(v, w)({1}) and {a, c}EE(v, w)({2}), but
{a} & E(v, w)({1, 2}). Hence, E(v, w) is not superadditive.

It can be shown that E(v, w) is superadditive whenever v is superadditive and w
convex.

Theorem 4.4 states that if both v and w have a non-empty core, then also the core of
E(v, w) is non-empty for every preference profile.

Theorem 4.4. Let E=E(v, w):?]’o(N)—>2‘@°(A) be the decomposable effectivity function
generated by the TU-games v and w. If v and w are balanced, then E is stable.
Proof. Let x€C(v) and yEC(w). Then X,y x;=I and X ., y,=1. Furthermore,
x,=v({i}))>0 for all iEN and y,=w({a})>0 for all aEA. So, the vectors x and y
determine an additive effectivity function E, ,. Moreover, E(S)CE, (S) for all S&
P,(N), since v(S)+w(B)>1 implies =, s x,+ 2,5 ¥,>1. Now stability of E follows
directly from the fact that E, , is stable. [J
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It is an open problem whether each stable decomposition effectivity function can be
generated by TU-games v and w both having an non-empty core.

5. A characterization of decomposable effectivity functions

Moulin and Peleg (1982) show that each neutral and A-monotonic effectivity function
corresponds to a veto function and conversely. A characterization of additive effectivity
functions is provided by Storcken (1994) using a property that strengthens convexity. In
this section we will provide a characterization of the class of decomposable effectivity
functions using a modification of the ‘weak axiom of revealed preference’ in the theory
of preference revelation. This property is called the revealed power property.

Let E:P (N)—27%“ be an effectivity function. Suppose that for all coalitions S,
TEP(N) and all subsets BEP ,(A) of alternatives with BE E(S) and B& E(T') we have,
if DEP(A) and DEE(T), then DEE(S). In this case we say that E satisfies the
revealed power property.

The interpretation of this property is the following: If an effectivity function satisfies
the revealed power property and a coalition S is effective for a certain subset of
alternatives for which coalition T is not effective, then this ‘reveals’ that S has more
power than T, i.e., S is effective for every subset that T is effective for.

It is clear that an effectivity function E satisfies the revealed power property if and
only if for all S, TEP,(N) we have

E(S) CE(T) or E(T) C E(S).

The following proposition shows that the revealed power property is a necessary
condition to characterize decomposable effectivity functions.

Proposition 5.1. Let E:P (N )—27 be an effectivity function. If E is decomposable,
then E satisfies the revealed power property

Proof. Let E be decomposable. Then there exist TU-games v and w such that E = E(v,
w). Let S, TEP,(N) with ES)ZET). We show that E(T)CE(S). Since there is a
BEP (A) with v(S)+w(B)>1 and v(T)+w(B)=1, it follows that v(S)>w(T). Now let
DEE). Then w(T)+w(D)>1 and hence v(S)+w(D)>1, which implies that D € E(S).
So we may conclude that E(T)CE(S). O

It turns out that the revealed power property is also a sufficient condition to
characterize decomposability. In order to prove this, we first introduce some additional
notation.

Let E:P,(N)—27°® be an effectivity function. The dual of E (Peleg (1984b)),
E*:P,(A)—27" is defined as follows. For BE®P ,(4)

E‘B)={S € Z,(N)|BEES)}.
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We can restate the revealed power property in terms of the dual of an effectivity
function.

Lemma 5.2. Let E:QPO(N)-»Z@"‘A) be an effectivity function. Then E satisfies the
revealed power property if and only if for all B, DEP (A) we have Ed(B)CEd(D) or
E‘(D)CE‘(B).

Proof. Let E satisfy the revealed power property. Let B, DEP (A) with E d(B)ZE d(D).
Then there exists a coalition SEP (V) with BEE(S) and D Z E(S). Now let TEEYD).
Then D €E(T), and since E satisfies the revealed power property, we have E(S)CE(T).
Since BEE(S), it follows that BEE(T), which implies TEE 4(B). Hence, E“(D)C
E°(B). Since (E°)'=E the other implication follows. [J

In the following we use the equivalence relations ~, on P,(N) and ~, on P (A),
corresponding to an arbitrary effectivity function E, defined by

S~y T<ES)= E(T) forall S,T € Z,(N), eY)

B~,DoE'B)=EYD) forall B,D € P,(A). )

If E satisfies the revealed power property, it is possible to order the equivalence classes
[$,1, [S,], ..., [S,] induced by ~,, in a decreasing way, i.e.,

SEISLTEIS i <j=ES) DET). (3)

(Note that NE[S, ).
By Lemma 5.2 it follows that if E satisfies the revealed power property, it is possible
to order the equivalence classes [B,], [B,], ..., [B] induced by ~, such that

BE[B1,DE[B,], r<s=>E"(B);>E”(D). (4)
(Note that AE[B,]).

Lemma 5.3. Let E:P (N Y—2%% be an effectivity Sfunction which satisfies the revealed
power property. Let ~,, and ~, be the equivalence relations as defined in (1) and (2).
Let the corresponding equivalence classes [S,], [S,],. .., [S;] and [B,], [B,],..., [B|]
be ordered as in (3) and (4), respectively. Then we have

(i) for all i€{1,.. ., k} there exists an s€{1,..., I} such that for all SE[S,]

ES) = L_J [B,]

(ii) for all r€{], ..., I} there exists a jE{1,..., k} such that for all BE[B,]
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EB)+ E,J 5]

Gii) k=1
@) for all i€{l, ..., k} and SE[S,]

k+1—i

E(S) = U [B,].
Proof.

(i) Let i€{l,..., k} and SE[S,]. It suffices to show that for t&{l,..., I}, for
B&[B,] with BEE(S) and for D €[B,] with 1=r=t, we have D €E(S). This follows
immediately from the fact that E‘(B)CE(D).

(ii) Similar to (i).

(ii1) From (i) we derive that /=k and from (ii) it follows that k=I[. Hence, k=1
(iv) Follows immediately from (i) and (iii). OJ

Now we are able to prove:

Theorem 5.4 Let E:P (N )24 be an effectivity function. Then E is decomposable if
and only if it satisfies the revealed power property.

Proof. The only if part follows from Proposition 5.1. To prove the if part, let E satisfy
the revealed power property. Let [S,1, [S,],..., [S,] be the equivalence classes
corresponding to ~, ordered as in (3), and let [B,], [B,],.... [B,] be the equivalence
classes corresponding to ~, ordered as in (4). By Lemma 5.3 we have k=I and for all
SE[S,] it holds that

k+1-i

E(S) = U [B,).

Now define TU-games v:2" —[0, 1] and w:2*—[0, 1] as follows. v(): =0, w(Q): =0,
and

vES):=k+1—1i)/k forall SE[S,] andi €{1,... k},
w(B): = (k+ 1 —r)/k forallBE[B] and r €{1,. ..k}

Let SE[S,] and BE[B,]. Then

vS)+wB)> Lk +1—i)k+(k+1—nN/k>1ck+2—i>re
r=k+1-ioBEEQS).

Hence E=E(v, w), which completes the proof. (]
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6. Decomposability and echelon matrices

In Section 2 we have seen that an effectivity function E can be represented by a
{0,1}-matrix I” of size 2" —1 by 2'*-1, where for SEP,(N) and BEP ,(4),

1%, B) =1 if and only if B € E(S).

In this section we provide a characterization of decomposable effectivity functions in
terms of matrices. We show that an effectivity function is decomposable if and only if it
can be represented by a {0, 1}-matrix in echelon form in which the 1’s are ‘separated’
from the 0’s (see Fig. 1).

Theorem 6.1. Ler E:P(N)—27°* be an effectivity function and I* the matrix that
represents E. Then E is decomposable if and only if it is possible to rearrange the rows

and columns of I* in such a way that the rearranged matrix has an echelon form as in
Fig. 1. ’

Proof. Let E be decomposable. By Theorem 5.4, E satisfies the revealed power property.
Let [S,], [S,], . .., [S.] be the equivalence classes corresponding to ~ ,, ordered as in (3),
and let [B|], [B,], ..., [B,] be the equivalence classes corresponding to ~, ordered as in
(4). Rearrange the rows and columns of I° according to these equivalence classes.
Consider the column corresponding to a coalition SEP,(N). SE[S,] for some i€
{1,..., k} and so by Lemma 5.3 (iv) we have E(S)=U"*X!"" [B ]. From this observation
it immediately follows that every row of the rearranged matrix has the form (1,..., 1,
0,...,0). Analogously, every column of this matrix has the form (1,...,1,0,...,0)"
(xT denotes the transpose of a vector x). Hence, the rearranged matrix has the echelon
form of Fig. 1.

To prove the if part, suppose it is possible to rearrange the rows and columns of I* in
such a way that we obtain a matrix in the form of Fig. 1. Suppose the columns of this
matrix are arranged in the order B, . .., Bya-1. Let SEP ((N). Define m(S): =max{r&
{1,..., 2"7"Yr%s, B,)=1}. Since the row corresponding to S has the form (1,..., 1,
0,..., 0), it follows that E(S)={B,, ..., Bm(s)}. From this observation it immediately
follows that for S, TEP ,(N) we have E(S)CE(T) if and only if m(S)=<m(T). Hence, E
satisfies the revealed power property and hence, by Theorem 5.4, E is decomposable.

1_|———r
r‘j 0

Fig. 1. A {0,1} matrix in echelon form.
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