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Abstract

In a dynamic programming framework, this paper investigates the opti-
mal timing of technology adoption by a competitive firm when technology
choice is @rreversible and the firm faces a stochastic innovation process with
uncertainties about both the speed of the arrival and the degree of improve-
ment of new technologies, A numerical example illustrates how the optimal
timing decision is affected by changes in parameter values reflecting market
conditions, the firm’s initial technological attributes, and the characteristics
of the stochastic innovation process. Some of these effects turn out to be
in sharp contrast to common intuition. Contrasting the optimal decision
rule derived here with the rule obtained under the net present value shows
that the former implies a slower pace of adoption than implied by the latter.
The optimal decision rule is generalized for the case of multiple technology
switches and it is shown that for all the switching decisions exeept the last
one, the optimal rule satisfies the net present value criterion.
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1 Introduction

A hallmark of the evolution of modern civilization has been an unceasing flow
of technological innovations adoptable in industry, agriculture, services, or other
branches of economic activity. Despite this abundance, however, adoption of
new technologies appears to have been a slow and incremental process. Over any
given period of time only a tiny fraction of available innovations have been ac-
tually adopted for mass production. Furthermore, adoption of new technologies
with radical superiority to the prevailing state of the art seems to have taken
place with very long delays. The history of technological advances in both in-
dustry and agriculture attests to these features of innovation adoption!. In the
automobile industry, for instance, a notable example is the significant increase
in the fuel efficiency of passengers vehicles brought about since 1970s by suc-
cessive, and as yet only partial, adoptions of technical inngvations in the areas
of microelectronics, aerodynamics, and material substitution?. In agriculture, a
clasgic example is the notable increase in productivity over time resulting from
successive, and still continuing, adoptions of new mechanical and biochemical
technologies that have each improved the grains yield incrementally. In both
cases, commercial applications of new technologies have followed with significant
delays. An example closer to present time is the delay in switching from the cur-
rent fossil-fuel based energy technologies to the more efficient and less-polluting
alternative technologies.

A natural question then is: What explains the apparently cautious approach
of firms to technology adoption? Clearly, the answer lies chiefly in uncertainties of
various kinds facing the firms. In deciding whether or not, and when, to adopt
a new technology a firm is naturally concerned about uncertainties regarding
future market conditions such as consumers’ response to the new technology
product, competition from rival producers, the cost of initial investment in the
new technology, and costs of borrowing capital, hiring labor, and using other
inputs. But importantly, it is also concerned about uncertainties surrounding
the very process of technical innovation, which is often outside the firm’s control.

The importance of the technological uncertainties becomes more evident once
it is noted that the firm’s decision about how soon to adopt innovations depends
on how fast and by how much technology will advance over time. However,
the process of technical innovation is inherently a stochastic one, so that in
general there is not only uncertainty about the speed with which new technologies
become available for adoption but also about the extent of efficiency gains of

1For historical accounts of the slow pace of adoption of technology innovations see, for
example, Mansfield [20], Rosenberg [30], [31], Rosenberg and Birdzell [32]), Mokyr [21], and
Kindelberger {18].

2Tt is estimated that still a very large fuel efficiency, about 75 miles per gallon, can easily
be gained by a slightly further use of technical innovations already on the shelf in vehicles of
relatively conventional design. See Altshuler et al [1].



new technologies relative to the current state of the art. Furthermore, where
technological change is rapid there is very little chance of fully recovering the cost
of capital invested in any chosen new technology, so that the technology choice
becomes largely an irreversible one. Choice of personal computer technology,
whether in the area of software or hardware, is a prime example of innovation
adoption under the conditions of technological uncertainty and irreversibility.
Under such conditions, the technology adopter should weigh two types of costs
against each other: on the one hand, the cost of making a mistake by adopting too
soon (as the sunk cost cannot be recovered to be reinvested should a more efficient
technology become available later on) and, on the other hand, the opportunity
cost of waiting in anticipation of better future technologies (as potential payoffs
will be foregone during the waiting period).

Thus, as will be shown formally here, even when there are no uncertainties
about future market conditions, still the decision about technology adoption will
be greatly influenced by combined considerations of irreversibility and technologi-
cal uncertainties surrounding both the speed of arrival and the extent of efficiency
improvements of new technologies. How these factors precisely affect the optimal
timing of innovation adoption is the central question we investigate in this paper.
The voluminous literature on technology adoption has devoted relatively little
attention to the role of technological uncertainties and has mostly concentrated
on the effects of uncertainties about market conditions®. Furthermore, the pre-
vious related works (see, e.g., Kamien and Schwartz [17], Dasgupta and Stiglitz
(8], [9], and Jensen [15]) have typically relied on the standard net present value
approach and have either considered only the case where a new technology with
known efficiency characteristics arrives at an unexpected date, or assumed that
the efficiency of technology improves deterministically, or ignored the irreversible
nature of sunk costs. They also have neglected the value of option to postpone
the adoption decision. This is not surprising since it is relatively recently that
through the pioneering works of Baldwin 3], McDonald and Siegel [19], Bertola
[4], Pindyck [22], and especially Pindyck [23], [24], [25], Dixit [10], [11], [12],
and Dixit and Pindyck [13] an appropriate framework for the analysis of optimal
investment decision under uncertainty and irreversibility has emerged.

Still, to our knowledge, there are very few studies which have focused on
the specific question of the effect of technological uncertainty and irreversibility
on innovation adoption. Choi [7] considers a two-period model to explore the
implications of network externalities for consumers’ sequential and irreversible
technology choice when the technologies stochastically evolve over time. Sten-
backa and Tombak [33] use a duopoly-game model of timing adoption to analyze

3In fact, some of the seminal works on the timing of adoption of new technologies, e.g. Rein-
ganum [28], Quirmbach [27], and Fudenberg and Tirole [14], have abstracted from uncertainty.
Some others, e.g. Jensen (16] and Bhattacharya et ol [5], while allowing for uncertainty about
market conditions, have analyzed the problem in a static framework. For a general survey of the
models dealing with the firm’s decision about tirmning of new technology adoption, see Bridges
et al [6]. Also, see the survey in Reinganum [20].



the effect of uncertainty in the time lag between adoption of the new technology
and its successful implementation. Purvis ef al [26] develop an ex ante simu-
lating model to quantify the deterring effects of irreversibility and uncertainties
about investment cost, production, and environmental regulation on Texas dairy
producer’s incentive to switch from the conventional open lot to free-stall dairy
technology. The closest work to ours is the insightful paper by Balcer and Lipp-
man [2] which addresses a similar question, but differs from the present paper
in several respects: (i) Rather than adopting a dynamic programming approach,
it uses a model in which innovation potential, assumed to be integer-valued,
changes according to a discrete time semi-Markov process. As such, it does not
explicitly derive the option value of waiting; (ii) It assumes the profit function to
be linear in firm’s technology level and characterizes innovations by cost reduc-
tions; (iii) It does not therefore allow for uncertainty about the profitability of
new technologies, and (iv) It is confined to the analysis of a single-switching case
and does not consider the case of multiple-switchings. While the present work
improves over the Balcer and Lippman’s paper in these respects, theirs has the
advantage that it also allows for the role of learning in development of technology
by incorporating the time lapsed since the last innovation.

The remainder of the paper is organized as follows. In Section 2, we present
the basic model of a competitive firm which faces an exogenous stochastic inno-
vation process and is allowed to switch to a new technology only once. Using
Dixit and Pindyck’s [13] framework, we derive the firm’s optimal decision rule
for timing of technology switching when there are both uncertainties about the
arrival and the degree of improvements of new technologies. This is followed by a
numerical example illustrating the comparative static effects of changes in values
of various parameters reflecting market conditions, firm’s initial technological
attributes, and the characteristics of the stochastic innovation process. Some of
these effects defy common intuition, and for which we provide economic expla-
nation. In Section 3, we contrast the optimal decision rule derived in Section
2 with that arising from the net present value approach. Section 4 generalizes
the basic analysis to the case where multiple technology switches are allowed.
Concluding remarks are given in Section 5.

2 Single Switching Case
2.1 Basic Model

To abstract from uncertainties about market conditions and to focus on the
effect of technological uncertainty on timing of adoption, we consider a perfectly
competitive firm which produces a homogeneous good according to the simple
production function?

h(v,6) = 6v°, (1)

“Time subscripts are suppressed when no confusion arises.



where v is a variable input, a (0 < a < 1) is the constant output elasticity, and
@ is a technology-efficiency parameter whose value is determined stochastically
(see below). Let p be the fixed price of output and w the fixed unit cost of a
variable input.

We analyze a dynamic model with an infinite planning horizon. At ¢ = 0,
the firm produces with a technology designated by 6 = 6. As time passes new
technologies become available, and the firm has the opportunity to adopt a new
technology. We assume that the process of technological evolution (innovation
supply) is exogenous to the firm®, Technologies become more and more efficient
over time, and the more efficient a technology the larger the associated parameter
6. However, the precise development of the efficiency level is a stochastic process
in that whenever a new technology becomes available @ increases, but neither
the precise arrival date of a new technology nor the associsted increase in 4 is
known beforehand.

With this background, it is assumed that the parameter 6 follows a jump
process such that

df = dg, 0(0) = 0o, ()

where
do = u with probability Adt,
0 with probability 1 — \dt.

As already mentioned, the size of the jump is uncertain. We assume that u is
Illniformly distributed over the interval (0,%) so that the expected value of u is
1g.8

’ We consider a risk-neutral firm which discounts the stream of future profits
at a constant rate, r. At the moment that the firm adopts a new technology it
incurs a sunk cost investment, I, which is assumed to remain constant. Along
with the assumption of process innovation, we take it that the firm remains
perfectly competitive after adopting a new technology, so that the price of its
output p will not change after a technology switch.

The general problem facing the firm is to choose right moments to switch to
new technologies. One extreme possibility is to switch to a new technology every
time that one becomes available, but this would entail perhaps unaffordably large
sunk cost investments. The other extreme possibility is never to switch, but then
the opportunity cost of keeping on producing with an old inefficient technology

% Although innovation may generally involve both process and product, we are concerned
here only with process innovation, as it seems to occur often in agriculture and also in some
branches of industry such as electronics.

8These assumptions, although not too implausible, are made chiefly for their analytical
convenience rather than realism. For example, we could assume the lower bound of u to be
positive, in which case the assumption of uniform distribution of u over the range [0 < u, %] may
be interpreted to reflect situations in which the firm has a very good knowledge of the range of
future technological improverents but is unable to decide which values within this range are
more likely to occur than others.



(i.e. foregone potentially high payoffs from adopting new technologies) may be
huge.

In this section, we consider the simple case where only a single switch is
allowed, so that, once installed, the new technology will remain in use forever.
We will study the more general case of multiple switching in Section 4.

Essentially, the problem facing the firm is an optimal stopping one where
continuation is optimal for § sufficiently low (i.e. the firm does not yet invest)
and stopping is optimal for # sufficiently large (i.e. the firm invests). Hence,
intuition suggests that there must be a critical level 6* such that it is optimal for
the firm to invest in the new technology if 8 > 6*, and to refrain from investment
it <o,

2.2 Profit Flow and Termination Payoff

At every instant, the firm can either continue its current situation to get a profit
flow, or stop and get a termination payoff. In order to derive an expression for
the profit flow and the termination payoff, we first determine the value of the
project for # > 6%, i.e. when the firm has already adopted the new technology.
Let 64 be the value of # associated with this new technology. Since the investment
is a once-and-for-all decision here, the firm produces with this new technology
during the remaining planning period. If we denote the value of the project by
V(6,), then

V(1) = /max pB1v® — wv)e tdt = /f(&) e "tdt = f(gl) (3)
t=0

where f(6), the profit flow, is defined as:
£(0) = max(pov® — wv). (4)

The value of v that maximizes the term within brackets is given by

()"

which leads to the following expression for f(6):

10) = (- a)(2) TprEeT = (6)
where ¢ and b are defined by:
a\Ts .1
90:(1'-—01)(;”—) pi-e, (7)
1
b= T > 1. (8)



From (3), and (6) we obtain

V(o) = == )
The termination payoff for the firm is equal to V (8) — I.
2.3 Optimal Switching Level

To derive the optimal switching level 6*, we turn to the case where 6* —u < 0 <
8*, so that there is a positive probability that investing will be optimal after the
next jump. First we derive the Bellman equation F' (§). Combining the Bellman
equation at # = 6* and the value-matching condition (see, e.g. Dixit and Pindyck
[13]) at 8 = 6*, we arrive at the equation from which the optimal switching level
can be calculated.

The possible switch to a new technology will always occur just after an upward
jump of 8. If not, due to discounting, the firm could always do better by making
the investment sooner for the same 6. Hence, we can distinguish between two
situations: one situation where the value of 8 after the jump is still below or
equals #* (i.e. this holds for the size of the jump: 0 < u < * — ) so that no
investment will take place, and one situation where @ exceeds 8* after the jump
(i.e. 8" — 0 < u <) so that investment just after the jump will be optimal.

The Bellman equation is

F(6) = £(60)dt + (;f,:;lng[F(G +d0)], (10)
where
g*—-a u
E[F(0+d6)] = F(8)+Ade / F(8+ u)%du + / (V(O+u) — I)%du ~ F()
u=0 u=f*--6
(11)

Equations (10) and (11) lead to (ignoring terms of dt raised to powers higher
than one)

6*—8
(14 rdt) F(8) = f(6o)dt -+ F(6) + Adt { f F(6 +u) %du
u=0
+ / V(0 +u) - 1)%@ _F(6) Y. (12)
u=G*—8
If we divide (12) by (r + ) dt we get
_ f(60) x| 1 7 1
FO)= 1 5 o u ;[0 F(0 +u)=du +u= 9[—6 (V(6+u) —I)=du

(13)



If = 6* we are sure that investing will be optimal after the next jump. From
(13) we obtain the following Bellman equation for 8 = 0*:

o fO) . A T o 1
FO) = sy + o N, =/0 (V{6 +u) - D)=du. (14)
Using (6), and (9) we can write (14) as
5008 Aso(g*_{_ﬂ)bl—l )“p(g*)b+1 A

F@*) =

- — 1. 15
G N B INGTD  werNeED a3
The value-matching condition indicates that for 8 = ¢* the firm is indifferent
between investing now and waiting for a more efficient technology to occur. This
leads to the following equation:

b
F6*)=V(6") - I= "o(i L1 (16)
Substitution for £ (6*) from (15) in (16) gives

Ap ¥ [ \b41 T Gl ) P b
— -~ (0 — (4 I=0.
Ty (O F = O)) - RO it (17)
This is the basic equation that implicitly determines 6*, the efficiency level of a
new technology that triggers adoption.

2.4 Expected value of ¢ at time ¢

If we denote the number of new technologies that arrive over the interval [0, )
by N (t), the following holds for the technology-efficiency parameter 8 at time :

N(b)
0 (t) = 6o+ Pr (N (¢) >0) Y uy, (18)
n=1
where uy, is the n-th upward jump of # (the stochastic variables (uy),o, are
independent and identically uniformly distributed over the interval (0,%)). Since
the stochastic variable IV (t) is distributed according to a Poisson distribution
with parameter Af, the probability that no new technology arrives during the
interval [0,t), Pr (N () = 0), is equal to e~**. Using the fact that the stochastic
variable IV (t) is independent from the stochastic variables (u,)co., we derive the
following expression for the expected value of 6 at time #:

BO®] =60+ (1 — ) Xt (19)



2.5 An example: Comparative Statics

We assume that the output elasticity a = 0.5 (implying the production function
h(v,0) = Hv%), the output price is p = 200, and the unit cost of the variable
input is w = 50. The firm currently produces with a technology whose efficiency
level is indexed at #y = 1. The parameters of the jump process governing the
technology evolution are set at A = 1, which means that, on average, every year
a new technology comes on the market, and @ = 0.2. The firm’s discount rate is
r = 0.10, and the sunk cost investment in a new technology is I = 1600. Solving
equation (17) with these parameter values gives the optimal switching efficiency
level 9* = 2.7127. Using simulation we can calculate that the expected value £*
(the length of the waiting period before switching to the new technology) is equal
to 17.79 years, while the standard deviation equals 4.87. From (19) we calculate
the expected value of @ at time ¢ = 17.79 to be 2.7790. This is higher than the
optimal switching level 8* due to the jump process that 8 follows.

Next, we illustrate the direction and extent to which the optimal switching ef-
ficiency level, 6*, and hence the firm’s incentive to adopt, is affected by changes
in parameter values. Three different groups of parameters are distinguished:
(p,w, I,7) reflecting market conditions, (A, %) describing technology evolution,
and (6p,a) representing the firm’s initial technological attributes. These com-
parative static effects are presented respectively in Figures 1.1-1.4, 2.1-2.2, and
3.1-3.2.

As Figures 1.1-1.4 illustrate, the switching efficiency level, 8%, will be lower,
implying that the firm will adopt innovation sooner, the higher the price of
output, the lower the unit cost of variable input, the smaller the initial investment
cost, and the higher the discount rate (assumed equal to the market interest rate).
The intuition for these effects is straightforward. The opportunity cost of waiting
in anticipation of a still more efficient new technology (i.e. one with a higher
expected ) is the forgone profits during the waiting period, which clearly will
be greater the higher is p, the lower is w, or the smaller is I. As regards the
discount rate, a higher rate lowers the value of payoffs from more efficient, but
also more distant, future technologies, and therefore reduces the value of the
option to delay. It is worth noting that because of this, here the effect of the
discount rate is the opposite of the conventional one under the net present value
approach, namely the higher the discount rate the higher the trigger level of 8.
In fact, as can be readily verified from Figure 1.4 and the analysis of Section 3, in
the limiting case where the discount rate is raised to infinity the option value of
waiting declines to zero and hence the optimal trigger levels of # coincide under
the alternative approaches.

Figures 2.1 and 2.2 depict §* as functions of A and % respectively. Contrary
to what intuition might suggest, they show that the optimal triggering efficiency
level will be lower, and hence innovation adoption will occur sooner, the smaller
the probability that a more efficient technology becomes available within a given
time period, or the smaller the expected maximum efficiency improvements in



future technologies. In both cases, however, the explanation is simple. For a given
expected efficiency improvement (%‘ﬁ), a smaller chance of a new technology
arriving within a certain time interval raises the opportunity cost of waiting by
prolonging the average waiting period needed for an innovation to occur. This
lowers the value of option to wait and hence the optimal trigger level. A rather
striking implication of this result is that, contrary to common wisdom, a lower
probability of arrival of new improved technologies (as indicated by a lower mean
rate of arrival) may well speed up, rather than delay, adoption. Inversely, a faster
rate of innovation arrival may well induce the firm to postpone adoption as the
firm would hesitate to lock itself into a relatively less efficient technology by
an early adoption while better technologies are highly likely to appear later.
Similarly, for a given A, a lower % implies a smaller expected efficiency gain when
a new technology arrives, thus reducing the value of option to wait and hence
quickening the adoption.

Alternative interpretations of what these comparative statics results imply are
that: all else equal, (i) innovations with smaller expected efficiency improvements
should be expected to be adopted sooner than those with radically superior
expected efficiency gains; (i) innovations with greater chances of arrival should
be expected to be adopted more slowly than those with lower arrival probability.
Given the stylized fact of incremental technological improvements, the former
implication appears to accord well with actual experience. Whether the same
thing can be said of the latter is a rather moot question, particularly in view of the
simplifying assumption made here that the probability of arrival of innovations
does not dependent on the expected extent of efficiency improvement (specifically,
A is assumed to be independent of %). More realistically, the probability of a
new improved technology to arrive is likely to be a decreasing function of the
associated expected efficiency improvement. In that case, it may well be that an
innovation with a higher probability of arrival but lower expected efficiency gain
will be adopted sooner than one with a radically superior efficiency but much
lower chance of arrival.

As seen from Figure 3.1, the lower the efficiency level of the prevailing tech~
nology, 6y, the lower will be the optimal switching efficiency level, and therefore
the sooner the optimal timing of switching to a new technology. This is not
surprising because with a relatively highly efficient technology currently in use
the opportunity cost of switching will be relatively large, so that for switching
to be optimal the trigger efficiency level of a new technology should be higher
than would be the case if the efficiency of the prevailing technology was low. An
implication of this result is that, all else equal, technology adoption is likely to be
slower for firms which are already at the cutting edge of technological efficiency
than for those whose current technologies lag behind.

"A more general model would incorporate "learning effects” by allowing the probability
distribution of innovations arrival or of efficiency improvements to be revised as time passes.
For a formulation of the former possibility, see Balcer and Lippman [2].



Finally, Figure 3.2 shows 6* as a function of a, output elasticity, which is
another indicator of the firm’s production efficiency and, for our specification
of production function, is independent of the technology evolution. It is worth
noting that in the extreme case where a — 1, the optimal switch level 8* goes to
infinity, implying that it will never be optimal to switch. The reason is that for
a =1 the firm’s production function becomes h (v,8) = fv so that the marginal
product of the variable input is %h(’u, 6) = 8. Then, the optimal level of the
variable input v* will be 0 if p# < w and infinity if p# > w. In the former case, the
optimal trigger level is 6* > £, so that it will be optimal for the firm to refrain
Jfrom production for an initial period and wait until such a time when technology
has sufficiently improved to reach the trigger efficiency level 6* > 2. In the latter
case, the profit, and hence 8* will be indeterminately large (6* — o0), so that it
will never pay to switch. For the chosen parameter vahies, this case holds in our
example.

Focusing on the more plausible cases where 0 < a < 1, it is seen from Figure
3.2 that in contrast to the previous comparative static effects, here * is not a
monotonic function of a. For relatively large values of a, the optimal switching
level rises with a, implying, analogous to the case of 8y, that the higher a firm’s
input efficiency (or output elasticity) the slower will be its optimal timing of
innovation adoption. Strikingly, however, for relatively small values of a, the
optimal switching level rises as a declines, so that when the firm’s input efficiency
is below a certain level, then the lower the input efficiency the higher will be the
optimal switching level. A rather interesting implication of this result is that, as
for the firms with high input efficiency, firms with a very low input efficiency also
tend to be slow in adopting innovations, thus suggesting a kind of ”low-efficiency
technology trap”.
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Fig. 1.1. Optimal switching level 6* as function of p.
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3 Net Present Value Method

In this section we derive the switching efficiency level according to the net present
value method and contrast it with the optimal level derived in the previous
gection.

3.1 Optimal Switching Level

According to the net present value criterion, an investment should be undertaken
if the present value of the cash flow stream it generates exceeds the investement
cost. As Dixit and Pindyck [13] point out, most investment problems do not
satisfy the implicit assumptions of the standard net present value rule; namely
that either the investment is reversible, or if irreversible, it is a now or never
proposition. In reality, however, irreversibility and the possibility to delay are
inherent characteristics of most investments.

A firm with an opportunity to invest is holding an option analogous to a
financial call option. The firm has the right but not the obligation to buy an
asset at some future time of its choosing. When a firm makes an irreversible
investment expenditure, it exercises its option to invest. This lost option value
is an opportunity cost that must be included as part of the cost of the invest-
ment. Thus, the net present value rule, which ignores the waiting option value,
is incorrect.

If at time, say tg, investment is delayed in our model, there is a positive
probability that the firm can invest later in a technology with a higher efficiency
level than if it had invested at time fy. Therefore the value of the option to
postpone the adoption of a new technology will be positive. Consequently, the
optimal switching level of 8 determined by the net present value method will be
smaller than that determined by equation (17).

14



From (3) we know that the value of the firm using technology 8 is equal to

V(6). According to the net present value method the following holds for the
optimal switch level 85, py/:

V{(npv) — I =V (6o). (20)
Using (9) we get

2 Ohey)’ e ®)
T ro

(21)

Rewriting this gives

1
05 +rI\®
Opy = (‘P—"r) . (22)

3.2 An example

For the same parameter values used in the example of subsection 2.4, we obtain
Oy py = 1.3416 < 6* = 2.7127, implying that under the net present value rule the
firm will suboptimally adopt a new technology too soon. We can also calculate
the firm’s value of the option to delay to be V(6*) — I — V(6p) = 11117, or 87.4
percent of the value of the new investment! As in subsection 2.4 we also calculate
the expected value and the standard deviation of 3 py (the length of the waiting
period before switching to the new technology, if the firm switches according to
the net present value rule). These are equal to 4.08 and 2.33 respectively. Thus,
here the firm is expected to switch to a new technology as early as a little after
four years, optimal decision is to adopt a new technology only after more than
seventeen years.

Figure 4.1 illustrates how the switching efficiency level, 8y py, is affected by
a change in the firm’s output elasticity a. It is seen that in stark contrast to the
corresponding effect analysed in the previous section (see Fig. 3.2), under the
net present value method the switching level declines with a for sufficiently large
values of a. The reason for this difference is that under the net present value
method investment in a new technology involves no lost option value of waiting.
So, a larger value of a simply means a higher profit flow (see (6) and (3)) and
therefore a lower level of @} py, which is needed to trigger the technology switch.
In the previous section, however, a larger value of a raises the option value of
waiting and hence the trigger efficiency level §*.
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Fig. 4.1. Switching level 83, py, as function of a.
4 Generalization to Multiple Switching Case

The problem of optimal timing of technology switching when a firm can switch n
times is one of n-phase optimal stopping problem. For the n-th phase, the prob-
lem will be the same as that analyzed in Section 2. In each phase continuation
is optimal (i.e. the firm does not invest yet and gets a profit flow) if 8 is too low
and stopping is optimal (i.e. the firm invests and gets a termination payoff) if
# is sufficiently large . Hence, intuition suggests that there are n trigger levels:
T,..., 05, such that for each 67, it is optimal for the firm to switch to a new
technology for the i-th time if 6 > 67, and to delay switching if 8 < 6}.

As in Section 2 we use the expressions for the profit low and the termination
payoff to derive the optimal switching levels. We assume that the firm produces
with technology 6; after it makes the i-th switch. From Section 2 we also know
that if the firm produces with technology #; its profit flow is equal to f (6;).
Denoting by F;(6) the value of the firm after the ¢-th but before the (i 4 1)-th
switch, the termination payoff at the i-th switch is equal to F; (6;) — I. Further
we know from Section 2 that after the n~th switch, i.e. 8 > 6y, the value of the
firm will be V(8) = %b, so that the termination payoff at the last switch is equal
to V(bn) ~ 1.

To derive the optimal switching levels, we first derive the Bellman equations
for F; (). Substitution of the Bellman equations Fi_1 (67), and F; (6}) into the
value-matching condition at # = 6} gives the expression for the optimal switching
level 6;.

The Bellman equation for 6 < 0 < 6, — %, so that the probability of
switching for the (z 4+ 1)-th time after the next jump is zero, is
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RE) = 2+ 2 J B+ (29)

where ¢ = 0,1,...,n—1, and 8 = fp. The Bellman equation for Of 1 —u<0<
07,1 1s

67, -0 T
@ = 26 X T pg ) , 1

i1
(24)
If & = 0 we are sure that investing for the i-th time is optimal after the
next jump. From (24) we obtain the Bellman equation for = @}, with ¢ =
L,2,...,n—1:

R = T8 1 2 uio (0 + )~ D odu. (25)

The value-matching condition is

Fis(6) = F(65) — 1. (26)
Substitution of (26) in (25) gives
OFY __f(g"l) A 7 (0% L) — l
R~ 1= 0+ ulo (RO +w)~ D) =du.  (27)

Combining (23), in which = 6}, and (27) leads to®

F67) = f(6sa) + 1. (28)

Substitution of (6) in (28) gives us the optimal trigger levels 6, for: =1,2,...,n—
1:

* b TI %
0%' = 97;_1 -+ "(; . (29)

The next task is to determine the optimal trigger level for the last (i.e. the
n~th) technology switch. To do so we consider the case where the firm has
switched (n — 1) times, and where it holds that 6 — 7 < # < 6%. Then the
Bellman equation is

8We assume that 6] + % < 6}, so that immediate consecutive switchings are ruled out.
This will always be true for sufficiently large values of I.

17



63,~0 -
Fna(9) = {igi';;+ (Ti y u[ﬂ Foes (0 -+ u)2dut / (V{6 +u) ~ ) =du

u=0}%—0
(30)
From (30) we obtain the Bellman equation for § = 8%:
FOat) A 1
xy n—1 * A
Fet0) = 450+ fo (V{8 +u) — I) du. (31)
U=
The value-matching condition is
Foa(62)=V(6:)— 1. (32)
Substitution of (32) in (31) gives
I C S U 1
V(e — I =1 [ @ +w-nzau
0r)~1I Y + ) J (V(6y, +u)—1T) —du (33)

Using (6), and (9) we can rewrite (33) as

a.;(j:—ﬁ_l—) (0 +a+ = @) - 2N (guyp o prr =0, (3
Analogous to equation (17) derived for the single switching case, equation (34)
implicitly determines, 8 in the present multiple switching case. We conclude
that, with g given, equations (29) and (34) together yield the optimal switching
levels 6%,...,0;.

Contrasting (29) with (22), immediately reveals that the first (n —1) optimal
trigger levels are in fact the ones which would be obtained by applying the net
present value method:

1
9?=92,va=(9§’—1+%>b, i=1,2,...,n—1 (35)

The explanation for this rather striking result is simple. By ignoring the fact
that once the firm invests it gives up its option to delay, the net present value
rule fails to account for the cost of this lost option value and therefore results in
a lower trigger level than would be optimal. However, in the present case where
the firm has the opportunity to make multiple switches, the firm has not given
up anything once it has invested for the m-th time, if m < n, because it can
invest again once @ increases sufficiently. Of course, the matter is very different
for the last switch: once the firm has invested for the n~th time, no longer will
it be possible to invest again when # increases in the future. So, here there is
a option value of waiting, and as a result the net present value method fails:

* *
0n > Bn,NPV'
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5 Conclusions.

Taking the dynamic programming approach, & la Dixit and Pindyck [13], in this
paper we have analyzed the optimal timing of technology adoption by a com-
petitive firm when investment in a new improved technology is an irreversible
decision and technology evolves stochastically over time. Contrasting the op-
timal decision rule derived under this approach with that obtained under the
net present value method, it is shown that, much in accord with the real world
experience, the former implies a more cautious and slower pace of adoption than
impljed by the latter. And, as is illustrated by the numerical example, this dif-
ference in the timing of adoption under the alternative approaches can well be
very significant. The reason for the the difference is simple: the conventional net
present value method only takes into account cash flows and ignores the option
value of waiting for more efficient future technologies, thus failing to account for
this opportunity cost component when an investment decision is made.

A central focus of our analysis has been the important question of how the
optimal timing of adoption is affected by uncertainties inherent in the process
of technological innovation; that is, uncertainties about both the speed of arrival
and the extent of efficiency improvements of new technologies. Not surprisingly,
we have shown that even in the absence of other kinds of uncertainties, e.g.
uncertainties about market conditions, a firm’s optimal timing of adoption is
greatly influenced by technological uncertainties. Interestingly, the comparative
static results illustrated by the numerical example indicate that some effects are
in stark contrast to what common intuition might at first suggest. Specifically,
we found that (i) contrary to what is the case with the conventional net present
value method, here the higher the discount rate the lower the trigger efficiency
level of technology and thus the guicker the timing of adoption; (ii) the slower
the expected pace at which more efficient technologies arrive, or the smaller the
expected maximum improvements in future technologies, the lower the trigger
efficiency level of technology; (iil) innovation adoption will be slower for firms
which are already at the forefront of technological efficiency (high ) than for
those currently using relatively inefficient technologies (low 6g); and (iv) when
the input efficiency (here equivalent to the elasticity of output, a) is below a
certain level, then the lower the input efficiency of a firm the slower will be
the innovation adoption, thus suggesting something akin to a ”low-efficiency
technological trap”. Perhaps strikingly, and contrary to the case under the net
present value method, at relatively high input efficiency levels, the higher a firm’s
input efficiency the slower the innovation adoption. According to (iv), all else
equal, innovation adoption is likely to be relatively slow both for firms with very
low and very high input efficiency levels. Whether these theoretical implications
are anywhere near the truth is obviously a purely empirical question, and a
subject for future research; although, taking them at face value, they seem to be
supported by many real-world examples.

We have also generalized the optimal decision rule when only a single tech-
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nology switch is allowed, which may, for example, apply for small firms with
very limited financial resources, to the case where a firm is able to make mul-
tiple switches. In doing so, we have shown that for all the switching decisions
except the last one, the optimal rule sastisfies the net present value criterion.
This is not surprising for as long as the firm still has an opportunity to make a
future investment, there will be no lost option value associate with making an
investment. So, the optimal investment decisions coincide under the alternative
approaches.

A model as simple as that analyzed in this paper is bound to have many lim-
itations, thus calling for further research in several respects. Depending on the
specific technological innovation process under study, both of our simplifying as-
sumptions of Poisson arrival process and uniform probability distribution of the
extent of technological improvement can be appropriately replaced by more real-
istic ones. Also, our assumption of constant sunk investment cost can be relaxed
to allow for the more realistic situations where the investment cost declines over
time or rises with the expected efficiency improvement of new technology. The
former would accentuate the option value of delaying adoption while the latter
mitigates it. More importantly, the assumption of fixed probability of the arrival
of innovations made here may be relaxed by allowing for learning, for example,
as an increasing function of time lapsed since the last adoption (as in Balcer
and Lippman [2)), or of the cumulative investment in research and development.
Further, our assumption of competition in the face of technological innovation is
admittedly restrictive and may hold only when the innovation adopting firm is
too small and the innovations are public (as in the case of research by universi-
ties or public agencies, for example). More realistically, the present model can be
enriched by drawing on the existing literature on optimal supply of innovation
to let the innovation process be internal to the firm’s decision and a source of its
market power.
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