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Introduction

A problem common to many disciplines, in particular economics, is that of approximating a
variable of interest Y by a function of some variables X, given only the value Y of the function

(often perturbed by noise) at various points in the X-space. For example, X could contain
measurements of vazious economic indicators in a particular month and Y could be the monthly
average of the dollar-deutschmark exchange rate. The vaziables of X are often referred to as
predictor, input, explanatory, or independent variables, while the vaziables of Y often go by
names such as response, output or dependent variables.

In the literature this problem gces under various different names, such as multiple (or
multivariate) regression, curve fitting, and learning. Research on the regression problem occurs

in several scientific areas: applied mathematics, statistics, econometrics, computer science,
and engineering. The basic condition for regression is that repeated measurements on X and
Y, {(x~, y~ ), ...,(x,,, y„)}, can be made, which allows us to build up a form of empirical
knowledge about the phenomenon of interest. In the univaziate case y; represents a pazticulaz
observation on the vaziable of interest, and xi represents the p-dimensional vector consisting
of observations on the predictor variables (x ~, ..., xP);. The regression problem consists of
approximating the data generating function g such that Y- g(X ) ~ e, using the available set

of observations, where e denotes random disturbances.
The above formulation is general, i.e., not specific to economics or finance. The types of data

and vaziables characterize economic regression problems. Economic data canbe categorized into
three types: time series data, cross-sectional data, and longitudinal data. The characterisation is

based on how the data have been collected. Armstrong [Arm78] characterizes the various data
types as follows.

. Time series data take a given decision unit (e.g., US inflation) and examine it at different

points in time. Macrceconomic time series data often have the following chazacteristics
which can cause problems in regression modelling. There are few observations, a lack

of variation in the data, substantial measurement errors, interaction, autocorrelation, and

multicollinearity. Macroeconomic time series generally provide cheap, fast, and realistic
information. In the financial area high frequency data become readily available, such as
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hourly or per-minute data on exchange rates.

~ Cross-sectional data take a given period of time (e.g. January 1993) and examine dif-
ferences among decision units, such as US households, for instance. The advantages of
cross-sectional data over time series data are: larger variations can generally be found in
the dependent variable and in the causal factors, there is less multicollinearity, and there
is a greater independence among observations. The disadvantage is the loss in realism for
situations involving predictions of the future.

. Longitudinal data take a sample of decision units (e.g., the interest rate of different
countries) and examine changes over time. Longitudinal data generally cost more to
obtain, but they provide one advantage over time series data: each observation serves as
its own control. In other words, the unique aspects of each decision unit are assumed
to be constant over time and aze therefore less likely to enter into an explanation about
changes.

In this thesis we focus on regression models which use time series and cross-sectional data.
Granger (Gra94] characterises economic time series as having relatively short-length, high

levels of ineasurement errors, nonstationazity, and nonlineaz and stochastic relationships. Major
macroeconomic series often consist of only 200 to 500 observations as there are, at most, about
40 years of monthly data available since the end of the second World War. As economics is a
nonexperimental science, data cannot be just generated. Economic data from further back into
history are often irrelevant since the structure and composition of the economy evolves. "The
signal-[o-noise ratio may well be 3:1 for important macroseries" [Gra94], which implies that
measured variables can show behaviour different from the true economic concepts. Several
causes come to mind. In a complex economy many economic variables usually are estimated
instead of ineasured directly, which inevitably results in measurement errors. Many variables
are also difficult to define, and there is always an economy hidden for official authorities. All
these measurement errors become embedded into the economic variables and are not simply
added to the signal. "There seems to be no reason to believe that the noise is Gaussian
independent and identically distributed" [Gra94]. Frequently, there is a clear trend in mean
and in variance of a series, and there is seasonality in mean and possibly in variance; this
is roughly what is meant by nonstationarity. Nonstationary time series sometimes have a
severe impact on the modelling process. In addition, the statistics of economic data lag behind
the actual events. If in February forecasts have to be made for a particular macrceconomic
vaziable, the latest available explanatory variables relate, for instance, to the third quarter of
the preceding year. If these lags, moreover, differ from one vaziable to another, the data set
is said to have a"ragged edge". This causes problems in real-life forecasting situations. In
most theoretical studies this problem is avoided by letting the data collection end at that point



Introduction 3

in time from which on the data for a particular explanatory variable are not available anymore.
Another data related issue is the reliability of economic data, which can be "measured" by
the frequency with which preliminary data are amended, or by the frequency of changes in the
definition of a given data series. Finally, there is the discrepancy between the economic concepts
and the statistical measurements available. In the absence of adequate direct measurements,
indirect measurements or 'proxy' variables have to be used. Different proxy variables for a
single economic concept often show different behaviour over time, which clearly hampers the
construction of good forecasting models.

The econometric approach to regression modelling consists of three parts: model specifica-
tion, model estimation, and model evaluation. Economic theory proposes relevant variables for
predicting a specific economic phenomenon. The applied economist assumes that the functional
form of the predictive relationship has a specific parametric appearance, usually linear. Then the
model is estimated, tested and refined, and then re-estimated. When the researcher has found a
satisfactory model, he has to evaluate its qualities. This can be done, for example, by comparing
his model's predictions with predictions obtained by other models.

The purpose of regression modelling can be explanation or prediction. A regression model
can, for instance, be constructed in order to explain how the dollar-deutsch mark exchange rate
depended on a certain set of economic variables in a particular period in the past. A regression
model can also be constructed to predict next month's exchange rate given projections of the
relevant economic variables. Economic models designed to predict future events do not always
explain past events well, and vice-versa. Therefore, the researcher has to determine his main
modelling objective: explanation or prediction. In this thesis, however, economic models are
constructed solely for the purpose ofprediction, mainly because of the important role prediction
plays in our society: "Forecasting is a very serious activity in economics, involving a great deal
of effort and money to produce them, ..." [Gra94].

Economic forecasts are required for several reasons. The use of forecasting in economic
policy-making is a major one; the future is uncertain and the full impact of many decisions taken
now, is not felt until later. Consequently, accurate predictions of the future improve the efficiency
of the decision-making process [HPT90]. Wallis [Wa189] states: "Outside the policy-making
context, two further quite different motives for forecasting exist. One is to anticipate events,
whether for private gain or for public good, and it is largely in respect of the former that the
growth in forecasting activity has occurred; the other is to put hypotheses about the behaviour
of the world to test ...". Here we assume that the main motivation for making predictions is to
anticipate economic events, such as a rise or fall in the dollar-yen exchange rate. The predictions
could eventually be used for private gain when the information is used in a trading system, for
example.

The key ingredients of a forecast still are quantitative data and a framework for their
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interpretation and analysis. Nevertheless, substantial developments have occurred in respect
of the methods of analysis. Early forecasts were based on a limited number of variables,
which were analysed in the context of an implicit, informal model, not necessarily written
down. The process relied on the assessment of data and the evaluation of new information by
the experienced forecaster. In the 1960s the use of explicit formal models based on estimated
equations increased. Nowadays (complex) quantitative models have become generally accepted.

The models distinguish between endogenous and exogenous variables, that is, those deter-
mined by the system of equations and those treated as being determined outside the system. In a
forecasting context, exogenous variables have to be set by projection or assumption, which leads
to further distinction between unconditional and conditional forecasts. The former represents
the conventional understanding of a forecast, namely a prediction of a future event, whereas the
latter represents an if-then statement, resting on the occurrence of certain specified conditions
[Wa189]. The unconditional prediction is often referred to as forecast, while the conditional
prediction is often referred to as prediction.

The conditional prediction problem is addressed in this thesis. This preference is shared by
other researchers; Granger [Gra94], for example, states: " My personal beliefs, which I think are
widely shared by other econome[ricians, are that forecasts derived from relationships between
several variables are better than from univariate models...". Univariate time series models, on
the other hand, provide us with forecasts purely based on the history of the economic variable
of interest. The proponents assume that all possible information is present in the latest value
of the economic variable of interest. Univariate time series models do not use any economic
theory, which makes them unfavoured among economists.

Predicting the value of Y conditional on the value ofX requires both an accurate approxima-
tion of the relationship between Y and X and a sufficiently accurate prediction of the value of X.
Research usually concentrates only on the first requirement. Since these studies typically use
data from past periods, actual values for the exogenous variables are available, which are used
instead of predicted X values. These studies, therefore, implicitly assume that the exogenous
variables can be accurately predicted. However, the X values have to be predicted, usually by
some univariate time series model, and therefore contain prediction error.

In case regression analysis is employed to obtain a rule for predicting future values of
the response variable Y given a particular realisation x of X, prediction accuracy is the only
important virtue of the model. If, however, the experimenter wants to try to understand the
properties of the data generating mechanism g, the interpretability of the approximation f of the
model g is also important. Depending on the application rapid computability and smoothness
of f are sometimes desirable properties as well [Fri91]. The reader should bear this in mind
while reading this thesis which heavily uses prediction accuracy.

Developments in computer software and hardware have resulted in an increase of the size
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of the models, i.e., the number of equations and variables. Computer capability is no longer
a bottleneck, neither on the size and complexity of the model to be constructed, nor on the
econometric estimation and testing procedures applied to the models. The econometric proce-
dures themselves have been substantially developed over the last twenty years. The increment
in computer facilities has stimulated research into directions that were previously dismissed as
being practical infeasible. Most researchers or financial analysts now have enough computer
facilities at their disposal to employ the latest methods and techniques.

The latest relaxation of computing constraints allows for the application of techniques that
are able to extract, or learn, relationships from available data. In contrast with the standard
econometric approach the form of the relationship no longer needs to be prespecified by the
reseazcher, but can be shaped by the data themselves. Investigating the employability and
relevance of these learning methods for economic prediction problems is interesting, since more
accurate predictions, as well as more insight into the underlying economic relationship, can be a
consequence. Further, these learning methods provide benchmarks against which the traditional
pazametric models can be compared and consequently be improved. One critical note, however,
has to be made. Despite the vanishing computing constraint, we should remember that one
important cause of many problems arising in economic prediction still remains: the limitations
of the data. The success of prediction methods is partly determined by the basic properties of
the series to which they are applied.

Reseazchers from different disciplines have been developing methods that are able to perform
some form of 'leazning', and which go by different names, such as nonparametric regression
techniques, semiparametric regression techniques, flexible regression techniques, and learn-
ing techniques. Cheaper and more readily available computer power stimulates research in
these learning techniques, and makes them available to financial analysts or practitioners of
econometrics.

During the last few yeazs one particular learning method has received great attention in
literature, namely the neural network, also known as the connectionist model. The interest is so
overwhelming that scientists already call it a hype. The occasional interest of populaz journals
in this method confirms this statement. The literature reports many successful applications
of neural networks to financial problems. Although opponents, mainly statisticians, are not
convinced of their capabilities, it cannot be denied that the attention neural networks receive
from researchers from different disciplines makes them develop fast in contrast with their
statistical competitors.

The financial applications, however, aze mainly concerned with univariate time series mod-
elling (such as forecasting the dollar-yen exchange rate on a day-to-day basis) and classification
(such as bankruptcy prediction). These studies merely intend to illustrate how well neural
networks perform when compared to traditionally used techniques. Although such research cer-
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tainly stimulates the "marketing" of neural networks, there is a growing need for more detailed
knowledge on methodological aspects of applying neural networks. Additionally there is the
need for economic specific knowledge. In particular, which specific characteristics of economic
time series influence the applicability of neura] networks and in what sense?

Applying neural networks to financial (time series) modelling problems is the subject of this
thesis. The aim of this thesis is to gain insight into the employability and practical relevance
of feed-forward neural networks for the specification of multivariate economic (time series)
models that are used for the purpose of prediction. Neural networks are regarded as practically
relevant when they are able to improve upon the prediction accuracy of traditional approaches
in practical situations. The foregoing indicates that in this reseazch the three key concepts
are: prediction, economic time series, and neural networks. The research concentrates on the
conjunction of these three concepts. The relevance of this research to economics is indicated
by [Ha194]

The traditional neural network literature has offered little firm guidance in the way
the specification choice can be made.
... The combination of the extremely rich functional forms of the neural network
and the tools of statistical inference offers a potentially promising and exciting new
avenue of research to the forecasters, although much remains to be done to prove the
practical usefulness of these techniques, especially for small-sample applications.

Research activities are subdivided into three groups: relevant theory selection and discus-
sion, neural network strategy development, empirical research using Monte Carlo experiments
and case studies. Theoretical aspects of multivariate time series modelling, nonparametric re-
gression, neural network learning, and comparing prediction accuracy will be discussed. Since,
until today, no clear methodology or strategy is available to the neural network practitioner,
this research requires a clear description of the strategy followed. Monte Carlo experiments
are performed to illustrate some practical aspects when applying neural networks, such as over-
fitting, local minima, and the effectiveness of weight decay. Monte Carlo experiments enable
the researcher to perform controlled experiments, which are otherwise impossible in economic
research. It should be noted, however, that the relationships revealed are conditional on the
design of the Monte Carlo study, which will not exactly represent the situation as encountered
in practice. Consequently, the real practical relevance of neural networks is assessed in three
economic prediction problems, viz., the prediction of hedonic house prices, the prediction of
new mortgage loans, and foreign-exchange rate prediction.

The thesis consists of two parts. Part I, which includes the Chapters 1, 2, 3, 4, and 5,
discusses the theoretical aspects of economic modelling in general and with neural networks.
Part II, which includes the Chapters 6, 7, 8, 9, and 10, deals with the practical aspects in applying
neural networks.
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Chapter 1 summarises the most important aspects of economic (regression) modelling. The
modelling process is divided into three parts: model specification, model estimation, and model
evaluation. The aspects of each part, which are relevant for the line of reasoning in this thesis,
are discussed. One important aspect of model specification is the functional form of the model.
In econometrics, the functional form is specified by the investigator himself, usually based on
pragmatics. Lineaz models aze most frequently used in applied work. Economic theory normally
does not give much information on the functional form of the model, but sometimes the data
themselves do. This may be a reason why nonparametric techniques have potential for financial
problems. We intend to make neural network researchers who are technique dedicated aware of
the accumulated knowledge that exists for the problem domain they apply their technique to.

Chapter 2 summazises several model free regression methods, among them neural networks.
The concepts of the different approaches are briefly discussed, as well as the position of the neural
network among the others. A problem of great concern to nonparametric regression is ending
up with a model that is (almost) unbiased, but which has high variance. This problem, which
affects all members from the class of nonparametric methods, is known as the biaslvariance
dilemma. Most nonparametric methods have parameters that determine the flexibility of the
resulting fit. Cross-validation is a method designed to make a good parameter choice. Finally,
the procedure of cross-validatory parameter choice is described.

Chapter 3 discusses the theoretical aspects of neural networks, such as the mathematical
representation and learning theory from a statistical perspective. To assess the practical relevance
ofneural network models, the accuracy of the predictions is often compared with the predictions
made by traditional models. Chapter 3 provides some practical methods for making statistically
sound compazisons among different (economic) prediction models, and discusses the relevant
statistical issues.

When applying neural networks, one probably meets difficulties that determine the practical
success, such as how many hidden units to take, how to deal with local optima, and how to
reduce overfitting. These and many other difficulties that are typically met in practice will be
discussed in Chapter 4. Based on this discussion, a neural network strategy is determined, which
will be used in all experiments.

Time series, especially nonstationary, impute many difficulties in the econometric mod-
elling process. Therefore, the econometric analysis of time series requires additional attention.
Chapter 5 discusses modern issues in this azea, such as testíng for unit roots, cointegration,
and error-correction. These concepts originate from a linear viewpoint of constructing mod-
els. Chapter 5 is a first step towards a nonlinear generalisation of these concepts, using neural
networks.

Chapter 6 reviews a sample of the literature on neural network applications to economic and
financial problems.
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In Chapters 7, 8, and 9 we apply neural networks to the prediction of the hedonic price of
housing in Boston, the prediction of the production of new mortgage loans in the Netherlands,
and the prediction of foreign exchange rates, respectively. These three case studies show
how neural networks are applied in economic practice, and how accurate their predictions are
compared to simple linear models for real financial problems.

Chapter 10 gives a summary, draws conclusions from the research undertaken, and suggests
some directions for future research.



Part I

Theory



Chapter 1

The Economic Modelling Process

1.1. Introduction

This chapter addresses several important issues in the process of economic (timeseries) mod-
elling. Econometrics has been performing research in the quantitative aspects of this problem
for decades. "Econometrics is the field of economics that concerns itself with the application
of mathematical statistics and the tools of statistical inference to the empirical measurement of
relationships postulated by economic theory." [Gre93]. Assuming a'convenient' probability
structure for the model makes it possible to deduce the properties of estimators and test statis-
tics to assess their value. The test statistics may then be used to confront specific economic
hypotheses with the empirical evidence presented by the data. More generally, the test statistics
provide a guide to choosing between the different specifications suggested by economic theory.

Applied work in economics often presumes linear models. The reason is that econometric
theory is best developed for this particular class of functions. Many statistical inference methods
aze at the investigator's disposal. In this chapter we pay attention to modelling within the class
of linear models. Nowadays nonlinear modelling is becoming more and more popular by both
theorists and practitioners; see the next chapters.

Two main objectives of econometrics aze: explaining the behaviour of economic entities
in the past, and predictíng the behaviour of economic entities in the future. A single model
need not meet both objectives simultaneously. For instance, a model good at predicting future
behaviour can offer little or no insight into the underlying relationships; on the other hand, a
model that satisfactorily explains past behaviour may predict badly.

Three main aspects in modelling are model specification, model estimation, and model
evaluation. Model specification concems the specification of an empirical model that reflects
an economic theory or some practical experience. Model specification has been -and still is-
the subject of many debates among econometricians (see [Gra90, Keu94]). An empirical model
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can be misspecified in at least three ways. First, the set of variables included can be incorrect;
irrelevant variables are included, relevant variables are omitted, or both. Second, in a time
series context the dynamic structure of the equation can be incorrect. Third, the functional form
deviates from the one specified in advance. Model estimation concerns the statistical estimation
of the free parameters in the model, using the sample data. When enough model assumptions
are made, statistical inference can take place. Textbooks on econometrics in general pay more
attention to model estimation than to model specification, although the latter probably is of
greatest fundamental importance. Once a model has been estimated, others than the builder
himself will often use it. These users have to be convinced of particular qualities of the model.
In the model evaluation phase the model builder evaluates his model, usually by performing
diagnostic tests and by comparing its performance with the performance of alternative models.

The basic techniques of estimation, testing, and specification are applicable to both cross-
section and time series problems. The element of time, however, adds a new dimension to
economic modelling. It raises important questions concerning the interpretation of a model,
particularly with respect to equilibrium and steady-state growth, and it brings in a whole
range of statistical considerations concerned with modelling variables which do not adjust
instantaneously to changes in other variables.

In our conception time series are stochastic processes {Xt~t E T}, i.e., a set of real valued
random variables which are indexed by t, where t represents time. Stationary and nonstationary
time series constitute two important classes of time series. A stochastic process is said to be
stationary in the strong sense, if the joint probability distribution of the n realisations of the
process is time independent (see [BDGH93, page 11 ] for a detailed definition). A more practical
variant is weak stationarity. A stochastic process is said to be stationary in the weak sense (or
stationary for short) [BDGH93, Har90] if :

E(Xe) - E(Xtfh) - li C o0
Var(Xt) - Var(Xt~h) - oZ C o0
Cov(Xt,Xtti~ - ~i C ~

If at least one of the conditions above is not fulfilled, the process is said to be nonstation-
ary. Many macroeconomic time series appear to be nonstationary. Throughout this chapter we
presume stationary time series; otherwise, it will be stated explicitly. An in-depth discussion of
econometric modelling with nonstationary time series will be given in Chapter 5.

Some parts of the remainder deal with time series data exclusively; some parts are for both
time series data and cross-sectional data. The context indicates which case we have; otherwise,
it will be stated explicitly.

The outline of the chapter is as follows. Section 2 discusses the model specification part
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of the economic modelling process. Section 3 addresses several issues in model estimation.
Section 4 deals with model evaluation. Section 5 concludes the chapter.

1.2. Model Specification

1.2.1. The 'Textbook' Approach

In the 1940s the emphasis in econometric practice moved from measurement of parameters
and quality of statistical data to testing of economic theories. The methodology which reflects
this emphasis is now identified with the Cowles Commission. At that time there was no

formal methodology as to how empirical work should be performed. The assumptions of the
Cowles Commission methodology, which were often implicitly present in empirical work, are
summarised in [CD92]. The main assumption is that one knows the correct specification;
this assumption, however, is unacceptable in a nonexperimental domain [Lea78]. Practice
subscribes to this viewpoint; instead of finding one model for a single phenomenon, a whole
series of models are found all explaining or predicting the same phenomenon. For instance,
several alternative models of exchange rate determination can be found in the literature [MT92].

According to [Gra94] a simplistic form of the classical modelling procedure ~ften referred to

as the 'textbook' approach- starts with an economic theory, restates this in the form of estimable
equations, and finally estimates the parameters. Some simple evaluation information is given,
such as R2, t-statistics, and possibly the Durbin-Watson statistic. Finally, the resulting model is
interpreted and its 'policy implications' are explored. Anyone trying to follow this sequence is
likely to meet several problems. Hence, many decisions concerning model specification have
to be made in practice, e.g., which vaziables to include in the model, whether to model the
equilibrium or the disequilibrium situation, and what functional form of the relationship to use.

In the 1970s there was a growing scepticism towards the value of traditional econometric
analysis. Econometric research in the SOs and 60s, which had been full of optimism, had not
addressed the real practical problems of model specification and selection [CD92]. The applied
researchers developed their own methodological approach. When computing power became
more readily available, routine calculations of statistical tests could be easily carried out, which
resulted in the following approach. Economic theory is used to specify the appropriate variables
in the empirical regression equation. This equation is then estimated, and assessed using the
normal t-statistics, R2, and the usual tests for autocorrelation and heteroscedasticity. The

response to unsatisfactory test results (e.g., insignificant variables) is to modify or 'improve'
the equation in some way (e.g., by leaving out those variables that are insignificant). At the end
the final model is interpreted as though it was the first and only equation tried. This procedure,
however, make its value questionable at least. The procedure is an example of what is commonly
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referred to as data mining. In general, given a limited amount of data and a huge number of
possible models, there is always a possibility that, if enough models are fitted to the data, one
will appear to fit the data very well. In fact this good fit may be due to chance alone, and the
corresponding model will then be useless.

Specification search is proposed by Leamer [Lea78] as a positive identification of the issue of
data mining, which is negatively loaded in econometrics. In the Machine Learning community,
however, a new branch with the name data mining (or data base mining) is developing. In
this context data mining, or knowledge discovery in (large) databases, uses a set of inductive
learning techniques to extract knowledge from databases. The two should not be confused. We
will therefore use the term specification searches for this thesis.

1.2.2. Specification Searches

The theoretical 'textbook' approach neglected model specification as part of the methodology
for empirical modelling. In practice, as we have stated, applied economists actually did search
-and still do- for a model specification that suits both the economic theory and the actual data.
Researchers are driven by various motives when searching for a suitable model specification.
Leamer [Lea78] discerns six different types of specification seazches, which are presented in
Table 1.1. A hypothesis-testing search tests a specific hypothesis about the phenomenon, e.g.,

Table l.l: Different types of specification searches (from [Lea78])
Name of Search
Hypothesis-testing search
Data-selection search
Interpretative search
Proxy seazch
Simplification search
Post-data model construction

Designed to
choose a "true" model
select a data set
interpret multidimensional evidence
find a quantitative facsimile
construct a "fruitful" model
improve an existing model

the dollar-deutschmark exchange rate is independent of the mutual interest rate differential. In
a data-selection search two identical model specifications differ in their choice of data sets; the
data set which results in a model with favourable test statistics is selected. In a proxy variable
search the best measurement of a hypothetical variable is selected, e.g., which measurement of
inflation results in a good model fit. In an interpretative search, the underlying hypothesis is
taken as given, and restrictions are imposed on the parameters in the hope that the estimates may
be "improved". The process of revising the underlying theory in response to the data evidence
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is called post data model construction. The final search is the simplification search, in which
one tries to find a simple but useful model, i.e., a more parsimonious model which predicts the
future as well as the more complex initial model. Leamer [Lea78] recognises that in practice
it can be difficult to infer what kind of search actually occurred, since often the searches differ
only in the intent of the researcher and not in his actions.

1.2.3. The General to Specific Approach

The recognition of specification uncertainty has inspired methodological responses to specifica-
tion searches; the best-known are the ones initiated by Hendry, Sims, and Leamer, respectively
(see the collection of articles [Gra90]). All three methodologies start with a general initial
specification and try to reduce its complexity in various steps. Both the Hendry and Sims
methodologies are specific to time series and presume linear models. We will discuss only the
Hendry approach, since it is most frequently followed in empirical work.

The Hendry approach is generally known as the general to specific approach. The software
package PcGive has been designed according to the philosophy of this approach. The approach
essentially comprises four steps ([Pag87, Har90]):

1. Formulate a general model that is consistent with what economic theory postulates about
the variables entering any equilibrium relationship and which restricts the dynamics of
the process as little as possible. This model provides a yardstick against which the more
restricted models may be assessed.

2. Reparameterise the model to obtain explanatory variables that are nearly orthogonal
and which are 'interpretable' in terms of the final equilibrium. In many cases this
reparameterisation means formulation of an error-correction model (ECM), to be discussed
later.

3. Simplify the model to the smallest version that is compatible with the data ('congruent'),
using any prior economic theory to suggest a suitable specification for the dynamics.

4. Evaluate the resulting model by extensive analysis of the residuals and predictive perfor-
mance, aiming to find the weaknesses of the model designed in the previous step.

The Autoregressive Distributed Lag (ADL(p, q)) model

P 9
~f! - ~ aiyt-i f ~ ATXt-i ~ Et

i-1 i-0

is usually taken as initial model. It subsumes nine different types of models by putting certain
restrictions on the parameters ( [Hen93, p.447-454]), which makes it a good general model to
start with.
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1.3. Model Estimation

When a model has been specified, the free parameters have to be estimated so that the model
fits well to the data at hand. The starting point is the classical linear multiple regression model

Y - A~~ ~ az; xz; ~ . . . a~: x~; ~ E; i - l, . . . , ~. , (1.1)
which is completed by the following assumptions:

1. The explanatory variables X are (a) nonstochastic, (b) have values fixed in repeated
samples, and (c) are such that (1 ~n)X'X -~ Q where Q is a nonsingular matrix of finite
constants.

2. The rank of X is k.
3. E(e;) - 0 for all i.
4. Var(e;) - vz - constant for all i.
5. Cov(e;, e;) - 0 for all i~ j.
6. The number of observations exceeds the number of parameters.

Provided that these assumptions hold, the OLS estimators (i -(X'X)- ~ X'Y possess all desir-
able lazge and small sample properties of unbiasedness, efficiency, and best linear unbiasedness
(BLUE). Most econometric textbooks (e.g. [JG85, WW79]) pay much attention to estimation
techniques, in particular to the difficulties that arise when some of the assumptions of the classi-
cal regression model break down, such as autocorrelated disturbances, heteroscedasticity of the
disturbances, multicollineazity of the explanatory variables, and so forth.

Non-randomness of the explanatory variables is obviously an implausible assumption for
virtually all economic data. In economics the investigator almost always has to accept whatever
data observations are available, rarely being able to fix the values of any of the variables in which
he is interested; the economic system under observation not only determines the disturbances,
but also the values of the explanatory variables. In this case the OLS estimators retain the
properties of unbiasedness and consistency only when each and every explanatory variable or
regressor is independent of all disturbance values, past, present and future.

1.3.1. Measurement Errors

Many economic data series only approximate the "true" underlying values of the variable that
the investigator wants to measure. For example, many economic variables are approximated on
the basis ofa sample, typing errors are frequently being made, data series measure concepts that
sometimes differ from those that appear in economic theory, and there often is a lack of proper
updates which makes extrapolation necessary. It seems likely that these measurement errors
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occur randomly and only in some parts of the data series. Therefore, we assume the measurement
errors to be Gaussian distributed with zero mean and constant variance. We consider the two
variable regression case as an example. Suppose the true regression is represented by

Y- a-I-pXe f e~, t- 1,2,...,~r, (1.2)

where et is i.i.d. (0, v2). Suppose, however, that instead of (Y, Xt) we observe ( Y', X~ ) where
Y' - Y ~ v~ and X~ - Xt -} ~~ and v~ and o,~ represent the measurement errors in Y and X~
respectively. We attempt to estimate the parameters (~, Q) from the observed values rather than
from the true values. The original regression equation ( 1.2) can be written as

Y' - a-f-,(jXt -f- (et -A~i f vi), t - 1,2,...,n. (13)

The problem is that the composite disturbance term is correlated with the independent variable,
which makes OLS a biased and inconsistent estimator of the parameters (a„Q).

1.3.2. Multicollinearity

A set of regressors is said to be completely multicollinear when there exists at least one
regressor that is a linear combination of the others. This regressor adds to the dimension of
the vaziable space, but it does not provide enough information to model the relationship in this
extra dimension. Figure 1.1 illustrates what happens if two regressor variables X and Z are

Figure l.l: Multicollinearity ( taken from [WW79])

collineaz. In this case the projection of all observations onto the XZ-surface are restricted to
the line L. This means that in fact we have information only on a thin slice of the relationship.
The observations do not say anything about the shape of the relationship in XZ-directions
orthogonal to L; an infinite number of surfaces fits through F (for example, M 1 and M2).

In [JG85] the following consequences of multicollineazity are given:
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L It becomes very difficult to precisely identify the separate effects of the vari-
ables involved.

2. Unknown parameters may not appear significantly different from zero, and
consequently variables may be dropped from the analysis, not because they
have no effect, but simply because the sample is inadequate to isolate the effect
precisely.

3. Estimators may be very sensitive to the addition or deletion of a few observa-
tions or the deletion of an apparently insignificant variable.

4. Despite the difficulties, accurate forecasts may still be possible. This is only
true, however, if the pattern of interrelationships among the explanatory vazi-
ables is the same in the forecast period as in the sample period.

Multicollinearity dces not change the theoretical properties of OLS, such as unbiasedness
and BLUEness. The only impact multicollinear regressor vaziables have on OLS is that the
variances of the parameter estimates become large, such that confidence intervals become so
wide they do not provide useful information anymore. The highly variable parameter estimates
consequently result in very wide prediction intervals.

Possible approaches to reduce the variances in the parameter estimates are leaving out highly
correlated regressor variables or employing, so called, statistical shrinkage methods. Shrinkage
methods, such as, ridge regression, principal components regression, and partial least squazes
[FF93], shrink their parameter estimates away from low-spread directions in the regressor
space. This mainly serves to reduce the variances of their estimates, and this is what gives
them generally performance superior to OLS estimation [FF93]. Reducing the variance in the
estimates effectively improves prediction performance [MF].

Subset selection constitutes an alternative strategy to decrease the variances in the parameter
estimates. From the total set of variables which are initially thought to affect the variable of
interest, a smaller subset is selected. Hence, for linear models fitted with OLS on a relatively
small set of observations, the more variables are added to a model the larger is the variance of the
predicted values [Mi190]. The increase in variance must be traded against the decrease in bias.
To control the variance in the predictions, it is better to look for a model that consists of a subset
of the total set of predictive variables. Subset selection must be carried out carefully, taking into
account the bias in the parameter estimates that arises when the same set ofobservations is used
for selecting the best subset of variables and for the estimation of the parameters in the selected
model [Mi190].
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1.3.3. Heteroscedasticity

Consider the scatterplot shown in Figure 1.2 where the true relation is indicated by the dashed
line. The vertical spread of the observed values from the true regression line increases as the
regressor X increases. We speak of heteroscedasticity when the variance of the disturbance
term is not constanL The observations on the right in Figure 1.2 give a less precise indication
of where the true regression ]ine lies than the observations on the left. In this case OLS remains
unbiased, but no longer BLUE. The sampling variances of the OLS estimators, however, are
biased estimates of the true values, which means that we can no longer rely on the usual
inferential procedures (e.g., for hypothesis testing).

It seems reasonable to pay less attention to the observations on the right than to the more
precise observations on the left. This is the philosophy underlying weighted least squares
(WLS), which is favoured above ordinary least squares (OLS) for such situations. Instead
of using WLS, it is sometimes possible to transform the endogenous variables (e.g., by a log
transformation) and to apply OLS.

Y

.,

~ ,.
~ ~ '~~

. . ~ ~
~'~

~,.a:~. -~

Figure 1.2: Linear regression scatterplot when o; is proportional to X;

1.3.4. Serial Correlation

A key assumption in the classical linear regression model is that the disturbances ei and ef
(t' ~ t) are uncorrelated. Autocorrelation, which in a time series context is usually called
serial correlation, means that successive observations are dependent to some extent. In case of
positive autocorrelation, the second ( or some later) observation tends to resemble the previous
one, and hence gives less information about the relationship than independent observations
would give. When dealing with time series the assumption of uncorrelated disturbances may
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not always be reasonable. Hence, the disturbance term can be regarded as being made up of
a number of omitted variables, which in a time series context will likely show some degree of
serial correlation since relatively few time series are random.

For small samples serial correlation has [wo consequences [WW79]. Fírst, the serially
correlated disturbance terms make estimation of the regression parameters erroneous. This
effect reduces with increasing sample size. Second, the observed error terms (residuals) show
less variance than the true error terms, which makes confidence intervals for the parameters
erroneous; hence, the estimators of the standard errors are biased.

In general, applying OLS to a model with serially autocorrelated disturbance terms still yields
unbiased parameter estimates, but these estimates have larger variances. As a consequence, we
can no longer rely on the standard testing procedures.

The traditional method of handling serially correlated disturbances is to model these distur-
bances by an AR(1) process,

Et -~Et-I -i- ~t, ~~~ ~ 1,
although with modern computer technology any ARMA(p, q) model can be chosen. The
coefficients of the ARMA process of the disturbances are estimated and the observations are
transformed such that the resulting equation meets the standard assumptions of the linear
regression model. In many textbooks (e.g. [Har90, WW79, JG85]) the topic of estimating
models with serially autocorrelated disturbances is discussed profoundly.

Monte Carlo experiments according to the same design as employed in [BM78, Har90],
indicate that in the presence of AR(1) disturbances the variances of the OLS-estimates increase
more when Xt is a trending series than when Xt is a random stationary series. Intuitively
this makes sense; although subsequent disturbances may look alike, they are dispersed by the
X-values, so they cannot easily 'pull' the estimated regression out of position. The experiments
further show that disturbances which contain a large autoregressive coefficient ~ enlarge the
variances of the OLS-estimates more than disturbances which contain a small autoregressive
component.

1.4. Model Evaluation

When a regression equation has been specified and its parameters have been estimated, the next
step is to assess its quality for the purpose it is designed for. The evaluation should be sufficiently
detailed, and should be constructed to convince the user (of the model) that the mode] is suitable
for the problem at hand. It seems reasonable to state that the process by which the model is
specified determines the extensiveness of its required evaluation. Hence, a user will need more
'evidence' to change his belief when a model is found after an extensive specification search
than when a model is directly derived from theory.



1.4 Model Evaluation 21

Granger [Gra94] mentions some of the existing controversies in model evaluation. Should
an 'out-of-sample' evaluation be used, such as a forecasting comparison or a cross-validation
exercise? Should a battery of diagnostic tests (to be defined later) be used to check the
specification and to suggest respecification? Should the modeller specify his own alternative
models or use those of others in a comparison exercise? Statistical testing seems to be the
evaluation method most extensively relied on by applied econometricians; in [KM94] it is stated
"Testing hypotheses belongs to the basic pastimes of econometricians...A casual investigation
of titles of papers [in economic journals] show that there is a lot of 'testing' in the literature".

The applied econometrician uses a whole battery of tests throughout an empirical study. In
[KM94] four distinct aims of testing are discussed: theory testing, validity testing, simplification
testing, and testing for making decisions. Theory testing is the most ambitious one; it is an
attempt to meet the requirements of real science: confronting theory with facts. Validity tests
are performed in order to find out whether the statistical assumptions underlying some model
are credible. The value of this test should be interpreted with care; hence, a very neat 'valid'
statistical model may be obtained after extensive manipulation with the data. It should be noted
that the significance levels (the probability of making a type I error) become inflated by extensive
data mining. It is recognised by many authors, but not often met in their works, that the real
test of a theory is its predictive ability on an independent set of data [KM94]. This is known
as out-of-sample evaluation. A model obtained after extensive unacceptable data mining may
display bad out-of-sample behaviour. Out-of-sample evaluation is rather costly with respect to
the data, since a subset of the total data sample has to be put apart and can therefore not be used
for estimation.

When a researcher has to choose among competing models and the choice cannot be made
on the basis of statistical tests, Harvey [Har90, p.6-7] and Hendry [Hen93, p. 412-414] suggest
the following criteria:

Parsimony Models should concentrate on the most relevant and important aspects of the DGP
(data generating process) and consign unimportant aspects to the disturbance term. From
the statistical point of view, the key feature of a simple model is that it contains a small
number of variables.

Identifiability A model is nonidentifiable if more than one set of parameters is consistent with
the data. In practice this means that the estimates cannot be interpreted in any meaningful
way. Identifiability is related to parsimony; the more parsimonious a model, the less likely
it will suffer from identification problems.

Data coherency A model should approximate the observations in the sample reasonably close,
e.g., measured by RZ.
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Data admissibility A model should be unable to predict values which violate definitional
constraints. For example, an interest rate can be positive only.

Theoretical consistency A good model should be consistent with what is known a priori.

Predictive power A good model should provide accurate predictions of future (out-of-sample)
observations. For a model to do this, its parameters must obviously remain constant over
time. A clear distinction should be made between the RZ in the sample and the goodness-
of-fit in a post-sample, which is the real test of a model.

Encompassing A model encompasses a rival model if it can explain the results given by the
rival formulation; in that case, the rival model contains no information which could be
used to improve the preferred model.

Weakly exogenous regressors Explanatory variables should not be contemporaneously cor-
related with the disturbance term. A major cause of contemporaneous correlation is the
simultaneity of many economic relationships. The regressors and the dependent variable
may be jointly determined by the simultaneous system in which the equation of interest
is embedded.

1.5. Conclusions

A general framework for economic modelling was presented above, which forms the point
of departure for the subsequent chapters. The economic modelling process was partitioned
into three phases: model specification, model estimation, and model evaluation. These phases
were discussed separately, although in practice they often interfere. The main issues in each
phase were addressed. This helps in better understanding the role and positioning of Artificial
Intelligence (AI)-techniques in the general process ofeconomic modelling, in which traditionally
the quantitative aspects are approached with econometric techniques.

The methodological aspects of the model specification phase deserve much attention. A
core concept is data mining or specification searches, which entails the following. In general,
an economic theory is equally well supported by several different empirical models. The
investigator manually searches for an empirical model that fits the data well with respect to
some statistical criteria. However, presenting only the final model and the corresponding
statistics (used during the search process) invalidates a standard interpretation of the model. It
is essential to report the extensiveness of the specification search process to the user, and to
provide him with model evaluation measures not used in the search process. The general to
specific approach is an attempt to structure and control the specification search process and to
make valid interpretations of the final model(s).
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Model estimation is discussed in many econometric textbooks. The main issue is to derive
(asymptotic) distribution theories in case one or more assumptions made in the classical linear
regression model are not fu1611ed. The statistical shrinkage methods, which we presented as
a response to multicollinear data, provide biased parameter estimates and are, therefore, not
popular among econometricians (see [JG85]). In later chapters we will adopt the shrinkage
technique for a similar purpose.

The objective of model evaluation is to convince (potential) users of the model of its qualities.
Although many statistical tests have been developed for this purpose, assessment of the out-of-
sample prediction performance is definitely required, in particular, when weak or heavy data
mining is employed in specifying the model.

In the context of econometric time series modelling the specification search process is
usually constrained to the class of parametric models, i.e., models of which the functional form
is prespecified by the investigator. In the subsequent chapter we will present several methods
that automatically search for a good approximation to the data, without presuming a particular
functional form. In fact these methods automate part of the specification process which an
applied economist (implicitly) performs.



Chapter 2

Flexible Regression

2.1. Introduction

The foregoing chapter introduced the three phases that the model building process consists of,
namely, model specification, model estimation, and model evaluation. In the model specification
phase the researcher has to specify the functional form of the economic relationship. Sometimes
economic theory suggests a specific form, but usually it does not. This chapter discusses
methodologies used in statistics and AI that let the data themselves determine the functional
form of the relationship. In flexible regression the search for an (economic) model is not
constrained to a prespecified pazametric class of models, as was the case in the previous chapter.
Parametric function means that the functional form of the approximating function is prespecified
up to some finite dimensional vector of unknown parameters, which has to be estimated from
the data. The methods considered here are known as model free, flexible, or non-parametric
methods. All of these methods have originally been designed for general regression problems,
using cross-sectional types of data. In this chapter we will outline the general philosophies
behind these methodologies; we will skip the tedious details and practical difficulties.

Several techniques have been developed for approximating the underlying regression func-
tion g(x), defined as E[Y~X - x], that is, the conditional expectation of the dependent variable
given a particular realisation x of the vector of independent variables X. Traditionally, most
of the reseazch on function approximation in high dimensional spaces is pursued in statistics.
The principle approach has been to fit a parametric function to the training data, most often
by least-squazes. The most commonly used functional form ( parameterisation) is the lineaz
function

P

y- 9(x) - QO f~ Qáxí f E, E I.l.d.(O, vZ). (2.1)

The previous chapter concentrated on particular aspects of (linear) modelling in economics that
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aze frequently encountered in practice. In econometrics the functional form is usually based
on economic theories of the particular phenomenon. This knowledge, if present, is usually not
accurate enough to specify a functional form which meets the true underlying relationship. The
parametric function has limited flexibility and is likely to produce an accurate approximation
if the underlying function g(x) is close to the specified parametric one. On the other hand,
there are practical advantages, such as the requirement of relatively few observations, the ease
of interpretation, the absence of almost any computational effort, and the availability of strong
mathematical theories that allow for rigorous analysis. The stochastic disturbance term e in
(2.1) captures the influence of all variables omitted from x and the influence of all irrelevant
variables included in x. If the noise term e is large compared to the 'signal' g(x), then the
systematic error made by misspecification of the functional form influences predictive accuracy
only marginally.

Since computer power continues to increase and to become ever cheaper, it is attractive to
enlarge the search space for good models. It becomes feasible to let the data determine the
functional form. This sometimes results in highly nonlinear relationships. At the moment these
flexible regression techniques, as we call them after [Rip93b], are increasing in popularity;
one technique that surpasses all the others with respect to populazity is the neural network
method. It is obvious that the more complex a relationship becomes, the more data are needed
to approximate it sufficiently accurately. The various methodologies we discuss differ, in the
degree offlexibility, in the requirements ofdata, and in the quality of the resulting approximation.

There is no general agreement on the meaning of the terms parametric, semiparametric, and
nonparametric regression. Pazametric techniques bias the search to a small set of models. The
model is a representation of what the modeller thinks the data generating system actually looks
like. In its most ideal form, the parametric model should contain only parameters that have a
cleaz interpretation. Nonparametric -also called model free or flexible- regression techniques,
on the other hand, attempt to 'learn'the model from the data without presuming any functional
form. Nearest neighbour regression, which approximates g(x) by averaging over g(x;) where
x; is in the neighourhood of x, is a typical example of a nonparametric technique. Flexible
regression techniques usually need a large amount of data to obtain results that are statistically
meaningful. An advantage of these techniques is that the need for imposing a bias on the model
is reduced. There are some techniques, such as neural networks (see Chapter 3 and 4), which
look like a mix of the two. When a specific architecture is given, the network is parametric,
in the sense that one is trying to find the maximum likelihood values for the weights (see the
section on neural network learning); but at the same time it is model free, since we do not really
believe that the true underlying function is a composition of sigmoids. However, we do know
that we can get close to any continuous function [Cyb89, Whi89b]. It is clear that the parameters
do not have a theoretical meaning. We prefer to use the term model free or flexible regression
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to contrast parametric regression.

In general, model free regression methodologies are "consistent" for essentially any function
E[y~x]. Consistency is defined as the asymptotic (large sample) convergence of an estimator
to the true E[y~x]. The consistency feature is seen as a necessary condition for the use of a
particular model free technique. However, as we shall see later, consistency in itself does not
imply a successful application of the method to a single finite data sample. It has been proved
that under certain conditions neural networks are consistent [Cyb89].

The outline of this chapter is as follows. Section 2 summarises the conceptual ideas behind
several well-known flexible multivariate regression methods, among which are neural networks.
Section 3 introduces the bias ~variance dilemma, which forms a general problem for all model
free regression methods. Section 4 discusses cross-validation, a procedure that is often used to
choose flexibility parameters. Section 5 concludes the chapter.

2.2. Flexible Regression Methodologies

Friedman [Fri91) reviews the existing methodology for multivariate regression. Figure 2.1 gives
the different model free regression approaches from his review. In the following subsections we
shall characterise the methodologies represented in the figure, summarise their strategies, their
advantages and drawbacks, and give some representatives.

Model free
regression

Local
approximations

spline smoothing
weighted nearest
neighbortechniques

Low dimensional
expansions

additive model

CART
MARS

projection
based
projection pursuit
regression

neural networks

Adaptive
computation

Figure 2.1: Existing Methodology (source: (Fri91]
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2.2.1. Local Approximations

Local approximation methods are multivariate extensions of univaziate scatterplot smoothing
techniques, such as nearest neighbourhood techniques, spline smoothing techniques, and kernel
smoothing techniques. See [Hae90, A1t92] for an extensive discussion of univariate scatterplot
smoothers. The general underlying principle is local approximation, by locally fitting polynomi-
als or by locally weighted (or unweighted) averaging. Theoretically, the basic idea of scatterplot
smoothing can be straightforwazdly extended to higher dimensions. However, there are two
major problems with this approach in multidimensional feature spaces. Firs[, a geometrical
description of the regression relationship between X and Y cannot be provided; its form cannot
be displayed for dimensions higher than two. Second, the basic principle -averaging over local
neighbourhoods- will often be applied to a relatively limited set of points, since samples of
respectable size (n -] 000) are surprisingly sparsely distributed in higher dimensional Eu-
clidean spaces. The quality of the approximation of E[Y~X - x] depends on the number of
observations in the neighbourhood of x; averaging over a large number of neighbouring obser-
vations evidently gives a more accurate approximation than averaging over a small number of
observations. This problem is known as 'the curse of dimensionality' [Be161 ].

2.2.2. Low Dimensional Expansions

The ability of local approximations to provide adequate approximations in low dimensions, cou-
pled with their inability to adequately approximate functions in high dimensions, has motivated
approximations that take the form of expansions in low dimensional functions ~;

~
f(x) - ~ ~i(Zi),

~-i
where each z; is comprised of a small -usually one or two elements- (preselected) subset
of {x i, xzi ..., xP}. After selecting the variable subsets {z; }~, the corresponding function
estimates {~i(z;)}i are obtained by some local approximation method in conjunction with the
backfitting algorithm [HT90, Fri91 ]. The backfitting algorithm is a general, iterative, algorithm
that enables one to fit an additive model using any regression-type fitting mechanisms. It
considers each variable subset z; in turn, and smooths the residuals (y; -~k~i ~k(z;k)) against
the predictor variables z;; to estimate ~;. The process is continued until convergence. For
example, with least squares, the backfitting algorithm iteratively estimates ~;(z;) by

z

~i(Zi) ~ min ~ I (y~ - ~ ~k(Ztk)) - ~i(Zii) J~~ :-i L k~i
until convergence.
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The most extensively studied low dimensional expansion is the additive model

P

f(x) - ~~i(xi)~
i-i

The populazity of the additive model is due to the local approximation methods, which work
best for one-dimensional problems, and to the limited maximum number of elements that can
enter the approximating relationship, namely the total number of covariates p.

Approximating multivaziate regression functions by low dimensional expansions has some
limitations. In practice the difficulties that local approximation methods generally have with
vaziable spaces of dimension higher than two, limit the dimensionality of the expansion functions
~(z;) to two, at maximum. This implies that no more than two interacting variables can be
present in the final approximation. When the 'true' regression function consists of more than
two interacting terms, a misspecified model is the consequence. Performance and computational
considerations constrain the number of expansion functions J that could potentially be entered
to a small subset. This subset will depend on the true underlying function g(x), and is generally
unknown.

2.2.3. Adaptive Computation

In contrast with the low dimensional expansion methods, methods based on adaptive compu-
tation dynamically adjust their approximation strategy by taking into account the behaviour of
the particular function to be modelled. Low dimensional expansions are in a sense nonadaptive,
since their computing strategy is independent of the true function to be modelled; the subset
of variables is, after selection, used in the expansion functions to construct the approximating
function.

Adaptive algorithms can be subdivided into two groups, based on the strategies they use to
reduce dimensionality. The general idea is to limit dimensionality without restricting the number
of interacting variables beforehand. The first paradigm is known as recursive partitioning, the
second one as projection pursui[.

2.2.3.1. Recursive Partitioning

The general idea behind recursive partitioning is to recursively split the entire covariate space
D C~tP up into several subregions, and to approximate the part of the true underlying function
g that lies within a specific subregion by a function that depends on only a few of the total set
of variables. Recursive partitioning regression [BFOS84] uses lineaz parametric or constant
approximating functions within each subregion.
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The recursive partitioning regression model approximates the underlying function by a
function of the form

if x E R,,,, then f(x) -~,,,(x),

where Rm aze disjoint subregions partitioning the domain D. The functions ~,,, usually have a
simple parametric form, e.g., lineaz or a constant. The goal is to use the data to simultaneously
estimate both a good set of subregions and the pazameters associated with the sepazate functions
in each subregion.

This procedure partitions the variable space by recursively splitting previous subregions.
The starting region is the entire domain D. At each stage of the partitioning, each subregion is
optimally split into two daughter subregions. A region R is split in the following way:

if x E R, then
if x„ G t, then x E Ri

else x E R„

where v labels one of the covariates (splitting variable) and t is a value on that variable
splitting value). The split is jointly optimised over v and t, using a goodness-of-fit criterion
on the resulting approximation. The recursive subdivision stops as soon as some prespecified
number of subregions has been generated. The subregíons are then recombined in a reverse
manner until an 'optimal' set is reached, based on some criterion (see [BFOS84] for a detailed
description).

These recursive paztitioning methods can be viewed as local averaging procedures, but
unlike kernel and nearest neighbour procedures, the local regions are adaptively constructed
based on the nature of the response variation. In many situations, this procedure results in
improved performance.

Advantages of recursive partitioning regression are ease of interpretation, ease of compu-
tation, and ease of evaluation [Fri91 ]. The disadvantages are discontinuities at the boundaries
of the subregions, difficulties in approximating certain types of simple functions (lineaz and ad-
ditive in many variables) and in approximating functions with dominant interactions involving
only a small fraction of the total number of variables. Addi[ionally, the linear pazts and the
complex interactions cannot be discerned from the representation [Fri91 ].

The method called Multivariate Adaptive Regression Splines (MARS) [Fri91] is designed
to overcome some of the limitations of general recursive partitioning regression. It can be seen
as a generalisation of the latter procedure. In MARS the basis functions are splines instead of
constants. The reader is directed to [Fri91 ] for an in depth discussion of MARS.
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2.2.3.2. Projection pursuit

The general idea behind projection pursuit is to enable function approximation in high dimen-
sional spaces with only moderate data supply, by projecting the data onto ' interesting' directions
in order to discern a lower-dimensional pattern in the underlying function. Both projection pur-
suit regression (PPR) [FS81] and neural network learning (NNL) [Rip93c, HLMS93] are based
on this principle.

PPR tries to approximate the underlying function g(x) by a sum of ridge functions ~,,, that
are constant in a certain direction in variable space:

M

f(JC) - ~ !~m(CL'm7C).
m- i

The approximation is constructed in an iterative manner. Residuals r; are initialised by the
y-values. The next term ~k(ak x;) in the model is determined as follows. For a given linear
combination cYTx, construct a smooth representation ~(aTx) of the current residuals that are
ordered in ascending value of aTx. This proceeds in a univariate setting, so general scatterplot
smoothing techniques can be employed. At iteration k the linear combination ak is determined
by maximising the criterion of fit I(a)

n n

I(CYk) - 1-~~T{ - 4~k(ak xi)~Z, ~ Ti f
i- I i- I

which represents the fraction of so far unexplained variance that is explained by ~k(akxi).
The criterion of fit is maximised by some numerical optimisation method, which at each step
needs to construct the smoother ~k. When for iteration k the optimal linear combination has
been found, the ridge function ~k(akx) is added to the tota] sum of ridge functions, and new
residuals r; are calculated by

k

Ti - yi - ~ ~i(a~x{).
~-t

This procedure terminates when the criterion of fit is smaller than a user-specified threshold
-the last term is not included in the model.

In practice, in the early stages of the procedure the unexplained part of the varíability of f
can be quite large, and the smoothing is correspondingly unreliable. Therefore, when a new
ridge function has been added, backfitting is used to reoptimise the earlier summands ~; (and
possibly also the a;) in turn, keeping the other k- 1 contributions fixed.

PPR can be viewed as a low dimensional expansion method in which the (one-dimensional)
azguments are not prespecified, but are dynamically constructed from the data set at hand.
In this way many limitations of the other nonparametric regression techniques are overcome.
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The sparsity limitation of kernel and nearest-neighbour techniques is not encountered, since all
estimation (smoothing) is performed in a univariate setting. Unlike recursive partitioning, PPR
does not split the data sample, thereby allowing, when necessary, more complex models. In
addition, interactions of predictor variables are indirectly considered.

A disadvantages of PPR is that there exist some simple functions that require a large number
of ridge functions for good approximation, e.g. [Hub85],

9(x) - ex~x2.

Further, it is difficult to separate the linear from the interaction effects associated with the variable
dependencies. Interpretation of the approximating function is difficult when the number ofridge
functions is large. Constructing the approximation is time consuming [Fri91 ]. Additionaliy, the
choice of the bandwidth of the smoother used to find ~k is very delicate.

Another technique that in principle uses the same dimensionality-reduction strategy is the
feed-forward neural network, which will be the subject of the subsequent chapters. A single
layer feed-forward neural network with one linear output unit tries to approximate g(x) by a
composition of nonlinear signals

M

! lx) - ~ wm~(amxi)
m- I

where ~ is a univariate nonlinear function, which transfers the projected input vector. Unlike
the ~-functions in PPR, these functions are of a fixed form, usually sigmoid, and are selected
independently from the data before actual network training starts. The subsequent chapters
are dedicated to neural networks, therefore we will refrain from an elaborate discussion of this
technique at this point.

There is a clear conceptual resemblance between neural network regression and PPR
[HLMS93]. It is possible to implement PPR by a neural network architecture [VD94]. PPR and
neural network regression differ in the way parameters are estimated and in the type of expansion
functions used. All parameters ( weights) in a neural network are simultaneously adapted during
learning, whereas in PPR the parameters a,,, and the smoothing functions ~m are iteratively
adapted. PPR builds an approximating surface out of flexible ( smoothing) functions, whereas
neural network regression builds this surface out of prespecified fixed "squashing" functions.

2.3. The Bias~Variance Dilemma

In the previous section several techniques were introduced that approximate g(x) - E[y~x] in
a flexible way. These techniques intensively use the sample data set D-{(x;,y;)}~ in con-
structing the approximating function f(x). This section deals with the biaswariance dilemma,
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a major statistical problem that is inherent to flexible regression modelling. The essence of the
dilemma lies is that the approximation error can be decomposed into two components, known
as the bias and the variance. In the practice of data modelling, approximating functions that
have low bias generally have high variance, whereas approximating functions that have low
variance generally have high bias. The consistency feature of the flexible regression techniques
implies small bias; but when faced with limited data, high variance is often the consequence.
Constraining the level of flexibility reduces the variance, but also implies a larger bias. The
foregoing illustrates the dilemma: finding a compromise between bias and variance.

To assess the effectiveness of f(x) as predictor of y given x, we use the conditional mean
squared error criterion E[(Y - f (x))z~x], which can be rewritten as

E[(Y - .f(x))Z~xJ - E[(Y - 9(x))Z~xJ ~ (f(x) - 9(x))2. (2.2)

Equation (2.2) reveals that one part of the expected error (given x) is completely determined
by the conditional variance of y given x, and the other is determined by the deviation of the
predictor f(x) from g(x). It shows that minimum expected squared error is achieved if f(x)
approximates g(x) as close as possible.

We use the mean squared error to assess how effectively f(x) approximates g(x). Since
in general f(x) is constructed on a finite data set D,,, this D„ is explicitly incorporated in the
description of the approximating function. The mean squared error is defined as the average
value of ( f(x; D„) - g(x))2 when the data set D„ is repeatedly constructed by independent
drawings from a joint probability distribution pXy. For any x, we obtain ([GBD92])

Evr [(f(x;Dn) - g(x))2] - (E~n[f(x;Dn)1 - g(x))Z

fEDn [(f(x;D„) - ED,.[Ï(x~Dn)J)~~ , (2.3)

where Ea„ denotes the expectation with respect to the probability distribution of D,,. The first
part of the decomposition is the "bias" part; the second part is the "variance" part. The bias
part shows the deviation of the average predictor value from g(x), also called the accuracy
of the predictor. The variance part, or precision, shows the average squared distance of the
predictor from its own average. For example, a highly flexible method that simply interpolates
the observations in each D„ will be asymptotically unbiased, since each time it represents the
(x;, y;) patterns of subset D„ drawn from the population distribution pxv; averaging over all
possible subsets asymptotically approaches E[Y~xJ. The variance, on the other hand, will be
high. In case of exact interpolation, the variance equals the conditional variance of Y.

It is clear that the bias and the variance of an estimator typically are concepts that have a
meaning only in the repeated sampling approach to statistics. Although unbiasedness plays an
important role in statistical inference, it may be better to accept some bias when it can be traded
against lower variance. This is the reason why linear models sometimes perform reasonably
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well, even when it is suspected that the true underlying function g(x) is nonlineaz but the type
of nonlinearity is unknown.

2.4. Cross-validatory Choice of Flexibility Parameters

The biaslvariance dilemma implies that reducing the flexibility of a method may be necessary
to obtain useful predictions. All model free regression methods have parameters that influence
the ftexibility of the resulting fit. These flexibility parameters are a multivariate variant of
the smoothing parameters used in univariate regression modelling or scatterplot smoothing
[HT90, Hae90]. In nearest neighbour regression, for example, a neighbourhood size of one
makes the fit very flexible, whereas a neighbourhood size equal to the total sample size makes
the fit rigid, namely the average y-value of the complete data set.

Let B denote the' flexibility' parameters ofa flexible regression function f. The B-pazameters
have to be set using the data set D-{(x;, y;)}i at hand. Good parameter values are obtained
by minimising some global error measure, such as average mean squared error

n

MSE(B) - lI~ ~ Ev,. ~(fe(xi; Dn) - 9(xí))2~ -
.- i

To be explicit about the dependence of f on the parameters B and the data sample at hand, we
write fe(x;; Dn) instead of f(x;). ED„ indicates the statistical expectation taken over all subsets
of size n from the total population. In general, however, the true regression function g(x) is
unknown; calculating MSE is therefore impossible. Another measure that differs from MSE by
only a constant function o2 - Var(e) is the average predictive squared error

n

PSE(B) - 1I~ ~ ED,. ~(fe(x:; Dn) - y. )2~ , (2.5)
:- i

where y; is a new observation at x;, that is, y; - g(x;) ~- e;. It can be easily shown that
PSE - MSE ~- 02.

Notice that in these summazy measures we are conditioning on the observed values of the
data set D at hand. An alternative to (2.4), which is theoretically preferable, minimises the
expected mean squazed error averaged over the true distribution of X

MSE(B) - f ED,. ~(ÏB(x; Dn) - g(x))2~ Pxdx. (2.6)
z

This measure is computationally very demanding, if not impossible to compute. So, for the
remainder we use PSE as defined in (2.5). Good parameter values minimise PSE.

Since we usually do not have repeated measurements at the particulaz x-values, formula
(2.5) can not be expressed analytically. Therefore, we have to approximate the prediction error
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PSE. The standard method that uses a hold-out set is not advisable when the data set is small.
Hence, only part of the data is used for training, whereas one would like to use as many data as
possible to reduce estimation errors. The observations held out from the training set are used to
estimate the prediction error. If the hold-out set is too small, a precise (low variance) estimate
of the prediction error can not be obtained.

Cross-validation is an alternative method for estimating the prediction error of a regression
function [Sto74, MU94, HT90, Koh95]. It makes no assumptions about the statistics of the data.
Standard cross-validation works by leaving out points (x;, y;) one at a time, and constructing a
regression on the remaining n- I points. This is an attempt to mimic the repeated use of one
data set for training and one other data set for prediction. The average cross-validation squared
error

CV(B) - l ~n ~ ~fe(xc; D-') - y:~z (2.7)
:-i

is then constructed, where f(x; D-' ) indicates that f is fitted on the data set D without observa-
tion (x;, y;). This form of cross-validation is known as leave-one-out. It has two disadvantages.
First, CV(B) can be expensive to compute. Second, leave-one-out -although nearly unbiased-
shows high vaziance [Efr83, WK91 J, which makes it difficult to correctly choose parameter
values.

The leaving-one-out estimator is a special case of the general class ofk-fold cross-validation
error rate estimators. In k-fold cross-validation, the data are randomly divided into mutually
exclusive test partitions of approximately equal size. The patterns not present in each test
partition are independently used for training, and the resulting regression function is tested on
the corresponding test partition. The cross-validated error rate is the average error rate over all
k partitions. Kohavi [Koh95] and Zhang [Zha93] suggest to use ten or five folds.

The main reason for estimating the prediction errors was to use them in selecting good
values for the flexibility parameters. What we have discussed above is known as the cross-
validatory choice ofparameters. Cross-validation, of course, can also be used for the assessment
of statistical prediction. However, one should guard against [he interference of both. As an
example, a researcher constructs a prediction model for a particular phenomenon, on which he
has n observations, by some flexible regression technique. He obtains good values B' for the
flexibility parameters by minimising the cross-validation error CV(B). In an article he describes
the final solution, reports the CV(B') as the expected prediction performance, and compares
this performance to the performances achieved by alternative models. The flaw in this approach
is that the expected prediction accuracy is optimistically biased, since the flexibility parameters
were obtained by minimising just this prediction measure.

There are at least two solutions to this problem that give an honest estimation of expected
performance. First, estimate the expected prediction performance on a hold-out set not used in
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the procedure of cross-validatory parameter choice. With limited data this option is unattractive,
since a significantly lazge part of the data is not used for model building. The hold-out set must
have considerable size; otherwise the variance in the estimate of the prediction performance
will be too large to be useful. A second approach is the 'two-deep' cross-validation procedure
described in [Sto74], which proceeds as follows. The total data sample is randomly divided
into k subsets. Each subset is used once for the calculation of the prediction error of the model
constructed on the remaining subsets. The construction of the model on these remaining subsets
is again guided by cross-validation, i.e., the subsample is randomly divided into k' subsets, and
the usual procedure of model selection is applied. This approach requires k x k' models to be
constructed. For many model free methods, the two-deep cross-validation procedure takes too
much computing time.

2.5. Conclusions

The recent increase in available computer power has made flexible regression a feasible alterna-
tive to linear modelling, especially when there is uncertainty about the functional form specifica-
tion. We have introduced the ideas behind some well known flexible regression methodologies.
Feed-forward neural networks, which will be investigated profoundly in the remaining chapters,
were introduced briefly. This chapter primarily showed that several strategies can be followed
to find a flexible approximation to a particular underlying relationship, and that a neural network
is one of them. The most promising strategies in high-dimensional problems with relatively few
observations are based on adaptive computation. Recursive partitioning and projections pursuit
are two strategies to reduce the dimension of the initial regression problem. Neural network
regression and projection pursuit regression are examples of the latter strategy.

All members of the general class of flexible regression methodologies -neural networks
included- suffer from the principal difficulties caused by the biaslvariance dilemma. This
means that the price one has to pay for a decrease in the bias of an estimator of the true g(x),
usually is an increase in the variance of the estimator. While being on average (over many
repetitions) closer to the true underlying function, the resulting approximating functions are
more spread apart, which increases the risk ofmaking bad predictions, when a regression model
is fitted to a particular data sample. This phenomenon is a very important determinant of the
practical success of flexible regression methods, including neural networks.

Flexible regression techniques have at least one parameter that determines the degree of
flexibility (smoothness) of the resulting model. We discussed a general resampling method,
known as cross-validation, that enables the selection of a good value for the flexibitity param-
eter(s). In the remainder we will adopt the cross-validation approach to select parameters in a
neural network.



Chapter 3

Theoretical Aspects of Neural Networks

3.1. Introduction

This chapter focusses on neural networks, which are particular members from the class of
flexible regression methods, introduced in the previous chapter. The theoretical aspects of
neural network learning are discussed from a statistical perspective.

Neural networks are a class of input-output models, also called information processing
systems, originated from cognitive science. In this scientific area, researchers try to understand
how the human brain (or human intelligence) works -how it stores information, how it retrieves
information, and how it learns. Humans provide the best example of intelligent systems, so
attempting to build intelligent machines that 'act like humans' is not a futile activity.

The computer provided cognitive scientists with a means to actually build models of the
brain and to use them in the study of the brain's main functioning. Artificial neural networks
are used to simulate learning strategies of the mind when provided with learning examples.
The neural network's topology is an abstract 'translation' of the elements of the human brain.
The brain consists of about 10" neurons ( miniature communication devices), which are highly
interconnected by links called synapses, through which signals are submitted and received.
Since many authors, among others [HKP91, ARe88], have already elaborated on the mapping
of elements andprocesses of the biological brain onto the elements of an artificial neural network,
this discussion will not be repeated here.

The azchitecture, or topology, of artificial neural networks has evolved from simple percep-
trons to multilayer ( recurrent) neural networks and to more complicated structures. In [ARe88]
a good picture of the evolution of neural networks is sketched in a collection of papers that
were of great importance for the neural network field. A good discussion of the various types of
artificial neural networks and learning strategies is given in [HKP9l ]. We focus on feed-forward
neural networks, which aze most popular in applications.
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Although inspired by certain aspects of information processing in the brain, the neural net-
work models and their related learning paradigms are still far away from a realistic description
of how the human brain works. Nevertheless, as a data analysis tool they have proven qualities
in different applications, especially in pattern recognition tasks. In this guise artificial neural
networks are more and more often applied to economic and financial modelling problems. The
literature on neural networks, however, remains confused as to whether artificial neural net-
works are supposed to be realistic biological models or practical machines. For data analysis,
biological plausibility is irrelevant. Therefore, in what follows we will refrain from any biolog-
ical plausibility, and imply the adjective "artificial"; we will speak of neural networks (NN) for
short.

The outline of this chapter is as follows. In section 2 feed-forward neural networks are
represented in graphical and in mathematical ways. In section 3 the statistical aspects of neural
network learning are discussed. Section 4 addresses the generalisation issue. Section 5 discusses
how to compare the predictive performance of neural network models with the predictive
performance of alternative methods in a statistically sound manner. Section 6 concludes the
chapter.

3.2. Graphical and Mathematical Representation of NN

13ias

output
layer

Hidden
layer

Input
layer

Figure 3.1: A generic feed-forward neural network with a single hidden layer,
the bias neuron has been removed from the input layer.

A neural network model is a particular type of input-output model. Given an input vector
x-(x~, ..., xp)' the network produces an output vector y- (yi, ..., yq)'. In statistics it is
common practice use a hat to denote estimated variables, which NN outputs in fact are. We
conform to this notation.
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A widely studied network is the feed-forward neural network; an example is depicted in
Figure 3.1. In graphical form, feed-forward neural networks consist of directed graphs without
cycles. Each node represents a"unit", also called artificial neuron, which is the building brick
of the artificial neural network. The functionality of each unit is as follows. Each non-input
unit j sums its incoming signals and adds a constant term (the bias or intercept in statistical
terminology) to form the total incoming signal and applies a function ~ to this total incoming
signal to construct the output of the unit. The links have weights w;~ which multiply the signal
travelling through them by that factor. Figure 3.2 shows the functionality of an artificial neuron.
The function ~ is called the transfer, activation, or squashing function; ~ is usually taken to be
logistic (with ~(Z) - ~}exp(zl)~ or threshold (with ~(x) - I(x ~ 0)).

Input ~ ~(w I tw 1 t. ..tw I)
~UtpUt o o I I n n

Figure 3.2: Graphical representation of a neuron

The input units only dis[ribute the input vector, so their ~ is the identity function. Imple-
menting a bias term in the network is done by the addition of an "extra" input unit that always
has the value of 1, and that is connected to each unit from the hidden and output layer. Now
each bias term becomes an ordinary weight, and we do not need to distinguish between bias
terms and ordinary weights.

In mathematical notation a feed-forward neural network, as depicted in Figure 3.1, is
expressed by

yk - ~o(~ w~k~s(~ wiixi))~ (3.1)
~~k .~;

where we used yk to denote the value of the k'th output unit when input x is fed into the network,
and ~;y~ stands for the sum over neurons i connected to j. Usually identical squashing functions
are used within the same layer; ~o denotes the squashing function of the output units, and ~H
denotes the squashing function of the hidden units. The indexing presumes that neurons are
numbered sequentially in the order: input units, hidden units, and output unit(s).

The mathematical formulation of the feed-forward NN model shows great resemblance with
projection pursuit models (see Chapter 2). The main difference is the squashing functions, which
are fixed for a NN and free for projection pursuit regression. When the number of hidden nodes
is fixed in both PPR and NN, then PPR can approximate a larger class of functions ([HLMS93]).
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The parameterised representation of a neural network allows for easy and fast calculation of
predictions.

It may be preferable to have the neural network include direct 'skip-layer' connections from
the input layer to the output layer to explicitly incorporate the basic linear model, which leads
to

yk - ~o(L, w;kxi ~ ~ wik~x(~w;ixti))-
i~k ;-.k ;y;

In the remainder the expression f(x, w) is used as short-hand for the network output
function, where x represents the input vector and w the vector of all the weights. This notation
is convenient since it depends only on inputs and weights, given a fixed network architecture.
From now on the dimension q of the output vector y is assumed to be one, that is, our
neural network consists of a single output unit. This assumption avoids unnecessary complex
expressions in the remaining, not loosing generality. Further, the squashing function of the
output unit ~o is assumed to be linear, which enlarges the resemblance with the alternative
regression forms. In the remainder we let ~(without subscript) denote the squashing function
of the hidden units.

3.3. Neural Network Learning

Equations (3.1) and (3.2) represent quite general classes of functions. A number of authors
(e.g., [Cyb89]) have shown that feed-forward neural networks with a single hidden layer and
nonlinear squashing functions ~(e.g., sigmoid) for the hidden units can approximate any
continuous function g uniformly on compact sets, by increasing the size of the hidden layer, the
squashing functions of the output unit(s) may be linear.

Given a network with a sufficient number of hidden units, the role of learning is to find
suitable values for the network weights w to approximate a function g of x by f(x, w). The
estimation of the weights has been the main reason for stagnation in neural network research
for many years. In the next subsection neural network learning is discussed from a statistical
perspective.

3.3.1. A Statistical Approach

The premise of this section is that learning procedures used to train neural networks, are
inherently statistical techniques. Given a fixed neural network architecture, the output function
f(x, w) can be viewed as a parametrised nonlinear form that has to be fitted to the data, as in
nonlinear regression. This observation suggests that we can apply the principles of nonlinear
regression analysis, which is a well researched area in statistics; see, for example, [DD88].
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The theory that is presented here is based on the work done by White [Whi89b], who
discusses neural network learning in a statistical framework. White argues that learning in
neural networks when optimising some performance measurement is implicitly directed to the
discovery of certain aspects of the conditional probability law p(y~x). We are interested in
the relationship between X and Y, because X is used to predict Y. In such a case, network
performance can be measured using a performance function ~r, also called a loss or error function.
Given a target value y and the network output y, the performance function gives a numerical
value a[y,y] that indicates how well the network performs (on the training data). Usually a
larger ~r-value means that the network performance becomes worse. The most frequently used
performance function is

x[y~y] - (y - y)Z,

although many other choices are possible, e.g., a[y, y] - ~y - y~k~k (k 1 0). Berger [Ber85]
provides the theory on loss functions in statistical decision theory. Once the neural network
architecture f, weights w, target values y, and network inputs x are specified, the network
performance is measured by ~r[y, f(x, w)].

It is usually required that the neural network performs well over a whole range of situations,
that is, for new x and y values. In statistical terms, we want the network to perform well on
average. Average performance is given mathematically by

P(`~) - f~[y~ f( x, w)]P(x, y)dxdy (3.3)

- E[x[Y~ Í(X, w)]], (3.4)

where the network architecture f and w are fixed. We call p the expected performance function,
which corresponds to the risk function in statistica] decision theory. Note that given a specific

network azchitecture, p depends only on the weights w and not on the x and y, which have been
averaged out. Each particular weight vector w will lead to a different expected performance
p(w). The goal of learning is to find that weight vector w' that minimises p(w). We will
refer to w' as the "optimal weights" vector, which is not necessarily unique. It should be noted

that instead of requiring optimal average performance, we could have selected any other global

performance measure, for instance, median performance. We shall continue to use the average
performance interpretation, since it is the standazd.

Note that the joint probability law p(x), plays an important role in determining the optimal
weight vector w'. These weights give small errors for X values that are likely to occur
(according to p(x)) at the cost of larger errors ( on average) for X values that are not likely to
occur. It is evident that the optimal weights w' perform optimally in practice only when ~r and
p(x) are selected in such a way that they reflect accurately the conditions met in practice.

If the joint probability law p(x, y) were known, we could directly solve (3.4) for w'. It is the
lack of knowledge on p(x, y) that makes learning necessary. In economics we gather empirical
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knowledge on p(x, y) by making repeated measurements on X and Y. In practice we have a finite
sample from which we gain information. Based on a sample Dn -{(x~, yt ), ...,(xn, yn)}, we
calculate the sample analog of p(x, y), denoted by pn(x, y), as follows:

pn(C) - 1~n x (number of times (xi, yi) belongs to C)

where C is any (Borel measurable) subset from ~tPt' . When n is large, the law of large numbers'
ensures that pn(C) is a good approximation to p(C). Using this approximation, we calculate
the approximation pn to p by

Pn(w) - J(z.tr)ED..~[yif(xiw)]pn(x,y)dxdy (3.5)

n

- 1~~~~[y„Ï(xc~w)]~ (3.6)
:-i

which is the average performance of the neural network over the training sample Dn.
The value corresponding to (3.6) is easily calculated, so we can determine the weight vector

wn by solving
min pn(w).w

The vector wn actually is a realisation of a random variable; hence, each time a new training set
Dn is drawn, the vector wn will change. This prevents us from making more than probabilistic
statements about the true optimal weight vector w'.

Using (3.6) with random counter parts of the variables involved, we define wn as the random
variable that solves the problem

n

R,inPn(w)- I~~~~[Y~.f(X:,w)]~
~-i

where pn(w) is a stochastic variable due to the randomness of X; and Y.
In the special case of squared error loss ( ~r[y, y] -[y - y]Z~2) we get

n

win l~n~[Y - f(X;,w)]Z~2.
~-i

This is precisely the problem of nonlinear least-squares regression, so the resulting wn is
a nonlinear least-squares estimator. Nonlinear regression has been extensively analysed in
econometrics and statistics, e.g., [DD88, JG85]. The neural network community has developed
its 'own' solution to this minimisation problem, known as error back-propagation, which is
discussed in the next section.

~ which requires that xi and y~ aze asymptotically independent
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From this point the standard statistical approach to nonlinear regression can be followed.
First, derive the limiting distribution for wn, which is approximately multivariate normal (see
[Whi89b] for details). Then, use this limiting distribution to specify approximate confidence
intervals for the weights, or [o test specific hypotheses, such as testing for irrelevant hidden units
or irrelevant inputs [KW92]. Also prediction intervals can be constructed, using the limiting
distribution for the weights. According to White [Whi89b], the statistical inference approach to
neural networks is to be preferred, although in the neural network community the significance
of this approach has not (yet) been widely appreciated or exploited. The reason seems to be the
gap between theory and practice. In practice, it is not known how large n must be to ensure a
good approximation, and the answer is highly context dependent. In general, the more weights
a neural network contains, the higher n must be to obtain a given degree of approximation. In
applications the number of weights often exceeds the number of training cases available. The
same issue is also raised by Ripley [Rip93a]: "In non-linear regression (Bates and Watts, 1988)
we would attempt to quantify the uncertainty in the parameters and in the predictions,... Until
recently neural networks had not been considered in the same light. One problem is that they
tend to have very large numbers of parameters relative to the number of training cases, and
the parameters are not meaningful, so error statements for the weights are less useful than for
parameters in mechanistically-specified non-linear regressions". While this is true, it may be
interesting to look at certain functions of the weights, for example, e ~x or E[e].

3.3.2. Minimisation

The foregoing subsection provided the statistical rationale for the determination of the weight
vector w by minimising

n

~[y: - Ï(X~~w)~2. (3.7)
:- i

Error back-propagation, the best-known learning method in the neural network community,
permits weights to be learned from experience in a process resembling trial and error ( [RHW86]).
Experience is based on empirical observations on the phenomenon of interest. Since error back-
propagation is extensively described in almost all textbooks on neural networks, we will be very
short on it. Back-propagation simply is the application of the gradient descent technique to the
minimisation of (3.7). According to back-propagation, we start with a set of random weights
wo and then update them by the formula

n

wt - wt-i -~ rl ~ ~f(X.,wt-~)(yt - f(X„wi-~)), 1- l, 2,... (3.8)
.-i

where ~ is a learning rate and 0f is the gradient (the vector containing the partial derivatives) of
f with respect to the weights w([RHW86]). In the neural network community (3.8) is known
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as batch learning; the weights are updated after each complete presentation of the training set
(of size n). Opposed to batch learning is incremental or on-line updating of the weights, that
is, all weights are updated after the presentation of a single input pattern x; (i - 1, 2, ..., n).
When the latter strategy is used, a momentum term is often added to the update rule for the
weights. This can be seen as applying exponential smoothing to (3.8), and leads to

n

~wi --(1 - a)~~Of(x:~wt-~)(yc - f(x:,wi-i)) f a(Owi-i).
:-i

So, a momentum term multiplies the previous weights' change with a factor a that lies between
zero and one. A large value of the momentum term, say, a- 0.9, makes the next weights
update resemble the current weights update.

The calcula[ion of ~f (x, w)(y - f(x, w)) is performed by making only local computations
on the network itself. So, the specific structure of a neural network is used for the calculation
of the gradient of the enor function (3.7). We will not elaborate on this topic here; for a good
description of feed-forwazd neural networks and its specific learning algorithms we refer to
[HKP91 ].

The problem ofminimising ( 3.7) is characterised by the presence of locally optimal weights.
Backpropagation as well as its competitors from statistics can become 'trapped' in these local
minima. In the neural network literature it is often presumed ( [RHW86]) that the chance one
ends up in a local minimum is low in practice. This premise, however, does not seem to be
realistic. The next chapter exemplifies this. The multi-start algorithm is a simple heuristic
that helps in finding 'good' local minima by making multiple restazts -~ach time with different
random starting weights.

In case one is interested in the global minimum, one should be prepared to pay a high
computing cost. Hence, global optimisation algorithms, such as simulated annealing [AK89,
GFR94] or genetic algorithms [Go189], in principle search the whole error space in a'smart' way
-inspired ( again) by biological processes. In general these procedures are too computationally
intensive to be practically useful for the purpose of weight estimation.

3.4. Generalisation

For small samples, neural networks just like all other flexible regression methods suffer from
the biaswariance dilemma [GBD92], which we discussed in the previous chapter. When having
a finite (medium or small sized) set of n observations, a neural network with a fixed architecture
will use all its resources to make the fit to the data as good as possible. The danger, however,
is that instead of the 'true' relationship between X and Y, a function is fitted through the n
observations that approximates y as well as possible, including the disturbance term. If this
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is the case, the neural network is said to "overfit" the data. Presenting n' new observations
(generated by the same underlying system) to the trained network will result in a bad fit with
high probability. When the network is retrained on these n' fresh observations, the network
solution probably will differ considerably from the previous one. This is what high variance
means in practice. When this retraining is repeated many times, the average network solution
will be close to the true relationship: the network has a small bias.

In practice one is interested in networks that give good results for new data, that is, which
generalise ( or predict) well. One attempt to accomplish this goal is to reduce the variance by
introducing a(small) bias. Smaller variance may be realised by preventing the weights from
growing too large such that all individual observations cannot be approximated exactly. In
back-propagation learning, this can be obtained by stopping the training before convergence
has taken place. An independent test set is used to monitor the prediction error (see [FHZ93])
and to indicate when training must be stopped. Among statisticians this method receives little
sympathy [Sar95]; the main reason is the subjectivity involved, and the dependence on the
starting weights and on the particular test set chosen.

Another method that is used for the purpose of parameter restriction is weight decay. In
statistics this method is better known as ridge regression; it is used in case of collinearity or
near-collinearity of the independent variables. The idea behind weight decay is that instead of
minimising ( 3.7), the following, adapted error function is minimised:

n
~[y: - f(x.,w)~Z ~ a~w;, (3.9)
:- i :;

where the additional term penalises large weights ( two small weights are preferred above one
large weight). In Bayesian terminology, the weight decay term implements a prior distribution
on the weights. Bayesian statistics illuminates the interpretation of the weight decay term. In
Appendix A we elaborate on prediction and on the Bayesian perspective on neural network
learning with a weight decay term. A practical disadvantage of weight decay could be the
introduction of yet another parameter that has to be chosen a priori, namely a. There will be
more on this in Chapter 4.

3.5. Network Performance Analysis

When a final neural network has been constructed, the next step is to evaluate the performance
of it. We adopt prediction quality as the main criterion, but other criteria, for example, inter-
pretability, can be selected as well. Prediction performance, however, is less subjective than
most other criteria.

The mutual discovery of the statistical and artificial intelligence communities (see, e.g.,
[Han93, C094]) has resulted in many studies which compare the performance of statistical and
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machine learning methods on empirical data sets; examples are the StatLog project ([MST94])
and the Santa Fe Time Series Competition ([WG94]), as well as numerous journal articles
([KWR93, RABCK93, WHR90, TAF91, TK92, FG93]).

We have observed that there is no consensus in the research community on how such a
comparative study be performed in a methodologically sound way.

The ranking of k preselected methods is usually performed by training ( estimating in statisti-
cal terminology) the methods on a single data set, and estimating their respective mean prediction
errors ( tvtPE) from a hold-out sample. The methods are subsequently ranked according to their
estimated MPEs. Some studies use -in our view appropriately- statistical significance testing in
order to make this ranking. However, the effect that comparing more than two methods has on
the probability of generating a"false alarm" (claiming that one method is better than another,
when in fact it is not) is to our knowledge ignored in this literature.

The statistical analysis of comparative studies -method ranking in particular- is addressed
in the next two subsections, which are largely based on the study [FV95] by Feelders and
Verkooijen. We address methodological issues of studies in which the performances of several
regression methods are compared on empirical data sets. We first introduce some statistical
terminology and concepts that are necessary to arrive at a useful multiple comparison procedure.

3.5.1. Pairwise Tests

The ranking of inethods by simply ordering them by their estimated prediction errors should
be extended by statistical significance testing. Appropriate tests are those for the difference
between means (regression) and proportions (classification). The standard t-test for testing
the difference between two sample means Yi and Y2, which assumes independent normally
distributed populations, leads to the following confidence interval for the difference

Bi - BZ E[(Y~ - Yz) ~ t(~Iz.v)~diff~~ (3.10)

where v denotes the degrees of freedom, and ádiff equals vY ~- vY~. In the standard com-
parative experiment, however, the MPEs are all estimated from the same test sample, which
makes them highly correlated. Therefore, a paired sample t-test should be used instead. The
dependence within the pairs only changes the standard error of the difference ~di ff, which now
becomes

~diff - ~Y ~ ~YZ - 2cov(Yi,Y2). (3.11)

When the variables are positively correlated, the covariance has a positive value and thus the
variance and standard error of a difference between means will be smaller for matched than for
unmatched samples. Consequently, the confidence intervals become tighter (given the same a
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value), which results in more powerful tests. In conclusion, neglecting the dependence between
the samples generally results in too conservative tests.

The paired t-test becomes simpler when defining D:- Yi - YZ and testing Ho : 9 - 0 by

B E[D f t1~~2,,,1 r~]. (3.12)

The main assumption behind the paired t-test for the difference between two means, is that
the underlying population is normally distributed. When this assumption is not met, but the
sample size n is large, then the central limit theorem justifies the application of the t-test. When,
however, the sample size is medium or small, (3.12) may lead to wrong conclusions. In this
case the following (bootstrap) resampling based t-test proposed by Westfall and Young [WY93,
Algorithm 2.3] is recommended:

0. Calculate the statistic of interest t-(d - 0)~(s~~), where s is the sample deviation

92 - 1 ~~ E:~(dí - d)z-
1. Initialise the counting variable count.
2. Generate resample data d„ ..., d;, with replacement from the original data d~, ..., d,,.
3. If

d -á
s~~~ , t~

then count F- count -~ 1.
4. Repeat steps 2-3 N times. The estimated p-value is p- count~N.

(3.13)

3.5.2. Multiplicity Effect

Often the estimated 1vtPES of more than two, say k, methods are compared. The first idea that
comes to mind is to test each possible difference by a paired t-test with a probability of Type
I enor of size a. The problem is that the probability of making at least one Type I error
over the whole family of t-tests (one test per pair of inethods being compared) exceeds a by
an amount that increases with k(the number of tests made). For k statistically independen[
tests, the probability of making at least one Type I error, better known as the familywise error
rate (FWE), is 1-(1 - a)k. When k is large, say 20, this can be a lazge probability; for
a- 0.05, there is a probability of 0.64 on one or more Type I errors. This means that the
probability on incorrectly claíming the significance of at least one difference equals 0.64. Such
an incorrect claim is often called a"false alazm". When the tests are statistically dependent
on each other (such as is the case in pairwise difference tests) then the FWE becomes even
larger. Thus, when enough pairwise tests are performed, we will with high probability find one
or more "significant" differences. This problem is known as the multiplicity effect or selection
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effect. Statistical procedures have been designed to take into account and properly control for
the multiplicity effect; they are called multiple comparison procedures.

A crude approach to deal with the multiplicity effect is the BonferroniZ method, which rejects
the pairwise null hypothesis B; - B;~ - 0 when the p-value is less than tY~k', where a is the
preset FWE level and k' is the number of tests. According to the Bonferroni method, p-values
obtained by single pairwise tests are adjusted to p- min(k'p, 1). This method neglects the
possible dependency between the p-values of different pairwise difference tests.

Very closely related to the Bonferroni method is the Sidàk method [WY93], which rejects
the null hypothesis H; when the p-value p; is less than (1 -(1 - a)~ik~). This results in the
Sidàk adjusted p-value p; - 1-(1 - p;)k. The Sidàk adjustments usually are less conservative,
compared to the Bonferroni adjustments [WY93].

There are many alternative tests, ranging from slight adjustments of the Bonferroni method to
very sophisticated techniques. The exis[ing comparison procedures can roughly be categorised
as analytical [HT87] or resampling based [WY93]. The former approaches require certain
distributional assumptions of the underlying statistical model, and typically use table lookup
to make a probability statement. The latter approaches generate empirical distributions of the
relevant statistics by resampling from the data set at hand, thereby removing the risk of making
false statements due to unsatisfied assumptions. Evidently, the resampling approach involves
much more computation than the analytical approach.

3.5.3. Multiple Comparison Procedures

The characteristics of a particular experimental design often prescribe adjustments to general
tests for differences or they make special purpose tests necessary. The experimental design that
captures the subject of this study is the one-way repeated measures design, which is displayed
in Table 3.1. In such designs, blocks consisting of a random sample of, say, n experimental
units drawn from a large population constitute the random factor. Each unit is measured under
k different conditions. The conditions of ineasurements are fixed in advance, and constitute
the treatment factor. In the terminology of this study, experimental units correspond to the
observations from the test set, and the treatment factor corresponds with the regression or
classification model type.

The general setting of this section is Table 3.1 (the one-way repeated measures design with
k different prediction models which predict the observations from the same random test set of
size n). The deviation of the predicted value from the true value is assumed to be measured
as squared etror, but any other error measure could be used equally well (e.g., absolute error).

2This method originally due to R.A. Fisher ([Fis35]) is popularly known as the Bonferroni method since it uses
the Bonferroni inequality (which says that the probability ofa union of events is less than the sum of the individual
event probabilities).
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Observations fi fz
Functions
... f; ... fk Total

1 Y~ Yi z ... Y~; ... Yi k Y.
2 Yz i Yzz ... Yz; ... Yzk Yz.

j Y; i Yjz ... Y;; ... Y;k Y;.

7l Yn I Ynz ... Yn; ... Ynk Yn.

Total Yi Yz ... Y; ... Yk
Means Y.i Y.z ... Y,; ... Y.k

Table 3.1: One-way repeated measures lay-out.
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When the observations are not randomly drawn from a population, but result from a(highly)
autocorrelated time series, the subsequent approach seems not to be justified. Diebold and
Mariano [DN90] discuss the comparison of predictive accuracy of two time series models; they
leave the multiple comparison problem for further research.

Let Y; -(Y;~,Yjzi...,Y;k) denote the vector of prediction errors for the jth observation
(1 C j G n). The following mode] is assumed:

Y;-M;-~E; (lCjcn), (3.14)

where all the M; -(M;~, Mjzi ..., M;k) and E; -(E;i, E;zi ..., E;k) are distributed indepen-
dently of each other as k-variate normal vectors, the former with mean vector 9-(B~, Bz, ..., Bk)
(the vector of model effects) and vaziance-covaziance matrix Eo, and the latter with mean vector
0 and variance-covariance matrix vzI. Thus, the Y;'s aze independent and identically distributed
(i.i.d.) N(9, E) random vectors with E- Eo -~ vzI.

Exact procedures for making pairwise comparisons among the B;'s can be constructed, if we
impose special restrictions on the form of E. The least restrictive of such models is the spherical
model, which assumes that all pairwise differences of the sample means of the regression models
have the same variance (for more details see [HT87, CH90, WBM91, Hay88]). In practice,
however, this assumption will razely be satisfied [HT87, Hay88].

Therefore, Hochberg andTamhane [HT87, page215] propose a test, in case one the sphericity
assumption may not hold. They propose the following approximate 100(1 -~)qo simultaneous
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confidence intervals for the pairwise differences B; - B;~:

B; - 9.~ E LY.~ - Y.;, f ~M~k~) ~ Sat ~- S;,;, - 2S;,~ 1 (1 C i c i' C k), (3.15)n J - -
where ~M~k~ln-i is the upper ~ point of the Studentized maximum modulus distribution (see
[HT87, Table 6]) with parameter k' - k(k - 1)~2 and degrees of freedom n- 1; and where
5;;~, is the estimated ( co)variance between Y; and Y;~:

Slt -~;-i(Yii -rY-,)ÍY;;, -Y.,~)
(1 G i,i' G k). (3.16)

The Studentized maximum modulus distribution is defined as the distribution of

max ~T;~,
i~.~~

where ~T;~ is the modulus of the k-variate t-distribution with v degrees of freedom and common
correlation of zero.

When the assumption of normally distributed Y-values is not justified in practice, the
resampling method proposed by Westfall and Young [WY93, Algorithm 4.3] is recommended.
Their resampling method departs from the same experimental model (3.14) as we have used;
see [WY93] for a detailed description.

In this section we proposed a first step towards a sound methodology for performing and
analysing studies that compare the predictive accuracies of several regression functions. Rather
than providing a mere ranking, hypothesis testing should be used to determine whether a
significant difference among functions has been found. The formal methods for the appropriate
hypothesis tests originate primarily from the field of experimental design. We selected some
of these formal methods, and showed their relevance to the type of study that is encountered
frequently in the recent AI and Machine Learning literature. Although the general difficulties
induced by the multiplicity effect and by the dependency among observations are easy to grasp,
finding "the right" testing procedure is much more difficult. The literature on the subject is
somewhat ambiguous, and requires a rather high entrance level of statistical knowledge, which
AI-researchers do not always possess. This may explain why comparative experiments are often
performed in a rather casual way in the AI and Machine Learning literature.

3.6. Conclusions

Feed-forward neural networks were the subject of this chapter. We addressed the graphical
and mathematical representations of feed-forward neural networks, and showed the conceptual
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resemblance of neural network learning to nonlinear regression. When neural networks are
viewed as special purpose nonlinear regression methods, they can be studied as any other
statistical method. In case the neural network topology is fixed, neural networks can be
analysed statistically in manner similar to that in which parametric nonlinear regression models
are analysed. However, the numerous network weights which generally are estimated, make
statistical testing questionable. Additionally, the distribution of the weights in small samples is
not known, so limiting distributions have to be used for the construction of confidence intervals,
prediction intervals, and so forth. The question remains how useful these limiting distributions
are for small samples.

We also paid attention to issues that are induced by having small samples. The generalisation
issue, which directly stems from the biaslvariance dilemma, addressed in the previous chapter,
was described for neural networks in particular. Further, we discussed weight decay as a remedy
for bad generalisation performance. The Bayesian perspective on neural network learning and
prediction and the Bayesian interpretation of weight decay were addressed in Appendix A,
which complements this chapter. In Bayesian terminology the weight decay term, which is
added to the squared error loss function, implements a prior distribution on the weights.

Comparing the prediction performances of more than two different models in a statistically
sound way is not so easy. The main issue is to incorporate the multiplicity effect in the statistical
analyses. We reviewed some statistical multiple comparison procedures that are especially
useful for AI-researchers, who often compare the performance of "their" method with the
performances of some "rival" methods on the same hold-out set.

In the next chapter, which deals with the practical aspects of applying neural networks,
generalisation and weight decay will receive more attention.



Chapter 4

Practical Aspects of Neural Networks

4.1. Introduction

In the previous chapter we introduced neural networks, and discussed them in a statistical
framework. We indicated the conceptual resemblance of neural network learning to statistical
nonlinear regression. When NNs are applied in practice, one meets many difficulties and one has
many decisions to take. The specification of a neural network involves not only a selection of
the inputs; but also the selection of the various components of a network, such as which type of
network to use, which squashing function, which error criterion, which learning algorithm, how
many hidden layers, and how many hidden units per layer. Once these network components
have been specified, the NN has to be confronted with the data. The issue then becomes
whether preprocessed data should be preferred to raw data; if so, how should the preprocessing
be performed? Training neural networks results in an approximating function, which often
suffers from two main difficulties. First, when no precautions are taken, NNs will overfit the
data. Second, numerous local optima (in terms of the error criterion) will likely be found for a
particular data set.

These practical issues are important factors which determine the success of neural network
applications; therefore they require careful investigation. The impact of particular choices of
the network components is largest in small sample problems, where statistical theory is not of
much help. Monte Carlo simulations are required to examine the effect of particular choices.
The practice of neural networks, consequently, is characterised by heuristic rules more than by
firm theories. Applying NNs is often said to be more an art than a science.

The aim of this chapter is to lay down the choices concerning the different aspects of neural
network modelling, and to establish a general network construction procedure. We address the
way in which we arrive at a network solution for practical data modelling problems.

The outline of this chapter is as follows. Section 2 describes the (strained) relation between
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the neural network field and statistics. Section 3 clarifies some of the often heard neural network
myths. Section 4 briefly discusses the role software plays in the dissemination of NNs. Section 5
elaborates on the choices of main neural network components. Section 6 deals with the major
difficulty NNs meet in practice: overfitting. Section 7 refines the general cross-validation
procedure from Chapter 2 for the choice of neural network parameters. Section 8 presents the
results of a simulation experiment designed to show the effects of weight decay on overfitting
and on the number of local minima. Section 9 establishes the neural network construction
procedure. Section 10 concludes the chapter.

4.2. Neural Networks Versus Statistical Models

The growing attention neural networks receive as a tool for data analysis, which statisticians
traditionally considered to be their field ofexpertise, is a thorn in their flesh. Several statisticians
([Rip93a, Whi89b, Sar94]) have pointed at the similarity between neural networks and well
developed statistical techniques. Statisticians have gained great expertise in data analysis,
which goes far beyond linear regression, which some people presuppose as being "state-of-the-
art" statistics: "In essence, in terms of its everyday practice, there has only been modest progress
in regression analysis since the days of Gauss. Neurocomputing is now providing a breath of
fresh air to this 200 year old subject." [HN90, page 121 ].

To a certain extent, the popularity of neural networks when compared with statistical methods
may be caused by the failure of statisticians to communicate their methodologies and algorithms
to non-statisticians. The vast amount of accumulated statistical knowledge puts up a barrier
for consumers of their methods. Neural networks, on the other hand, are in an embryonic
phase, which means that the accumulated knowledge is relatively small. The language used
within the neural network community is another factor which may explain the success of the
neural network. Due to their diversity in scientific backgrounds, neural network engineers have
developed a universal language. The appealing terminology facilitates the propagation of neural
networks to the 'outside world'.

The core problems of data analysis do not change when the techniques they are approached
with are changed. Therefore, difficulties statisticians have run into will also affect neural
network scientists. The general philosophies that underlie several statistical methods of data
analysis have been (partially) reinvented by neural network scientists [Sar94]. As we have seen
already, statistical projection pursuit and the feed-forward single layer NN are conceptually very
close. The main difference is their popularity.

The great advantage of neural networks is the ability to capture many modern statistical
methods into a single framework. Using the 'neuron' as a building block, many statistical
models can be constructed, simply by collecting them in several layers and by interconnecting
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them. Sarle [Sar94] illuminately describes the mapping of several statistical methods (such
as PPR and principal components analysis) onto a corresponding neural network design. In
[VD94], we explicitly show the convenience of the neural network concept when implementing
projection pursuit regression.

It is clear that statisticians have much to say about model building, model diagnosis, model
comparisons, and so forth. It is important, however, that they expose the statistically important
issues to the neural network researchers in a clear way, so they can benefit from them.

4.3. Neural Network Myths

In the neural network literature, especially in the early part, some myths and half-truths have
been promulgated [Sar94]. Sarle [Sar94] mentions the following myths: NNs are intelligent,
NNs generalise, NNs are fault tolerant, and local optima are rare. Another frequently heard
myth is that NNs are robust against noisy or incomplete data.

Few things can be said for the foregoing. There is no more intelligence in neural networks
than in any other statistical method for data analysis. We have seen that NN learning is no more
and no less than a form of nonlinear regression. The latter statement, of course, concerns only
those neural networks that are employed and designed for problems of data analysis and not for
understanding human learning processes.

The ability of NNs to generalise is similar to that of other statistical models. In this respect,
it is important to distinguish between interpolation and extrapolation [Sar94]. Given sufficient
and well dispersed data, it is possible for NNs to interpolate a sufficiently smooth function quite
well. Extrapolation with NNs, however, is much more fault prone than in the linear case (in
which extrapolation is also known to be risky). The statement "neural network generalise well"
clearly requires differentiation; in most cases neural networks interpolate well, but there is no
obvious reason why they should extrapolate well (see [GBD92]).

Fault tolerance is the ability to produce approximately correct outputs, even when some
neurons malfunction. Networks with a large number of neurons with local effects are inherently
fault tolerant; the effect of a single neuron on the total output is small. On the other hand,
NNs are often ill-conditioned, that is, they have too many degrees of freedom compared to the
number of training observations. In an ill-conditioned network small errors in the input data
can give rise to strange outputs [Sar94].

Weight estimation is in essence a nonlinear optimisation problem. A typical characteristic
of nonlinear optimisation problems is the presence of local minima. In the neural network
literature, the possible occunence of local minima is often neglected. That local optima do
frequently occur is recognised in ([Rip93a, Sar94, GFR94]). In his discussion of the paper
[Rip94], Breiman states:"There are other aspects of neural nets that puzzle me. For instance,
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almost none of the neural net people seem to worry about landing in local minima. But it worries
me. Is it a problem, and, if not, why not?". In his reply Ripley answers: "As Professor Breiman
guesses, local minima are a problem, much ignored. I do my optimization carefully, including
checking if I have reached a local minimum by checking the Hessian, and using many (often
hundreds of) starting points." We also recognise local minima as a problem and try to find
a good local optimum by making multiple restarts with random initial weights. When many
neural networks have to be trained, the number of restarts, however, has to be restricted for
computational reasons.

The statement that NNs are robust against noisy or incomplete data is justified for a pattern
recognition task, in which the input signal is represented by a bitmap -a large grid of zeros
and ones. The information is distributed among the many individual cells, and a single cell has
almost no effect on the final classification. In a regression (data analysis) context, however, each
method -also neural networks- is sensitive to incomplete or noisy data items, especially when
the particular item plays an important role in the determination of the outcome. The robustness
against noisy and incomplete data is more a characteristic of the particular problem than of the
method of analysis.

4.4. Software

Software is important for the dissemination of a new technology such as neural networks. Neural
network algorithms can of course be coded in a general purpose programming language (third
generation programming language) such as, for instance, Cff or PASCAL. Applied researchers,
however, do usually not have the required programming skills or do not have the time to code a
neural network algorithm themselves. Their interest is in the application of neural networks to
a particular problem, not in the technical details or in the implementation of a neural network
algorithm.

Today, many commercial and freeware software packages are available. Their specificity,

flexibility, and extent vary a lot. Some packages are restricted to one specific network type,
usually feed-forward, and to one particular learning algorithm, usually error back-propagation.
Others present many different network types and several learning algorithms. Some math-
ematical and statistical packages, such as MATLAB, SAS, and SPLUS, also support neural
network modelling. For statisticians, this removes the barrier to the use of NNs, and it makes
the performance of comparative studies easier as well. A good overview of available neural
network software is given in the FAQ (Frequently Asked Questions) of the internet news group
comp.ai.neural-nets.

For our experiments, we use the s[atistical package SPLUS (for UNIX), which provides
an interactive computing environment for graphical data analysis, statistics, and computational
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programming. Its distinguishing features are: easily modified graphics and advanced statistical
functions implementing the leading ideas in modern statistical reseazch.

All neural network experiments we shall perform use the neural network S-function de-
veloped by Ripley. This S-code is publically available (by anonymous ftp from markov. -
stats . ox . ac . uk (192 . 76 . 2 0.1) in directory pub~ S). It implements a standard feed-
forward neural network with one hidden layer, no recurrent connections, and one output unit;
the squashing functions of the hidden units are sigmoid (and cannot be changed), the squashing
function of the output unit can be linear or sigmoid. Skip layer connections can be incorpo-
rated, and training with a weight decay penalty term added to the error criterion is provided
as well. Estimation of the weights is done by a quasi-Newton general purpose optimiser (see
[Nas90, Chapter 15]) with first derivatives calculated by the back-propagation algorithm. Unlike
back-propagation, a quasi-Newton general purpose optimiser needs no a priori specification of
learning parameters, such as learning rate and momentum term.

Although the S-function seems fairly restrictive in the eyes of a neural network engineer,
it is powerful enough to perform the type of research we aim for. It offers the possibility
of performing neural network regression, and to evaluate and compare its results with other
techniques within the SPLUS computing environment. Hence, there is no need for repeatedly
transforming the data and the results into different formats (such data transformations are often
needed when working with different software packages simultaneously).

4.5. Neural Network Components

A neural network consists of several components, which have to be specified before training can
start. The main components are the network type, the error function, the activation function, and
the learning algorithm. No instant rules that prescribe the best component choices are present,
and theory is often of little help. The following subsections discuss each component briefly.

4.5.1. Network Type

The most frequently used neural network type is a feed-forwazd neural network with one hidden
layer (see Figure 3.1), for which the approximation theorem holds [Cyb89]. This network
can be extended, for instance, by the addition of more hidden layers or by the inclusion of
direct connections from inputs to output. Many different types of neural networks have been
developed, such as, Kohonen maps and recurrent networks (see [HKP91 ] for an overview).
We exclusively use feed-forward neural networks with a single hidden layer and skip-layer
connections.
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4.5.2. Activation Function

The activation function of a neuron transforms an incoming signal into an output signal (see
also figure 3.2). Activation functions ~, also called transfer or "squashing" functions, should
have a number of properties. The first requirement is that they are positive monotone between
the values -B and B (or between 0 and B) for each signal between (-oo, oo), where bound B
is usually chosen to be 1. This requirement is necessary only for transfer functions of hidden
units. For use in back-propagation, it is also required that ~ be differentiable and that ~' satisfies
a simple differential equation, thus facilitating the evaluation of weight updates via the chain
rule for partial derivatives. Two related functions, which possess these properties, are

~ (z) -

and

B
~ 1 ~ exp(-2,Qz)

~j,~(z) - B tanh Qz - B exp(Qz) - exp(-Qz) - B- 2B
(4 2)

exp(,Qz) f exp(-Qz) I~ exp(2,Oz)'
where B denotes the bound and,Q denotes the slope of the activation function. These functions
clearly are differentiable, and the derivatives are given by the differential equations

~p(z) -

and

2QBexp(-2pz)Z -
2Q~,o(1 - B-~~P)(1 ~ exP(-2,Qz))

, 4QBexP(2,Cjz) 2Q

~~(z) - (1 f eXP(2Qz))2 - -2B(~v - B)(~P ~ B), (4.4)

respectively.
The simplest activation function, which is often used as the transfer function for the output

unit(s), is the linear activation function. We use standard logistic squashing functions (B - 1
and Q- 0.5), which transform incoming signals into an 0-1 range, for the hidden units, and a
linear activation function for the output unit.

4.5.3. Error Function

The most widely used error function ( objective or cost function) in neural networks is the
Squared Error Loss function ( SEL). This function is usually chosen without discussion, but
several researchers have posed that SEL is not the most intuitive ([Urb92]) and robust ((Ber90])
method available for regression problems. The main disadvantage of SEL is the large influence
of outliers on the estimated underlying function, due to the quadratic term. In statistics robust
regression techniques are proposed to avoid this problem. In the future these robust regression
techniques should also be considered for neural network learning. Especially, when one has a
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limited data set, robustness becomes important. Small data sets do occur very often in economic
data analysis.

The suitability of a specific error function depends on the purpose of the data modelling
activity. When the purpose is to model typical system behaviour, a robust method is preferable,
since then the atypical values are not weighted too heavily; but when the objective is to model
atypical system behaviour, OLS will perform better, due to its sensitivity to large deviations.
In the neural network literature, SEL is the common standard for regression, whereas for
classification cross-entropy (Kullback-Leibler distance) is the standard; the latter is defined by

1-

E-~ yp log yr }
~ 1- yn) log 1 - yP ~P

Software packages usually do not support error functions other than least squares and cross-
entropy. In this thesis we adopt the least squares criterion.

4.5.4. Learning Algorithm

Learning algorithms try to minimise the error function. In fact, neural network learning algo-
rithms are nonlinear optimisation procedures. They differ from general purpose optimisation
procedures in the way the optimisation is carried out. Learning algorithms, such as error
back-propagation, perform computation on the network itself: the network architecture offers a
convenient way to compute the gradient information necessary for minimising the error function.

Back-propagation is a gradient descent algorithm, which at each iteration makes a step
into a descending direction of the error function. From mathematics it is known that gradient
descent algorithms converge slowly (Sca85, section 3.2]. When a fixed learning rate is chosen,
it is likely that they do not converge at all. Almost each textbook on neural networks (e.g.,
[HKP91, Fre94]) elaborates on back-propagation, so we leave out the details.

Many algorithms have been invented that speed up the back-propagation algorithm. The best
known variant of back-propagation is Quickprop [Fah88]. Schiffman et al. [SJW92] performed
an extensive study on the comparison of different learning algorithms. They found Quickprop
and Cascade correlation [FL90] among the best.

In Ripley's neural network SPLUS-code, a general purpose quasi-Newton optimiser is used
to minimise the error function. It uses second order information (the Hessian) to calculate the
optimal 'step size'; the Hessian is used to check whether a minimum (not a maximum or a ridge)
has been found. Alternative nonlinear optimisation methods are found in [Sca85], for instance.
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4.6. Data Preprocessing

Theoretically, there is no reason to scale the inputs onto a fixed interval, but there is often a good
practical reason. Which proceeds as follows. The initial weight values of a neural network are
often randomly drawn within a small cube in the weight space. Assume that there are lazge
deviations in the ranges of the data components. Particularly with small networks, the smallest
and largest weights involved will often be determined by the ranges of the components of the
data. Due to permutations of hidden units, the weights associated with all global minima lie
between two concentric shells in the weight space. Especially in the case of small networks whith
the ranges of the components of the data differing a lot, the space between the two concentric
shells occupies only a small part, or none, of the volume of the cube with initial weights. Each
learning algorithm takes many steps to'move' the weights into the concentric-shell region. This
is quite troublesome, when using activation functions (e.g. sigmoids) in which the derivative is
very small when some weighted sum is large in magnitude and completely of the wrong sign.

A real reason to scale network inputs is when weight decay is used as regularisation method.
For weight decay to be effective, it is necessary that the inputs be comparable with the signal
coming from the hidden units, which lie between zero and one when the logistic transfer function
is used. This is the only real reason to scale the inputs.

Thus, in practice, scaling is useful to avoid bad initial conditions, and necessary for weight
decay to be effective. The simplest scaling technique is to scale all data onto a constant range,
say, [0, 1]. But there are alternatives that could be used.

Actually, we employ the following procedure to scale the data series x. Calculate the 0.025
quantile, ql, of x-~ and the 0.975 quantile, Q2. Define z- max(abs(q~ ) , abs(Q2)). The scaled
data series x is then calculated by

(x - x)
x - 2 z ~ 0.5.

In this way at least 95 percent of the scaled data lies within the [0, 1] range. This rescaling
makes the signal transferred by each input unit comparable with the outputs of internal units.
The problem with scaling onto a fixed interval is that outliers in the data can force the data to be
scaled onto a very narrow interval. Our scaling procedure allows an outlier to remain an outlier,
but scales the rest of the data more appropriately.

4.7. Overfitting

In Chapter 3(section 3.4) we have already noticed that a real concern with a modelling procedure
as flexible as neural networks is that one might find considerable spurious structure in data
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for which the signal-to-noise ratio is small. This false structure would reflect the sampling
fluctuations in the noise and would provide a misleading indication of the association between
the response and predictor variables. One would expect this effect to be especially severe for
small samples in high dimensions.

4.7.1. An Example

Table 4.1 summazises the results of applying neural network leazning to pure gaussian noise, that
is, g(x) - e with e~ N(0, 1). Results are presented for three sample sizes (n - 50, 100, 200),

three sizes of the hidden layer (Nh - 2, 4, 10), and five covariates randomly drawn from the
interval [0,1 ]. The table gives the percentage of the points of the lower half of the distribution of
the ratio of the sum of squared errors (SSE) on the training set (~; ~(y; - y;)Z) and the SSE of
the true model (~; ~ y; ). Ideally this ratio should be close to one, as the neural network should
not fit to the noise. A value close to zero indicates that the neural network is actually fitting
a model to the noise. As an example, in Table 4.1 an entry in the column with heading IOqo
indicates that l Oqo of all (100) ratio values are below the actual value of that specific entry.

Table 4.1: Modelling pure noise.
n. Nh 10lo Solo l0010 25oIo SOolo

50 2 0.33 0.41 0.44 0.50 0.59
4 0.15 0.20 0.24 0.29 0.38

10 0.00 0.00 0.01 0.02 0.03
100 2 0.58 0.64 0.67 0.71 0.76

4 0.44 0.47 0.48 0.52 0.57
] 0 0.13 0.14 0.16 0.22 0.26

200 2 0.76 0.79 0.80 0.83 0.86
4 0.63 0.66 0.69 0.72 0.76

10 0.40 0.42 0.43 0.48 0.53

Table 4.1 indicates that the neural network overfits the data severely, even when a hidden
layer of size 2 is used. As expected, the degree of overfitting is large, when the sample size
(n) is small; it decreases when the sample size increases. Even with 200 observations and
only 2 hidden units, the neural network 'explains' a significant part of the variance; SOolo of the
ratios are less than 0.86. The experiment reveals that it is necessary to take precautions against

overfitting; otherwise it is impossible to make good predictions.
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4.7.2. Remedies

The remedy for overfitting is to control the complexity of the neural network. There are two
main approaches: model selection and regularisation. The same approaches were used to reduce
the negative consequences of multicollineazity in Chapter 1(section 1.3.2).

Model selection for neural networks involves choosing the number of hidden units, the
connections, and the inputs. Miller [Mi190] elaborates on model selection for linear regression.
The neural network approach to model selection is pruning, i.e., start with a large network and
remove connections or units during training by various algorithms ([1C89, WHR91, Ree93]).
The statistical approach to model selection is to estimate the generalisation (prediction) error for
each model and to choose the model with the minimum estimated error. For nonlineaz models,
the generalisation error is often estimated by cross-validation.

"Regularisation involves constraining or penalizing the solution of the estimation problem
to improve generalization by smoothing the predictions" [Sar95]. Two common approaches
to regularisation in neural networks are: stopped training and weight decay. The first is most
popular among neural network users.

The simplest approach to stopped training is to stop training after a predetermined number
of "epochs", which are complete presentations of the whole training set. It is obvious that this
approach can only be suboptimal. A more realistic approach is to use a test set of data to indicate
the error on 'unseen' cases; these data may not be used during training. When the error on
the test set starts to increase, training is terminated. The idea is to prevent the network from
overfitting the training data, so that a desirable degree of generalisation can be reached. To
measure the degree of generalisation, a third independent set (the validation set) is necessary
to estimate the out-of-sample performance of the network. Finnoff [FHZ93] compares the
performances of different strategies to stopped training on various artificially created data sets.

In the previous chapter (see 3.4) we have already introduced weight decay, which prevents
a neural network from overfitting by smoothing the resulting fit of the network. Sarle [Sar95]
discusses several regularisation methods and presents the results of simulations investigating
the differences between them. He finds that stopped training works well compared to weight
decay only for the linear functions. Additionally, weight estimation remains a mathematically
well defined optimisation problem in the case of learning with weight decay, whereas in the
case of stopped training the actual optimisation problem is not well defined. We will use weight
decay to regularise neural network solutions. The selection of the neural network model will be
performed in the statistical way. Figure 4.1 illustrates the effect of weight decay in smoothing
the fit to the data. The figure shows all observations from the total data set, the fit obtained
with weight decay, and without weight decay. It is seen that even a small weight decay value
effectively smooths the "bumpy" behaviour of the fit obtained when no weight decay parameter
is added.
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Figure 4.1: Feed-forward neural networks with 30 hidden units, trained on 50

observations from the motor cycle data set [Hae90j without weight decay; the

other with a weight decay term of 0.0001.

Table 4.2 shows the effect of weight decay for the pure noise example. Compazing table 4.2
is compared with Table 4.1, shows that the values in the cells have increased (in the ideal case
the value should be one). So weight decay effectively reduces the temptation of neural networks

to overfit the data. A weight decay value of 0.1 was employed in constructing Table 4.2; a larger
value would have had more effect.

Table 4.2: Modelling pure noise with weight decay of 0.1.
n. Ny, 10lo Solo IOolo 25oIo SOolo

50 2 0.61 0.63 0.65 0.73 0.79
4 0.46 0.51 0.53 0.58 0.66

10 0.39 0.43 0.48 0.56 0.67
100 2 0.76 0.80 0.81 0.85 0.88

4 0.59 0.62 0.65 0.71 0.78
10 0.46 0.50 0.54 0.61 0.69

200 2 0.87 0.88 0.90 0.92 0.94
4 0.77 0.78 0.79 0.82 0.85

] 0 0.61 0.67 0.69 0.72 0.78
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4.8. Cross-validation for Neural Networks

In chapter 2 we outlined the use ofcross-validation for the choice of parameters in non-parametric
regression. In this section we discuss the peculiarities of cross-validation in the selection of
neural network parameters. The flexibility of the approximating function constructed by a
neural network depends on the number of hidden units, Nh, and the value of the weight decay
parameter, a. More hidden units absorb more degrees of freedom and a high value of the weight
decay parameter prevents the weights from growing too large. Let B denote both the flexibility
parameters: number of hidden units Nh and weight decay value a. The pazameter values are
set by minimising CV(9) using data set D-(x;, y;) i.

Weiss [Wei91] states that ]eave-one-out cross-validation is computationally demanding and
results in a high variance estimator of the prediction accuracy in small samples. The com-
putational burden is even lazger when cross-validation is used for parameter choice in neural
networks, because n neural networks have to be constructed for a data sample of size n. Zhang
[Zha93] and Kohavi [Koh95] illustrate that k-fold cross-validation, in which 5 or 10 equally
sized parts of the data are left out, performs well in selecting models. In the remainder we will
use k-fold cross-validation with k equal to 5 or 10 (see also 2.4). The choice between 5- or
10-fold cross-validation is based upon the expected total computation load.

Moody and Utans [MU94] propose the following refinement to the general cross-validation
procedure (described in section 2.4) to make it usable for neural networks. Train a neural
network on the whole data set D to a good solution w`. Permute the data set D randomly and
decompose it into k mutually exclusive subsets Si of roughly equal size, where i- 1, ..., k.
Construct the cross-validation sum of squares of the trained network fe(x, w')

CV(B;w') - l~k~ S Isil ~ ~fe(xp,w;wo - w~~D-') - yp)2 1 ~ (4.5)
i-1 l pES;

where D-i denotes data set D ` S; and fe(xp, w; wo - w', D) denotes the output of the neural
network with fixed pazameters B trained on data set D from starting weights w` when faced
with input xp.

Notice that we explicitly made CV dependent on the ( locally) 'optimal' weight vector w'.
Inside this cross-validation procedure, each neural network is trained from starting weights w'
after a subset S; is removed from the training data D. This perturbs the 'optimal' weights to ob-
tain new weights, which are assumed to be relatively close to the locally-optimal weights. Under
this assumption, the error computed for the 'perturbed models' thus estimates the prediction
error for the model with locally optimal weights w' [MU94]. This assures that the prediction
error corresponding to the network fe(x, w') is estimated. The proposed cross-validation pro-
cedure is illustrated in Figure 4.2. With random starting weights, the network could converge to
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a minimum weight vector different from the one corresponding to w', which would correspond
to a different NN model. It would be unclear which network's prediction error has actually been
estimated [MU94].

w4
Figure 4.2: 5-fold cross-validation for neural networks (from [MU94])

When the neural network (with weights w') overfits the complete data set so heavily that
the squazed error equals zero, the foregoing cross-validation procedure breaks down; leaving

out part of the data will not result in weights different from w', since the squazed error was
zero already. Although this seems a pathological case, we have had similar experiences in
some practical applications; highly flexible neural networks fitting the training data very well,
provided very low cross-validation errors, which turned out to be false after checking the final
network by an independent set of data.

We will apply the neural network cross-validation procedure as proposed by Moody and
Utans [MU94], but with some reservation. If we observe signs of severe overfitting and suspect
the cross-validation error estimates to be faulty, we additionally apply a slightly different version
of the cross-validation procedure. While seazching for a good local minimum on the complete
data set D, we keep the stazting weights corresponding to the best weight vector found so far.
This gives an "optimal starting weight vector" wó. In the cross-validation procedure, the neural
networks are then trained from this stazting weight vector wó instead of from w'. Consequently,
in the equation (4.5) w' is replaced by wó. In this way the cross-validation procedure handles
severe overfitting situations appropriately.

Although the cross-validation procedure is much applied, we still are far from a complete
understanding of its properties in nonlineaz model selection: "My impression is that the use
of cross-validation ideas in these non-linear and highly pazametrised problems is not ful]y
understood" [Rip94]. This clearly is an issue for further research. There further is a need for a
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careful comparison of cross-validation with alternative measures of generalisation ability, such
that researchers can emp[oy the best generalisation measure in building their models.

4.9. Some Experiments

The experiments in this section illustrate that unlike what is generally assumed by many users
of neural networks, many locally optimal weight vectors with varying prediction performances
may be found for a particular learning prob[em. The experiments further show that weight
decay not only reduces the degree of overfitting, but also reduces the numberof different locally
optimal weight vectors. Moreover, the cross-validation error provides a reasonable estimate of
the true prediction error.

The first experiment is carried out as follows. First n(-10,000) 3-dimensional covariate
vectors were (uniformly) generated from the [0, 1] interval. Then, the corresponding response
variables were computed from ~

y; - 0.1 expax,; -I-4~[1 -f- exp-zo(x~:-o.sl] ~ 3xsc -~ E~, 1 G i G n, (4.6)

with the e randomly generated from a normal distribution with zero mean and standard deviation
such that the signal-to-noise ratio equals 3. The signal-to-noise ratio s is defined as the standard
deviation of the signal divided by the standard deviation of the noise. The fraction of the total
variance of the response vaziable that is accounted for by the true underlying function is given
by 1 ~(1 ~ 1 ~s2). A signal-to-noise ratio of 1, for example, means that SOoIo of the total vaziance
is explained for by the true underlying function; an s of 2 means 80qo is explained for; an e of
3 means 90qo is explained for. The data in the complete sample are rescaled such that 95~10 of
each data component lies within the [0, 1] range. From the 10,000 scaled (x~, x2i x3, y) vectors,
a random sample of size 100 is drawn, which is used for training the neural network.

A neural network is repeatedly fitted to the 100 sample points, each time with different
(randomly chosen) initial weight vectors; fifty repetitions are made. The neural network consists
of 6 hidden units, a weight decay term, a lineaz output unit, and skip layer connections from
input to output. The weight decay parameter takes the values 0.0001, 0.001, 0.01, and 0.1,
respectively.

To measure the prediction performance of the neural network, the following approximation
to the ( scaled) predictive-squared error PSE is used

n n

PSE - ~(y~ - f(~,W)]Z~ ~[y~ - E(Y))Z,

~ Zhe data generating function is an adjusted version of the one used in [Fri91 ].
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where PSE is calculated by the remaining 9,900 artificially generated data vectors, so n equals
9,900. Since the data generating function consists of only three covariate variables, the estima-
tion of the prediction error will be accurate. In practice, however, such an accurate estimate
is difficult to obtain, because of limited data sets. We have seen that cross-validation has been
designed to provide reliable estimates of the PSE in the case of small samples. Therefore, the
5-fold cross-validation error estimate, which is denoted by CV, is calculated as well.

Figure 4.3: PSE vs. MSE and CV vs. MSE (after 50 restarts) by varying decay
a; data generating function (4.6) with a signal-to-noise ratio of 3.

Figure 4.3 shows the results of the experiment with a signal-to-noise ratio of 3. A signal-
to-noise ratio of 3 implies a theoretical PSE of 0.1. The first row of "windows" in Figure 4.3
displays the PSE calculated by (4.7) against the (in-sample) MSE for each neural network
resulting from the fifty random restarts of the training process; the neural network contains 6
hidden units and a weight decay value of 0.0001, 0.001,0.01, and 0.1, respectively. The second
row displays the same information for the cross-validation estimate of the prediction error CV.
The values corresponding to a linear model fitted to the data by OLS are: MSE 0.23, PSE 0.23,
and CV 0.25.

When the weight decay term equals 0.0001, the different neural networks (with locally
optimal weights), found after fifty random restarts, show a large spread in prediction performance
PSE; some are even worse than the PSE of the linear model. The corresponding in-sample MSE
indicates that the training data are overfitted; theoretically, MSE equals 0.1. Increasing the
weight decay value to 0.01 makes the in-sample fit (MSE) less accurate, but improves the
prediction performance PSE of the resulting neural networks; the PSE is not far away from the
theoretical bound of 0.1. Further increasing the weight decay value to 0.1 constrains the fit so
much that the prediction performance decreases.
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Figure 4.3 further shows that weight decay influences the number of local minima neural
networks fall into: when the weight decay parameter has a small value, there are many local
minima, indicated by the numerous dots in each window. Increasing the weight decay param-
eter decreases the number of local optima found -the local minima become more and more
concentrated onto a few isolated points: small weights make the signal entering a hidden unit
fall into the (almost) linear part of the sigmoid transfer function. In this case, network inputs
linearly affect the network output. It can be shown that when the least squares error function
is used to determine optimal weights, there is a unique optimum (ruling out permutations). A
large weight decay value causes weights to remain small. Weight decay, therefore, indirectly
determines the number of local minima. However, one should not throw away the nonlineaz
modelling features of a NN by taking too large a weight decay parameter. Figure4.3 also shows
that a low in-sample MSE does not always correspond to a low PSE. Thus, the in-sample MSE
should not be used as estimator of the PSE.

When we look at the pattern of cross-validation errors, displayed in the second row in
Figure 4.3, we notice that it looks similar to the calculated PSEs. So, in practice the cross-
validation estimates of the prediction errors are sufficiently accurate to base decisionsconcerning
network parameter selection on. Based on the CV-information we would select a weight decay
value of 0.01, which we would also have selected, had we the PSE-information at our disposal.

~
~
r;

5 I R
M~E-~~~00

~0. 60. Q-' O~YOi 0.8600300320.310.~38 YJ8~00 ~20 ~~

0.]00~
OduOÓÓWtOt20.N

0
-EioY000Y0.0.5

Otl
~SE.-OwYOS1~5

080 0.l2506300.615~Y

Figure 4.4: Different local minima (after 50 restarts) by varying sizes of a; data
generating function (4.6) with signal-to-noise ratio of 1.

The foregoing experiment is repeated with a signal-to-noise ratio equal to 1. So, in contrast
with the previous experiment the signal is weakened; signal and noise account for the same
amount of variation. The theoretical values for MSE and PSE aze both 0.5. The results are
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displayed in Figure 4.4. A lineaz model fitted to this new data sample achieves an in-sample

MSE of 0.65, a PSE ( calculated on 9,900 points) of 0.58, and a CVE of 0.74.

Figure 4.4 indicates that severe overfitting occurs for small values of the weight decay

parameter, and that the prediction performance becomes very bad compazed to the PSE of the

linear model and the theoretical PSE of 0.5. Increasing the weight decay value to 0.1 makes the

performance of the neural network solution resemble the performance of the linear model.

We conclude that when the signal is strong compared to the noise, the flexible neural network

is able to find a solution that improves upon a parametric model, which is more biased in general.

In case the signal is weak compared to the noise, it becomes much more difficult to outperform

the biased parametric model: a lazge weight decay value is necessary to prevent the flexible

neural network from performing worse than the parametric model.

4.10. The Network Construction Procedure

Iterative network construction methods have been developed in literature; some examples aze

the Cascade correlation algorithm [FL90], the SNC algorithm [MU94], and the CLSf algorithm

[RABCK93]. These methods start from a simple initial network and iteratively add components

that approximate the remaining part of the signal (see [HKP91]). Projection pursuit regression

follows a similar strategy. The alternative is to start with a lazge network and prune nodes, or to

regularise the weights of a prespecified neural network by weight decay.

Resolving the issue of whether iterative network construction methods or using weight decay

in a larger prespecified network is more effective, in general requires a systematic study.

We prefer the second alternative, namely to select the best regularised neural network on

the basis of the k-fold cross-validation error. This approach has two advantages. First, when

the weight decay term is added to the least squared error function, the learning problem remains

a well defined mathematical optimisation problem. Second, the need for human interaction is

minimal. The first alternative, iterative network construction methods, on the other hand, often

require many subjective decisions by the user, and the complete problem solving process is

mathematically less well defined.
This section lays down the procedure that is followed in the forthcoming chapters to arrive

at a final neural network solution, i.e., a neural network with a specified architecture and with

'optimal' weights. The neural network construction procedure (NNCP) includes determination

of the number of hidden units, the value of the weight decay parameter, and an optimal weight

vector. The objective is to find a good solution within reasonable time. The NNCP starts with

a rigid (not flexible) approximation to the data, and in a step-wise manner investigates whether

adding more flexibility is justified by the data. We stress that the procedure is purely heuristic,

but its clarity and modularity make it useful for practical use.
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The transparency of our procedure enables researchers to better interpret and appraise its
results. In time, hopefully, a generally accepted neural network methodology will arise. The
difficulties in network construction are mainly caused by the multiplicity of locally optimal
weights in small sample problems, and by the tendency of neural networks to overfit the data
when too many hidden units are incorporated. We select the network parameters by cross-
validation, which brings in some more difficulties; we mention the variance of cross-validation
as an estimator of the prediction error, and the additional computational load.

The network construction procedure runs as follows. It assumes that the relevant inputs
have been indicated, and the necessary data have been collected. The neural network includes
skip-layer connections, i.e., direct connections from the input layer to the output layer. The two
network parameters that are set by the procedure are the number of hidden units h and the weight
decay parameter .1. A k-fold cross-validation is used to select both parameters. When data are
abundant, it is preferable to use a randomly selected hold-out set instead of cross-validation,
which will reduce the computation time considerably. The hidden units are selected from the
set ~-[ -{0, 2, 3, ..., hm,x} where hmax denotes the maximum number of hidden units. The
procedure starts with zero hidden units, which corresponds to the linear model.

The weight decay parameter is selected from the finite set A-{,1max, ...,~min} where amin
and am~ denote the minimum and maximum weight decay value respectively. Usually we take

~m;n - 0 and .`m3x - n~~~; i(yi - y~a)2, but any other user-defined bounds can be used. The
specific choice for amax requires some explanation. In Appendix A was shown that according to
Bayesian statistics the weight decay parameter is proportional to the fraction of the variance of
the network residuals and the variance of the weights. For amaz we could adopt the fraction of

the variance of the residuals obtained from a linear model (estimated by OLS) and a subjectively
chosen weight variance of one.

Figure 4.5 presents the network construction procedure in pseudo-code. The weight decay
parameter is denoted by ~, the number of hidden units by h, the network weights by w,
and the cross-validation errors by CV and cv. E'(w, wo, a, h) represents the error criterion
~;~(y; - f( x;, w, wo, a, h))Z f a ~w~2 where f(x;, w, wo, a, h) represents the neural network
(with h hidden units, weights w, and weight decay parameter a), traíned from the initial weight
vector wo. Execution of the cross-validation procedure, as outlined in section 4.8, is denoted
by CV(w'). Finally, "next(h)" is a function that takes the next element from the set of hidden
units 7{.

Initially, the neural network model comprises no hidden units and the weights are strongly
penalised by .~, which corresponds to a linear model estimated by ridge regression (or penalised
OLS). When .~ is decreased to zero, the model corresponds to a lineaz model estimated by OLS.
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F~ure 4.5: The General Network Construction Procedure

Begin procedure Construct-network
{ h.- 0, .~ f- .~maX, i~ V r- oo, cv r- o0
while (CV ~ 0 and h c h,,,~) do

{for a E A
{Eo ~-- o0
repeat MAXIT

{sample wo
w~-- min.,, E'(w, wo, a, h)
if E'(w, wo, a, h) G Eo then {Eo f- E'(w, wo, a, h) ; w' ~- w}
}

calculate CV(w')
if CV(w') G cv then {cu ~- CV(w') ; ah ~~}
}

if cv C CV then {h' ~ h;CV ~- cv ; h f- next(h)}
else CV ~- 0

}
return(h', ah. )
}

End procedure
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Inside the while-loop hidden units are added [o the network; inside the for-loop the weight
decay parameter is lowered. Hidden units are added either until the cross-validation error
corresponding to the best a(resulting from the For-loop) becomes larger than the optimal cross-
validation error CV corresponding to the previous network or when the maximum number of
hidden units hm~ has been reached. For a particular number of hidden units h the for-loop de-
termines the weight decay parameter ah with lowest cross-validation error cv. The repeat-loop
searches for a good locally optimal weight vector by minimising E'(w, wo,.~, h), employing
MAXIT restarts with randomly sampled starting weights wo. The network construction proce-
dure is ended by making CV equal to zero when no improvement is obtained (i.e., no smaller
cross-validation error results). The procedure returns the best number of hidden units and the
corresponding best weight decay value. Of course, it is possible to return the corresponding
optimal network weights as well. To improve the clarity of exposition, we do not show this
additional step in Figure 4.5.

The variance of k-fold cross-validation due to different random group divisions is substantial
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in general (see [WL94]). Therefore, it is important to calculate the cross-validation error each
time with identical subdivision of the data in groups, to avoid the risk of drawing conclusions
induced by the variance of cross-validation rather than by the change of a particular network
parameter. We can take this variance of cross-validation into account by repeatedly calculating
the cross-validation error, each time with a different division in groups, and use the average
cross-validation error in our network construction procedure. However, this would increase the
computational burden enormously; moreover, its effect on the selection of network parameters
is unclear.

The network construction procedure implicitly assumes that increasing the network's hidden
layer does not result in a cross-validation error that first increases and then decreases, once a
sufficiently lazge number of hidden units has been added. Our reasoning is that a lazger network
should be able to encompass a smaller network and should therefore improve over the smaller
one when a more complex structure is supported by the data. If the data do not require acomplex
approximation, making the network even more complex makes no sense.

4.11. Conclusions

The popularity of neural networks relative to competing statistical techniques can be explained
by the appealing appearance and better marketing rather than by their distinctive data modelling
qualities. Statisticians, therefore, have a sceptic attitude towards neural networks.

This chapter mainly addressed the (subjective) choices investigators have to make when they
apply neural networks to data modelling problems. We observed that overfitting constitutes a
fundamental problem. It is a direct consequence of the biaslvariance dilemma (section 2.3),
which affects the whole class of model free regression methods. Weight decay was shown to be
an effective remedy for the neural network's temptation to overfit the data.

We further observed that the occurrence of different locally optimal weights for a learning
problem, is the rule rather than the exception. The presence of local optima hampers the
design of automatic network construction algorithms. Although global optimisation methods
are available, their use in empirical research is computationally still infeasible (at least on a SUN
Spare station 1). As an alternative to global optimisation, we employed a multi-start algorithm,
which repeatedly trains a neural network from different starting weights, inside the network
construction procedure.

The degree of subjectivity involved in building neural networks makes an explicit algorithmic
representation of the process necessary, in order to effectively pass on empirical results to others.
The network construction procedure that we developed mainly serves this purpose. When in
the remainder neural networks are applied, it will be done according to this procedure.



Chapter 5

Neural Networks in Econometric Time
Series Modelling

5.1. Introduction

In Chapter 1 we outline the general process of economic modelling. The issues that were
discussed hold for both cross-sectional data and stationary time series data.

This chapter deals with the econometric modelling of time series, in particular the modelling
of nonstationary time series. Nonstationary time series have always caused problems in their
analysis. It has been recognised that standard significance tests are no longer valid, and that
spurious relationships can be found. Cointegration analysis and error-correction models have
been developed for modelling nonstationary time series; we will summarise its theory. This
theory assumes the models to be linear in the variables.

Next, nonlinearities are incorporated in the cointegration analysis and in the error-correction
mechanism. A first step towards nonlinear generalisations of cointegration and error-correction
is taken, using the theory and practice of neural networks of the chapters 3 and 4.

The outline of this chapter is as follows. In section 2 we address some of the consequences
of using time series models for prediction. Section 3 introduces the concepts of cointegration
and error-correction models (ECM). Section 4 discusses nonlinear cointegration and ECM,
and discusses their implications for the practice of economic modelling. Critical values for
Dickey-Fuller tests on neural networks are derived. Section 5 concludes the chapter.

5.2. Time Series

In this section we explain in an intuitive way why time series modelling can be statistically more
problematic than regression modelling with cross-section data)
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In Chapter 1 we have already discriminated between stationary and nonstationary time series.
Figure 5.1 and Figure 5.2 present extreme examples of a(white noise) stationary process and a
(random walk) nonstationary process, generated by

Xe - Xe-i f Ee ; et i.d.d. ( O,aZ).

For the random walk process, it is easily derived that E(Xt) - 0(provided xo - 0) and
Var(X~) - tv2, which clearly dces not meet the definition of stationarity (see Chapter 1).

N ~,it~;l~rr.~i,,,~,~~~~~ ~ iq ill~lj ~Y li'} ,I ~N~~~I~li~:
~ ~ r
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N

Figure 5.1: White noise process

Figure 5.2: Random walk process

In classical regression, a first requirement is that the independent variables are nonstochastic
or at least distributed around a constant mean and have a finite variance. Cross-section data
normally have this feature. When the parameters in the model have been estimated on a
particular data set, predicting new observations is generally a matter of interpolation. This
statement extends to stationary time series, such as the white noise process.

In case the independent variables form a nonstationary time series, the series does not
frequently return to its mean. Predicting new observations generally requires extrapolation rather
than interpolation. Extrapolation is recognised as being risky for each regression technique, in
particular for the flexible techniques. Assuming an irregular underlying model seems to exclude
any sensible form of extrapolation. WHAT-IF analysis, which is often used to evaluate possible
scenarios, typically extrapolates the model. In the light of the statements made above, this may
result in erroneous conclusions.
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Figure 5.3: AR-0.9; MA-0.0

Between white noise and random walk processes, there is a whole range of classes of time

series that are stationary but exhibit a certain degree of sluggishness in changing, for instance,

the AR(0.9) process x~ - 0.9xe-~ f ee, depicted in Figure 5.3. This sluggishness is statistically

indicated by strong autocorrelation. In small data sets strong autocorrelation makes observations
'stick together' in variable space. The effect of including strongly autocorrelated stationary time

series as predictor variables can be similar to that of nonstationary time series, i.e., prediction

requires extrapolation rather than interpolation. To achieve the same level of information, more

observations are needed on highly autocorrelated time series than on non-autocorrelated time
series.
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Figure 5.4: x~ and yi aze both white noise; the first plot shows 4000 samples,
the second 50 samples.

Figures 5.4 and 5.5 show that autocorrelation in time series affects the dispersion of the
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Figure 5.5: x~ and yi are both AR processes with AR-0.99; the first plot shows
4000 samples, the second 50 samples.

training data in the variable space. If we assume that xt and yi are the relevant predictor
variables of a particular phenomenon, then it is clear that the 50 observations in Figure 5.4
provide more information on the global shape of the relationship than the 50 observations do in
Figure 5.5. The interpolation area in Figure 5.4 is larger than in that Figure 5.5. Macroeconomic
time series, such as depicted in Figures 5.6 and 5.7, typically do have high autocorrelation.

1975 1980
Time

1985 1990

Figure 5.6: Time series representation of the dollar-deutschmazk exchange rate
(on monthly basis)

The foregoing illustrated the case of two explanatory variables and 50 observations. Eco-
nomic relationships are often between more than two variables, and although we usually have
some hundreds of observations, the dispersion problem becomes worse with each extra variable
added. Therefore, models that include macroeconomic time series as predictor variables will
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Figure 5.~: Time series representation of the German long-term interest rate (on
monthly basis)

presumably have problems in achieving an acceptable level of long-run prediction accuracy.
Hence, prediction requires extrapolation skills rather than interpolation skills, and extrapolation
is generally recognised as being risky.

5.3. Cointegration and Error-correction

The previous section made a distinction between two different classes of time series: stationary
and nonstationary. This section focusses on nonstationary time series and on its implications
for statistical inference.

The nonstationarity of time series has always been regarded as a problem in econometric
analysis. When modelling series which are subject to a deterministic or a stochastic trend, one
is likely to end up with a model showing apparently promising diagnostic test statistics (high
Rz and significant t-values), even if regression analysis makes no sense [BDGH93]. Hendry
[Hen93] gives an example of a model that explains inflation by a certain exogenous variable
that meets all relevant statistical criteria, but which turned out to be the cumulative rainfall in
the UK. This problem is known as the spurious regression problem.

Since almost all economic data series contain trends, it follows that these series have to
be detrended before any sensible regression analysis can be performed. In the past a popular
method that attempts to overcome the problem of spurious regression was to estimate the
relationship between the rates of changes (differences) ofvariables rather than between absolute
levels. Two problems, however, arise when concentrating attention on relationships among
differenced variables. First, valuable information about the long-run relationship between the
levels of variables, if present, will be lost. Second, if a long-run relationship in levels exists and
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if its disturbance term is not autocorrelated, then the disturbance term of the model estimated in
differences will be autocorrelated -in particular, it will have a simple moving average form. This
will, consequently, influence the parameter estimates as indicated in Chapter 1(section 1.3.4).

5.3.1. Dickey-Fuller Tests

Within the general class of nonstationary time series there is a large subclass that can be
characterised by the order of integration: a nonstationary series Xt which can be transformed
to a stationazy series by differencing d times~ (OdXt) is said to be integrated of order d,
conventionally denoted as Xt ~ I(d).

Before any sensible regression analysis can be performed, it is essential to characterise the
time series data by the order of integration, provided the variable can indeed be transformed
into a stationary variable by differencing. Eyeballing the plot of the time series and inspecting
the autocorrelation plot are two simple means that give a quick impression of the time series
type. Time series can be characterised in a formal way by statistical hypothesis testing. Two
appropriate tests are the unit root test due to Dickey and Fuller (DF test) and the augmented DF
test (ADF test); see [BDGH93, Chapter 4] for details on these and other tests.

In unit root tests the null hypothesis yt ~ I(1) is tested against the alternative yt ~ I(0).
The DF statistic tests for the restriction ryo - 0 in one of the following transformed equations

ryo yt-i ~- Ee,

7o yt- i -~ a-~ Et,

ry0yt-1 ~CY~at~ Et~

implicitly assuming yt is an AR(1) process. Which of the three equations should be used for
testing is determined by the significance of the constant (á) and the trend (~). Critical values
on the t-values of ryo are tabulated in [Fu176].

If yt is an arbitrary AR(y) process, then the disturbances et in the foregoing equations will
not be white noise, which causes the estimate of ryo to be inaccurate. To allow for arbitrary
AR(p) processes in testing for unit roots, the DF test is augmented. The augmented DF test
(ADF test) concerns the null hypothesis yt ~ I(1), that is, ryo - 0 in

~yc
:-i

P
~yt - ryo yt-i f~-f ~ ry: ~yc-: ~- et~

.- i

P

- ryo yt- i f ~ ry: ~ye-; f Et, (5.4)

(5.5)

~For example, OXi - Xt - Xt- ~ and OZXi - 0(X~ - X~- ~)- Xt - 2X~-~ f Xt-Z
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P

Dye - 7o ye- i f a f Q t -F ~ 7: Dye-: -~ Ee,
i-i

(5.6)

where the inclusion of a constant or a trend is, again, based on the significance of the á and
,0. Holden and Perman [HP94] suggest a sequential procedure for unit root testing, which tests
joint null hypotheses on the various pazameters in a step by step manner. The number of lags p
to include has to be large enough to ensure that the transformed regressions are well specified,
i.e., the disturbances are white noise.

It is important to realise what the consequences are of selecting (5.4), (5.5), or (5.6).
Equation (5.4) concerns the testing of the null hypothesis y~ is a random walk against the
alternative hypothesis yt is AR(p) with mean zero. Using equation (5.5), one tests the null
hypothesis yt is a random walk with drift (deterministic linear trend) against the alternative yt
is AR(p) with non-zero, but constant, mean. Using equation (5.6), one tests the null hypothesis
y~ is a random walk azound a nonlinear deterministic trend against the alternative yt is AR(p)
with a deterministic trend. If the latter alternative hypothesis is true, then yt is called a trend
stationary process. In practice, it is difficult to discriminate between a random walk with drift
and a trend stationary process.

5.3.2. Testing for Cointegration

The desire to evaluate models which combine both short-run and long-run properties and which
at the same time maintain stationarity in all variables, has prompted a reconsideration of the
problem of regression using variables measured in levels. A requirement is cointegration, which
is defined following [BDGH93, page 145] as follows:

Definition 1 The components of the vector xt are said to be co-integrated of order d, b, denoted
xt ~ CI(d, b), if ( i) xt is I(d) and ( ii) there exists a non-zero vector a such that aTxt ~ I(d- 6),
d~ b~ o. The vector a is called the co-integrating vector.

The most interesting case is when d - b. In practice, cointegration means that two series drift
together instead of drifting apart; for a non-technical illustration of cointegration see [Mur94].
The simplest test for cointegration, proposed by Engle and Granger, tests for the existence of
a unit root in the residuals of the static regression; this test and its alternatives are described in
[BDGH93, paz. 7.2].

The Engle-Granger test for cointegration proceeds as follows; for ease of exposition the case
of two time series is taken. Suppose the time series xt and yi aze both I(1). The Dickey-Fuller
(DF) and augmented Dickey-Fuller ( ADF) tests will determine whether the residuals et of the
static regression

ye - a-~- Qxe f et (5.7)
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contain a unit root: if they do, xt and yt cannot be cointegrated. The application of the
Engle-Granger cointegration test comprises the following steps. First, the parameters a and ,~i
are estimated. Second, the residuals Êt are calculated from yt - á- Qxt. The DF test then
constructs a second regression of the first difference of the residuals on the lagged residual

~Et - 1'OEt-I ~ vt, vt ~ l.l.d(0, oZ). (5.8)

The null hypothesis is ryo - 0, that is, Êt contains a unit root; implying yt and xt are not
cointegrated. The ADF test accounts for possible seria] correlation in the residuals vt; it adds p
lagged changes in the residuals to the former equation, which amounts to

P

~Et - ~ÏOEt-I ~ ~ ryi DEt-i ~ ~ti ~t ~ l.l.d(~, UZ).

The t-statistics on the fitted ryo provide the DF and the ADF tests of a unit root in the residuals
Êt. No formal guidelines are available for the choice of p; in practice, p is taken to be the
largest significant lag that assures the residuals ~t are white noise. Equations (5.8) and (5.9)
are sometimes augmented by a constant, a trend, or both, each requiring its own set of critical
values. The addition of a constant or a trend to (5.8) or (5.9) is equivalent to using model (5.7)
with a constant or a trend included.

5.3.3. Constructing Critical Values

In [EY87J Engle and Yoo construct critical values for the DF and ADF tests for small data sets
consisting of 50, ]00, and 200 observations, in which the number of variables k range from 1
through 5. Engle and Yoo assumed that the data are generated by

t I
Xt - Xe-i ~ vt~ Xo - ~~ Xt - lxl~... ~xk)e~

with

vt ~ IN(0, o2lk),

and that the co-integrating regression takes the form

xlt - a f Q2x2t f I-~3x3t ~ ...~ Qkxkt f Et.

(5.10)

(5.11)

They estimated this regression by OLS. The covariance matrix of the innovations vt is taken
to be identity without any loss of generality, when assuming independent x;t series. The
critical values of the DF and ADF tests are obtained as the t-statistics of ry"o in (5.8) and (5.9),
respectively. These critical values were obtained through ten thousand replications. To examine
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the movement ofcritical values in higher-order systems, Engle and Yoo generated data according
to the following model

Xe - Xc-i f Ue~u:r - 0.8uíc-i f ~~e, i- 1,...,k, (5.12)

assuming again v;t ~ IN(0, 1). They applied the ADF test with p- 4 to construct the
critical values for this case. Engle and Yoo remarked that more variables are included in the
transformed regression equations of residuals than necessary, which makes the reported critical
values inefficient in a sense. In this way the critical values reflect the ignorance of the lag length
in practice. The inefficiency will disappear in large samples [EY87]. Critical values can also be
obtained from [Mac91], which provides an extensive source based on simulation experiments.
The results are summarised by response surface regressions in which critical values depend on
the sample size, the number of series, and whether or not a constant and a trend are included in
the cointegrating relationship; asymptotic critical values can be read off directly.

5.3.4. Error-Correction Models

The fact that variables are cointegrated implies that there is some adjustment process which
prevents the errors in the long-run relationship from becoming larger and larger. Cointegration
is a necessary and sufficient condition to enable an error-correction model (ECM) formulation
of the short-run dynamic model as represented by an ADL(p,q). This is formally represented in
the Granger representation theorem [BDGH93, par. 5.3.1 ]. ECM currently represents the most
common approach to situations in which it is desirable to incorporate both the economic theory
on the long-run relationships among variables -also called equilibrium relationships or steady
state relationships- and the short-run disequilibrium behaviour.

A simple example illustrates how an ECM looks like. Assume that y~ and xt are I(1) and
cointegrated. So, there is a cointegrating regression y~ - ao -~ a~ xt -f et, and the residuals aze
stationary. The values of ao and a~ can be either implied by economic theory, or estimated from
the data. In the latter case the coefficients ao and a~ can be estimated by a static regression or by
a dynamic regression, in which the long-run coefficients are determined by substituting averages
for every variable. In small samples the latter option is preferred [BDGH93, Chapter 7].

In practice, however, y~ and xi will not often be in equilibrium, that is, zt - yc -(~o ~ IXi xc)
will be non-zero in most cases. The discrepancy between y~ and áo } á~ x~ is a measure of
'disequilibrium'. Since -by assumption- the system is in equilibrium in the long-run, the short-
run process has to remove (at least partly) the disequilibrium. An error-correction model (ECM)
implements this idea. For example, the simplest ECM for yt would be

~ys -~i ~xr ~ ry z~-i ~- ve, (5.13)



82 Neural Networks in Econometric Time Series Modelling

where ry requires a negative sign to correct for the disequilibrium error of the previous period.
Changes in yt are explained by changes in x~ and by the disequilibrium error of the previous
period.

5.4. Nonlinear Cointegration and Error Correction

The previous section (5.3) discussed the concept of cointegrating time series in a linear context.
This relatively new concept has been the subject of many journal papers (At November 1994
our university's library contained over 220 articles that had cointegration in the title for the
period after 1991) and books [BRe94, BDGH93]. However, not much has yet been written
about nonlinear cointegration, which is an extension that comes to mind with the recent increase
of interest in nonlinear modelling. Only a small group of researchers [Gra94, Sep94, MR91,
GH916] has paid attention to the nonlinear generalisation of the cointegration concept.

Our objective is to assess the usefulness of neural networks in testing for nonlinear coin-
tegration. Sephton [Sep94] employed research on nonlinear cointegration tests on MARS (see
Chapter 2). In his article, Sephton determines critical values for the ADF test on MARS, and
finds some evidence for nonlinear cointegration in several selected cases. We follow a similar
approach in constructing critical values for cointegration tests on residuals that result from a
neural network regression.

5.4.1. The Characterisation of Time Series

To determine whether a time series is I(1) or I(0), a DF or ADF test is usually performed.
Granger and Hallman [GH91b] show that standard DF and ADF tests reject the null hypothesis
of I(1) series too often, when the series is a nonlinear transformation f of a Gaussian random
walk. For example, let

xt - xt-1 ~ E ti Et - l.l.d(~iQ2)

and
ye - f(xt).

Granger and Hallman propose to perform a DF or ADF test on the ranks of the series instead
of on the original series, since the rank of a series is invariant to monotone transformations.
The rank of a(finite) time series is defined as the rank of xi among all observations, when
ordered from low to high. Granger and Hallman [GH91b, table IV and V] give percentiles of
the ranked Dickey-Fuller (RDF) and the ranked augmented Dickey-Fuller tests (RADF) under
the null hypothesis that yt is a monotone transformation of a random walk, for different sample
sizes. It should be realised that there exist transformations of x~ that also escape from the RADF
test. An additional investigation of the correlogram is, therefore, recommended.
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Granger and Hallman further state that a nonlinearly transformed series generally cannot
be cointegrated with the original series, e.g., in the above example yc cannot be cointegrated
linearly with xt. This emphasises the importance of having the correct functional form when
investigating a hypothesised long-run relationship between the two observed time series yt and
xc. In fact, the foregoing justifies a nonlinear generalisation of the (linear) cointegration concept.

In [GT93], it is argued that the definitions of integratedness employed thus far are based
on linearity. Therefore, they proposed to generalise the concepts of integratedness, and to
distinguish between series that are long-memory in mean (LMM) and short-memory in mean
(SMM), instead of I(1) and I(0) respectively. SMM is defined as follows.

Definition 2 xc is said to be SMM if

lim E[xc~h~jc] - Dh
(5.14)

where D is some random variable, and Ic denotes all available information available at time t.
The case of most interest is where D is just a constant (the unconditional mean of xt).

If E[xefh~Ic] continues to depend on Ic as h increases, xt is LMM. The definitions allow past
information Ic to be used in a nonlinear way. In principle, D can include limit cycles and
processes with strange (chaotic) attractors [Pet91 ] as well. These concepts, however, are not
easily associated with the simple concept of equilibrium. Therefore, following [GH91a], we
exclude them in what follows.

There are two more concepts, namely short- and long-memory in distribution. However,
they are merely theoretical, and seem of little practical use. We, therefore, refrain from giving
the definitions; interested readers are referred to [GT93].

Although the generalisation of the linear concept of integratedness theoretically makes sense,
statistical tests that explicitly test whether a time series is SMM or LMM are not available (to
the best of our knowledge).

5.4.2. Nonlinear Attractors

The concept of (linear) cointegration can be generalised in a nonlineaz way [GH91a, Sep94].
In [GH91a], ACE (Alternating Conditional Expectations), which is well described in [HT90],
is employed to identify nonlinear cointegration between two integrated time series. Granger
and Hallman report some empirical evidence on the presence of a nonlinear cointegrating
relationship between the US base money (Mo) divided by the consumer price index on the one
side and the interest rate on three month US Treasury bills on the other side. They constructed
an error correction model in which the deviation from the nonlinear attractor f had a significant
ccefficient. Granger and Hallman warn for a possible misinterpretation of the nonlinear attractor.
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Since the values of the lower part of the attractor often also correspond to observations from
the early part of the period of observation, it could well be that what is being interpreted as
a nonlinear attractor could also be viewed as time varying linear cointegration between the
variables [GH91 a].

In [Sep94), Sephton has enlarged the setting; the ACE algorithm is replaced by the more
powerful MARS algorithm [Fri91], and the case of more than two time series is considered.
Sephton constructs critical values for the ADF test on MARS and gives some applications in
which empirical evidence of nonlinear cointegration has been found, while the nuil hypothesis
of no linearcointegration was no[ rejected.

Both MARS and ACE are general-purpose flexible regression algorithms, which do not
provide a parametric representation of the nonlinear attractor. The problem with a nonlinear
attractor found by some model free regression algorithm is that extrapolating the attractor's
shape to situations not captured by the current data sample becomes very risky. In this case
the interpretation of the nonlinear attractor as a long-run equilibrium for nonstationary time
series seems no longer justified. Hence, future observations on nonstationary series typically
are beyond the range of values encountered in the observed data sample. Having not assumed
a parametric model for the cointegrating relationship, there is no reliable information on how
to proceed in this novel area in the space of variables. This seems a natural consequence of
estimating a cointegrating relationship by a flexible regression method.

The following example illustrates the reasoning employed in the above paragraph. Suppose

Figure 5.8: Two imaginative I(I) economic time seríes
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we have two imaginative economic time series xt and yi that are both I(1) with time paths
as depicted in Figure 5.8. There is no evidence that both series are linearly cointegrated.
A neural network is then employed to investigate the possibility of nonlinear cointegration.
Figure 5.9 shows the shape of the attractor found by the neural network. The null hypothesis

aa 0.5 0.8 0.7 0.8
X

Figure 5.9: A nonlinear attractor between X and Y

of no (nonlinear) cointegration between xt and y~ is rejected, which means that we have found
empirical evidence for the existence of a nonlinear ]ong-run relationship between xi and yt.
Suppose an economist who predicts that X will reach the value of t within a year wants to
know which Y-value the model would predict. A generally accepted way to proceed in the
linear (parametric) case is to assume that the estimated relationship extends to the future. Once
a linear attractor has been accepted as a satisfactory (correctly specified) long-run model and is
correctly estimated, extrapolating it into the future is straightforward and uniquely determined.
However, in the situation sketched in Figure 5.9, extrapolation is not so straightforward. Hence,
the attractor is fitted by a flexible regression technique on the local information provided.
The nonlinear attractor can be extrapolated in many ways, and no candidate extrapolation is
justified or rejected by the set of observatíons. A parameterised neural network will provide an
extrapolation, but its meaning is unclear. Hence, the neural network's parameters were estimated
only to approximate the local training data appropriately; the values that the neural network
provides for x-values outside the range of the training set are arbitrary. Although we have found
evidence for the existence of a nonlinear attractor between yt and x~, the attractor constructed by
a flexible regression method (such as the neural network) seems of little use when constructing
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long-run expectations for Y, given projections of X. Nevertheless, the detection of nonlinear
cointegrating relationships between economic variables may improve our understanding, and
eventually the theories, of particular economic phenomena. We, therefore, develop a neural
network test that helps to detect nonlinear cointegration.

5.4.3. Critical Values for ADF Tests on Neural Networks

To test for the existence ofa nonlinearcointegrating relationship, we generalise the Dickey-Fuller
tests, which have been presented in the previous section. The main issue is to construct critical
values for cointegration tests on neural networks. In doing this, we adopt a similar procedure as
employed in [EY87, Sep94], which was described in section 5.3. The cointegrating relationship
is assumed to be represented by

~It - f(x2ti x 3t~ . . . , 2kt) ~- Et. (5.15)

In (5.15) f is estimated by a neural network, but any other flexible regression method may be
used instead.

Critical values of the ADF test on neural networks depend on several factors. Fitting neural
networks according to the network construction procedure from Chapter 4, makes it necessary
to condition critical values on the following neural network factors: number of hidden units,
value ofweight decay parameter, number of inputs, number of observations, and total number of
restarts employed in finding the final network. All factors are somehow related to the tendency
of neural networks to overfit the training data, which would result in unjustly small residuals.
When the influence of the neural network factors is neglected, the ADF test would too often
reject the null hypothesis of no cointegration.

The present soft- and hardware makes it computationally infeasible to construct tables of all
possible combinations of neural network factors. In the applications, we will select the "best"
neural network factors for a particular case, and will calculate the critical values that correspond
to that particular combination of neural network factors.

The critical values are constructed under the null hypothesis of no cointegration through one
thousand replications of the following procedure. Construct k independent random walks of
length n, using the same data generating mechanism as in the previous section (5.3.3), that is,

Xt - Xt-i f Ut,u~t - 0.8u:t-i f v: t, i- I,...,k, (5.16)

with v;t ~ i.i.d(0, 1). Next, train a neural network with a particular set of factors to approximate
f in (5.15). Then, estimate the parameters in

P

~Êt - czo -1- ryoÊt-i f~ 7: DÊC-: f ~t, ~c ~ i.i.d(O, QZ), (5.17)
:-i
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using the residuals from (5.15) and calculate the t-statistic of ryo (usually minus signs are
omitted). The one thousand t-statistics, so obtained, give an empirical distribution, which is
used to calculate the critical values required for testing the null hypothesis of no cointegration.

Table 5.1: Some critical values for ADF test
factors critical values

n k Nh a it ~ 1 0l0 5 oIo 10 0l0
100 4 2 0.0001 1
] 00 4 4 0.0001 1
100 4 2 0.1 1
200 4 2 0.0001 1
] 00 4 2 0.0001 5
100 4 0 0 1

6.00 5.37 5.07
6.83 6.13 5.73
4.03 3.48 3.15
6.06 5.51 5.26
6.67 5.95 5.60
4.61 4.02 3.71

Table 5.1 shows the critical values at different combinations of neura] network factors.
The first five columns of the table show the particular combination of the neural network

factors; n denotes the number of observations, k the number of variables (inputfoutput units),
Nh the number of hidden units, a the weight decay parameter, and "it" the number of iterations
employed to find good locally optimal weights. The next columns give the critical values for
lqo, Sqo, and lOqo significance levels. These values behave as expected: the more flexible the
neural network is, the larger the critical values become. The last row gives the critical values for
the corresponding linear case, adopted from [EY87]. The critical values which correspond to
the neural network generally exceed the critical values of the linear model, as expected. When,
however, the decay parameter restricts the flexibility of the neural network heavily (a - 0.1),
the critical values are below the corresponding critical values of the linear model. In this case
the neural network more or less acts as a restricted linearmodel.

5.4.4. An Example

A simulation experiment is designed to test the effectiveness of the neural network test for
detecting nonlinear cointegration between I(1) time series. Two random walk series x~t and xZi
(t - 1, ..., 200) are constructed. Nonlinear cointegration between y~, xit, and x2t is enforced
by

ye - O.Sx~t -~ log(x2e) ~ v~.

Figure 5.10 depicts the series.
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Figure 5.10: Three nonlinearly cointegrated I(1) series

m

A test for lineaz cointegration by the Engle-Granger method (with four lags included in the
ADF test of the residuals) gave an ADF-statistic of 2.47, which is below the lOqo critical value
of 3.47 [Mac91 ]. So, the null hypothesis of no (linear) cointegration is not rejected by the data.

A neural network with inputs xic and x2t, two hidden units, a skip layer, and a weight decay
parameter of 0.0001, is also fitted to the same data. The NN-residuals are tested for a unit root
by the neural network ADF test with four lags included. The corresponding ADF-statistic is
6.14, and the simulated critical values are: 5.99 (1 qo), 5.35 (Sqo), and 5.09 ( l0010). So, the null
hypothesis of no cointegration is (correctly) rejected by theneural network test at an error level
of 1010.

We have repeated this experiment ]00 times. The neural network version of the Engle-
Granger test for cointegration rejected the null hypothesis of no cointegration 66 times at an
error level of lOqo. The standard Engle-Granger test rejected the null of no cointegration only
31 times at the same error level. The ideal test would reject 90 times.

This example shows that there are cases in which the standard Engle-Granger test fails to
detect cointegration, but the neural network version of it does not fail. Therefore, the nonlineaz
generalisation of the cointegration concept dces make sense.

5.4.5. Implications for the Short-run

In the foregoing sections we argued that it is risky to make long-run expectations of an I(1)
series based on a locally estimated nonlinear attractor. We think, however, that knowledge of
the cointegrating relationship can still be exploited to model the short-run dynamics by an error
correction model (ECM).

Granger and Terhsvirta [GT93] note that the theory oferror-correction for nonlinear attractors
is still incomplete. A difficulty is that the difference of an LMM series need not necessazily be
SMM. To deal with this difficulty, Granger and Ter~svirta introduce the operator od, which is
defined by

~d xe - xc - ~(xt-i~ ) - 1, . . . , d), (5.18)

where d is the minimum integer such that the truncation ~r~i exists and od xt is SMM. In practice,
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~li can be estimated by a nonpazametric estimator (for instance, by a neural network). Note that
the lineaz difference operator Od is a special case of od. We, however, have not been able to
construct an example of an xc that is LMM, does not 'explode'2, and is nonlinear. Granger and
Terásvirta do not provide any example of such a process either.

Next, Granger and Terdssvirta [GT93] propose the following nonlinear form of the error-
correction model:

c c
~d yt - ,Q zt-1 f~~i~d xt-i ~~ a(~d yt-i ~ ut~ (5.19)

where ze - yc - f(xc), the deviation from the nonlinear attractor. They conclude that there is
no theory or practical experience with these models.

If the difference of an LMM series results in an SMM series, which seems often to be case
in practice, then we can proceed as in the linear case. Let zt - yc - f(xt) denote the deviation
from the (nonlinear) equilibrium situation. The following ECM can then be formulated:

t t
Dye - ao f,(3 xc- i f ~ a; Oxc-: f~ a;Dyc-; f ec.

~-o :-i
(5.20)

In this equation the short-run part is assumed to be linear. In practice, however, it is the short-
run dynamics that may well be nonlinear. Economic theory usually has not much to tell about
the particulaz functional form of the short-run dynamics. Therefore, it seems promising to
extend the ECM in (5.20) by a nonlinear part, parameterised by a neural network. Let u define
(Oxe, ~xt-i ,..., Oxe-1, Dye- i, ..., Dyc-c). Then the neural network extension of (5.20) is

Nh

Dye - ao f~o zc-t -~ aT u f ~ Q:~(WT u) ~ Ec~ (5.21)

where Nh is the number of hidden units in the neural network. At time t variable Y will change,
due to a disequilibrium situation and contemporaneous and lagged changes in X; in (5.21)
the reaction to disequilibrium is assumed to proceed linearly. It is possible that Y reacts in a
nonlinear way to the 'disequilibrium error' made in the previous period and onto lagged changes
in X and Y. This can easily be implemented by a feed-forward neural network, including zc-i
in the u-vector.

The nonlineaz generalisation of the standard ECM will be used in Chapters 8 and 9. The
ECMs aze typically employed to construct short-term predictions; up to several periods ahead.
So, probably extrapolation difficulties in the (eventually) nonlinear attractor are then of smaller
concern.

zWe mean: converges to infinity in a finite (small) number of steps.
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Whether ex ante predictions would gain from our ability to detect nonlinear cointegration
in the data sample still remains unclear, but it may help to enlarge our insight in past economic
phenomena and in the sizes of specification errors that we make when restricted to linear models.
The extension of the short-run part of the standard ECM by afeed-forward neural network seems
to be practically more relevant.

5.5. Conclusions

The general aspects of economic modelling, which were introduced in Chapter 1, hold for
both cross-sectional and time series data. The latter, however, can cause additional difficulties,
in particular when the time series is nonstationary. To distinguish between stationary and
nonstationary time series, Dickey-Fuller and augmented Dickey-Fuller tests, which test for the
presence of unit-roots in an observed time series, were introduced. When these tests confirm
the hypothesis of integratedness of an observed time series, then standard statistical inference
is no longer valid; cointegration analysis should be performed instead.

Cointegration analysis helps in finding 'true' long-run relationships among nonstationary
economic series instead of spurious ones. When evidence for a long-run relationship has been
found, the next step is often the formulation of an enor-correction model (ECM). ECMs combine
short-run effects (based on time series theory) and long-run effects (based on economic theory)
into a single model. The main feature of an ECM is its use of the discrepancy from the long-run
model in the previous period as as an explanatory variable in the short-run model.

The definitions ofcointegration and error-correction implicitly assume linearity. When using
flexible regression models, nonlinear generalisations of these concepts comes to mind. We
noticed that there is not much theory on nonlinear cointegration and nonlinear error-correction
modelling. Neural networks may help in making these nonlinear generalisations operational.
The neural network ADF test, which we developed, properly indicated the presence of nonlinear
cointegration in an artificial example. The extrapolation ofa nonlinear cointegrating relationship
constructed by a neural network, causes conceptual difficulties. Economic understanding,
however, may be improved by a confirmed nonlinear cointegrating relationship for a data
sample at hand.

Neural networks seem particularly suited for implementing nonlinear error-correction mod-
els. The reasons are twofold. First, it is unclear why short-run dynamics are best modelled
linearly. Second, economic theory has usually not much to say about the particular pazametric
form of the short-run dynamics to employ. The nonlinear extension of the standard ECM is
performed simply by the addition of an additional term, which represents a feed-forwazd neural
network. All parameters in the nonlinear ECM are determined by a regular neural network
learning algorithm.



5.5 Conclusions 91

The issues described in this chapter and in the previous chapters will be employed in the
case studies of part II. An aim of these case studies is to learn about the relevance of these new
concepts in economic modelling.



Part II

Applications



Chapter 6

Neural Network Applications to
Economics and Finance: An Overview

6.1. Introduction

In the previous chapters neural networks were discussed from statistical and methodological
perspectives. This chapter forms a transition from these methodological aspects of neural
networks to the application of neural networks to economic and financial case studies in the next
three chapters. Various financial and economic problems to which neural networks have been
applied are reviewed. We have no intention to provide a complete overview; we only sketch
popular application areas and indicate some difficulties in the studies that have been performed.

During the last few years there has been a growing interest in applying NNs to problems in
the domain of economics and finance. Numerous conferences have addressed this topíc, such
as"Neural Networks in the Capital Mazkets (NNCM)", "International Workshop on Parallel
Applications in Statistics and Economics (PASE)", and "International Workshop on Artificial
Intelligence in Economics and Management (AIEM)". In 1994, at least four journals had
special issues devoted to neural networks: The International Journal of Forecasting, Vol. 10;
Econometric Reviews, Vol. 13 (No. 1); Decision Support Systems, Vol. 11; and Simulation
Vol. 62 (No. 5).

Many articles have been written overviewing the potential of neural networks for finance;
among them are [TG91, Hop93, HJR90J. These types of contributions are particulazly useful
for financial managers who want to get a quick impression of what neural networks aze, which
types of financial problems they are suited for, and how they relate to other AI or statistical
techniques.

Trippi and Turban [TT93] with their collection of 28 articles provide a valuable source of
information on neural networks applications in economics and finance. They subdivided the
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collection of articles into five parts: analysis ofcompanies' financial condition, business failure
prediction, debt risk assessment, security market applications, and financial forecasting. In most
cases the financial problem is represented as a classification problem.

Baestaens et al. [BvdBW94] provide another source of information on neural networks
applied to trading in financial markets. They examined the usefulness and performance of neural
networks for the following financial topics: crashes and panics in financial markets, predicting
cash flows ( tax receipts), European option pricing, stock market indices, international portfolio
management, credit risk assessment, corporate failure prediction, and technical trading.

Weigend and Gershenfield [WG94] provide a valuable source of information on neural
networks for time series prediction. This work is the result of the 1992 Sante Fe time series
competition. The purpose of the competition was to compare the prediction performance of
different time series analysis techniques on the same data sets. The participants had a choice of
six data sets. Among the data sets there was one set in the financial domain: the prediction of
high-frequency currency exchange rate data.

This chapter overviews a-necessarily- small sample of the vast amount of literature on neural
network applications in economics and finance. We wil] categorise the literature, using the
statistical problem type that is addressed, discerning four categories: econometrics, multivariate
regression, classification, and (univariate) time series analysis.

The outline of the chapter is as follows. In section 2 we review the literature on neural
networks in econometric testing. Section 3 reviews neural networks for multiple regression and
classification problems in economics and finance. In section 4 we review the literature on neural
networks in time series prediction. Section 5 concludes the chapter.

6.2. Econometrics

In the econometric area, much theoretical work on neural network learning has been done
by White and his co-workers (see [Whi92, KW92]). White, as an econometrician, is mainly
concerned with the development of theories on estimation and inference for neural networks
that are comparable to existing theories for nonlinear dynamic models. White's contributions
([Whi92, KW92]) do provide a solid and rigorous basis for an asymptotic distribution theory for
the optimal network weights, which may help in statistical generalisability, such as asymptotic
confidence intervals, prediction intervals, and tests of hypotheses [MKA94].

White [Whi89a] used the general feature extraction capabilities of neural networks to develop
a new statistical test for neglected nonlinearities in linear models. The neural network test is of
the Lagrange multiplier type, which generally tests for certain restrictíons on the parameters in
a parametric model, while only estimating the restricted model (see, for instance, [Tho93b]).

The test uses a neural network with a single hidden layer (of size q) augmented by direct
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connections from input to output; in Chapter 3 we saw that for such a network the output y is
calculated as

9

Tf - BT 7C ~~ Qi ~('Í~ X).

:-i
(6.1)

When the null hypothesis of linearity is true, the optimal network weights,0;, say ,Q; , are zero
(i - 1,...,q). The capability of ~9-i Qi ~(ryT x) to extract structure from ef - y~ -(B')Tx
will give power to the neural network test.

An obstacle in the straightforward application of the usual tools of statistical inference
is that under the null hypothesis the network weights ry; aze not identified. Different ways
can be followed to resolve this difficulty. The simplest procedure, which is employed in
[Whi89a, LWG93], is to randomly select the ry;-parameters. Kuan and White [KW92] consider
the alternative of optimising the direction in which nonlinearity is sought by choosing the
ry;-values.

The neural network test with randomly selected ry;-values has good power [LWG93, GT93]:
"It thus appears to be a useful addition to the modern arsenal of specification testing procedures"
[KW92].

The work ofWhite definitely makes neural networks accessible to econometricians [KW92],
although for many neural network engineers most of White's theories are inaccessible due to
the high mathematical level employed in his articles.

Some people disagree about the practical value of these asymptotic statistical theories. For
instance, Maasoumi et aL [MKA94] state that the asymptotic statistical aspects should at least
not be overemphasised. They further believe that one should noteschew analysis of systems and
data with neural networks unless one can draw statistical inferences. This belief is confirmed
by the literature on neural networks; most of the articles we are familiar with refrained from
making statistical inferences.

6.3. Multiple Regression and Classification

Multiple regression problems combine information on several selected variables to approximate
the variable of interest as close as possible. The variable of interest, for instance stock-price,
typically is real-valued. Classification problems are conceptually very close to the classical
regression problem with cross-sectional data. The only difference is that the variable of interest
is a class label, not a continuous or discrete variable. In most applications there are only two
classes (e.g., bankrupt firms and surviving firms), although problems with more than two classes
also occur (e.g., in the bondrating problem firms can be rated into one of nine categories).

Classification problems are approached by standard regression techniques or by special pur-
pose (statistical) techniques, such as logistic regression or linear discriminant analysis (lda). In
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empirical studies the performances ofneural networks are often contrasted with the performances
of either multiple regression, logistic regression, or linear discriminant analysis.

The explanatory variables in classical regression and classification are of the cross-sectional
data type; in economics and finance, however, the variables in a regression can be time series
as well. In practice regression and classification models aze constructed for the purpose of
forecasting, explanation, or decision making. A decision model tries to predict a human's
judgement, based on the factors that a person would use in making the judgement. In contrast
with expert systems, which model human decision making by explicit rules, neural networks
acquire knowledge automatically by learning from historical cases rather than by intensive
expert interviewing, which takes much time and money.

Examples of regression problems in economics and finance are: stock price prediction
[Sch90, RP91, G093], futures price prediction [G093], stock performance modelling [RZF94],
risk management in mortgage-backed securities portfolio management [BKW93], and predicting
trading volume on the New York Stock Exchange [WL94].

Marquez et aL [MHWR94] performed a comparative simulation study to assess the potential
of neural networks as an alternative to classical (parametric) regression. The general approach
was to generate data representing common functional forms (linear, logazithmic, and reciprocal)
encountered in regression modelling; next neural networks are compared to regression models
using that data. Hundred sets of n points (15, 30, or 60), each with three noise levels (Rz - 0.3,
0.6, and 0.9), were created for each functional form. The fit of the neural network was compared
with the fit of the true regression on hold-out data sets of 100 points. Marquez et al. [MHWR94]
found the overall MAPEs (mean average prediction error) for the neural network to be very
good; less than 2qo away of the error rate of the true functional form. They conclude that the
NN's ability to work well when the functional form is unknown, makes neural networks an
attractive choice in many applications.

Although neural networks show promising results in regression tasks using simulated data,
in practice there may exist difficulties in measuring a particular entity, such as, e.g., consumer
confidence, which makes any form of modelling doomed to fail -neural networks included.

Gorr et al. [GNS94] provide an example of a human judgement problem, namely, graduate
school admission decisions. They performed a cross-section study in which a multivaziate
regression model is used to predict student grade point averages (GPA). The paper compares
the neural network model with linear regression, stepwise polynomial regression, and an index
used by the admission committee for predicting GPAs. Although the neural network identified
additional mode] structure over the regression models, none of the empirical methods was
significantly better than the practitioners' index, according to the statistical tests used by the
authors. The authors suggest that this result may be due to difficulties in measuring student
motivation and perseverance, and the lack of discriminative power of some predictors. Such
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difficulties often arise in economic modelling.

The rating of bonds is another example in which human judgement plays an important role.
Several researchers [DS94, MU92, MU94, SS94, KWR93, DKV95] have used neural networks
to predict the rating ofcorporate bonds on the basis of a set of financial indicators calculated from
the balance sheets of those firms. In the literature the bondrating problem has been represented
both as a regression and as a classification problem, depending on how many different ratings
are discerned.

Dutta and Shekhar [DS94] used ten explanatory factors, a training sample of 30 firms, and a
test sample of 17 firms. They restricted the bond rating problem -probably forced by the small
sample size- to predicting whether a bond is rated as AA or non-AA. Drawn on this very limited
experiment, Dutta and Shekhar conclude that neural networks consistently outperformed linear
regression. Surkan and Singleton [SS94] divided 56 bond rating exemplars into a training set
of size 16 and a test set of size 40. Seven factors were used to classify the bond ratings into
two classes: Aaa (highest quality) and A1, A2, A3 (investment grade, but lower quality). They
found a neural network with two hidden layers, with ]0 and 5 hidden units respectively, to
perform better than linear discriminant analysis on the test set.

The above studies suffer from several technical and methodological problems; in particular,
the number of data sets is limited, the data sets are small, and the neural network construction
procedure is not well described. A better study on the bond rating problem is Moody and
Utans [MU94]. They used a data set of 196 firms, 10 financial ratios reflecting the fundamental
characteristics of the firms, and 5-fold cross-validation to estimate the prediction error of the
neural network. In contrast with previous studies, Moody and Utans distinguish 18 different
ratings. They describe their neural network construction procedure very well, which makes it a
valuable contribution. Moody and Utans found a linear regression model predicting 80.Sqo of
the data within two notches from the correct target; the best neural network architecture, which
used only two inputs, predicted 87.Sqo of the data within two notches.

Besides the bondrating problem, there are numerous other examples of classification prob-
lems in economics and finance, for example: bank failure prediction [TT93, Part 3][TK92,
FG93], credit scoring [TT93, Chapter 16], and market response modelling [DDG94].

Tam and Kiang [TK92] performed a well conducted comparative study, including neural
networks, Ida, logistic regression, ID3, and k-nearest neighbour classification, to the prediction
ofTexas bank failures in the period 1985-1987. Theirdata sample consisted of 118 bank data (59
nonfailed and 59 failed -one year and two years prior to failure) for training, and 44 bank data
(22 failed and 22 nonfailed) for testing. Each bank is described by 19 financial ratios. Tam and
Kiang modified the standard least squares error criterion used in the back-propagation algorithm
to include prior probabilities of each group and their misclassification costs. Besides ranking the
methods by misclassification rates on the test set for different values of misclassification costs
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and prior probabilities, they also estimated the misclassification rates by the jackknife method
and ranked the classifiers accordingly. Their empirical experiments show that neural networks
give better predictive accuracy than lda, logistic regression, k-nearest neighbours, and ID3.

Dasgupta et al. [DDG94] compaze two statistical market response models (logistic regression
and Ida) to a neural network model. The goal of modelling is to identify consumer segments
based upon their willingness to take financial risks and to purchase a non-traditional investment
product. The empirical analysis is conducted using two cross-sectional survey data sets (on an
individua] level) related to the market of financial services. The two data sets are subdivided
into a training set and a test set as follows: (531; 183) and (616; 213). If the performance
of the three models (measured as percentage correctly classified) are rank ordered, the neural
network model performs better than the other two models, for both data sets. The improvement,
however, is only mazginal; statistical testing revealed that at reasonable significance levels the
null hypothesis of no difference in predictive accuracy could not be rejected.

6.4. Time Series Prediction

In time series prediction, future values of the variable of interest are predicted directly from
the series' own history. Studies in which neural networks are applied to such problems, almost
always use a large set of high frequency data (daily or weekly). Three practical advantages of a
time series approach opposed to, for instance, a regression approach are: collecting data is easy,
economic theory is not needed, and ex ante predictions are straightforwardly constructed.

In several studies neural networks have been compazed to traditional time series forecasting
techniques. The best of these use a sample from the well known 'M-competition' [MCF}82],
in which 1001 real time series were gathered. In [SP94, TAF91 ] the forecasting ability of neural
networks was compared to that of the Box-Jenkins time series technique. Both studies found
that for long-memory time series the two methods perform equally well, but for short-memory
time series the neural network outperformed the Box-Jenkins approach.

Hill et al. (HMOR94] review other studies that assess neural networks for time series
forecasting, among them is their own study [HOR94]. In the latter study, they compared
time series models across yeazly, quarterly, and monthly data from a systematic sample of 1] 1
M-competition time series. They found that neural networks were significantly better than
statistical and human judgement methods by about Sqo MAPE (mean absolute prediction error)
in the quazterly time series and about 2qo MAPE in the monthly time series. Hill et al. made two
observations. First, neural networks showed better performance at predicting monthly series
than at predicting quarterly or yearly series. Second, the superiority of neural networks was in
the later periods of the forecast horizon -which is confirmed in [TAF91]. They attribute these
findings to the presence of nonlineaz patterns in the data, which are advantageous for neural
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networks. Aggregated data, such as yearly time series, tend to have fewer nonlinearities than
monthly series. So, the opportunities for neural networks are larger with monthly time series
than with yeazly time series. If the time series contains nonlinear patterns, the deviation of linear
models from the tazget series will increase with the predíction horizon. If the neural network,
on the other hand, has detected the nonlinear pattern, its improvement in long-run prediction
accuracy will be increasingly apparent [HMOR94].

~vo populaz financial time series prediction problems to which neural networks are regularly
applied aze: currency exchange rate ([WG94, page 219-263][RABCK93]), and stock price
prediction [Whi88, Sch90].

White [Whi88] performed one of the early studies on the usefulness of NNs for stock price
prediction. White's results turned out to be disappointing; no evidence was found against the
simple efficient mazket hypothesis. This paper is one of the few empirical papers that reported
disappointing results. In his conclusion White states "the present neural network is not a money
machine"; financial traders relying on neural networks hope he is wrong.

Schoeneburg [Sch90] analysed the possibility ofpredicting stock prices of the German stocks
BASF, COMMERZBANK, and MERCEDES, on a short-term, day-to-day basis with the help of neural
networks. His results made the author expect that in the future NNs could considerably improve
the prognosis of stock prices. Despite these encouraging results, some problems with respect
to neural network azchitecture design were recognised. Other studies (e.g. [Co191, RABCK93,
MJ94, PDMt92)) go even beyond merely predicting stock prices: they want a neural network to
learn and, consequently, generate buy-sell decisions in a trading system. The imaginary profits
were reported to be high; see [Co191, RABCK93, MJ94, PDM}92].

The Santa Fe time series competition [WG94) offered a financial data set consisting of
quotes, on a time scale of one to two minutes, for the exchange rate between the Swiss franc
and the U.S. dollar. The exchange rate market is based on bids and asks to buy and sell. The
complete data range from May 20, 1985 to April 12, 1991 -which corresponds to 11.5 MB
(Mega Bytes). The organizers held back the data from the period August 7, 1990 to April 18,
1991 to evaluate the submission of the competitors. The quality of the predictions is expressed
in terms of the following ratio of squared errors:

~t(observationt - predictiont)2
~t(observation~ - observationt-i)z

The denominator represents the prediction error made by the random walk. A ratio above 1.0
thus corresponds to a prediction that is worse than chance; a ratio below 1.0 is an improvement
over the random walk model. [WG94] stated that some of the submitted predictors were worse
than chance by a factor of 16! Table 6. I gives the out-of-sample prediction results of the two best
submissions, which are due to Mozer [WG94, pp.243-264] and Zhang 8c Hutchinson [WG94,
pp.219-241 ]. These forecast are made for 1 minute, 15 minutes, and 60 minutes after the last



102 Neural Network Applications to Economics and Finance: An Overview

Table 6.1: Prediction performance on the financial data set of the best competitors of the Santa
Fe time series competition

1 minute 15 minutes 60 minutes
Mozer 0.9976 0.9989 0.9965
Zhang 8c Hutchinson 1.090 1.103 1.098

tick. The results confirm the efficient market hypothesis: the best prediction of tomorrow's rate
is today's rate. Hence, the neural network was not able to provide better predictions for the
exchange rate than the random walk model.

Neural networks are also used as an alternative to specialised nonlinear models from finance.
Donaldson et al. [DKK93] model the conditional volatility in stock returns of stock index data
for the Tokyo, London, New York, and Toronto exchanges, by several popular volatility models,
such as members of the ARCH (autoregressive conditioned heteroscedasticity) family, flexible
Fourier functions (FFF), and neural networks. They applied numerous statistical performance
tests to the various models for different stock indices. Based on these tests, they conclude that if
the information set is constrained to past returns only, a flexible form such as the neural network
model may out-perform fully parametric methods such as the ARCH famíly.

6.5. Conclusions

The selected set of articles almost uniformly assigns good prediction power to neural networks.
Neural networks performed as well or better than alternative statistica] models. However, many
of these studies suffer from technical and methodological problems. First, small sample sizes
make reliable prediction error calculation troublesome. In particular, estimation of the pre-
diction accuracy on a single hold-out set, which is almost common practice, may cause large
variability in the error estimates (see [WL94]). Second, the comparison of predictors is typically
restricted to a mere ranking of some error criterion; [TK92, DKK93] form positive exceptions.
Third, the procedure of neural network construction is often insufficiently documented or is
badly performed; for example, authors take no steps to guard against overfitting, or neglect the
occurrence of multiple local minima. Fourth, we conjecture that the levels of expertise of the
researchers in the techniques incorporated in a comparative study generally vary significantly
among the various techniques. This may obscure the results. Competitions such as the Santa Fe
time series study [WG94] and the StatLog project [MST94] avoid this difficulty, and are conse-
quently of great importance to achieve a fair comparison of the various competing techniques.
Fifth, in case studies it is generally difficult to explain the dominance or failure of a particular
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method. Additionally, theoretical or experimental simulation studies are needed to examine the
differences among the competing modelling techniques.

In the previous chapters we extensively described the economic modelling process and the
role neural networks may play, the neural network construction procedure, and the evaluation
of neural network models. Additionally, we found very few articles that examine the practical
use of neural networks for the econometric modelling of time series.

In the subsequent chapters we will apply neural networks to three economic case studies,
namely, the prediction of hedonic house prices, the prediction of the production ofnew mortgage
loans, and the prediction of exchange rates.



Chapter 7

Modelling the Hedonic Price for Housing
in Boston

7.1. Introduction

This chapter examines the potential of neural networks in a modelling case with cross-sectional
data, namely the construction of a hedonic model for house prices. The problem is adopted
from a paper by Hazrison and Rubinfeld [HR78], in which a"hedonic" price index for housing
is estimated for use in a subsequent estimation of the marginal willingness-to-pay for clean
air. The basic principle of the hedonic approach to economics is that each consurner good is
regarded as a bundle of characteristics for which an implicit valuation exists ~Jan92]. This
principle allows us to regazd a good's price in the same way. Harrison and Rubinfeld regazd
each house as a bundle ofcharacteristics (among others the level of air pollution), and the price
of each house as reflecting the value of its chazacteristics. Let Hp denote the house price and x;
object characteristic i. Then the house price equation may be written as:

Hp - 9(x~,...,xq), (7.1)

where q denotes the number of object characteristics. Janssen [Jan92] provides an in-depth
discussion of hedonic models and their applications. He constructed hedonic house price
models for four cities in the Netherlands.

Hedonic house price models, when estimated sufficiently accurate, can be utilised in the
automatic appraisal of house values. Local authorities require house values in order to calculate
the amount of property tax due. Automating the appraisal process will reduce its costs and will
increase its effectiveness [Jan92].

For this particular problem, there is no theoretical knowledge that proposes a specific
functional form for the relationship g in (7.1). Therefore, it looks promising to employ a data
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driven approach to model specification. We apply the neural network methodology, as outlined
in Chapter 4, to this modelling problem.

The outline of the chapter is as follows. In section 2 the modelling performance of the neural
network is contrasted with the modelling performance of two linear models; the first is linear
in both parameters and variables, and the second is linear in the parameters, but also includes
nonlinearly transformed explanatory variables as used in [HR78, BKW80]. In section 3 the
out-of-sample prediction accuracy achieved by the neural network is statistically compared to
the prediction accuracies achieved by the two linear models. When a neural network has been
found that fits the data well, we want to extract information on the (complex) relationship. In
section 4 we propose some aids that support the investigator in 'understanding' the modelled
relationship. Section 5 concludes the chapter.

7.2. The Modelling Process

In the original paper due to Harrison and Rubinfeld [HR78] the attributes shown in Table 7.1
were used to valuate the price for houses. The original paper focussed on the impact of air
pollution on the prices for houses. The variable of interest, the house price HP in (7.1), is
denoted by MEDV. The data are of the cross-sectional type, i.e., the attributes are measured
across various suburbs of Boston, at a particular point in time.

7.2.1. The Data

The data set consists of 506 instances and was taken from the StatLib library maintained at
Carnegie Mellon University. The basic data, which are also listed in [BKW80], are a sample of
census tracts in the Boston Standard Metropolitan Statistical Area in 1970.

Figure 7.1 and Table 7.2 reveal some characteristics of the data: the distributions of the
values of each attribute are shown in Figure 7.1; the matrix of cross-correlations between all
attributes is presented in Table 7.2. Useful information can be extracted at a glance. The last
row in the correlation matrix suggests, for example, that the number of rooms per dwelling (RM)
and the qo lower status of the population (LSTAT) are important determinants of the housing
value. The direction of influence corresponds with common sense: more rooms will in general
result in a higher housing value, and a high percentage of lower status of the population will
decrease the value of a house. Another example is the correlation between NOX and INDUS
(0.8), which says that industrial areas are more polluted than rural areas.
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Table 7.1: Definition of variables in (7.1)
symbol definition
CRIM per capita crime rate by town
Z1V proportion of residential land zoned for lots

over 25,000 sq.ft.
INDUS proportion of non-retail business acres per town
CHAS Charles River dummy variable (- 1 if tract bounds

river; 0 otherwise)
NOX nitric oxides concentration ( parts per 10 million)
RM average number of rooms per dwelling
AGE proportion of owner-occupied units built prior to ] 940
DIS weighted distances to five Boston employment centres
RAD index of accessibility to radial highways
TAX full-value property-tax rate per ~ 10,000
PTRATIO pupil-teacher ratio by town
B 1000(Bk - 0.63)2 where Bk is the proportion of blacks

by town
LSTAT qo lower status of the population
MEDV Median value of owner-occupied homes in ~1000's
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Figure 7.1: The distribution of attribute values.
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Table 7.2: All pairwise cross-correlations
CR ZN IND CH NO RM AG DIS RAD TAX PT B LS

CRIM 1.0 -0.2 0.4 -0.1 0.4 -0.2 0.4 -0.4 0.6 0.6 0.3 -0.4 0.5
ZN -0.2 1.0 -0.5 -0.0 -0.5 0.3 -0.6 0.7 -0.3 -0.3 -0.4 0.2 -0.4
INDUS 0.4 -0.5 1.0 0.1 0.8 -0.4 0.6 -0.7 0.6 0.7 0.4 -0.4 0.6
CHAS -0.1 -0.0 0.1 1.0 0.1 0.1 0.1 -0.1 -0.0 -0.0 -0.1 0.0 -0.1
NOX 0.4 -0.5 0.8 0.! 1.0 -0.3 0.7 -0.8 0.6 0.7 0.2 -0.4 0.6
RM -0.2 0.3 -0.4 0.1 -0.3 1.0 -0.2 0.2 -0.2 -0.3 -0.4 0.1 -0.6
AGE 0.4 -0.6 0.6 0.1 0.7 -0.2 1.0 -0.7 0.5 0.5 0.3 -0.3 0.6
DIS -0.4 0.7 -0.7 -0.1 -0.8 0.2 -0.7 I.0 -0.5 -0.5 -0.2 0.3 -0.5
RAD 0.6 -0.3 0.6 -0.0 0.6 -0.2 0.5 -0.5 1.0 0.9 0.5 -0.4 0.5
TAX 0.6 -0.3 0.7 -0.0 0.7 -0.3 0.5 -0.5 0.9 1.0 0.5 -0.4 0.5
PTRATIO 0.3 -0.4 0.4 -0.1 0.2 -0.4 0.3 -0.2 0.5 0.5 1.0 -0.2 0.4
B -0.4 0.2 -0.4 0.0 -0.4 0.1 -0.3 0.3 -0.4 -0.4 -0.2 1.0 -0.4
LSTAT 0.5 -0.4 0.6 -0.1 0.6 -0.6 0.6 -0.5 0.5 0.5 0.4 -0.4 1.0
MEDV -0.4 0.4 -0.5 0.2 -0.4 0.7 -0.4 0.2 -0.4 -0.5 -0.5 0.3 -0.7

7.2.2. Linear models
As said before, for the Boston house price problem, there is no theoretical knowledge that
prescribes a specific functional form of the relationship between MEDV and the other attributes.
An obvious start to specify the model, which is also made in [Jan92], is to fit a lineaz model (in
both pazameters and variables) to the data:

MEDV - ao -{- a~ CRIM f aZ ZN f a3 INDUS f aaCHAS -f a5 NOX
fab RM f a~ AGE t a6 DIS f ay RAD f aio TAX
-~a~i PTRATIO f a~2 B f a~3 LSTAT f e. (7.2)

The results are shown in Table 7.3; AGE and INDUS are not significant (at a Sqo level) on
MEDV, so they are left out.

Although the signs of the estimated coefficients correspond to what is expected from eco-
nomic or common sense knowledge, graphical inspection of plots of the residuals against each
attribute and against estimated MEDV provides evidence of a misspecified functional form. The
usual strategy is to transform the variables which seem to affect the dependent variable nonlin-
eazly by some pazametric function (e.g., log x, 1 ~x, or x2), as suggested by the various plots. In
this way, it can be quite time consuming to find the right functional form; the investigator has
to search manually for a suitable functional form, using the data at hand.

In [HR78] the following model linear in the parameters is proposed and examined for fit:

log(MEDV) - ao ~- a~ CRIM f aZ ZN f a3INDUS f aaCHAS f as NOXZ
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tab RMz f a~ AGE } ae log(DIS) t ay log(RAD) } a~oTAX
fai~ PTRATIO ~- aiZ B -F a~3 log(LSTAT) f e. (7.3)

So, in contrast with model (7.2), this model includes several log and square-transformations
of the variables. The effect of these transformations is an increase in RZ to 0.81 (measured
in back-transformed values), so a better fit is indeed obtained. The estimated coefficients, the
standard errors, and the corresponding t-values of model (7.3) are presented in Table 7.4. A
neural network offers an alternative to this manual transformation approach. It should be able
to make an approximation to the data automatically that at least is as good as (7.3). The next
section investigates whether this is possible.

Table 7.3: The OLS estimates (with standard errors) of (7.2).
attribute value st. error t-value
(Intercept) 36.5 5.10 7.14
CRIM -0.11 0.033 -3.29
ZN 0.046 0.014 3.38
CHAS 2.69 0.86 3.12
NOX -17.77 3.82 -4.65
RM 3.81 0.42 9.12
DIS -1.48 0.20 -7.40
RAD 0.31 0.066 4.61
TAX -0.012 0.0038 -3.28
PTRATIO -0.95 0.13 -7.28
B 0.0093 0.0027 3.47
LSTAT -0.52 0.051 -10.35
RZ 0.74

7.2.3. A neural network model

The previous section indicated that nonlinearities are present in the house price equation. In this
section a neural network is used to explore possible nonlinearities. Neural network models are
built according to the strategy described in Chapter 4.

All attributes (except MEDV) are used as inputs to the neural network with skip-layer
connections. Network weights aze determined by minimising the standard squazed error loss
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Table 7.4: The OLS estimates (with standard errors) of (7.3).
attribute value st. error t-value
(Intercept) 9.76 0.15 65.22
CRIM -0.012 0.0012 -9.53
CHAS 0.091 0.033 2.75
NOXz -0.0064 0.0011 -5.64
RMz 0.0063 0.0013 4.82
log(DIS) -0.19 0.033 -5.73
log(RAD) 0.096 0.019 5.00
TAX -0.00042 0.00012 -3.43
PTRATIO -0.031 0.0050 -6.21
B 0.36 0.10 3.53
log(LSTAT) -0.37 0.025 -14.84
RZ 0.81

function (also used by the regression models) plus the sum of squared weights penalty term,
which has been called weight decay in section 3.4. The selection of the number of hidden
units and the value of the weight decay parameter is based on 10-fold cross-validation. Neural
network training and parameter selection is done on 80qo of the data (randomly drawn); the
remaining 20qo is reserved for model evaluation. Ten multiple restarts with different randomly
selected initial weight vectors are performed to "ensure" a good locally optimal network solution.

Nh
Table 7.5: NN selection.

weight decay value .~
0.5 0. ] 0.05 0.01 0.001 0

0 0.72I0.70 0.73I0.70 0.73I0.70 0.73I0.70 0.73I0.70 0.73~0.70
2 0.72I0.70 0.78I0.70 0.82I0.77 0.8810.79 0.89I0.78 0.90~0.78
4 0.73I0.70 0.73~0.70 0.85I0.73 0.91~0.81 0.93I0.81 0.95I0.61
6 0.73~0.69 0.78I0.69 0.85I0.78 0.91I0.84 0.95I0.84 0.96~0.57
note: cells display R;,IR~„
corresponding values for model (7.3) are: 0.80I0.78

The intermediate results of the model selection process are displayed in Table 7.5. The
cells display the in-sample and out-of-sample coefficient of determination (RZ) for each neural
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network characterised by the network parameters Nh (number of hidden units) and a(weight
decay value). The in-sample RZ, which is denoted by R;,, represents the RZ of the final neural
network when fitted to 80010 of the data. The out-of-sample RZ, denoted by RZ~,,, is calculated
from the vector of predictions obtained during the cross-validation procedure (also on the same
80qo of the data).

The neural network model with the highest R~„ is selected as the final neural network model
for prediction purposes. Table 7.5 indicates that the best network consists of 6 hidden units
and employs a weight decay value of 0.0] during weight estimation. According to the R~,
criterion this neural network model improves over the parametric model found after manually
transforming some of the variables (7.3): from 0.78 to 0.84.

The remaining 20010 of the data (106 observations), which were randomly selected from
the total sample, aze used to assess the out-of-sample prediction accuracy of the final network.
In Table 7.6 the out-of-sample and in-sample RZ of the neural network are compazed to the
out-of-sample and in-sample RZ of the parametric models (7.2) and (7.3). The neural network
model automatically finds an approximation that is clearly better than the simple linear model
and even the model used in [BKW80]; both in-sample and out-of-sample.

Table 7.6: In-sample and out-of-sample RZ of the neural network model, the simple linear model
(7.2), and the transformed linear model (7.3).

model in-sample Rz out-of-sample RZ
linear model (7.2) 0.73 0.77
transf. linear model (7.3) 0.80 0.86
neural network model 0.91 0.90

7.3. Model comparisons

In the previous section the performances of the different models were compared. Implictly or
explicitly a study often intends to select a"winner".

We statistically compare the performance of the final neural network to the performances
of the models (7.2) and (7.3), on the same randomly chosen hold-out set. Remember that the
data set was split into two parts: the first part (400) to estimate the pazameters of the model; the
second (106) part to measure the model's performance. Let PEk denote the vector of squared
prediction errors of model k

PEk - {(Ep - Hp)z};~. (7.4)
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Pairwise t-tests are performed to test for the differences between the average prediction enor
of the neural network model NN and model (7.2), and between the neural network model and
model (7.3). A plot of the quantiles of the distribution of the PEk-values against the quantiles
of a normal distribution reveals that the PEk-values are not normal ( Gaussian) distributed (fat
tails). We, therefore, employ a t-test based on bootstrap resampling ( see section 3.5). The
p-values, which are based on 5000 resamples, are displayed in Table 7.7. Table 7.7 shows the

Table 7.7: Pairwise t-tests
difference p-value adj. p-value
NN-model (7.2) 0.000 0.000
NN-model (7.3) 0.0244 0.0482

raw p-values of the two pairwise tests and the Sidàk adjusted p-values, which take account of the
multiplicity effect. Due to the limited number of tests performed, the multiplicity effect plays
a minor role. So, we took the simple approach towards adjustment of the raw p-values. When
many tests are performed, it is recommended to use the more elaborate multiple comparison
tests described in section 3.5 to avoid too conservative conclusions.

So, rather than providing a mere ranking, hypothesis testing shows whether a significant
difference between functions is found. From the statistical analysis (Table 7.7) we conclude that
the neural network provides a significantly higher accuracy in predicting house prices, when
compared with the simple linear model (7.2) and with the transformed model (7.3).

7.4. Analysis of the final network

A frequently heard disadvantage of neural networks is difficult interpretation of the approximat-
ing function. However, if complex relationships characterise the data, it seems unreasonable
to expect the approximation to be easily interpretable. If, on the other hand, relatively simple
nonlinearities are present in the data (e.g. polynomial terms), the network solution may conceal
this from the investigator. The following measures are, therefore, proposed to support the inter-
pretation of the final network solution: (i) the average inftuence (avi)' of a particular attríbute
x;

n
avi(x:) - ~ ~ áf (xp)

p-1

~The partial derivatives aze calculated numerically.
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where f denotes the neural network solution; (ii) the average absolute influence (avai) of x;

n

avai(xs) - ~ ~ ~áxi(xr)~;
p-1

(iii) an index indicating the degree of monotonicity of f in x;

mon(xi) - , ~~ I}(af (xp)) - I ( af (xp))~~n lix; 8x;p-1

where It(x) - 1 if x ~ 0 and It(x) - 0 if x G 0, and I-(x) - 1 if x G 0 and I-(x) - 0
if x~ 0. The avi(x,)-measure indicates the average direction of influence of attribute x;
on MEDV, avai(x;) indicates the average importance of attribute x; in approximating MEDV
-assuming that all inputs are scaled onto the same range, and mon(x;) indicates the degree of
monotonicity of the approximating function f in the attribute x;. The latter measure can be
regarded as one minus the proportion of sign-conflicting partial derivatives. A value of mon(x;)
close to one provides evidence for a monotonic underlying partial relationship, whereas a value
close to zero provides evidence for a non-monotonic underlying partial relationship.

A plot of e(xp) against x;p for each attribute x; may also help to interpret the final neural
network solution. These plots indicate which attributes affect MEDV linearly and independent of
other attributes; which attributes affect MEDV nonlinearly and independently ofother variables;
and which attributes affect MEDV in more a complex manner.

The avi(x;), avai(x;), and mon(x;) measures per attribute are presented in Table 7.8. All
input variables were scaled onto the same range, so the influence measures suggest which
attributes affect housing price strongest. According to the avai-measures in Table 7.8 the main
determinants of the house price are the house characteristics DIS, RM, LSTAT, NOX, and
RAD. The signs of the corresponding avi-measures correspond with the direction of influence
suggested in [HR78] and with the signs of the corresponding ccefficients in the regression
models (7.2) and (7.3). The last column in Table 7.8 indicates that the main determinants are in
a(more or less) monotonic relationship to MEDV. A striking non-monotonicity (0.06) seems to
exist between INDUS and MEDV.

Figure 7.2 provides additional information; it displays the partial derivative for each attribute
in each observation of the sample as a function of the attribute's value. Relationships linear
in the vaziables have constant derivatives everywhere. Quadratíc or cubic dependencies have
derivatives that behave as a linear or as a quadratic function respectively. Interactions among
variables results in "scattered behaviour" of the paztial derivatives to those variables. Figure 7.3
gives for comparison purposes similar plots for regression model (7.3).

Interactions between variables are clearly present. A striking difference between the neural
network model and model (7.3) is that the partial derivatives of the neural network sometimes
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Table 7.8: The avi(x;), avai(x;), and mon(x;) measures.
attribute avi(x,) avai(x;) mon(x;)
CRIM -0.07 0.08 0.62
ZN -0.03 0.04 0.34
INDUS 0.03 0.11 0.06
CHAS 0.02 0.03 0.13
NOX -0.23 0.23 1.00
RM 0.28 0.30 0.76
AGE -0.09 0.10 0.87
DIS -0.33 0.33 0.99
RAD 0.21 0.21 0.97
TAX -0.18 0.11 0.98
PTRATIO -0.16 0.16 0.98
B 0.05 0.05 0.79
LSTAT -0.26 0.27 0.76

change signs, which indicates a deviation from the monotonicity assumption, often made in
economics. An interesting example, suggested by the mon(x;)-measure in Table 7.8, is the
one between INDUS and MEDV. Figure 7.2 shows that above a certain quantity the level of
nonretail business INDUS affects house price positively, whereas below this level it affects
house prices negatively. A possible explanation could be that in areas with low business activity
people are attracted by the pleasure of living (such as quietness, scenic environment, etc.),
which diminishes when the level of industrial activity increases. Consequently, house prices
are negatively affected by an increase in the level of industry. Living in an area with high
business activity is attractive because commuting time is reduced to a minimum. When the
level of business activity increases in these areas, the area becomes even more attractive to live
in. House prices, consequently, are positively affected by an increase in the level of industry.

The foregoing has indicated that it is possible to analyse [he "black box" neural network
model, allbeit with some effort.

7.5. Conclusions

This case study illustrated that neural networks may well in the specification of regression
models when there is no theory available that suggests a proper functional form. The neural
network has found a specification of the hedonic house price model that fits the data better than
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corresponding linear regression models, both in-sample and out-of-sample. The cross-sectional
type of the data, the relatively large sample size, and the moderate number of relevant attributes
makes the results practically useful.

Janssen [Jan92], who applied linear multiple regression techniques to specify the house
price equation, concludes that his results might be improved by considering alternative model
specification techniques, such as factor analysis, cluster analysis, and logit-regression. We state
that neural networks should be considered as well, and may even be preferred above the other
techniques. Hence, the lack ofprecise theories on hedonic models and the ample volume ofdata
make data driven model specifications more promising than parametric modelling techniques.
We have shown that in the case of the hedonic house price model for housing in Boston neural
networks achieved a better model specification than the multiple regression technique. Since
hedonic models can be constructed for many goods, we think that neural networks have good
prospects for this particular area in economics.

The prediction performances of the three different models have been compared statistically
by resampling based pairwise t-tests adjusted for the multiplicity effect. The tests justify the
statement that the neural network model fits unseen data significantly better than the other two
models.

Finally, we have made a first step towards the analysis of the final network solution. To
this end, we proposed three measures: the first indicates the average direction of influence of a
specific input on the network output, the second indicates the importance of a particular input
in determining the output, and the third measure indicates the degree of monotonicity in the
partial relationship. Visual inspection of the plots of the partial derivatives of the final network
for each network input in each sample observation provides another useful aid in the analysis
of the final neural network solution.
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Chapter 8

Predicting the Dutch Mortgage Loan
Market

8.1. Introduction

Mortgage lendingt is an important activity for banks, which generates a large part of their profits.
The total amount of outstanding mortgage loans constitutes a main component of the bank's
balance sheet. There is a need for making accurate predictions of the future path of the stock of
mortgages, since it must be funded with borrowed money. Hence, an unexpected increase in the
stock of mortgages asks for an immediate attraction of large sums of funding money, usually at
prices higher than the average market value at that time.

The traditional approach to such economic modelling problems is multiple regression. The
field of Artificial Intelligence, however, has provided a battery ofdata modelling methodologies
[TG91 ], including neural networks, expert systems, case based reasoning, decision trees, and
qualitative reasoning, which also apply to economic modelling in general. These techniques
use approximations to the underlying data generating mechanism that are more flexible than
parametric regression models.

The interest of the study is to obtain the best possible predictions for the production of new
mortgage loans. The parametric econometric approach, which is conventionally used for such
problems, is adopted as a"bench mark" for the AI-techniques.

~This chapter is lazgely based on Verkooijen and Daniels [VD95], which is conducted within an EC-funded
network of the SPES programme (contract number 0065). The SPES (Stimulation Plan for Economic Science)
project, entitled "Artificial Intelligence approaches to modelling in Economics", is a joint research project with par-
ticipants from Heriot-Watt university (United Kingdom), Tilburg University (The Netherlands), Milan University
(Italy), ABN~AMRO bank (The Netherlands), and Digital Equipment Europe (France). The ABN~AMRO bank
proposed "modelling of the Dutch mortgage loan mazket" as joint problem for the participating partners in the
SPES project.
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The outline of the chapter is as follows. In section 2 we will summarise Asset and Liability
Management (ALM) and its relation to the mortgage market. Section 3 characterises the Dutch
mortgage market. In section 4 several UK studies on mortgage demand are reviewed. Section 5
departs from simple economic theory, in order to arrive at a demand function for mortgage
borrowing that will be the basis for the empirical model. Section 6 describes the design and the
results of the empirical study that employs neural networks to build an error-correction model
for the production of new mortgage loans in the Netherlands. Section 7 concludes the chapter.

8.2. Asset and Liability Management

Banks improve the efficiency of financial markets by their acting as financial intermediaries.
These activities create profitable opportunities, but may also introduce risks for the bank.
Interest rate risk is an important determinant. Interest rate risks originates from borrowing
and issuing money at fixed interest rates at different (unmatched) maturity terms. Loans with
different maturity terms have different interest rates, graphically represented in the yield curve.
In general, the yield curve increases monotonically, i.e., the interest rate for short-term loans is
generally below the interest rate for long-term loans, since the latter incorporates a higher risk
premium; nevertheless, for short periods of time the short-term rate may lie above the long-term
interest rate (inverse yield curve).

Banks generally make profits by issuing money at an interest rate higher than the rate at
which it is funded. This is called interest profit; interest rate profit forms the main component
of the bank's income (in 1994 it constituted 65qo of the total assets of the ABNIAMRO bank).
The maturity terms of issued and funding loans typically do not match; money issued for a
long-term period (say 5 years) is funded with money lended for a short period (say 3 months).
This mismatch causes the interest rate risk, since short-term interest rates may rise in the future.
When the short-term interest rate rises beyond the rate at which long-term money was issued, it
may eventually cause an interest rate loss (at least partly).

In general, the value of issued loans is higher than the value of funding money. In order
to control the level of interest rate risk, the Asset and Liability COmmittee (ALCO) instructs
the Treasury department to make up the gap between issued and funded money. In doing this,
the Treasury should keep the costs as low as possible by carefully selecting profitable types
of funding. ALCO provides the Treasury department with instructions concerning the term
structure of the money to be issued and borrowed. The ALM department supports ALCO in its
policy by making simulations of the future balance sheet. The issuing of long-term loans is not
controlled by the bank, but is mainly determined by the market. The major task of the Treasury
department, therefore, is to select the cheapest funding money.

In performing their task, the Treasury department has to rely heavily on predictions, since
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the actual values of most transactions are available only after several months. Therefore, it is

crucial to have accurate predictions of all, or at least the main, components of the balance sheet.

Otherwise, the Treasury department may have to borrow large sums of money at prices higher
than necessary, in order to immediately correct for an unanticipated gap between assets and
liabilities.

A major component of the bank's balance sheet is the portfolio of mortgage loans. In the

remainder we will focus on this component exclusively. The bank requires a model that predicts
the value of new mortgage loans one month ahead, up to 18 months ahead.

8.3. The Deattch Mortgage Market

A mortgage loan is a loan that has a property acting as security for the fulfilment of the borrowers'
obligations. In case the obligations are not fulfilled, the lender has the right to let the collateral
(security) be sold in public to fulfil the claim.

The mortgage loan market is quite diverse, on both the supply and the demand side. Not just
one type of mortgage loan is supplied, but a whole set of different mortgage loans which differ

in the maturity period, the repayment conditions, the amount of money that can be borrowed,
the interest rate, and the period over which the interest rate is fixed.

There are a number of institutions that provide mortgages, among them are general banks
(ABNIAMRO, ING, RABO), mortgage companies, savings banks, insurance companies, build-

ing societies, and pension funds.

In the Netherlands the supply of mortgages can be regarded as perfectly elastic in practice,
that is, banks will provide a requested mortgage loan after the applicant has passed a general
check for creditworthiness. Pau [PT90] developed a knowledge-based system that automates
the credit granting process. So, the provided number and value of mortgage loans can safely be
regarded as completely determined by demand. Consequently, in contrast to other countries (for
instance, the United Kingdom), rationing mechanisms can be neglected in the Netherlands. In
1991 the limit on the maximum amount of borrowing was increased by making the maximum
amount of borrowing dependent on the incomes of both partners instead of the income of the
highest earning partner.

The demanders for mortgage loans can be distinguished into four groups:

. starter buys a house for the first time,

. mover moves from his current privately owned dwelling to another privately owned one,

. raiserhas not moved, and has not changed his mortgage institution, but only raised his
mortgage level,
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. changer has not moved, but changed, for instance, from one mortgage institution to
another, or from a mortgage loan at a high rate to a mortgage loan at the current (lower)
rate.

Demand per group reacts differently to changing (economic) factors.
The sequel gives a picture of the Dutch mortgage market in 1992 (from [Kie93]). A total of

243,260 new mortgages were registered in the land register. In 80qo of these cases the coilateral
was a house (finished or under construction). The largest part (90010) of the total mortgage market
was determined by mortgages taken out on houses; when calculated in values, this percentage
drops to 67qo. In 1992, 76qo of the total of new mortgages corresponded to a"mover" (34010) or
a"starter" (66qo). Of the 24qo that did not move or start, 12qo bought their rented house, and
79qo switched between mortgage institutions.

The general banks accounted for 45qo of the new mortgages loans, the mortgage companies
for 15.4010, the assurance companies for 13.3qo, the building companies for 7.8qo, the savings
banks for 7.Sqo, and [he remaining suppliers for 5.6oI'o. Contrary to, for instance, the UK, in the
Netherlands building societies play only a minor role on the supply side of mortgage loans. The
RABO-bank owns the largest share of the mortgage market (15.6qo, measured in Dfl.), followed
by the ABNIAMRO (11.6oIo).

Of the 80qo new mortgages on housing 27qo was used for newly built houses. Private
individuals own 45~10 of the total housing stock, which is expected to increase to SSqo in the
next 10 years (see [HJKS92]).

The next section will review some UK and US studies on the demand for mortgage loans.
In the empirical part the assumed determinants of the mortgage loan demand are examined for
the Dutch case.

8.4. A Survey of Previous Studies on Mortgage Markets

8.4.1. United Kingdom

The largest part of the literature on mortgage markets concerns the United Kingdom. In many
UK studies ([Had76, May79, Ho192, AH84]), the demand for mortgages by private households
often appears as part of a larger econometric model of building societies. "United Kingdom
Building Societies aze non-profit-making financial intermediaries ... They dominate the UK
mortgage market with their assets representing about an 80 per cent share of housing finance
..." [AH84]. This was particulazly the case during the 1970s [HU89].

Building societies could, by a cartel arrangement, offer their clients interest rates that
followed a stable time path. A consequence was that a rise in market interest rates could not
immediately be followed by the building societies' rates. The building societies saw their
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inflows decline accordingly. After some time, shortage of funds forced societies to reduce the
rate of growth of the mortgage stock. Since the societies would not raise interest rates by
an amount high enough to restrict mortgage demand sufficiently, they relied on a variety of
non-mazket mechanisms, including borrowers queueing for mortgages and changes in lending
azrangements, such as by lowering the ratio of loan to property value or loan to income [HU89].
In the literature, these mechanisms are called 'rationing' [Wi185].

In mid-1980 the system of direct controls on the banks' lending ended, which gave the banks
greater freedom to develop new areas of business activity. In particular, banks focussed on the
personal sector. To day, the UK mortgage mazket has become more competitive, which implies
a greater sensitivity to changes in market interest rates [HU89].

The following paragraphs review the literature on modelling demand for mortgages. As said
before, most demand equations appear as part of a larger system of equations.

Hadjimatheou [Had76] assumed the demand for building society mortgage advances to be
determined by personal income, real cost of borrowing (measured by the mortgage rate of interest
adjusted for tax relief), rate of change of new house prices, relative price of new housing, number
of marriages, lagged value of building societies advances, and seasonal dummies. The number
of marriages is used in place of new household formation, for which quarterly data were not
available. The complete equilibrium model was based on seventy-five quarterly observations
corresponding to the period running from the second quarter 1955 to the fourth quarter 1973.
Five additional observations were used for a post parameter stability test.

Mayes [May79] states that the maximum supply of new mortgage advances without con-
straints would clearly be the demand, so that a specification of the demand for mortgage advances
would be a suitable first step. Mayes assumes this demand to be a function of real personal
disposable income, the price of the mortgage (i.e., the mortgage rate), the price of housing
relative to consumer prices in general, and some seasonal factors. To this set of determinants,
he added some factors that constrain the demand (liquidity ratio and reserve ratio).

Martin and Smyth [MS91 ] assume that the borrower's demand for real mortgage loans is
a function of the rate of interest, real permanent income, the rate of inflation in homeowner's
cost (in the previous period), the rate of inflation in renter's cost (in the previous period), and
the real purchase price of housing. The model was estimated in double log form on monthly
observations covering the period from June 1968 through March 1989.

In his econometric model for the building societies, Pratt [Pra80] represents the demand for
net building society advances by the inflation in new house prices, the households' disposable
income, the inflation in consumer prices, the change in the real (after tax) mortgage rate, and
the change in the percentage change over the last six months in the relative price of housing.
The last factor was included to capture the 'speculative' demand for housing. The study used
quarterly data from 1966 through t978.
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Wilcox [Wi185] assumes the demand for the stock of building society mortgages to be
determined by real personal disposable income, the consumer expenditure deflator, the house
price index, the average mortgage rate net of the basic rate of tax, the loan-to-value ratio, and
the value of the owner-occupied housing stock. The parameters in all equations were estimated
from quarterly data for the period 1968 through 1984.

Anderson and Hendry [AH84] formulate a disequilibrium theory for Building Societies'
behaviour. Their econometric model assumes that the personal sector demand for mortgages
may be determined by the real disposable income, the price level, the rate of inflation, the after
tax mortgage rate of interest, the price index of a'standardised' house, and the house price
inflation. They expect that each factor ~xcept the mortgage rate of interest and the house
price- positively affects the demand for mortgages, that the mortgage rate of interest affects the
demand negatively, and that it is unclear in which direction the house price affects the demand.
The model was estimated on quarterly observations from the period 1958 through 1979.

Hall and Urwin [HU89] formulate and estimate an explicit disequilibrium model of the
supply and demand for mortgage lending over the period between 1970 and 1985. They assume
the demand for real mortgage lending to be determined by the rate of interest on mortgages,
the relative price of houses, real disposable income, the general price level of goods, and the
number of owner occupied houses. The study used quarterly data.

Holmes [Ho192] focussed on the demand for building society mortgage finance in northern
Ireland and Scotland. Holmes, as well as many of the studies discussed above, assumes that
the demand for mortgage is subjected to a"partial adjustment" mechanism, that is, mortgage
demand in the previous period has only be partially met. The rationale is that households face
major adjustment costs when adapting to a new desired level of mortgage borrowing. Besides
the mortgage demand in the previous period, Holmes assumes the following determinants of the
demand for mortgage loans: nominal gross domestic product, the average price of housing, and
the real mortgage interest rate adjusted for tax relief. The study is based on annual observations
for the period 1970 through 1989.

8.4.2. The Netherlands

There are surprisingly few studies performed on the Dutch home mortgage market. The Dutch
National Bank (DNB) has a quarterly model for the Dutch economy, called MORKMONII
[FKB90], which includes an equation for the long-term withdrawal of assets by households
("lang opgenomen middelen door gezinnen") LOG. The main part of LOG concerns mortgage
loans. Therefore, the equation incorporates the value of the stock of owner occupied houses SH
as a"scaling" variable. Additionally, the long-run (nominal) interest rate rl and the ratio ofLOG
and SH are included as explanatory variables. Besides the demand factors, a credit-restricting
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dummy DuTn is included. The estimated equation, reported in (FKB90], is

OLOG~ - 0.0135 SHt - 0.0018 (0.5 (Tlt-~ -F Tlt) LOG~-~ )

-4296.4(LOG~SH)~-i - 0.0045 Du-m, LOGt-~. (8.1)

The equation is estimated using data from the first quarter of 1971 through the fourth quarter of
1987.

The macro-econometric model for the Netherlands [Bur92], which has been developed by
the Central Planning Bureau (CPB), also incorporates a part concerning the stock of privately
owned houses and the stock of mortgages. However, correctly isolating this part from the total
model is not so straightforward, especially due to the poor documentation on this particular part.

Since the housing market is very closely linked to the mortgage market (as we saw in
section 8.3), it may be helpful to build a model for this market as well. Two recent studies,
which elaborate on developments in the Dutch housing market, are Janssen [Jan92] and Hut
et aL [HJKS92]. Janssen [Jan92] focusses on the theory on house price determination, and
provides empirical results for four cities (Eindhoven, Enschede, Lelystad, Rosmalen). Hut et
al. discuss long-run structural developments in the Dutch housing market. Both studies provide
valuable information in future.

All studies mentioned so far presume a strong connection between the housing market and the
mortgage market. Jones [Jon93] modelled home mortgage demand in a manner that separates
that demand into the amount derived from housing demand and the demand from financing
nonhousing assets. The Dutch National Bank recognises this distinction in its annual report of
1994; to explain the observed (further) increase of the amount of outstanding home mortgage
debt by households despite an increasing mortgage interest rate, they argue that a larger part of
the credit taken out on dwellings is used for consumer expenditures. Mortgage loans are cheaper
than consumer credit, and the strongly increased value of the collateral (dwellings) makes that
requests for additional mortgage loans are more easily approved.

In summary, the following factors are assumed to determine the long-run demand for
mortgage loans:

1. household's disposable income (real or nominal),
2. mortgage rate (nominal or adjusted for tax relief),
3. price (value or inftation) of new or existing housing,
4. (general) price inflation,
5. costs of renting,
6. costs of house ownership,
7. number of weddings (new household formation),
8. value of the housing stock.
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8.5. A Demand Equation for Mortgages

In the previous section we summarised the determinants of the demand for mortgage borrowing
which were used in several UK studies that ~xplicitly or implicitly- modelled the demand for
mortgage loans. In this section we derive a reduced form equation for the demand for mortgage,
based on simple economic principles.

The demand for mortgage loans is derived -after [HU89]- from a simple utility maximisation
principle. Suppose a representative household has the utility function u(H, G), where H
represents housing services and G an aggregate of other goods. This household will then try to
maximise this utility function subject to a constraint imposed by the disposable income of the
following form:

9~ (Tm, PH) H-~ PG- Yd, (8.2)

where g~ ( r,,,, PH) is a(simple) cost function ofservicing a mortgage which will provide housing
services H, P is the general price level of goods, and Yd is the household's nominal disposable
income. The cost function gi is assumed to depend on the mortgage interest rate T„~ and the
price of houses P~. This will yield a general constrained demand function for housing services
of the form:

H - 9z(Tm~ PH,Yd, P). (8.3)
The foregoing analysis neglected the decision ofhome ownership against renting. Some factors
governing this decision are, for instance, the relative cost of renting opposed to the cost of
home ownership. These factors could be included in (8.3). However, it may be argued that
the main changes in owner occupation in the Netherlands over the last 20 years have been due
to institutional factors (sale of rented houses and rate of release of building land) more than to
purely economic factors. Therefore, it may be preferable to scale equation (8.3) by the number
of owner occupied houses (say) NOH, to derive a desired aggregate demand for mortgage Md
[HU89]:

Md - g3(Tm, PH, Yd, P) . NOH. (8.4)

Households face enormous adjustment costs when changing the level of their mortgage
borrowing ( in many cases it involves moving to another house or building a considerable
extension to a house). Therefore, it seems reasonable to assume a partial adjustment process to
the desired level of mortgage borrowing, that is,

Mc - Me-i f ry(Md - M~-,) ~- ei (0 G ry G 1)~ (8.5)

where M denotes actual mortgage borrowing and Md desired mortgage borrowing. Thus, (8.5)
asserts that in the current period the households only move part of the way towards the optimal
level of mortgage borrowing, the speed of adjustment being determined by the parameter ry.
Note that an error-correction model might be used instead of the partial adjustment model.
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The mortgage advances At :- M~ - Mt-i are then a function of the following form:

Ae - 7 (93(T,,,, PH, Yd, P)~ . NOH~ - M~-,) f ei. (8.6)

The mortgage advances can also be defined as the inflow of new mortgages ( the mortgage
production) minus the outflow of mortgages:

A~ :- Mtn - M~„`. (8.7)

Since the ABNIAMRO bank is merely interested in predicting M'" and we have monthly
observations on M'n only at our disposal, we are forced to model the inflow in the mortgage
stock instead of the mortgage stock advances, as is usually done in the literature ([HU89, AH84,
Pra80]).

We assume that a constant proportion of the outstanding stock of mortgages is ended, which
is a very simple model for the outflow of mortgages. This assumption combined with ( 8.6) and
(8.7) yields the following reduced form equation for the production of new mortgage loans:

Mén - 9a(Tm,e, PH, Pe, Ya,e, NOHe, Me- i) f vt. (8.8)

If the outflow of mortgages is a decreasing function of rm (which is the case when people on
mortgages with a high fixed rate switch to loans at the lower current mortgage rate), the same
reduced form equation (8.8) is implied.

The derived reduced form (8.8) clearly depends on the assumptions we have made. The
procedure merely illustrates how a demand function for mortgage borrowing can be derived
theoretically. If other assumptions were made (for instance, instantaneous adjustment to the
desired level of mortgage borrowing), a different reduced form would result. The reduced
form equation (8.8) will be used in section 8.6 to specify an estimable long-run model for the
production of new mortgage loans.

8.6. Empirical Study

As indicated earlier in section 8.1, our objective is to develop a model for predicting the
production ofnew mortgages (measured in millions of Dutch guilders) for 1 month ahead, up to
18 months ahead. In such situations it is common practice to build different models for different
horizons: short-run models, which concentrate on rapidly changing variables (measured on a
monthly basis), and long-run models, which are based on slowly moving variables (measured
on an annual basis). The two models may well have quite different specifications with non-
overlapping sets of explanatory variables.

We synthesise both long-run and short-run models to obtain a prediction model for the
Dutch mortgage market that suits our purposes. Engle et al. in [EGH91 ~ propose a strategy to
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combine short-run and long-run aspects of the data generating process (measured at different
time frequencies) into a single error-correction model. Our approach is largely based on this
strategy.

The deviation of the observed mortgage production from the long-run model's predicted
value in the previous period is incorporated as explanatory variable in an error-correction model
of the form:

OMt" - ao f~( V) - 7 ecmc- i f vt (ry ~ 0) (8.9)

where V denotes the stationary short-run variables, z[, a yet unspecified functional form, ecm~- i
the deviation of M~"~ from its predicted long-run value at time t- l, and v~ a noise term. Since
the long-run model uses annual data, its predictions are interpolated to obtain monthly forecasts.

Traditionally, the function ~i in (8.9) is assumed to be linear: ~i(V)- aT V. An innovating
aspect in our study is that the linear setting is enlarged by allowing for possible nonlinear
specifications of ~r(~. Neural networks are used to explore for possible nonlinear specifications
(see also Chapter 5).

We build a long-run model for the production of new mortgage loans, using annual data.
Because of the límited length of the annual series (30 observations), a simple linear model,
loosely based on ( 8.8), is specified and estimated. Neural networks are not considered for
the specification of the long-run model, since the data set is too limited to justify a nonlinear
relationship.

Introducing nonlinearities in the error-correction model, however, may improve its specifi-
cation. Economic theory usually has not much to say about the particular form of [he short-term
nonlinear dynamics. Therefore, neural networks are used to search for possibly nonlinear
specifications of the error-correction model.

8.6.1. The Long-run Model

Because we have at maximum 30 yearly observations at our disposal, we estimate a simple
long-run model. The factors outlined in the reduced form equation (8.8), complemented with
the factors outlined in section 8.4, are considered as candidates for inclusion in the long-run
model.

The characterisation of the limited set of annual data as I(0) or I(1) (see section 5.3) by unit
root tests may easily lead to wrong conclusions, since unit root tests are meant for large samples.
Therefore, we will refrain from performing such tests. A visual inspection of the autocorrelation
plot of the variables listed in Table 8.1 suggests that they are all I(1). Table 8.1 presents the
definitions of part of the available data series; more information is found in Appendix B.

A disadvantage of modelling the production of new mortgage loans instead of the net
advances in the stock of mortgage loans, is that borrowers who change their mortgage contracts,
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Table 8.1: Symbols and names of long-run variables.
variable name
M'" production ( value) of new mortgages
M stock of mortgage loans
Yd households' real disposable income
r„~ mortgage loan rate (5 years)
PH price of housing
NOH number of owner occupied houses
wed number of weddings
in fP consumer price inflation
in fr inflation in rent prices

but not raise its level (switch to another lender or switch to a cheaper loan) add to the production,
but not to the advance in the stock of mortgage loans. We conjecture that in 1993 and in 1994
in particular, these changers are responsible for a considerable proportion of the mortgage
production in those years; the reason is twofold. First, the mortgage rate dropped from a yearly
average of approximately 9.Sqo in the period 1990-92 to a level of approximately 7.Sqo in 1993
and 1994, so the decline is large enough to compensate for the fine that changers have to pay
for early repayment of the loan. Second, in the recent past, mortgage bureaus have entered the
market, pointing borrowers at the potential cost reductions they will meet when they change
their mortgage loan to one with a lower rate (including the fine for early repayment of the
loan). Modelling this part of the production of mortgage loans is difficult, since the borrower's
awareness of these profitable possibilities has evolved over time, and no representative historical
cases are available yet.

Based on the reduced form equation (8.8) with the economic ideas behind it, and on model
(8.1) developed by the Dutch National Bank, we arrive at the following empirical long-run
model:

Min - Qo f Qi NOHt PR ~- ,Qz r,n,e Me- ~ -f- ry M~- ~. ( 8.10)

This model is estimated from data for the period 1965-94. The results (ccefficients, t-values,
and Rz) are shown in the Table 8.2. The addition ofone or more of the variables from section 8.4
does not improve the fit considerably. So, we decided to keep the specification of the long-run
model simple.

Figure 8.1 depicts the observed production of new mortgages and the predictions based on
(8.10), for the period 1966-94.
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Table 8.2: Estimation results for model (8.10).
1965-1994

variable coeff std. error t- value
intercept -3305 1129 -2.93
NOH~ . PH 0.1886 0.0098 19.27
r,n,i . Mt-i -0.6477 0.1650 -3.92
M~-, -0.0405 0.0154 -2.63
RZ 0.977
DW 1.23

8.6.2. The Error-correction Model

We have monthly observations on most (potentially) relevant variables from January 1985
through December 1994 at our disposal. So we model the production of new mortgages on a
monthly basis; see Appendix B for the details. It is evident that other (economic) factors than
in the yearly model will explain the monthly changes in the production of new mortgage loans.

Figure 8.2 depicts the monthly production of new mortgages from January 1985 through
December 1994. Two striking characteristics are the seasonal pattern (January low, December
high, and an intermediate peak in July and August) and the strong increasing trend. The trend

8
N

Figure 8.1: Tiie fit of the long-run model
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Figure 8.2: Monthly production of new mortgage loans

component is captured by the long-run model (8.10). Figure 8.3 shows that the seasonal pattern
is likely due to the consumers' house buying behaviour. The first window of this figure displays
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Figure 8.3: Seasonal pattern of the production of mortgage loans

the production ofnew mortgages during 36 months (Jan. 1992 to Dec. 1994); the second window
displays the total number of houses sold in the same months (measured by the land's register);
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the third window displays the total number of houses sold by NVM agents (Dutch Society of
real estate agents); and the fourth window displays the new housing starts in the same period.
Three series more or less have the same seasonal pattern, except for the NVM data.

However, the data on the number of houses sold as measured in the land's register are more
reliable than the data from the NVM, in which the seasonal pattern is less appazent. The data
from the land's register are available only from January 1992 onwards, whereas the NVM data
range from January 1985 until December 1994. Therefore, we use the NVM data to specify and
estimate the error-correction model. Seasonal dummies are included to correct for the lack of
seasonality in these data.

Besides the trend and the seasonal component, changes in the monthly mortgage rate and
in the nominal value of houses may influence households' decisions to take out mortgages in
a particular month as well. The error-correction model comprises the following vaziables in
addition to threeZ lags of the dependent variable OMt":

. ~(H' . PH)t the change in the nominal value of existing houses sold (up to three lags),

. M(-1)~ 4rm,~ the change in the mortgage rate (up to three lags) scaled by the amount of
outstanding mortgages at the end of the previous year,

. ecmt-~ the error-correction term, that is, the lagged deviation of the observed OMtn from
its value predicted by the long-term model,

. seasonal dummies.

In contrast to standard error-correction models, which use data of the same frequency, our
error-correction model uses both annual and monthly data. The annual predictions (divided by
twelve) are transformed into monthly predictions by a cubic spline3 (following [EGH91 ]). The
error-correction term links the monthly movements in the production of new mortgage loans to
the long-run production.

8.6.3. Model Selection

We employ neural networks to azrive at an empirical specification of the error-correction model
(8.9), in particular to specify its ~i-function. In Chapter 3 the mathematical representation of a
single layer feed-forward neural network with one linear output unit and skip-layer connections
was introduced. We therefore parametrise equation (8.9) by a neural network as follows:

Nh
OMin -~o f {aT V~- ~Q:~(wT V)} - ry ecmt-t~ (8.11)

21he number of lags is chosen on purely pragmatic reasons.
3We placed the knots at each June.
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where ~ represents the neural network's sigmoid squashing function, Nh the number of hidden
units; the other symbols were introduced earlier. The parameters are simultaneously determined
by minimising the squared error function with penalty term a(see Chapter 3, equation 3.9).
This .~ is used as smoothing parameter; smoother approximations are obtained for larger values
of a.

All empirical specifications of the error-correction model which we consider are subsumed
in (8.11). The standard linear form is simply obtained by fixing Nh at zero (a neural network
without hidden units). Increasing the number of hidden units enlarges the class of functions
that can be approximated by the neural network; a nonlinear relationship may be revealed, if
present.

V in (8.11) represents the set of short-run variables which are presumed to be relevant when
predicting ~Mtn. Three encompassing sets of variables V are examined. The en or-correction
form (8.11) that corresponds to each set of variables is referred to by m; (i - 1, 2, 3). The
first model, m~, simply includes all variables (and their lags) selected in section 8.6.2, eleven
seasonal dummies, and an intercept term. The second model, ~rr.2, includes only those variables
from m~ which have significant coefficients at an error level of Sqo, when the linear specificatíon
ofm~ is estimated by OLS. The third model, m3, includes only ecmt- i and the seasonal dummies
which were significant in model mi.

Table 8.3: Estimation results for the short-run model m2.
variable value st. error t-value
~Mt"~ -0.114 0.053 -2.17
M(-1)t ~T,,,,t 0.120 0.031 3.92
M(-1)~ ~T,,,,t-1 -0.083 0.032 -2.63
M( -1)L OTm,~-3 -0.083 0.028 -2.99
0(H' . P~)~ 0.072 0.032 2.24
ecmt-i -0.161 0.052 -3.07
jan -0.724 0.058 -12.58
mar 0.111 0.050 2.21
jul 0.142 0.042 3.39
aug -0.142 0.044 -3.19
dec 0.514 0.044 11.60
RZ 0.865
DW 2.4 I 8

Table 8.3 displays the variables included in modet mZ, the ccefficient values, the corre-
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sponding standard errors, and t-values when mz is specified linearly. The seasonal dummies are
present with the strongest effects for January (low) and December (high), as could be expected
(see figures 8.2 and 8.3). The error correction term ecmt-i is significant and has the correct
negative sign, which implies that deviations from the long-term model are corrected for in the
short-run. The changes in the number of houses sold (by the NVM) have also correct signs;
an increase in the number of existing houses sold leads to an increase in the production of new
mortgages. Several lags of the monthly changes in the mortgage rate are significant, and so
are the changes in the monthly mortgage production one period lagged. The total effect of a
change in the mortgage rate on the mortgage production is negative, which corresponds to what
is expected from economic theory.

The following neural network analysis is performed to examine whether nonlinear specifi-
cations of the models mi and m2 are justified by the data. Each model m; is estimated under all
possible combinations4 of

Nh E {0,2,4} and a E{5,0.5,0.1,0.05,0.01,0}.

The final model is selected on the basis of the cross-validation goodness-of-fit value (R~z„).
The results of the ] 0-fold cross-validation procedure5, which was described in section 4.8, are

summarised in Table 8.4. Its cells in Table 8.4 show for each model the within-sample coefficient

model Nh
Table 8.4: Out-of-sample model comparisons.

weight decay value a
5 0.5 0.05 0.01 0

m~ 0 0.816I0.732 0.885~0.794 0.887I0.783 0.888I0.780 0.888I0.780
2 0.816~0.732 0.885~0.794 0.950~0.814 0.973I0.667 0.983I0.347
4 0.816I0.732 0.885I0.794 0.951I0.780 0.989I0.549 0.999I0.173

m2 0 0.793I0.719 0.863I0.800 0.865I0.803 0.865~0.803 0.865I0.803
2 0.793~0.719 0.863I0.800 0.909I0.828 0.940I0.796 0.944I0.295
4 0.793~0.719 0.862~0.800 0.909I0.821 0.955I0.768 0.971I0.320

m3 0 0.758I0.72] 0.820I0.778 0.820I0.778 0.820I0.778 0.820I0.778
note: cells display R;,IRc„

of determination Rn and the out-of-sample coefficient of determination R~,,, calculated from
the predictions made within the cross-validation procedure.

~The specific set of combinations has been chosen after some preliminary experiments.
SObservations corresponding to each year are consecutively left out.



8.6 Empirical Study 135

The rows with Nh - 0(a neural network without hidden units) present results for models m;
specified linearly and estimated by restricted OLS. When the weight decay value is set at zero,
the results correspond to linearly specified models m; with coefficients estimated by unrestricted
OLS. When the weight decay value is larger than zero, the coefficient estimates of the linear
model are no longer unbiased (ridge regression).

Nonlinear specifications of m; may be found when Nh is larger than zero, of course running
the risk of overfitting the data at hand. The low R~„-values in combination with (very) high
R;, at low values of the weight decay parameter when two or four hidden units are included,
is a clear indication of overfitting. Within-sample the models fit the data (almost) perfectly
(Rz 1 0.99), whereas out-of-sample the models fit badly (RZ C 0.30). In these situations,
higher R~„ (better out-of-sample fit) at higher values of a illustrate how effectively weight
decay reduces overfitting.

Table 8.4 further shows that model mZ provides the best cross-validation results, and that a
slight advantage is achieved when a neural network with two or four hidden units and a weight
decay value of 0.05 is trained on the data.

8.6.4. Predictions

A model is selected to make real out-of-sample predictions for 1-18 months ahead (from July
1993 to December 1994). First we select model rn2 with Nh - 0 and ~- 0, and with
parameters estimated on data until June 1993. The exogeneous variables are assumed to be
perfectly predictable for the period July 1993 to December 1994, so we inserted observed values
for them. The predictions are generated iteratively by equation (8.1 ]) for model mz; in each
iteration step the error-correction term ecmt-i is calculated by the previously predicted value
M~n~ minus its prediction from the long-run model.

Figure 8.4 shows the out-of-sample predictions of the monthly production of mortgage loans,
the observed production of mortgage loans, and the long-run predictions. It is apparent that the
quality of the predictions, especially for mid 1994, is not so good. This is what we expected
from the unequalled high proportion of mortgage changers in that period. Nevertheless, the
strategy of combining long-run and short-run aspects of the data generating process into a single
error-correction proves useful when making predictions for different horizons. Hence, these
predictions are better than predictions made from the long-run model alone or from a short-run
model which neglects the long-run trend.

Next we also generate predictions using model m2 with Nh - 2 and J~ - 0.05, which
showed best results in Table 8.4. The resulting predictions were almost identical to the ones
obtained by the linear specification of m2 (with Nh - 0, a- 0). Consequently, a plot of the
predictions would not be discernible in Figure 8.4, so we left it out.



136 Predicting the Dutch Mortgage Loan Market

~~
' 1985 1986 1907 1988 1989 1990 1991 7992 1993 1994 1995

Figure 8.4: Out-of-sample predictions.

8.7. Conclusions

The main goal of this chapter was to build a mode] for the prediction of the production of new
mortgage loans in the Netherlands, for different time horizons.

After the Dutch mortgage market was characterised and several UK studies on general mort-
gage demand were reviewed, we derived a theoretical reduced-form equation for the production
of new mortgages, applying a simple utility maximisation principle (following Hall and Urwin
[HU89]).

To formulate an empirical model, we departed from an idea of Engle et al. [EGH91 ], and
combined long-run and short-run aspects of the mortgage market into a single error-correction
model. The power of the error-correction model was enlarged by allowing for yet unspecified
nonlinearities in the short-run part.

Neural networks were employed to search for possible short-run nonlinearities in the data
generating process. The mathematical representation of a feed-forward neural network with
skip-layer provides a convenient formula which can represent different specifications of error-
correction models. The degree of nonlinearity (flexibility) is determined by the number of
hidden units of the neural network and the penalty term. Selection of the final neural network
model was performed on the basis of cross-validated goodness-of-fit measures.

The following results concerning the mortgage loan market resulted from our research. The
main determinant of the long-run perspective on the production of new mortgage loans is the
value of the privately owned housing stock. In the short-run, seasonality explains most of
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the variation in the production of new mortgage loans. This seasonality is likely due to the
consumer's house buying behaviour.

We have not found noticeable evidence of nonlinear short-run aspects in the production of
new mortgage loans. Nevertheless, we are of the opinion that the proposed neural network
extension of the error-correction model is useful. Hence, the specification search is partly
automated, and need not be restricted to simple parametric functions. Further, the standazd
linear regression model is encompassed as a special case, and more complex specifications can
be compazed within a single framework.

Finally, the resulting model generates predictions for different horizons properly, although
the quality for the mortgage production in mid-1994 is low. We conjecture that these malpre-
dictions aze caused by an unequalled high number of households changing mortgage loans (due
to a sharp decrease in the mortgage interest rate in that period).

We conclude that the error-correction model that merges different models for the long-
run and short-run, in which the latter is represented by a flexible form (neural network), is a
promising approach for practical economic and financial forecasting.



Chapter 9

Exchange Rate Modelling

9.1. Introduction

"It is now recognized that empirical exchange rate models of the post-Bretton Woods era
aze characterized by parameter instability and dismal forecast performance..." [MR91 ]. The
pessimism about the prediction quality of exchange rate models has become generally accepted
after the publication of the influential paper by Meese and Rogoff [MR83]. These authors
performed a large number of statistical tests, indicating that not a single economic model of
exchange rates was better in predicting bilateral exchange rates during the floating-rate period
than the simple random walk model, which posits that all future values of the exchange rate are
equal to today's rate.

However, in [MT92]-a good survey paper on exchange rate determination - it is stated
that foreign exchange rate participants focus more on fundamentals in predictions for longer
horizons, and that more attention might be paid to modelling these fundamental determinants
of long-term prediction.

Several approaches have been tried to improve the quality of existing structural exchange
rate models. Some of these approaches have considered the incorporation of nonlinearities in
the models. Diebold and Nason [DN90], for example, state that "...In summary, there appeazs to
be strong evidence, consistent with rigorous economic theory, that important nonlinearities may
be operative in exchange rate determination...". They further observe that, despite the routinely
occurring statistical rejections of linearity in exchange rate models, no nonlinear model has been
found in the literature (yet) that can significantly outperform even the simplest linear mode]
in out-of-sample forecasting. Although Diebold and Nason used a powerful nonparametric
prediction technique (locally-weighted regression), they were generally unable to improve upon
a simple random walk in out-of-sample prediction of ten major dollar spot rates in the post-1973
period, in which the dollar exchange rates are fíoating. Also Meese and Rose [MR91 ] end up



140 Exchange Rate Modelling

with a negative conclusion: "...we do conclude that incorporating non-linearities into existing
structural models of exchange rate determination does not at present appeaz to be a research
strategy which is likely to improve dramatically our ability to understand how exchange rates
are determined".

The exchange rate literature usually restricts the application of nonparametric approaches to
locally-weighted regression techniques [MR91, MR90, DN90], which aze in principle generali-
sations of the standard nearest neighbour technique. It is generally recognised that nonpazametric
modelling based on local approximations becomes difficult in high-dimensional spaces due to
the increasing sparseness of the data (see Chapter 2). In macroeconomic models most data
aze typically sparsely distributed; data on economic fundamentals aze available on a monthly
basis at best, which limits the amount of data available to (say) a few hundred observations.
Consequently, the principle of local averaging is likely to fail in macroeconomic modelling
problems.

The foregoing does not necessarily imply that model-free regression modelling is impossible
in economics. When a low-dimensional representation is embedded in the data, dimensionality
reduction methods may be applied successfully. One such method is neural network regression,
which we will use in this chapter. Alternatives to neural networks were discussed in Chapter 2.
During the past few years there has been a noticeable increase of neural network applications
in economics and finance (see Chapter 6). However, to the best of our knowledge, no studies
have been performed yet that apply neural networks to structural exchange rate modelling.

This chapter, which is an extended version of Verkooijen [Ver95], examines whether in-
troducing nonlinearities into theoretical models of exchange rate determination improves the
prediction power of these models. In the empirical part neural networks are employed to in-
vestigate the nonlinearity hypothesis for the exchange rates of the Japanese yen-US dollar, the
British pound-US dollaz, the Deutsche mark-US dollar, and the Dutch guilder-US dollaz.

More specifically, we will test whether the hypothesised fundamental determinants of the
structural models that we consider, do in fact affect the exchange rate, without making auxiliary
assumptions about the functional form of the relationship.

The outline of this chapter is as follows. Section 2 introduces the theoretical structural
exchange rate models, which form the basis for the analyses in subsequent sections. In sec-
tion 3 empirical (testable) models of exchange rate determination are formulated, based on the
theoretical models of section 2. In section 4 the characteristics of the collected data are exam-
ined. Section 5 outlines the methodology for assessing predictive performance, and examines
the long-run and short-run predictive power of the selected exchange rate models, specified in
linear and in neural network form respectively. Section 6 concludes the chapter.
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9.2. Theoretical Models of Exchange Rate Determination

There are several theories on exchange rate determination [BM89, MT92~. In many theories
two general hypotheses play a prominent role, the Purchasing Power Parity (PPP) hypothesis
and the Uncovered Interest rate Parity (UIP) hypothesis. The main idea of the PPP-hypothesis
is that exchange rates and national consumption price indices will adjust proportionally so
as to maintain a given currency's purchasing power across boundaries, which means that the
real value of a given currency will be the same in all countries at any moment in time. The
UIP-hypothesis states that, in equilibrium, the interest rate differential among countries must be
equal to the expected rate of change of the exchange rate. In the next subsections we will make
these assumptions more explicit and explain their impacts on exchange rate models.

9.2.1. The PPP-hypothesis

Consider two countries i andj, each with a bundle ofn tradeable goods with average (consumer)
prices P; and P;:

n n

P: .- ~ akP:,k and P; :- ~ QkPi,k,
k-1 k-1

where a and Q denote bundle weights and p;,k the price of good k in country i. Define the
percentage (consumer) price differential between countries i and j as:

dp;; :- log P; - log P; - log 5;;,

with S;; the nominal exchange rate between i and j's currencies (expressed as units of i's
currency per unit of j's currency). Then, under the PPP-hypothesis dp;; is zero if, for example,
the bundle weights between the two countries are identical for corresponding goods.

In practice, countries utilise different bundles of goods and price indices P;~P;,o, where
0 indicates the base yeaz. Hence, the percentage (consumer) price index differential between
countries i and j can be written as:

P' P
(9.1)4:; - log Pl o- log P'o - log 5;;.

~,

To simplify our notation, we will denote log(P;~P;,o) by p;, and log S;; by s;;. Obviously, for
any sample observation at time t, the time differentials satisfy:

q~i,~ - q;i~~-~ - dP:i,t - dP:;,e-i~

which implies that when modelling in time differences the distinction between prices and price
indices becomes irrelevant. Under the PPP-hypothesis, q;; is assumed to be zero. The nominal
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exchange rate satisfying this hypothesis will be denoted, henceforth, by s~. Notice that this
s~ will generally be different from the observed (spot) exchange rate s;;, due to transportation
costs, trade restrictions, speculation, and governmental stabilisation policies (see [WP95]).

9.2.2. The CIP- and UIP-hypotheses

Consider an economic agent who requires a certain amount of foreign currency, say, dollars,
for use after a specific period of time, say, one month. If this economic agent is risk averse,
he is expected to buy foreign currency now, provided he expects that buying at the current
spot exchange rate is more favourable than buying at the one month's forward rate. This
forward rate f;j,c is the rate agreed upon now for an exchange of currencies at an agreed specific
future point in time. The consequence of buying at the current spot rate is that the foreign
interest rate (instead of the domestic interest rate) is received, assuming the money is held in a
foreign deposit. Since both options are riskless, it is expected that they yield the same rate of
return; otherwise, arbitrage would generate riskless profits, provided that there are no barriers to
arbitrage across international financial mazkets. The forward premium (or the opposite forward
discount) at a certain maturity is the percentage difference between the current forward rate of
that maturity and the current spot rate. Hence, under the Covered Interest rate Parity hypothesis
(CIP-hypothesis), this interest rate differential is assumed to be equal to the forward premium
(in any time period):

log f ;j - 8;j - T; - Tj~ (9.2)

where T; denotes the nominal (short term) interest rate of country i.
When a trader expects the future spot exchange rate to be lower than the current forward

rate, it may be attractive for this trader to wait until next month; thereby taking the risk of the
spot rate being higher than the current forward rate. In this case actors on the forward market are
prepared to pay for a risk premium, which equals the difference between the forward rate and the
expected future exchange rate. If no risk premium exists in the currency market (which means
that the expected future exchange rate and forward rate coincide) CIP implies the Uncovered
Interest rate Parity (UIP) condition.

Under the UIP-hypothesis capital markets are assumed to be fully integrated, so that the
domestic and the foreign assets are perfect substitutes and international capital is perfectly
mobile. Furthermore, financial markets are assumed to be fully efficient. This assumption
implies that there are no transaction costs, no differences in national tax systems on capital
incomes, and no risk premia in forward markets. Then, under the UIP-hypothesis the rates of
return on domestic and foreign assets (expressed in the same currency) are equal:

Ti~c - Ti~e f 9 ~,cfk - s ii~c~ (9.3)
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where the superscript "e" denotes the market's expectation based on information at time t
(s~,t}k :- E[s;~,ttk~7~], where I~ denotes the information available at time t), and k denotes the
period of maturity. The UIP-hypothesis is the cornerstone parity condition for testing foreign
exchange rate market efficiency; it assumes rational expectations and risk neutrality. In an
efficient market, prices should fu11y reflect the information available to the market participants
and it should be impossible for traders to earn excess returns due to speculation. It is important
to notice that only if the nominal interest rate differential is identical to a constant and if
expectations are rational, the UIP implies a random walk in the exchange rate (with drift if the
constant is non-zero). In general, however, the random walk model is inconsistent with the
UIP-hypothesis.

9.2.3. Monetary and Portfolio Models

Monetary models ofexchange rate determination were developed after the March 1973 collapse
of the (Bretton Woods) fixed exchange rate regime. These models are descendants of the
Mundell-Fleming type of models (see [Mun63, F1e62]) .

Several versions of these monetary exchange rate models have been put forward, giving
rise to two main types of models: the Flexible-Price Monetary Model (FPMM) due to Frenkel
[Fre76] and Bilson [Bi178], and the Sticky-Price Monetary Model (SPMM) due to Dornbusch
[Dor76] and Frankel [Fra79]. The modelling strategy is similar for both types: aggregated
macroeconomic relationships are used to obtain a semi-reduced form equation which specifies
the level of the (logarithmic) nominal exchange rate as a log-linear function of fundamental
factors.

The starting point for both types of models is Cagan's money demand function for hyper-
inflation (see [Cag56]) for a country: the logarithmic demands for real monetary balances are
assumed to be linear functions of the logarithmic real national income and the nominal interest
rate,

d7n -p-f-ay-Qrf~o, ~a~Q~~), (9.4)

with Tn.d the logarithm of a country's nominal money demand, p the logarithm of the price
index, y the logarithm of real national income, r the nominal short term interest rate level, a the
domestic income elasticity, and ,Q the domestic interest rate semi-elasticity of the demand for
money.

In the following subsections the two monetary exchange rate models will be explicitly derived
and compared. Additionally, the portfolio balance model (PBM), which is non-monetary, will
be discussed.
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9.2.3.1. The Flexible-Price Monetary Model (FPMM)

Consider the following FPMM-assumptions:

1. prices fully adjust such that foreign and domestic commodity markets clear instanta-
neously;

2. there exists complete equilibrium in the domestic and foreign money markets, for any
country: md - m' - m, ;

3. national incomes are at their full-employment levels;
4. the PPP-hypothesis is continuously valid with a corresponding exchange rate s;i.

Then the spot nominal exchange rate can be expressed by substituting Cagan's money demand
function (9.4) into the PPP-hypothesis of section 9.2.1, yielding:

-(ao,; - ao,i) ~ (mi - mi) - a~ y: f ai yi } A: T: - Qi Ti, (9.5)

which is the fundamental flexible price monetary equation. In this equation an increase in the
domestic money supply, relative to the foreign money stock, will lead to a depreciation of the
domestic currency in terms of the foreign currency. A rise in domestic real income will lead to
an appreciation of the domestic currency (other things equal). Similarly, a depreciation of the
domestic currency follows after an increase in the domestic interest rate.

If the income elasticities on the one side and the interest rate semi-elasticities on the other
side are assumed to be equal for both countries (cz; - a;; Q; -~3;), equation (9.5) reduces to

s:~ - (ao~i - ao.i) ~ (mti - mi) - a (y; - yi) ~ A(T; - T;), (9.6)

where the logarithmic nominal exchange rates are determined as a linear combination of differ-
ences between domestic and foreign fundamentals.

A basic problem with the FPMM is that it assumes continuous PPP, so that the (logarithm of
the) real exchange rate cannot vary over time, not even in the short run. This is in contrast with
reality: although PPP existed during the 1920s, it largely collapsed during the recent floating
rate period, which started in March 1973 (see [Fre81 ], [MP91 ]).

Therefore, we need a monetary model for nominal exchange rates with incomplete com-
petition in the market of tradeable goods with sticky prices, at least for the short run. The
Sticky-Price Monetary model (treated in the next subsection) remains fundamentally monetary,
since attention remains focused on equilibrium conditions in the money market.

9.2.3.2. The Sticky-Price Monetary Model (SPMM)

The SPMM is built on the assumptions of
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1. a finite adjustment speed in the commodity mazket with sluggish prices (sometimes leading
to short-term 'overshooting' because of a slow adjustment of these commodity prices; see
[Dor76]);

2. clearance of the commodity mazket in the long run;
3. instantaneous money and asset mazket equilibria with perfect substitutability of domes-

tic and foreign non-money assets and perfect capital mobility (reflected in the UIP -
hypothesis).

Following Mundell [Mun63) and Fleming [F1e62] we suppose incomplete competition in
the commodity mazket. Then, country i's commodity demand is assumed to be dependent on
real exchange rates, real national income of country j, and short term real interest rates:

d q
yi,e - No,i ~ Q~,i ~9ii,t - pi,e ~ ~i,c) ~ Qz,iyi,c - p3,i (ri,t - 7C{,t), (9.7)

where zrc :- pi,t - Pi,c-i. When country j acts as the domestic country, then í and j need to be
interchanged in equations (9.8) and (9.7).

The general principle of SPMM is that prices do not adjust instantaneously: sticky prices.
The price-adjustment equation is assumed to be dependent on the commodity market disequi-
librium, that is,

~i,t :- 7i ~yit - yi,t) ~9.8)

with ry; the positive price adjustment speed for country i, ydt country i's commodity demand,
and y;,t country i's national income. Hence, a shortage of demand will evoke decreasing prices,
which, according to (9.7), will result in a rise of aggregate demand. This process will repeat
itself, until the domestic commodity market is cleared; the higher the adjustment speed, the
quicker the commodity market equilibrium will be reached.

The exchange rate regime is determined by the UIP-assumption. After an initial disturbance,
a new equilibrium exchange rate will emerge in the long run (the'target-exchange rate' s;;); in
the short run the exchange rate adjustment for country i will take place at the adjustment speed
B; :

9i,cfi - g ii,t - Bi ~9ii - sii,c), 0 G B; G 1. (9.9)

Now consider again Cagan's money demand function (9.4), the UIP-hypothesis (9.3), and
the above relationships (9.7-9.9). After substitution and definition of the equilibrium commodity
price and the long run PPP-hypothesis (see equation (9.6)), we find

~i,t - ~i,t - Ql,i yi,t ~ (kZ,i Ti,t ~ IXZ,iB{ 18ii - 8 ii,t) - ao,i

sii - (Tn.i-~m.i)-a~~yi-yi)fóz~Ti-Ti)}bo
1 p

9ii,c - Rl i~yi
- Qz,i yi ~ Y3.i Ti - l~3.i ~i.t

1 q I q
f~- - Q3,í } F~l,i)~i,t - ~- - ~3,i)iti,t-I - YO,i~-

7i ~Íi
(9.12)
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Note that the last equation (9.12) is also included with country j acting as the domestic country,
that is, with i interchanged with j.

When the above equations (corresponding to the sticky price monetary model) are written
into a single reduced form equation, [hen country i's nominal exchange rate for one unit of
country j's currency satisfies

s~i,e - f(ms,e,mi,c~y:,e~yi~tiTi,tfTJ.c,Pt,c,Pi,c-i,Pi.c~P.i.c-~)~ (9.13)
As we have already indicated, the above models are called monetary because they focus on

the equilibrium conditions in the money market. They also assume perfect substitutability of
domestic and foreign non-money assets so that the corresponding markets can be aggregated
into a single extra market ( a market of 'bonds'). This perfect substitutability assumption will
be relaxed next in the Portfolio Balance Model of exchange rate determination ( see [BH85]).

9.2.3.3. The Portfolio Balance Model (PBM)

The key assumption of the PBM is the imperfect substitutability between domestic and foreign
assets. This model will be stock-flow consistent, in that it allows for current account imbalances
to have a feedback effect on wealth and, hence, on long run equilibrium.

The net financial wealth of the private sector can be subdivided into three components:
nominal domestic money M;, domestically issued bonds B; (which can be government debt
held by the domestic private sector), and foreign bonds B; denominated in foreign currency and
held by domestic residents (which can be interpreted as net claims on foreigners held by the
private sector). In a regime of floating exchange rates, a current account surplus on the balance
of payments must be exactly matched by a capital account deficit, i.e., by capital outflow and,
hence, by an increase in the net foreign indebtedness B; to the domestic economy. Therefore,
current account imbalances will determine exchange rate changes.

Furthermore, the assumption of imperfect substitutability of domestic and foreign assets
is equivalent to the assumption of a risk premium, separating expected depreciation and the
domestic-foreign interest rate differential (implying a collapse of the UIP-hypothesis). In the
PBM this risk premium will be a function of relative domestic and foreign debts.

Summarising, the reduced form equation for the nominal exchange rates may be written
under the PBM as:

Sii~e - f(M:,c, Mi,c~ B:,ce Bi~t, FB; c, FB;,t), (9.14)

where FB;,c and FB;,t denote foreign holdings of domestic and foreign bonds respectívely.
Taking account of the above arguments, the four last terms may be replaced by the domestic
and foreign accumulated current account surplusses.

The logarithmic nominal exchange rate models (9.6), (9.13), and the logarithmic version of
(9.14) may be compared, using appropriate statistical tests (Lagrange Multiplier test). There is
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room left for a synthesis of the monetary and portfolio balance models, where aspects of various
models should be considered simultaneously.

9.3. Empirical Models

In the previous section we introduced the three main types of structural exchange rate models
and discussed the underlying hypotheses: the flexible price monetary model, the sticky-price
monetary model, and the portfolio balance model. These models are often selected in the recent
literature [MR83, MR91, MT92, CT95], perhaps due to their moderate data requirements.

Since we examine exchange rates against the US dollar, the notation used in the previous
section can be slightly simplified: the subscripts i and j are omitted; instead all fundamentals
corresponding to the U.S. carry a"~" mark.

The three models, which we will empirically test in the remainder, aze subsumed in

ec-f~Tt-Tt,mt-mt,2p~-2pt,at-~rt,TB~,TBt)~et (9.15)

with s the logarithm of the bilateral spot exchange rate (for instance, DNU~); m- m' the
logarithm of the relative (ratio of foreign to domestic) nominal money supply; ip - ip' the
logarithm of the relative industrial production; r- r' the nominal short-term interest rate
differential; a-~r' the inflation rate differential; TB and TB` the cumulated trade balances, and
e is the disturbance term. Theoretically, GNP is to be preferred as a proxy for real income. GNP
data, however, are available on a quarterly basis, whereas industrial production data are available
on a monthly basis. Therefore, following Meese and Rogoff, we use industrial production data
in our experiments.

The flexible price monetary model (FPMM) includes only the first three terms, that is,
Tt - TÉ , mt - mf , and ipt - ipf . The sticky price monetary model (SPMM) adds the inflation
rate differential a~ -~r~ . The portfolio balance model (PBM) adds the cumulated domestic and
foreign trade balances.

Imposing the constraint of domestic and foreign variables (except for trade balances) enter-
ing the structural models in differential form, implies that the pazameters of the corresponding
domestic and foreign variables aze equal in absolute size, in the case of linear regression.
While this parsimoniousness assumption is conventional in empirical applications, it is a po-
tential source of misspecífication. In the subsequent sections we will investigate whether this
misspecification occurs.
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9.4. Data Sources and Preliminary Diagnostics

In Chapter 1 we have already distinguished between stationary and nonstationary time series data.
Chapter 5 was dedicated to modelling with nonstationary time series data; resulting difficulties
in the application of standazd statistical inference, and solutions for these difficulties. The worst
consequence of modelling with nonstationary time series data is that standazd statistical tests
provide evidence for a supposed relationship between economic fundamentals, whereas in fact
the relationship is purely spurious. Tests for cointegration have been developed to guard against
making these erroneous conclusions.

Therefore, the first s[ep in a modelling exercise incorporates the characterisation of the data.
Unit root tests (introduced in Chapter 5) are normally used for this purpose. When the various
time series contain a unit root, the next step is to investigate whether these nonstationary time
series drift together (are cointegrated) or drift apart (are not cointegrated).

9.4.1. Data Sources

We take most of the monthly data from the OECD series (using Datastream), which include
bilateral exchange rates, industrial production index, consumer price index (total), foreign trade
balance, money supply (M1), short-term interest rate, and long-term interest rate. The data not
available in the OECD series, are taken from the National Accounts. The data source of each
variable is reported in Table C.1 in Appendix C. In Appendix C the Figures C.1 through C.4
depict the variables corresponding to each country; the monthly series range from January 1974
until July 1994.

To facilitate neural network training with weight decay (explained in Chapter 3 and 4), we
rescale the data corresponding to each explanatory variable in such a way that at least 95 percent
of the data lies within the [0, 1] range and the average equals 0.5 (see section 4.6). This rescaling
makes the signal transferred by each input unit comparable with the outputs of internal units,
which is required for weight decay to have effect.

9.4.2. Unit-roots
Chapter 5 discussed the characterisation of time series by the order of integra[ion. To test each
series for possible nonstationarity, we use ADF tests. Table 9.1 reports the characterisations
suggested by these tests for the variables in differential form. Numerical outcomes of the tests
are presented in Table C.2 in Appendix C.

In Table 9.1 most variables aze characterised as I(1), although the industrial production
differential appears to be (trend) stationary, in three out of four cases. Trend stationarity is
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Table 9.1: Results of unit-root tests
Japan U.K. Germany Netherlands

Exchange Rate I(1) I(1) I(1) I(1)
NominalInterestRate I(1) I(1) I(1) I(1)
Money Supply I(1) I(1) I(1) I(0)fcft
Industrial Production I(1) I(0)-~cft I(0) I(0)
Inflation I(1) I(0) I(1) I(1)
Cumulated Trade Balances I(1) I(1) I(1) I(1)
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denoted by "I(0)fctt". It should be noted that discriminating between a trend stationary series
and a random walk with drift, is difficult in a small sample.

9.4.3. Cointegration

The tests for unit roots suggested that most of the variables included in the models, can be
assumed to be I(1), although some variables seem to be (trend) stationary. Modelling with
levels of vaziables that are I(1) can give misleading results, as indicated in Chapter 5. The next
step tests whether some linear combination of the vaziables is stationary. If this is the case, the
varíables aze said to be cointegrated. Table 9.2 reports the ADF test for cointegration between
the vaziables in the various models. The cointegrating relationship is estimated in PcGiveZ as the
long run static solution of a dynamic autoregressive distributed lag (ADL) model. We include
6 lags3 for each variable, a constant term, and a trend. The residuals from the static long run
solution are then tested for stationarity, using ADF tests with critical values calculated from the
response surface deve[oped by MacKinnon [Mac91 ] for "with trend" models.

Table 9.2: Cointegration tests

model Japan U.K. Germany Netherlands
flexible-price 2.09 2.64 2.52 3.05
sticky-price 2.32 3.57 2.38 4.29
portfolio 1.79 3.27 1.52 2.61

Critical
Value (alpha-0.1)
4.20
4.50
4.77

ZEconometric software package developed by Hendry and his co-workers [Hen93]
3The number of lags was induced by capacity constraints of PcGive.
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The number of lags included in the auxiliary regression of the residuals is determined by the

most significant lag (a - 0.05). No constant term was added, since it was already included in
the long-run relationship.

Table 9.2 shows that in all cases the null hypothesis of no (linear) cointegration cannot
be rejected. The data do not seem to confirm the three theoretical models of exchange rate
determination. This conclusion is not altered when the models are estimated in unrestricted
form, which incorporates foreign and domestic variables separately. In particular, the evidence
for cointegration is weakened, since the number of variables is doubled. Additionally, the
corresponding critical values are not available in the literature.

In Chapter 5(section 4) we argued that if no evidence can be found for linear cointegration,
then there may exist a nonlinear cointegration relationship. Therefore, next step in the cointe-
gration analysis tests for the presence of nonlinear cointegration by neural networks. One main

drawback of this approach is the huge computational effort required, especially in simulating
the critical values, which depend on several neural network parameters. We have to make
some concessions regarding optimality and efficiency of the test. To reduce the computational
burden, we adopt the same neural network parameters for each exchange rate model and each

country. In this way, we have to simulate only three critical values, namely for four, five, and

seven series. We take a neural network with three hidden units. The weight decay parameter is

taken to be 0.001, and the number of observations equals 246. Further, no multiple restarts are
employed in the neural network training process. The residuals of the neural network versions
of the flexible-price, sticky-price, and portfolio models are tested for a unit root using the neural
network ADF test. The required critical values are generated as explained in section 5.4. Cor-

responding to the linear ADF tests for cointegration, the number of lags in the neural network

ADF test is determined as the highest lag (maximum 13) that is significant at a Sqo level. The
results are shown in Table 9.3.

Table 9.3: Neural network ADF tests
model Japan U.K. Germany Netherlands
flexible-price 4.51 5.16 3.05 2.70
sticky-price 3.54 5.23 4.88 4.73
portfolio 4.04 4.90 3.78 5.03

note: The critical values for a-0.01, 0.05, and 0.10 are:
flexible-price: 6.02, 5.46, 5.19
sticky-price: 6.27, 5.73, 5.39
portfolio: 6.67, 6.07, 5.72
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The tests for nonlineaz cointegration do not reject the null hypothesis of no cointegration
at reasonable significance levels. So, functional form misspecification does not seem to be an
important explanation for the weak evidence for a long-run relationship among the economic
fundamentals and the exchange rate.

While determining the number of lags to be included in the neural network ADF test of
the residuals, we observed that the absolute value of the "t-ADF"-statistic decreases with the
number of lags included. The highest values are observed for the "t-DF" statistic (i.e., no lags
included). The DF-statistics would reject the null hypothesis of no cointegration for each model.
However, leaving out lagged terms that are significant makes the ADF regression misspecified,
which invalidates the DF test.

Nevertheless, Sephton [Sep94] performs the cointegration tests on the MARS algorithm by a
DF test on the residuals, even though the sample sizes of the data employed in their applications
seem too small to neglect the effects of the lagged terms in the ADF tests. Sephton's evidence
for the existence of nonlinear cointegration can thus be questioned.

9.5. Predictive Performance Assessment

In this section we investigate the predictive power of the various exchange rate models, both
in levels (long-run) and in changes (short-run). Our main objective is to examine whether
nonlinear specification of the supposed relationship between the economic fundamentals and
the exchange rate gives better predictive performance than the benchmazk random walk model
and linear specifications do.

As we have already indicated in Chapter 4, neural networks have the danger of overfitting
the data. To prevent such overfitting, we employ neural network training with a weight decay
term added to the least squares error function (see Chapter 3, formula ( 3.9)). The effect of
weight decay is that large weights are penalised. Vazying the weight decay parameter from low
to high transforms the approximating function from highly flexible to rigid. There exists a value
for the weight decay parameter that restricts the network weights such that the approximating
function closely resembles the linear model estimated by OLS; a further increase of the value
makes the approximating function resemble 'penalised OLS' (also known as ridge regression).
So, by the weight decay parameter we determine the level of flexibility.

Cross-validation was introduced in Chapters 2 and 4 as a procedure for selecting the value
of the weight decay parameter. The weight decay value suggested by cross-validation and the
corresponding cross-validation MSE, immediately indicate whether (strong) nonlinearities are
present in the data, or whether the OLS estimates of the parameters in the linear model have to
be shrinked. In the following two subsections we shall sometimes use this information to skip
the neural network results, when cross-validation indicates that no flexibility is needed. In some
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cases we shall deliberately choose a weight decay parameter smaller than the one suggested
by cross-validation, to enforce differences in performance between the linear models and the
neural network models; of course, risking bad predictions due to overfitting.

9.5.1. Methodology for Out-of-sample Model Comparison

In line with Meese and Rogoff [MR83], we will compare the models using rolling regressions
(also called recursive estimation or running regression). This means that we start with an initial
estimation of the model, using (say) the first no observations. We then make predictions for the
remaining part of our sample (n-no); after this we include the next observation in the parameter
estimation set (which now consists of no -}- 1 observations), and again predict the the response
variables in the remaining set of observations. This procedure is repeated until the training
set equals the total sample. In this way we have constructed a set of (n - no) 1-step ahead
predictions, (n - no - 1) 2-steps ahead predictions, or in general, nk -(n - no - k f 1) k-steps
ahead predictions (k G n - ~,o).

Note that the structural models require forecasts of their predictor variables in order to
generate predictions of the exchange rate. In line with what is usually done in the literature in
this case, we use the actually realised values of predictor variables. Consequently, the results
are optimistically biased.

As our principal criterion for comparison we take RMSE

n-k ~~Z

RMSE(k) - { L IyPfk - yPfk )z~(~, - k)} , (9.16)
p-r4i J

where k denotes the prediction horizon ( in months), yptk the observed value of the response
variable at time p f k, and yPtk the response value estimated by a model with parameters
estimated from the data set {(x;, y;)}P.

9.5.2. Long-Run Predictions

The cointegration analyses indicate that if there is a relationship between the exchange rate and
the selected economic fundamentals, it is tenuous at best. In this section we examine whether
-despite the weak evidence for cointegration- the exchange rate models can tell more about the
future than the random walk model (ê~~k - si, k- 1, 2, ...) does.

When the models estimated in the levels of the variables are in fact spurious, the out-of-
sample prediction will show no improvement over the prediction accuracy of the random walk
model. We regard the examination of the predictive accuracy of the models (in levels) as com-
plementary to the cointegration test, which tests for the existence of the supposed (equilibrium)
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relationships between the economic fundamentals and the exchange rate. Theoretically, it is
possible that a cointegration relationship escapes the Engle-Granger cointegration test (applied
in section 9.4.3). Hence, the assumptions of the cointegration test were not all satisfied; some
of the variables were I(0) rather than I(1). Furthermore, Mark [Mar95] finds evidence for
long-horizon predictability (in levels) of the exchange rate by some economic fundamentals.

Table 9.4: Accuracy of long-run predictions: RMSE(OLS)~RMSE(neural network)
model I month 6 months l2 months 18 months 24 months

Japan
flexible-price 0.23I0.09 0.26I0.15 0.30I0.22 0.33l0.28 0.35I0.34
sticky-price 0.23l0.10 0.27I0.19 0.31I0.25 0.34I0.32 0.38I0.38
portfolio 0.23I0.09 0.27I0.17 0.31I0.24 0.35I0.33 0.38l0.38
random walk 0.03l0.03 O.O8I0.08 O.11I0.11 0.14lO.14 0.17I0.17

United Kingdom
flexible-price 0.21I0.1] 0.24I0.15 0.28I0.17 0.32I0.19 0.35l0.24
sticky-price 0.20I0.15 0.23I0.13 0.26I0.17 0.29l0.20 0.31l0.21
portfolio 0.19I0.12 0.23I0.15 0.26I0.16 0.31I0.17 0.33I0.21
random walk 0.04I0.04 O.1310.13 0.17I0.17 0.19IO.19 0.20I0.20

Germany
flexible-price 0.30I0.25 0.35I0.38 0.39I0.49 0.41I0.56 0.41I0.57
sticky-price 0.29I0.18 0.35I0.27 0.41I0.36 0.44I0.41 0.44I0.44
portfolio 0.27I0.18 0.33I0.27 0.38l0.36 0.40I0.43 0.41I0.45
random walk 0.04I0.04 0.12I0.12 0.16l0. ] 6 0.20I0.20 0.20I0.20

The Netherlands
flexible-price 0.21I0.21 0.25I0.28 0.28I0.34 0.30I0.38 0.32I0.41
sticky-price 0.17I0.16 0.20I0.24 0.23l0.34 0.24l0.40 0.24l0.43
portfolio 0.20l0.13 0.23I0.19 0.27l0.23 0.29I0.27 0.29I0.29
random walk 0.04l0.04 O.11I0.11 O.1510.15 0.19I0.19 0.19I0.19

To examine the possible existence of a long-run relationship, both linear and neural network
exchange rate models in levels are employed. The models are compared on the RMSE criterion,
described in the previous section. The prediction performance of the random walk model is
included as a benchmazk in the comparison; random walk models are often used for this purpose
in the literature.

The following procedure is followed to construct Table 9.4. The initial linear and neural
network models are estimated on the first 140 observations, including the determination of the
weight decay value for the neural networks. The number of hidden units was fixed at four. Five
restarts are used to find a neural network representation of a particular exchange rate model.
The cross-validation procedure, which is employed to select the weight decay value, suggests
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Table 9.5: Long-run predictions with unrestricted models RMSE(OLS)
model I month 6 months 12 months I 8 months 24 months

Japan
flexible-price 0.13 0.16 0.20 0.23 0.26
sticky-price 0.10 0.13 0.14 0.17 0.18
portfolio 0.10 0.13 0.14 0.16 0.18

United Kingdom
flexible-price 0.25 0.30 0.35 0.40 0.44
sticky-price 0.23 0.28 0.33 0.38 0.42
portfolio 0.20 0.24 0.27 0.32 0.35

Germany
flexible-price 0.23 0.30 0.35 0.35 0.34
sticky-price 0.22 0.28 0.33 0.34 0.34
portfolio 0.24 0.27 0.32 0.33 0.32

The Netherlands
flexible-price 0.21 0.26 0.30 0.32 0.33
sticky-price 0.20 0.24 0.28 0.29 0.31
portfolio 0.19 0.22 0.24 0.25 0.24

a value between 0.01 and 0.001; the corresponding cross-validation error is smaller than the
cross-validation error of a linear model estimated by OLS. The initial model is then used to
predict the remaining part of the data. Then, the next observation is added to the estimation
set, and the parameters (weights) are updated, using the latest values to depazt from. This
procedure is repeated until all observations are in the estimation set. Finally, all one-month-
ahead predictions are collected, and the corresponding RMSE is calculated; the results are
shown in the first column in Table 9.4. The same is done for 6, 12, 18, and 24 months-ahead
predictions; the corresponding results are shown in the next columns of the table.

We make two conclusions from Table 9.4. First, no structural exchange rate model -linear or
neural network- achieves better predictions than the random walk model for prediction horizons
up to two years ahead. It should be recalled that actual values were inserted for the independent
variables, which makes the results even less promising. The results, however, are in line with
the findings of other studies [MR83, MR91, DN90], and support the very weak evidence we
found for linear and nonlinear cointegration. Second, the neural networks outperforms the linear
models in most cases. However, with a large prediction horizon (18 and 24 months) the neural
network's predictions are worse than the linear model's predictions, in general. This may be due
to extrapolation difficulties, which seems to hurt neural networks more than the lineaz models.

We also investigate the out-of-sample prediction capacity ofunrestricted models, i.e., foreign
and domestic variables are included separately. The results are shown in Table 9.5. Since the
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neural network predictions closely approximate the predictions of the lineaz model, we left the

former out. The most striking observation is that the predictions for the Japanese Yen against
the US dollar exchange rate have been improved considerably. The random walk models could
again not be beaten by the structural models (either a linear model or a neural network). Despite
these disappointing results, we make some observations on modelling for prediction that seem

worth mentioning.
When the models aze specified in unrestricted form, the number of variables is doubled,

which increases the variance of the OLS-parameter estimates. This may lead to bad long-run
predictions. The neural networks weights are determined by minimising the compound loss
function, consisting of the sum of squared errors and the sum of squazed weights (weight decay

learning). The effect of weight decay is a reduction of the variance of the weights, at the
expense of a(somewhat) higher bias. Weight decay is particularly effective in the case of many
connections and relatively few observations. When biased estimation is applied to the lineaz
model by adding the same penalty term to the error function, the long-run predictions may
improve as well. In case the lineaz unrestricted flexible-price model for the UK is estimated by

penalised OLS with a weight decay value of ]0, the corresponding row in Table 9.5 becomes

flexible-price 0.18 0.19 0.22 0.24 0.26.

So, the prediction performance increases significantly. Despite the positive impact that reg-
ularisation has on the predictions, the performance of the random walk model is still out of
range.

Another observation concerns the chance ofdrawing faulty conclusions from the one-period-
aheadprediction criterion, when that criterion is used for discerning between the predictive power
of neural networks (or ftexible regression methods in general), and the predictive power of linear
models, in the case of I(1) variables. In this case it pays off to overfit the observations in the
training set, presuming that the performance assessment is done on one-period-ahead prediction
errors. To illustrate this statement, we fitted a redundant neural network (eight hidden units and
weight decay value a-0.0001) to the model for the Yen-Dollar exchange rate, including ip, m,
áp', r', and m'. These particular vaziables were selected on the basis of their sluggishness in
changing. The resulting one-period-ahead RMSE was 0.06, which is clearly the best among
the structural models; see the first part of Table 9.4 and Table 9.5. The 12, 24, and 36-periods
ahead prediction RMSE, however, dramatically increased to 0.49, 0.94, and 1.56, respectively.
Compared to the values of the conesponding rows in Table 9.4 and Table 9.5, these values are
excessively high.

An intuitive explanation of the foregoing is as follows. Assume the series of interest y~ is
generated by

ye - yc-i f vt v~ ~ i.i.d.(O, QZ).
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Let the series xc be assumed to be useful for predicting yc, but in reality they are not. Assume
xt to be generated by

xe - xt-i -f Ee Et ~ i.i.d.(O,ozi).

The hypothesised relationship f between y and x is determined on the data set {(y;, x;)};-~ by
a very flexible method on the one hand, and a linear model on the other hand. The flexible
method will be able to approximate the last observa[ion closely; this implies f(xc) .~: yt. The
linear model will in general give values less close to individual observations. Using the flexible
function f to predict yc~, given xc~, then results in

TJ~c~i - f(xcfi) - f(xc f Ecti) ~ f (xc) ~ yc~

assuming Et is sufficiently small. This implies that the one-step-ahead predictive performance
of f will be close to the predictive performance of the random walk model. The linear model,
which has a larger bias, will fit the data less precisely. So, in that case f(xc) ti yc will not
hold, making the linear model's predictive performance worse than that of the ftexible model.
(Hence, yc is the best predictor of yc~, by construction). The investigator should not conclude
that yc is nonlinearly related to xt by f, argueing that combining xt nonlinearly yielded better
one-step-ahead predictions than combining them linearly.

The spurious relationship is revealed when the prediction horizon is enlazged. In case a real
fundamental relationship were found, the performance would not decrease so much. However,
if the relationship is spurious, the performance will decrease rapidly when the prediction horizon
is enlarged.

9.5.3. Short-Run Predictions

The previous sections showned no evidence for the presence of a long-run relationship between
the exchange rate and the economic fundamentals proposed by theories on exchange rate
determination. In this section we examine whether short-run predictions can be made from the
vazious exchange rate models, including the variables in first-differenced form.

The application of standazd econometric inference to a dynamic (ADL) form ofthe exchange
rate models with first-differenced variables reveals a strong significance of the exchange rate
change in the previous period for all four countries. The details on this analysis aze presented
in Appendix C section C.3. This provides evidence against the simplest theory of "no change"
in the level of the exchange rates. Therefore, we will also consider the univariate model

ost - f(e9t-,,...,oet-k)

for the exchange rate changes.
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Table 9.6: Short-Run Predictions RMSE
country parsimonious complete univariate random walk

(OLSINN) (OLS~NN) (OLSINN)

Japan 0.221~0.221 0.230I0.214 0.217I0.216 0.223
UK 0.289I0.291 0.305I0.303 0.290I0.290 0.323

Germany 0.247I0.224 0.269~0.254 0.243I0.273 0.264
Netherlands 0.250I0.250 0.266~0.259 0.248~0.248 0.269

Table 9.6 presents the RMSEs of one-period-ahead predictions made by the pazsimonious
models displayed in Table C.3 (Appendix C), the complete (portfolio) models with two lags
for each vaziable, and the univariate time series model, all estimated by OLS and by a neural
network; additionally, Table 9.6 gives results for the random walk model dst - ei where e~
is i.i.d (O,v2). The initial models in the recursive estimation procedure are estimated on the

first 180 observations. The neural network versions of the parsimonious models are estimated

with two hidden units and a weight decay value of 0.1. The neural network versions of the
complete models aze constructed with two hidden units and a weight decay value of 5. The neural
network parameters have been determined by cross-validation, and indicate that if nonlinearities

are present, the effects are tenuous. Hence, the small number of hidden units and the relatively

lazge value of the weight decay parameter suggested by cross-validation are attempts to reduce
overfitting (rather than attempts to explore nonlinearities). Table 9.6 indicates that some short-
run prediction is possible; the RMSEs of the one-period-ahead predictions are smaller than

the RMSEs of the 'no-change' random walk models. In two cases (Germany and Japan) the

neural network model provided somewhat better results than the corresponding linear models

estimated by OLS.

The most relevant regularity that has been found in the data is that the next exchange rate
will move in the same direction as it has moved in the previous period, and that the size of the
change is damped by a factor of approximately 0.4 (see Table C.3).

The rolling prediction experiment, which gave rise to Table 9.6 revealed that over the last

62 months some structure is present in the exchange rate movements. However, the factor that

seems most important is the change in the exchange rate from the previous month. To assess the
possible impact of the economic fundamentals that were selected in the parsimonious models
for the complete period 1974-1994, we perform an additional cross-validation test on the linear

models, as follows. Two years of observations are repeatedly left out from model estimation,

and are then predicted from the resulting model. The resulting out-of-sample predictions are

compared with the actuai values. The results are shown in Table 9.7. Table 9.7 shows which
pazt of the variance in ~st is explained by the parsimonious linear models in Table C.3 and the
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Table 9.7: Out-of-sample explained variance: RZ
country parsimonious univariate
Japan O.18 0.11
UK 0.26 0.15
Germany 0.22 0.14
Netherlands 0.20 0.11

univaziate model ~stt i - ao f a~ ~st, respectively. We conclude that over the period 1974-1994
some of the selected economic fundamentals helped explain part of the variance in the exchange
rate changes. Over the last 5 years, however, their effect on predictive performance was very
small.

As said before, the parsimoniousness assumption may introduce a misspecification into
the exchange rate models. We have examined whether this is the case for the models in first
differenced form. Incorporating each domestic and foreign variable separately, as well as two
lags of each, has a negligible impact on the predictive qua]ity of these models.

9.6. Conclusions

We applied neural network specification and linear specification to three structural exchange
rate models (flexible price and sticky price monetary models), and compared their out-of-sample
predictive qualities. We conclude the following.

First, no evidence was found that confirms the existence of a long-run relationship (linear
or nonlinear) among the exchange rate and the economic fundamentals included in the flexible
price, sticky-price, and portfolio models. When the foreign and domestic variables were
included as separate explanatory variables, the conclusion did not change. Consequently, long-
run predictions obtained from these models were worse than predictions obtained from the
'no-change' model.

Second, when the models were estimated in first differenced form, we found some evidence
of a weak structure underlying monthly exchange rate changes. The two main determinants
are the previous month's exchange rate change and the change in the interest rate differential
between two countries. The 'no-change' model, which implies that changes in exchange rates
are random and can therefore not be predicted, is outperformed by linear models for all four
countries (Germany, Japan, United Kingdom, the Netherlands). A neural network exploration
for possible nonlinearities in the short-run models did not show evidence of such nonlinearities.
When the foreign and domestic variables were included sepazately, this finding did not change.
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Third, in general, biased estimation improves the predictive quality of the various mod-
els, especially for the long-run. The neural network experiments revealed that weight decay
favourably affects the prediction quality of the neural network models. In some cases the neural
network showed better prediction performance than the corresponding linear model estimated
by OLS. In those cases, it was the regularisation by weight decay rather than the introduction
of nonlinearities that was responsible. Hence, biased estimation also improved the predictive
quality of the lineaz models considerably, especially when modelling with (nearly) collinear
independent variables or with a high number of independent variables and a relatively small set
of observations.

In this study neural networks were used to investigate the hypothesis that introducing
nonlinearities into existing structural models of exchange rate determination improves the
predictive quality of these models. Exchange rate determination has always been a difficult
problem [MR83, MR91, MT92] that is characterised by very weak underlying relationships.
These relationships are hazd to quantify for any regression method, including neural networks.
Introducing nonlinearities into current exchange rate models does not seem to be a future
reseazch direction with high expected payoffs.



Chapter 10

Summary and Conclusions

In economic data modelling one tries to find relationships among economic en[ities such that
the data sample at hand is approximated as well as possible and that new observations will be
predicted accurately. The increasing availability of computer power has stimulated research in
data modelling techniques that search for an approximating function over some large classes
of functions using the data sample at hand. The neural network is a popular flexible regres-
sion technique. In economics, however, most modelling is still performed using pazametric
methodology.

The topic of this thesis is the application of neural networks to economic and financial
problems of prediction. The aim is to investigate the usability and the practical relevance of
neural networks in the specification of economic (time series) models and their position among
alternative (statistical) techniques. An additional aim is to stimulate cross-fertilization between
the neural network field on the one hand, and the statistics and econometrics field on the other
hand.

Our type of research can be characterised as exploratory, since we have examined (among
others) the potentials of a new methodology -neural networks- for economics and finance.
The global outline of the study is as follows. Part I(Chapters 1-S) discusses the theoretical
aspects of economic modelling and neural networks. Chapter 1 describes the general economic
modelling problem and the parametric approach to model building, which is generally accepted
in econometrics. As alternatives to this parametric approach, Chapter 2 introduces several
flexible regression methodologies; among them are neural networks. Different aspects of the
neural network methodology are then discussed in the chapters 3 and 4. Chapter S discusses the
usefulness of neural networks in modelling nonstationary time series. Part II (Chapters 6-10)
deals with the practical aspects of applying neural networks to problems in economics and
finance. Chapter 6 reviews the literature on neural network applications in economics and
finance. The practical usability of neural networks is examined in three case studies, presented
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in Chapters 7, 8, and 9 respectively. Chapter 10 gives the conclusions. In more detail these
chapters may be summarised as follows.

Chapter 1 describes the general economic modelling process, which is divided into three
parts: model specification, estimation, and evaluation. In general, these models are linear
in their parameters (not necessarily in their explanatory vaziables). The issues that were dis-
cussed, concern both cross-section and stationary time series data. The central issue in model
specification is building models without violating the standard statistical methods of inference.
The methodology of model specification was reviewed from the viewpoint of the econometrics
literature. In addition, (parametric) model estimation and evaluation were described.

Chapter 2 reviews several flexible regression methodologies found in the statistics literature.
These methodologies search -beyond the space of parametric (linear) functions- for a suitable
data approximating function, using the data at hand. The neural network is considered to be a
member of this class of flexible regression methodologies. A vital issue that affects the whole
class, is the biaslvaziance dilemma. This dilemma implies that an accurate within-sample fit gces
together with a bad out-of-sample prediction performance in practice. A general characteristic
of flexible regression techniques is the presence of one or more so-called flexibility parameters.
These parameters determine the degree of flexibility of the resulting approximating function. The
biaslvariance dilemma means that better out-of-sample predictive accuracy may be obtained by
reducing the flexibility of the approximating function. The choice of the flexibility parameter(s)
is usually made on the basis of some measure of generalisation ability, such as the squared
prediction error. Small samples make it difficult to estimate the prediction error reliably. Cross-
validation is a method designed to provide an estimate in such situations.

Chapter 3 starts with the graphical and mathematical representation of neural networks.
Neural network learning was discussed from a statistical perspective. It was shown that neural
network learning becomes conceptually very close to statistical nonlinear regression, once the
neural network architecture has been fixed. The greatest concern in applying neural networks is
generalisation. Weight decay is a regularisation method which generally improves the general-
isation ability of neural networks. It amounts to adding a penalty term to the standazd (squared
error) loss function. A common procedure for evaluating the neural network's performance is
to compare its performance with the performances of alternative techniques. When more than
two methods are compared, it is vital to take the multiplicity effect into account when drawing
conclusions. We discussed the required statistical theory and proposed some statistical multiple
comparison procedures.

Chapter 4 addresses the most important practical aspects of neural network design, namely
the specification of the neural network's architecture, its components, the learning procedure, and
the softwaze package used. Simulation experiments illustrated the occurrence of many different
local minima, the effectiveness of weight decay in reducing overfitting and on the number of
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local minima. In order to create a transparent methodology, we formulated an explicit neural
network construction procedure. This procedure comprises a principled selection of the number
of hidden units and the weight decay parameter.

Chapter 5 deals with the modelling of nonstationary time series through neural networks.
It starts with an intuitive illustration of the difficulties that nonstationary time series involve
when prediction is the goal. Cointegration and error-correction are econometric concepts, which
aze designed to enable sound modelling with nonstationary time series. A first step was taken
towards nonlinear generalisation of these concepts, as follows. Neural networks were used to
make nonlinear cointegration and nonlinear error-correction models operational. Critical values
were generated for a neural network augmented Dickey-Fuller test, which tests for the presence
of nonlinear cointegration. Further, the standard linear error-correction model (ECM) was
extended in a nonlinear way by the addition of a parameterised neural network to the short-run
part of the ECM.

Chapter 6 forms the transition from the theoretical discussion of neural networks to their
application to actual cases. The chapter's aim is to characterise the types of financial problems
that neural networks have been applied to. This characterisation was done by a review of a
sample of applications, drawn from the literature on neural networks applied to problems in
economics and finance. We observed that neural networks are most often applied to classification
tasks, such as bondrating and credit scoring. In many studies, especially in the earlier ones, the
methodology was obscure, and conclusions were based on (very) small data sets. Hence, the
claims were exaggerated sometimes, and should be interpreted with some caution.

Chapter 7 applies neural networks to the modelling of hedonic house prices in Boston. In this
case study the data are of the cross-sectional type, the sample size is relatively large (506), and
the number of explanatory variables is intermediate (13). Two parametric models and a neural
network were estimated on the data in the specification set (400 observations). The predictive
performances -measured by the evaluation set (106 observations)- were statistically compared
by pair-wise t-tests with resampling and adjusted for the multiplicity effect. According to these
tests, the neural network model achieved a predictive accuracy that is significantly better than
the predictive accuracy of the two parameteric models. Since the neural network has found
a better solution, the final solution deserves more analysis. To this end we proposed three
measures. These measures indicate the average influence, the average absolute influence, and
the degree of monotonicity in the partial relationship for each input factor.

Chapter 8 reports on a study in which neural networks were applied to the prediction of the
production of new mortgage loans in the Netherlands. The model should provide predictions
for horizons ranging from 1 month to 18 months. The relevant economic entities were charac-
terised as nonstationary time series, and were measured at different time frequencies (monthly
and annual). We employed an error-correction model which synthesises long-run and short-run



164 Summary and Conclusions

aspects. The long-run component was specified by a linear model based on 30 annual observa-
tions. The neural network procedure was used to explore complex (nonlinear) specifications of
the short-run part of the ECM. In the Dutch mortgage case a nonlinear specification of the ECM
did hardly improve the prediction quality of a linear ECM.

In Chapter 9 neural networks were used to investigate whether the introduction of nonlin-
earities into models of exchange rate determination improves the prediction performance (in
levels) of these models. We examined three structural exchange rate models for four foreign
exchange rates: the Dutch guilder~US dollar, the Japanese yen~iJS dollar, the Deutsche mark~LJS
dollar, and the British poundlLlS dollar. As a starting point we took three well known theoretical
models of exchange rate determination: the flexible price monetary model, the sticky price
monetary model, and a portfolio balance type of model. Next empirical models were specified
by a linear functional form and a neural network based, flexible, functional form. The long-run
and short-run predictive qualities of both types of model specifications were investigated and
compared to the predictive quality of a simple random walk model. The main conclusion is
that including nonlinearities into the structural models of exchange rate determination barely
improves their predictive quality; random walk models could not be outperformed for prediction
horizons upto two years. When predicting the one month's change in the exchange rate, the pure
random walk model was outperformed by a simple linear model in which the previous month's
change in the exchange rate was most important. The introduction of nonlinearities into the
short-run models also barely improved their predictive quality.

In Appendix A we outlined neural network learning and prediction from the perspective of
Bayesian statistics. In Bayesian terminology, the weight decay term, which was described in
Chapter 3, can be interpreted as a prior distribution of the weights.

In Appendix B we presented the data sources of the variables used in Chapter 8.
In Appendix C we presented the data sources of the variables used in Chapter 9, the detailed

test results of unit root tests, and the results of the econometric analyses of the short-run models.

The following conclusions are drawn from the research undertaken in part I.

~ In economic modelling one should follow a sound strategy when specifying a model, in
order to avoid questionable models due to unbridled data mining or specification searches
(Chapter 1).

~ Neural networks are a member of the class of flexible regression functions and they suffer
from the difficulties inherent to that class, such as the biaslvaziance dilemma (Chapter 2).

~ Once the architecture of a neural network is fixed, neural network learning becomes
conceptually very close to statistical nonlinear regression (Chapter 3).

~ The innovative aspect of neural networks seems to bethe particular form of the ap-
proximating functions, not the specific learning strategies or application methodologies
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(Chapter 3).
. A crucial issue when making statistically sound comparisons of predictive performances

of several data modelling techniques is the multiplicity effect (Chapter 3).
. Controlling the degree of overfitting is vital for a successful application of neural networks

(Chapters 3, 4).
. Weight decay is an effective method for constraining the flexibility of the resulting neural

network solution (Chapter 4).
. Cross-validation, although time consuming, is of great help in selecting appropriate values

for the neural network parameters, such as the number of hidden units and the weight
decay value (Chapter 4).

. It is questionable whether a nonlinear cointegrating relationship constructed by a flexible
regression technique is practically useful for extrapolation or for long-run predictions
(Chapter 5).

. The detection of a nonlinear cointegrating relationship (in-sample) may help to improve
pazametric models and existing theories (Chapter 5).

. The nonlinear generalisation of the short-run part of the linear error-correction model by
a neural network seems promising for practice (Chapter 5).

The following conclusions are drawn from the research undertaken in part II.

. Neural network applications solving economic and financial problems are often poorly
described, so their methodology remains obscure (Chapter 6).

. Neural networks can automatically find a good specification of a regression equation with
cross-sectional data. This is especially helpful when economic theory fails to suggest a
suitable functional form (Chapter 7).

. Since hedonic price models can be constructed not only for houses but also for other goods
than houses, neural networks certainly have potential for this particulaz azea in economics
(Chapter 7).

. Qualitative economic modelling and data collection is much more time consuming than
the quantitative specification and estimation of the empirical model (Chapter 8).

. The (nonlinear) error-correction model is well suited to synthesise the short- and long-run
aspects of a data generating mechanism (Chapter 8).

. The introduction ofnonlinearities -by neural networks- into structural models of exchange
rate determination does not improve the prediction performance considerably (Chapter 9).

Our final conclusion may be stated as follows.

Neural networks can be conveniently applied to various economic modelling prob-
lems. These neural networks can be embedded into the methodology forperforming
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empirical studies that is generally accepted by applied economists and econome-
tricians. We have developed a neural network methodology that au[omatically
indicates whether nonlinear approximations to the data are justified. Our method
ensures that functional form misspecification is not a likely cause for possible un-
satisfactory model performance. So, neural networks are a useful extension to the
econometrician's toolbox, but they do not replace established econometric mod-
elling and inference techniques.

One of the results of solving certain problems is that one ends up with new questions.
Therefore, we suggest some directions for future research.

The practical relevance and performance of the predictive approach to neural network
learning (explained in Appendix A) needs to be examined for economic and financial modelling
problems in particulaz. It is known that in small samples the predictive approach deviates
from the plug-in approach, on which this thesis elaborated. The predictive approach deals with
overfitting and multiple local minima in a natural way, by integrating over the posterior weight
distribution.

The understanding of cross-validation in nonlinear problems is still incomplete, and needs
to be investigated by carefully designed simulation studies and by theoretical statistical studies.
Especially interesting are studies that investigate the variance of cross-validation, which is
influenced by several problem characteristics, such as sample size and signal-to-noise ratio, and
several different neural network characteristics, such as number of hidden units, weight decay
value, and network type. It is still questionable whether cross-validation is the best measure of
generalisation ability to use in neural network modelling. To this end, cross-validation should
be compared to other global measures of generalisation ability.

Neural network practitioners strongly need an accepted methodology. The "standazdisation"
of such a methodology makes the results of their empirical studies better to interpret. Statisticians
could apply their expertise to develop such a standardised approach.

Most of the neural network software packages support only neural network learning that
minimises the squared error loss function or Kullback-Leibler distance (section 4.5.3). Neural
network learning algorithms should be developed which accept user-defined loss functions. Such
learning algorithms are especially valuable when the objective of modelling is to maximise the
number of correctly classified objects, the money profits in a financial trading situation, and the
like.

In this study we have only investigated the usability of neura] networks for single equation
systems. In (macro)economics, however, simultaneous equations systems often aze a better
means to describe the underlying system. Each equation in such a model has a simple pazametric
form, usually lineaz. It is interesting to explore nonlinear (flexible) generalisations of such
simultaneous equations systems, using neural networks. In such a system multiple output units
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are needed to represent the various endogeneous variables.
Finally, the first step we have made towards nonlinear generalisation of cointegration and

error-conection requires further theoretical and practical investigation.



Appendix A

A Bayesian View on Neural Network
Learning

In this Appendix network learning with weight decay is discussed from a Bayesian perspective;
also see section 3.4. Additionally, the Bayesian approach to prediction is outlined, in which
uncertainty in the weight vector is explicitly taken into account. For a good introduction to the
fundamentals of Bayesian analysis we refer to [Ber85]

A.1. Weight decay

Assume we have a data set consisting of n observations (xi, y~ ), ...,(x,,, y„), where x denotes
a vector of input variables and y the scalar output variable. The data are assumed to be
independently drawn from a distribution p(x, y); they are normalised to mean zero and variance
one.

A parameterised neural network f with weight vector w defines a mapping from an input
vector x to a predicted output y, namely y- f(x, w). We model y as a function of x,
y- f(x, w) ~ e, assuming the noise e to be Gaussian i.i.d. with zero mean. Using the Gaussian
error model, the (sample) likelihood of y given x and w is given by

z
P(y ~ x,w) - (2~rvó)-2 exp (-(y - ~(x,w)) (A.1)

` e
where va is the level of inherent noise in the outputs (i.e. ~o - Var(e)). The intuitive reason for
the name "likelihood function" is that a weight vector w for which P(y ~ x, w) is large, is more
"likely" to be the true w than a weight vector w for which P(y ~ x, w) is small, in that y would
be a more plausible occurrence if P(y ~ x, w) were large.
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In the conventional maximum likelihood approach to neural network training the negative
logarithm of the sample likelihood L(w), given by

L(w) -~ log P(y: ~ x.~ w) -~(y:
-~(x., w))2 -~ C (A.2)

:- 1 :-1 0
is minimised; the constant C does not depend on w. When the optimal weight vector w' is
used in the prediction of the output ynfl for a test case xntl, this is referred to as the plug-in
approach to prediction. The uncertainty in this prediction due to the inherent noise in the output
data is given by the sample estimate of ao; however, the uncertainty in the estimation of w' is
usually not accounted for. We shall come back to this point later.

So far we have described the likelihood of classical statistics. The genuinely Bayesian
features are now introduced. The main distinction betweem Bayesian statistics and classical
statistics is that Bayesians combine prior information with information extracted from the data.
The neural network learning method is derived from applying the simple Bayesian principle

posterior oc prior - sample-likelihood

to the training problem, where oc means "is proportional to". In Bayesian terminology the term
"probabilities" corresponds to a relative measure of belief in the many possible network weight
vectors. There is much literature about Bayesian analysis, priors, etc.; see [Ber85], for instance.

The prior distribution of the weights may be assumed to be Gaussian

P(w) - (2~rvw)-N exp I - 2v2Z)
(A.3)

` w
where vw is the expected standard deviation of the weights, and N is the total number ofweights.
This is only one of the many priors that could be chosen (see [BW91 ]), and seems justified if we
assume the regression to be reasonably smooth. The Gaussian prior is based on the experience
that in smooth regressions positive and negative weights are encountered equally frequently,
that smaller weights are more frequent than larger ones (in absolute size), and that very large
weights are very unlikely. On the one hand very large weíghts result in networks that describe
very nonlinear behaviour, on the other hand, very small weights provide neural networks with an
almost linear behaviour. This is caused by the specific shape of the logistic squashing functions,
which consist of an almost lineaz part around their center.

Using the well known Bayes' rule

P(AIB)- P(BIA)P(A)~P(B),
the posterior probabilities of the weights are obtained by combining the prior distribution of the
weights with the sample likelihood:

P(w~(x ) (X )) -
P(w)P((xl,yl),..., ( Xn~~Jn)~w) (A.4)leyl ,...~ neyn

P((Xliyl)i...,(XnvTJn))
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P(W)P(ylv...~yn~x1~...,xn,W)
(A.5)

P(yl, . . . , ynlxl t . . . , Xn)

- P(W)~i IP(yi~xi~W) (A.6)
P(yl f ... ~ynlxli...,Xn)

Using (A.1), (A.3), and (A.6), we derive the following posterior probabilities of the weights:

P(WI(xltyl)~..., (Xnoyn)

oc

1 N 1 n
oc exP -(~;Z ~ w; f ~2 ~[yi - f (xi~ W)[Z) (A.7)

w j-l o i-1

n N `

exp I -(~[yi - f(xi,W)~Z f ~ ~w,) (A.8)

where a equals ~ó~vw.
In E(w) -~; I[yi - f(xi, w)]2 ~- a~j w~ we recognise the well-known cost function

for neural network learning with weight decay term a, which was introduced in Chapter 3.
So the most probable or maximum posterior weights aze identical to the weights obtained by
minimising the cost function E. The inclusion of the penalty term (weight decay term) ~ reduces
the tendency of maximum likelihood estimation to "overfit" the data, i.e., to model the noise
rather than the true regularities.

A difficulty arises when specifying the value of J~. In practice it is often impossible to
specify a(- ~ó~~w) a priori. Different authors choose different approaches to this specification
problem. One approach uses some approximation of the prediction performance to select a
suitable value for the weight decay term, for instance by cross-validation. Other approaches,
which are in line with the Bayesian theory, specify a non-informative prior for the pazameters
vo and Qw. An approach followed by MacKay [Mac92] is to estimate the parameters from the
data during learning.

A.2. The Predictive Approach

In the predicti ve approach to statistical prediction, one does not use a single "best" weight vector,
but integrates over the posterior weight distribution. The best single-valued prediction for a test
case with input xnf I is then given by

ynfl - IRN!(xnfliw)P(WI(xt~yl)i...,(xniyn))(1W (A.9)

where N is the dimension

ofJJJ

the weight vector.
In lazge samples we expect the posterior distribution of the weights to concentrate neaz

a single point, in this case the plug-in and the predictive approach become equivalent. For

i-l j-l
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small data samples there are trade-offs between the flexibility of f(x, w) and the spread of the
posterior distribution of the weights P(w ~(x~, y~ ), ...,(xn, yn)) ; see [GBD92]. A limited data
set together with a flexible estimator leave room for numerous weight vectors to be probable.
These weight vectors may be slightly less probable than the weights obtained by maximum
likelihood estimation. To improve the average prediction performance, it looks promising to
take the whole posterior distribution of the weights into account, instead ofusing only the single
most probable weight vector for a particular data sample.

The integration ofpredictions is one way in which the Bayesian approach reduces overfitting.
The other way is the preference over weights embodied in the prior. The integration of predic-
tions makes a weight vector which fits the data only slightly better than other weight vectors
contribute only slightly more to the actual prediction than the others. This contrasts with maxi-
mum likelihood estimation, in which the best weight vector dominates all the others. In this way
the uncertainty in the determination of the best weight vector is explicitly taken into account.
In practice, however, application of the foregoing is infeasible due to the high-dimensional
integrals, which are analytica]ly intractable and difficult to compute numerically.

At this point approximations are made. Researchers dedicated to Bayesian neural net-
work learning differ in the way they handle high-dimensional integrals; see (Mac92], [Nea92],
[BW91], [Rip93a], and [Tho93a]. In practical applications of neural network learning tech-
niques, it is important for an approximation to be easy to implement.

Ripley proposes in [Rip93a] the following approximation. Let E(w) denote the sum of
the log-likelihood and the log-prior (the regularisation term), and H the Hessian of E(w) at a
local minimum w'. Locally the posterior distribution of the weights is approximated by Taylor
expansion:

exp -E(w) ti exp - ~E(w') ~ (w - w')TH(w - w`)~2~ . (A.10)

Find as many local minima w; (i - 1, ..., q) of the cost function E(w) as possible, and use the
approximation (A.10). This combined with the lemma

f exp(-2wTHw)dNw - (2~)N~z
detH

leads to the following approximation to (A.9):

4
. .

Tjn}1 - f(xntl~wi)I(wi)~
i-1

where I(w; ) is proportionally to

(A.11)

1 eXp(-E(w`:)).detH
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This approach, although computationally very demanding, seems feasible in small sample
situations when very good predictions are required. When, however, for a research activity
many different models have to be fitted and compared, the computing time required for the
predictive approach is yet prohibitively large.
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Appendix to Chapter 8

B.1. Data Sources

Annual Data

The following yearly data series' have been used:

. M`n, The amount of new mortgages taken out on dwellings (Mln Dfl.); period 1965-1994;
source CBS.

. M, The total stock of mortgages (Mln Dfl.); period 1965-1994; source CBS.
. DY, Disposable national income, gross and at market prices (Mln Dfl.); period 1965-1993;

source CBS.
. NH, The total number of households (~` 1000); period 1965-1993; source CBS.
. ND, The total number of dwellings, rented and privately owned (~` 1000); period 1965-

1992; source CBS.
. qoNOH, Percentage of total housing stock that is owner occupied (percentage); period

1965-1990 (5 yearly); source CPB.
. rm, The average interest rate of new mortgages on real estate (percentage); period 1965-

1994; source CBS.
. P, The price index of total consumption of employee households with an income less

than the sick-fund limit (index); period 1965-1993; source CBS.
. Pg, The mean market price ofempty to accept dwellings (~` 1000 Dfl.); period 1975-1994;

source NVM.
. PI`'g, The price index of new dwellings, incl. TAV (index); period 1965-1990; source

CBS.

'The author wants to thank the ABNIAMRO bank for kindly providing these data.
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. P', The price index of the rent ofemployee households (index); period 1965-1993; source
CBS.

. WED, The number of weddings (~ 1000); period 1965-1994; source CBS.

These data originate from the CBS (Central Bureau of Statistics), the CPB (Central Planning
Bureau), and the NVM (Dutch society of real estate agents). Some of the series have missing
values for 1993 or 1994. We predicted these missing values, using a simple univariate time
series model. On the important variable PA, we have data starting at 1975; the missing data
for the period 1965-1974 were approximated by deflating the 1975 market price for housing by
the price index of new dwellings PN~ in the corresponding years, assuming that in those yeazs
the market price for housing followed the price changes of new dwellings. Finally, the stock of
owner occupied houses (~` 1000) is calculated by multiplying the total number of dwellings ND
by the percentage of the housing stock which is privately owned qoNOH. The latter variable,
which is measured each five years, is transferred into yearly observations by a cubic spline
interpolation.

Monthly Data

The following monthly data series have been used.

. M'", The amount of new mortgages taken out on dwellings (Mln Dfl.); period 1985.01-
1994.12; source ABNIAMRO.

. rm, mortgage loan rate for 5 yeazs fixed (percentage); period 1985.01-1994.12; source
ABN~AMRO.

. H', tota] number of (existing) houses sold by the NVM (number); period 1985.01-1994.12;
source NVM.

. P~, market price ofhouses (Dfl.); period 1985.01-1992.12; source NVM; period 1992.01-
1994.12; source land's register.

. M( -1), total stock of mortgages in the previous year (Mln Dfl.); period 1985.01-1994.12;
source CBS.

The market price for houses registered by the NVM is above the average market price. We have
approximated the NVM data on the market price of houses for the 24 missing months by the
data from the land's register, since this series ends at December 1992. In fact, we have inflated
the last available NVM house price by a price index derived from the data on house prices taken
from the land's register (with December 1992 as base).
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Appendix to Chapter 9

C.1. Data Sources

Table C.1 presents the data source of the variables which are used in the structural exchange
rate models. The first column gives the variable's symbol, the second column the variable's
description, the third column the variable's measurement unit, the fourth column indicates the
published data series it originates from, and the last column refers to the DATASTREAM code.
To obtain data series of considerable length, we had to switch the money supply definition M 1
to MO for the United Kingdom case.

interest rate
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Figure C.1: Data for Germany-US; all data (except for exchange rate and trade

balances) are in differential form



178 Appendix to Chapter 9

Figures C.1 through C.4 display the time paths of the variables that occur in the sttvctural
exchange rate models. These monthly series start in January 1974 and end in June 1994.
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Figure C.2: Data for Japan-US; all data (except for exchange rate and trade
balances) are in differential form
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Figure C.3: Data for United Kingdom-US; atl data (except for exchange rate and
trade balances) are in differential form
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Figure C.4: Data for Netherlands-US; all data (except for exchange rate and
trade balances) are in differential form
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variable description
Table C.1: Data sources

unit series code
United States

cpi Consumer Prices Index OECD USOCPCONF
r, short-term interest rate Percentage OECD USOCTBLqo
rt long-term interest rate Percentage OECD USOCLNGoIo
m money supply M1 US á Bln OECD USOCMIMNA

money supply M1 US á Bln OECD USOCMIMNB
monetazy base MO US á Bln GOV USMONBASA

ip industrial production -total Index OECD USOCIPRDG
TB Foreign Trade Balance US á Mln OECD USOCVBALA

Germany
cpi Consumer Prices Index OECD BDOCPCONF
r, short-term interest rate Percentage OECD BDOCTBLqo
rt long-term interest rate Percentage OECD BDOCLNGqo
m money supply Ml DM Bln OECD BDOCMIMNB
ip industrial production -total Index OECD BDOCIPRDG
TB Foreign Trade Balance DM Bln OECD BDOCVBALA

United Kingdom
s exchange rate -Pound to 1 US ~ GOV USXáUK..
cpi Consumer Prices Index OECD UKOCPCONF
r, short-term interest rate Percentage OECD UKOCTBL~Io
rt long-term interest rate Percentage OECD UKOCLNGqo
m money supply MO Pound Bln GOV UKMO....A
ip industrial production - total Index OECD UKOCIPRDG
TB Foreign Trade Balance Pound Mln OECD UKOCVBALA

Netherlands
s exchange rate -DFL to 1 US S GOV USXáDFL
cpi Consumer Prices Index OECD NLOCPCONF
r, short-term interest rate Percentage GOV NLEUR03
rt long-term interest rate Percentage IMF NLI61...
m money supply M1 DFL Bln OECD NLOCMIMNA
ip industrial production -total Index OECD NLOCIPRDG
TB Foreign Trade Balance DFL Mln OECD NLOCVBALA

Japan
s exchange rate -Yen to 1 US S GOV USXáYEN
cpí Consumer Prices Index OECD JPOCPCONF
r, short-term interest rate Percentage OECD JPOCTBLqo
ry long-term interest rate Percentage OECD JPOCLNGqc
m money supply M1 Yen Bln OECD JPOCMIMNB
ip industrial production -total Index OECD JPOCIPRDG
TB Foreign Trade Balance Yen Mln OECD JPOCVBALA
note: MO is the money base; Ml adds money of account to MO
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C.2. Unit Root Test Results

Table C.2 presents the results of the ADF unit root tests for the variables in the exchange rate
models for each country (The tests have been performed in PcGive 8.0). Recall from Chapter 5
that the null hypothesis of a unit root implies 70 - 0.

The first column of Table C.2 refers to the variable in differential form (except for the
exchange rates and the trade balances); for example, r denotes r- r'. The second through
fourth columns give the "t-value" (negative sign omitted) of ryo in the following three transformed
regressions

P

Dye - ae f ai t ~ 7o ye- i f~ rysAyc-: f ~e ~ (C.1)
~-i

P
~ye - ao i- ryo yc-i ~- ~ ry.~ye-: ~- ve, (C.2)

:-i
P

Dys - 7o yc- i -~ ~ ry:Dye-c f vt.
:-i

(C.3)

(C.4)

The number of lags p is determined by the highest possible lag (with a maximum of 13) which
is significant at an ] 0~o error level. The corresponding critical values at the 1~o, Sqo, and lOqo
error levels are calculated following MacKinnon [Mac91 ], and are displayed at the bottom of
each column. The last two columns give the t-values of ao and ai in either

P

~yt - ao -1- a~ t-F ~ ry:Dyc-: -i- ve
.-i

if the null hypothesis of ryo - 0 could not be rejected, and in (C.2), (C.3), or (C.4), if the null
could be rejected. Substituting 70 - 0 into (C.2) removes the possible multicollinearity between
the trend and yi-~, which makes the estimation of ao and a~ more accurate.
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Table C.2: Unit root tests
variable ty;, try„ t~.,, tQ~ t~,

United Kingdom-US
s 2.44 2.45 1.37
r 2.71 2.64 1.67
~cpi 3.39 2.74 2.62"
m 2.26 0.24 1.42
ip 3.95` 2.91' 3.27"
TBuk 2.25 0.83 0.06
TBus 1.95 0.85 0.66

Netherlands-US
s 1.78 1.25 0.79
r 2.07 1.54 1.25
4cpi 2.26 2.27 1.70
m 4.40' ` 1.60 0.34
ip 2.50 1.90 2.39"
TB 1.83 0.58 0.03

Germany-US
s 1.80 1.25 0.93
r 2.06 1.23 0.86
Ocpi 1.96 1.54 ] .46
m I .37 1.44 0.65
ip 2.88 2.04 2.28`
TB 2.09 1.77 0.75

Japan-US
s 2.41 0.50 1.62
r 2.16 2.08 I.OS
4cpi 2.34 2.44 I.58
m 2.73 0.35 I.11
ip 0.90 1.60 1.60
TB 2.95 1.46 0.43
criticaJ values:
1 ~0 4.00 3.46 2.57
Solo 3.43 2.87 1.94

0.41 0.58
0.04 0.16

0.69 1.33
2.44' 2.6]`"
0.13 0.50
0.52 0.26

0.13 0.26
0.56 0.50
0.74 0.75
4.17" 3.96"

0.80 0.33

1.07 0.69
0.93 1.20
0.13 0.14
0.22 0.47

0.07 0. l7

0.40 0.45
0.73 0.73
1.26 I.10
0.50 1.I3
1.27 1.29
0.31 0.03

2.60 2.60
1.97 1.97

C.3. Econometric Analysis of Short-Run Models

The following procedure has been followed to arrive at a parsimonious short-run model for Ost.
According to the genera]-to-specific approach, discussed in Chapter 1, we depart from the most
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general model (portfolio) extended with three lags for each variable included. We then use
F-tests to test for zero restrictions on a subset of variables. First the cumulated trade balance
terms are tested on their relevance, next the inflation rate differentials, and finally the elements
of the flexible price model (r, ~n, and ip). Only the end-results of this 'testing down' process
are reported in Table C.3. Table C.3 reports the variable's name, its coefficient, its t-value, the

Table C.3: Model Estimates
vaziable coefficient t-value

Japan (R2-0.19; DW-1.97)
Os~-~ 0.36 6.11
4si-3 0.10 1.76
~m.~-Z 0.17 1.94
4ri -0.0075 -3.96
United Kingdom (R2-0.25; DW-2.00)
Os~- ~ 0.47 7.70
Ost-2 -0.16 -2.53
Orrk-2 0.20 2.43
ATBi 3.07e-6 3.54
4TBi -7.91e-6 -2.58
~TB~-z -I.18e-5 -3.31

Germany (RZ-0.21; DW-1.96)
Osi-~ 0.34 5.99
Orrk-Z 0.29 2.76
Ori -0.0086 -4.55
4ipi-i -0.19 -2.39
The Netherlands (RZ-0.20; DW-1.99)
Os~- i 0.34 5.90
4rn.i-i 0.13 2.51
~rrei-3 0.11 2.20
Or~ -0.0064 -4.27

RZ of the estimated model, and the Durbin-Watson statistic DW, defined as

~izlet - et-~~2
DW :- c~n z ~

[-.t-1 ee

where e denotes the observed residual of the estimated model. A value of the DW-statistic
close to 2 indicates no autocorrelation in the residuals. Some other diagnostic tests have been
performed as well.

Note that the dominant factor in all models is Os~- ~. Recursive estimation showed that most
parameter estimates were stable, with some exceptions for the money supply variables. Stable
parameter estimates aze a prerequisite for reliable predictions.
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We performed the neural network test (see section 6.2) to test for possible neglected nonlin-
eazities in the models presented in Table C.3. The adjusted p-value of the test was smaller than
0.000 for the Japan, German, and UK cases; for the Dutch case the adjusted p-value was 0.92.

--~ 2
Additionally, RESET tests, which add Ost to the models, were performed. The probabilities
of the observed F-statistics were 0.036, 0.136, 0.121, and 0.842 for Japan, Germany, U.K,
and the Netherlands respectively. Both tests suggest that possible nonlinearities aze present in
the exchange rate models for Japan, Germany, and the U.K., and none in the model for the
Netherlands. The evidence of the neural network test is stronger than that of the RESET test.



Samenvatting

Economische modellen geven een relatie weer tussen economische grootheden. Deze relatie
mcet de data uit de steekproef zo gced mogelijk benaderen en moet toekomstige waarnemingen
zo accuraat mogelijk voorspellen. De steeds verder gaande ontwikkeling van de computer,
met name op het gebied van rekensnelheid en geheugencapaciteit, maakt onderzcek naaz en
toepassing van rekenintensieve technieken voor datamodellering mogelijk. Deze technieken,
ook wel flexibele regressietechnieken genoemd, zoeken in zeer grote klassen van functies naaz
een functioneel verband dat de observaties zo goed mogelijk benadert. Daazbij wordt niet
een specifieke functionele vorm, bijvoorbeeld lineair, voorondersteld. Een voorbeeld van een
flexibele regressietechniek, die erg populair is op dit moment, is het neurale netwerk.

Deze studie is verdeeld in twee gedeelten: Theorie en Toepassingen. Part I(Theorie) dat
de hoofdstukken 1-5 omvat, behandelt de theoretische aspekten van economisch modelleren en
van neurale netwerken. Part II (Tcepassingen) dat de hoodstukken 6-10 omvat, behandelt de
praktische aspekten van het tcepassen van neurale netwerken op problemen uit de economie.

Hoofdstuk 1 beschrijft het algemene proces van economisch modelleren in drie stap-
pen: specificatie van het model, schatten van model parameters en evaluatie van het model.
Aangenomen is dat alle modellen lineair ofpazametrisch zijn. De aan de orde gestelde onderwer-
pen betreffen zowel "cross-sectional" data als tijdreeksen. Het kernpunt van modelspecificatie is
het bouwen van een kwantitatief economisch model, zonder daazbij de uitkomsten van klassieke
statistische analyses betekenisloos te maken. De methodologie voor modelspecificatie is een
veel besproken onderwerp in de econometrische literatuur. In dit prcefschrift zijn de belangrijk-
ste punten hieruit aangehaald. Daarnaast beschrijven we het schatten van de model pazameters
en het evalueren van een geschat model.

In Hoofdstuk 2 bespreken we een aantal flexibele regressiemethodieken uit de statistiek. Het
neurale netwerk wordt geïntroduceerd als een element van deze algemene klasse. Een belangrijk
probleem waarmee men bij de gehele klasse van flexibele regressietechnieken te maken heeft, is
het zogenaamde zuiverheidlprecisie dilemma. Een praktisch gevolg van dit dilemma is dat een
nauwkeurige benadering van de steekprcefdata vaak samengaat met een onnauwkeurige voor-
spelling van nieuwe observaties. Flexibele regressietechnieken hebben meestal een of ineerdere
(flexibiliteits)parameters, welke de mate van flexibiliteit (gladheid) van het resulterende be-
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naderende verband beïnvlceden. Uit het zuiverheidlprecisie dilemma volgt dat voorspellingen
mogelijkerwijs verbeterd kunnen worden, wanneer de flexibiliteit van het benaderende verband
enigszins ingeperkt wordt. Het instellen van de flexibiliteitsparameters gebeurt meestal op
grond van een maat voor het generalisatievermogen, bijvoorbeeld de voorspelfout. In kleine
steekprceven is het vaak mceilijk een betrouwbare schatting van de voorspelfout te maken. De
statistische kruisvalidatie methode levert een schatting voor de voorspelfout in deze situaties.

Hoofdstuk 3 bespreekt neurale netwerken vanuit een statistisch theoretisch oogpunt. Het
hoofdstuk begint met de grafische en wiskundige representatie van het neurale netwerk. Leren
door neurale netwerken wordt besproken vanuit een statistisch perspektief. We laten zien dat
wanneer de azchitectuur van het neurale netwerk bepaald is, dit leren conceptueel erg veel
lijkt op niet-lineaire regressie. De grootste zorg die men heeft wanneer neurale netwerken
worden toegepast op praktische problemen, is het bewerkstelligen van een acceptabel general-
isatieniveau. Dit volgt direkt uit het zuiverheidlprecisie dilemma. Om de generalisatiekwaliteit
van een neuraal netwerk te verbeteren, is een regularisatiemethode geïntroduceerd, namelijk
gewichtsverval ('weight decay'). Om te voorkomen dat de gewichten in het neurale netwerk te
groot worden, wordt in deze methode bij de klassieke kwadratische verliesfunctie de gekwadra-
teerde som van de gewichten opgeteld. Een gangbare manier om de kwaliteit van een neuraal
netwerk te beoordelen, is zijn voorspelfout te vergelijken met die van alternatieve technieken.
Wanneer men echter statistisch verantwoorde conclusies wil trekken uit zulke vergelijkingen, di-
ent men expliciet rekening te houden met het zogenaamde meervoudigheidseffect ('multiplicity
effect'). Wij introduceerden enkele statistische methoden die ervoor zorgen dat verantwoorde
conclusies getrokken kunnen worden uit een studie waarin meer dan twee regressiemethoden
met elkaar worden vergeleken ('multiple comparisons').

Hoofdstuk 4 behandelt de belangrijkste praktische aspekten van neurale netwerken, zoals de
specificatie van de architectuur van het netwerk, de verschillende onderdelen, de leerprocedure
en de gebruikte software. Uit simulatie-experimenten blijkt dat meerdere lokaal optimale
gewichtsvectoren vaak voorkomen, dat de methode van gewichtsverval de flexibiliteit van
het resulterend verband effektief inperkt, evenals het aantal lokale minima. Om volledige
openheid en duidelijk te betrachten in het construeren van een neuraal netwerk, hebben wij
procedure geformuleerd voor de constructie van een neuraal netwerk. In deze procedure wordt
op een consistente wijze het aantal verborgen neuronen bepaald, alsmede de waarde van de
gewichtsverval-parameter.

In Hoofdstuk 5 wordt besproken waaz en hce neurale netwerken gebruikt kunnen worden bij
het econometrische modelleren van niet-stationaire tijdreeksen. Gestart wordt met een intuïtieve
verklaring van de gevolgen die niet-stationaire tijdreeksen kunnen hebben voor voorspellen.
Daarna worden cointegratie en foutencorcectie modellen geïntroduceerd. Deze econometrische
concepten zijn ontwikkeld om op een verantwoorde manier modellen te ontwikkelen, wanneer
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de vaziabelen gerepresenteerd worden door niet-stationaire tijdreeksen. Neurale netwerken zijn
gebruikt om een niet-lineaire generalisatie van cointegratie en fouten-correctie te operationali-
seren. Kritieke waazden zijn gegenereerd door de 'augmented Dickey-Fuller' test voor neurale
netwerken, die toetst op de aanwezigheid van niet-lineaire cointegratie. Het lineaire model met
fouten-correctie is uitgebreid op een niet-lineaire manier, door in het gedeelte voor de korte
termijn een geparametriseerd neuraal netwerk op te nemen.

Hoofdstuk 6 vormt de overgang van de techniek van neurale netwerken naar het toepassen
van neurale netwerken binnen het economische en financiële domein. Het dcel van dit hoofdstuk
is om aan de hand van een overzicht van de literatuur de problemen te karakteriseren waarop
neurale netwerken toegepast kunnen worden. Neurale netwerken worden het meest toegepast
op zogenaamde klassificatieproblemen, zoals kredietbeoordeling en het waarderen van aandelen
van een bepaald bedrijf. In veel van de onderzochte studies is het onduidelijk welke method-
ologie precies gevolgd is om tot de uiteindelijk architectuur van een neuraal netwerk te komen;
bovendien worden soms conclusies getrokken op basis van (te) kleine steekproeven.

In Hoofdstuk 7 zijn neurale netwerken toegepast om een (zgn. hedonistisch) model voor
de huisprijs voor woningen in Boston (USA) te maken, aan de hand van een represen-
tatieve steekproef inet 506 waaznemingen. Er zijn 13 mogelijk verklarende vaziabelen. Twee
parametrische modellen en een neuraal netwerk model zijn geschat met data uit een willekeurig
gekozen deelverzameling ter grootte 400. De voorspelfouten, welke gemeten zijn op de overige
106 waarnemingen, zijn statistisch met elkaar vergeleken door middel van paazsgewijze t-
toetsen. Deze t-toetsen zijn gebaseerd op 'resampling' (herhaalde trekkingen) en zijn gecor-
rigeerd voor het meervoudigheidseffekt. Uit deze toetsen mogen we concluderen dat het neurale
netwerk een significant lagere gemiddelde voorspelfout geeft dan de twee parametrische mod-
ellen. Omdat het neurale netwerk een betere representatie van het onderliggende systeem blijkt
te geven, loont het de moeite om het gevonden verband nader te onderzoeken. Daartoe wor-
den drie maten voorgesteld, die voor iedere verklarende variabele de gemiddelde invloed, de
gemiddelde absolute invloed en de mate van monotoniciteit van de partiële relatie aangeven.

In Hoofdstuk 8 zijn neurale netwerken tcegepast om een voorspelmodel voor de produk-
tie van nieuwe hypotheekleningen in Nederland te maken. Het voorspelmodel moet zowel
voorspellingen kunnen genereren voor 1 maand vooruit als voor 18 maanden vooruit. De eco-
nomische grootheden die een rol spelen in dit probleem, worden gekenmerkt als niet-stationaire
tijdreeksen en worden met verschillende tijdsfrequenties gemeten (maandelijks of jaazlijks).
Het probleem is aangepakt met een model met fouten-correctie waarin aspekten van de lange en
korte termijn met elkaar gecombineerd worden. De lange-termijn-component is benaderd door
een linear model gebaseerd op jaardata. Het neurale netwerk is gebruikt om te onderzceken of
een niet-lineaire specificatie van de korte-termijn-component de voorspelkwaliteit van het ECM
verbetert. In deze studie was de verbetering echter verwaarloosbaar.
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In Hoofdstuk 9 zijn neurale netwerken tcegepast om te onderzceken of het tcevcegen van
niet-lineariteiten aan bestaande strukturele wisselkcersmodellen de voorspelkwaliteit verbetert.
We hebben drie wisselkoersmodellen onderzocht voor de volgende vier wisselkoersen: ned-
erlandse gulden~amerikaanse dollar, japanse yen~amerikaanse dollar, britse pondlamerikaanse
dollar en duitse mark~amerikaanse dollar. De drie theoretische wisselkcersmodellen zijn: het
monetaire model met fiexibele prijzen, het monetaire model met vaste prijzen en het model
gebaseerd op een evenwichtige portefeuille. Uit deze theoretische modellen zijn empirische
modellen geformuleerd. De empirische modellen zijn vervolgens gespecificeerd dooreen lineair
verband en door een verband gebaseerd op een neuraal netwerk. De voorspelkwaliteiten van de
verschillende modellen (in niveaus) zijn vergeleken met het 'random walk'-model voor de lange
en korte termijn. De belangrijkste conclusie is dat voor de lange termijn de voorspelkwaliteit
(tot een voorspelhorizon van 2 jaar) slechter is dan die van het 'random walk- model; dit geldt
ook voor de neurale netwerken. Wanneer de verandering in de wisselkoers voorspeld wordt,
blijken de veranderingen niet geheel random te zijn. Een eenvoudig lineair model waarin de
verandering van de wisselkoers in de vorige maand een belangrijke rol speelt, voorspelt iets
beter dan het 'random walk'-model (in niveaus). Een neuraal netwerk vindt geen specificatie
die betere voorspellingen oplevert.

In Appendix A wordthet leren van een neuraal netwerk en het maken van voorspellingen met
een neuraal netwerk besproken vanuit een Bayesiaans perspektief. De Bayesiaanse interpretatie
van de gewichtsverval-parameter uit Hoofdstuk 3 is een prior-verdeling op de gewichten.

Appendix B geeft de beschrijving en herkomst van de variabelen die zijn gebruikt in Hoofd-
stuk 8.

Appendix C geeft de beschrijving en herkomst van de variabelen die zijn gebruikt in Hoofd-
stuk 9. Verder zijn hier de numerieke resultaten van enkele, in Hoofdstuk 9, gebruikte toetsen
en analyses weergegeven.

Uit het gedane onderzcek concluderen we het volgende. Neurale netwerken kunnen handig
toegepast worden op verschillende economische modelleringsproblemen. Ze kunnen worden
ingebed in de binnen de economie algemeen geaccepteerde empirische onderzoeksmethodolo-
gie. Wij hebben een strategie voor het maken van een neuraal netwerk ontwikkeld die vanzelf
aangeeft of niet-lineaire benaderingen van de waarnemingen gerechtvaardigd zijn. Op deze
manier wordt misspecificatie van de functionele vorm nagenoeg uitgeschakeld als oorzaak voor
(eventuele) slechte prestaties van het model. Neurale netwerken vormen derhalve een nuttige
toevoeging aan het arsenaal van econometrische methoden, maar zijn geen vervanging van
bestaande modellerings- en analysemethoden.
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