l_’__l
TILBURG & %}?ﬁ ¢ UNIVERSITY
l\;’fl

Tilburg University

Marketable permits in a stochastic dynamic model of the firm
Hartl, R.F.; Kort, P.M.

Published in:
Journal of Optimization Theory and Applications

Publication date:
1996

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Hartl, R. F., & Kort, P. M. (1996). Marketable permits in a stochastic dynamic model of the firm. Journal of
Optimization Theory and Applications, 89(1), 129-155.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2021


https://research.tilburguniversity.edu/en/publications/1a6e45ee-b1f0-41d9-a6d6-c64133c7aca2

OURNAL OF OPTIMIZATION THEORY AND APPLICATIONS Vol 89. No 1. pp 129 155, APRIL 1996

Marketable Permits in a Stochastic
Dynamic Model of the Firm'

R. F. HARTL" AND P. M. KORT®

Communicated by G. Leitmann

Abstract. This contribution attempts to determine the effects of
environmental regulation on the growth of an individual firm. Here, 1t
1s assumed that the firm revenue 1s stochastic. The government tries to
reduce pollution by creating a market on which the irm has to buy
permits 1n order to be allowed to pollute the environment.

Pollution 1s an inevitable byproduct of the firm production process.
and 1n our model the firm 1s offered two ways to deal with 1t. The first
1s to buy marketable permits. and the second 1s to clean up pollution
which can be achieved through investing in abatement capital stock.

[t turns out that the irm optimal trajectory consists of at most
seven different policies. They can be depicted in a feedback diagram
from which we can conclude that, provided that the firm never faces a
shortage of cash. productive and abatement capital stocks ultimately
reach their equilibrium levels where marginal revenue equals marginal
COSIS.

Key Words. Optimal control. stochastic control. Hamilton-Jacob1
Bellman equation, environmental problems. dynamics of the firm,
marketable permits.

1. Introduction

This paper 1s concerned with two streams of research. The first deals
with stochastic dynamic models ot the firm: the second deals with the impact
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of environmental regulation on dynamic firm behavior. In the first area. our
research finds its origin in the work by Bensoussan and Lesourne (Ref. 1).
who studied the optimal investment behavior of a self-financing dividend-
maximizing firm with stochastic revenues. This model does not include
environmental regulation. In the second area. our model is related to the
works of Kort, Van Loon. and Luptacik (Ref. 2) and Xepapadeas (Ref. 3).
where the effects of environmental regulation on the optimal dynamic firm
behavior are analyzed. However. these models do not include any
uncertainties.

Primarily, this paper extends the stochastic dvnamic model of the firm
of Bensoussan and Lesourne (Ref. 1) by letting the firm deal with environ-
mental regulation in the form of a marketable permit system. In this system.
the firm needs to buy permits in order to be allowed to pollute the environ-
ment. As soon as its pollution decreases. the firm can sell those permits that
are not necessary anymore to support the firm’s pollution output.

The organmzation of the paper is as follows. In Section 2. the dvnamic
optimization model is presented. Section 3 contains the derivation and some
characteristics of the feasible policies. The optimal solution is presented in
Section 4 with feedback diagrams and economic interpretations. Section 3
concludes the paper. Appendices A and B (Sections 6 and 7) contain the
mathematical details of Section 3. while the proofs of the propositions stated

In Section 4 can be found in Appendix C (Section 8).

2. Model

2.1. Production and Abatement Process. An empirical study by
Jorgenson and Wilcoxen (Ref. 4) shows that there are three possible firm
responses to environmental regulation. First, the firm may substitute less
polluting inputs for more polluting ones. In Hartl and Kort (Ref. 3). the
dynamic firm behavior is studied. while the firm uses this possibility to
respond to environmental regulation in the form of a pollution standard.
The second response is redesigning the production process to reduce emis-
sions; the third response is the use of special devices to treat wastes after
they have been generated. The latter approach is commonly known as end-
of-pipe abatement and involves investment in costly new equipment for
pollution abatement. Jorgenson and Wilcoxen (Ref. 4) concluded that
Investment in abatement equipment has the largest impact: for this reason.
we choose to model the end-of-pipe abatement here.

Let us assume that the firm produces with one type of capital stock
We define the following variables: K,(r) = productive capital stock at time /.
K>(1) =abatement capital stock at time 7, /,(1) = investment in the productive
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capital stock at time ¢, [>(1)=1nvestment in the abatement capital stock at

{1Mme i
We assume that there 1s no depreciation and that investment 1S ITTEVErs-

K=1. K=, (1)
[1}0, ]320 (2)

here a dot over a variable «tands for differentiating this vanable w.r.t.
qme. We omit the time argument if no confusion can be caused.

Producing with capital stock K. causes emissions E which can be influ-
-nced by utilizing the abatement capital stock K,. We define E(K,, K;) =
pollution flow.

[t is reasonable to assume that: ~missions can never be reduced to zero
inless no production takes place: amissions are increasing and convex in
the productive capital stock : abatement is subject to decreasing returns to
cale: abatement capital has a higher marginal effectiveness for a higher
rroductive capital stock : emissions are convex in both capital stocks.
Therefore.

E(K,.K>)>0.for K,>0 and K>>0. E0. K5)=0, (3a)
Eg >\, Ex x>0, (3b)
Ex.<0and Ex.x. >0, for K, >0. (3c¢)
Exx.<0,  ExkExr:—| Ex,x.) > 0. (3d)

In Xepapadeas (Ret. 3) and Kort. Van Loon. and Luptacik (Ref. 2), the
pollution function is separable in K, and K. This implies that a given
amount of abatement capital stock leads to a given reduction of pollution,
irrespective of the current level of pollution. But in reality. it holds that
more abatement nvestments arc required to reduce pollution with some
fxed amount as the level of pollution shrinks. Our nonseparable pollution
function satisfies this property and ‘herefore is more realistic than the pollu-
tion functions in the above-mentioned works.

y 2. Environmental Regulation. Well-known instruments that can be
applied by the government L0 control pollution are imposing an upper limit
(standard) on pollution. a pollution tax rate, subsidizing firm attempts 10
reduce its own pollution, and creating a market on which the firm needs to
buy permits in order to be allowed to pollute the environment. Here, we
consider a firm facing a pollution permit system. Responses of the firm to
other forms of environmental regulations are studied, e.g., in Helfand (Ret.
6 standard). Kort, Van Loon, and Luptacik (Ref. 2, tax subsidies), and
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Xepapadeas (Ref. 3, tax and standard). We assume pollution permit system
In the sense that: every time a firm increases pollution. 1t needs to buv
permits; or alternatively every time it decreases pollution. 1t sells permits:
one permit is associated with one unit of pollution: once a permit 1s bought.
It remains valid forever: i.e.. not only can a permit be used to cover one
unit of pollution tomorrow. but it can cover also one unit of pollution over
J years, 10 years, etc. It is of interest to relax this assumpuon. i.e.. to consider
permits that are valid only for a limited period of time.

The price of one permit is assumed to be fixed p = price of one pollution
permit. E(K,(0). K5(0)) is the initial emission rate. and we assume that the
firm owns at time zero just enough permits to cover this emission rate.
Should the firm never deviate from E(K(0). K5(0)) during the remaining
planning period. then the firm would not have to buy any more permits. so
expenditures on permits would be zero. Only 1f the firm changes its emission
rate [say positively. i.e.. £>0] does the firm need to buy more permits 1o
support its higher rate of emissions. Hence. the firm's expense on the permit
market at time 7 equals

pE=p(Ex,K\+ Ex,Ks)=p(Ex I, + Ex.>). (4)

Notice that spending turn into e4rning as soon as emissions are reduced.

2.3. Revenue. Revenue from selling the goods produced with capital
stock K is assumed to be subject to random fluctuations.

-

R(K)dit=S(K,) | dt+ cdB': (3)

here, R(K,)=revenue from producing with capital stock K, : B=standard
Wiener process with independent increments B, normally distributed with
mean zero and variance dr: S(K,) =expected revenue from producing with
capital stock K. with S(0)=0. S'>0. S"<0- O = positive constant.

This general representation of uncertainty includes the cases of demand
uncertainty. stochastic product price. Input price uncertainty. or random
distributions in the production function or cost function (Kobila. Ref. 7).

2.4. Financial Accounts. We assume that the firm finances 1ts assets
only by retained earnings. so that attracting debt money and issuing new
equity are excluded. Admittedly. this assumption is restrictive and the reason
for omitting external finance is mainly technical. On the other hand. it can
be argued that internal finance has been the dominant source of finance
historically as well as during the post-World War II era: see Judd and
Petersen (Ref. 8, p. 374).
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The firm’s assets consist of the cash balance and productive and abate-
ment capital stock. Fixing the value per unit of a capital good at one unit
»f money. we arrive at the following balance sheet equation:

M+ K, +K-=X, (6)

where X =equity and M = cash balance.

For technical reasons to be explained later. we introduce adjustment
~osts on abatement investments. Equity increases with revenue and decreases
through expenses on the permit market. distributing dividends and adjust-
ment costs on abatement mvestments.,

dX=[R(K,)—/)E—D——A(f:)]t/!: (7)

here. D = dividends and 4(/>) =adjustment costs on abatement investments,
with 4(0)=0, 4'>0, 4" >0.
Now. (1) and (4) (7) lead to the following state equation for M

dM=[S(K\)— (1 +pEk,)— (1 +pEx,)— D— A(l,)]dt

Further. it is assumed that the firm does not spend on investment and
dividend more than the expected revenue net from pollution expenses.

D+1,+ 1.+ A(l,) <S(K,) —pE. (9a)
which can also be written as
D+ 1,(1+pEy)+ L1 +pEg.)+ A() <S5(K)). (9b)

This restriction makes clear why we have to introduce adjustment costs on
abatement investments. If we skip A(/>) in this restriction, we see that /5 1S
unbounded in case | +pEg. 1s negative.

2.5. Complete Model. Before we present the whole model, we define
the terminal time 7 as an absorbing time at which the firm 1s no longer able
to meet short-term commitments (i.e.. cash balances are null or negative)
and 1s considered bankrupt.

T'=inf t|M(1)<0;. (10)

We assume that the firm behaves so as to maximize the shareholders’ value
of the firm. This value consists of the discounted dividend stream over the
planning period.

With & denoting the expectation operator and / denoting the share-
holder's time preference rate. i>0 and constant. the stochastic dynamic
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model of the irm can now be summarized as follows:

max & ¢ IMex]?)(—r"r)D dt ¢, (11a)
Nh.0.D A :
s.t.  dK, =1, dt, (11b)
dK,=1, dt. (11c)
dM = [S(K,)—1L(1+pEx)—L(1+pEy,)— D— A([,)] di (11d)
+oS(K,)dB, (1]&)
D >0, iy 20, [» >0,
S Ky)— Ll +pEx. ) —1(]l +pEg)— D—A(l:) 20, CEiL)
I'=1nflt| M(1) <0]. (11g)
K ,(0)=K,y. K-(0) = K>. M(0)=M,. (11h)

where K,,. K5, M, are given initial values of capital and cash.

3. Solution Using Stochastic Control Theory

As usual, we define the value function V(M. K,. K-) as

AT _}

VIM(1), Ki(1), Kx(r))=max & | exp(—i(s—1))Dds;. (12)

H.I-.D o)
' !

where all the above constraints have to be satisfied. We assume that
V(M.. K|. K:) iS C_.

3.1. HIB Equation and KT Conditions. The Hamilton Jacobi
Bellman equation (HJB) for this problem is (see, e.g.. Ref. 9)

iV=(0°/2)S*K) Vs
4+ max [D+ Var(S(Ky) —1(] +PEK1.) — [5(] +pE"*'-“-)

(11e)i11T)

_"D_A(]:))"FI'KHII“FI’r;.;:,]_j]. (11)
with boundary condition

(0, K,, K5)=0. (14)
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Using the Lagrangian
L=D+ Vy[S(K\) = I,(1+pEx)—I(1 + pEx.) = D— A(I)]
+ Vi + Vi L+ AL+ AL+ AD
+ A[S(K)) = L(1 +pEg) = I(1 + pEx.) — D— A(I))]. (15)

he apphcation of the Kuhn-Tucker conditions to the maximization problem
n the HJB equation (13) yields

Lp=1=Vy+A:—A,=0, (16)
Ln:er;_‘(Irw'*'/;q}(l+PEA'.)+/*1|=O. (17)
Lpn=Vig,—=(Vm+A)[l +pEx,+ A' ()] +A,=0. (18)

with the complementary slackness conditions
/qx.][i:/;l.j]::/.i._lD:Oq (]9)
/.{.4[5([\1)_/“ l +pEA|)_!:( 1 +PEAL)_D_4(!“] :O (20)

For fixed values of K|, K>, M. the maximization problem in the HJB equa-
tion can also be sketched graphically in the (K. K>, M )-space, see Fig. 1.
T'he optimum can lie either in the corners (Cases 1. 2. 3. 11). or the edges
(Cases 4. 5.6, 13, 14, 15). or on one of the facets (Cases 7. 8. 9. 10). or in
the interior (Case 12) of the set of feasible points (D. I, I,) satisfying

D:_)'(). IIZU ['120-.

D

Fig. 1. Fifteen cases in the maximization problem. Case 12 refers to the interior.
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In Appendix A (Section 6), we analyze these cases separately. determine
conditions under which they can be optimal. and whenever possible. solve
the HJB equation analytically.

3.2. Feasible Cases in the Static Maximization Problem of the HJB
Equation. From Appendix A (Section 6), we obtain that the firm has the
following candidate policies for optimality :

Case |1: [I,-policy.

L(1+pEx)=S(K,). 15L=0. D=0
Case 2: /,-policy.

L=0, L(l+pEx)+A(L)=5S(K,). D=0:
Case 3: D-policy.

I, =0, [,=0. D=S(K,):

Case 4. [, I,-policy.

()

|

L(1+pEx)+ (1 +pEx)+ A(L)=S(K,). D
Case 6: I, D-policy.

I, =0. I»(1+pEg)+ A(l)+ D= S(K,):
Case 11: M-policy.

L =1L=D=0:;
Case 14: [, M-policy.

/I, =0, >0, (1 +pEg)+ A(L) <S(K)). D=0.

Depending on the values of the state variables M. K,. K-. one of thesc
policies 1s optimal. The conditions under which these policies are optimal
can be found in Appendix A (Section 6). In what follows. we denote the
region in the (M, K, ., K,)-space where the /,-policy 1s optimal by /,-region.

the region where the />-policy is optimal by />-region. and so on.
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Table 1. Feasible regions and regions which can satisty the boundary condition.
1.e., which can reach the (K, . K,)-plane defined by M =0. Regions that
can be adjacent to each other are denoted by P: N means not possible:
H means hairhne case. Hairline cases can be omitted in the sequel. since
they will not appear as two-dimensional surfaces in the (M, K, . K,)-space.
but as lines or points.

Case Cl C?2 (3 C4 C6 Cl]
Case  Region [ [ D [, I [, D M Boundary condition
- / NoO
(3 D P NV Yes
(4 f| ]_‘ P P !/ .\JL}
6 I.,D H P P P Yes
il AY) P A P H H Yes
Cl14 [, M H P H P P P Yes

[n Table 1. we show regions in which the boundary condition (14)
can be satisfied, 1.e.. which regions can be adjacent to the plane M =0.
Furthermore. we also show which regions can be bounded to each other.
The proots of these results can be found in Appendix B (Section 7).

4. Different Cases and Corresponding Regions in the Feedback Diagrams

Using the above results. we can derive the values of the state variables
K,. K-. M tor which the cases listed in Section 3.2 can occur. The corre-
sponding proots can be found in Appendix C (Section §).

Proposition 4.1.  Assume that K, 1s such that the D-region exists for
M— 7 and K, hnite. Then. we obtain the following results:

(1) Assume that the parameter values satisty the following inequality:

| {i =G [+ 2020, 1.6, O 1< 2, (21)

l.e.. the discount rate and or the stochastic disturbance is not too large.
Under this scenario, only the M-region can exist for M =0 and K, < K,(K>).

——

where K,(K>) 1s imphcitly defined by

-

| +pEg (K. K5)+ A'(0)=0. (22)
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(1)  The boundary between the M-region and the D-region 1s given by
M= pS(K,). where p satisfies the following equation:

expl(ri=r)p]=[1=r(l i=c 2] [1=r(l i—c 20)]
=[2i=r:(2=02D)]/[2i= 1 (2 = 6 20)). (23)
in which

n=[V1+26%-1)/6°,  r=[-J1+26%-1]/c"

(m) For K, fixed. the boundary between the /\-region and the D-
region increases in the (M, K,)-plane and lies below a horizontal asymptote
which is situated on the level K*(K>). where K*(K-) is implicitly defined by

S,(Kl*):f(]+PEK1(A-'I*~AFE))- (24)

The D-region is situated above this boundary.

Consider the (M, K))-plane for K, fixed. At the intersection point
(M. K,) of the boundary between the /i-region and the D-region and the
boundary between the M-region and the D-region, 1t must hold that

[S(K) /(1 +pEg)][1/i— 0o Jar=pl=1, (25)

(1v)  The boundary between the D-region and the /, D-region is given
by E’,(K’;). while the D-region is situated below this boundary. Hence, for
K> fixed. this boundary is a horizontal line in the (M. K,)-plane.

(v) Also, the boundary between the M-region and the />, M-region is
given by K,(K,).

(vi) Consider the (M, K,)-plane for K- fixed. The boundary between
the M-region and /,-region starts at the origin and ends at the intersection
point of the boundaries between the M-region and D-region. and between
the /,-region and D-region.

From properties (iii) and (iv) of the above proposition, we conclude
that, when the D-region really exists for M—x. it will exist for
K, e[K¥(K>), K,(K>)). With this in mind, we formulate the following
proposition.

Proposition 4.2. Define K such that
K (KY)=K,(K¥). (26)
Then, 1t holds that

-

K (K>)> K (K>), for K> K5
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Hence. a necessary condition for the D-region to exist for M— oc and finite
K, is that K;> K7

Of course. Proposition 4.2 provides only a necessary condition for a
dividend policy to be optimal for M — x and finite K, , and thus for Proposi-
tion 4.1 to be valid. Notice also that, from an economic point of view, it 1s
unlikely that investing i1s optimal for K, e(K¥.K,). Namely, if we consider
the productive investment, we can argue that the expected return of marginal
productive investment [1.e.. S'/(1+pEg,)]. falls below the discount rate
when K, > K ¥ : this is an economically plausible reason for productive invest-
ment not to be optimal. Furthermore, the cash flow of marginal abatement
investment [i.e.. —(1+pEx,+A4")], 1s negative for K,<K,., so abatement
nvestment will not be optimal when the firm finds itself in the interval
(Kl* : Kl ).

Hence. due to economic arguments, we can exclude the policies 7,
[./I,, I, I,/D, /M for KvelKy . K,). Also. it does not make much sense
to perform a cash policy when M is already infinite (very large). This implies
that the only economically reasonable policy is the dividend policy when
M— oo and K;e(K, K,).

In order to construct the feedback diagrams in the (M, K,)-plane, we
use the above information and Table 1. showing which regions can be

bounded to each other. We consider three different K>-values:

(1) K> &S
(IT) K515 low:
(I11) intermediate values of K.

4.1. Results in the (K,, M)-Diagram. Due to space restrictions, we
consider only the most interesting case where®

SN[ /i—0o xff—p] [1+pEg (0, K5)]> 1. (27)

Feedback Diagram for K,> KY. From Propositions 4.1 and 4.2 and
Table 1. we derive Fig. 2, which shows that the firm keeps its cash 1f the
amount of productive capital stock is high enough while the cash situation
is poor. The firm invests, if the stock of productive capital goods 1S low
while there is plenty of cash to limit the risk of bankruptcy. The firm distri-
butes dividends. if the expected marginal revenue is too small to justity

If S'O)[1/i—o/ 2i—p)/[)+pEk(0, K;)]<] or even o°i>2, then the solution changes as
summarized by Van Hilten. Kort. and Van Loon (1993) for the onginal Bensoussan and
Lesourne model (1980).
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M/1, D/15

>~ M

Fig. 2. Optumal solution when A > A™

additional growth and the amount of cash available is high enough to guar-
antee a sufhiciently safe situation.

It the firm invests in abatement capital stock. 1t incurs expenses on
acquisition /> and adjustment costs 4(/,). On the other hand. pollution
decreases. so that the firm can sell permits which gives a revenue —pEy /-,
Hence, the cash flow from abatement investments equals —pEx [-— 1, —
A(l,).

For K, > K,. abatement investment leads to a positive cash flow when
/- 1s determined such that

‘_pE;\':_ | _.4'(13):0* (28)
The reason 1s that
_PE;\':/;*_IQ‘."’(]:)} -_lj[th'__ 'y ] ‘*“']’([:)]:0 (29)

This leads to the conclusion that, for K, > K,. the firm can earn money by
investing in the abatement capital stock. In Fig. 2. this money is used to
increase the cash balance when M is relatively low. while it is used for paving
dividends when M 1s large.

As mentioned already, for K, > K the expected marginal return of
productive investment falls below the shareholder’s time preference rate:
therefore, 1t 1s not optimal to invest productively in this case.

Since K, exceeds K. it is not optimal to invest in the productive capital
stock if K> K[*. Therefore, the region /, /- does not occur here.

From Table 1. we derive that. when there is an /--region, it should
occur somewhere above the line K, = K,. But in the /--region. cash flow of
abatement investment 1s negative. since it holds that

S(K))=1(1+pEx.)+ A(],) >0
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Another reason for the abatement investment to be optimal could be that
 makes investment in productive capital stock cheaper. This is so, since the
rm needs to buy less permits if Ky 1s large when the firm invests in productive
capital stock. because Ex,x.<0. But the firm does not invest in productive
capital stock anymore when K, > K,. Also in the future this will be the case,
sven when we take into account that K, increases when K, increases, because
rom Fig. 2 we derive that just below K, we have ,=1=0.1,=0 indicates
hat there is still no productive investment. while /=0 implies that the
nerease of K, is stopped.

We conclude that we cannot find an economic reason for the [>-policy
(o be optimal. Therefore, the />-region does not occur in Fig. 2.

Concerning Fig. 2, we have to remark also that the point (M, K,) does
not exist when it holds that [cf. (25)]

SUONL re—@ J2i—p]/[1 +pEx (0, K7)] <1 (31)

But nonexistence of (M. K,) would imply that 1t becomes optimal to pay
dividends for low levels of M and K, [cf. Van Hilten. Kort, and Van Loon
(Ref. 10. p. 404)]. This kind of behavior is only realistic in extreme situ-
1tions : therefore. we choose to disregard such a case here.

Feedback Diagram for a Low Value of K;. From Propositions 4.1 and
47 and Table 1. we derive Fig. 3. The firm carries out a cash policy with
the aim of preventing bankruptcy. Bankruptcy occurs when the cash balance
becomes negative. For K, > K, . extra cash money can be generated by abate-
ment investments. Hence. besides carrying out a cash policy. the firm can also
try to prevent bankruptcy by investing in abatement capital stock (/>/M).
Therefore. when K, is so large that investing in abatement capital stock
generates a positive cash flow, the [, M-region need not be as large as the
M-region. which would be optimal in the absence of abatement investment
1 extra instrument to keep the cash balance positive.

K
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D/1,

/1

|

M

Fig. 4. Optimal solution for an intermediate value of A that is below A~

Observe that Fig. 3 1s drawn for a lower value of K, than Fig. 2.
Therefore, for the same value of K,. abatement investment generates more
cash flow in Fig. 3 than in Fig. 2. This implies that, in Fig. 3. the /5 M-
region need not be that large to prevent bankruptcy:ie..the (/> M)—(/, D)
boundary occurs for relatively low values ot M.

As said already, K> 1s lower in Fig. 3 than in Fig. 2. This implies that.
for the same value of K,. Ex, 1s larger in Fig. 3. Therefore. in Fig. 3. more
permits have to be bought when the firm invests in productive capital stock.
which makes productive investment more costly. We conclude that the
regions where /, 1s positive will be smaller in Fig. 3.

Feedback Diagram for an Intermediate Value of K;,. Knowing Figs.
2 and 3, 1t 1s not so difficult to draw the feedback diagram in this case
(K> below K7"). This is done in Fig. 4.

4.2. Feedback Diagram in the (K,, K,)-Plane for M Relatively
Large. Due to Figs. 2, 3, 4, 1t 1s easy to draw a feedback diagram in the
(K>, K))-plane for a fixed large value of M. This i1s done 1in Fig. 5. which

K K>

Fig. 5. Feedback diagram in (K. K,)-plane for large value of M when (27) holds.
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<hows that the firm invests more In productive capital stock 1f K5 1s large.
hecause then marginal pollution costs pE, are lower.

K.(K>) is a boundary below which no abatement investment takes place.
Above it. K, is large so that pollution is also large, implying that it 1s
worthwhile for the firm to spend money on abatement, Provided that there
is enough cash money for all 1 and that the firm starts out such that

K,(0)<KX¥(K¥) and K,(0)<K7.

the firm ends up in (K¥. K(KY)). Here. it holds that
S'(KF)=i[l +pEx (K. KI)]. (32)
| + pEs (K, K3)+4'(0)=0. (33)

Equation (32) imphes that. in (K¥.KF). the expected return of a marginal
productive investment expenditure equals the shareholder’s time preference
rate i. Equation (33) implies that the cash flow of a marginal abatement
investment expenditure equals zero. Further erowth is optimal only when
the expected return of marginal productive investment at least equals 7 [1.e.,
K, remains below or on the curve K (K>)] and when the cash flow of
marginal abatement investment 1s nonnegative [i.e.. K; remains above or on
the curve K,(K>)]. From Fig. 5, we obtain that this is not possible ; theretfore,
it is optimal for the firm to remain in (K¥.K). once this point has been
reached.

[f at a certain point of time the cash balance 1s low, It can be necessary
to use part of the revenue, obtained from selling products and marketable
permits, for increasing the cash balance in order to prevent bankruptcy (cf.
Figs. 2. 3. 4), rather than using t for investments. Hence, due to liquidity
problems, the investments program that leads to (K3, K*) can be delayed
considerably. In fact, there 1seven a probability that (K¥ . K) 1s not reached
at all. which is due to the bankruptcy risk.

Since in real life the price of a permit will change over time, it 1S IMpOI-
tant to know what happens when the price p increases. From the definition
of K*(K>) in (24). we derive that K" decreases when p increases, so that the
6rm will reduce investments in productive capital stock. This 1s easy to
understand. since environmental costs are higher when the permit price 1S
large.

If we look at the definition of K, (K>) in (22), we see also that K,
decreases when p increases, implying that abatement investments Increase.
This is the proper thing to do, because the cash inflow due to abatement
nvestments. which is —pEx.. increases when the permit price rises.

Concerning the equilibrium (32)-(33). comparative statics analysis
shows that an increase of p results in a decrease of K¥(K¥) and an increase
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of K3 in the case where the mixed derivative Ex k. 1S not too low.

dK[(K3)/dp=(i/A)(Ex,Ex.x. — Ex,x.Ex.) <0, (34)

dK3 /dp=[—S"Ex.+ ip( L x-Lx.— Exx.Ex)]/pA>0, (39)
wherc

A=S"Eg,x.— ip(Ex,x,Ex,x.— Ei,x,) <0. (36)

5. Conclusions

T'his paper combines two different streams of research: stochastic
dynamics of the firm [Bensoussan and Lesourne (Ref. )] and optimal firm
behavior under environmental regulation [Xepapadeas (Ref. 3)]s- Here.
environmental regulation is present in the form of a marketable permits
system. T'his implies that the firm needs to buy permits in order to be allowed
to pollute the environment.

Pollution arises as an inevitable byproduct of the firm's production
process. The firm owns two different sorts of capital goods. The first is used
to produce goods. and the second is meant to clean pollution after i1t has
been generated in the sense of an end-of-pipe technology.

[t turns out that we can determine seven candidate policies for optimal-
ity. Dependent on the current level of the state variables. it is optimal for
the firm to apply one of them. If the firm lives long enough. it will reach its
equilibrium where marginal revenue and marginal costs of productive and
abatement capital stocks balance. It is also possible that the firm goes bank-
rupt before the equilibrium is reached. due to shortage of cash. Of course.
bankruptcy is also possible when the firm is already in the equilibrium.

Compared to a deterministic framework. here the solution consists of
a feedback diagram which indicates the optimal policy given the current
state, rather than time functions of state and control variables. Furthermore.
here the terminal time is determined endogenously by the bankruptcy time.
Since the bankruptcy time is defined as the moment of time that cash
becomes negative, it is possible to analyze the firm’s cash decision, which
cannot be done in a deterministic model.

6. Appendix A: Feasible Cases in the Static Maximization Problem of the
HJB Equation

For reasons of space limitations. we state only the main results here.
Details can be found in a full-length working paper (Ref. 11) which can be
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obtained from the authors. We state 1ts solution only in the few cases (Cases
3 and 11) where the HJB equation can be solved analytically. In other cases.

. cannot be solved analytically.
Case 1: I,-Region. This case is defined by
D=0, L=l [.=0,
S(K\)—1L(1+pEg)=0.
From complementary slackness, we obtain

A =0:
1nd from the other Kuhn Tucker conditions, 1.e..

| — Vi +Az— Ay =0,

Vi — (Vi t+ A1 +pEx ] =0,

Vie.— (Vi + A +pEg.+ A(0)]+A,=0.
it follows that this case is optimal if

Vi /(1 +pEg)=maxql, Vet

[V, (1 +pEx)][1 +pEx,+ A(0)] = Vi, .
The control /, is given by

L= 8(K:) /{1 Fpk)

The boundary condition }F(0, K. K5)=0 is not satisfied here, since
I’v.>0. Thus, the /,-region cannot be adjacent to the plane M =0 1n the

(K,.K-. M )-space.
Case 2: I-Region. This case is defined by

D:O. [E:() f->0.

—

S(K,)—I,(1 + pEx.) — A1) =0.
16
4> =0.
From the Kuhn-Tucker conditions, it follows that this case 1s optimal 1f

Ve [V 4 pEx.+ A'(I)] =max{1, Vi Vi,/(1+pEx)§.
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The control /5 1s defined by
S(Krl J ]3(1 +pEg:) — A([:) =0).

The boundary condition V(0. K,.K>)=0 1s not satished here, since
Vi,> 0.

Case 3: D-Region. This case 1s defined by

D=0 [,=0, =0,
S(K,)— D=0,

16
A3 =0.

From the Kuhn-Tucker conditions, 1t follows that this case 1s optimal 1f
| >max{ Vi, Vk,/(1 +pEg)1.
Vi, £ L+ pEg.+ A(0).

The control D 1s defined by
D=S8(K,).

In this region, the HJB equation (13), 1.e..
iV=S(K\)+(5°/2)S*(K\) Van.

can be solved to yield

V=S(K,)/i+c,(K,, K>) exp[M2i/cS(K))]
+ (K, K>) exp[—M2i/0S(K))].
The boundary condition V(0, K,, K5) =0 can be satisfied here.
Case 4: I,/I,-Region. This case 1s defined by
D=0, I, >0, I,>0,
S(K))—5L(1+pEg)— (1 +pEg,)— A(l,)=0,
oo
A =A=0.
From the Kuhn-Tucker conditions, it follows that this case i1s optimal if

I/f{'[:'!( I +pEKI) = ma){{ V.-H ; l }..

[IJKI "(l +pEM)][] +pEK:,+A’(13)] — VK:.
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The controls 7,. /> are defined by
S(Ar[)'_h(l +PEA.)'—]2(I+FEA)_4([:‘_)=0

1nd the last equality. The boundary condition V(0. K, . K>)=01s not satisfied
here. since Vg, > 0.

Case 5: I, D-Region. This case is defined by
D>, I,>0, [,=0.
S(K,)—1,(1+pEg,)— D=0,

18
A =A=0.

From the Kuhn Tucker conditions, it follows that this case can be optimal
only 1f

Vi, /(1 +pEg)=12max{ V. Vi./l +pEx.+A(0)]5.

Here. the marginal value of the dividend payout | equals the marginal value
of productive investment by, (1+pEg,). Since this equality contains only
state variables. Case 5 will be a lower-dimensional surface, rather than a
three-dimensional subset of the (M. K, ., K>)-space. Therefore. it is a hairline
case which can be omitted. In the feedback diagrams to come. this case
represents the boundary line between the /,-region and D-region.

Case 6: [- D-Region. This case is defined by

D=, [, =0. [.>0,
S~ 1 +pEp)— D—AF1)=0,

L&
dse=Ay=0

From the Kuhn-Tucker conditions, it follows that this case is optimal 1f
1 >max!{ V. Vi,/ (1 +pEg) ;.

The control /> is defined by
V.= 1+ pEg,+ A ([2),

and D is defined by
S(K\) = I-(1 + pEx.)— D— A(I,)=0.
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A necessary condition for the boundary condition to be satisfied [i.e..
V(0, K, K5)=0] 1s that Vi, =0, 1.c..

| +pEx.+A(1-)=0.  when M=0.

The following four cases (Cases 7. 8.9, 10) are hairline cases which can
easily be checked as shown in Case 5 above.

Case 7: I,/I,/D-Region. This hairline case 1s defined by
b 24, [,>0, [,>0,
S(IK)—L(1+pEg)—L(1+pEx)—D—A(l,)=0.

Case 8: [, [,/ M-Region. This hairline case 1s defined by
D=0, [,>0, [->0.
S(IKy)—L(1+pEg)—I(1+pEy)—A(l,)>0.

Case 9: I,/D M-Region. This hairline case is defined by
D >0, L=, =,
S(K))—L(1+pEx)—D>0.

Case 10: I,/D M-Region. This hairline case is defined by
D >0, [,=0. [->0,
S(IKy)=L(1+pEg.)—D— A(1,) > 0.

Case 11: M-Region. This case is defined by
D=0, [, =0, [.=0.

SUK ) =0,
e,
As=0.
From the Kuhn-Tucker conditions. it follows that this case is optimal if

Va=max{l. Vi, (14 pEx)!.

V(1 +pEg,+ A°(0)) > V..

In this region, the HJB equation

1V = (0’2 '2)5:( K\)Vaar + VarS(K))
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can be solved analytically to yield

=k (K,.K>) exp[Mr,/S(K))]+k:(K,. K>) exp[Mr. S(K))].
with

n=[/1+2c%i-1]/c%, r=[-{/I +20°i—1]/0".
The boundary condition V(0. K,, K;)=0 can be satisfied here.

The following two cases (Cases 12 and 13) are hairline cases which can
be omitted.

Case 12 I, I D M-Region. This hairline case i1s defined by
D> 0. [ >0, >0,
S(I\r|)_’[1(] +[)Eh1)—fg(l+pE;\)—D*4(/3)>0.

Case 13: I, M-Region. This hairline case 1s defined by
D=0, !1>0 [::0..
UKy~ Ll +pky ) >0,

A =/As=0.
Case 14: I, M-Region. This case 1s defined by
D=0, [, =0. I.>0.
S(K))—I-(1 +pEg,)— A(],) =0,
.
ir=As=0.

From the Kuhn Tucker conditions. it follows that this case is optimal 1f
Vv >maxil, Vi, /(1 +pEg)},
I"tf[l +[?Eh'? t= 4'(/3)] — l"h'_‘ .

A necessary condition for the boundary condition F(0, K. K>)=0 to be
satisfied is that Vg, =0, 1e..

I '\LPEK:'*'.--”(]_}):O. when M =0.
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Case 15: D M-Region. This case is defined by
22, Iy=1), [,=0.
S =D A,
e
A= As=0.
[t 1s easily checked that this case is a hairline case. which can be omitted.

These results are summarized in Table 1 of Section 32

7. Appendix B: Possibilities of Regions Adjacent to Each Other

Due to space limitations, we demonstrate only the combinations of
Cases 1 and 2, Cases 1 and 3, and Cases | and 6 in order to have an example
for each of the cases where adjacency is impossible. or possible. or a hairline
case. The analysis of the other combinations can be found in our working
paper (Ref. 11).

Cases 1 and 2. It is not possible that these cases are adjacent to each
other, since at the possible boundary the conditions

[V, /(14 pEx)][1 +pEx, + A'(0)] = V..
[I;K! g | +p£-‘t|)][l +p£h'; T ‘r(lj)] < [-A':. for [_‘_' > ().

would have to hold which are possible only for /-=0: therefore Si K,)=0,.
which 1s a contradiction to K, =0.

Cases 1 and 3. For Case 1. we have
D=0, Fiae 5= 1),
S(K))—=5L(l+pEg)=0,

while for Case 3 we have
D>0. 11 =0, =0,
S(K,)—D=0.

Thus. on the boundary, it must hold that
i/ (1 +pEg)=12V,,,
| +pEg,+A'(0) > V..
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This is a possible case, since we have three independent equations for K.
K:, J"v{, [1 : D

Cases 1 and 6. The optimality conditions for both cases imply that
[,=0 on this boundary. Then, we have tor Case | that

D=0, [1>0. j'_—'O..
S(K])_[l(l‘i'PEg!):O-.
while for Case 6 we have

D}O.. [120. 1_‘1

|
&

S(K,)—D=0.

On the boundary, it holds also that
Vi.,/(1+pEg)=12Vy,
Vie=1+pEg,+A(0).

This is a hairline case. since we have four equations for K,. K, M, I,, D.
In each of the diagrams (K,. M), (K;. M), (K. K3), the boundary between
Cases | and 6 appears as a point rather than a curve, which 1s why we need
not consider this combination any turther.

The other combinations can be investigated in the same way and yield
the results summarized in Table 1 of Section 3.2.

8. Appendix C: Proof of Propositions
Proof of Proposition 4.1. In the D-region, the value of the firm 1s given
by
V = S( [{1 } &5 (‘](K| . Kr:) e.‘(p[;w\'z—f. O'S( K[ )]
+ (K. Ky) exp[—M2i/aS(K))].

Due to economic arguments, it is clear that the D-region exists for M —c
and some finite K. If we keep in mind that V 1s finite, we can conclude that

('|(K1 . K;):O

(i) For M =0, the boundary condition ¥(0, K, K;)=0 applies, which
leads to Vi, = Vi, =0. Therefore, from Appendix A, we obtain that the only
candidates that can include the K,-axis in the (M, K;)-plane for fixed K, are
the regions D, M, I,/ D, I,/ M summarized in Table 1.
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If K, <K,(K>) it holds that
| + pEy.+ A(0)>0.
For the regions I./D and I,/ M, it holds that Fx.=0 imphes
| + pEx.+ A'(1;) =0,

which contradicts the above inequality. Hence, these regions cannot occur
for M=0 and K, < K,(K>).

Let us assume that the D-region exists for M =0. If we keep in mind
that ¢,(K,. K5)=0. we obtain

0=S(K,)/i+ c>(K,. K>5)
= (K. K>)=—8(K)) 1.
Then, we get the following value of the firm for the D-region:
V=S(K,)/i—[S(K,)/i] exp[—M2i/cS(K,)].

which implies
V= (V2i/0i) exp[—M2i/ cS(K,)]
— I.«"‘f‘.”_“:(\ 2&" (TI‘)) [ . fOI' 1 /i= @ \..i}O

But a dividend policy 1s optimal only if }'y, <1 (see Appendix A), so the D-
region cannot occur for M =0 in this scenario. Hence. the only candidate
left that can occur for M =0 and K, < K,(K>) i1s the M-region, where 1t holds
that

V=k(K,, Ky)exp[riM/ S(K,)]+k-(K,. K>5) exp[r-M S(K,)].
Satisfaction of the boundary condition V(0. K. K5) =0 leads to
ki(K,, K5)=—k:(K,, K>).
(1) Denote the boundary between the M-region and the D-region by
M=p(K,, K5)S(K,).

At this boundary, two conditions must hold: (a) equality of I in both
regions; (b) V,,=1 for both regions. Working on these conditions leads to
the following equality [Van Hilten, Kort, and Van Loon. (Ref. 10, p. 390)]:

exp[(ry —r)p(K,, K;)]

=[1—ro(1/i— o/ 2D)/[1 —r(1/i— a/J2D)].
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o

We conclude that p 1s independent of K, and K,, so that the boundary
between the M-region and D-region 1s given by

According to Van Hilten, Kort, and Van Loon (Ret. 10, pp. 398-399), the
functions A ,(K,, K>) and ¢,(K,. K,) are given by the following expressions:

K\(Ky. K>)=S(K,)) [ri exp(rip) —raexp(rap)].
c»(K,, K3)=[aS(K,)/2i] exp(p/2i/0).

These expressions are used in the proots stated below.

(1m) See Van Hilten, Kort, and Van Loon (Ref. 10, pp. 399-400).
where the proof has to be adjusted slightly tor the fact that now, on the
boundary between the /,-region and the D-region, it holds that

Vi, =1+pEg, .

(1v) On the boundary between the D-region and the /5 D-region, it
holds that

Vie=1+pEg,+ A(0).
[n the D-region, we have
V=S(K,)/i—[cS(K,)/v2i] exp{[p— M/S(K\))(J2i/0)}.

We see that. in the D-region. 1t holds that }g, =0, so that the boundary
between the regions D and /- D is given by K,(K>), while the D-region is
situated below this boundary. The latter 1s obtained from the tact that, for
the D-region. Fy,=0 leads to

| #PpEg A T0) S0,

(v) On the boundary between the M-region and the /. M-region, 1t
holds that

V.= V[l + pEg. + A'(0)].
[n the M-region, we have
V'="1S(K,) [r, exp(rip)—r.exp(r:p)]
x explriM/S(K,)]—explr-M/S(K,)]}.
Also, here we have that
Vi,=0:

since V'y,>1 1n both the M-region and /,, M-region, we can conclude that.
on this boundary, K, must equal K,(K>).
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(vi) See Van Hilten, Kort, and Van Loon (Ref. 10, pp. 400-401). [

Proof of Proposition 4.2. From the implicit definitions of K (K5) and

K,(K-), we obtain

(iK;k(Kj)'dej:prKIK: (S”_IPEA'1A'I)>O-
(!EI(K:); dK:z _EK:.K: Egig:}o.

Since

ExxLxky— Egyx, > 0,

it holds that

e

dK,(K>)/dK>>dK¥(K->)/ dK-. if KT (K)= K (K5).

This implies that

RiK:)>KNEK), forKa>K?. ¥
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