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Abstract 

This paper surveys some recent results on the score function (SF) method. This method is suitable for performance 
evaluation, sensitivity analysis, and optimization of complex discrete-event systems such as non-Markovian queueing systems. 
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1. Introduction 

Many complex real world systems can be mod- 
eled as discrete-event systems (DES). Examples are 
computer-communication networks, flexible manufac- 
turing systems, PERT-project networks, and flow net- 
works. These systems are typically driven by the oc- 
currence of discrete events, so their states change with 
time. In view of the complex interactions among such 
discrete events, DES are typically studied via stochas- 
tic simulation. 

In designing, analyzing, and operating such com- 
plex DES we are interested, not only in performance 
evaluation but also in sensitivity analysis and opti- 
mization. Consider the following examples. 

( 1 ) Traffic light systems. (i) The performance mea- 
sure may be a vehicle's average delay as it proceeds 
from a given point of origin to a given destination, 
or the average number of  vehicles waiting for a green 

* Corresponding author. 

light at a given intersection in the system. (ii) The 
sensitivity and decision parameters may be the aver- 
age rate at which the vehicles arrive at the intersections 
in the system, and the rate at which the light changes 
from green to red. 

(2) Manufacturing systems. (i) The performance 
measure may be the average waiting time of an item 
to be processed at several workstations (robots) ac- 
cording to a given schedule and route. (ii) The sensi- 
tivity and decision parameters may be the average rate 
at which the workstations (robots) process the item. 
In such systems we might be interested in minimizing 
the average make-span (consisting of the processing 
time and delay time), accounting for some constraints 
(for example, cost). 

Until about a decade ago, sensitivity analysis and 
optimization of DES was associated with the clas- 
sic statistical design of experiments. Compared with 
naive, common sense approaches, statistical designs 
require less computer time and give more general 
and accurate results ( Kleij nen, 1987, 1994). However, 
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these designs assume that the simulation model is run 
repeatedly, namely for different combinations of 'fac- 
tor levels'; these levels correspond with the values of 
the (say) n parameters of the simulation model of the 
DES. In Section 4, we shall return to these experimen- 
tal designs. 

In the last decade, two new methods for sensitiv- 
ity analysis and optimization of DES have been de- 
veloped. They are called infinitesimal perturbation 
analysis (IPA) (e.g., Glasserman, 1991; Fu, 1994) 
and score function (SF) (also called likelihood ra- 
tio) (e.g., Glynn,  1990; L'Ecuyer, 1990; Reiman and 
Weiss, 1989). 

This paper is about the SF method. We shall show 
that this method allows us to evaluate, simultaneously 
from a single sample path (simulation run) not only 
the performance and all its sensitivities (gradient, Hes- 
sian, etc.), but also to solve an entire optimization 
problem. Today, the SF method allows us to perform 
sensitivity and optimization of hundreds of decision 
parameters. The SF algorithms and procedures are 
implemented in a simulation package called QNSO 
(Queueing Network Stabilizer and Optimizer); they 
can be readily adapted to any existing discrete-event 
simulation language, such as SLAM , SIMAN, and 
GPSS. The extra computational time required by SF 
is about 10-50% of the time of the underlying simu- 
lation run. 

To the best of our knowledge the SF method 
in a simulation context was introduced indepen- 
dently in the late 1960s by Aleksandrov, Sysoyev 
and Shemeneva (1968), Mikhailov (1967), Miller 
(1967), and Rubinstein (1969). Related references in 
the early 1980s are Ermakov and Mikhailov (1982), 
Kreimer (1984), and Rubinstein and Kreimer (1983). 
In 1986 Glynn and Reiman and Weiss independently 
rediscovered the score function method, and called it 
the likelihood ratio method, (Glynn, 1990; Reiman 
and Weiss, 1989; and references therein). 

Sections 2 and 3 deal with sensitivity analysis of 
discrete-event static systems (DESS) and discrete- 
event dynamic systems (DEDS), respectively. The 
main difference between these two types is that DESS 
do not evolve with time, whereas DEDS do. Examples 
of DESS are stochastic PERT networks and GI/G/c~ 
queues; an example of DEDS is a queueing network. 
Section 4 shows how to combine the SF method with 
classic experimental design. Section 5 discusses opti- 

mization of DEDS from a single simulation run. Fi- 
nally, Section 6 gives conclusions. 

2. Sensitivity analysis of discrete-event static 
systems 

Assume that the expected performance e(v) can be 
represented in the form 

= Ev L(Y) = / L(y) dE(y,  v),  (2.1) ~(v) 

where L(Y) is the sample performance of the simu- 
lated DESS, driven by an m-dimensional input vec- 
tor Y with a cumulative distribution function (cdf) 
F(y, v), v is a vector of parameters lying in a param- 
eter set V C R n, and the subscript v in Ev L means 
that the expectation is taken with respect to F(y, v). 
A technical assumption is that F(y, v) belongs to a 
family of distributions that are absolutely continuous 
with respect to the Lebesgue measure. The treatment 
of the case where F(y, v) belongs to a family of dis- 
crete or mixture distributions is similar. 

Suppose first that the parameter v is a scalar v and 
the parameter set V is an open interval of the real line. 
Suppose also that for all y the pdf (probability distri- 
bution function) f (y, v) i s continuously differentiable 
in v and that there exists an integrable (with respect 
to the Lebesgue measure) function h(y) such that 

[L(y)af(y,v)/av I <~ h(y) (2.2) 

for all v c V. Then by the Lebesgue dominated conver- 
gence theorem the operators of differentiation and ex- 
pectation (integration) are interchangeable, so (2.1) 
yields 

de(v) d f L ( y ) f ( y , v )  dy J dv dv 

d f ( y ,  v) f (y ,  v______~) 
= L(y) do f ( y ,  v) dy 

[ L(y) d log f (y,  v) 
dv f(y,  v) dy 

d 

_{L(Y) d logf(Y,V)dv }" 

The extension to the multidimensional case where v E 
IR n is straightforward. Indeed, by similar arguments 
we can write the gradient of ~(v) in the form 
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xTg(v) = Ev {L(Y) x7 log f (Y ,  v) } 

=Ev{L(Y) S~I)(Y,v) }, (2.3) 

where 

s<l)(y,v ) = XT f (y ,v )  _ ~71ogf(y,v) (2.4) 
f (y ,v )  

is called the efficient score function. Similarly, the 
higher order derivatives can be written as 

v~k)g(v) = Ev{L(Y) S ~) (Y, v) }, (2.5) 

where 

S ~k) (y, v) = ~7~k)f(Y' v) (2.6) 
f (y ,v )  

Let Yl . . . . .  YN be a sample of size N from f (y ,  v). 
Then Vkg(v) can be estimated simultaneously from a 
single simulation run by 

N 

~k)gN(V) =N -1 ~'~L(Yi)S(k)(Yi, v). (2.7) 
i=l 

Formula (2.7) is also valid for k = 0 if we define 
V°g(v) - g(v) and S ~°) (y, v) - 1. Since the estima- 
tor, (7gN(v) is based on the efficient score defined in 
(2.4), the proposed method is called the score func- 
tion (SF) method. 

Example 2.1 (Exponential family). Let Y be a ran- 
dom vector distributed according to an exponential 
family, i.e., 

f ( y , v )=a(v )exp  bk(v)tk(y) h(y), (2.8) 
= 

where a(v) > 0 and bk(v) are real-valued functions 
of the parameter vector v, and tk(y) and h(y) are 
real-valued functions of y. Then 

S 

S ~1~ (y, v) = a(v)-~Va(v) + Z tk(y)Vbk(v). 
k=l 

(2.9) 

Notice that in Example 2.1 the function g(v) is 
differentiable and its derivatives can be taken inside the 
expected value, so that the corresponding expectations 
do exist. 

It is important to note that the estimator ~keN(V) 
given in (2.7) allows us to evaluate the performance 
g(v) and its sensitivity ~7kg(v) only at afoced point 
v. We now present an extended version of the above 
estimators that allows us to evaluate g(v) and ~7kg(v), 
essentially everywhere in v, provided some regularity 
conditions are met (Rubinstein and Shapiro, 1993). 

Let G be a probability measure (distribution) on 
/R m having a density function g(y), so that dG(y)  = 
g(y) dy. Suppose that for every permissible value of 
the parameter vector, the support of f (y,  v) lies within 
the support of g(y), that is 

supp{f(y,v)} C supp{g(y)},  v E V (2.10) 

(recall that supp{g(y)} is the set of those values 
of y for which g(y) is strictly greater than zero). 
Let further f (y ,v)  be differentiable in v. Define 
vkW(y,v) = XTkf(y,v)/g(y). Then we can write 
xTkg(v) in (2.5) as follows: 

= [ L(y)XTkf(Y' v) dy vkg(v) 

= / L(y)~TkW(y, v) dG(y)  

=Eg{L(Z)Vkw(z, v)}, (2.11) 

where Z ~ g(z) and we define V°g(v) =- g(v) and 
V°W(y, v) =- W(y, v) (by definition, zero divided 
by zero is zero). Notice that the function W(y, v) 
is well defined for all v E V because of the as- 
sumption (2.10). In the statistical literature, W(Z, v) 
is called the likelihood ratio or the Radon-Nikodym 
derivative; in simulation, W(Z, v) is the basis of im- 
portance sampling. 

It is important to note that the original expectation 
of L(Y) in (2.1) is taken with respect to the underly- 
ing pdf f (y,  v), whereas that given in the last expres- 
sion of (2.11) is taken with respect to the pdf g(y). 
It follows that changing the probability density from 
f (y ,  v) to g(y), we can express the performance mea- 
sure g(v) for all v E V as an expectation with respect 
to g(y) and then estimate it accordingly. We shall call 
the pdf g(y), satisfying condition (2.10), the domi- 
nating pdf. 

Note that the sensitivities XT~g(v) = Ev{LS ~k) } in 
(2.5) represent a particular case of (2.11), namely 
with g(y) = f (y ,  v) so W(y, v) = 1. 
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An unbiased estimator of vke (v )  analogous to 
(2.7) is: 

N 

VkgN (v) = N -  1 Z L(Zi)  ~Tkw(  Z i, V) , 

i=1 

(2.12) 

k = 0, 1 . . . . .  where Z l  . . . . .  Z N is a sample from g(z) .  
We shall call V k W( Z, v), k = 1,2 . . . . .  the gener- 

alized scores; W(Z,v)  = ~7°W(Z,v) we called the 
likelihood ratio. 

For a given dominating pdf g(z) ,  we can write the 
following algorithm for estimating Vkg(v) from a sin- 
gle simulation run for (say) s different values of v, 
namely V 1 . . . .  , V s. 

Algorithm 2.1. 
Select the simulation runlength N. 
For i := 1 to N do 
BEGIN 

generate Zi from the dominating pdf g(z); 
calculate the performance L(Z/) ;  
For j := 1 to s {s denotes # values of v} do 
BEGIN 

calculate the generalized scores 'UkW(Zi, vj ); 
update L( Zi) * xTkW( Zi, vj) 

END { of j}  
END { of i} 
F o r j  := 1 t o s d o  

{compute final values: divide by N} 
compute L(Zi) * WkW( Zi, vj ) /N  

The accuracy (variance) of the estimators 
VkgN(v), k = 0, 1 . . . . .  depends on the particular 
choice of the dominating density g(z) (Rubinstein 
and Shapiro, 1993), Actually the optimal g(z), say 
g*(z), is g*(z) = ILf I /E(L) ,  but we do not know 
E(L) .  We restrict ourselves to g(z) = f ( z ,  vo), 
which denotes the same family of distributions as the 
original one, but with a different parameter to, where 
v0 is called the reference parameter. 

3. Sensitivity analysis of discrete-event dynamic 
systems 

Let Yj, Y2 . . . .  be an input sequence of indepen- 
dently and identically distributed (iid) random input 
vectors, generated from a pdf f ( y , v )  with the n- 

of Operational Research 88 (1996) 413-427 

dimensional parameter vector v. Consider an output 
process {Lt : t > 0} driven by the input sequence 
{Yt}, that is, L, = L,(Y_t), where the vector le t = 
(Yl, Yz . . . . .  Yt) represents a history of the input pro- 
cess up to time t and Lt (.) is a sequence of real-valued 
functions. Assume that {Lt} is a discrete-time regen- 
erative process. It is well known in the theory of re- 
generative processes (e.g., Asmussen, 1987) that the 
expected steady-state performance g(v) of a regener- 
ative process can be written as 

e(v) = Ev x~ ~:~ r, (3.1) 

where X = ~ Lt and ~" is the length of the regen- 
erative cycle. Similar results hold when {Lt} is a 
continuous-time process where the sum in the defini- 
tion of X is replaced by the corresponding integral. If 
not stated otherwise, we assume that Lt is the steady- 
state waiting process in the GI/G/1 queue with FIFO 
discipline. 

Before proceeding with the calculation of  Vk~(v) 
we first consider gl(v) = EvX. It is shown in 
Feuerverger, McLeish, and Rubinstein (1986) that 
the gradient of Ev X can be expressed as 

T 

V k ~ l  ( V ) : E v { E L t S l k ) } ,  

t=l 

(3.2) 

where, analogous to (2.6), we have 

•(k) , = vif,(Y_,,v)/f,(Y__t,v). 

In particular, because the Yt are i.i.d., we have 

t 
~(i) 

, = y ~ V l o g f ( Y j , v ) .  
i=1 

(3.3) 

Example 3.1 (Gamma distribution). Let Y be gam- 
ma distributed, that is, 

At3yO- i e -  ay 
f (y ,A ,  fl) = , y > 0 .  

F(B) 

Assume that we are interested in the sensitivities with 
respect to A only (not fl) .  We then have that 

t 

S}') (Y_.t, A) = O-~ log ft(Y_t,A, fl) = tfla -t  - Z Yi. 
i=l 
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Clearly, Vk~l (/5), k = 1,2 . . . . .  can be estimated as 

N 'ri 

~kt tN(v)  = N - l  E ~ Lti$ti ' (3.4) 
i=1 t=l 

where ri and N are the length of the i-th cycle and 
the number of generated cycles, respectively (so the 
corresponding sample is Y~j . . . . .  Y~.~l . . . . .  YlN . . . . .  
YzNN). 

Differentiating £(/5) defined in (3.1), taking into 
account (3.2), and noting that E. 7. and V E~ 7" repre- 
sent particular cases of E~ X and V E. X, respectively, 
with Lt = I, we obtain 

V E ~ X  E~X VE~7" 
Ve(v)  . . . . . .  

E .  r Ev 7. E~ 7. 
r (1)} 

Ev{E I Lt~t 
E . r  

_ _  E v { E ;  Lt} , E v { E ; ~ I ) }  
(3.5) 

E . r  E,, 7" 

Defining 

r.,(1 ) -, 

ll~.v 7. 

{~1) = ( L t - - ~ ( v ) )  ( s ~ l ) - - s ( l ) )  , 

(3.5) can be rewritten (according to Rubinstein and 
Shapiro, 1993, p. 89) as 

V f (v )  =Ev{Q O>} = Cov,,{L, ~(1)} 

Ev{~-~l 
r ( f} "t 

- ~t l )J  (3.6) 
Ev 7- 

Similarly, we obtain 

Vke(v) = Ev{Q (k) } = Covv{L, ~(k)} 

_ Ev{~]I Q~t)} (3.7) 
E~, 7. 

where 

r (k) 

E~7. 

Thus, Vt£(v)  can be expressed as the covariance 
between the steady-state process {Lt} and {~}k)}. 

417 

variable {~k)} is based on the score function The 
V l o g f ( Y , v ) ;  see (3.2). 

Example 3.2. Let Lt be the steady-state sojourn time 
of a customer in the G I / G / I  system, where Ylj is the 
service time of the j-th customer, l~j -- 0 for j = 1, 
Y2j = Aj - A j - i  for j t> 2, Aj  is the arrival time of 

t the j-th customer and 7. = min{t : ~--]! (Ytj - Y2j+l ) ~< 
0} is the number of customers served during the busy 
period. In this case we obtain 

e(v)  = E {E; L,} 
Ev T 

{E,'_-, Ej_-, " ' t E ~ 2  E j=2 ]~J } 
Eu 7. 

Denoting Uj = YU - l~j we can rewrite e(v)  as 

 (EL, E}o, vii 
e ( v )  = 

Ev 7" 

In this case 

E 
r e ( v )  = 

Ev 7" 

where 

Q'I) ~" (j=~l Uj--') ("1) -- '(')) 

and 

l 
3(1) 

t = E V l ° g f ( V j , v ) ,  
jffil 

f ( y ,  v) = f l  (Yl, Vl ) f2 (y2, v2), 

Y-- (YI,Y2), Yl ~ f l ( y l , v l ) ,  1:2 "~ f2 (y2 ,v2) .  

Take a sample of N regenerative cycles from the 
pdf  f ( y , v ) .  Then, taking into account (3.7), we can 
estimate all the quantities Vkg(v), k = 0, 1 . . . . .  from 
a single simulation run by 

~(k) 

~Tt£N(/S) = ~ 1  ~-'~-, ~ti k = O, 1 . . . .  , (3.8) 
E 2 ,  1 ' 

where 
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~ ( 0 )  r . ( k )  = (L,, f ~(k) ) 
Qti = Lti, ~,!,i - ~N) \ ~ti -- S(N k) , 

(3.9) 

=(k) and ~N and "N are the sample estimators of e = 

Ev{~-'~ L,}/Ev ~" and ~(k) = Ev{~-~k ~k)} /Ev r, re- 
spectively. 

We now present the extended version of the above 
estimators which allows us to estimate Vk£(v), k = 
0, 1 . . . . .  at any point v, provided some regularity con- 
ditions hold. Assume, as in Section 2, that g(z)  dom- 
inates the densities f ( z ,  v) in the sense of (2.10). It 
can then be shown (Rubinstein and Shapiro (1993) ) 
that (analogous to (2.11 ) ) 

T 

V k e l  ( V ) =  Eg{~-'~ Lt(Zt)Vk~tilt(Zt, P)} ,  
t=l 

k = 0 , 1  . . . . .  (3.10) 

where Wt( Zt,v) = 1-[~-=l Wj( Zj,v) with Wj( Zj,v) = 
f ( Z j , v ) / g ( Z j ) .  

Taking into account (3.10) we estimate g(v) simul- 
taneously for different values of v by 

~N((U) = E N  Er]i Lti~¥'i (3.11) 
N "ri 

Note that (3.8) with k = 0 is a special case of 
(3.11), namely f ( z , v )  = g(z) s o  ~Vti = 1. Similarly, 
we estimateV£(v) by 

EN El '  VI/ti 

_ L.~I  Z-.~I tl tt . 

E N E l '  ~¥ti E N E l '  ~/,i 
(3.12) 

Note that Vff ' t  = ff'r SI 1). Similar estimators can 
be derived for ~Tk/~(v), k = 2, 3 . . . .  by differentiating 
~N (v) k times. 

The algorithm for estimating the gradient V~(v),  
based on the sensitivity estimator (3.12), can be writ- 
ten as follows. 

Algorithm 3.1. 
(1) Generate a random sample Z1 . . . . .  Zr, T 

zi, from g(z). 
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(2) Generate the output processes Lt, ~1), l~t, and 

(3) Calculate ~N((O) and V~v((u)  according to 
(3.11) and (3.12), respectively. 

Assume further that we restrict g(y) to the same para- 
metric family that f (y ,  v) belongs to; that is, g(y) = 
f (y ,  go). 

Remark 3.1. Rubinstein and Shapiro (1993) show 
how to obtain reasonably "good" estimators of 
Vk~(v), k = 0, 1 simultaneously for different values 
of v, say vl . . . . .  vs. Let p be the traffic intensity in the 
GI/G/1 queue, or in more complex queueing models. 
Then one has to choose the reference parameter v0 
such that the traffic intensity p(vo) is either 

p(vo) = .max p(vj)  (3.13) 
J=l , . . . ,S 

or moderately larger than p(v0); that is, the reference 
parameter v0 must correspond with the highest traffic 
intensity among all traffic intensities associated with 
the selected values v~ . . . . .  vs. 

Fig. 3.1 depicts the estimator of the response curve 
£(v),  namely the curve [N(P) = ~N(P I PO) (denoted 
by £N in that figure) along with the two curves 

Jl --- {~N(P [ Po) -- Wr}, 

and 

J2 = { N(P I PO) + Wr}, 
where 

1.96&(p [ p o) 
wr =  N(plp0) 

(denoted by 95%CI) as functions of p for the M/G/1 
queue with P0 = 0.8; here &(p I p0) is the estimate of 
the standard deviation of ~N((v) in (3.11 ), so tot rep- 
resents the half width of the 95% relative confidence 
interval. Note that gN(P [ PO) and Wr in Jl, ./2 are 
given in different scales. 

Fig. 3.2 depicts similar data for the derivative of 
the expected waiting time in the M/G/1 queue with 
respect to the service rate A. 

In those two figures we assumed that t (v )  is the 
steady-state expected waiting time of a customer in 
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Fig. 3.1. Performance of the "what if" estimator ~N(P ] fl0) as function of p for the M/G/1 queue with Po = 0.8. 

2 

1 

0 • 

0 
1 

2 

3 

4 

5 

6 

7 

4 .  

>"-2 , , ' "  .- . . . . . .  0.':4 0 .'~" - ~ ,  0.76 0.8 V~Nt p 

, , ' ,~., 95%CI -c, 
"-. "<> 

Fig. 3.2. Performance of the "what if" estimator V ~ c ( p  I Po) as function of p for the M/G/1 queue with Po = 0.8. 

the M/G/1 queue. We took A0 = vo as the reference 
parameter; that is, we assumed P0 = Aofl, chose the 
arrival rate equal to 1, the scale Ao = vo = 0.4, the 
shape fl = 2, so p0 -- E(Y)  = Aofl = 0.8; see Exam- 
ple 3.1. From a single simulation run we estimated the 
performance e(v)  and the derivative simultaneously 
for p = 0.2, 0.3 . . . . .  0.8, while simulating 10,000 
customers. 

It is readily seen that the "what if" estimators £N (P ] 
P0) and XTtN(p I Po) perform reasonably well in the 
range p E (0.4, 0.8). For larger perturbations the SF 
process xTkff ' (k = 0, 1 ) blows up the variance of the 

estimators £t~(P I P0) and V~N(p I P0). Note that the 
true £ (v) and d e ( v ) , which are known for the M / G /1 
case, lie within the confidence bands, but they are not 
shown in the figure. 

The basic formulas (3.11)-(3.12)  developed for 
the G1/G/1 queue with the FIFO discipline can be ex- 
tended to more general open and closed queueing sys- 
tems in the sense that (3.11 ) - (3 .12)  still hold, pro- 
vided the indexing in the likelihood ratio process Vgt 
and the associated quantities, such as ~-~ Lt~Vt and 
~'~ LtxTWt, are defined in a more sophisticated way. 
When the process Lt is nonregenerative, but station- 
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ary and ergodic, we can use the so-called decompos- 
able and truncated estimators. For details we refer to 
Rubinstein and Shapiro (1993). 

4. Combining the score function with classic 
experimental design 

This section deals with extensions of the SF method 
for the following model: 

g(v) = Ev~{L(Y__t,v2) }, (4.1) 

where L(Y__ t) is the sample performance, Y1 . . . . .  Yt 
are iid random vectors with common pdf f ( y ,  Vl), 
the combined vector of parameters is given here by 
v = (vl ,v2),  and the subscript Vl in Ev~ [L] indicates 
that the expectation is taken with respect to the pdf 
f ( y ,  Vl ). So we assume that the p d f f  depends on the 
parameter vector vl but not on v2, and that the sam- 
ple performance L depends on v2, but not on vl. We 
shall call vl and v2 the distributional and the struc- 
tural parameter vector, respectively. Note also that the 
model in Section 3, g(v) = E~[L(Y_t)], can be con- 
sidered as a particular case of the model (4.1) with L 
not dependent on v2 and with v = Vl. 

As before, we suppose that g(v) is not available 
analytically, so we use simulation to estimate g(v) 
as well as the associated sensitivities XTkg(v), k = 
1,2 . . . . .  for multiple values of v = (vl ,  v2). Consider 
the following examples. 

(1) GI/G/1 queue. Suppose that it is desired to 
estimate the cdf 

Pv{L ~ x} (4.2) 

with L the sample performance in the steady state, and 
the associated derivative, OPv (L <~ x)/Ox, for multiple 
values of vl = v and v2 = x. In this case, we can 
represent P~,( L <~ x) as 

P,,(L ~< x) = Ev,{l~-oo,0] (L - x ) } ,  (4.3) 

where l~-~,0I ( ' )  is the indicator function of the in- 
terval ( - c ~ ,  0]. 

(2) GI/D/1 and D/G/1 queues, where O stands 
for determitiistic. For the G1/D/1 queue, Y ,-, 
f l (y l ,Vl )  represents the random interarrival time 
with interarrival rate vl, and v2 is the length of the 
constant service time. Similar definitions hold for the 
D/G/1 queue. 

(3) GI/G/1/m queue, where m denotes the buffer 
size. Suppose it is desired to estimate the steady-state 
expected waiting time g(v) = E~, [L(Y, v2) ] of a sta- 
ble GI/G/1/m queue for multiple values of  v2 = m. 
(This problem is treated rigorously in Kriman, 1994.) 

One approach (not the focus of this paper) uses 
"push-out" and "push-in",  respectively (Rubinstein, 
1992). These terms derive from the fact that in the first 
case we "push out" the parameter vector, v2, from the 
original sample performance L(Y, v2) into an auxil- 
iary pdf via a suitable transformation, and then apply 
the standard SF method; in the second case, we operate 
the other way around, namely, we first "push in" (via 
a suitable transformation) the parameter vector Vl into 
the sample performance L( Y, v2) and then differenti- 
ate the resulting (auxiliary) sample performance with 
respect to v = (vl ,  v2). Conditions under which such 
transformations are useful, in the sense that they ei- 
ther generate smooth sample performances or lead to 
variance reduction, are discussed in Marti (1990) and 
Uryas'ev (1994). It is also shown that the infinites- 
imal perturbation analysis (IPA) method introduced 
by Ho and his co-workers (Ho and Cao, 1991), cor- 
responds with the "push in" technique; the latter can 
be viewed as a dual of the "push out" technique. 

A second approach, discussed in the remainder of 
this section, is based on the idea that the effects of 
changing one or more components of  the distributional 
vector Vl can be estimated with relatively little effort 
(in the way we discussed in the preceding sections), 
whereas the effects of changing one or more compo- 
nents of the structural vector v2 are estimated with 
more effort, using classic experimental design (ED). 
We shall also show that the ideas of ED might be uti- 
lized in SE in order to further reduce computer time. 
Details on the application of ED in simulation can be 
found in Kleijnen ( 1987, 1994). 

Suppose v2 has k2 components; that is, the vector 
has dimensionality k2. In ED terminology we say that 
there are k2 factors. The number of levels or 'values' 
per factor, denoted by sk, is usually limited to a small 
number, say 2 ~ sk ~< 5 (k = 1 . . . . .  k2). The values 
for Sk are selected as follows. 

If  we assume that the effects of the k2 factors are 
additive, then we can estimate the k2 main effects from 
n simulation runs, where n is the smallest multiple of 
four that is larger than k2 (for example, if 8 ~< k2 ~< 
11, then n = 12). So, only a fraction of all possible 2 ~2 
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combinations or scenarios is simulated. Each factor is 
simulated for only two different values (sk = 2). 

If, in addition, we assume that besides main effects, 
there may also be interactions between factors, then a 
larger fraction is simulated (still simulating only two 
values per factor). If  morever we assume quadratic 
effects, then more than two values per factor must 
be simulated. So-called central composite designs re- 
quire five values per factor; they do not simulate all 
5 k2 combinations, but only a fraction (combining the 
designs for main effects and interactions with designs 
that change only one factor at a time). 

Let us now turn to the distributional parameter vec- 
tor vl. Suppose vl has kl components. SF gives ~N(V) 
as an explicit function of vl. In order to get a better 
understanding of this function, we evaluate this func- 
tion for a set of  values of vl. So far we supposed that 
component k of vl is studied for Sk (k = l . . . . .  kl ) 
values; see Algorithm 2.1 and Fig. 3.1. Now, however, 
we point out that if kl is high, then we may restrict the 
computer time required and the amount of output data; 
that is, we drastically restrict the number of values per 
component, say, 2 ~< Sk ~< 5. To the Sk estimates of 
E(L)  we can then fit a curve, such as a polynomial in 
vl of degree 1 or 2. We emphasize that these 1-[k Sk re- 
sponses are positively correlated, since they are based 
on the same random number stream (namely the one 
used for the reference parameter v01; also see (4.5) 
below). Note that a 'distributional scenario' is a com- 
bination of values for the kl components of Vl. 

We emphasize that ED without SF would experi- 
ment with kl +k2 factors, whereas ED with SF consid- 
ers only k2 factors. In SF the estimation of the gradient 
V/?(vl ) is analogous to the estimation of~(vl  ), as we 
saw in the preceding sections. In ED the estimation 
of the gradient xT£(v2) follows from differentiating 
the estimated response curve or metamodel; for ex- 
ample, in a first order polynomial the marginal effects 
equal the main effects, whereas in a regression meta- 
model with interactions, by definition, the marginal 
effects also depend on these interactions (Kleijnen, 
1987, 1994). 

In summary, Score Function-Experimental Design 
(SFED) considers the set of factors 

{ ( / J l , V 2 )  ---- {VI I  . . . . .  V lk l ,  v21 . . . . .  V2k2}. (4.4) 

SFED selects an ED for the k2 factors in v2 and an 
ED for the kl factors in vl. Unless otherwise stated, 

we assume further that g(y) = f ( y ,  VOl ), where v01 
is the reference parameter, and that ~(v) is the mean 
sojourn time in a G1/G/c/m queue. Let v2 be fixed, 
while vl takes values in the set {vii . . . . .  Vlr, } where 

rl = I-[~l Sk. Consider the following mathematical 
program problem: 

min max Varv0~ {~N ((v) }. (4.5) 
lY0l /)1 ={IJll ,...,/Jlr I } 

Arguing as in Rubinstein and Shapiro (1993) (see 
also Section 5 below), it seems natural to choose the 
reference parameter, v01, in such a way that 

p(vol) = max p(vl j ) .  (4.6) 
j=l ,...,rl 

Eq. (4.6) means that v01 should correspond to the 
highest traffic intensity among all traffic intensities as- 
sociated with the permissible values vii . . . . .  Vlrt. 

Example 4.1. Consider the GI/G/1 /m queue. As- 
sume that the buffer size isfixed at m and suppose we 
wish to estimate the expected sojourn time, e(v)  = 
e(vl ,  v2), simultaneously for all vl = vll . . . . .  Vlr, by 
using the "what-if" estimator ~N((V). Let Vl be the 
service rate. It readily follows from (4.6) that in this 
case, v01 must satisfy v01 = min(vl 1 . . . . .  vl rt ), which 
is the same as 

P0 = max(p1 . . . . .  Pr~ ), (4.7) 

where pj corresponds to the service rate vii, 1 <~ j <~ 
r l .  

Consider now the general case (4.4). In typical ap- 
plications, the traffic intensity is monotonic in each 
component of v2, in which case, formula (4.6) is ap- 
plicable again in the sense that once a "good" refer- 
ence parameter p0(v2) is chosen, it remains a "good" 
one for all v2 in (4.4). In other words, in order to 
find a "good" reference parameter v01 (v2) (and the 
corresponding p0(v2) ) suitable for all combinations 
of  {vl, v2}, we have to first fix an arbitrary value v2 
from the set {v2j, j = 1 . . . . .  r2} and then apply for- 
mula (4.6). 

Example 4.2. Suppose that we need to estimate the 
expected waiting time in the GI /G/1 /m  queue for 
different combinations of  the service rate Vl and the 
buffer size v2 = m. We may then choose any buffer 
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size m from the set {ml . . . . .  ms2 }, find v01 according 
to (4.6), and finally run s2 simulations corresponding 
to the chosen values rnl . . . . .  ms2, respectively. 

The "what-if" estimator of £(v) given the ~-th struc- 
turai scenario ( j  = 1 . . . . .  r2, where r2 = II~2=1 Sk) can 
be written (analogous to (3.11)) as 

~N(Vl,V2j) = Ell  E((P2"i) Lti(v2j)lTVa(vl) (4.8) 
E l l  E 1  i(t'v2j) ~:,i(/)l ) ' 

where we write 'Ti(/,,'2j ) rather than ri, to indicate that 
its distribution depends on v2j. 

The SFED algorithm for estimating the response 
surface, £(v) ,  can be written as follows: 

Algorithm 4.1. The SFED Algori thm 
(1) Specify the experimental design for vl and for 

v2 respectively; see (4.4). Let rl (rE) denote the 
number of  combinations of values in the ED for 
vl (v2). 

(2) Find the reference parameter, v0b via (4.6). 
(3) Select the number of renewal cycles N. 
F o r / : =  1 t o N d o  
BEGIN 

while cycle not ended do 
BEGIN 

generate Zi from the dominating pdf f ( z ,  v01 ); 
for j2 := 1 to r2 do {perform ED for v2} 
BEGIN 

calculate the performance L( Zi, v2,j2 ) ; 
for jl  := 1 to rl do {perform SF for Vl } 
BEGIN 

calculate the likelihood ratios 
~/V ( Zi,  Vl ,j, ), 

update L( Zi, v2,j2) * lTv( zi ,  vl,jl) and 
l~(Zi, vl,j, ); 

END {of jl  } 
END {of J2} 

END {of while } 
END {of i} 
for j2 :=  1 t o r 2 d o { s e e  (4.8) } 

compute L( Zi, v2.j2) * W( Zi, Vl,yt) and 
~(Z, ,vt j~);  

Example 4.3. 
Consider the estimation of the steady-state mean 

waiting time, £(v) ,  in the M / M / c / m  queue with vl = 
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(UII, Ul2) denoting the vector of the interarrival and 
service rates and v2 = (m) denoting the buffer size. 
Assume that Vll is fixed, while v12 and m may vary. In 
particular, set vii = 1,while vt2 = 2, 1.5, 1.4, 1.25,and 
m -- 5, 10, 15. According to (4.6), we first select some 
buffer size from the set {5, 10, 15}, say m = 5. Next we 
choose the reference parameter value for vl2 as the one 
that corresponds with the highest traffic intensity, P0, 
among the values/312 = 2, 1.5, 1.4, 1.25; in our case 
/312 = 1.25 (slowest service rate). Finally, we make 
three separate runs, with m = 5, 10, 15, to estimate 
g(v) for the above rl x r2 = 12 scenarios. Here, the 
SFED estimator is more efficient (only 3 runs instead 
of 12). Numerical experiments also indicate that the 3 
SF runs are more accurate than its crude Monte Carlo 
(CMC) counterpart. 

Example 4.4. Consider the estimation of the steady- 
state expected waiting time, g(v) for r M / M / 1 / m  
queues in tandem, where Vl = (Vll . . . . .  Vlr) and v2 = 
(v21 . . . . .  V2r) = (ml . . . . .  mr) are the vectors of ser- 
vice rates and buffer sizes, respectively. In this case, 
the full factorial ED method applied to kl + k2 = 2r 
factors, would require a total of 22r Monte Carlo ex- 
periments, whereas the full factorial applied to k2 = r 
factors requires only 2 r such experiments. Thus, the 
latter is approximately 2 r times faster than the for- 
mer, since the overhead of computing Wt(Vl ), in the 
corresponding likelihood ratio estimators, is relatively 
small. This speed up has been confirmed by various 
simulation studies. Further reduction of computer time 
can be realized by assuming a first order polynomial 
response curve in v2, and executing not 2 k2 runs but 
only k2 + 1 runs. 

5. Optimization 

Consider the following mathematical programming 
problem: 

(Po) 

minimize e0(v), v E V, 

subject to £j(v)  ~ 0, j = 1 . . . . .  k, 

e j ( v ) = O ,  j = k + l  . . . . .  M 

(5.1) 

where 
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7" 
Ev ( ~-~.t= 1 Ljt) 

~j(v)  = E~(Lj )  = 
E ~ r  

j = 0, 1 . . . . .  M,  (5 .2 )  
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The algorithm for estimating the optimal solution 
v* of the program (P0) while using the stochastic 
counterpart (PN) can be written as follows. 

are the steady-state expected performances corre- 
sponding to the output processes {Lit}. 

To estimate the optimal solution of this problem 
(P0) from simulation, we first approximate it by its 
stochastic counterpart (see ( 5 . 4 )  below), and then 
solve this counterpart problem by standard techniques 
of mathematical programming (see also a recent sur- 
vey on optimization in simulation by Fu, 1994). 

In order to construct such a stochastic counterpart, 
we argue as follows. Consider first the estimators of 
£j(v) ,  defined in (3.11): 

N 7.i 

E ~ Ljti ~/Vti 
"~j t, l.J" -~ /=1 t=l 

N ~'i 

i=1 t=l 

, j = 0 , 1  . . . . .  M. (5 .3)  

A l g o r i t h m  5.1. 

(1) Generate a random sample Zjl . . . . .  Zjr, . . . . .  
ZNi . . . . .  ZNrN from g( z). 

(2) Generate the output (sample performance) 
processes Lit i and the likelihood ratio process 
~Vti(v),j=O . . . . .  M , t =  1 . . . . .  7"i;i= 1 . . . . .  N. 

(3) Solve the program (PN) by the techniques of 
mathematical programming. 

(4) Deliver the solution VN of (PN) as an estimator 
of  V*. 

Consider the following unconstrained program: 

(P0) 

minimize/~(v), v C V. 

Its stochastic counterparts can be written as 

(5.5) 

Second, viewing ~jN(V) as functions of v rather than 
as estimators for fixed v, we define the stochastic coun- 
terpart of (Po) as follows: 

( P N )  

minimize 

subject to 

~0N(V), V ¢ V, 

~jN(V) <~ O, j = 1 . . . . .  k, 

~jN(V) =0 ,  j = k + l  . . . . .  M. 

(5.4) 

Notice that as soon as the input sample Zl . . . . .  ZN, 
is generated, the functions ~'zti and hence ~jN(V), 
j = 0 . . . . .  M, are given explicitly through the known 
density functions f (  Zi, v): substitute zl . . . . .  ZN into 
~lti = l']j=lW j with Wj -~ f ( z j ) / g ( z j ) .  The c o r r e -  

s p o n d i n g  gradients V~jN(V) can be calculated from 
a single simulation by the SF method according to 
(2. i 2). Consequently, in principle the optimization 
problem (PN) can be solved by standard methods of 
mathematical programming (e.g., Rubinstein, 1986). 
The resulting optimal value £N(~) and the optimal 
solution VN of the program (PN) provide estimators 
of the optimal value £(v*) and the optimal solution 
v* of the program (P0), respectively. Note that this 
solution is feasible, since we assumed that the sample 
functions Lj(y)  do not depend on v. 

(PN) (5.6) 
minimize £N(v), v C V. 

Before turning to numerical results with the stochastic 
counterpart (5.6), we assume the following: (1) The 
parameter set V is given by 

V={v:O<.p(v) . < p °  < 1, 

p = (p~ . . . . .  p r )} ,  (5.7) 

where Pk = pk(v),  k = 1 . . . . .  r, is the traffic intensity 
at the k-th queue, r is the number of nodes in the net- 
work, and the inequalities between the vectors must be 
taken componentwise. (2) The expected performance 
e(v)  is given as 

r 

e(V) = c E v L t  + ~-~ bkVk, (5.8) 
k=-I 

where Lt is the steady-state sojourn time process, c is 
the cost of a waiting customer, v = (vl . . . . .  v~) is the 
service rate vector, and bk is the cost per unit increase 
(decrease) of vk. Note that under some mild regular- 
ity conditions, E~ Lt is a strictly convex differentiable 
function with respect to v. Thus, v* is a unique mini- 
mizer of (P0) over the convex region V. 
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We can then solve the stochastic counterpart (PN) 
by using the following nonlinear system of equations 
(first order conditions for extreme values): 

XT~N(V) = O, v E v• 

In particular, for a queueing model with a single node 
( r  = 1 ) and FIFO discipline PN reduces to 

f Eg, E2, L,,VCe,, 
V~N((V) 

C t ENi=I Et~l  ~/Vti 

ENi=I E t t l  Lti~Vti 

E,t, 
~']4=1N ~-,'rl W~V.. _Z-.,t=l .v "'tt 

• N ~, ~ + b = O ,  

~-'~i=l E t = l  Wti J 

v E V,, (5.9) 

where 

fV, i = l ' I  w ( zki, v ) 
k=l 

and 

Ev L = 1 / ( v -A ) ,  it is readily seen that the true optimal 
v* that minimizes the performance measure given in 
(5.8) is v* = a + (c/b) 1/2. 

Table 5.1 represents theoretical values of v*, point 
estimators ~N, and 95% confidence intervals for v* 
(denoted 95%CI), as functions of  b (p* = A/v* and 
a = [P0 - P*]/P*). We chose A = 1, c = 1, the refer- 
ence traffic intensity P0 = 0.8, and ran N = 10,000 cy- 
cles (approximately 50,000 customers). Note that all 
estimators ~n (b) were obtained simultaneously from 
a single simulation run (with P0 = 0.8) by solving the 
system of equations (5.9) for different values of b. 

It is readily seen that the estimator ~N performs 
reasonably well for p E (0.3,0.8).  The poor perfor- 
mance of the estimator On for p > 0.8 is caused by 
the violation of the requirement of Remark 5.1 (ac- 
cording to that remark we must have p ~< P0 = 0.8, 
whereas in fact we have 0.88 > / p / >  P0 = 0.8.). The 
poor performance for p < 0.2 is the result of very 
large relative perturbations ( a  > 3) in the likelihood 
ratio process ff't. 

Example  5.2 (M/G/1 queue). Assume that the pdf 
of service time y is given by 

f ( Z , v )  
w ( Z , v )  = - -  

g( Z) 

R e m a r k  5.1. It is shown in Rubinstein and Shapiro 
(1993) that while solving the stochastic counterpart 

V~N(V) = 0, V E V,, 

f ( y , p )  = ~p ,  i f y = a l ,  
[ 1 - p ,  i f  y = a2,  

where 0 < al < a2 and 0 < p < 1. By the Pollaczek- 
Khinchin formula (e.g., Gross and Harris, 1985) the 
expected sojourn time can then be written as 

where 

V = {v:  0 < p(v)  <~ p°(v) < 1}, 

a "good" reference parameter Po must be chosen, ei- 
ther equal to pO or moderately larger than pO. 

~(P) --- Ee L = 131 + 
a ~  

2(1 - Af l l ) '  

where A still denotes the arrival rate, 

fll = E Y  =pal + (1 - p ) a 2 ,  

We now present numerical results for the stochastic 
counterpart (PN) for several queueing decision mod- 
els, assuming that g(y) = f ( y ,  vo) where v0 is the 
reference parameter. 

E x a m p l e  5.1 (M/M/1  queue)• Let A and v be the 
arrival and service rates, and let v be the decision 
parameter. Taking into account the analytical result 

f12 = E y2 = pa 2 -4- ( 1 - p )a  2. 

In this case the likelihood ratio W in (5.9) reduces to 

Z--a I 
W(Z,p)  = -,-°5 
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Table 5.1 
Performance of the stochastic counterpart (PN) for the M/M/1 queue with reference traffic intensity po = 0.8 

425 

p* b ot tTjv (b) v* 95%C1 

0.88 53.77 --0.091 1.278 1.136 0.65, 

0.85 32.11 --0.058 1.208 1.176 0.91, 

0.8 16.00 0.000 1.261 1.255 1.15, 

0.7 5.444 0. ! 43 1.433 1.429 1.33 

0.6 2.225 0.333 1.654 1.667 1.58 

0.5 1.000 0.600 1.971 2.000 1.9 I 

0.4 0.444 1.000 2.467 2.500 2.42 

0.3 0.184 1.667 3.324 3.333 3.25 

0.2 0.063 3.000 4.947 5.000 4.74 

0. I 0.012 7.000 9.741 10.00 9.42 

1.81 

1.51 

1.37 

1.54 

1.73 

2.03 

2.51 

3.39 

5.15 

10.06 

Table 5.2 
Performance of the stochastic counterpart ([~N)for the M/G~1 queue with reference traffic intensity Po = 0.85 

p* b ot P* fiN 95%C1 

0.80 10.32 0.062 0.571 0.559 0.34, 0.78 

0.70 4.978 0.214 0.714 0.716 0.65, 0.73 

0.65 3.843 0.307 0.786 0.804 0.77, 0.83 

0.60 3.106 0.417 0.857 0.868 0.82, 0.91 

0.55 2.601 0.545 0.928 0.951 0.91, 0.99 

0.50 2.240 0.700 1.000 1.000 0.95, 1.05 

Table 5.3 
Performance of the stochastic counterpart (PN) for two M/M/1 queues in tandem 

p~ p~ bl b2 a l or2 g( v* ) e( ['N ) 95%CI y 

0.60 0.88 2.25 53.77 0.33 --0.09 73.69 76.01 

0.60 0.80 2.25 16.00 0.33 0,00 29.25 29.28 

0.60 0.60 2.25 2.25 0.33 0. i 43 10.50 10.48 

0.60 0.40 2.25 0.44 0.33 1,00 7.03 7.02 

0.60 0.20 2.25 0.06 0.33 3.00 5.81 5.81 

0.60 0.10 2.25 0.01 0.33 7.00 5.49 5.48 

0.88 0.60 53.77 2.25 --0.09 0.33 73.69 75.65 

0.80 0.60 16.00 2.25 0.00 0.33 29.25 29.30 

0.40 0.60 0.44 2.25 1.00 0.33 7.03 7.02 

0.20 0.60 0.06 2.25 3.00 0.33 5.81 5.80 

0.10 0.60 0.01 2.25 7.00 0.33 5.48 5.47 

72.3 79.7 

28.0 30.6 

10.3 10.6 

6.92 7.12 

5.72 5.90 

5.38 5.58 

69.3 82.0 

28.1 30.5 

6.93 7.12 

5.71 5.90 

5.38, 5.57 

0.200 

0.010 

0.004 

0.004 

0.002 

0.003 

0.154 

0.008 

0.002 

0.013 

0.007 
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Table 5.2 presents data similar to those of Table 5.1. 
We chose A = 0.6, p = 0.5, al = 0.5, a2 = 1.2 (P0 = 
0.85), c = 1, p0 = 0.7, and ran the M / G / 1  queue 
for N = 15,000 cycles (approximately 100,000 cus- 
tomers). Following Remark 5.1 and taking into ac- 
count that p0 = 0.7, we chose the reference traffic in- 
tensity moderately larger than p0, namely P0 = 0.85. 

Example 5.3 (Tandem queue). Table 5.3 represents 
data similar to that of table 5.1 for two M / M / 1  queues 
in tandem, while using the stochastic counterpart 
(f'N). It includes y = ([Iv* -VNII)/llv* II, v = (v~, ore), 
as functions of  (bl,  b2), (p~ = a/v~, p~ = a lva) ,  and 
(a l ,  a2) = ( [ pol - p'{ ]/p'{, [ po2 - p~ ]/p~ ). Again 
we choose a = 1, c = 1, now with reference traffic 
intensities Pol = 0.8, Po2 = 0.6, and run N = 10,000 
cycles (approximately 50,000 customers). 

It is readily seen from Tables 5.2 and 5.3 that the 
SF method performs well, provided p* ~< P0. 

Itzhaki (1994) gives extensive supporting numer- 
ical results with both unconstrained and constrained 
mathematical programming methods (P0) for differ- 
ent network topologies, different dimensionalities n 
( 1 ~< n ~< 100) of the decision vector v (being the 
vector with the parameters of the interarrival and ser- 
vice time distributions and the routing probabilities), 
while using the research package QNSO. 

6. Conclusion 

The Score Function (SF) method uses a single sim- 
ulation run to simultaneously estimate the simulation 
response and its derivatives, for different values of the 
parameters of the distribution function of the simu- 
lation inputs. SF applies to both discrete-event static 
systems (DESS) and discrete-event dynamic systems 
(DEDS). Parameters that do not occur in the input 
distribution, but that are structural parameters, can be 
examined through classic experimental designs (ED). 
SF and ED can be combined to obtain further effi- 
ciency gains. The optimal values of the distributional 
parameters can be obtained by solving the stochastic 
counterpart of the original mathematical programming 
problem. 
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