Tilburg University

Spreads in strongly regular graphs

Haemers, W.H.; Touchev, V.D.

Published in:
Designs Codes and Cryptography

Publication date:
1996

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Haemers, W. H., \& Touchev, V. D. (1996). Spreads in strongly regular graphs. Designs Codes and Cryptography, 8, 145-157.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Spreads in Strongly Regular Graphs

WILLEM H. HAEMERS
Tilburg University, Tilburg, The Netherlands
VLADIMIR D. TONCHEV*
Michigan Technological University, Houghton, MI 49931, USA
Communicated by: D. Jungnickel

Received March 24, 1995; Accepted November 8, 1995

Dedicated to Hanfried Lenz on the occasion of his 80th birthday

Abstract

A spread of a strongly regular graph is a partition of the vertex set into cliques that meet Delsarte's bound (also called Hoffman's bound). Such spreads give rise to colorings meeting Hoffman's lower bound for the chromatic number and to certain imprimitive three-class association schemes. These correspondences lead to conditions for existence. Most examples come from spreads and fans in (partial) geometries. We give other examples, including a spread in the McLaughlin graph. For strongly regular graphs related to regular two-graphs, spreads give lower bounds for the number of non-isomorphic strongly regular graphs in the switching class of the regular two-graph.

Keywords: strongly regular graphs, graph colorings, partial geometries, spreads, linked designs, regular 2-graphs

1. Introduction

A spread in a geometry is a set of pairwise disjoint lines that cover all the points. For a partial geometry the point graph (or collinearity graph) is strongly regular and lines are cliques in the point graph that meet Delsarte's bound. We define a spread in a strongly regular graph as a partition of the vertex set into cliques that meet Delsarte's bound. So that a spread of a partial geometry provides a spread in its point graph. A spread in a strongly regular graph Γ corresponds to a coloring of the complement of Γ that meets Hoffman's bound for the chromatic number. In terms of a partition of the pairs of vertices it corresponds to an imprimitive three-class association scheme. The chromatic number of strongly regular graphs has been studied by the first author in [11]; some of his results have direct consequences for spreads. Imprimitive three class association schemes have been studied by Chang [6] and some results, presented here, can also be found in Chang's work.

Throughout Γ will denote $\mathrm{a}(n, k, \lambda, \mu)$ strongly regular graph on n vertices with eigenvalues k, r and $s(k \geq r>s)$ and multiplicities $1, f$ and g, respectively. Then the parameters satisfy the following basic equations:

$$
\mu=\lambda-r-s=k+r s=(k-r)(k-s) / n, 1+f+g=n, k+f r+g s=0
$$

[^0]If Γ is primitive (that is, Γ is neither a disjoint union of cliques or a complete multi-partite graph), then $0<\mu<k, 1<r<k$ and $s<0$. For these and other results on graphs, designs, finite geometries and association schemes, we refer to Cameron and Van Lint [5] or Van Lint and Wilson [17].

2. Delsarte-Cliques and Hoffman-Colorings

Delsarte [8] showed that a clique in Γ has at most $K=1-k / s$ vertices. Applied to the complement of Γ it yields that a coclique has at most

$$
\bar{K}=1+\frac{n-k-1}{r+1}=\frac{n}{K}
$$

vertices. We call a (co)clique that meets the Delsarte bound a Delsarte-(co)clique. (Many people call them Hoffman-(co)cliques. The bound for strongly regular graphs, however, was first given by Delsarte. Hoffman later generalized it to arbitrary regular graphs.) The following result is well known; see for example [2] p. 10.

Lemma 2.1 A (co)clique C of Γ is a Delsarte-(co)clique if and only if every vertex not in C is adjacent to a constant number of vertices of C.

Clearly, if Γ has a spread, K and $n / K=\bar{K}$ must be integers. We call a parameter set for a strongly regular graph feasible for a spread if it satisfies these divisibility conditions. Note that if a parameter set is feasible for a spread, then so is the parameter set of the complement. Hoffman [16] (see also [17] p. 397 or [12]) proved that the chromatic number of Γ is at least $K=1-k / s$ (the bound holds for any graph with largest eigenvalue k and smallest eigenvalue s). We call a coloring meeting this bound a Hoffman-coloring. It is clear that each color class of a Hoffman-coloring of Γ is a coclique of size $n / K=\bar{K}$, so a Hoffman coloring of Γ is the same as a spread in the complement of Γ. Results from [11] on the chromatic number of strongly regular graphs have the following consequences for Hoffman-colorings.

THEOREM 2.2 If Γ is primitive and admits a Hoffman-coloring then $k r \geq s^{2}$.
Proof. Theorem 2.2.3 of [11] (see also [12]) states that if Γ is not the pentagon (which obviously has no Hoffman-coloring), the chromatic number is at least $1-s / r$, so $K \geq$ $1-s / r$.

COROLLARY 2.3 For a fixed K there are only finitely many primitive strongly regular graphs with a Hoffman-coloring with K colors.

Proof. The above inequality and $k+r s=\mu>0$ give $-s \leq r(K-1)<(K-1)^{2}$. Hence $n=(k-r)(k-s) / \mu \leq k(k-s)=s^{2} K(K-1)<K(K-1)^{5}$.

In fact, by Theorem 4.1.2 of [11] the above statement holds for any coloring of a primitive strongly regular graph. If K is small, we can be more precise:

Theorem 2.4 Suppose Γ is a primitive strongly regular graph with a Hoffman-coloring with at most four colors. Then Γ has chromatic number 3 and Γ is the Lattice graph $L(3)$ (i.e. the line graph of $K_{3,3}$), or Γ has chromatic number 4 and Γ is $L(4)$, the complement of $L(4)$, the Shrikhande graph or one of the eleven $(64,18,6,4)$ strongly regular graphs that are incidence graphs of three linked symmetric 2-(16,6,2) designs.

Proof. Theorem 4.3.1 of [11] gives all 4-colorable strongly regular graphs. Of these we take the primitive ones that meet Hoffman's bound.

For the definition of (and more about) linked symmetric designs we refer to Section 5.

3. Partial Geometries

Suppose Γ is geometric, that is, Γ is the point graph of a partial geometry G (say). Then the parameters of G are $K=1-k / s$ (= line size), $R=-s$ and $T=-r-k / s$. The lines of G are Delsarte-cliques of Γ, but not all Delsarte-cliques need to be lines. Thus if G has a spread, then so does Γ, but the converse needs not be true. This is illustrated by the partial geometry with parameters $(K, R, T)=(3,2,2)$, which has the complete 3-partite graph $K_{2,2,2}$ as point graph. However, a spread of Γ obviously gives a spread of G if all Delsarte-cliques of Γ are lines of G, in this case we will call Γ faithfully geometric.
An ovoid in G is a set C of pairwise non-collinear points so that every line intersects C in just one point. Thus C is a spread in the dual of G. It follows (for instance from Lemma 2.1) that C is a Delsarte-coclique of Γ, and conversely, each Delsarte-coclique corresponds to an ovoid. A partition of the points of G into ovoids is called a fan of G. So we have:

Proposition 3.1 If Γ is the point graph of a partial geometry G, then Γ has a Hoffmancoloring if and only if G has a fan.

Many partial geometries with spreads and fans are known, leading to many examples of strongly regular graphs with spreads and Hoffman-colorings. To be more specific we distinguish, as usual, four types of partial geometries: the (dual) Steiner 2-designs, the (dual) nets, the generalized quadrangles and the proper partial geometries. For spreads and fans in generalized quadrangles we refer to a nice survey by Payne and Thas [21]. A fan in a dual Steiner 2-design is the same as a parallelism or resolution. Many such designs are known (see [19]). They exist for example for all feasible parameters with block size ($=R$) equal to 2,3 or 4 . Any two lines of a dual Steiner 2-design meet, so this geometry has no spread. A net is a partial geometry with $T=R-1$; it is the same as a set of $R-2$ MOLS (mutually orthogonal Latin squares) of order K. Nets clearly have spreads and it is also easy to see that a net has a fan if and only if the set of MOLS can be extended by one more square. See [1] for more about nets and Steiner systems. For spreads and fans in proper partial geometries we refer to [7].
Many pseudo-geometric graphs are not geometric. On the other hand, in some cases being (faithfully) geometric is forced by its parameters. This can lead to non-existence of strongly regular graphs with spreads or Hoffman-colorings for certain parameters.

PROPOSITION 3.2 If $\mu=s^{2}$ (i.e. Γ has the parameters of the point graph of a dual Steiner 2-design) and if $2 r>(s+1)\left(s^{3}+s-2\right)$, then Γ has no spread.

Proof. By Neumaier [20], Γ is faithfully geometric to a dual Steiner 2-design, which has no spread.

Note that just the condition that $\mu=s^{2}$ is not enough to exclude spreads, since $K_{2,2,2}$ has spreads (but we know of no primitive counter example).

4. Three-Class Association Schemes

Suppose Γ is primitive and has a spread. We define on the vertices of Γ the relations R_{0}, R_{1}, R_{2} and R_{3} as follows: $\{x, y\} \in R_{3}$ if x and y are distinct vertices in the same clique of the spread and $\{x, y\} \in R_{i}$ if $\{x, y\} \notin R_{3}$ and the distance between x and y in Γ equals i ($i=0,1,2$).

PROPOSITION 4.1 The relations $R_{0}, R_{1}, R_{2}, R_{3}$ form an imprimitive 3-class association scheme with eigenmatrix

$$
P=\left[\begin{array}{cccc}
1 & k+k / s & n-k-1 & -k / s \\
1 & r+1 & -r-1 & -1 \\
1 & s+1 & -s-1 & -1 \\
1 & r+k / s & -r-1 & -k / s
\end{array}\right]
$$

and respective multiplicities $1, f-\bar{K}+1, g$ and $\bar{K}-1$. And conversely, a 3-class association scheme with eigenmatrix P gives rise to a strongly regular graph with eigenvalues k, r and s having a spread.

Proof. Let $A_{0}, A_{1}, A_{2}, A_{3}$ be the adjacency matrices of the relations R_{0}, \ldots, R_{3}. Then

$$
A_{0}=I, \sum_{i=0}^{3} A_{i}=J, A_{3}+I=I_{\bar{K}} \otimes J_{K}
$$

and $A=A_{1}+A_{3}$ is the adjacency matrix of Γ. Since Γ is strongly regular, the span $\langle I, J, A\rangle$ is closed under multiplication. Lemma 2.1 implies that $A A_{3} \in\left\langle I, J, A_{3}\right\rangle$. Therefore $\left\langle A_{0}, A_{1}, A_{2}, A_{3}\right\rangle$ is closed under multiplication, so represents an association scheme. The scheme is imprimitive since $R_{3} \cup R_{0}$ is an equivalence relation. The i-th column of P contains the eigenvalues of A_{i}, which are straightforward for $i=0,2$ and 3 . Next, observe that the eigenvectors of A_{3} for the eigenvalue $-k / s$ are in $\left\langle J, A_{3}+I\right\rangle$, that is, the coordinates are constant on each equivalence class. But from Lemma 2.1 it follows that A_{2} has eigenvectors in the same space with eigenvalues $n-k-1$ or $-r-1$, so the eigenvalues of A_{2} and A_{3} correspond as given and the eigenvalues of A_{1} follow. Conversely, for a scheme with eigenmatrix P, A_{3} has only two distinct eigenvalues, so must represent a disjoint union of cliques and $A_{1}+A_{3}$ has only three distinct eigenvalues, so represents a strongly regular graph Γ. Relation R_{3} gives a partition of Γ into cliques, which must be Delsarte-cliques by Lemma 2.1.

Imprimitive 3-class association schemes are studied by Chang [6]. He calls the schemes considered here of Γ type.
Observe that, for each ℓ, the product $(P)_{1 \ell}(P)_{2 \ell}(P)_{3 \ell}$ is positive and therefore the Krein parameter q_{13}^{2} is positive and hence Neumaier's absolute bound (see [2] p.51) gives $g \leq$ $(f-\bar{K}+1)(\bar{K}-1)$. By use of $k+f r+g s=0$ it follows easily that the latter inequality is equivalent to Theorem 2.2 applied to the complement of Γ. Chang derives the same inequality from the Krein condition and in the next section we shall give a direct proof and consider the case of equality.
The relation R_{1} of the scheme is a distance-regular graph precisely when two vertices in R_{3} have distance 3 in the graph R_{1}. In Γ this means that each vertex p has one neighbor in each clique of the spread not containing p. This is the case if and only if $-s(r+1)=k$, that is, if Γ is pseudo geometric for a partial geometry with $T=1$ (i.e. a generalized quadrangle). The involved distance-regular graphs are antipodal covers of the complete graphs. Such graphs have been studied extensively by Godsil and Hensel [9].

5. Linked Symmetric Designs

A system of m linked symmetric ($v, k^{\prime}, \lambda^{\prime}$) designs is a collection $\left\{\Omega_{0}, \ldots, \Omega_{m}\right\}$ of disjoint sets and an incidence relation between each pair of sets such that:

1. For each pair Ω_{i}, Ω_{j} the incidence relation gives a symmetric 2- $\left(v, k^{\prime}, \lambda^{\prime}\right)$ design.
2. For any three distinct sets $\Omega_{i}, \Omega_{j}, \Omega_{k}$ and for any two points $p \in \Omega_{j}$ and $q \in \Omega_{k}$, the number of elements in Ω_{i} incident with both p and q can take only two values x and y say, depending on whether p and q are incident or not.

Linked symmetric designs were introduced by Cameron [4]. (Though Cameron did not require that all designs have the same parameters, but for simplicity we do.) It follows that $(x-y)^{2}=k^{\prime}-\lambda^{\prime}$ and $y\left(k^{\prime}+x-y\right)=k^{\prime} \lambda^{\prime}$. The incidence graph of such a system has the union of $\Omega_{0}, \ldots, \Omega_{m}$ as vertex set; two vertices being adjacent whenever they belong to incident points of different sets. By definition we see that such a graph is strongly regular if and only if $m \lambda^{\prime}=y(m-1)$. If so, it has a Hoffman-coloring (by Lemma 2.1) and the eigenvalues are $k=m k^{\prime}, r=k^{\prime} / m$ and $s=-k^{\prime}$, and so the bound of Theorem 2.2 is tight. The next result states that the converse is also true. For convenience we use the formulation of the previous section.

THEOREM 5.1 If Γ is a primitive strongly regular graph with a spread, then

$$
g \leq(f-\bar{K}+1)(\bar{K}-1)
$$

and equality holds if and only if the complement of Γ is the incidence graph of a system of linked symmetric designs.

Proof. The proof is just the obvious generalization of the one of Theorem 4.2.7 in [11]. Let, as before, A_{0}, \ldots, A_{3} be the adjacency matrices of the corresponding association scheme.

Define

$$
E=-s(k-r) A_{0}+(k-s) A_{1}+\left(k+r s-s-s^{2}\right) A_{3}
$$

Then by use of the eigenmatrix P we find that $\operatorname{rank}(E) \leq f-\bar{K}+2$. (In fact, we choose $E=(k-r)(k-s) E_{0}+(k-s)(r-s) E_{1}$, where E_{0} and E_{1} are the minimal indempotents of rank 1 and $f-\bar{K}+1$, respectively.) We partition the matrices E and A_{2} according to the spread:

$$
E=\left[\begin{array}{ccc}
E_{00} & \cdots & E_{0 m} \\
\vdots & & \vdots \\
E_{m 0} & \cdots & E_{m m}
\end{array}\right], A_{2}=\left[\begin{array}{ccc}
A_{00} & \cdots & A_{0 m} \\
\vdots & & \vdots \\
A_{m 0} & \cdots & A_{m m}
\end{array}\right],
$$

wherein $m=\bar{K}-1$. Then $E_{i j}=(k-s)\left(J-A_{i j}\right)$ for $i \neq j, E_{i i}=(k+r s-s-$ $\left.s^{2}\right) J-(s+1)(k-s) I$ and $A_{i i}=0$ for $i, j=0, \ldots, m$. It follows that E_{00} is nonsingular and $E_{00}^{-1} \in\langle I, J\rangle$. Now $\operatorname{rank}\left(E_{00}\right) \leq \operatorname{rank}(E)$ gives $K \leq f-\bar{K}+2$ and by use of $K \bar{K}=n=f+g+1$ we find the required inequality. If equality holds, then $K=\operatorname{rank}\left(E_{00}\right)=\operatorname{rank}(E)$, which implies that $E_{i j}=E_{i 0} E_{00}^{-1} E_{0 j}$. By use of $A_{i 0} J=A_{0 i} J \in\langle J\rangle$ and the formulas above this leads to $A_{i 0} A_{i 0}^{\top}=A_{i 0} A_{0 i} \in\langle I, J\rangle$ in case $i=j$ and to $A_{i 0} A_{0 j} \in\left\langle J, A_{i j}\right\rangle$ for $i \neq j$. The first equation reflects that $A_{i 0}$ is the incidence matrix of a symmetric 2 -design and the second equation gives by Theorem 2 of [4] that the 2 -designs are linked.

Sufficiently large systems of linked designs are known to exist if v is a power of 4 . Mathon [18] proved that there are exactly twelve systems of three linked $(16,6,2)$ designs, leading to eleven non-isomorphic incidence graphs. One of these graphs also comes from a fan in the generalized quadrangle with parameters $(4,6,1)$, but the remaining ten are not geometric. These graphs are mentioned in Theorem 2.4. The theorem above excludes the existence of a $(75,42,25,21)$ strongly regular graph with a spread, indeed the complement would have a Hoffman-coloring with $k r=s^{2}$, but the corresponding system of 4 linked $(15,8,4)$ designs does not exist, because $m \lambda^{\prime}=16$ is not divisible by $m-1=3$. In fact, it is not known if a strongly regular graph with these parameters exists. Similarly it follows that no $(96,45,24,18)$ strongly regular graph with a spread exists.

6. Small Parameters

In this section we list the feasible parameters for strongly regular graphs with a spread up to 100 vertices and try to determine existence. First we consider some easy infinite families. Imprimitive strongly regular graphs obviously have spreads and Hoffman-colorings. The triangular graph $T(m)$ is the line graph of K_{m} and is geometric for a (trivial) dual Steiner system. It is primitive and feasible for a spread if $m \geq 5$ and even. Then $T(m)$ has no spreads (by Theorem 2.2 for example), but several Hoffman-colorings (corresponding to 1 -factorizations of K_{m}). For $m \neq 8, T(m)$ is determined by its parameters, but there are three more graphs with the parameters of $T(8)$: the Chang graphs. They too have no spreads
(again by Theorem 2.2) but several Hoffman-colorings (easy exercise). The Lattice graph $L(m)$ is the linegraph of $K_{m, m}$ and is geometric for a net. For each $m, L(m)$ has precisely two spreads and a number of Hoffman-colorings (corresponding to Latin squares of order $m)$. For $m \neq 4, L(m)$ is determined by its parameters. There is one more graph with the parameters of $L(4)$: the Shrikhande graph. By Theorem 2.4 (or just by checking) it follows that the Shrikhande graph has Hoffman-colorings, but no spreads. All remaining feasible parameters of strongly regular graphs with a spread are listed in Table 1 (by feasible we mean that the parameters $n, k, \lambda, \mu, f, g, K$ and \bar{K} are positive integers that satisfy the basic equations). For each parameter set we indicate what is known about existence of a spread and a Hoffman-coloring, so that we do not need to consider the complementary parameter set. Most examples come from spreads and fans in nets (indicated by "net"), dual Steiner systems ("dss") or generalized quadrangles ("gq"). The abbreviation "abs" refers to the absolute bound for strongly regular graphs ($v \leq f(f+3) / 2$) and "drg" means that the relation R_{1} of the association scheme is a distance-regular graph. Most cases of non-existence come from results treated earlier. Two cases need more explanation:

Proposition 6.1 For the parameter sets $(35,18,9,9)$ and $(45,12,3,3)$ there exists no strongly regular graph with a spread.

Proof. Consider the complement and assume existence of a $(35,16,6,8)$ strongly regular graph Γ with a Hoffman-coloring. Then $r=2, s=-4$ and Γ has five color classes of size 7. The subgraph induced by three of these classes has a regular partition (i.e. each block matrix of the partitioned incidence matrix has constant row and column sum) with quotient matrix $4\left(J-I_{3}\right)$, so has the eigenvalue -4 with multiplicity at least 2 . This implies that the bipartite subgraph Γ^{\prime} induced by the remaining two color classes has at least twice the eigenvalue 2 (By Theorem 1.3.3 in [11] or Lemma 1.2 in [14]), and by interlacing, no eigenvalue between 2 and 4 . Therefore the bipartite complement of Γ^{\prime} is a cubic bipartite graph on 14 vertices for which the three largest eigenvalues are 3,2 and 2. Bussemaker et al. [3] have enumerated all cubic graphs on 14 vertices, but none has the required property.
A $(45,12,3,3)$ strongly regular graph is pseudo geometric to a generalized quadrangle, and hence a spread would provide a distance regular antipodal 5-cover of K_{9}. Such a distance-regular graph does not exist; see [2] p. 152.

The smallest unsolved case is a $(36,15,6,6)$ strongly regular graph with a Hoffmancoloring. Since there exist no two orthogonal Latin squares of order 6 , such a graph cannot be geometric. Probably such a graph does not exist at all, since E. Spence has tested all strongly regular graphs with these parameters known to him (over 30000; see [22]) and found that none has a Hoffman-coloring.

7. Regular 2-Graphs

In this section we need some results from regular two-graphs, which we shall briefly explain (see [5] for more details). A two graph (Ω, Δ) consists of a finite set Ω, together with a set Δ of unordered triples (called coherent triples) from Ω, such that every 4 -subset of Ω contains

Table 1. Feasible parameters for primitive strongly regular graphs with a spread (or Hoffmancoloring) on at most 100 vertices. The parameters of the triangular and the lattice graphs are left out. For each pair of complementary parameters, only the one with the smaller k is given.

n	k	λ	μ	r	s	K	\bar{K}	spread	Hoffman-coloring
25	12	5	6	2	-3	5	5	YES, net	YES, net
27	10	1	5	1	-5	3	9	YES, gq, drg	NO, 2.2, 2.4, 3.1
35	16	6	8	2	-4	5	7	YES, dss	NO, 6.1
36	15	6	6	3	-3	6	6	YES, net	$?$
40	12	2	4	2	-4	4	10	YES, gq, drg	NO, 2.4
45	12	3	3	3	-3	5	9	NO, 6.1, drg	YES, gq
49	18	7	6	4	-3	7	7	YES, net	YES, net
49	24	11	12	3	-4	7	7	YES, net	YES, net
63	22	1	11	1	-11	3	21	NO, abs	NO, abs, 2.2, 2.4
63	30	13	15	3	-5	7	9	YES, dss	$?$
64	18	2	6	2	-6	4	16	YES, gq, drg	YES, gq, 2.4, 5.1
64	21	8	6	5	-3	8	8	YES, net	YES, net
64	28	12	12	4	-4	8	8	YES, net	YES, net
64	30	18	10	10	-2	16	4	NO, abs, 2.2, 2.4	NO, abs
70	27	12	9	6	-3	10	7	$?$	YES, dss
75	32	10	16	2	-8	5	15	$?$	NO, 5.1
76	21	2	7	2	-7	4	19	NO, [13], drg	NO, [13], 2.2, 2.4
81	24	9	6	6	-3	9	9	YES, net	YES, net
81	32	13	12	5	-4	9	9	YES, net	YES, net
81	40	19	20	4	-5	9	9	YES, net	YES, net
85	20	3	5	3	-5	5	17	YES, gq, drg	$?$
95	40	12	20	2	-10	5	19	$?$	NO, 2.2
96	20	4	4	4	-4	6	16	YES, gq, drg	YES, gq
96	35	10	14	3	-7	6	16	$?$	$?$
96	45	24	18	9	-3	16	6	NO, 5.1	$?$
99	48	22	24	4	-6	9	11	YES, dss	$?$
100	27	10	6	7	-3	10	10	YES, net	YES, net
100	36	14	12	6	-4	10	10	YES, net	$? ?$
100	45	20	20	5	-5	10	10	$?$	$?$

an even number of triples from Δ. With any graph (Ω, E) we associate a two-graph (Ω, Δ) by defining three vertices coherent if they induce an odd number of edges. Two graphs (Ω, E) and (Ω, E^{\prime}) give rise to the same two-graph if and only if Ω can be partitioned into two parts $\Omega=\Omega_{1} \cup \Omega_{2}$ such that $E \cap\left(\Omega_{i} \times \Omega_{i}\right)=E^{\prime} \cap\left(\Omega_{i} \times \Omega_{i}\right)$ for $i=1,2$ and $E \cap\left(\Omega_{1} \times \Omega_{2}\right)=\left(\Omega_{1} \times \Omega_{2}\right) \backslash E^{\prime}$. The operation that transforms E to E^{\prime} is called Seidel switching and the corresponding graphs are called switching equivalent. The descendant (or derived graph) Γ_{ω} of (Ω, Δ) with respect to a point $\omega \in \Omega$ is the graph with vertex set $\Omega \backslash\{\omega\}$, where two vertices p and q are adjacent if $\{\omega, p, q\} \in \Delta$. Clearly the two-graph associated with $\Gamma_{\omega}+\omega$ is (Ω, Δ) again, thus there is a one-to-one correspondence between two-graphs and switching classes of graphs.
A two-graph (Ω, Δ) is regular if every pair of points from Ω is contained in a constant number a of coherent triples. Every descendant of a regular two-graph is a strongly regular graph with parameters $n=|\Omega|-1, k=a$, and $\mu=a / 2$. We will parameterize a
regular two-graph with the eigenvalues r and s of a descendant $(a=-2 r s$ and $|\Omega|=$ $1-(2 r+1)(2 s+1)$). Conversely, any strongly regular graph with $k=2 \mu$ (or $k=-2 r s$) is a descendant of a regular two-graph. Often there are other strongly regular graphs associated to a regular two-graph (Ω, Δ). This is the case if the switching class of (Ω, Δ) contains a regular graph Γ. Then it follows that Γ is strongly regular and has also the eigenvalues r and s, but Γ has one more vertex and a different degree than a descendant. In fact, there are two possible values for the degree of $\Gamma:-2 r s-r$ and $-2 r s-s$.

A clique of (Ω, Δ) is a subset C of Ω, such that every triple of C is coherent. So if $\omega \in C$ then $C \backslash\{\omega\}$ is a clique in Γ_{ω}, hence $|C| \leq K+1=2 r+2$ and from Lemma 2.1 it follows that every vertex of Γ_{ω}, not in C, is adjacent to r vertices of C. A spread in a regular two-graph is a partition of the point set into cliques of size $2 r+2$.

PROPOSITION 7.1 If a regular two-graph admits a spread, then the corresponding switching class contains a strongly regular graph of degree $-2 r s-s$ with a spread.
Proof. Take a graph Γ in the switching class of the regular two-graph (Ω, Δ) switched such that each (two-graph) clique of the spread corresponds to a (graph) clique of Γ (because the cliques are disjoint, we can always do so). Let C be such a clique. By considering the descendant with respect to a vertex of C it follows that every vertex of Γ, not in C is adjacent to $|C| / 2$ vertices of C. Therefore Γ is regular of degree $|C|-1+(|\Omega|-|C|) / 2=-2 r s-s$ and hence strongly regular.

For example for every odd prime power q, the unitary two-graph (Ω, Δ) with eigenvalues $r=(q-1) / 2$ and $s=-\left(q^{2}+1\right) / 2$ (see Taylor [23]) is defined on the $q^{3}+1$ absolute points of a unitary polarity in $P G\left(2, q^{2}\right)$. The non-absolute lines of the plane meet Ω in $q+1=2 r+2$ points, that form a clique in (Ω, Δ) and one easily finds $q^{2}-q+1$ non-absolute lines that intersect each other outside Ω. So we have a spread in (Ω, Δ) and by the above proposition we obtain a strongly regular graph with a spread with parameter set:

$$
\begin{equation*}
\left(q^{3}+1, q\left(q^{2}+1\right) / 2,\left(q^{2}+3\right)(q-1) / 4,\left(q^{2}+1\right)(q+1) / 4\right) \tag{1}
\end{equation*}
$$

Notice that by Theorem 2.2 these graphs have no Hoffman-coloring. If we switch in Γ with respect to the union of some cliques, we again find a strongly regular graph with a spread with the same parameters, which may or may not be isomorphic to the Γ. There are $2^{q^{2}-q}$ such switchings possible and $|\operatorname{aut}(\Omega, \Delta)|=2 q^{3}\left(q^{3}+1\right)\left(q^{2}-1\right)$ (we restrict to the case that q is a prime), so then the number of non-isomorphic such strongly regular graphs is at least

$$
\begin{equation*}
\frac{2^{q^{2}-q-1}}{q^{3}\left(q^{3}+1\right)\left(q^{2}-1\right)} \tag{2}
\end{equation*}
$$

Also spreads in a descendant give switching partitions of (Ω, Δ), that produce (many) strongly regular graphs.

Proposition 7.2 If a descendant Γ_{ω} of a regular two-graph (Ω, Δ) admits $-s-1$ disjoint Delsarte-cliques, then the corresponding switching class contains a strongly regular graph of degree $-2 r s-s$.
Proof. Let Ω_{1} be the set of vertices of the $-s-1$ Delsarte-cliques. Switch in $\Gamma_{\omega}+\omega$ with respect to $\Omega_{1} \cup\{\omega\}$. Then we obtain (as follows easily by use of Lemma 2.1) a regular graph of degree $-2 r s-s$ in the switching class of (Ω, Δ).

Since a spread in Γ_{ω} contains $-2 s-1$ Delsarte-cliques, we have:

Corollary 7.3 If Γ_{ω} has a spread, then there exist at least

$$
\frac{1}{|\operatorname{aut}(\Omega, \Delta)|}\binom{-2 s-1}{-s-1}
$$

non-isomorphic strongly regular graphs of degree $-2 r s-s$ in the switching class of (Ω, Δ).
Consider again the unitary two-graph. The q^{2} non-absolute lines through a fixed absolute point ω form a spread Γ_{ω}. Thus there are at least

$$
\frac{1}{2 q^{3}\left(q^{3}+1\right)\left(q^{2}-1\right)}\binom{q^{2}}{\left(q^{2}-1\right) / 2}
$$

strongly regular graphs with parameters (1) and q prime. This number is bigger than the one given in (2), but here we don't know if the graphs have spreads. For $q=5$, for example, we find at least six non-isomorphic $(126,65,28,39)$ strongly regular graphs and at least two with a spread.

8. The McLaughlin Graph

The McLaughlin graph (for short $M c \Gamma$) is the unique strongly regular graph with parameters $n=275, k=112, \lambda=30$ and $\mu=56$. It is the descendant of the (also unique) regular two-graph (Ω, Δ) with eigenvalues $r=2$ and $s=-28$, see Goethals and Seidel [10]. For another discussion of $M c \Gamma$ see [15]. The automorphism group of (Ω, Δ) is Conway's simple group Co_{3} which acts 2 -transitively on Ω and the point stabilizer is $M c L .2$, the full automorphism group of $M c \Gamma$. We shall now describe $M c \Gamma$ explicitely by means of this group. Therefor we list six permutations of $\{1, \ldots, 275\}$ which generate $M c L .2$ (of order 1796256000), and the indices of the 112 neighbors of vertex 1 :

1. 123411810614121022810109121131478591392192293710096220105358616120823543412364452 25250204717483124930331321043840128951333484151140156123131126273876279888110298124 92127992659410312926025725263237652342515315266164248253166917773502217567712118466 744624616516911162142160132182272091525194197188185576817459704975176584551233224 24120427422155711121223921424414199201196541171811801835619018618711227110163164107 1662552161082152172662681259713093254259154153261155101122158159121256157267270193119 2631501202641482621492722261372382312232811682401432451451701681711141823139243207135 24720311591924620627113482293280205144211136269222146213230225894236837890178167189 77275179761822001951987217219117324219223220260138258
2. 123415612415835711917696273157164111621019322020119920619710310420821921610815372 75816037163155401501361652612572604716612617113411914111814015113213117027012713122 154205102106981212193314159341611232511912241792232751862301871882272622689192236184

2392401456814214814766262716767168311832352282561131741802431755452210706377621249 612151942135857195511984220220420055539921821797209101100211415621432643951577436 7618381643481051071965950207203114117247181249811151772651099426784868725024679271 2012913316925135231392213717313865241722814612014912513015212830144143292124824482 80245253881112298525527326326611093264259959625426911622222519017622117818978258226 24123111245252238464489233237182234185902426019227423227283
3. 1235434292827401211371913112911918141241211223612612012798712512332130635231339 38109242107979899108101102103939411056555419321621525821777149158153154164155163159 157721501481667662116898082819010510410011211579831094151529596444546864849508584 11343479153111871061148878117132172521223120302426128163315118133172145136138137139 160162161168144135173151746373147152656668169716470140142141696716575170143156167171 13414626026426126620120520619521419625726718618922018723022122657229181183197247239 240178244242243179180238208209210241246245182595861228227188191232223225224192219218 194190231222233263255259265207199200211203204202213212198254262256270273268248235250 18460236174176249234175237177185253272251271269252274275
4. $\quad 1241047204955117255210691438635443910394791121175414275611010712985105109118453$ 48113121971852281801831811642101412501747059685718867711752421696228411418231193431 13324165011462122126825521226627426526025721721524424116616319018719620117619458208 2292191471612352202367519918621623962233214204224124127554196100371117108102928899 9881125801228983901231261319310113042192811612012111515531338301289513210433402698 2932879736827813413520620722614314522324514815924372771711891951736074696561151237 16025363248252251218152234156249140209142642276616518417716273191200172167198192170 16819376182178179246158157247238150149240272137262264263231267203256139271270211261 144155232205153154146259225213230222136202269273258254275138
5. 13210941231128461063410911991114315295611312613312887251899120148168156262175151 2102311641692571931832632282651291314118103847948233911092981078690158194207256267 12138124111051049716115541251012262361451852402721402601416618723813762163149229170 181245681901801501882197125047855620127278812302111644174028242231845714374186171 1472641656724963237195269138234162220157230167213192196154259155691352001897773218160 22720617450108419536151322653897843331172293122100961303719815571022911132831314 424535804982512422522741916124819727020817921219822421721625524619959233173211214182 2221591611667614425824113970201247254215153266273209268261142152134177235203271243172 239647523217858722051362251762216520460253251146275244202
6. 2131038409874371213985341529910810995961273025261261201252491975139353611534616 12210513313212811810610410033171512412112315616216126916016463218152165147151194220 219153757473154155907982117808385848611211489783111913012921223214185010110710349 43481021920131115871138811111681479228554256542927234694931104544224233191226232 221188228227231189223192671481491506865727677572152162176159581936266166230186229190 18722522223523617717625426126026525925718424916817114014417013614616369213196208205 199211201202204203198212214197209210200206195207157158159647170139173145134172137142 141169167143138135237174175234264256262267273268270263255266248185250251253252178246 23918325818218017924024523818124724124360244274272242271275

The 112 vertices adjacent to vertex 1 are:

91522273032424346515860636571767879818283858990939699104107111114116122125131133 134136137138139142143146149153157161165168172173174177178179181185190191192195200201 202203204205207209211212216218221222223226228230232233234236238240241242243244246248 249251252253254258259260262263266267268269270271272273274275

THEOREM 8.1 The McLaughlin graph admits a spread.

Proof. The following ordering groups the vertices into 55 disjoint cliques of size 5 (i.e. Delsarte-cliques):

1	9	85	90	$275 ;$	2	7	138	141	$274 ;$	3	21	192	199	$273 ;$
4	14	213	218	$272 ;$	5	8	225	228	$271 ;$	6	20	202	226	$257 ;$
10	16	221	238	$261 ;$	11	17	229	252	$258 ;$	12	26	206	241	$263 ;$
13	18	223	235	$266 ;$	15	23	214	227	$260 ;$	19	24	216	234	$265 ;$
22	36	183	219	$259 ;$	25	32	184	215	$270 ;$	27	33	189	210	$254 ;$
28	35	198	236	$267 ;$	29	48	153	174	$264 ;$	30	49	154	181	$256 ;$
31	51	146	193	$255 ;$	34	45	163	243	$269 ;$	37	50	170	233	$262 ;$
38	56	171	248	$268 ;$	39	78	140	191	$196 ;$	40	79	167	177	$217 ;$
41	84	137	166	$195 ;$	42	86	143	162	$187 ;$	43	95	136	164	$182 ;$
44	82	155	169	$201 ;$	46	88	158	172	$220 ;$	47	83	145	157	$194 ;$
52	80	148	161	$178 ;$	53	94	160	168	$244 ;$	54	100	139	165	$245 ;$
55	104	135	150	$185 ;$	57	116	124	152	$246 ;$	58	106	126	144	$242 ;$
59	81	119	156	$232 ;$	60	91	121	149	$208 ;$	61	108	129	173	$249 ;$
62	105	120	179	$253 ;$	63	87	130	190	$197 ;$	64	99	115	134	$188 ;$
65	101	118	186	$203 ;$	66	98	133	200	$239 ;$	67	103	125	176	$211 ;$
68	117	123	209	$230 ;$	69	107	127	231	$251 ;$	70	89	110	151	$205 ;$
71	97	111	147	$247 ;$	72	109	131	212	$237 ;$	73	96	112	159	$240 ;$
74	102	114	142	$224 ;$	75	93	128	180	$207 ;$	76	92	132	175	$204 ;$
77	113	122	222	250.										

The above spread was found by a computer search. The search was stopped after five different spreads were found. At that point we had given up hope for completing the search. The order of Co_{3} equals $2^{10} \cdot 3^{7} .5^{3} .7 .11 .23$, so by Corollary 7.3 there are at least 7715 nonisomorphic strongly regular graphs in the switching class of (Ω, Δ). Since $M c \Gamma$ probably has many spreads and since the bound of Corollary 7.3 is very pessimistic, the actual number of non-isomorphic $(276,140,58,84)$ strongly regular graph is, no doubt, much bigger. It is to be expected that only relatively small collections of the $\binom{55}{27}$ possible switching sets coming from the spread above lead to isomorphic graphs. But because the corresponding permutations do not need to form a group it is not clear how to get a significantly better estimate in an easy way.

References

1. T. Beth, D. Jungnickel and H. Lenz, Design Theory, Cambridge Univ. Press (1985).
2. A. E. Brouwer, A. Cohen and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, (1989).
3. F. C. Bussemaker, S. Čobeljić, D. M. Cvetković and J. J. Seidel, Computer investigations of cubic graphs, T.H.-Report 76-WSK-01, Techn. Univ. Eindhoven, (1976).
4. P. J. Cameron, On groups with several doubly-transitive permutation representations, Math. Z., Vol. 128 (1972) pp. 1-14.
5. P. J. Cameron and J. H. van Lint, Designs, Graphs, Codes and Their Links, Cambridge Univ. Press, (1991).
6. Yaotsu Chang, Imprimitive symmetric association schemes of rank 4, University of Michigan Ph.D. Thesis, (August 1994).
7. F. De Clerck, A. Del Fra and D. Ghinelli, Pointsets in partial geometries, in: Advances in Finite Geometries and Designs (J. W. P. Hirschfeld, D. R. Hughes and J. A. Thas eds.), Oxford Univ. Press (1991) pp. 93-110.
8. P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Research Reports Suppl., Vol. 10 (1973).
9. C. D. Godsil and A. D. Hensel, Distance regular covers of the complete graph, J. Combinatorial Theory B, Vol. 56 (1992) pp. 205-238.
10. J. M. Goethals and J. J. Seidel, The regular two-graph on 276 vertices, Discrete Math., Vol. 12 (1975) pp. 143-158.
11. W. H. Haemers, Eigenvalue techniques in design and graph theory, (Technical University Eindhoven, Ph.D. Thesis, 1979), Math. Centre Tract 121, Mathematical Centre, Amsterdam, 1980.
12. W. H. Haemers, Interlacing eigenvalues and graphs, Lin. Alg. Appl., Vol. 226-228 (1995) pp. 593-616.
13. W.H. Haemers, There exists no $(76,21,2,7)$ strongly regular graph, in: Finite Geometry and Combinatorics (F. De Clerck et al. eds.), Cambridge Univ. Press, (1993) pp. 175-176.
14. W. H. Haemers and D. G. Higman, Strongly regular graphs with strongly regular decomposition, Lin. Alg. Appl., Vol. 114/115 (1989) pp. 379-398.
15. W. H. Haemers, C. Parker, V. Pless and V. D. Tonchev, A design and a code invariant under the simple group Co_{3}, J. Combin. Theory A, Vol. 62 (1993) pp. 225-233.
16. A. J. Hoffman, On eigenvalues and colorings of graphs, in: Graph Theory and its Applications (B. Harris ed.), Acad. Press, New York (1970) pp. 79-91.
17. J. H. van Lint and R. Wilson, A Course in Combinatorics, Cambridge Univ. Press, (1992).
18. R. Mathon, The systems of linked 2-(16, 6, 2) designs, Ars Comb., Vol. 11 (1981) pp. 131-148.
19. R. Mathon and A. Rosa, Tables of parameters of BIBD's with $r \leq 41$ including existence enumeration and resolvability results, Ann. Discrete Math., Vol. 26 (1985) pp. 275-308.
20. A. Neumaier, Strongly regular graphs with smallest eigenvalue -m, Archiv der Mathematik, Vol. 33 (1979) pp. 392-400.
21. S. E. Payne and J. A. Thas, Spreads and ovoids in finite generalized quadrangles, Geometriae Dedicata, Vol. 52 (1994) pp. 227-253.
22. E. Spence, Regular two-graphs on 36 vertices, Lin. Alg. Appl., Vol. 226-228 (1995) pp. 459-498.
23. D. E. Taylor, Regular two-graphs: Proc. London Math. Soc. Ser. 3, Vol. 35 (1977) pp. 257-274.

[^0]: * Research partially supported by NSA Research Grant MDA904-95-H-1019.

