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Abstract. A spread of a strongly regular graph is a partition of the vertex set into cliques that meet Delsarte's 
bound (also called Hoffman's bound). Such spreads give rise to colorings meeting Hoffman's lower bound for 
the chromatic number and to certain imprimitive three-class association schemes. These correspondences lead 
to conditions for existence. Most examples come from spreads and fans in (partial) geometries. We give other 
examples, including a spread in the McLaughlin graph. For strongly regular graphs related to regular two-graphs, 
spreads give lower bounds for the number of non-isomorphic strongly regular graphs in the switching class of the 
regular two-graph. 

Keywords: strongly regular graphs, graph colorings, partial geometries, spreads, linked designs, regular 2-graphs 

1. Introduction 

A spread in a geometry is a set of pairwise disjoint lines that cover all the points. For a 
partial geometry the point graph (or collinearity graph) is strongly regular and lines are 
cliques in the point graph that meet Delsarte's bound. We define a spread in a strongly 
regular graph as a partition of the vertex set into cliques that meet Delsarte's bound. So 
that a spread of a partial geometry provides a spread in its point graph. A spread in a 
strongly regular graph 1" corresponds to a coloring of the complement of 1" that meets 
Hoffman's bound for the chromatic number. In terms of a partition of the pairs of vertices 
it corresponds to an imprimitive three-class association scheme. The chromatic number of 
strongly regular graphs has been studied by the first author in [ 11]; some of his results have 
direct consequences for spreads. Imprimitive three class association schemes have been 
studied by Chang [6] and some results, presented here, can also be found in Chang's work. 

Throughout F will denote a (n, k, ~,,/z) strongly regular graph on n vertices with eigenval- 
ues k, r and s (k > r > s) and multiplicities 1, f and g, respectively. Then the parameters 
satisfy the following basic equations: 

l ~ = L - r - s = k  + r s = ( k - r ) ( k - s ) / n ,  l + f + g = n ,  k + f r  + g s = O .  

* Research partially supported by NSA Research Grant MDA904-95-H-1019. 
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I f  1" is primitive (that is, 1-" is neither a disjoint union of cliques or a complete multi-partite 
graph), then 0 < /z < k, 1 < r < k and s < 0. For these and other results on graphs, 
designs, finite geometries and association schemes, we refer to Cameron and Van Lint [5] 
or Van Lint and Wilson [17]. 

2. Delsarte-Cliques and Hoffman-Colorings 

Delsarte [8] showed that a clique in F has at most K = 1 - k / s  vertices. Applied to the 
complement  of  I" it yields that a coclique has at most 

n - k - 1  n 
K = 1-1- 

r + l  K 

vertices. We call a (co)clique that meets the Delsarte bound a Delsarte-(co)clique. (Many 
people call them Hoffman-(co)cliques. The bound for strongly regular graphs, however, 
was first given by Delsarte. Hoffman later generalized it to arbitrary regular graphs.) The 
following result is well known; see for example [2] p. 10. 

LEMMA 2.1 A (co)clique C o f f  is a Delsarte-(co)clique i f  and only i f  every vertex not in 
C is adjacent to a constant number o f  vertices o f  C. 

Clearly, if l-' has a spread, K and n / K  = K must be integers. We call a parameter set 
for a strongly regular graph feasible for a spread if it satisfies these divisibility conditions. 
Note that if a parameter set is feasible for a spread, then so is the parameter set of  the 
complement. Hoffman [16] (see also [17] p. 397 or [12]) proved that the chromatic number 
of  F is at least K = 1 - k / s  (the bound holds for any graph with largest eigenvalue k and 
smallest eigenvalue s). We call a coloring meeting this bound a Hoffman-coloring. It is 
clear that each color class of a Hoffman-coloring of F is a coclique of size n / K  = K, so a 
Hoffman coloring of F is the same as a spread in the complement of F. Results from [11] 
on the chromatic number of  strongly regular graphs have the following consequences for 
Hoffman-colorings. 

THEOREM 2.2 I f  I" is primitive and admits a Hoffman-coloring then kr > s 2. 

Proof  Theorem 2.2.3 of  [ 11 ] (see also [ 12]) states that if I" is not the pentagon (which 
obviously has no Hoffman-coloring), the chromatic number is at least 1 - s / r ,  so K > 
1 - s / r .  �9 

COROLLARY 2.3 For a f ixed K there are only finitely many primitive strongly regular graphs 
with a Hoffman-coloring with K colors. 

Proof  The above inequality a n d k + r s  = /x > 0 g i v e - s  <_ r ( K -  1) < ( K -  1) 2 . 
Hence n = (k - r)(k  - s ) / l z  < k(k  - s) = sEK(K - 1) < K (K - 1) 5. �9 

In fact, by Theorem 4.1.2 of  [ 11 ] the above statement holds for any coloring of  a primitive 
strongly regular graph. I f  K is small, we can be more precise: 
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THEOREM 2.4 Suppose F is a primitive strongly regular graph with a Hoffman-coloring 
with at most four colors. Then F has chromatic number 3 and F is the Lattice graph L(3) 
(i.e. the line graph of K3,3), or I ~ has chromatic number 4 and F is L(4), the complement 
of L(4), the Shrikhande graph or one of the eleven (64, 18, 6, 4) strongly regular graphs 
that are incidence graphs of three linked symmetric 2-(16, 6, 2) designs. 

Proof. Theorem 4.3.1 of [11] gives all 4-colorable strongly regular graphs. Of these we 
take the primitive ones that meet Hoffman's bound. �9 

For the definition of (and more about) linked symmetric designs we refer to Section 5. 

3. Partial Geometries 

Suppose F is geometric, that is, F is the point graph of a partial geometry G (say). Then 
the parameters of G are K = 1 - k/s  (= line size), R = - s  and T = - r  - k/s.  The 
lines of G are Delsarte-cliques of F, but not all Delsarte-cliques need to be lines. Thus if G 
has a spread, then so does F, but the converse needs not be true. This is illustrated by the 
partial geometry with parameters (K, R, T) = (3, 2, 2), which has the complete 3-partite 
graph K2,2.2 as point graph. However, a spread of F obviously gives a spread of G if all 
Delsarte-cliques of F' are lines of G, in this case we will call r faithfully geometric. 

An ovoid in G is a set C of pairwise non-collinear points so that every line intersects C in 
just one point. Thus C is a spread in the dual of G. It follows (for instance from Lemma 2.1) 
that C is a Delsarte-coclique of F, and conversely, each Delsarte-coclique corresponds to 
an ovoid. A partition of the points of G into ovoids is called a fan of G. So we have: 

PROPOSITION 3.1 / f  F is the point graph of a partial geometry G, then F has a Hoffman- 
coloring if and only if G has a fan. 

Many partial geometries with spreads and fans are known, leading to many examples 
of strongly regular graphs with spreads and Hoffman-colorings. To be more specific we 
distinguish, as usual, four types of partial geometries: the (dual) Steiner 2-designs, the 
(dual) nets, the generalized quadrangles and the proper partial geometries. For spreads and 
fans in generalized quadrangles we refer to a nice survey by Payne and Thas [21]. A fan in 
a dual Steiner 2-design is the same as a parallelism or resolution. Many such designs are 
known (see [19]). They exist for example for all feasible parameters with block size (=  R) 
equal to 2, 3 or 4. Any two lines of a dual Steiner 2-design meet, so this geometry has no 
spread. A net is a partial geometry with T = R - 1; it is the same as a set of R - 2 MOLS 
(mutually orthogonal Latin squares) of order K. Nets clearly have spreads and it is also 
easy to see that a net has a fan if and only if the set of MOLS can be extended by one more 
square. See [1] for more about nets and Steiner systems. For spreads and fans in proper 
partial geometries we refer to [7]. 

Many pseudo-geometric graphs are not geometric. On the other hand, in some cases 
being (faithfully) geometric is forced by its parameters. This can lead to non-existence of 
strongly regular graphs with spreads or Hoffman-colorings for certain parameters. 
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PROPOSITION 3.2 If tz = s 2 (i.e. I" has the parameters of the point graph of a dual Steiner 
2-design) and if2r > (s + 1)(s 3 + s - 2), then F has no spread. 

Proof By Neumaier [20], F is faithfully geometric to a dual Steiner 2-design, which has 
no spread. �9 

Note that just the condition that/z = s 2 is not enough to exclude spreads, since K2,2,2 has 
spreads (but we know of no primitive counter example). 

4. Three-Class  Assoc iat ion  Schemes  

Suppose [' is primitive and has a spread. We define on the vertices of 1-" the relations Ro, 
R1, R2 and R3 as follows: {x, y} ~ R3 i fx  and y are distinct vertices in the same clique of 
the spread and {x, y} ~ Ri if {x, y} r R3 and the distance between x and y in F' equals i 
(i = 0, 1, 2). 

PROPOSITION 4.1 The relations Ro, R1, R2, R3 form an imprimitive 3-class association 
scheme with eigenmatrix 

1 k + k / s  n - k - 1  -k / s  
1 r + l  - r -  1 - 1  

P =  
1 s + l  - s - 1  - 1  
1 r + k / s  - r - 1  -k / s  

and respective multiplicities 1, f -  K + 1, g and K - 1. And conversely, a 3-class association 
scheme with eigenmatrix P gives rise to a strongly regular graph with eigenvalues k, r and 
s having a spread. 

Proof Let Ao, AI, A2, A3 be the adjacency matrices of the relations Ro . . . . .  R3. Then 

3 
a o = I ,  E A i = J ,  A 3 + I = I - ~ |  

i=o 

and A = A l + A3 is the adjacency matrix of I'. Since F is strongly regular, the span (I, J, A) 
is closed under multiplication. Lemma 2.1 implies that AA 3 E (I, J, A3). Therefore 
(Ao, A1, A2, A3) is closed under multiplication, so represents an association scheme. The 
scheme is imprimitive since R3 LI R0 is an equivalence relation. The i-th column of P 
contains the eigenvalues of Ai, which are straightforward for i = 0, 2 and 3. Next, 
observe that the eigenvectors of A3 for the eigenvalue - k / s  are in (J, A3 + I), that is, 
the coordinates are constant on each equivalence class. But from Lemma 2.1 it follows 
that A2 has eigenvectors in the same space with eigenvalues n - k - 1 or - r  - 1, so the 
eigenvalues of A2 and A3 correspond as given and the eigenvalues of A1 follow. Conversely, 
for a scheme with eigenmatrix P, A3 has only two distinct eigenvalues, so must represent 
a disjoint union of cliques and A1 + A3 has only three distinct eigenvalues, so represents 
a strongly regular graph F. Relation R3 gives a partition of F into cliques, which must be 
Delsarte-cliques by Lemma 2.1. �9 
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Imprimitive 3-class association schemes are studied by Chang [6]. He calls the schemes 
considered here of [" type. 

Observe that, for each s the product (P)le (P)2e (P)ae is positive and therefore the Krein 
parameter q2 is positive and hence Neumaier's absolute bound (see [2] p.51) gives g < 13..._ 
( f  - K + 1)(K - 1). By use ofk + f r  + gs = 0 it follows easily that the latter inequality 
is equivalent to Theorem 2.2 applied to the complement of F. Chang derives the same 
inequality from the Krein condition and in the next section we shall give a direct proof and 
consider the case of equality. 

The relation R1 of the scheme is a distance-regular graph precisely when two vertices in 
R3 have distance 3 in the graph R1. In 1-" this means that each vertex p has one neighbor in 
each clique of the spread not containing p. This is the case if and only if - s ( r  + 1) = k, 
that is, if F is pseudo geometric for a partial geometry with T = 1 (i.e. a generalized 
quadrangle). The involved distance-regular graphs are antipodal covers of the complete 
graphs. Such graphs have been studied extensively by Godsil and Hensel [9]. 

5. Linked Symmetric Designs 

A system of m linked symmetric (v, k', 3.') designs is a collection {f20 . . . . .  ~m } of disjoint 
sets and an incidence relation between each pair of sets such that: 

1. For each pair ~'2i, ~"2j the incidence relation gives a symmetric 2-(v, k', ~.') design. 

. For any three distinct sets f2i, [2j, [2 k and for any two points p ~ f2j and q ~ f2k, the 
number of elements in ~2i incident with both p and q can take only two values x and y 
say, depending on whether p and q are incident or not. 

Linked symmetric designs were introduced by Cameron [4]. (Though Cameron did not 
require that all designs have the same parameters, but for simplicity we do.) It follows that 
(x - y)2 = k' - ~.' and y(k' + x - y) = k'~.'. The incidence graph of such a system has 
the union of ~20 . . . . .  f2m as vertex set; two vertices being adjacent whenever they belong to 
incident points of different sets. By definition we see that such a graph is strongly regular 
if and only if mL' = y(m - 1). If so, it has a Hoffman-coloring (by Lemma 2.1) and the 
eigenvalues are k = mk', r = k ' /m and s = -k ' ,  and so the bound of Theorem 2.2 is tight. 
The next result states that the converse is also true. For convenience we use the formulation 
of the previous section. 

THEOREM 5.1 If[" is a primitive strongly regular graph with a spread, then 

g < ( f -  K + 1 ) ( K -  1) 

and equality holds if and only if  the complement o f f  is the incidence graph of a system of 
linked symmetric designs. 

Proof. The proof is just the obvious generalization of the one of Theorem 4.2.7 in [11]. Let, 
as before, Ao . . . . .  A 3 be the adjacency matrices of the corresponding association scheme. 
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Define 

E = - s ( k -  r )Ao + ( k - s ) A 1  + ( k +  r s - s  - s 2 ) A 3 .  

m 

Then by use of the eigenmatrix P we find that rank(E) < f - K + 2. (In fact, we choose 
E = (k - r ) (k  - s )Eo + (k - s ) ( r  - s)E1,  where E0 and E1 are the minimal indempotents 
of rank 1 and f - K + 1, respectively.) We partition the matrices E and A2 according to 
the spread: 

E = 

Eoo " "  Eom 

Emo "'" Emm 

, A2---- 

Aoo "'" Aom 

Amo "'" Amrn 

m 

wherein m = K - 1. Then Eij -- (k - s ) ( J  - A i j )  for i ~ j ,  Eli = (k + rs - s - 
s 2 ) j  - (s + 1)(k - s ) l  and Ai i  = 0 for i, j = 0 . . . . .  m. It follows that E0o is non- 
singular a n d E ~  1 e (I, J).  Now rank(E00) < rank(E) gives K < f - K + 2 and 
by use of K K  = n = f + g + 1 we find the required inequality. If equality holds, 
then K = rank(E00) = rank(E), which implies that Eij = EioEoo 1Eoj. By use of 
AioJ  = AoiJ  E (J )  and the formulas above this leads to AioAiYo = AioAoi E (I,  J )  in 
case i = j and to AioAoj E I J,  Aij)  for i ~ j .  The first equation reflects that Aio is the 
incidence matrix of a symmetric 2-design and the second equation gives by Theorem 2 of 
[4] that the 2-designs are linked. �9 

Sufficiently large systems of linked designs are known to exist if v is a power of 4. 
Mathon [ 18] proved that there are exactly twelve systems of three linked (16, 6, 2) designs, 
leading to eleven non-isomorphic incidence graphs. One of these graphs also comes from 
a fan in the generalized quadrangle with parameters (4, 6, 1), but the remaining ten are not 
geometric. These graphs are mentioned in Theorem 2.4. The theorem above excludes the 
existence of a (75, 42, 25, 21) strongly regular graph with a spread, indeed the complement 
would have a Hoffman-coloring with kr  = s 2, but the corresponding system of 4 linked 
(15, 8, 4) designs does not exist, because m~: = 16 is not divisible by m - 1 -- 3. In fact, 
it is not known if a strongly regular graph with these parameters exists. Similarly it follows 
that no (96, 45, 24, 18) strongly regular graph with a spread exists. 

6. S m a l l  P a r a m e t e r s  

In this section we list the feasible parameters for strongly regular graphs with a spread up to 
100 vertices and try to determine existence. First we consider some easy infinite families. 
Imprimitive strongly regular graphs obviously have spreads and Hoffman-colorings. The 
triangular graph T ( m )  is the line graph of Kn and is geometric for a (trivial) dual Steiner 
system. It is primitive and feasible for a spread if m > 5 and even. Then T ( m )  has no 
spreads (by Theorem 2.2 for example), but several Hoffman-colorings (corresponding to 
1-factorizations of Kin). For m ~ 8, T ( m )  is determined by its parameters, but there are 
three more graphs with the parameters of T (8): the Chang graphs. They too have no spreads 
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(again by Theorem 2.2) but several Hoffman-colorings (easy exercise). The Lattice graph 
L(m) is the linegraph of Km,m and is geometric for a net. For each m, L(m) has precisely 
two spreads and a number of Hoffman-colorings (corresponding to Latin squares of order 
m). For m ~ 4, L(m) is determined by its parameters. There is one more graph with the 
parameters of L (4): the Shrikhande graph. By Theorem 2.4 (or just by checking) it follows 
that the Shrikhande graph has Hoffman-colorings, but no spreads. All remaining feasible 
parameters of strongly regular graphs with a spread are listed in Table 1 (by feasible we 
mean that the parameters n, k, ~.,/z, f ,  g ,K and K are positive integers that satisfy the 
basic equations). For each parameter set we indicate what is known about existence of 
a spread and a Hoffman-coloring, so that we do not need to consider the complementary 
parameter set. Most examples come from spreads and fans in nets (indicated by "net"), 
dual Steiner systems ("dss") or generalized quadrangles ("gq"). The abbreviation "abs" 
refers to the absolute bound for strongly regular graphs (v < f ( f  + 3)/2) and "drg" means 
that the relation R1 of the association scheme is a distance-regular graph. Most cases of 
non-existence come from results treated earlier. Two cases need more explanation: 

PROPOSITION 6.1 For the parameter sets (35, 18, 9, 9) and (45, 12, 3, 3) there exists no 
strongly regular graph with a spread. 

Proof. Consider the complement and assume existence of a (35, 16, 6, 8) strongly regular 
graph F with a Hoffman-coloring. Then r = 2, s = - 4  and r' has five color classes of size 
7. The subgraph induced by three of these classes has a regular partition (i.e. each block 
matrix of the partitioned incidence matrix has constant row and column sum) with quotient 
matrix 4(J - I3), so has the eigenvalue - 4  with multiplicity at least 2. This implies that 
the bipartite subgraph F' induced by the remaining two color classes has at least twice 
the eigenvalue 2 (By Theorem 1.3.3 in [11] or Lemma 1.2 in [14]), and by interlacing, no 
eigenvalue between 2 and 4. Therefore the bipartite complement of F' is a cubic bipartite 
graph on 14 vertices for which the three largest eigenvalues are 3, 2 and 2. Bussemaker et 
al. [3] have enumerated all cubic graphs on 14 vertices, but none has the required property. 

A (45, 12, 3, 3) strongly regular graph is pseudo geometric to a generalized quadrangle, 
and hence a spread would provide a distance regular antipodal 5-cover of K9. Such a 
distance-regular graph does not exist; see [2] p. 152. �9 

The smallest unsolved case is a (36, 15, 6, 6) strongly regular graph with a Hoffman- 
coloring. Since there exist no two orthogonal Latin squares of order 6, such a graph cannot 
be geometric. Probably such a graph does not exist at all, since E. Spence has tested all 
strongly regular graphs with these parameters known to him (over 30000; see [22]) and 
found that none has a Hoffman-coloring. 

7. Regular 2-Graphs 

In this section we need some results from regular two-graphs, which we shall briefly explain 
(see [5] for more details). A two graph (f2, A) consists of a finite set f2, together with a set A 
of unordered triples (called coherent triples) from f2, such that every 4-subset of f2 contains 
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Table 1. Feasible parameters for primitive strongly regular graphs with a spread (or Hoffman- 
coloring) on at most 100 vertices. The parameters of the triangular and the lattice graphs are 
left out. For each pair of complementary parameters, only the one with the smaller k is given. 

m 

n k 3. ~ r s K K spread Hoffman-coloring 

25 12 5 6 2 -3 5 5 YES, net YES, net 
27 10 1 5 1 -5 3 9 YES, gq, drg NO, 2.2, 2.4, 3.1 
35 16 6 8 2 --4 5 7 YES, dss NO, 6.1 
36 15 6 6 3 -3 6 6 YES, net ? 
40 12 2 4 2 --4 4 10 YES, gq, drg NO, 2.4 
45 12 3 3 3 -3 5 9 NO, 6.1, drg YES, gq 
49 18 7 6 4 -3 7 7 YES, net YES, net 
49 24 11 12 3 -4 7 7 YES, net YES, net 
63 22 1 11 1 -11 3 21 NO, abs NO, abs, 2.2, 2.4 
63 30 13 15 3 -5 7 9 YES, dss ? 
64 18 2 6 2 -6 4 16 YES, gq, drg YES, gq, 2.4, 5.1 
64 21 8 6 5 -3 8 8 YES, net YES, net 
64 28 12 12 4 -4 8 8 YES, net YES, net 
64 30 18 10 10 -2 16 4 NO, abs, 2.2, 2.4 NO, abs 
70 27 12 9 6 -3 10 7 ? YES, dss 
75 32 I0 16 2 -8 5 15 ? NO, 5.1 
76 21 2 7 2 -7 4 19 NO, [13], drg NO, [13], 2.2, 2.4 
81 24 9 6 6 -3 9 9 YES, net YES, net 
81 32 13 12 5 -4 9 9 YES, net YES, net 
81 40 19 20 4 -5 9 9 YES, net YES, net 
85 20 3 5 3 -5 5 17 YES, gq, drg ? 
95 40 12 20 2 -10 5 19 ? NO, 2.2 
96 20 4 4 4 -4 6 16 YES, gq, drg YES, gq 
96 35 10 14 3 -7 6 16 ? ? 
96 45 24 18 9 -3 16 6 NO, 5.1 ? 
99 48 22 24 4 -6 9 11 YES, dss ? 

100 27 10 6 7 -3 10 10 YES, net YES, net 
100 36 14 12 6 -4 10 10 YES, net ? 
100 45 20 20 5 -5 10 10 ? ? 

an even number  o f  triples f rom A. With any graph (f2, E )  we  associate a two-graph  (f2, A)  

by defining three vert ices coherent  i f  they induce an odd number  o f  edges.  Two graphs 

(f2, E )  and (~2, E ' )  give rise to the same two-graph i f  and only if  f l  can be  part i t ioned into 

two parts f l  = f21 t_J ~22 such that E f3 ([2i x f2i) = E '  fq (f2i x f~i) for i = 1, 2 and 

E N (f21 x f12) = (~1 x f22) \ E ' .  The  operat ion that t ransforms E to E '  is cal led Seidel  

swi tching and the corresponding graphs are cal led switching equivalent .  The  descendant 
(or derived graph) 1-'o, o f  (f2, A)  with respect  to a point  w ~ f2 is the graph with ver tex set 

f2 \ {o9}, where  two vert ices p and q are adjacent  i f  {09, p ,  q} ~ A.  Clear ly  the two-graph  

associated with r'~o + co is (f2, A)  again, thus there is a one- to-one cor respondence  be tween  

two-graphs  and switching classes o f  graphs. 

A two-graph  ( ~ ,  A)  is regular i f  every  pair o f  points  f rom r is contained in a constant  

number  a o f  coheren t  triples. Every  descendant  o f  a regular  two-graph is a s trongly regular  

graph with parameters  n = IfZl - 1, k = a,  a n d / z  = a/2. We will  parameter ize  a 
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regular two-graph with the eigenvalues r and s of a descendant (a = - 2 r s  and IK21 = 
1 - (2r + 1)(2s + 1)). Conversely, any strongly regular graph with k = 2/z (or k = - 2 r s )  
is a descendant of a regular two-graph. Often there are other strongly regular graphs 
associated to a regular two-graph (f2, A). This is the case if the switching class of (f2, A) 
contains a regular graph 1". Then it follows that F is strongly regular and has also the 
eigenvalues r and s, but F has one more vertex and a different degree than a descendant. In 
fact, there are two possible values for the degree of 1-': - 2 r s  - r and - 2 r s  - s. 

A clique of (f2, A) is a subset C of f2, such that every triple of C is coherent. So if 
o9 ~ C then C \ {o9} is a clique in 1-',o, hence ICI ___ K + 1 = 2r + 2 and from Lemma 2.1 
it follows that every vertex of Fo~, not in C, is adjacent to r vertices of C. A spread in a 
regular two-graph is a partition of the point set into cliques of size 2r + 2. 

PROPOSITION 7.1 I f  a regular two-graph admits a spread, then the corresponding switching 
class contains a strongly regular graph of  degree - 2 r s  - s with a spread. 

Proof Take a graph 1-' in the switching class of the regular two-graph (f2, A) switched 
such that each (two-graph) clique of the spread corresponds to a (graph) clique of F (because 
the cliques are disjoint, we can always do so). Let C be such a clique. By considering the 
descendant with respect to a vertex of C it follows that every vertex of I', not in C is adjacent 
to ICl/2 vertices of C. Therefore 1" is regular of degree ICI-  1 + (IS21- I f l ) /2  = - 2 r s  - s  
and hence strongly regular. �9 

For example for every odd prime power q, the unitary two-graph (g2, A) with eigenvalues 
r = (q - I) /2 and s = _(q2 + 1)/2 (see Taylor [23]) is defined on the q3 + 1 absolute 
points of a unitary polarity in PG(2 ,  q2). The non-absolute lines of the plane meet f2 in 
q + 1 = 2r + 2 points, that form a clique in (~2, A) and one easily finds q2 _ q + 1 
non-absolute lines that intersect each other outside ~2. So we have a spread in (g2, A) and 
by the above proposition we obtain a strongly regular graph with a spread with parameter 
set: 

( q3 + 1, q(q2 + 1)/2, (q2 + 3)(q - 1)/4, (q2 + 1)(q + 1)/4 ). (1) 

Notice that by Theorem 2.2 these graphs have no Hoffman-coloring. If we switch in 1-' with 
respect to the union of some cliques, we again find a strongly regular graph with a spread 
with the same parameters, which may or may not be isomorphic to the I'. There a r e  2 q2-q 
such switchings possible and laut(f2, A)[ = 2q3(q 3 + 1)(q 2 - 1) (we restrict to the case 
that q is a prime), so then the number of non-isomorphic such strongly regular graphs is at 
least 

2q 2 _ q  _ 1 

q3(q3 + 1)(q2 _ 1) (2) 

Also spreads in a descendant give switching partitions of (f~, A), that produce (many) 
strongly regular graphs. 
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PROPOSITION 7.2 If a descendant Foj of a regular two-graph (~2, A) admits - s  - 1 disjoint 
Delsarte-cliques, then the corresponding switching class contains a strongly regular graph 
of degree -2 r s  - s. 

Proof Let f21 be the set of vertices of the - s  - 1 Delsarte-cliques. Switch in Fo~ + o9 
with respect to ~21 U {to}. Then we obtain (as follows easily by use of Lemma 2.1) a regular 
graph of degree -2 r s  - s in the switching class of (~2, A). �9 

Since a spread in 1-'o, contains - 2 s  - 1 Delsarte-cliques, we have: 

COROLLARY 7.3 IfFo~ has a spread, then there exist at least 

laut(~, A)[ \ - s -  1 ] 

non-isomorphic strongly regular graphs of degree - 2r s - s in the switching class of(g2, A). 

Consider again the unitary two-graph. The q2 non-absolute lines through a fixed absolute 
point o9 form a spread Fo,. Thus there are at least 

1 q2 

2q3(q3 + l ) ( q 2 - 1 )  ( ( q 2 - 1 ) / 2 )  

strongly regular graphs with parameters (1) and q prime. This number is bigger than the 
one given in (2), but here we don't know if the graphs have spreads. For q = 5, for example, 
we find at least six non-isomorphic (126, 65, 28, 39) strongly regular graphs and at least 

two with a spread. 

8. The McLaughlin Graph 

The McLaughlin graph (for short McF) is the unique strongly regular graph with parameters 
n = 275, k = 112, L = 30 and ~ = 56. It is the descendant of the (also unique) regular 
two-graph (~,  A) with eigenvalues r = 2 and s = -28,  see Goethals and Seidel [10]. 
For another discussion of McF see [15]. The automorphism group of (fl, A) is Conway's 
simple group Co3 which acts 2-transitively on ~2 and the point stabilizer is McL.2, the full 
automorphism group of McF. We shall now describe McF explicitely by means of this 
group. Therefor we list six permutations of { 1 . . . . .  275} which generate McL.2 (of order 
1796256000), and the indices of the 112 neighbors of vertex 1: 

1. 1 2 3 4 118 106 141 210 228 10 109 12 113 147 85 91 39 219 229 37 10096 220 105 35 86 161 208 235 43 41 236 44 52 
25 250 20 47 17 48 31 249 30 33 132 104 38 40 128 95 133 34 84 151 140 156 123 131 126 273 87 62 79 88 81 102 98 124 
92 127 99 265 94 103 129 260 257 252 63 237 65 234 251 53 15 26 61 64 248 253 16 69 177 73 50 22 175 67 71 21 184 66 
74 46 24 6 165 169 11 162 142 160 13 218 227 209 152 5 194 197 188 185 57 68 174 59 70 49 75 176 58 45 51 233 224 
241 204 274 221 55 7 111 212 239 214 244 14 199 201 196 54 117 181 180 183 56 190 186 187 112 27 110 163 164 107 
166 255 216 10S 215 217 266 268 125 97 130 93 254 259 154 153 261 155 101 122 158 159 121 256 157 267 270 193 119 
263 150 120 264 148 262 149 272 226 137 238 231 223 28 116 8 240 143 245 145 170 168 171 114 18 23 139 243 207 135 
247 203 115 9 19 246 206 271 134 82 29 32 80 205 144 211 136 269 222 146 213 230 225 89 42 36 83 78 90 178 167 189 
77 275 179 76 182 200 195 198 72 172 191 173 242 192 232 202 60 138 258 

2. 1 2 3 4 156 124 158 35 71 19 17 69 62 73 157 164 11 162 10 193 220 201 199 206 197 103 IlM 20S 219 216 108 153 72 
75 8 160 37 163 155 40 150 136 165 261 257 26047 166 126 171 134 119 141 118 140 151 132 131 170270 127 13 122 
154 205 102 106 98 12 121 9 33 14 159 34 161 123 251 191 224 179 223 275 186 230 187 188 227 262 268 91 92 236 184 
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239 240 145 68 142 148 147 66 26 27 167 67 168 31 183 235 228 256 113 174 180 243 175 54 52 210 70 63 77 6 212 49 
61 215 194 213 58 57 195 51 198 42 202 204 200 55 53 99 218 217 97 209 101 100 211 41 56 214 32 64 39 5 15 7 74 36 
76 18 38 16 43 48 105 107 196 59 50 207 203 114 117 247 181 249 81 115 177 265 109 94 267 84 86 87 250 246 79 271 
20 129 133 169 25 135 23 139 22 137 173 138 65 24 172 28 146 120 149 125 130 152 128 30 144 143 29 21 248 244 82 
80 245 253 88 111 229 85 255 273 263 266 110 93 264 259 95 96 254 269 116 222 225 190 176 221 178 189 78 258 226 
241 231 112 45 252 238 46 44 89 233 237 182 234 185 90 242 60 192 274 232 272 83 

3. 1 2 3 5 4 3 4 2 9 2 8 2 7 4 0 1 2 1 1 3 7 1 9 1 3 1  1 2 9 1 1 9 1 8 1 4 1 2 4 1 2 1 1 2 2 3 6 1 2 6 1 2 0 1 2 7 9 8 7 1 2 5 1 2 3 3 2 1 3 0 6 3 5 2 3 1 3 3 9  
38 I0 92 42 107 97 98 99 108 I01 102 103 93 94 110 56 55 54 193 216 215 258 217 77 149 158 153 154 164 155 163 159 
157 72 150 148 166 76 62 116 89 80 82 81 90 105 104 100 112 115 79 83 109 41 51 52 95 96 44 45 46 86 48 49 50 85 84 
113 43 47 91 53 111 87 106 11488 78 117 132 17 25 21 22 31 20 30 24 26 128 16 33 15 118 133 172 145 136 138 137 139 
160 162 161 168 144 135 173 151 74 63 73 147 152 65 66 68 169 71 64 70 140 142 141 69 67 165 75 170 143 156 167 171 
134 146 260 264 261 266 201 205 206 195 214 196 257 267 186 189 220 187 230 221 226 57 229 181 183 197 247 239 
240 178244242243 179 180238208209210241 246245 182595861 228227 188 191 232223225224  192219218 
194 190 231 222 233 263 255 259 265 207 199 200 211 203 204 202 213 212 198 254 262 256 270 273 268 248 235 250 
184 60 236 174 176 249 234 175 237 177 185 253 272 251 271 269 252 274 275 

4. 1 2 4  1 0 4 7 2 0 4 9 5  51 172552  10691 43 86 3544 39 1039479 112 11754 142756  110 107 12985 105 109 11845 3 
48 113 12 197 185 228 180 183 181 164 210 141 250 174 70 59 68 57 188 67 71 175 242 169 6 22 84 114 18 23 119 34 31 
133 24 16 50 11 46 21 221 268 255 212 266 274 265 260 257 217 215 244 241 166 163 190 187 196 201 176 194 58 208 
229 219 147 161 235 220 236 75 199 186 216 239 62 233 214 204 224 124 127 55 41 96 100 37 111 7 108 102 92 88 99 
9881 12580 122898390  123 126 131 93 101 13042 1928 116 120 121 115 1553 13 3830 12895 132 1 0 4 3 3 4 0 2 6 9 8  
29 32 87 97 36 82 78 134 135 206 207 226 143 145 223 245 148 159 243 72 77 171 189 195 173 60 74 69 65 61 151 237 
160 253 63 248 252 251 218 152 234 156 249 140 209 142 64 227 66 165 184 177 162 73 191 200 172 167 198 192 170 
168 193 76 182 178 179 246 158 157 247 238 150 149 240 272 137 262 264 263 231 267 203 256 139 271 270 211 261 
144 155 232 205 153 154 146 259 225 213 230 222 136 202 269 273 258 254 275 138 

5. 1 3 2 10 94 123 112 8 46 106 34 109 119 91 114 31 52 95 6 113 126 133 128 87 25 18 99 120 148 168 156 262 175 151 
210 231 164 169 257 193 183 263 228 265 129 131 4 118 103 84 79 48 23 39 110 92 98 107 86 90 158 194 207 256 267 
121 38 124 11 105 104 97 16 115 54 125 I01 226 236 145 185 240 272 140 260 141 66 187 238 137 62 163 149 229 170 
181 245 68 190 180 150 188 219 71 250 47 85 56 20 127 27 88 12 30 21 116 44 17 40 28 24 223 184 57 143 74 186 171 
147 264 165 67 249 63 237 195 269 138 234 162 220 157 230 167 213 192 196 154 259 155 69 135 200 189 77 73 218 160 
227 206 174 50 108 41 9 5 36 15 132 26 53 89 78 43 33 117 22 93 122 100 96 130 37 19 81 55 7 102 29 111 32 83 13 14 
42 45 35 80 49 82 51 242 252 274 191 61 248 197 270 208 179 212 198 224 217 216 255 246 199 59 233 173 211 214 182 
222 159 161 166 76 144 258 241 13970 201 247 254 215 153 266 273 209 268 261 142 152 134 177 235 203 271 243 172 
239 64 75 232 178 58 72 205 136 225 176 221 65 204 60 253 251 146 275 244 202 

6. 2 1 3 1 0 3 8 4 0 9 8  7 4 3 7  12 13 9853 41 5299 108 1099596 127 3025 26 126 120 1252491 9751 3935 36 11 5 346  16 
122 105 133 132 128 118 106 104 100 33 17 15 124 121 123 156 162 161 269 160 164 63 218 152 165 147 151 194 220 
219 153 75 74 73 154 155 90 79 82 117 80 83 85 84 86 112 114 89 78 31 119 130 129 21 22 32 14 18 50 101 107 103 49 
43 48 102 19 20 131 115 87 113 88 111 116 81 47 92 28 55 42 56 54 29 27 23 46 94 93 110 45 44 224 233 191 226 232 
221 188 228 227 231 189 223 192 67 148 149 150 68 65 72 76 77 57 215 216 217 61 59 58 193 62 66 166 230 186 229 190 
187 225 222 235 236 177 176 254 261 260 265 259 257 184 249 168 171 140 144 170 136 146 163 69 213 196 208 205 
199 211 201 202 204 203 198 212 214 197 209 210 200 206 195 207 157 158 159 64 71 70 139 173 145 134 172 137 142 
141 169 167 143 138 135 237 174 175 234 264 256 262 267 273 268 270 263 255 266 248 185 250 251 253 252 178 246 
239 183 258 182 180 179 240 245 238 181 247 241 243 60 244 274 272 242 271 275 

The 112 vertices adjacent to vertex 1 are: 

9 1 5 2 2 2 7 3 0 3 2 4 2 4 3 4 6 5 1  5 8 6 0 6 3 6 5 7 1  76787981  8 2 8 3 8 5 8 9 9 0 9 3 9 6 9 9  104 107 111 114 116 122 125 131 133 
134 136 137 138 139 142 143 146 149 153 157 161 165 168 172 173 174 177 178 179 181 185 190 19t 192 195 200 201 
202 203 204 205 207 209 211 212 216 218 221 222 223 226 228 230 232 233 234 236 238 240 241 242 243 244 246 248 
249 251 252 253 254 258 259 260 262 263 266 267 268 269 270 271 272 273 274 275 

THEOREM 8.1 The McLaughlin graph admits a spread 
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Proo F The following ordering groups the vertices into 55 di~oint cliques of  size 5 (i.e. 
Delsarte-cliques): 

1 9 85 90 275; 2 7 138 141 274; 3 21 192 199 273; 
4 14 213 218 272; 5 8 225 228 271; 6 20 202 226 257; 

10 16 221 238 261; 11 17 229 252 258; 12 26 206 241 263; 
13 18 223 235 266; 15 23 214 227 260; 19 24 216 234 265; 
22 36 183 219 259; 25 32 184 215 270; 27 33 189 210 254; 
28 35 198 236 267; 29 48 153 174 264; 30 49 154 181 256; 
31 51 146 193 255; 34 45 163 243 269; 37 50 170 233 262; 
38 56 171 248 268; 39 78 140 191 196; 40 79 167 177 217; 
41 84 137 166 195; 42 86 143 162 187; 43 95 136 164 182; 
44 82 155 169 201; 46 88 158 172 220; 47 83 145 157 194; 
52 80 148 161 178; 53 94 160 168 244; 54 100 139 165 245; 
55 104 135 150 185; 57 116 124 152 246; 58 106 126 144 242; 
59 81 119 156 232; 60 91 121 149 208; 61 108 129 173 249; 
62 105 120 179 253; 63 87 130 190 197; 64 99 115 134 188; 
65 101 118 186 203; 66 98 133 200 239; 67 103 125 176 211; 
68 117 123 209 230; 69 107 127 231 251; 70 89 110 151 205; 
71 97 111 147 247; 72 109 131 212 237; 73 96 112 159 240; 
74 102 114 142 224; 75 93 128 180 207; 76 92 132 175 204; 
77 113 122 222 250. 

The above spread was found by a computer search. The search was stopped after five 
different spreads were found. At that point we had given up hope for completing the search. 
The order of  Co3 equals 21~ so by Corollary 7.3 there are at least 7715 non- 
isomorphic strongly regular graphs in the switching class of  (f2, A). Since M c F  probably 
has many spreads and since the bound of  Corollary 7.3 is very pessimistic, the actual number 
of  non-isomorphic (276, 140, 58, 84) strongly regular graph is, no doubt, much bigger. It 
is to be expected that only relatively small collections of  the (~) possible switching sets 
coming from the spread above lead to isomorphic graphs. But because the corresponding 
permutations do not need to form a group it is not clear how to get a significantly better 
estimate in an easy way. 
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