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Universitat Politècnica de Catalunya
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Abstract
Increasingly power hungry processors and the identification of error tolerant applications have
made approximate computing techniques one of the researching scopes of the present. The main
objective of this work is to study and assess the benefits of certain approximate arithmetic units
for their inclusion in the DRAC project’s approximate accelerator.
In order to accomplish this objective, different approximate and accurate adders and multipliers
are implemented in Verilog, synthesized and simulated using Cadence tools and finally compar-
ed between them to evaluate whether they offer any benefits or not. Simulations are performed
for both Overclocking and Voltage Underscaling conditions.
The results indicated that some of the approximate adders show very competitive precision
values at overclocking simulations for 400 ps, with slightly better power results, and other
adders also presented very encouraging results for voltage overscaling simulations, offering
higher precision values than the accurate adders for 0.4V. In contrary, the multipliers exhibited
worse results than the accurate ones in every aspects for the realistic case dataset provided by
the SW team.
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1 Introduction
In order to understand the motivation behind the study of the approximate arithmetic and the
development of this document, some background is mandatory. The context of this work is the
design of accelerators based on the RISC-V processor. It all has its beginning in 2010, when
RISC-V is originated at the University of California, Berkeley. Nowadays, it is supported by
RISC-V International and it has numerous members all along the globe. The public release
of this RISC-V unlocked many many possibilities and facilities to implement a processor, and
thus this point on, many processor implementations based on this RISC-V has been developed
in both scopes, the industry and the research.

The work developed in this study is made as part of the DRAC (Designing RISC-V-based
Accelerators for next generation Computers) project, conformed by the institutions of the BSC,
CIC-IPN, IMB-CNM (CSIC) and the UPC.

One those next generation accelerators is intended for applications where the 100% of accuracy
is not needed. In other words, there is a project which consist on developing an accelerator
whose scope is the boosting of calculations for applications which are error tolerant. For the
development of this accelerator, approximate computing is extensively researched in its multiple
forms and sources. The accelerator itself will consist on a Deep Neural Network (DNN) which
is approximate by definition. But not satisfied with this, other approximation methods are also
being researched. From this context is from where the motivation for the approximate arithmetic
units is born, and as another goal to achieve with the insertion of approximate computing
techniques is the reduction of the power consumption, the study focuses on the behaviour of
some approximate arithmetic units under the effects of voltage underscaling.

Voltage underscaling, or voltage reduction, is a technique where the supply voltage of a design is
decreased far below the nominal voltage. By the use of this method, the total power consumption
of the design can be drastically reduced but this usually comes with the incorrect functioning
of the design. This happens because other effect of lowering the supply voltage is the slower
saturation of the CMOS transistors, and this means timing errors will appear. This is why
approximate arithmetic units can be useful under this circumstances in front of the conventional
ones.

This document compiles the work performed in order to accomplish the objectives and require-
ments established concerning approximate computing and explains the different methods and
troubles that have been faced during the elaboration of it so that future similar problems are
solved faster. All the objectives, requirements and methods are briefly explained in the following
subsections 1.1, 1.2 and 1.3, and more deeply explained in throughout the whole document.
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1.1 Statement of purpose (objectives)
The main objectives proposed to be fulfilled during the development of the thesis are listed
below:

1. Get familiar with state-of-the-art approximate arithmetic architectures, understand their
basics and implement them in verilog.

2. Evaluate whether the studied approximate arithmetic units offer considerable/valuable
performance increase under voltage underscaling conditions, and assess if they would be
beneficial for the DRAC project.

1.2 Requirements and specifications
As requirements, the correct implementation, synthesis, simulation, error study, power con-
sumption computation and precision degrading under voltage underscaling of the following
adders and multipliers must be performed.

• Adders:

– Ripple-Carry accurate adder

– Kogge-Stone accurate adder

– Accurate adder using ’+’ sign

– ACAI Gen approximate adder

– ACAI RCA approximate adder

– ACAII Gen approximate adder

– ACAII RCA approximate adder

– GeAr2 Gen approximate adder

– GeAr2 RCA approximate adder

– GeAr4 Gen approximate adder

– GeAr4 RCA approximate adder

– GeAr6 Gen approximate adder

– GeAr6 RCA approximate adder

• Multipliers:

– Mult16 accurate multiplier

– Accurate multiplier using ’*’ sign

– UDM16 approximate multiplier

– UDM16 SFA approximate multiplier

– UDM16 SFA SW approx multiplier

1.3 Methods and procedures
About the methods and procedures used in the development of the thesis, the implementations of
the arithmetic units are done using Verilog, while the synthesis, simulation, power computation
and timing analysis are done using the tools provided by CADENCE, such as Genus, Incisive,
Joules and Tempus.
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The arithmetic units under study are synthesized in GlobalFoundries 22FDX technology, a
22nm FDSOI. This is the technology of choice to implement the chips in the DRAC project.
There are several libraries for this technology containing hundreds of logic gates characterized
in several operating conditions. The main library used for synthesis processes is characterized
for the next operating conditions.

• VDD = 0.80V

• VSS = 0V

• VBS = 0V

• T = 25ºC

• Typical transistor

While, throughout the study, another library is used to make extrapolations of different values,
which is characterized for the following operating conditions.

• VDD = 0.65V

• VSS = 0V

• VBS = 0V

• T = 25ºC

• Typical transistor
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2 State of the art

2.1 Approximate Computing
As mentioned before, Approximate computing is known as the set of techniques that reside in
the error tolerance of certain applications in order to further improve the performance of the
system. For example, on image processing the quality of the image is evaluated through human
perspective, which is subjective, and typical error-resilient image processing algorithms can
accept certain quantity of errors without the users noticing it.

Approximation can be achieved from multiple sources and at different levels in the system.
Three different levels can be distinguished at which approximation can be applied and inside
each level different techniques can be used to introduce the approximation, having this way
multiple approximation sources [1]. For example, in the following, the most used ad discussed
approximation methods are listed.

1. Software

• Function Skipping

• Memoization

• Loop-Perforation

• Functional Approximation

• Read/Write Memory Approximation

• Data Precision Reduction

2. Architectural

• Use of Neural Networks

• Memory Access Skipping

3. Circuit and Hardware

• Voltage Scaling

• Inexact or faulty hardware

Even if the previous methods are classified into three different levels, some of them can be
implemented in more than one. For example, functional approximation, read/write memory
approximation and data precision reduction could also be applied at architectural levels. In
order to have an overall idea, some of these techniques are going to be briefly explained.

Loop-perforation, for example, is an approximation technique that resides on stopping a loop
before all executions are done because an acceptable result is already obtained. The impact of
this technique at software level mainly affects the execution time of the application, while the
implementation on a FPGA could also affect the energy and area consumption.

Data Precision Reduction consist, as its name says, reducing the data precision so that the
memory footprint is reduced and thus power consumption is reduced in exchange of accuracy.
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Neural Networks are capable learning how a standard function implementation behaves in
relation to different inputs. Traditional approximate codes can be transformed into neural net-
work that may have worse accuracy but better performance.

These are some of the approximate computing most common techniques, but in this work,
the hardware level techniques are going to be studied. Both inexact/faulty hardware, Voltage
Scaling (VS) and the combination of those two are going to be tested and simulated. Being
VS just a reduction of the voltage, in the next subsection 2.2 the state of the art of the studied
approximate arithmetic is explained.

2.2 Approximate Arithmetic
Approximate arithmetic as inexact hardware logic can be implemented at the architectural level
to introduce the approximation. Majority of the approximations on arithmetic units consist on
reducing the critical path by just truncating it or even eliminating some of the internal logic in
this longest path.

As far as approximate arithmetic is concerned, almost every arithmetic operations have been
studied and tried to be approximated. For example, addressing the addition, plenty of approx-
imate adder proposals can be found in the literature until this date. But this may not be the
same for multiplication, subtraction, division or even comparison. As mentioned already, this
study focuses mainly on 16-bit wide approximate adders and multipliers. With this in mind, the
following subsubsections 2.2.1 and 2.2.2 present the state of the art for approximate adders and
multipliers respectively.

2.2.1 Adders

Approximate adders are the most studied by the approximate arithmetic research community,
and plenty of different methods have been used in order to insert the approximation to the
cell. There are different approximation sources such as eliminating transistors at transistor level
or layout level of the basic Full Adder cell or at architectural level by truncating the carry
propagation (which also happens to be the critical path in adders) by splitting the addition into
smaller sub-additions and not propagating the carry.

All these methods offer different benefits and also counterparts, for example the last method
may speed up the computation, resulting in a larger slack, but it also may require bigger area
and worse accuracy. The methodology followed for the study of these benefits/counterparts is
explained in Section 3 and the results for each adder is presented in Section 4.

The approximate adders that will be studied are the following:

1. Almost Correct Adder (ACA - I)

2. Accuracy Configurable Adder (ACA - II)

3. Generic Accuracy Configurable Adder (GeAr)

12



Almost Correct Adder (ACA-I) This type of adder resides in splitting the sum in smaller
sub-adders whose width is determined by the longest sequence of propagate signals. It is obvious
that the longest sequence is the propagation of all the bits, but it is very unlikely to happen, and
the study made in [2] demonstrates that on average, the length of the longest propagate sequence
is approximately log n, where n is the bit width of the integers. In addition, as the carry output
is dependent to the previous bit to the start of the propagate sequence, 2 more bits must be also
considered.

Figure 1: Example: 20-bit integers, longest propagation sequence is 4 and sum split into 6-bit
sub-adders [2]

Accuracy Configurable Adder (ACA-II) Once again, this approximate adder cuts the carry
chain to reduce the critical path delay and some sub-adders generate results for partial summa-
tions. The main idea behind this adder is to insert one additional sub-adder than the needed, in
order to increase the accuracy but still have low power consumption [3]. So, for example, when
adding two 16-bit integers the summation could be split into two sums of 8-bit sub-adders, but
this means that when the eighth carry bit of the first sub-adder is high, an error occurs. But, if
one additional 8-bit sub-adder is inserted in the middle and only the 4 MSB of the results are
taken, then the error only occurs when one of the carries have to be propagated and the 4 LSB
additions of the next sub-adder results in 1111.

Figure 2 shows an example of a 16-bit ACA-II adder. It is also worth noting that the LSB sub-
adder is an accurate sub-adder and this is why all the 8 bits of the addition are considered in the
final output.

Generic Accuracy Configurable Adder (GeAr) Finally, the Generic Accuracy Configurable
adder, born from the necessity for a unified configurable adder, which can provide a wide
range of configurability and approximation modes along with error detection and correction
capabilities, as stated by the researchers that developed this last adder [4]. The adder has
different parameters: N, length of operands to be added; L, length of the sub-adders in parallel to
perform the approximate addition (L≤N); R, represents the number of resultant bits contributing
to the final sum; and P, represents the number of previous bits used for carry prediction. Each
sub-adder produces R-bit results except the first one that produces L-bit result being L = R+P.

13



Figure 2: Example of 16-bit ACA-II adder [3]

The approximate adder is fully defined with the three parameters N, R, and P. With these
parameters every aspect of the adder can be defined, as for example how many sub-adders k
will be needed.

k =
(

N−L
R

)
+1 (1)

And also, with those parameters a generic implementation of N-bit GeAr adder can be described
in two simple equations shown in Equations (2) and (3). The first one, Equation (2), represents
the first sub-adder of the whole approximate adder, which is an exact sum and thus all the
resulting bits are contributing to the final result. The second one, Equation (3); however, de-
scribes the resulting bits that contribute to the final result, R, adding L = R+P bits, which
means that previous P-bits are used to predict the carry.

Sum[L−1 : 0] = A[L−1 : 0]+B[L−1 : 0] (2)

Sum[(R×i+P−1 : R×(i−1)+P)]=A[(R×i)+P−1 : R×(i−1)]+B[(R×i)+P−1 : R×(i−1)]
(3)

where 1 < i≤ k.

As this adder was developed from the necessity of having a generic and configurable approx-
imate adder, with different configurations of the previously explained parameters (N, R, P), the
State-of-the-Art approximate adders can be implemented. For example, the already explained
adders can be obtained configuring the parameters in some particular way. The ACA-I [2] can
be made setting R = 1 and P = L− 1, while the ACA-II [3] is achieved with R = L/2 and
P = L/2.
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Figure 3: Example of N=12, R=2 and P=6 GeAr adder [4]

Simplified Full Adder (SFA) In addition to the previous adders, there is still another one that
will be used in the partial summations of the multipliers and is worth explaining it. The adder
consist on a re-design of the Ripple-Carry Adder (RCA) made in [5]. The RCA has two critical
paths that start from any of the two primary inputs, and replacing any logic gate by logic 1 or 0
can truncate the critical path and increase the slack.

Figure 4: Approximation in full adder cell to obtain
SFA [5]

Figure 5: SFA erroneous operation [5]

The main change is the replacement of the AND gate for a logical 0 to break the critical path.
Having the output of this AND gate to 0 makes that the output of the next OR gate will depend
only on the other input, so this OR gate can also be removed. In addition, the XOR gate is
replaced by an OR gate in order to reduce the Error Significance (ES) while maintaining the
Error Rate (ER) constant.

As the SFA is a simplification or a modification of a full adder (FA) cell, the idea is to reduce
the critical path in an addition of two numbers with bigger bit widths than just 1. So, the idea
is to introduce the SFA cell in between other FA cells to truncate the critical path and make the
addition faster in exchange of some accuracy.
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2.2.2 Multipliers

Approximate multipliers, unlike approximate adders, have not been so extensively researched
although this does not mean that they have not been studied. Even if there are not so much
articles concerning inexact multiplication, there are some researches that have proved to be
very effective, and in addition, having the possibility of introducing the approximation through
a faulty adder in the partial product addition, also extends the possibilities for these arithmetic
units. In this paragraph, the approximate multipliers used by the DRAC Workpackage 4 Software
team are presented.

Under Designed Multiplier (UDM) One of the best known research concerning approximate
multipliers is Kulkarni’s [6] Under Designed Multiplier (UDM). This approximation resides in
the modification of the Karnaugh Map of a 2x2 multiplier. The trick is to represent the outcome
of the multiplication using only three bits instead of the normal four. As the fourth bit is only
used in one possibility (3∗3), the output of this operation is set to be 111 in contrast to the exact
1001. With this change, the multiplication is correct for fifteen out of sixteen possible inputs
and the error occur with a magnitude of (9−7) = 2 and 1/16 probability.

Figure 6: Modified Karnaugh Map from [6]

In addition, even larger multipliers can be built using the 2x2 block explained before to produce
the partial products and then adding the shifted partial products. This, can also be expanded to
obtain even larger bit width multipliers. Figure 7 shows an example of a 4x4 multiplier which
is built out of four 2x2 blocks.
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Figure 7: Example of 4x4 multiplier using 2x2 blocks from [6]

Finally, about the error rates of this multiplier, the computation of the simple 2x2 block is very
easy as it only has 1 erroneous output from 16 possibilities so the error probability is equal
to 1/16 with a maximum error magnitude of 22.22%. But the computation of these factors
for larger bit width multipliers gets more complicated, so from [6] is obtained that the error
probability increases with increasing bit-width but the mean-error increases steadily to finally
saturate between 3.3% and 3.5%.

Error Tolerant Multiplier (ETM) This last approximate multiplier [7] consist on splitting
the multiplication process in two, and treating differently the MSB and the LSB. The MSB are
part of the multiplication part while the LSB are part of the non-multiplication part. The length
of each part is not need to be equal.

The multiplication part, is just a normal conventional multiplication process from right to left,
and this is an accurate multiplication due to the fact that the higher bits have greater weight than
the lower ones.

The non-multiplication part; however, starts from leftmost bits of the lower bits and goes all the
way to the rightmost ones. Then, the algorithm states that both input bits will be checked and
if at any point at least one of the checked input bits happen to be equal to 1, then the algorithm
is stopped there and the resulting bits to le right of this position are set all to 1. Figure 8 show
both multiplication and non-multiplication parts, and how this last algorithm works.
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Figure 8: Example of 12-bit input operand multiplication with ETM from [7]
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3 Methodology / project development
In this section of the work, the methodology applied for the development of the study is explain-
ed. First, the general flow followed for every adder and multiplier is going to be presented and
then the steps of this flow are going to be expanded.

3.1 General flow
The general flow is a main scheme that has been established in order to have some guidance
when starting this particular research. Normally every studied adder and multiplier follows the
flow until the final results are obtained, and it is concluded that they are coherent. There may be
some cases were the flow changes at some point due to any unexpected result or any error. But,
in general, the flow employed was as follows:

Study/Research

Implementations
&

RTL simulations

Synthesis

Gate-Level
simulations

Results

Figure 9: General Flow block diagram

As explained above, the main work flow that has been followed is illustrated in Figure 9,
but there are other reasons for which the work flow was modified for certain architectures,
simulations, errors or results. If these modifications have strong significance in the specific
scenario, they are going to be explained in the corresponding flow step were the change was
made.

Apart from the exceptions, the main and most important flow parts are going to be explained
with more detail in the next Subsections 3.2, 3.3 and 3.4 of this Section. With the exception
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of the first flow step, which is Study/Research, that can be considered already explained in the
State of the Art, Section 2; what is done in every step, why and how it is done is going to be
presented.

3.2 Implementations
Once the research about the desired adder is done, and the basic structure and functionality is
understood, the next step is the RTL implementation. Being this a study aimed for the DRAC
project, the implementation language must be equal to the one used in the project, therefore the
used Hardware Description Language (HDL) is constrained to Verilog.

Before diving into the insides of each adder and multiplier’s implementation, the different
approximate designs and the chosen configurations for them are listed and explained below.
The adders are presented first and finally the multiplier configurations are shown.

3.2.1 Adder implementations

First of all, the adders are 16-bit integer additions and they have registers in both inputs and
the outputs. The chosen approximate adders and their configurations are listed below.

• ACA-I (same as GeAr(N=16, R=1, P=7))

• ACA-II (same as GeAr(16, 4, 4))

• GeAr(16, 2, 8) (named as GeAr2)

• GeAr(16, 4, 8) (named as GeAr4)

• GeAr(16, 6, 8) (named as GeAr6)

Both ACA-I and ACA-II are implemented following their specifications, which as explained
in Section 2, can be defined also as GeAr(N, R, P) adder and it would result in the same
implementation. Concerning the GeAr adders, their configuration is kept equal but only the
R (sub-adders output bits that are used actually in the final output) parameter is changed. This
way the impact of varying this parameter can be assessed.

In addition, internal operations of the whole addition in these approximate adders is divided in
sub-adders. As the sub-adders can be defined also in different ways, every approximate adder
configuration has two versions of it but with a unique difference in the description of the sub-
adders. The first version lets the synthesis tool the optimisation of the sub-adders by describing
these with the + addition sign. In contrary, the second version uses an accurate adder for the
sub-adders which is a Ripple-Carry Adder (RCA), and this fixes the architecture that will be
synthesized. So in the end, concerning the approximate adders, the following versions are going
to be studied:
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• Final approximate adder versions:

– ACAI Gen

– ACAII Gen

– GeAr2 Gen

– GeAr4 Gen

– GeAr6 Gen

– ACAI RCA

– ACAII RCA

– GeAr2 RCA

– GeAr4 RCA

– GeAr6 RCA

It is worth explaining that the scope of the study is to show whether the approximation of
the arithmetic units offer advantages or not in front of the conventional fully accurate adders.
Having this in mind, some traditional accurate adders must be implemented too for the sake
of comparison. Three different accurate adder structures have been chosen for this purpose:

• Ripple-Carry Adder (RCA)

• Kogge-Stone Adder (KSA)

• Adder structure optimized by the synthesizer using + sign as addition (GenusOpt)

As a brief explanation about the accurate adders, the RCA is the traditional adder were the carry
is propagated from the Cout of the full-adder module to the next FA’s Cin, and it is implemented
with 16 FA. The KSA is a parallel prefix form of carry look-ahead adder, which has a tree shaped
structure. The Kooge-Stone concept was first developed in 1973 by Peter M. Kogge and Harold
S. Stone [8]. It is one of the most quicker adder structures and it is widely used nowadays
in the industry. Finally, the last adder is simply described as sum = A+B and the structure,
optimization and every other aspects are not constrained for the synthesizer program to develop
and find the best solution.

Once the implementations were finished, an exhaustive sequential RTL simulation was perform-
ed to compute every possible addition. This was made in the simple form of 2 for loops, one
inside of the other, that went from 0 to 65535 and thus performing a simulation of 65535×
65535. With these simulations, the proper functionality of the accurate adders was ensured and
it was also obtained the inherent errors that the approximate adders offered. These results will
also be presented in the Section 4.

3.2.2 Multiplier implementations

When multiplier implementations are concerned, there are not so many implementations and
there are some constraints about their implementations. As already stated, this study is for the
DRAC project, more specifically for the Work Package 4 about approximate computing. With
this in mind, the software (SW) team tested the Neural Network (NN) they are developing
using some specific multipliers. The multiplication in this NN are 16 bit Floating Point (FP)
or half-precision FP, which means that the mantissa part of those 16 bits is what is going to be
multiplied.
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At first the multiplication should be of 11 bits, but due to some data handling on the approximate
library used by SW team (SoftFloat), the multiplication is done for 16 bits. This is because the
11 bits of the mantissa are shifted to the left in such a way that the first operand ends with four
additional 0 as LSB and the second operand with five 0s as LSB. Assuming the first operand
has one additional 0 as the MSB, then both of them have 16 bits and the multiplication is done
for this new values.

Thus, the multiplications that are going to be studied in this document correspond to integer
multiplications of 16 bits in order to recreate the results obtained by the SW team. But, as
in principle the performed shifting is not necessary in the hardware domain, in the future
the multiplier is going to be simplified to 11-bit multiplication that later should be used in a
higher level FP multiplier with its corresponding exception handling as NaN (Not a Number) or
infinities.

The implemented multipliers are listed in the following scheme:

• Under Designed Multiplier (UDM).

• Under Designed Multiplier using SFA to perform partial summations (UDM SFA).

• Under Designed Multiplier using SFA to perform partial summations but following
same structure as in SW without RTL optimization (UDM SFA SW).

• Accurate multiplier using the same structure as in the UDM but using accurate 2x2
multiplier blocks. (Mult16)

• Accurate multiplier using the ’∗’ sign and letting the synthesizer tool to optimize the
design. (GenusMult16)

Apart from the UDM multiplier, another one was also studied by the SW team known as the
Error Tolerant Multiplier (ETM), but due to the results they obtained were not so promising and
the lack of time this multiplier structure is not going to be studied in this document, but could
be left for future examination.

The UDM multiplier, as explained in the Section 2, it is a 2x2 block that returns a 3-bit answer
instead of 4-bits. This block can be used to build larger multipliers and it is exactly what is
been done for this study. The SW team provided a general diagram of the multiplier’s structure,
Figure 10, and this is what it has been followed as a base to implement the different multiplier
variations.
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Figure 10: 16-bit UDM structure provided by SW team (Martı́ Caro, Jaume Abella and Hamid
Tabani)

As it can be observed in the structure, the two 16-bit integer numbers are split into little blocks
of 2-bits, and then these blocks are multiplied with each others using the 2x2 UDM block.
The implementation of the multiplier is done from the final result that can be seen down in the
diagram to the top 2x2 multiplications. The multiplications can be differentiated into 4 major
blocks which are: AHxBH, AHxBL, ALxBH and ALxBL. Adding these four 16-bit blocks,
with their respective shifting observed in the diaggram, the final result is achieved. As AHxBH
contains the MSB in the multiplying numbers, the whole process is set to be accurate, which
means that the additions and even the 2x2 multiplications are performed using accurate logic.
Concerning the rest three blocks, one is going to be explained in more detail because they
contain additional approximate logic, but the general structure of the four blocks is the same
(partial addition structures, shifting...).

Continuing up in the diagram following the ALxBL path, in order to obtain this result, four
8-bit second level partial additions need to be added in the same way as before. Again, the
8-bit block containing the MSB is computed using solely accurate logic in order to preserve
precision. Again, in order to obtain these 8-bit blocks, the results of the partial multiplications
are added with their respective shifting. The partial products are obtained performing the 2x2
multiplication and for the MSB block, accurate multiplication is used while for the other three
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the UDM block is employed.

This internal structure, even if the diagram does not show it due to redundancy and for the sake
of visibility, is used in every major blocks, regardless of being accurate or approximate, the only
difference is the usage of approximate logic.

Finally, the described structure is used in every multiplier implemented with the exception of the
GenusMult16 multiplier that is completely free for the synthesizer to optimize. So, the diagram
represents the implementation for the UDM SFA SW multiplier, where both approximation
sources (UDM 2x2 block and the SFA cell) are employed. The UDM are used to generate partial
products and the SFA cells are located in the middle bit of the corresponding intermediate
addition. The case of the UDM SFA multiplier is similar, but the intermediate additions are
simplified. For example, in every addition, the LSB directly go to the result instead of adding
them with 0s. And the adders used are smaller, thus smaller area and smaller carry length. The
UDM multiplier only inserts the approximate multiplying blocks maintaining the intermediate
additions with accurate adders, and the Mult16 multiplier uses accurate logic in the whole
structure.

Once again, before starting any synthesis process and to ensure the correct implementation of
the multipliers, an RTL simulation was performed for each of them. In the accurate multipliers
case, a Python program generated 211− 1× 211− 1 random pair values without repeating any
pair in order to do an exhaustive checking on them. About the approximate multipliers; in
contrast, this would not be enough to ensure whether the implementations were correct or
not, because they have some fixed errors on them and it would be impossible to determine
if the resulting errors from the simulations were due to the approximate logic or due to some
implementation error. To solve this, the SW team provided a file with 10 million pair of operands
and their respective results, and obtaining 0 errors simulating these inputs and results means that
the approximate adder is correctly implemented. To be exact, two different files were provided
one for UDM multiplier with only 1 source of approximation on the multiplication and another
file for UDM SFA and UDM SFA SW multipliers with two sources of approximation on the
multiplications and the partial product tree additions.

3.3 Synthesis
Once the RTL implementations are done and their correct operation is ensured by the simula-
tions, the next step in the flow is to synthesize these designs to an actual gate level netlist
with technology libraries and existing cells. As the synthesis tool, Genus Synthesis tool from
Cadence has been used throughout the whole study to synthesize every design implemented.

The SW team specified that the accuracy achieved in the DNN using half-precision (FP16)
data types was good enough and the designs were modified to be 16-bit width operations. The
technology to be used is Globalfonudries 22FDX, as mentioned above. The synthesized general
design is depicted in the Figure 11, where the combinational logic in our case is the adder or
multiplier under study.
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Figure 11: Synthesized general design [9]

As it can be seen, the arithmetic unit to be studied is placed between two registers (input and
output registers). This is necessary for the synthesis tool to be able to determine the slack value
of the design, and the reason to implement the designs in such a way.

The results obtained form the synthesis process are presented and discussed in Section 4 Results,
and in this section a little explanation about the followed synthesis flow and commands is
performed in order to have a general idea of how the gate level netlists are generated and what
configurations or options have been chosen for these processes.

First of all, in general, all the designs are synthesised for a period of 10 ns but for the voltage
underscaling simulations, the adders are synthesized with a period equal to 1 ns and the multipli-
ers for a period of 2 ns. This is done because as it is going to be presented in the Section 4, the
obtained slacks for 10 ns are very large.

The procedure to synthesize any design starts from a Makefile where the synthesize type is
chosen. This Makefile then launches a Shell script that calls the synthesis tool, Genus, and
passes as an argument the corresponding Tool Command Language, also named as Tcl, (.tcl) file
with all the synthesis instructions. Genus works with Tcl scripts, and it has its own commands
that can be found in the corresponding Cadence documentation. The first thing that is done in
the Tcl script is the variable setup, for example, for convenience the desired adder from the 13
possibilities is asked to the user and the variables are set to synthesize the selected one. Thank
to this, a simple script can be used used to synthesize all the 13 possibilities in a row. Apart
from this, for general file management, output directories are created and in order to further
extend the possibilities of automatizing the synthesis process, the chosen period is read from
the Constraints files and used for the output paths.
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3.4 Simulations
Next step in the flow are the Gate-Level Simulations (GLS), which are done using the Cadence
tool Xcellium. This step is very important because there are a lot of different simulation types
and the results may vary depending on the simulation configuration and it have a lot of beneficial
effects [10]. Among the reasons that show why the GLS are important, three are specially
important in this study:

1. Checking final performance to ensure that the design works at the desired frequency, with
actual delays in place. Which includes structural elements not checked by Static Timing
Analysing or formal engines, and buffers or other elements added during synthesis and
place and route.

2. Capturing switching factors for power estimation.

3. Analyzing X state pessimism or an optimistic view, in RTL or GLS.

In addition, three different types of GLS can be performed, depending on how the input files
and the commands are configured:

1. Zero Delay Simulation:

Zero delay simulation means simulating the netlist without annotating any timing data. It
is mainly focused for checking and validating the functionality of the design once it has
been translated into a gate-level netlist. This is done once for every design synthesized to
ensure that there is no any kind of functionality loss when synthesizing the design.

These simulations are much faster than the simulations with timing and can be launched
even before the netlist being completely frozen, or when the timing information is not
available.

2. Unit Delay Simulation:

The unit delay simulation operates under the assumption that all elements in a circuit
have an identical delay time. Thus, providing any random delay value is similar to adding
a unit delay, which has the advantage of being simpler to implement than SDF simulation.
As using zero delay simulations can induce to false race conditions and zero-delay loops,
running unit delay simulations can be used to detect and resolve genuine race conditions
and timing-sensitive loops.

3. SDF Simulation (Simulation Delay File specifies timing):

SDF simulation is the actual delay simulation where the delay specified in the SDF file
is annotated into the design and and all the timing checks are computed and tested. This
kind of simulations are slower than the previous two types, and it takes more time to
finish. But, due to being the closest to the real conditions, this is the type of simulation
that have been performed in the studies for this document.

An SDF file is an output from the synthesis tool (Genus), the place & route tool (Innovus)
or the static timing analysis tool (Tempus). The SDF files are delivered to the verification
team and the simulations are performed using these delays and the synthesized gate-

26



level netlist. Then the delays contained in the SDF are annotated to the corresponding
instances/arcs in the netlits, which is also known as back-annotation.

During these type of simulations, many annotation warnings are probable to show up and
depending on the type of these warnings they may be analysed or not. The mos critical
ones are the ones that make reference to non-existent paths, where the delay is specified
in the SDF but there is no path for it in the netlist.

Once every necessary file from synthesis is available (SDF and netlist), it is time to set up the
configuration files in order to specify Xcellium simulation tool how the simulation is desired to
be run. The basic input files for a GLS run are,

• A gate-level netlist

• Library cell information

• Delay information in SDF timing file

• Testbench to exercise the netlist

and a typical GLS flow is shown in the Figure 12.

Figure 12: Typical GLS flow from [10]

The testbenches are the same ones used for the RTL simulations but may be changing little
things as for example the path to where the simulation results are written and so on. Thus,
the main structure and the tests are the same ones. So, for the approximate adders the already
mentioned sequential 65535× 65535 simulation was done to ensure no functionality loss and,
in addition, for a more realistic situation a Python script generated 10 million of random pair
numbers between 0 and 65535, and those were set as inputs in the simulation. In the case of
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the multipliers simulations, the same tests has been used both the randomly generated operand
pairs and the operations provided by the SW team. The only difference is that the testbenches
for multipliers have been developed to be more configurable than the adders’ ones, because they
were developed a while after and the knowledge about both Verilog and Xcellium was much
bigger than in the beginning. But again, it is just a matter of handiness and easy configuring
when simulating, the basic processes are the same in both adder and multiplier simulations.

Finally, the configuration files are simple configuration scripts (.f) and a command file that
specify the options to the simulator. In this configuration file, the timescale, the cell libraries,
the synthesized netlist to be used and the testbench are specified for the simulator, while in
the command file (with nomenclature: ”CF {Design name}”) the commands referring to the
SDF file annotation are described (SDF file, log file containing the annotation process and the
scope module for the annotation). Also concerning some timing information, there is a timing
file (.tfile) that specifies the delays of the input and output ports set by the user. In this study,
these delays are always set to the 10% of the clock period. Lastly, another very simple Tcl file is
passed to the simulator in order to record the activity during the simulations in order to compute
more accurate power reports once the simulations are finished. As an example of the commands
used to launch the simulations, below there are the two commands used to launch the SDF
simulation for the KSA16 adder.

# B u i l d t h e s i m u l a t i o n and c o m p i l e t h e SDF f i l e
xrun \

− l nc . l o g \
− a c c e s s \
+rwc \
− f s i m u l a t i o n f i l e s / r u n k s a 1 6 . f \
− s d f c m d f i l e s d f / CF ksa16 \
− s d f v e r b o s e \
+ maxdelays \
− t f i l e s i m u l a t i o n f i l e s / r u n k s a 1 6 . t f i l e

#Run t h e p r e v i o u s l y b u i l t s i m u l a t i o n
xrun \

−R \
− no log \
− s d f c m d f i l e s d f / CF ksa16 \
− s d f v e r b o s e \
+ maxdelays \
− t f i l e r u n k s a 1 6 . t f i l e \
− i n p u t t c f k s a 1 6 . t c l

3.4.1 Performed simulations

Until this point, the simulation options have been explained between different kind of simul-
ations and the different available options for the simulator, in order to understand the basic
structure. But now, the two different studies that have been conducted are going to be described
and how these are translated to the simulations. The two different studies are named Overclock-
ing and Voltage Underscaling, and in some way they are similar studies but not. This means
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that at first, the idea was to synthesize a design, get a SPICE electrical model of it and test
it diminishing its voltage, but due to the lack of the necessary electrical models of the gates
at transistor level and the big amount of simulation time it would require, other options were
taken.

The first option would be Overclocking, where the clock period is reduced having similar
effects as to diminishing the voltage. This resides in the fact that when downscaling he voltage,
the transistors need more time to enter in saturation mode and thus every delay will increase
having higher combinational delay and less slack. This behaviour of having smaller time to
compute the necessary operations, can be somehow emulated decreasing the period, which
means that the available time for the same delays will be smaller.

The set up of the simulations is not very complex, because the only things that needs to be
changed are the period value specified in the testbench and the input and output delays that
are specified in the timing file. These two things are easily made using a simple shell script
that executes the changes automatically. Using this script, once all the adders and multipliers
are simulated and the options can be automatically changed, so it is possible to simulate every
design for every period studied with just one command. The obtained results for this simulations
are presented in the following Section 4.

The second kind of study, Voltage Underscaling, refers to the delays applied during the simul-
ations, in other words, it only concerns the SDF files and the delays that they contain. The
idea is to take a netlist that has been synthesised for a certain voltage and use the Cadence
Tempus Static Timing Analysis tool in order to generate new SDF files for that specific netlist
but for different voltage values. This can be done using other existing libraries or even creating
fictitious operating conditions and extrapolate the delays from the existing technology libraries.
This way the simulation is run at the same period as for the synthesis, but the delays correspond
to a lower voltage and they are much bigger, emulating a voltage underscaling condition.

Another Tcl file was developed for the Tempus tool, so that the netlist is read in and the different
voltages and libraries are configured to obtain every SDF file. Finally, the simulations are
launched recursively only changing the SDF file name and leaving the period equal. The results
are also going to be presented in the next Section 4.

In addition, a special block has been described in the testbenches that detects any possible
X value in the output, and changes it to either 1 or 0. This means that, for every design every
simulation is computed twice but once changing the X values to 1 and the second time changing
those to 0. These X values do not show up when operating under normal conditions, but when
having timing errors due to the increase of the frequency or the reduction of the voltage, these
errors are translated as these X values. In order to post-process the timing errors, if an X value
is obtained as a result, the error distance cannot be computed, and that is why this change is
done. Although it may not be realistic, it may cover worst case situations and also some best
case options.

29



3.5 Power Computation
In order to understand where have the obtained power values their origin, the power computation
process have to be explained. A power report can be obtained from the synthesis tool, but it
would not be as realistic as getting the switching activity during the simulations, and finally use
a specialized CADENCE tool to compute the power for that design and the obtained activity
file.

So, the first step is the recording of the switching activity of every net in the design when
simulating. Different ways or archive types are available to obtain the activity of the design.
Depending on the file type chosen, the activity will be recorded in one manner or another.
The used simulator tool, Xcellium, supports the dumping of 4 different formats concerning this
switching activity:

1. TCF - Average-based stimulus

Being an average-based stimulus, the output file is very compact. For each signal,
only two pieces of information are stored:

• The toggle count, that indicates how often the net switches between 1 and 0
states.

• The probability of the net to be in the logic 1 state.

2. SAIF - Average-based with state-dependent arcs

SAIF format is similar to TCF format and extracts the same type of rate and state
probability data. One addition is that the user can take advantage of the state-depen-
dent and path-dependent arcs that are available in the activity file. For example,
memory technology cells have power arcs where for instance it is different to receive
a clock edge in write mode than in read mode. To take advantage of this, a forward-
SAIF file needs to be generated.

3. VCD - Event-based stimulus stored in text format

This file is a Verilog standard event-based activity format, where every single transi-
tion of a net is stored in the file. As it is an ASCII file, depending on how much
activity is occurring in the stimulus and the simulation duration, it can be extremely
large. But, the advantage of this is that a full power profile overtime can be generated
from these event-based formats.

4. SHM - Event-based stimulus stored in binary format

This time, SHM is the Cadence standard event-based binary activity format. It stores
the same things as the VCD but it is highly optimized and it greatly reduces the file
size compared to a text-based format like VCD.

The main file type used in the studies is the TCF. The VCD file type was considered in the
beginning but it was quickly discarded due to the large size of the output files (between 25 and
50 GB). In addition, a power profile overtime is not so important in this power study, because
the objective is the comparison of the power consumption between the different designs and
with the computation of the total power consumption.
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Once this switching activity is obtained from the simulation, the next step is the power computa-
tion using the Joules power analysis tool from Cadence. A simple Tcl script was developed
which using the netlist, the final design’s database and the obtained switching activity file, the
power consumption for that activity file and netlist is computed. If the simulation changes, the
activity file will also change and thus, the final power consumption will be different. So, having
this in mind, the more closer the simulations are to real operations, the more accurate the power
results will be.

The Equation 4 illustrates how the dynamic power can be calculated for a general case.

PD =

[(
Cpd× fI×NSW

)
+∑(CL

n× fO
n)

]
×VCC

2 (4)

Where:

Cpd = power-consumption capacitance (F)
fI = input frequency (Hz)
fO

n = all different output frequencies at each output, numbered 1 through n (Hz)
NSW = total number of outputs switching
VCC = supply voltage (V)
CL

n = all different load capacitances at each output, numbered 1 thorugh n

From Equation 4, it can be seen that the dynamic power is dependent on quite many parameters,
but the two that most interesting are for this study are the frequency and the supply voltage. The
case under study is the behaviour of the approximate arithmetic units under reduced voltage
conditions. This means, based on Equation 4, that the dynamic power should decrease with the
decrease of the supply voltage. In contrast to reducing the voltage, increasing the frequency
increases the dynamic power.
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4 Results
This Section the results obtained for the designs and simulations presented previously are
presented and discussed. The Section is divided in two Subsections: Adders and Multipliers.
This is because apart from being different arithmetic operations, even if the simulations conduct-
ed for them are the same, some little things, as the used period values and so, can not be
equal. Both subsections are divided in other 5 parts: Slack, Area, Errors, Power and Voltage
Underscaling results. From these 5 parts, the Slack and Area parts are quite general as they do
not depend on any simulation or SDF file for their results, but both Errors and Power results are
obtained from the already explained Overclocking simulations, while in the last part the results
for Voltage Underscaling simulations are presented.

4.1 Adders
Results for the studied adder designs are presented in this Subsection. The results cover from
the very first reports obtained in the synthesis that concern the timing information (slack) and
the area information. A power report could be also obtained from this step but it would not be
as realistic as getting the activity from the simulations and then computing the power based on
that activity and thus, the power and the errors are obtained once the simulations are finished.

4.1.1 Setup slack

First of all, The setup slack is defined as the difference between the actual or achieved delay for
a timing path (td) and the avaliable time for arrival to a flip-flop (FF), which depends on clock
period (TCLK), clock-to-FF time (tclk→q) FF setup time (tsu), and, generally, clock skew (S).

SetupSlack = TCLK−
(
tclk→q + td + tsu−S

)
(5)

The slack is computed for every path in the design. Thus, each path will have a slack value
assigned to it, and the path with the smallest slack will be considered as the longest or critical
path. Usually, this is the slack that is taken into account, because if this path fulfils the design
constrains or specifications, then this assures that the rest of the paths also fulfil the requirements.
So, in the end, in the final timing report that is obtained from Genus Synthesis Tool the slack
that appears in the report is the same as the critical path’s slack, and thus it can be considered to
be the whole design’s slack.

This slack can either be positive or negative. If the slack turns out to be positive, it means that
the design is working properly for the desired period, and this can be understood as the design
working fine for the specified frequency. On the contrary, if the slack is negative it means that
the longest path takes more time to complete than the provided period and timing errors are
expected to occur. The intention is always to have a positive slack in order to avoid any timing
error. If during the synthesis the first steps show a negative slack, the synthesis tool tries to
optimize the design to the fullest in order to achieve a positive slack, and ensure the correct
functionality of the resulting netlist. Sometimes it may also happen that the slack results as

32



zero, which means that in principle there should not be any timing errors but there is no time
margin and the slightest delay addition could make the design’s wrong operation.

In the case of this study, as already mentioned, the syntheses of the adders were made using
the Globalfoundries technology libraries for 22 nm processes and more specifically the library
used was characterized for 0.80V and 25ºC with typical transistors, and using a period of 10 ns.

Figure 13: Slack values for different adder implementations

The obtained slack values for the different implemented adders are presented in the bar plot
of Figure 13. In this bar plot, the approximate adders are displayed in blue colour while the
accurate adders are displayed in green. As it can be clearly observed, all approximate adders
offer bigger slacks than the accurate ones, as a consequence of being faster in computing the
operation. The maximum difference in slack between approximate and accurate adders is of 423
ps while the minimum one is equal to 28 ps. The best slack values are offered by the ACAI Gen,
ACAII RCA and GeAr2 Gen designs, while the worst slack is offered by the accurate adders
and specially the GenusOpt16 adder. It can be also noticed that all the slack are very large values
between 9200-9600 ps. This is because the implemented designs are not very complex, being
only an adder with registers in the inputs and outputs (Figure 11), so setting a period of 10 ns is
a very soft restriction.

In addition, for the sake of comparison between the approximate adders, the same slack values
of the approximate adders shown in Figure 13 are specifically plotted in Figure 14 having each
adder type with their two versions next to each other. From this plot it can be seen that depending
on the design the usage of the + sign or the RCA as sub-adders can be more beneficial than the
other option. For example, in the case of GeAr2 adder it seems that the employment of the +
sign leads to a better slack, while in ACAI adder it is the contrary. It is also worth commenting

33



that the variations in slack for its two different versions is not big enough to notice the benefits
in practice.

Figure 14: Slack values of approximate adders

4.1.2 Area

About the area, again, it is a value that is obtained right after the synthesis process and it refers
to the area that occupies the design. The area reports offer information about how many cells are
used (cell count), the area in µm2 that these cells and other macros occupy (cell area) and the
net area which exhibits the area that the routing, interconnections and metal layers occupy. The
total area is the summation of these last two values, and indicates the whole area of the design.
Figure 15 plots the obtained cell areas, while Figure 16 shows the achieved total area values for
the different adder topologies. The area values showed also contain the corresponding input and
output registers for each design, as depicted in Figure 11

As it can be seen, the total areas are quite similar with values around 165-135 µm, and also with
similar cell area values. First of all, it can be clearly observed that the best area proposal is the
one given by the GenusOpt16 adder solution. This is due to the freedom that the synthesis tool,
Genus, has over the adder topology and also the very relaxed synthesis frequency constrain.
This means that as it has plenty of time margin, it can focus on shrinking the design’s area
in exchange of resulting in worse timing slack. This happens for all the adders, but the rest
of the adders have a fixed structure that Genus has to follow, which means that they are more
constrained than the GenusOpt16 precise adder.
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Figure 15: Cell area results for different adder implementations

Apart from this, the rest of adders show very similar total areas. Although some of them show
promising cell areas, like GeAr2 Gen adder, due to larger net areas than the other adders
they finally end up with similar total areas. In general, and excluding GenusOpt16 adder,
GeAr4 Gen, GeAr6 Gen, both versions of ACAII and the precise adders offer good area values
around 150± 2 µm. Worst area values are offered by ACAI adder type, which has sense because
it is the adder structure that has the biggest amount of sub-adders.

Finally, looking at Figure 15, it can be noticed that the approximate adders that use the + sign
(with suffix Gen) offer a better cell area than their competitor using the RCA sub-adders. But
in contrary, looking at Figure 17, it can be seen that in some cases this last advantage is nullified
by a bigger net area, resulting in bigger total area, as it is the case in ACAI adder. Figure 17
compares the same total areas of the approximate adders shown in Figure 16 between their two
versions.
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Figure 16: Total area results for different adder implementations

Figure 17: Total area values of approximate adders
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4.1.3 Errors and precision

As already mentioned, the results concerning the errors and precision are obtained from Over-
clocking simulations, which means that the period is diminished in order to emulate the slower
behaviour of the CMOS technology in a voltage underscaling environment, and timing errors
appear. Three different periods have been chosen: the first one is the same period used for
synthesis (10 ns), while the other two were decided according to the slack results that have been
exposed in Subsubsection 4.1.1. These two periods have been chosen so that the adders were
studied under a moderately aggressive period (400 ps) and a very aggressive period (200 ps).

Before starting the error and precision study, it is convenient to briefly explain how the error
and the metrics used along this chapter are obtained. The most basic one is the error or error
distance which in this case is calculated according to the following formula:

Error = Sumaccurate−Sumapprox (6)

The precision is also used as a metric during the explanation. This precision is shown in
percentage values and it is calculated as:

Precision[%] =
# of correct additions
# of total additions

×100 (7)

Finally, for some cases the Mean Relative Error (MRE) [11] is also computed. This Figure
of Merit indicates in a percentage value how much the errors deviate from the correct result in
average, and it is computed as:

MRE[%] =
1
N
×

n

∑
i=1
|
Ri

accurate−Ri
approximate

Ri
accurate

|×100 (8)

Being,

N = Total number of operations
R = Result
n = Total number of errors given for that case

Results for 10 ns period: First of all, the results concerning the 10 ns period are very interest-
ing to observe the intrinsic errors that the approximate adders have due to their approximation.
This is because at this period there will not be any timing errors and the only errors that will
appear will be those due to the approximation. Another meaning of these results, is that the
precision obtained for the adders will be equal to the top achievable precision that they will get.
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Results for 10ns period
Adder Type Right Wrong Total Precision [%]
GeAr2 Gen 9955709 44291 10000000 99,55709
GeAr2 RCA 9955709 44291 10000000 99,55709
GeAr4 Gen 9981546 18454 10000000 99,81546
GeAr4 RCA 9981546 18454 10000000 99,81546
GeAr6 Gen 9980605 19395 10000000 99,80605
GeAr6 RCA 9980605 19395 10000000 99,80605
ACAI Gen 9843748 156252 10000000 98,43748
ACAI RCA 9843748 156252 10000000 98,43748
ACAII Gen 9413961 586039 10000000 94,13961
ACAII RCA 9413961 586039 10000000 94,13961
Kogge-Stone 10000000 0 10000000 100
Ripple-Carry 10000000 0 10000000 100

GenusOpt(’+’) 10000000 0 10000000 100

Table 1: Top achievable precision of studied adders

The results concerning the precision and the inherent errors that the approximate adders show
are presented in Table 1. Evidently, the three of the accurate adders show a 100% of precision
because there are not timing errors present yet. It can also be appreciated that every approximate
adder offers precision values above 90%, except for the ACAII adder that, although it has high
precision, it is still smaller than the rest of the adders. The errors were studied in more depth
to record the magnitude of these errors, which happen to be always a power of 2. This fact is
totally coherent, because as the approximate adders are based in the carry truncation, there will
be some point in their architecture where the carry should be propagated but it will not.

Magnitude of errors for 10ns period
Error magnitude

Adder type 256 512 1024 2048 4096 8192 16384 32768
GeAr2 Gen 0 0 14773 0 14754 0 14764 0
GeAr2 RCA 0 0 14773 0 14754 0 14764 0
GeAr4 Gen 0 0 0 0 18454 0 0 0
GeAr4 RCA 0 0 0 0 18454 0 0 0
GeAr6 Gen 0 0 0 0 0 0 19395 0
GeAr6 RCA 0 0 0 0 0 0 19395 0
ACAI Gen 19661 19619 19603 19419 19439 19452 19405 19654
ACAI RCA 19661 19619 19603 19419 19439 19452 19405 19654
ACAII Gen 293147 0 0 0 292892 0 0 0
ACAII RCA 293147 0 0 0 292892 0 0 0

Table 2: Error magnitudes for 10ns period

As it is described in Table 2, the error magnitudes inserted by the modification of the adder
architectures have values between 256 and 32768. It is desirable to have errors of value 256
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instead of 32768, because in the event of having an error it is preferred to have a smaller
deviation from the correct answer. Among the GeAr type adders, GeAr2 generates error values
of 1024, 4096 and 16384, while GeAr4 generates errors of magnitude 4096 and GeAr6 of
16384. These last two offer very similar precision, but GeAr4 is more appealing from the error
magnitude point of view because these are 4 times smaller than the ones of GeAr6.

About the ACAI adder, the errors are distributed quite uniformly between the magnitudes of
256 and 32768, and concerning ACAII, the errors are concentrated in the values of 256 and
4096 with a large amount of them.

From this point on, timing errors appear in simulations, and as already mentioned, the outputs
can contain certain X values. In order to quantify and make the study, the X values are traced
and changed in the testbench before recording them. They are change first to logical 1 and later
to logical 0, and thus the next results for periods 400 ps and 200 ps will contain two set of
results.

Results for 400 ps period: Table 3 presents the results for the simulations performed for a
period of 400 ps and considering the X values as logical 1. It can be seen that as expected,
the timing errors start to appear in the precise adders, compromising their accuracy (quite
considerably in the case of GenusOpt16). In contrast, some of the approximate adders show
that their precision is not affected or that despite being affected, the effect is smaller than in the
case of the accurate adders.

Results for 400ps period
Adder Type Right Wrong Total Precision [%] Loss [%]
GeAr2 Gen 9955709 44291 10000000 99,55709 0
GeAr2 RCA 9940206 59794 10000000 99,40206 0,155
GeAr4 Gen 9774563 225437 10000000 97,74563 2,0698
GeAr4 RCA 9949914 50086 10000000 99,49914 0,31632
GeAr6 Gen 9828065 171935 10000000 98,28065 1,5254
GeAr6 RCA 9954337 45663 10000000 99,54337 0,26268
ACAI Gen 9843748 156252 10000000 98,43748 0
ACAI RCA 9803703 196297 10000000 98,03703 0,40045
ACAII Gen 9355772 644228 10000000 93,55772 0,58189
ACAII RCA 9413961 586039 10000000 94,13961 0
Kogge-Stone 9951756 48244 10000000 99,51756 0,48244
Ripple-Carry 9962242 37758 10000000 99,62242 0,37758

GenusOpt(’+’) 9628539 371461 10000000 96,28539 3,71461

Table 3: Precision achieved with 400ps period, X→ ’1’

Looking at the Table 3, the precision values obtained in general are quite similar and it could
be considered that at 400 ps the approximate adders offer the same precision values as accurate
adders. The adder with the highest precision is the conventional RCA, followed by the approx-
imates GeAr2 Gen and GeAr6 RCA, and then the accurate KSA and the GeAr4 RCA. From
the additional column, that stands for the precision loss compared to the 10 ns period results, it
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can be observed that the accurate adders (except GenusOpt16) are quite in the middle when the
precision loss is concerned, which means that there are better and worse options for approximate
adders.

One more time, the error magnitudes are recorded to deeply study the impact of the accuracy
loss. This time, as timing errors will generate errors with magnitudes different to power of
2 values, the exact error values have been recorded and plotted in histograms. As a result,
6 histograms are obtained where in five of them both versions of each approximate adder is
plotted for comparison, and in the last one the three accurate adders are plotted.

Figures 18, 19, 20, 21, 22 and 23 show the previously mentioned histograms where the error
magnitudes are shown. In these histograms, the inherent errors from Table 2 are visible (quite
clearly in Figures 18, 21 and 22). The rest of the errors are caused by timing violations which, in
contrast to the inherent errors, happen to be also negative errors, thus all the negative errors that
appear in the histograms are due to timing errors. According to the Equation 6, the meaning of
the negative errors is that the obtained approximate addition is bigger than the accurate addition.

In some cases, these new errors seems to be concentrated in lower magnitudes around 0 (Figures
20 and 23), while in others even if having timing errors in lower magnitudes, there are also some
big spikes in bigger magnitudes as in Figures 18, 19 and 21.

Figure 18: Error magnitude histogram for GeAr2 adder (400ps X as 1)
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Figure 19: Error magnitude histogram for GeAr4 adder (400ps X as 1)

Figure 20: Error magnitude histogram for GeAr6 adder (400ps X as 1)
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Figure 21: Error magnitude histogram for ACA-I adder (400ps X as 1)

Figure 22: Error magnitude histogram for ACA-II adder (400ps X as 1)
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Figure 23: Error magnitude histogram for precise adders (400ps X as 1)

To continue, the results for the same simulations with the same period of 400 ps but now
considering the X values as logical 0 are presented.

Results for 400ps period

Adder Type Right Wrong Total Precision [%] Loss [%] Loss for
X→ ’1’

GeAr2 Gen 9955709 44291 10000000 99,55709 0 0
GeAr2 RCA 9938515 61485 10000000 99,38515 0,17194 0,155
GeAr4 Gen 9799481 200519 10000000 97,99481 1,82065 2,0698
GeAr4 RCA 9950871 49129 10000000 99,50871 0,30675 0,31632
GeAr6 Gen 9799896 200104 10000000 97,99896 1,80709 1,5254
GeAr6 RCA 9957692 42308 10000000 99,57692 0,22913 0,26268
ACAI Gen 156252 156252 10000000 98,43748 0 0
ACAI RCA 9826749 173251 10000000 98,26749 0,16999 0,40045
ACAII Gen 9369564 630436 10000000 93,69564 0,44397 0,58189
ACAII RCA 9413961 586039 10000000 94,13961 0 0
Kogge-Stone 9950014 49986 10000000 99,50014 0,49986 0,48244
Ripple-Carry 9961786 38214 10000000 99,61786 0,38214 0,37758

GenusOpt(’+’) 9522318 477682 10000000 95,22318 4,77682 3,71461

Table 4: Precision achieved with 400ps period, X→ ’0’

Table 4 again shows the different precision values obtained for the studied adders following
Equation 7, and it also contains the concerning precision loss compared to the 10 ns precision
for this simulation and, for the sake of comparison, the same loss indicative obtained in the
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previous case when X values were considered as 1. Looking to these two columns, it is visible
that the differences in precision loss between the two cases are not so big, as the precision loss
differs normally in some decimals or even less. It is worth commenting that the precision of the
GenusOpt16 adder is 1% worse in this case than in the previous one, and that the adders that
did not show any precision loss in the previous case, remain without any precision loss in this
case too.

Figure 24: Error magnitude histogram for GeAr2 adder (400ps X as 0)

Figure 25: Error magnitude histogram for GeAr4 adder (400ps X as 0)
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Figure 26: Error magnitude histogram for GeAr6 adder (400ps X as 0)

Figure 27: Error magnitude histogram for ACA-I adder (400ps X as 0)

45



Figure 28: Error magnitude histogram for ACA-II adder (400ps X as 0)

Figure 29: Error magnitude histogram for precise adders (400ps X as 0)

The same idea as in the previous case is employed, and the histograms of Figures 24, 25, 26,
27, 28 and 29 are obtained. In general, the results are very similar, but now the errors show a
trend to concentrate in the positive side (27 and 28), in contrary to the previous case where the
timing errors were located in the negative side. Finally, it is slightly noticeable that the majority
of the errors concentrate in the center, where the near-0 magnitudes are located.
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Results for 200 ps period: As already explained before, the same simulations were conducted
but now for the very aggressive period value of 200 ps. Again, two set of results are obtained
from the simulations, the first one considering the X values as logical 1 and the second one
with X values as 0. These aggressive simulations are done with the intention of forcing large
amounts of timing violations, and this way seeing if the majority of errors due to this timing
violations are distributed uniformly, or they follow any other distribution type.

Same table format have been used for the representation of the simulation results of this part,
and in Table 5 the first results for a period of 200 ps with X values as 1 are presented. It is clear
that the obtained precisions with this period are not even close to be acceptable at all. Even the
two accurate adders RCA and KSA show a precision below the 35%, which is unacceptable,
and they are the adders with the highest precisions. Addressing the approximate adders under
study, in general the precision offered is even worse than a third of the 35% offered by the
accurate ones mentioned before. But, it is worth commenting that GeAr4 RCA, GeAr6 RCA
and ACAII RCA adders offer a precision near 30%.

Results for 200ps period
Adder Type Right Wrong Total Precision [%]
GeAr2 Gen 226814 9773186 10000000 2,26814
GeAr2 RCA 1645853 8354147 10000000 16,45853
GeAr4 Gen 395222 9604778 10000000 3,95222
GeAr4 RCA 2861719 7138281 10000000 28,61719
GeAr6 Gen 459513 9540487 10000000 4,59513
GeAr6 RCA 2866432 7133568 10000000 28,66432
ACAI Gen 79676 9920324 10000000 0,796759
ACAI RCA 761476 9238524 10000000 7,61476
ACAII Gen 743529 9256471 10000000 7,43529
ACAII RCA 2727772 7272228 10000000 27,27772
Kogge-Stone 3499523 6500477 10000000 34,99523
Ripple-Carry 3425228 6574772 10000000 34,25228

GenusOpt(’+’) 1085145 8914855 10000000 10,85145

Table 5: Precision achieved with 200ps period, X→ ’1’

47



Figure 30: Error magnitude histogram for GeAr2 adder (200ps X as 1)

Figure 31: Error magnitude histogram for GeAr4 adder (200ps X as 1)
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Figure 32: Error magnitude histogram for GeAr6 adder (200ps X as 1)

Figure 33: Error magnitude histogram for ACA-I adder (200ps X as 1)
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Figure 34: Error magnitude histogram for ACA-II adder (200ps X as 1)

Figure 35: Error magnitude histogram for precise adders (200ps X as 1)

As mentioned in the beginning, the interesting point of these simulation results is not the final
precision values but the distribution of the error magnitudes. The histograms of Figures 30, 31,
32, 33, 34 and 35 demonstrates quite clearly that the majority of the timing errors are given
with low magnitudes near 0. The biggest spike is centred in 0, and smaller spikes appear when
looking at higher error magnitudes. It could be said that these timing errors follow some kind of
a Gaussian distribution with mean 0. It can also be appreciated that there are other bigger spikes

50



that represent the addition of the inherent error of the approximate adders and the timing errors.
Finally, concerning the accurate adders, it can be seen that there are much less errors and that
the distribution of them is not so much as a normal distribution despite of having the biggest
spike in the near 0 values.

To finish with the Overclocking simulation results, the last set of results concerning the 200 ps
period and X values as 0 are presented in Table 6. This table also has an additional column with
the precision values achieved in the previous case, that also are shown in Table 5. Looking at
the two rightmost columns, some adders offer better precision in this case but other see theirs
diminished. In general, the adders the increment that these adders experience compared to the
previous case is not that large in order to consider it significant, being an increase of some
decimals or sometimes of 1-2%. In contrast, the majority of the adders that exhibit a decrease,
experiences it in quite hard way with decreases around 6-7% of the precision compared to the
other case.

Results for 200ps period

Adder Type Right Wrong Total Precision [%] Precision for
X→ ’1’

GeAr2 Gen 378540 9621460 10000000 3,7854 2,26814
GeAr2 RCA 1044604 8955396 10000000 10,44604 16,45853
GeAr4 Gen 631712 9368288 10000000 6,31712 3,95222
GeAr4 RCA 2195689 7804311 10000000 21,95689 28,61719
GeAr6 Gen 592131 9407869 10000000 5,92131 4,59513
GeAr6 RCA 2188873 7811127 10000000 21,88873 28,66432
ACAI Gen 118814 9881186 10000000 1,18814 0,796759
ACAI RCA 567125 9432875 10000000 5,67125 7,61476
ACAII Gen 765649 9234351 10000000 7,65649 7,43529
ACAII RCA 2191603 7808397 10000000 21,91603 27,27772
Kogge-Stone 3443879 6556121 10000000 34,43879 34,99523
Ripple-Carry 2785735 7214265 10000000 27,85735 34,25228

GenusOpt(’+’) 1116732 8883268 10000000 11,16732 10,85145

Table 6: Precision achieved with 200ps period, X→ ’0’

Once again, the histogram plots are done and shown in Figures 36, 37, 38, 39, 40 and 41.
Overall, there is not much difference between these histograms and the ones shown for the
previous case. But, if the trend mentioned in the simulations done for 400 ps is recalled, in these
histograms the errors seem to be more concentrated in the positive magnitudes, while for the
case where the X values are considered as 1 these errors appear in the negative magnitudes. The
histograms referring to ACAI and GeAr6 adders are quite representatives of this last behaviour,
where in Figures 33 and 32 the ”secondary” error spikes are clearly on the left of the main spike
located at 0, while in Figures 39 and 38 these secondary error spikes are on the right side of the
”fundamental” spike.
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Figure 36: Error magnitude histogram for GeAr2 adder (200ps X as 0)

Figure 37: Error magnitude histogram for GeAr4 adder (200ps X as 0)
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Figure 38: Error magnitude histogram for GeAr6 adder (200ps X as 0)

Figure 39: Error magnitude histogram for ACA-I adder (200ps X as 0)
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Figure 40: Error magnitude histogram for ACA-II adder (200ps X as 0)

Figure 41: Error magnitude histogram for precise adders (200ps X as 0)

4.1.4 Power

To continue with the study of the approximate adders, the next results are concerning to the
power consumption of the different adders. These results are obtained as it was explained earlier
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in the methodology and it is a computation based on the switching activity of the nodes in the
netlist.

As in previous part, the following power results are referred to the simulations performed for
Overclocking and with the period values mentioned before. It also has been done for the two
cases where the X values are considered either 1 or 0. Concerning the results, as the dynamic
power formula is the one shown on Equation 4, increasing the frequency will have an increasing
impact on the dynamic power, and thus the total power will be increased.

Figure 42: Total power results for approximate adders having X values as 1

As it can be clearly seen from Figure 42, the power drastically increases from period values
of 10 ns to 200 ps. This result is what it was expected, based on what it was deduced from
the Equation 4. It is also noticeable that the power increase experienced by the adders seem
to affect all of them in a similar way, having similar shapes for every periods. Finally, as both
power results for simulations done substituting the X values for 1 or 0 are exactly the same,
only one result (X→ 1) is represented.

Lastly, concerning the logic power consumption Figure 43 presents the obtained results. Only
the results for 10 ns are presented because the other periods show very similar profiles but only
changing the magnitude of the consumed power. These results are really interesting because
they only refer to the power consumption of the adder structure without considering the clock
and registers consumption, and it can be seen if the approximate adders offer any power advan-
tage compared to the accurate ones.

In general, the power values are quite similar for all adders, being the results between 5 and
9 µW. GenusOpt16 is the adder with the lowest power consumption, while ACAI Gen is the
most power hungry adder. Apart from these two, GeAr4 Gen, GeAr6 Gen and both versions of
ACAII offer very similar power consumptions as the other two accurate adders.
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Figure 43: Logic power consumption results for approximate adders having X values as 1

4.1.5 Voltage Underscaling results

To end with the approximate adders study, the results obtained for the Voltage Underscaling
simulations will be presented in this last part. But first, the basic ideas behind this simulation
type are going to be recalled from the Subsection 3.4. This simulations consist on obtaining
different SDF files with delays calculated for a same netlist but different voltages. The effect of
calculating these new SDF files for lower voltages is that the delays corresponding to the paths
are bigger, which is somehow what would happen in these adders were exposed to a voltage
underscaling condition.

In order to calculate this new SDF files, two methods are employed. In order to make a proper
voltage underscaling study, both temperature (T) and process parameters must be kept constant
and then change the voltage value. As the synthesized netlist uses the library characterized
for 0.8V and 25◦C, the only library that presents equal temperature and process is the one
characterized for 0.65V. In order to extend the study, fictitious voltage values were extrapolated
using the Tempus timing analysis tool. For this purpose, three libraries with the same process
and temperature values but different voltages (0.9V, 0.8V and 0.65V) were used. Using this
method, SDF files for the fictitious voltages of 0.6V, 0.55V, 0.5V, 0.45V and 0.4V.

The next plot in Figure 44 show the precision for each adder at every voltage mentioned above.
Note that this precision value is calculated using the same formula as in Equation 7, but this
time it is not display as a percentage, and the precision is constrained between 0 and 1. It is also
worth mentioning that these simulations are performed for X values considered as 1 as there is
not much difference between the two cases.
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Figure 44: Voltage underscaling results for studied adders

In Figure 44, the continuous lines represent the accurate adder’s precision evolution, while the
dashed lines represent the approximate ones. As it can be observed, apart from the GenusOpt16
adder, the voltage has to be decreased quite a lot to start observing precision loss. In general,
from 0.5V on, every adder starts to have their top precision compromised. Some of them
decrease more abruptly than others, for example GeAr4 Gen and GeAr6 Gen. The accurate
adders RCA and KSA also see their precision compromised and they start decreasing with
bigger slope than some other adders which offer higher (not very much) precision values at
0.45V and 0.4V. This are GeAr2 Gen with the highest precision and GeAr4 RCA and GeAr6-
RCA with a very similar precision. Lastly, it is worth noticing that even at 0.4V there are still

some approximate adders that do not experience any decrease in their precision, as they are
ACAII RCA and ACAI RCA. This last adder, offers almost the same precision value as the
accurate adders at 0.4V without having its own precision affected. This means that this adder
has the potential of offering a better precision value than the accurate ones at lower voltages.

4.2 Multipliers
To continue, the results obtained for the approximate multipliers are presented in this subsection.
The structure of the subsection is exactly the same as for the adders explained before: first the
results obtained from the synthesis process are presented (Slack and area), then the errors and
precision and the power obtained from the overclocking simulations are provided to finish with
the resulting plots for the voltage underscaling simulations. Due to lack of time, the amount of
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studied multipliers is not as big as the number of adders and the results may not be as complete
as these last ones, but the results obtained are still very interesting and revealing in terms of
deciding their inclusion or not.

4.2.1 Setup slack

Same as in the adders, the syntheses of the multipliers are performed using the same technology
library files provided by Globalfoundries for 22 nm processes. The developed designs of the
multipliers are synthesized also for a period value of 10 ns.

Figure 45: Slack results for different multiplier implementations

The slack values obtained, depicted in Figure 45, are quite similar for the majority of the
multipliers, having a maximum variation of 3.65%. Apart from GenusMult multiplier that offers
the worst value (around 200 ps smaller than the majority), the multipliers slacks are between
8700 and 8800 ps. Both the UDM16 (only approximation source is in the 2x2 multiplying block)
and the UDM16 SFA SW (approximation source also in partial sums but done like in SW)
offer a very similar slack as the Mult16 accurate multiplier. It is the UDM16 SFA approximate
multiplier that makes some difference between the slack, where just optimizing the length of
the partial sums it can achieve a gain of 100 ps in the slack. Even if it is not much, it could make
some difference when it comes to the voltage overscaling conditions.

4.2.2 Area

About the area, there is not much to speak about. Once again, as in the case of the approximate
adders, the total areas (Figure 46) are quite similar in all the multipliers and the results are
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as expected: the biggest area is offered Mult16 multiplier that uses the same structure than
the approximate ones but with accurate logic, then there are the approximate adders that show
quite similar area values being the most optimized one the smaller one, and finally there is
the GenusOpt16 multiplier which has been implemented using the ”∗” sign and letting the
synthesizer optimize the design, which focuses optimizing the area instead of the timing.

Figure 46: Total area results for multiplier implementations studied

As far as the cell areas are concerned (Figure 47), there is not much difference with the total
areas, being the behaviour the same. Which means that the net areas for the multipliers are very
similar around 115-126 µm2.
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Figure 47: Cell area results for multiplier implementations studied

4.2.3 Errors and precision

As in the case of the adders, the simulations are done in overclocking conditions and using
different, more aggressive, period values.

Again, a random set of operands was generated to test the multipliers, but in contrary to the
adders, this time the fact of precision was not so important because the Software team already
assessed the impact of using the studied multipliers in their own DNN at SW level and the
results, at least from the accuracy point of view, were good enough. This was advantageous
because the SW team provided some data sets were the inputs and the obtained output for each
multiplier was indicated. This data sets are much more realistic than the random ones and thus
will have quite more weight when considering these multiplier options for the final project. For
each dataset, there are 2 simulation cases where for the timing errors, and in order to quantify
the error distance, the X values are considered either 1 or 0.

This time, for the multiplier overclocking simulations, the following periods have been chosen:
1200 ps, 1100 ps, 900 ps, and 800 ps. In contrary to the adders case, where choosing the periods
was done looking to the slack values, this time this is not enough. Simulations for periods of
1400 and 1300 ps were also conducted which, in principle, at least 1300 ps period should trigger
some timing errors in the GenusMult16 case. But, this was not the case. The explanation to this
could be that the slack metric is a very pessimistic metric, and it could happen that the obtained
slack value only happens for very rare and specific transition cases that may not be contemplated
in the simulation testbenches.

Random Inputs: The total precision values achieved for the different periods and the random
input dataset are depicted in Figure 48. As for both cases, X as 1 and 0, the obtained results are
equal, they are both represented in one unique figure.
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It is worth noting that there are no timing errors appearing at period 1200 ps, and thus those
values would refer to the same precision as for a period value of 10 ns, used during syntheses.
The most affected multiplier is the GenusMult16, that starting from a perfect precision for 1200
ps, this value is heavily affected for the different period values, offering the worst precision
option for 800 ps. Secondly, it is the Mult16 multiplier that same as the previous one starts
from the top precision, and it is affected by the period changes. The decrease in precision
is not that much as in the previous case, still maintaining the best precision solution for 800
ps, but the decrease in the precision is the second biggest among the multipliers. Concerning
the approximate multipliers, the three of them manage to keep their precisions almost equal
for every period value, but their precisions alone are not competitive enough to consider their
use in top of the Mult16 multiplier. Lastly, between the three approximate multipliers, both
UDM16 SFA and UDM16 SFA SW offer same base precision value, which makes sense be-
cause their structure and basic functionality, as well as their approximation sources, are the
same. UDM16 multiplier shows better precision than these last two, having only one source of
approximation.

Figure 48: Precision of studied multipliers for the different periods simulated using random
inputs

Same as in adders, the study of the errors was intended to be extended to the analysis of the error
distance but, the amount of errors and the quantity of these was so large that the management
of them was not practical.

SW inputs: Now that the results concerning the precision of the multipliers for the random
input dataset have been explained, it is the turn for the dataset provided by the SW team. As
mentioned, this dataset is much closer to a realistic operation of the final implementation of
these multipliers specifically, and thus these results will have greater impact in the conclusions.
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The same concept of total precision as in the previous case is presented now in Figure 49.
This time it is a little bit different, because the outputs of the approximate multipliers are not
compared with the real multiplication results but with the values that the SW team obtained
from the approximate multipliers. So, the precision values of the approximate units for this
multiplication set makes reference to the ability of replicating the SW team results.

This time again, the results for both cases of X values are identical and thus they are presented
in the same bar plot. Every multiplier maintains the ability to perform correctly at 1200 and
1100 ps, and it is from 900 ps on that timing errors start appearing. This time the precision
reduction is not as big as for the previous case, being the reduction bounded between the values
of 1 and 0.8. The general behaviour is similar to the previous one, GenusMult16 having the
worst precision, Mult16 the best one and the approximate ones being near Mult16. About
the approximate multipliers, the UDM16 SFA option is the best one to maintain the ability
to reproduce the results but still being smaller than the Mult16 multiplier.

Figure 49: Precision of studied multipliers for the different periods simulated using SW inputs

Unlike in the random input dataset case, this time some error distances could be processed and
plotted. More precisely, the multipliers that showed timing errors for periods of 1100 ps and
900 ps are depicted. Looking at the two bar plots above, one would think that for 1100 ps there
are no errors, but analysing the results, it can be seen that for some multipliers there are indeed
some errors, quite few that it seems the precision is not compromised.

At this point is where the differences between the simulations considering X values as 1 or 0
start to appear. It is very interesting to observe the two histograms in Figures 50 and 51, where
the exact error magnitudes and their occurrences are displayed. It is very interesting, indeed, the
fact that in the exact errors for X values as 0 appears errors for the multiplier UDM SFA SW
but for the errors considering the X as logical 1 there are no errors. This does not mean that

62



there are no errors, in reality the quantity of total errors for both cases is the same because the
comparison is done for the result with the X values in it. But in order to compute the error
distances, the X are changed to 1 or 0. It is observed that changing the X values to 1 ”solves”
each of the errors for the case of this multiplier, although they are still timing errors.

Figure 50: Histogram plot of error distance occurrences for 1100 ps (X as 1)

Figure 51: Histogram plot of error distance occurrences for 1100 ps (X as 0)
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Apart from this, it can be seen that the errors for UDM16 multiplier are not very significant and
they are not very much. Also that the errors that appear for UDM16 SFA SW multiplier are not
more than 600 occurrences for X as 0 and some of them can have quite a big error distance.
And finally the GenusMult16 multiplier presents the biggest quantity of errors and tend to have
considerably big and negative error distances.

As an addition, in this part the MRE is also computed to compare these multipliers as it is a
good error metric. The Table 7 presents the obtained results for these values. As it can be seen,
the MREs for X values considered as 1 are slightly better than their counterparts and between
the non-zero MRE values, it is clear that the MREs for the approximate multipliers are much
better than the one obtained for the accurate one.

Mean Relative Error for 1100 ps period
Multiplier Type X as 1 X as 0

GenusMult16 0.0161% 0.0156%
Mult16 0% 0%
UDM16 5.27×10−6% 1×10−4%

UDM16 SFA 0% 0%
UDM16 SFA SW 0% 0.0011%

Table 7: Mean Relative Errors for multipliers with errors at 1100 ps periods

Once again the same simulations were conducted for the 900 ps period, and this time every
multiplier showed some timing errors. The following plots show the obtained histograms for
these simulations and for X values as 1, which are represented in Figures 52, 53 and 54. This
time, for sake of visibility, the plots are represented in different plots. It can be appreciated that
the two multipliers with the smallest quantity of errors are the Mult16 and UDM16 SFA, while
it could be considered that the biggest amount of errors is given by the GenusMult and the rest
of approximate multipliers are in between.
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Figure 52: Histogram plot of error distance occurrences for 900 ps (X as 1): Mult16

Figure 53: Histogram plot of error distance occurrences for 900 ps (X as 1): GenusMult
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Figure 54: Histogram plot of error distance occurrences for 900 ps (X as 1): Approximate
multipliers

Same histograms but for the case where the X values are considered as 0 are shown in Figures
55, 56 and 57. Comparing this results with the ones from the previous case, it is clear that for
the approximate multipliers suffer more dispersion. In the previous case, there was a big spike
in error magnitudes with values near 0, while in this case it is not so clear, having more spikes
in higher values. It is also visible a trend for this multipliers to have positive error distances
when the X values are considered as 0. Apart from this, GenusOpt multiplier seems to increase
its spike centred around 0 and reduces its quantity of errors magnitudes around -1500000000.
Finally, about Mult16, it seems that there is not much change but a new considerably big spike
appears at a relatively high error distance.
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Figure 55: Histogram plot of error distance occurrences for 900 ps (X as 0): Mult16

Figure 56: Histogram plot of error distance occurrences for 900 ps (X as 0): GenusMult
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Figure 57: Histogram plot of error distance occurrences for 900 ps (X as 0): Approximate
multipliers

To finally end with the error study, the same calculus as before for the MRE is performed for
the simulations at 900 ps period. The corresponding MREs for each multiplier are presented in
the Table 8 below. As it can be seen, worst MRE by far is offered by GenusMult16 multiplier.
Apart from this, cases where X values are considered as 0 seem to be worse having other two
approximate multipliers with MRE values of 13 and 18%.

Mean Relative Errors for 900 ps period
Multiplier Type X as 1 X as 0

GenusMult16 86.8914% 65.8079%
Mult16 0.0221% 0.0327%
UDM16 0.0817% 0.1249%

UDM16 SFA 0.0582% 13.7280%
UDM16 SFA SW 0.1025% 18.8296%

Table 8: Mean Relative Errors for multipliers with errors at 900 ps periods

4.2.4 Power

When power consumption is concerned, same procedure was followed in order to obtain the
results for the multipliers. This time, two TCF files were obtained for each multiplier, one
for the simulations done using the random input dataset and another one using the SW team
delivered input dataset. As the power results do not change for the cases where the X values are
considered either 1 or 0, they are done for the case where X is treated as 1. The results obtained
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are shown in the graphs below (Figures 58, 59, 60 and 61), having first the total power results
for both datasets and then the logic power consumption.

It is really interesting to have these two results face to face. From Figures 58 and 59, the
differences can be clearly appreciated. The bars in purple represent the total power consumption
of the approximate multipliers, while the green ones are the total power consumption for the
accurate ones. In the case of the random input dataset, the total power consumption of the
approximates is smaller than the accurate ones, which is quite logical having in mind that
they have less logic cells. But, in the case where the input dataset is the one provided by the
SW team (which is more realistic), the total power consumption is bigger for the approximate
multipliers. This means that for the specific operations that are intended to be done in the DNN,
the approximate multipliers are more power hungry than the accurate ones. This could be due
to the structure of the approximate multipliers, for some specific transitions the overall activity
is higher than the ones for the accurate ones.

Figure 58: Total power consumption for multipliers using random input dataset

69



Figure 59: Total power consumption for multipliers using SW input realistic dataset

Overall, the total power consumption is 1 order of magnitude bigger for the random inputs.
This is because there are fewer number of operations than in the SW inputs, but each of those
operation is different. In the dataset provided by the SW team, being a more realistic scenario,
there are quite a lot of consecutive operations that do not change their inputs, so the activity of
the nodes is much smaller.

Finally, addressing the logic power consumption, there is not much difference about what has
already been said about the total power consumption. The general behaviour of the multipliers
is the same in the total and the logic power consumptions.

Figure 60: Logic power consumption for multipliers using random input dataset
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Figure 61: Logic power consumption for multipliers using SW input realistic dataset

4.2.5 Voltage Underscaling results

To end with the whole results chapter, the results for the other simulation conducted are present-
ed. As it has been done in every multiplier’s simulations, two different voltage underscaling
simulations have been launched. For this simulations, the same multiplier designs have been
synthesized again at a 2 ns period using the same exact script as for the synthesis at 10 ns (same
constraints, library files, etc.). Similar to the adder’s case, the new SDF files are obtained for
the same temperature and process while the voltage is underscaled. The only existing library
that matches this requirements is the same one used for the adders which is characterised for
0.65V and 25ºC. In addition to this library, other SDF files for voltages 0.6, 0.55, 0.5, 0.45 and
0.4V are calculated extrapolating the values from the other libraries. This way, the delay values
for the SDF files at lower voltages will be bigger and they will simulate a voltage underscaling
condition. The results for this type of simulation are presented in the Figures 62 and 63.
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Figure 62: Precision degradation due to voltage underscaling effect for Random Inputs

In the case of the general precision values, even underscaling very aggressively the voltage, still
the accurate multipliers show better precision than the approximate ones. At 0.4V, the precision
of the GenusMult is quite close to the precision of UDM16, but the precision of the accurate
Mult16 is far above the rest. In consideration of the approximate multipliers, it can be seen
that their precision degradation starts at lower voltages than the rest of the multipliers, as for
example the Mult16 starts suffering precision decrease at voltages of 0.5V and the approximate
multipliers with two approximation sources at 0.45V.

Concerning the results obtained for the delivered dataset from the SW team, the same type of
plot is presented in Figure 63. This time, the ability of maintaining the expected precision is
tested in a more realistic scenario. Once again, Mult16 multiplier shows the best precision and
best degradation rate. Second multiplier is UDM16 SFA and very close to it GenusMult16.
Both of them show a considerable degradation from 0.45 to 0.4V compared to Mult16. Finally,
the other two multipliers show the worst ability to preserve the intended behaviour.
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Figure 63: Precision degradation due to voltage underscaling effect for SW Inputs
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5 Conclusions
To end with the study, some conclusions about the results are explained, with the objective of
assessing whether the use of these arithmetic units are beneficial for the DRAC project or not.
First, the conclusions for the adders are going to be explained and then the conclusions about
the multipliers are exposed.

First of all, looking at the synthesis and precision results presented for the studied adders, it
can be seen a clear trade-off between speed, area and precision. From the speed point of view,
every approximate adder is faster than any accurate adder. When area is addressed, in general,
every adder show similar total area occupancy. A relationship can be made between the speed
and the area required, being normally the fastest adders the ones that require the highest area
occupancy. This behaviour seems to be logical, because the structure of the studied approximate
adders are based on the truncation of the carry chain, so as for a faster adder a smaller carry
chain is needed, these approximate adders use more sub-adders. When precision is concerned,
the intrinsic errors of the approximate adders seem to appear in magnitudes where the carry
chain has been truncated. For example, for the GeAr2 adder there are three truncations and as a
result, three different error magnitudes are observable, while ACAII has two cuts on the carry
chain which leads to two different error magnitudes.

When the simulation results for overclocking are concerned, two period values were simulated:
400 ps and 200 ps. This last value proved to be too aggressive, forcing too many timing errors
to consider these approximate architectures feasible for competing against accurate adders. But
at this period value, the precision obtained even for the accurate adders was not worth, so under
this overly aggressive period neither the approximate nor accurate adders would be an option.
For period values equal to 400 ps, however, the obtained precisions were very competitive
between them, and these approximate adders could be beneficial for applications intended for
low power consumption.

Timing errors resulted as X were considered as 1 or 0 in order to evaluate the error distance
or magnitude. The main difference between the two sets of simulations is that for the case
where logical 1 are considered, the error distances seem to be more allocated in negative values
while for the other case these error magnitudes are somehow mirrored to the positive values. In
principle, this behaviour is coherent with the definition of error distance made in Equation 6. In
the case where the X are considered as 1, if any of those X values would have the 0 value in the
correct answer, considering it as a 1 will make the approximate result bigger than the accurate
one, and thus the error distance will be negative. The same idea is applied for the other case, but
the other way round.

Speaking of the power consumption, there is not any difference between simulations done for
the X values considered as 1 or 0, the results are the same in both cases. In addition, the power
drastically increases when increasing the frequency, which is coherent with the Equation 4. As
mentioned, the power increase in consumption experienced by all the adders seem to be similar
for all of them. Thus, it can be concluded that the power consumption of these adders are very
similar between them. As far as the approximate adders are concerned, there are some that are
below the accurate adders and others that are above their consumption, but the difference in
power is almost negligible between them to the point where there would not be much difference
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in implementing one or another.

As far as voltage underscaling is concerned, this kind of simulation is where the real potential
of the power reduction would be observed, because reducing the voltage would decrease the
energy consumption in a big manner. From this simulation, it can be concluded that decreasing
the voltage for the simulated adders force some timing errors, and that at 0.45-0.4V the precision
offered by this approximate adders is bigger than the ones offered by the accurate ones. These
approximate adders are GeAr2 Gen, GeAr4 RCA and GeAr6 RCA. Thus, in this case the usage
of these approximate adders that exhibit bigger precision at lower voltages than the accurate
adders is totally recommended.

To sum up with the adder’s conclusions, depending on the application and the specifications
of it, some approximate adders could be beneficial. There are still a lot of approximate adder
structures that may be are better than the ones studied in this document. But as far as this study
is concerned, the adders showed promising behaviour at moderately aggressive periods under
overclocking conditions, and on top of that some of them showed better behaviour at lower
voltages, which is one of the goals of this study.

When approximate multipliers are addressed, looking at the synthesis results, the difference in
slack is not as big as in the adders case, having three of the multipliers almost the same slack
value. This means that the implemented approximate multipliers (except the optimized one that
it only show an improvement of 100 ps which is not large enough), are not faster than the
accurate ones. When the area occupancy is brought to discussion, they all occupy similar areas,
but the approximate multipliers with same structure than the Mult16 show smaller areas. This
is expected because the approximate multipliers with this structure use smaller sub-adders and
smaller 2x2 multiplication blocks in their structures.

Talking about precision of the implemented multipliers, the study could not have been as
completed as it was wanted to be, but still some interesting results have been obtained. First,
concerning the random input dataset, the precision values obtained for the approximate multipli-
ers were not even near the accurate ones. Their resiliency against the period reduction proved to
be better but not good enough to beat the accurate ones. In addition, for the dataset provided by
the SW input, which simulates a much more realistic scenario, again the approximate multipliers
resulted in worse performance than the Mult16 multiplier. A conclusion can be deduced from
these two results: the resiliency of the approximate multipliers is better when the inputs are
randomly generated, but for the specific case of the DNN that will be implemented in the
DRAC project they prove to have worse resiliency than the Mult16 multiplier in overclocking
conditions.

Furthermore, for this last dataset, the study of some error distances for periods 1100 ps and
900 ps was possible. From these studies, the metric of MRE in computed. For 1100 ps, the
approximate multipliers that show any error also exhibit a MRE considerably better than the
accurate multiplier GenusMult16. For the 900 ps result, this also maintains but this time the
GenusMult multiplier shows a totally unacceptable MRE value, while the MRE for the approx-
imate multipliers only grow 0.05-0.1%. It is worth noting that the MRE values for some approx-
imate multipliers increase considerably for the cases where the X are considered as 0.

About the power consumption of the studied multipliers, if the random input dataset is addressed
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it can be concluded that the approximate ones are little less power consuming than the accurate
multipliers. But, if the realistic inputs given by SW are concerned, the power consumption of
the approximate multipliers is bigger than the accurate ones.

Finally, when voltage underscaling simulations results are taken to examination, in both cases
the accurate multipliers show better performance at lower voltages. Even if for the random
inputs the approximate multipliers show smaller or latter precision degradation, the gap is too
big to be surpassed. For the SW inputs, the approximate multiplier UDM16 SFA show a slightly
better performance than the GenusMult16 multiplier, but still worse than the Mult16.

To sum up with the multiplier’s conclusions, and end with the study and the document, from
the results obtained for the multipliers, the studied approximate multipliers do not show to be
promising in almost any aspect that has been able to study. When random inputs are taken to
discussion, the approximate multipliers seem to be more competitive in power consumption.
These attributes could be beneficial for any other application, but in our particular case where
the inputs provided by the DNN of the DRAC project will be the dataset provided by the SW
team, these multipliers proved to have worse performance than the accurate ones.
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d’informàtica de Barcelona (FIB).

77


	List of Figures
	List of Tables
	Introduction
	Statement of purpose (objectives)
	Requirements and specifications
	Methods and procedures

	State of the art
	Approximate Computing
	Approximate Arithmetic
	Adders
	Multipliers


	Methodology / project development
	General flow
	Implementations
	Adder implementations
	Multiplier implementations

	Synthesis
	Simulations
	Performed simulations

	Power Computation

	Results
	Adders
	Setup slack
	Area
	Errors and precision
	Power
	Voltage Underscaling results

	Multipliers
	Setup slack
	Area
	Errors and precision
	Power
	Voltage Underscaling results


	Conclusions
	References

