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Abstract This paper explores an accurate and com-

plete spacecraft six-degrees-of-freedom coupled relative

motion model using the dual quaternion representation.

Based on this technique, we build a scheme capable of

describing both kinematic and dynamic coupling effects

on the spacecraft relative translational motion through

a further combination with the chaser’s precise abso-

lute translational and rotational dynamics. This new

model generalizes the existing nonlinear spacecraft rel-

ative translational model to include both the kinematic

coupling effect due to the displacements of selected fea-

ture points relative to the spacecraft centers of mass

and the dynamic coupling effect induced by the gravity

gradient torque and the orbital perturbations. Several

numerical simulations are implemented to validate the
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feasibility of the proposed model, for analyzing both the

kinematic and dynamic coupling effects, on the relative

translational motion of two arbitrary feature points in

either Keplerian or J2 perturbed orbits. The results are

further compared against the J2 perturbation effect on

the relative translational motion.

Keywords Dual quaternions · Relative motion ·
Dynamic coupling · Kinematic coupling · Orbital

perturbation

1 Introduction

The precise prediction and capture of the relative mo-

tion between arbitrary feature points on two tumbling

spacecraft are fundamental technologies required for

the construction of autonomous distributed space sys-

tems, spacecraft formation flying (SFF) [1,2], close ren-

dezvous, and docking (R&D) [3–6]. Growing research

interest in such space missions, consisting of multiple

spacecraft, motivates the development of an accurate

modeling on relative spacecraft position and orienta-

tion.

The common three-degrees-of-freedom (DOF) point-

mass model was firstly proposed to study the relative

translational motion of two spacecraft. A well known

reduced model referred as the Clohessy-Wiltshire equa-

tions was proposed under the assumption of a circu-

lar reference trajectory and a spherical Earth [7]. Fur-

ther studies were carried out by means of generalizing

circular reference trajectories to elliptic ones [8–11] or

considering multiple perturbations, such as drag [12]

and an oblate Earth [1,13]. However the aforementioned

models can only be employed to predict relative trans-

lational motion between two spacecraft centers of mass
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(CMs), this is, the spacecraft relative rotation is omit-

ted.

In general, the six-DOF coupled relative motion be-

tween two rigid spacecraft can be formulated using dif-

ferent representations, i.e. the Lie group SE(3) [3,14],

dual quaternions [15,16], or Euler angles and trans-

lation terms. Based on geometric mechanics (i.e. the

nonlinear manifold SE(3)), the relative rotational and

translational motion can be represented in a coupled

and singularity-free way, such that one unified control

law is designed to solve the six-DOF relative motion

control problem [3]. Another widely used technique for

addressing the coupled relative motion of rigid space-

craft without singularities is the dual quaternion param-

etrization, which provides a unified compact form of the

dynamics [15,17]. Similar to the usage of the nonlinear

manifold SE(3), dual quaternion representation simpli-

fies the controller development by allowing one unified

control law to be obtained for coupled spacecraft rela-

tive motions [16,17]. In particular, it is relatively simple

to extend existing attitude controllers based on quater-

nions into the coupled position and attitude controllers

based on dual quaternions, and with analogous stability

properties [17,19]. Besides, it has been shown that dual

quaternions possess higher computational efficiency and

lower storage cost than other commonly used repre-

sentations [20,21]. On the downside, the coupled rel-

ative motion model formulated on the dual quaternion

representation encounters the so-called unwinding phe-

nomenon, which inherits from the classical quaternions.

Solutions for this issue have been studied in [16,17].

Note that a high-precision description of relative

rotational and translational motion needs to consider

two coupling effects, including both the internal kine-

matic and the external dynamic couplings. Kinematic

coupling essentially can be seen as a projection of the

rotational motion about the CM on the relative trans-

lational configuration space [5,6]. Clearly, it is induced

by the motion itself rather than from external pertur-

bations. Dynamic coupling effect stemming from all the

external perturbations (such as Earth’s non-spherical

gravity [22], solar radiation pressure [23,24], atmospheric

drag [25] or control force [15]) depends on the space-

craft attitude or position, and affects both rotational

and translational dynamics. The models for the domi-

nant external forces and torques governing the space-

craft’s absolute translational and rotational motion can

be found in [26,27].

In the previous works, the authors do not address

displacements of non-CM feature points to explore the

kinematic coupling effect, which only arises when one

considers the relative motion between non-CM points.

In order to analyze this kinematic coupling on the space-

craft relative translation, Segal and Gurfil [5] proposed

a six-DOF relative dynamic model between two rigid

spacecraft under the assumption that the chaser body-

fixed frame is aligned with the reference orbital frame.

Lee and Vukovich [6] presented another kinematically

coupled relative spacecraft motion model about two ar-

bitrary feature points, on the chief and deputy space-

craft, by mitigating the attitude synchronization as-

sumption, this is, the restrictive alignment of the body-

fixed and orbital frames. These relative motion models

were obtained in the orbital reference frame, with the

assumption of Keplerian elliptical nominal orbits, and

do not consider the analysis of the rotation-translation

coupling effect on spacecraft relative translation in a

perturbed orbit environment.

The present study is devoted to studying the kine-

matic and dynamic coupling effects on the relative trans-

lational motion in a general orbital case. We propose

a six-DOF coupled relative motion model to describe

the relative position of two arbitrary feature points on

the target and chaser spacecraft, without the Keple-

rian reference orbit assumption. In addition, the pro-

posed model enables to analyze J2 perturbation effects.

Therefore, the magnitudes of the kinematic and dy-

namic coupling effects and of the perturbation effect

on the relative translational motion can be analyzed.

The reminder of the paper is organized as follows.

The mathematical preliminaries used throughout the

whole paper are introduced in Section 2. Section 3 ad-

dresses the formulation of the relative motion of two

arbitrary non-CM points on two close spacecraft us-

ing a dual quaternion representation. Section 4 pro-

vides some illustrative simulations to validate the ef-

fectiveness of the proposed model. This includes the

implementation of several numerical simulations that

analyze the kinematic and dynamic coupling effects on

the relative translational motion: on an ideal Keplerian

reference orbit or on a J2 perturbed reference orbit.

Finally, the conclusions are provided in Section 5.

2 Mathematical preliminaries

The purpose of this section is to provide a compact and

concise summary of quaternions and dual quaternions,

as well as the basic operational rules adopted in this

paper. For more details, the reader can refer to [2,17,

28–31].

2.1 Quaternions

Quaternions were invented by Sir William Rowan Hamil-

ton in 1843 [32]. They are generally employed for the
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rotation analysis of a rigid spacecraft without singular-

ities [33].

A quaternion is defined as an ordered pair (q0, q̄),

q = q0 + q1 i+ q2 j + q3 k ,

where q0 is the scalar part, and q̄ = q1i+q2j+q3k is the

vector part. If q0 = 0, q is called a vector quaternion,

which is always exploited to describe the translation

of a spacecraft. Table 1 provides a summary of basic

algebraic operations on quaternions. More information

can be found in [17].

Table 1 Algebra of quaternions

Operation Formulae

Conjugation q∗ = (q0,−q̄)
Addition q + λp = (q0 + λ p0, q̄ + λ p̄), λ ∈ R

Multiplication q ◦ p = (q0 p0 − q̄ · p̄, q0 p̄+ p0 q̄ + q̄ × p̄)
Dot product q · p = (q0 p0 + q̄ · p̄, 0̄)

Cross product q × p = (0, q0 p̄+ p0 q̄ + q̄ × p̄)

Note: if q and p are vector quaternions, q×p = 1
2

(q◦p−p◦q).

Note that the formulae q̄·p̄ and q̄×p̄ in Table 1 have

to be formally understood as the classical dot and cross

products for vectors q̄ and p̄ in R3. In addition, since

v̄ is a vector in R3, it is embedded in the quaternion

algebra considering the vector quaternion v = (0, v̄),

thus an expression q∗ ◦ v̄ ◦ q should be understood as

q∗ ◦ v ◦ q.

On the other hand, q is referred to as a unit quater-

nion if q∗ ◦ q = q ◦ q∗ = 1. A unit quaternion is,

q = (q0, q̄) =

(
cos

θ

2
, sin

θ

2
n

)
,

for a certain angle θ and a unit vector n ∈ R3. Clearly

it describes the attitude of a rigid spacecraft by means

of the rotation angle θ about the n axis (see [28]). How-

ever, on the bad side, it is also worth to remind here the

existence of the unwinding phenomenon when quater-

nions are employed for the attitude description of a rigid

spacecraft and the design of control laws [31,34].

2.2 Dual quaternions

Let us consider the symbol ε, known as the dual unit.

It has the property that formally satisfies ε2 = 0 (it is

nilpotent) and commutes with every element of the al-

gebra. With this concept, dual vectors and dual quater-

nions were introduced by Clifford [30] as follows:

Dual vector (or “motor”):

â = ar + εad, with ar, ad vectors in R3,

Dual quaternion:

q̂ = qr + εqd, with qr, qd real quaternions,

where the subscripts “r” and “d” in the previous ex-

pressions stand for the so called real and dual parts of

the dual element respectively. Similar to the standard

quaternion case, we also define two specific sets of dual

quaternions:

Dual vector quaternion:

q̂ = qr + εqd, with, qr0 = qd0 = 0.

Dual unit quaternion:

q̂ = qr + εqd, with, q̂∗ ◦ q̂ = q̂ ◦ q̂∗ = 1,

where the conjugate q̂∗ of a dual quaternion and the

product of “◦” between two dual quaternions are de-

fined in Table 2. Besides, for the convenience of the

reader, this table also illustrates some basic algebraic

rules on dual quaternions. More details and applications

can be found in [31,35,36].

Table 2 Algebra of dual quaternions

Operation Formulae

Conjugation q̂∗ = q∗r + εq∗d
Addition q̂ + λ p̂ = (qr + λpr) + ε(qd + λpd), λ ∈ R

Multiplication q̂ ◦ p̂ = (qr ◦ pr) + ε(qr ◦ pd + qd ◦ pr)
Dot product q̂ · p̂ = (qr · pr) + ε(qr · pd + qd · pr)

Cross product q̂ × p̂ = (qr × pr) + ε(qr × pd + qd × pr)

Note: if q̂ and p̂ are dual vector quaternions, q̂ × p̂ = 1
2

(q̂ ◦ p̂−
p̂ ◦ q̂).

Analogously, a dual vector â is embedded in the

dual quaternion algebra considering v̂ = (0,ar)+ε(0,ad).

Expressions of the form q̂∗◦â◦ q̂ have to be understood

as q̂∗ ◦ v̂◦ q̂. In addition, the symbol d
dε can be also seen

as an operator that formally acts on dual elements,

d

dε
q̂ =

d

dε
(qr + εqd) = qd ,

where we assume that d
dε commutes with ε, that is

ε d
dε = d

dεε = 1, and also, formally, we have d2

dε2 =
d
dε

d
dε ≡ 0.

Finally, let us introduce dual matrices. A dual ma-

trix is an element of the form,

M̂ = Mr +Md ε+Mc
d

dε
,

where Mr, Md and Mc are 3 × 3 real matrices. The

action of M̂ on a dual vector, v̂ = vr + εvd, gives the

dual vector,

M̂v̂ = (Mrvr +Mcvd) + ε (Mrvd +Mdvr).
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It is worth to remark that if we formally multiply

two dual matrices, M̂1 and M̂2, the result is a dual

matrix, but in general, (M̂1M̂2)v̂ 6= M̂1(M̂2v̂), as it

can be easily checked. This fact has implications in the

definition of the inverse of a dual matrix. When it exists,

the inverse of a dual matrix M̂ will be a dual matrix

M̂−1 such that M̂−1(M̂v̂) = M̂(M̂−1v̂) = v̂, but this

does not mean that the formal product we obtained for

M̂−1M̂ would be I = diag(1, 1, 1).

In this paper the dual inertia matrix is used to de-

scribe the main features of the spacecraft such as its

mass and inertia matrix, while forces and torques will

be represented in a compact way by means of dual vec-

tors. The action of the dual matrix on the dual vector

is a concise and simple way to account for both trans-

lational and rotational dynamics of a spacecraft.

3 Problem formulation

In a close SFF configuration orbiting the Earth one

spacecraft is referred to as the chaser and the other one

as the target. Consider the relative motion of two arbi-

trary points on the chaser and target, we first derive the

dynamically coupled relative motion model under the

external perturbing forces and torques. Then, the six-

DOF coupled model describing the relative motion be-

tween two non-CMs feature points is further proposed.

In the development of these models, we need of three

coordinate reference systems defined as shown in Fig. 1.

The Earth-centered inertial (ECI) frame I is a standard

Cartesian right-hand reference frame attached to the

Earth’s center of mass. The chaser body-fixed frame

C is aligned with the principal axis of inertia of the

chaser and attached to its center of mass. The target

body-fixed frame T is similarly defined as C but on the

target spacecraft.

3.1 Dynamically coupled relative motion model

Using the dual quaternion representation, the kinematic

equation of a rigid chaser is governed by[29],

˙̂qc =
1

2
q̂c ◦ Cω̂c, (1)

where q̂c denotes the chaser’s position and orientation

in the inertial frame I, Cω̂c indicates the chaser’s ve-

locity motor expressed in the body-fixed frame C and,

Cω̂c = Cωc + ε(Cvc + Cωc × Crc),

where Cωc,
Cvc, and Crc denote the chaser’s angular

velocity, translational velocity, and position relative to
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Fig. 1 The inertial and the two body-fixed reference frames.

the Earth’s center of mass, respectively. All these values

are expressed in the body-fixed frame C.
The relative orientation and position of the target

with respect to the chaser can be described as,

q̂tc = q̂∗c ◦ q̂t = qtc + ε
1

2
Crtc ◦ qtc ,

where qtc and Crtc stand for the relative orientation

and the relative position vector between the target and

chaser. Similar to (1), the relative kinematic equations

can be expressed by means of the dual quaternion rep-

resentation,

˙̂qtc =
1

2
Cω̂tc ◦ q̂tc , (2)

where Cω̂tc = Cωtc + ε(Cvtc + Crtc × Cωtc) denotes the

relative velocity motor, while Cωtc and Cvtc respectively

represent the relative angular velocity and translational

velocity of the target in the chaser body-fixed frame C.
The following task is to obtain the dual quaternion-

based relative dynamic equations. Before proceeding,

we define the dual inertia matrices of the target and

chaser as M̂a, (a = t, c) [37]:

M̂a = maI3
d

dε
+ εJa, Ja =

Jxx Jxy Jxz
Jyx Jyy Jyz
Jzx Jzy Jzz


a

, (3)

where ma is the mass of the rigid spacecraft, Ja is the

matrix of the moments of inertia of the rigid spacecraft

expressed in the body-fixed frame, and I3 is a 3 × 3

identity matrix. Moreover, we define the inverse of these

dual inertia matrices as

M̂−1
a = J−1a

d

dε
+ ε

1

ma
I3 .



Rotation-Translation Coupling Analysis on Perturbed Spacecraft Relative Translational Motion 5

The dual momenta of the target and chaser about

their CMs, expressed in the corresponding body-fixed

frame, are

T ĥt = M̂t
T ω̂t,

Cĥc = M̂c
Cω̂c. (4)

Differentiating (4) in their corresponding body-fixed

frames T and C, the absolute dynamic equations for the

target and chaser are

T ˙̂
ht =

˙̂
M t

T ω̂t+M̂t
T ˙̂ωt+

T ω̂t×(M̂t
T ω̂t) = T F̂t, (5)

C ˙̂
hc =

˙̂
M c

Cω̂c +M̂c
C ˙̂ωc + Cω̂c× (M̂c

Cω̂c) = CF̂c. (6)

where T F̂t = T ft + ε T τt and CF̂c = Cfc + ε Cτc respec-

tively indicate the total external dual force exerting on

the target and chaser. Note that these total external

dual forces F contain two parts corresponding to the

total external force f and torque τ .

In this study, we assume that the spacecraft mass

and inertia matrix are constant, this is,
˙̂
M t =

˙̂
M c = 0.

Then, (5) and (6) can be rewritten as

T ˙̂ωt = −M̂−1
t

(
T ω̂t × (M̂t

T ω̂t)
)

+ M̂−1
t
T F̂t, (7)

C ˙̂ωc = −M̂−1
c

(
Cω̂c × (M̂c

Cω̂c)
)

+ M̂−1
c
CF̂c. (8)

In addition, Cω̂tc can be also computed by the sub-

traction of the target’s and chaser’s absolute velocity

motor, that is

Cω̂tc = q̂tc ◦ T ω̂t ◦ q̂∗tc − Cω̂c . (9)

Differentiating (9) in the chaser body-fixed frame

C and using (2), one can obtain the first-order time

derivative of the relative velocity motor,

C ˙̂ωtc = q̂tc◦T ˙̂ωt◦q̂∗tc+Cω̂tc×(q̂tc◦T ω̂t◦q̂∗tc)−C ˙̂ωc . (10)

Substituting (7), (8), and (9) into (10), the first-

order time derivative of the relative velocity motor is

further given by

C ˙̂ωtc = q̂tc ◦
[
−M̂−1

t

(
q̂∗tc ◦ (Cω̂tc + Cω̂c) ◦ q̂tc

)
×M̂t

(
q̂∗tc ◦ (Cω̂tc + Cω̂c) ◦ q̂tc

)]
◦ q̂∗tc

+Cω̂tc × Cω̂c + M̂−1
c

(
Cω̂c × (M̂c

Cω̂c)
)

+q̂tc ◦ M̂−1
t
T F̂t ◦ q̂∗tc − M̂−1

c
CF̂c .

(11)

Note that (2) and (11) give us the dynamically cou-

pled relative motion model by means of the dual quater-

nion representation. In particular, we can split these

two formulae into their real parts, capturing the ro-

tational motion, and their dual parts, describing the

translational motion. Proceeding this way, (2) that cap-

tures the kinematic part giving the first time derivatives

of the spacecraft relative position and attitude, is sim-

ply written as

C ṙtc = Cvtc , (12)

q̇tc =
1

2
Cωtc ◦ qtc . (13)

While (11), containing the rotational and transla-

tional dynamics, splits into

Cω̇tc = qtc ◦
[
− J−1t

(
q∗tc ◦ (Cωtc + Cωc) ◦ qtc

)
×Jt

(
q∗tc ◦ (Cωtc + Cωc) ◦ qtc

) ]
◦ q∗tc

+Cωtc × Cωc + J−1c

[Cωc × (Jc
Cωc)

]
+qtc ◦ (J−1t

T τt) ◦ q∗tc − J−1c
Cτc ,

(14)

Cv̇tc = 2 Cvtc × Cωc − Cωc × (Cωc × Crtc)
+Crtc × J−1c

(Cτc − Cωc × (Jc
Cωc)

)
−
Cfc
mc

+ qtc ◦
T ft
mt
◦ q∗tc .

(15)

It is clear that (14) is a function of the external

torques T τt and Cτc. Since q̇tc = 1
2
Cωtc ◦ qtc, thus (15)

explicitly depends on qtc and implicitly on the external

torques.

The dynamically coupled relative motion model pro-

posed herein describes the relative motion between the

CMs of two spacecraft and consists of a set of 13 dimen-

sional state vector [qtc,
C r̄tc,

Cω̄tc,
Cv̄tc]. As for a close

SFF configuration in a low Earth orbit, the total exter-

nal dual force considered in this paper is decomposed

as

T F̂t = T ft + ε T τt = (T ft,g + T ft,P ) + ε T τt,P ,

CF̂c = Cfc + ε Cτc = (Cfc,g + Cfc,P ) + ε Cτc,P ,

where T ft,g and Cfc,g respectively indicate the Earth’s

spherical central gravitational force acting on the target

and chaser, T ft,P and Cfc,P denote perturbing forces,
T τt,P and Cτc,P represent the total external torques.

Let Ara = [xa , ya , za]T , (a = t, c) be the position

vector of the target, or of the chaser, relative to the

Earth’s center of mass expressed in the corresponding

body-fixed frame A (if a = t, then A = T ; otherwise,

A = C).
The Earth’s spherical central gravitational force, in-

cluding its gravity gradient due to the non-infinitesimal

size of the spacecraft, is given by [26],

Afa,g = −µma

r3a

{
I3 +

3

ma r2a

[
Ja +

1

2

(
tr(Ja)

−5Ar̃a Ja
Ar̃a

)
I3

]}
Ara ,

where µ = 3.986004418×1014m3/s2 is the Earth’s grav-

itational parameter, ra indicates the Euclidean norm of
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the position vector Ara and Ar̃a = Ara/ra is its unit

vector. Besides, using the chaser attitude quaternion qc
and the relative attitude quaternion qtc, the position

quaternion of the target and chaser can be expressed in

the I frame ( Ira = [0, x, y, z]T ) as

Irc = qc ◦ Crc ◦ q∗c , Irt = qc ◦ (qtc ◦ T rt ◦ q∗tc) ◦ q∗c .

The total perturbing force Ifa,P we consider here in-

duced by Earth oblateness J2, and solar radiation pres-

sure (SRP) are computed by means of the sum of,

Ifa,J2 = −3

2
J2
µR2
⊕

r4a



x

ra
− 5

xz2

r3a
y

ra
− 5

yz2

r3a
3z

ra
− 5

z3

r3a


,

where J2 = 0.0010826267 is the Earth’s dominant zonal

gravity term and R⊕ = 6378.137 km is the Earth’s

equatorial radius [26], and,

Ifa,srp = −P 1AU2

r2ss

A

m
cos(α) [(1− ε)ns + 2ε cos(α)n] ,

where P = 4.56 × 10−6 N/m2 is the SRP force at a

distance of 1 AU, rss is the distance between the space-

craft and the Sun, A is the spacecraft’s cross-sectional

area, m is its mass, and ε = 0.3 is the reflectivity. The

unit vectors ns and n indicate the Sun direction and

the normal direction of the spacecraft cross sectional

area A, respectively, thus cos(α) = n · ns [27].

In addition, the total torque induced by Earth’s

gravity-gradient and SRP can be expressed in the body-

fixed frameA as Aτa,P = Aτa,5g+Aτa,srp. The detailed

formulae of the Earth’s gravity-gradient torque Aτa,5g

and SRP torque Aτa,srp are

Aτa,5g =
3µ

r5a

Ara × Ja
Ara ,

Aτa,srp = Ara,srp × Afa,srp ,

where Ara,srp indicates the position vector from the

CM to the point where the SRP is applied.

3.2 Six-DOF coupled relative motion model

Consider the relative translational motion between two

feature points respectively located on the target and

chaser, as shown in Fig. 1. Assume ρit be an arbitrary

point on the target and its position vector in the target

body-fixed frame T is denoted as T ρit = [ρitx, ρ
i
ty, ρ

i
tz]T .

Analogously, let ρjc be an arbitrary point on the chaser,

with its position vector in the chaser body-fixed frame

C denoted by Cρjc = [ρjcx, ρ
j
cy, ρ

j
cz]T . As a particular

case, the position vectors of the CMs of the target and

chaser can be represented by T ρ0t = [0, 0, 0]T , Cρ0c =

[0, 0, 0]T . Clearly, one can obtain the relative position

vector between two arbitrary points ρit and ρjc as

rijtc = rtc + ρit − ρjc , (16)

where rtc indicates the relative position between two

CMs. Moreover, since the target and chaser are re-

garded as rigid-body spacecraft, thus

dρit
dt
|T = 0,

dρjc
dt
|C= 0, (17)

where the notations d
dt |T and d

dt |C stand for the time

derivatives computed in the frames T and C.
Then, using (12) and (17), the first and second order

time derivatives of rijtc in the frame C are given as

Cvijtc = Cvtc + Cωtc ×
(
qtc ◦ T ρit ◦ q∗tc

)
, (18)

Cv̇ijtc = Cv̇tc + Cω̇tc ×
(
qtc ◦ T ρit ◦ q∗tc

)
+Cωtc ×

(Cωtc × (qtc ◦ T ρit ◦ q∗tc)
)
.

(19)

Finally, substituting (15), (16), and (18) into (19),

the relative translational motion between two arbitrary

points on the target and chaser is captured by

Cv̇ijtc =(Crijtc − qtc ◦ T ρit ◦ q∗tc + Cρjc)× J−1c (Cτc

−Cωc × Jc
Cωc) + Cω̇tc × (qtc ◦ T ρit ◦ q∗tc)

+2
[
Cvijtc − Cωtc × (qtc ◦ T ρit ◦ q∗tc)

]
× Cωc

−Cωc × [Cωc × (Crijtc − qtc ◦ T ρit ◦ q∗tc+
Cρjc)] + Cωtc ×

(Cωtc × (qtc ◦ T ρit ◦ q∗tc)
)

−
Cfc
mc

+ qtc ◦
T ft
mt
◦ q∗tc .

(20)

It is worth to mention that, in order to compute

the external dual force acting on the target, one should

first compute its position vector expressed in frame T .

Then, using (16), one obtains

T rt = q∗tc ◦ (Crc + Crijtc + Cρjc) ◦ qtc − T ρit .

As a result of the preceding discussions, we have

obtained a six-DOF relative motion model of two arbi-

trary feature points located on the chaser and target,

which consists of equations (13), (14), (18), (20) with a

set of 13 dimensional state vector [qtc,
C r̄ijtc,

Cω̄tc,
Cv̄ijtc].

It is clear that (18) and (20) do not use the regular

angular velocity and acceleration of the local-vertical-

local-horizontal reference frame fixed to the chaser’s

CM and generalizes results based on Keplerian orbits.

Moreover, it allows the analysis of both kinematic and
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dynamic coupling effects on the relative translation un-

der the consideration of arbitrary external perturba-

tions. But of course, we need to include the chaser’s

equations of motion (1) and (8) for the propagation of

the perturbed chaser orbit. As an illustrative example,

we consider J2 in the following simulations to validate

its effectiveness in the perturbed reference orbit case.

4 Simulations

Assuming two close spacecraft orbiting the Earth, the

purpose of this section is to validate the feasibility of the

proposed model in order to analize both the kinematic

and dynamic coupling effects on the relative transla-

tional motion, as well as the impact of orbital pertur-

bations. We study the kinematic coupling effect induced

by the displacements of two non-CM feature points in

both the Keplerian and perturbed orbit cases.

The dynamic coupling effect induced by forces or

torques depends on the attitude motion of the space-

craft. For brevity, here we only consider the SRP ac-

celeration and its associated torque, other forces and

torques, also responsible of the dynamic coupling ef-

fect, could be managed in a similar way. We note that

the dynamic coupling effect induced by the J2 pertur-

bation is tiny and negligible, therefore, the real impact

of the J2 perturbation on the relative translational mo-

tion stems from the differential dynamics, and in what

follows, it will referred as the J2 perturbation effect.

We carry out four numerical simulations. The first

one considers a SFF flying in Keplerian orbits, and it is

devoted to analyze the kinematic coupling effect on the

relative translational motion due to the displacements

of the feature points. The second one analyzes the kine-

matic coupling effect in the J2 perturbed orbital case,

which has been rarely investigated. The third numeri-

cal simulation compares the kinematic coupling effect

with the J2 perturbation effect induced by the differ-

ential dynamics. Finally, the last simulation considers

the dynamic coupling effect on the relative translational

motion induced by the SRP, whose magnitude depends

on the spacecraft attitude, and we also include a com-

parative with the J2 perturbation effect.

4.1 Kinematic coupling effect in the Keplerian case

In this case study we assume that the chaser operates

on an ideal Keplerian elliptic orbit with semi-major

axis ac = 7170 km, eccentricity ec = 0.05, inclina-

tion ic = 15 deg, right ascension of the ascending node

Ωc = 0 deg, argument of perigee ωc = 340 deg, and

true anomaly θc = 20 deg. The chaser’s initial attitude

quaternion is qc(0) = [1, 0, 0, 0]T . Then, converting the

selected orbital elements into the chaser position and

velocity vectors, we get: Crc = [6831117.5, 0, 0]T m,
Cvc = [127.67, 446.17, 2022.97]T m/s.

To achieve a close SFF orbiting the Earth, we de-

rive the initial relative position and velocity between

the CMs of the target and chaser by means of the energy

matching condition [38], i.e. Crtc = [40, 23.11, 68.31]T m,
Cvtc = [0, −0.0857, −0.0230]T m/s. The initial relative

attitude quaternion is chosen as qtc = [
√
2
2 ,
√
2
2 , 0, 0]T .

Moreover, the inertia tensors for the target and chaser

are assumed to be: Jt = Jc = diag[500; 600; 700] kg·m2.

With the purpose of investigating the kinematic cou-

pling effect on the spacecraft relative translational mo-

tion, we consider four different scenarios choosing dif-

ferent initial values of the chaser angular, and rela-

tive angular, velocities. The two selected initial angu-

lar velocities of the chaser are : Cωc = [0, 0, 0.0010]T

rad/s, (small initial chaser angular velocity), and Cωc =

[0, 0.0104, 0.0104]T rad/s, (large initial chaser angu-

lar velocity). The two selected initial relative angu-

lar velocities are: Cωtc = [0, 0.0014, −0.0008]T rad/s,

(small initial relative angular velocity), and Cωtc =

[0, 0.0140, −0.0081]T rad/s, (large initial relative an-

gular velocity). In what follows, we denote the relative

position between the CMs of the target and chaser by

r00tc instead of rtc.

In this case study no external perturbations are con-

sidered. We employ the proposed nonlinear coupled rel-

ative motion model to simulate the translational motion

between two feature points on the target: T ρit, i = 0, 1,

and two feature points on the chaser: Cρjc, j = 0, 1.

The corresponding position vectors of these four fea-

ture points are T ρ0t = [0, 0, 0], T ρ1t = [−2, 2, −2] m

and Cρ0c = [0, 0, 0], Cρ1c = [−2, 2, 2] m. We compute

the initial relative position and velocity vectors between

the feature points using (16) and (18), respectively.

Figure 2 displays four SFF relative motion trajec-

tories, Ir00tc , Ir10tc , Ir01tc , and Ir11tc , in the inertial frame

I for one orbital period, and for sake of brevity, we

are going to omit the pre-superscript I in the follow-

ing discussions. The differences among the four plots

are the initial conditions for chaser angular, and rela-

tive angular, velocities. The results show that the rel-

ative motion between two non-CM feature points on

the target and chaser does not coincide with the one

between their CMs. Furthermore, it also reveals that

remarkable harmonic oscillations are generated due to

the kinematic coupling effect. Figure 3 displays the his-

tory of relative position deviations, i.e. δr10tc = r10tc −r00tc ,

δr01tc = r01tc − r00tc , δr11tc = r11tc − r00tc . The oscillation fre-

quencies of the relative position deviations in Figs. 3(b),
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Fig. 2 Relative motion trajectories in the Keplerian case.

3(c), and 3(d) are higher than that in Fig. 3(a) due to

the faster chaser angular, or relative angular, velocities.

4.2 Kinematic coupling effect in the J2 perturbed case

In this case study we show the effectiveness of the pro-

posed coupled relative motion model to analize the kine-

matic coupling effect on the relative translation, when

a SFF operates in perturbed orbits. Without loss of

generality, we consider the chaser and target in non-

Keplerian J2 perturbed orbits. The remaining simula-

tion conditions and parameters coincide with the ones

of the previous Keplerian case.

Figure 4 exhibits the evolutions of four SFF trajec-

tories: J2
r00tc , J2

r10tc , J2
r01tc , and J2

r11tc under different ini-

tial chaser angular, and relative angular, velocities for

one orbital period. Figure 5 displays the deviations in

the relative positions for the non-CM feature points, de-

fined as J2
δr10tc = J2

r10tc − J2
r00tc , J2

δr01tc = J2
r01tc − J2

r00tc ,

J2δr
11
tc = J2r

11
tc −J2r

00
tc . Comparisons between Fig. 2 and

Fig. 4, Fig. 3 and Fig. 5 show that the kinematic cou-
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Fig. 3 Relative position deviations between r10tc and r00tc , r01tc
and r00tc , r11tc and r00tc in the Keplerian case.

pling effect on the spacecraft relative translation motion
in the J2 perturbed case is similar to the one of the Kep-

lerian case. Remarkable harmonic oscillations still exist

in Figs. 5(b), 5(c) and 5(d), and with a higher oscilla-

tion frequencies than those in Fig. 5(a). It is worth to

mention that these numerical simulations show that the

proposed coupled relative motion model is effective in

the perturbed environment. Essentially, the proposed

model generalizes the work in [5,6], that is, it enables

to analyze the kinematic coupling effect in a general

manner.

4.3 Comparison between the kinematic coupling and

the J2 perturbation effects

The aim of this case study is to compare the magni-

tudes of the kinematic coupling effect and the J2 per-

turbation effect on the relative translation motion be-

tween two arbitrary feature points. Again, four relative

translational trajectories (r00tc , J2
r00tc , r11tc , and J2

r11tc )
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Fig. 4 Relative motion trajectories in the J2 perturbed case.

are propagated in two main scenarios, including, small

and large, initial chaser angular, and relative angular,

velocities. Note that r00tc and J2
r00tc indicate the propa-

gation of the relative position between the CMs of the

target and chaser, in the Keplerian orbit case and in

the J2 perturbed orbit case, respectively. Analogously,

r11tc and J2
r11tc indicate the propagation of relative mo-

tion between ρ1t and ρ1c in their respective cases. Note

that the difference between r11tc and r00tc indicates the

kinematic coupling effect, i.e., ∆r11tc = r11tc − r00tc . The

difference between J2
r00tc and r00tc denotes the J2 pertur-

bation effect, ∆J2r
00
tc = J2r

00
tc −r00tc . Besides, the devia-

tion ∆J2
r11tc = J2

r11tc −r00tc represents the total behavior

of both the kinematic coupling and J2 perturbation ef-

fects.

In this case study four relative translational trajec-

tories r00tc , J2
r00tc , r11tc , and J2

r11tc are propagated for 10

hours. For the sake of brevity, Figs. 6(a) and 7(a) merely

show the relative motion trajectories over one orbital

period. Figures 6(b) and 7(b) show the time history of

∆r11tc , indicating the kinematic coupling effect on the
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Fig. 5 Relative position deviations between J2
r10tc and J2

r00tc ,

J2
r01tc and J2

r00tc , J2
r11tc and J2

r00tc in the J2 perturbed case.

relative translation in the Keplerian orbital case. It is

apparent that the kinematic coupling effect is bounded.

Similar to the conclusions obtained in the previous two

case studies, a comparison between Figs. 6(b) and 7(b)

reveals that a large initial chaser angular velocity and a

large initial relative angular velocity lead to remarkable

harmonic oscillations. Figures 6(c) and 7(c) describe the

time history of∆J2
r00tc , which merely exhibit the J2 per-

turbation effect on the relative translation between the

CMs of two spacecraft. The kinematic coupling effect

is eliminated through fixing the feature points on the

CMs of the target and chaser. It is worth to mention

that Figs. 6(c) and 7(c) are the same, showing that the

J2 perturbation effect is independent on the rotations

of the target and chaser. Besides, the J2 perturbation

effect increases gradually with time. The comparisons

between Figs. 6(b) and 6(c), Figs. 7(b) and 7(c) show

that the kinematic coupling effect is more dominant in

the initial propagation phase, while the J2 perturbation

effect is more significant in long operation times (typ-
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Fig. 6 Analyses of both kinematic coupling and J2 pertur-
bation effects on the relative translational motion for small
initial chaser angular velocity Cωc and relative angular veloc-
ity Cωtc.

ical, for instance, during a long-time tight SFF mis-

sion). Therefore, the J2 perturbation effect generally

can not be omitted as compared to the kinematic cou-

pling effect. Finally, Figs. 6(d) and 7(d) show the total

behavior of both the kinematic coupling and J2 pertur-

bation effects on the relative translation. Essentially, it

is the superposition of both relative position deviations

respectively induced by the kinematic coupling feature

and the J2 perturbation.

4.4 Analysis of the dynamic coupling effect

In this last case study, we address the dynamic cou-

pling effect on the relative translational motion using

the proposed coupled relative motion model and we also

discuss the results comparing with the J2 perturbation

effect. As an illustrative example, we only consider the

dynamic coupling effect induced by the SRP with the

-100
50

-50

0

25 150

z 
(m

)

50

y (m)

0 100

x (m)

100

-25 50
-50 0

r00tc
r11tc
J2r

00
tc

J2r
11
tc

(a) relative trajectories

0 1 2 3 4 5 6 7 8 9 10
Time (h)

-15

-10

-5

0

5

10

15

∆
r1

1 tc
(m

)

∆x ∆y ∆z

(b) ∆r11
tc

=r11
tc
−r00

tc

0 1 2 3 4 5 6 7 8 9 10
Time (h)

-15

-10

-5

0

5

10

15

∆
J
2
r t

c
(m

)

∆x ∆y ∆z

(c) ∆J2
r00
tc

=J2
r00
tc
−r00

tc

0 1 2 3 4 5 6 7 8 9 10
Time (h)

-15

-10

-5

0

5

10

15

∆
J
2
r1

1 tc
(m

)

∆x ∆y ∆z

(d) ∆J2
r11
tc

=J2
r11
tc
−r00

tc

Fig. 7 Analyses of both kinematic coupling and J2 pertur-
bation effects on the relative translational motion for large
initial chaser angular velocity Cωc and relative angular ve-
locity Cωtc.

area- to-mass ratios of the chaser and target taken as

0.01 m2/kg. Without loss of generality, we take into ac-

count two representative scenarios by means of assum-

ing whether the spacecraft is rotating in the inertial

frame or not. In the first scenario, the attitude of both

the chaser and target are fixed in the inertial frame, and

the relative position vector between their CMs is de-

noted as fr
00
tc . In the second scenario, the initial chaser

angular, and relative angular velocity vectors are re-

spectively set to Cωc = [0, 0.0104, 0.0104]T rad/s, and
Cωtc = [0, 0.0140, −0.0081]T rad/s. In this scenario, we

denote the relative position vector between the CMs

of the chaser and target by cr
00
tc . Apart from this, all

the other simulation conditions and parameters coin-

cide with the ones adopted in the previous Keplerian

case.

In Fig. 8 we exhibit the evolutions of two SFF rela-

tive trajectories cr
00
tc and fr

00
tc , as well as their deviation

∆srpr
00
tc = cr

00
tc − fr

00
tc . The history of this deviation
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Fig. 8 Relative trajectories and position deviation between

cr00tc and fr00tc .

vector indicates the dynamic coupling effect on the rel-

ative translational motion. Apparently, it is unbounded

and increases gradually with time. Again, when com-

pared with the bounded kinematic coupling effect, the

dynamic coupling effect becomes significant in a long-

time tight SFF mission.

The comparison between the dynamic coupling ef-

fect and J2 perturbation effect has been also investi-

gated. We display the propagations of the four relative

translational trajectories, fr
00
tc , cr

00
tc , f,J2r

00
tc and c,J2r

00
tc

in Fig. 9, where the symbols fr
00
tc and cr

00
tc denote the

relative trajectories between the CMs of the target and

chaser with fixed, and time-varying, attitudes. Analo-

gously, f,J2
r00tc and c,J2

r00tc indicate the relative trajecto-

ries subjected to the J2 perturbation. Note that the dif-

ferences∆srpr
00
tc = cr

00
tc−fr

00
tc ,∆J2r

00
tc = f,J2r

00
tc−fr

00
tc ,

and ∆srp,J2
r00tc = c,J2

r00tc − fr
00
tc show the dynamic cou-

pling effect induced by the SRP, the J2 perturbation

effect, and the total behavior of both the dynamic cou-

pling effect and the J2 perturbation. We show the his-

tories of ∆srpr
00
tc , ∆J2

r00tc and ∆srp,J2
r00tc in Figs. 9(b)-

9(d). Fig. 9(b) shows the dynamic coupling effect on

the relative translation. In contrast to the bounded

kinematic coupling, the dynamic coupling gradually in-

creases with time. Fig. 9(c) displays the time history of

∆J2r
00
tc , exhibiting the accumulative behavior of the J2

perturbation effect on the relative translational motion.

The total superposition of both the dynamic coupling

effect induced by the SRP and the J2 perturbation ef-

fect is illustrated in Fig. 9(d), which exhibits character-

istics that increase over time.
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Fig. 9 Analyses of both dynamic coupling and J2 perturba-
tion effects on the relative translational motion.

5 Conclusions

This paper proposes a novel six-degrees-of-freedom cou-

pled relative motion model without the attitude syn-

chronization and the Keplerian reference orbit assump-

tions. This strength makes the proposed model effec-

tive to simultaneously analyze, under the influence of

orbital perturbations, both the kinematic and dynamic

coupling effects on the relative translational motion be-

tween arbitrary feature points, as well as to compare re-

sults with the perturbation effect. All these effects are

illustrated by the numerical propagation of a close SFF

mission with different simulation conditions.

It has been demonstrated that the strength of the

kinematic coupling effect depends on the magnitudes of

the chaser angular velocity and the relative angular ve-

locity. The kinematic coupling effect is always present,

even in short operation times, but bounded. On the

contrary, the dynamic coupling effect induced by the

solar radiation pressure and the perturbation effect in-
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duced by J2 are not bounded. They are less dominant

in the initial propagation phase, but increase gradually

over time and become more significant. Therefore, for

a space mission in short operation times, such as in or-

bital rendezvous and docking, the kinematic coupling

effect is dominant, while the dynamic coupling effect

and J2 perturbation effect is dominant for long-time

spacecraft formation flying missions.
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Computation of Analytical Solutions of the Relative Mo-
tion about a Keplerian Elliptic Orbit, Acta Astronautica,
81, 186–199, 2012.

11. Dang, Z., New state transition matrix for relative mo-
tion on an arbitrary keplerian orbit, Journal of guidance,
control, and dynamics, 40 (11), 2917–2927, 2017.

12. Chen, W., Jing, W., Dynamics equations of relative mo-
tion around an oblate earth with air drag, Journal of
aerospace engineering, 25 (1), 21–31, 2012.

13. Kasdin, N. J., Gurfil, P., Kolemen, E., Canonical mod-
elling of relative spacecraft motion via epicyclic orbital
elements, Celestial mechanics and dynamical astronomy,
92 (4), 337–370, 2005.

14. Lee, D., Kolemen, E., Spacecraft coupled tracking ma-
neuver using sliding mode control with input saturation,
Journal of Aerospace Engineering, 28 (5), 2015.

15. Wang, J., Liang, H., Sun, Z., Zhang, S., Liu, M., Finite-
time control for spacecraft formation with dual-number-
based description, Journal of guidance, control, and dynam-
ics 35 (3), 950–962, 2012.

16. Gui, H., Vukovich, G., Dual-quaternion-based adaptive
motion tracking of spacecraft with reduced control effort,
Nonlinear Dynamics, 83 (1), 597–614, 2016.

17. Filipe, N., Tsiotras, P., Adaptive position and attitude-
tracking controller for satellite proximity operations using
dual quaternions, Journal of guidance, control, and dynam-
ics 38 (4), 566–577, 2014.

18. Filipe, N., Tsiotras, P., Simultaneous position and atti-
tude control without linear and angular velocity feedback
using dual quaternions, 2013 American control conference,
IEEE,4808–4813,2013.

19. Tsiotras, P., Valverde, A., Dual Quaternions as a Tool for
Modeling, Control, and Estimation for Spacecraft Robotic
Servicing Missions, The Journal of the Astronautical Sci-
ences, 67 (2), 595–629, 2020.

20. Aspragathos, N. A., Dimitros, J. K., A comparative study
of three methods for robot kinematics, IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics),
28 (2), 135–145, 1998.

21. Wang, X., Zhu, H., On the comparisons of unit dual
quaternion and homogeneous transformation matrix, Ad-
vances in Applied Clifford Algebras, 24 (1), 213–229, 2014.

22. Wang, Y., Xu S., On the nonlinear stability of relative
equilibria of the full spacecraft dynamics around an aster-
oid, Nonlinear dynamics, 78 (1), 1–13, 2014.

23. Gao, C., Yuan, J., Zhang, J., Guo, L., Propellant-efficient
station-keeping using a hybrid sail in the Earth–Moon sys-
tem, Nonlinear dynamics, 95 (2), 1323–1346, 2019.

24. Gong, S., Baoyin, H., Li, J., Coupled attitude-orbit dy-
namics and control for displaced solar orbits, Acta astro-
nautica 65 (5-6), 730–737, 2009.

25. Kumar, B. S., Ng, A., Yoshihara, K., De Ruiter, A., Dif-
ferential drag as a means of spacecraft formation control,
IEEE transactions on aerospace and electronic systems,
47 (2), 1125–1135, 2011.

26. Junkins, J. L., Schaub, H., Analytical mechanics of space
systems, Second edition, AIAA education, 2003.

27. Montenbruck, O., Gill, E., Satellite orbits: models, meth-
ods, and applications, Chapter 3, Springer science and busi-
ness media, 2012.

28. Shuster, M. D., A survey of attitude representations,
Navigation 8 (9), 439–517, 1993.

29. Wu, Y., Hu, X., Hu, D., Li, T., Lian, J., Strapdown in-
ertial navigation system algorithms based on dual quater-
nions, IEEE transactions on aerospace and electronic sys-
tems 41 (1), 110–132, 2005.



Rotation-Translation Coupling Analysis on Perturbed Spacecraft Relative Translational Motion 13

30. Clifford,: A preliminary sketch of biquaternions, Proceed-
ings of the London mathematical society, s1-4 (1), 381–395,
1873.

31. Han, D. P., Wei, Q., Li, Z. X., Kinematic control of free
rigid bodies using dual quaternions, International journal
of automation and computing, 5 (3), 319–324, 2008.

32. Hamilton, R. W., On quaternions or on a new system of
imaginaries in algebra, The London, Edinburgh, and Dublin
philosophical magazine and journal of science (1844-1850).

33. Evans, D. J., On the representatation of orientation
space, Molecular physics, 34 (2), 317–325, 1977.

34. Bhat, S. P., Bernstein, D. S., A topological obstruction
to continuous global stabilization of rotational motion and
the unwinding phenomenon, Systems and control letters,
39 (1), 63–70, 2000.

35. Valverde, A., Tsiotras, P., Dual Quaternion Framework
for Modeling of Spacecraft-Mounted Multibody Robotic
Systems, Frontiers in Robotics and AI, 5, 128, 2018.

36. Valverde, A., Dynamic modeling and control of spacecraft
robotic systems using dual quaternions, Ph.D. dissertation,
Dept. Aeros., Georgia Inst. Technol., Georgia, GA, USA,
2018.

37. Brodsky, V., Shoham, M., Dual numbers representation
of rigid body dynamics, Mechanism and machine theory,
34 (5), 693–718, 1999.

38. Gurfil, P., Relative motion between elliptic orbits: Gener-
alized boundedness conditions and optimal formationkeep-
ing, Journal of guidance control and dynamics, 28 (4), 761–
767, 2012.


