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mineral, deposited from an oxidizing low-T hydrothermal fluid at the waning stage of
selenide-mineral formation at El Dragόn, at a fSe2/fS2 ratio greater than unity and in
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Grundmann, in recognition of his pioneering work on the El Dragόn mine.
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Abstract: Grundmannite, ideally CuBiSe2, is a new mineral species from the El Dragόn mine, 15 

Department of Potosí, Bolivia. It is either filling small shrinkage cracks or interstices in brecciated 16 

kruta’ite−penroseite solid solutions or forms independent grains in the matrix. Grain size of the 17 

anhedral to subhedral crystals is usually in the range 50−150 µm, but may approach 250 µm. 18 

Grundmannite is usually intergrown with watkinsonite and clausthalite; other minerals occasionally 19 

being in intimate grain-boundary contact comprise quartz, dolomite, native gold, eskebornite, 20 

umangite, klockmannite, Co-rich penroseite, and three unnamed phases of the Cu−Bi−Hg−Pb−Se 21 

system, among which is an as-yet uncharacterizedspecies with the ideal composition 22 

Cu4Pb2HgBi4Se11. Eldragόnite and petrovicite rarely precipitated in the neighborhood of CuBiSe2. 23 

Grundmannite is non-fluorescent, black and opaque with a metallic luster and black streak. It is brittle, 24 

with an irregular fracture and no obvious cleavage and parting. The VHN20 values range from 45 to 61 25 

(mean 53) kg mm−2, which equals to a Mohs hardness of 2 to 2½. In plane-polarized incident light, 26 

grundmannite is weakly bireflectant and weakly pleochroic, from cream to light grey, and shows no 27 

internal reflections. Between crossed polars, grundmannite is distinctly anisotropic, with light brown 28 

to brown rotation tints. The reflectances in air for the COM standard wavelengths are: 41.0−43.4 (470 29 

nm), 41.8−45.1 (546 nm), 42.1−45.7 (589 nm), and 42.5−46.2 (650 nm). Electron-microprobe 30 
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analyses yielded a mean composition Cu 14.88, Pb 1.23, Hg 007, Ni 0.05, Bi 44.90, Se 38.92, total 31 

100.05 wt.%. The mean empirical formula, normalized to 4 atoms per formula unit (apfu), is 32 

Cu0.99(Bi0.91Pb0.02)∑0.93Se2.08 (n = 19). The ideal formula is CuBiSe2, which requires Cu 14.76, Bi 48.55 33 

and Se 36.69 wt%. Grundmannite is orthorhombic, space group Pnma, with a 6.6362(5), b 4.2581(3), 34 

c 15.3691(9) Å, V 434.29(5) Å3, and Z = 4.  Density calculated on the basis of the mean chemical 35 

composition and unit-cell parameters derived from the single-crystal X-ray study is 6.582 g cm−3. The 36 

five strongest X-ray powder-diffraction lines [d in Å (I/I0) (hkl)] are: 3.4901 (50) (111), 3.3180 (70) 37 

(200), 3.2746 (100) (013), 2.4923 (45) (015), and 2.3307 (50) (213). The crystal structure of 38 

grundmannite is topologically identical to that of emplectite, CuBiS2, with the two independent sulfur 39 

positions occupied by Se, thus being the Se-analogue of emplectite. In the structure, Bi forms BiSe3 40 

trigonal pyramids (with two additional longer distances) and Cu nearly regular CuSe4 tetrahedra. 41 

Grundmannite is a primary mineral, deposited from an oxidizing low-T hydrothermal fluid at the 42 

waning stage of selenide-mineral formation at El Dragόn, at a fSe2/fS2 ratio greater than unity and in 43 

the presence of hematite, conditions typically prevailing during the formation of telethermal vein-type 44 

selenide deposits. The mineral was named after Günter Grundmann, in recognition of his pioneering 45 

work on the El Dragόn mine.  46 

Key-words: grundmannite; new mineral species; chemical composition, crystal structure; selenide; 47 

bismuth; copper; selenium; Cu−Pb−Hg−Bi−Se system; Cu4Pb2HgBi4Se11; El Dragόn; Bolivia 48 

 49 

1. Introduction 50 

In the Andes of South America, the province of La Rioja in Argentina hosts one of the most 51 

important selenium mineralizations on Earth (e.g., Paar et al., 2012, and references therein). 52 

The state of Bolivia is well known for two minor, but scientifically interesting selenide 53 

occurrences: Pacajake, district of Hiaco de Charcas, and El Dragόn, Province of Quijarro, 54 

both in the Department of Potosí. The geology and ore mineralization of the El Dragόn mine 55 

was first explored in detail by Grundmann et al. (1990); it subsequently received further 56 

attention as the type locality of eldragonite, Cu6BiSe4(Se2), and two unnamed species of the 57 

Cu−Hg−Pb−Bi−Se system (Paar et al., 2012), and the description of the new secondary 58 

Pb−Bi−Cu selenite favreauite, PbBiCu6O4(SeO3)4(OH) ∙ H2O (Mills et al., 2014).  59 

A renewed comprehensive study of a large number of ore-bearing samples from El 60 

Dragόn collected during two field campaigns in 1987 and 1988 by a research team from the 61 

Technische Universität München, Germany, revealed the presence of another Cu−Bi sulfosalt 62 

with the composition CuBiSe2, constituting the Se-analogue of emplectite, CuBiS2. The 63 

description of this new selenium mineral, grundmannite, forms the subject of this paper. The 64 
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natural existence of a mineral of the composition CuBiSe2 was first implied from quantitative 65 

microprobe data of unknown species present in the complex selenium mineralization at 66 

Altenberg a.d.Rax (Steiermark, Austria), but neither compositional nor structural data were 67 

provided (Niedermayr et al., 1997).   68 

The new species grundmannite and its name have been approved by the Commission 69 

on New Minerals, Nomenclature and Classification (CNMNC) of the IMA, proposal 70 

2015−038. The holotype specimen, which is the section from which the grain used for crystal-71 

structure determination was obtained, is deposited in the collections of the Natural History 72 

Museum, London, catalogue number BM 2015, 33. Cotype material, consisting of a 73 

grundmannite-bearing section, is housed within the Mineralogical States Collection Munich 74 

(Mineralogische Staatssammlung München, Museum “Reich der Kristalle”), under the 75 

inventory number MSM 73584. The mineral name is in honour of Günter Grundmann (b. 76 

1947), in recognition of his pioneering work on the El Dragon mine (e.g., Grundmann et al., 77 

1990). 78 

 79 

2.  Location and Geology 80 

 81 

The El Dragón selenide occurrence is situated in southwestern Bolivia, in the Cordillera 82 

Oriental, some 30 km southwest of Cerro Rico de Potosi. The abandoned El Dragon mine 83 

(entrance and dump) is located 19° 49’ 23.90” S (latitude), 65° 55’ 00.60” (longitude), at an 84 

altitude of 4160 m above sea level.  It is about 4 km east of the Porco Caldera hosting one of 85 

the largest Ag−Zn−Pb−Sn deposits in Bolivia (Cunningham et al., 1993). The Porco mining 86 

district has a long history of production, beginning in pre-Columbian times when Indians 87 

mined it for silver. The very small longitudinal extension (maximum 15-m-long gallery) of 88 

the El Dragón selenium ore vein and its low silver content (0.06 wt.% Ag) have probably 89 

discouraged the occurrence to be further exploited.  90 

The adit of the El Dragόn mine is on the orographic left side of the Rio Jaya Mayu, 91 

cutting through a series of thinly-stratified, pyrite-rich black shales and reddish-grey, 92 

hematite-bearing siltstones of probably Devonian age, dipping 40° to the north. The almost 93 

vertical ore vein is located in the center of a 1.5-m-wide shear zone (average trend 135 94 

degrees) with shifts of a few cm. In 1988, the selenium mineralization consisted of a single 95 

vein, ranging mostly from 0.5 to 2 cm in thickness, with sporadic bulges of up to 6 cm. 96 

 97 
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 98 

3. Occurrence and associated minerals 99 

 100 

The El Dragόn mineralization is composed of a complex assemblage of partially rare primary 101 

and secondary minerals, among which Se-bearing phases are most prominent. The full list of 102 

minerals recorded from El Dragόn is given on mindat.org at http://www.mindat.org/loc-103 

353.html. Grundmann et al. (1990) and Paar et al. (2012) provided detailed descriptions of the 104 

entire mineralization. Here we focus on grundmannite and associated primary minerals of the 105 

system Cu−Bi−Hg−Pb−Se.  A comprehensive discussion of the origin of the El Dragόn 106 

mineralization will form the subject of a forthcoming paper.   107 

During this study, a total of 125 polished thick sections of average size 2 x 2 cm and 108 

average weight 8 g and several polished vein sections of up to 4 cm in thickness with adhesive 109 

wall rock fragments were examined macroscopically and microscopically. Grundmannite was 110 

detected in only 10% of the inspected thick sections. Other associated Cu−Bi-bearing 111 

selenides are comparatively more frequent. Thus, watkinsonite was present in almost all 112 

inspected samples, eldragόnite in about two thirds of the sections. 113 

 114 

4. Appearance and physical properties 115 

 116 

The appearance and paragenetic associations of grundmannite and other Bi-selenides are 117 

visualized in Figures 1 and 2, resp. constituting collections of optical microscopy photographs 118 

and back-scattered electron (BSE) images. 119 

Grundmannite commonly forms sub- to anhedral grains up to 150 µm in size typically 120 

intergrown with clausthalite (PbSe; Figs. 1a-c, 2a-b) and associated with kruta’ite−penroseite 121 

solid solutions (Cu2Se−Ni2Se; Figs. 1a-d). These solid solutions usually form systematically 122 

zoned grains, with Cu-rich compositions resembling kruta’ite in the cores evolving towards 123 

more Ni−(Co)-rich compositions in the direction to the grain margins, with penroseite s.s. at 124 

the outermost rims. Grundmannite also appear as aggregates of irregularly shaped grains of 125 

several hundreds of µm across associated with the same species as above (Fig. 1b). 126 

Grundmannite occasionally shows parallel intergrowths of grains, implied from serrated 127 

prismatic grain surfaces. Intergrowths with watkinsonite are frequent (Figs. 1a-d). Other 128 

minerals occasionally being in intimate grain-boundary contact with grundmannite comprise 129 

quartz, dolomite, native gold (Fig. 1c), eskebornite (CuFeSe2), umangite (Cu3Se2), 130 

http://www.mindat.org/loc-353.html
http://www.mindat.org/loc-353.html
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klockmannite (CuSe), discrete grains of Co-rich penroseite, unnamed phases “A” and “B” of 131 

Paar et al. (2012), and a newly discovered species of the Cu−Bi−Hg−Pb−Se system termed 132 

phase “C” (cf. section Chemical composition). Eldragόnite (Fig. 1b) and petrovicite rarely 133 

precipitated in the surroundings of CuBiSe2. Grundmannite partially replaces umangite, 134 

klockmannite, eskebornite and native gold and itself became partially decomposed by late 135 

fracture-filling chalcopyrite (Fig. 1d). Secondary minerals in the neighbourhood of 136 

grundmannite encompass chalcomeneite, ‘clinochalcomeneite’, favreauite, molybdomeneite, 137 

ahlfeldite, ‘kersteneite’, olsacherite, schmiederite, goethite, and late klockmannite. 138 

About half of the identified grundmannite grains is cementing (usually together with 139 

clausthalite and watkinsonite) shrinkage cracks and or filling interstices in 140 

breacciatedkruta’ite−penroseite solid solutions, the other half formed as independent grains in 141 

the matrix. Grundmannite was never observed as inclusions in kruta’ite−penroseite. 142 

Grundmannite is non-fluorescent, black and opaque with a metallic luster and black 143 

streak. It is brittle, with an irregular fracture and no obvious cleavage and parting. The mean 144 

Vickers hardness number (VHN) for a 20 g load is 53 kg mm−2 (range 45−61). This number 145 

equates to a Mohs hardness of 2 to 2½. Density could not be measured because of the small 146 

grain size. Density calculated on the basis of the mean chemical composition and unit-cell 147 

parameters derived from the single-crystal X-ray study is 6.582 g cm−3. 148 

 149 

5. Optical properties 150 

 151 

In plane-polarized incident light, grundmannite is cream to light grey in colour, weakly 152 

bireflectant and weakly pleochroic from cream to light grey. The mineral does not show any 153 

internal reflections. Between crossed polars, grundmannite is distinctly anisotropic, with light 154 

brown to brown rotation tints.  155 

Quantitative reflectance data for grundmannite were obtained in air relative to a Zeiss 156 

WTiC standard using a J & M TIDAS diode array spectrometer attached to a Zeiss Axiotron 157 

microscope. Measurements were made on unoriented grains at extinction positions leading to 158 

designation of R1 (minimum) and R2 (maximum). The results are listed in Table 1 (together 159 

with the calculated color values) and illustrated graphically in Figure 3. From 400 to 700 nm, 160 

the reflectance values of R1 are smoothly ascending continuously toward the longer 161 

wavelengths. The values of R2 display the same systematics, but the increase is more rapid.  162 

 163 



6 
 

6. Chemical Composition 164 

Ore minerals from El Dragόn were routinely checked for concentrations of Cu, Ag, Pb, Hg, 165 

Fe, Co, Ni, As, Sb, Bi, S and Se. Quantitative chemical analyses of grundmannite and the 166 

remaining selenides were conducted in WDS mode, using a JEOL thermal field-emission-type 167 

electron probe X-ray microanalyzer (FE-EPMA) JXA-8500F (HYPERPROBE) at the 168 

Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany. The probe was operated at 20 169 

kV, 20 nA; the beam size was 1−2 µm. The counting time on peak was 20s, with half that 170 

time on background on both sites of the peak. Special care was taken to avoid any elemental 171 

interferences on peak and backgrounds, or empirically correct them. The following standards, 172 

emission lines and analyzing crystals (in parentheses) were used: Cu – native Cu metal, Kα 173 

(LIF); Ag – natural Ag2Se, Lα (PETJ); Pb – natural PbSe, Mα (PETH); Hg – natural HgS, Lα 174 

(LIF); Fe – natural FeS2, Kα (LIF); Co – natural (Co,Ni)As3, Kα (LIF); Ni – natural 175 

(Fe,Ni)9S8, Kα (LIF); As - natural (Co,Ni)As3, Lα (TAP); Sb – natural Sb2S3, Lα (PETJ), Bi – 176 

synthetic Bi2Se3, Mα (PETH); S – natural ZnS, Kα Kα (PETJ); Se – natural Ag2Se, Kα (LIF). 177 

The CITZAF routine in the JEOL software, which is based on the ф(Z) method (Armstrong, 178 

1995), was used for data processing.  179 

6.1 Grundmannite 180 

Grundmannite from El Dragόn displays an only a weak variation in composition in all 181 

samples studied in this paper (Table 2). In addition to the major cations Cu, Bi and Se, the 182 

only other element continuously present is Pb, with concentrations between 1.0 and 1.3 wt%. 183 

Subordinate amounts of Hg (< 0.3 wt.%) and Ni (< 0.2 wt%) were detected occasionally. 184 

Substitution of divalent Pb for trivalent Bi explains the observed slight deviation from ideal 185 

stoichiometry. The mean empirical formula, normalized to 4 atoms per formula unit (apfu), is 186 

Cu0.99(Bi0.91Pb0.02)∑0.93Se2.08 (n = 19). The ideal formula is CuBiSe2, thus being the Se-187 

analogue of emplectite, CuBiS2, as confirmed by structural data. 188 

6.2 Associated Cu−Bi−(Pb)−(Hg)−Se minerals 189 

The mean compositions (together with the number of analyzed spots) and 1δ standard 190 

deviations and the respective formula proportions for petrovicite, watkinsonite, eldragόnite, 191 

and unnamed phases “A”, “B” and “C” are listed in Table 3. Except for the newly established 192 

phase “C”, the compositional data reported here are slightly different from those measured by 193 

Paar et al. (2012), but generally confirm the observations and conclusions made by these 194 

authors.  195 
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Petrovicite, ideally Cu3HgPbBiSe5, has the composition 196 

(Cu2.97Ag0.04)∑3.01Hg0.99Pb0.99Bi1.03Se4.98, based on 15 apfu . Silver is omnipresent as a minor 197 

element (0.2−0.8 wt%). As already recognized by Paar et al. (2012), the composition of 198 

watkinsonite, ideally Cu2PbBi4Se8, is characterized by the substitution of variable, but 199 

uncommonly large concentrations of Ag for Cu. The concentrations of Ag range between 1.3 200 

and 5.2 wt%, which is equivalent to 9−44 mol% Ag2PbBi4Se8 and suggest the possible 201 

existence of an Ag-analogue of watkinsonite in nature. The other omnipresent cation in the 202 

watkinsonite structure is Hg, with concentrations in the range 0.3−1.3 wt%. Nickel occurs 203 

sporadically, with concentrations maximizing to 0.3 wt%. The mean formula of watkinsonite 204 

yields (Cu1.53Ag0.44Ni0.02)∑1.99(Pb1.08Hg0.07)∑1.15Bi3.88Se7.98, normalized to 15 atoms per 205 

formula unit. With respect to the elevated abundances of Ag und Hg, watkinsonite from El 206 

Dragόn closely resembles watkinsonite from Schlema-Alberoda in the Erzgebirge of 207 

Germany, which has the mean formula (Cu1.47Ag0.49Cd0.02Ni0.01)∑1.99(Pb1.01Hg0.01)∑1.02Bi3.98 208 

(Se7.98S0.05)∑8.03 (Förster et al., 2003). 209 

Our analytical data for phases “A” and “B” confirmed the formula projections made 210 

by Paar et al. (2012), but yielded analytical totals relatively closer to 100 wt% (cf. Table 3). 211 

Phase “A”, with the ideal formula Cu5Pb2HgBi3Se10, has the mean formula 212 

(Cu4.90Ag0.22)∑5.12Pb1.90Hg0.89Ni0.06Co0.01Bi3.09Se9.92, normalized to 22 apfu. Between 0.4 and 213 

1.3 wt.% Ag was substituted for Cu. Nickel is continuously present, with concentrations 214 

between <0.1 and 0.6 wt.%. Phase “B” exhibits the ideal formula Cu2PbHgBi2Se6 and has the 215 

mean composition (Cu2.05Ag0.10)∑2.15Pb0.91Hg0.80Ni0.04Co0.01Bi2.08Se6.01 (on the basis of 12 216 

apfu). As phase “A”, this species contains minor concentrations of Ag (0.4−1.8 wt.%) and Ni 217 

(<0.5 wt%). The analytical data acquired for phase “C” would meet the ideal formula 218 

Cu4Pb2HgBi4Se11; its mean formula amounts to (Cu3.45Ag0.50)∑4.95Pb2.05Hg0.91Ni0.05Co0.01Fe0.01 219 

Bi4.01Se11.00 (on the basis of 22 apfu). Noteworthy, there are elevated concentrations of Ag 220 

(1.8−2.3 wt.), most probably sitting on the Cu-position, and trace amounts of Ni (<0.3 wt.%). 221 

The composition of phase ”C” requires additional remarks. Thus, this species may be 222 

chemically more variable than reflected by its mean composition provided in Table 3 and a 223 

single spot analyses presented in Table 1 (ana.#1). Spot analyses performed in relatively 224 

brighter domains in intergrowths of phases “A” and “B” also revealed compositions that are 225 

distinct by larger concentrations of Fe (up to 1.4 wt.%) or Ni (up to 0.4 wt.%) (Table 4, ana.# 226 

2−4). If these data did not suffer from analytical shortcomings owing to the small domain size 227 

and the intimate intergrowth with other selenides, they would also fit the ideal composition 228 

Cu4Pb2HgBi4Se11 at the precondition that Fe and Ni (and Co) are part of the Cu-position (Fe 229 



8 
 

and Ni are strongly negatively correlated with Cu). If these compositions refer to phase “C”, 230 

one quarter of the Cu-position could be accommodated by Ag (Table 4, ana.# 4). Crystal-231 

structure data are required to resolve this problem, for the acquisition of which suitable 232 

material was not available.     233 

 234 

7. Crystal structure 235 

7.1 X-ray powder-diffraction data 236 

The observed powder diffraction pattern (Table 5) of the same grundmannite fragment used 237 

for the single-crystal study (see below) was collected with a CCD-equipped diffractometer 238 

Xcalibur PX Ultra using CuKα radiation (50 kV and 40 mA – 5 hs as exposition time). 239 

Crystal-to-detector distance was 7 cm. Data were processed using the CrysAlis software 240 

package version 1.171.31.2 (Oxford diffraction 2006) running on the Xcalibur PX control PC. 241 

The unit-cell parameters obtained from powder data are: a = 6.6331(2), b = 4.2551(2), c = 242 

15.3782(6) Å, V = 434.04(2) Å3, in excellent agreement with those obtained from single-243 

crystal data.  244 

7.2 X-ray single-crystal data 245 

Three grundmannite fragments were mounted on a 0.005 mm diameter carbon fiber (which 246 

was, in turn, attached to a glass rod) and checked on a CCD-equipped Oxford Diffraction 247 

Xcalibur 3 single-crystal diffractometer, operating with MoKα radiation (λ = 0.71073 Å). One 248 

of them (size: 75 × 80 × 95 μm) showed an excellent diffraction quality and the full data 249 

collection was done (Table 6). Intensity integration and standard Lorentz-polarization 250 

corrections were performed with the CrysAlis RED (Oxford Diffraction, 2006) software 251 

package. The program ABSPACK of the CrysAlis RED package (Oxford Diffraction, 2006) 252 

was used for the absorption correction. Reflection conditions were consistent with the space 253 

group Pnma, the space group observed for emplectite (Kyono & Kimata, 2005) that can be 254 

considered the S-analogue of grundmannite. The full-matrix least-squares program SHELXL-255 

97 (Sheldrick, 2008), working on F2, was used for the refinement of the structure, which was 256 

carried out starting from the atomic coordinates reported for emplectite (Kyono & Kimata, 257 

2005). Site-scattering values were refined using scattering curves for neutral species (Ibers & 258 

Hamilton 1974) as follows: Cu vs.  and Bi vs.  for the cation sites, and S vs.  for the anion 259 

sites. All the sites were found fully occupied, and the occupancy factors were then fixed to 260 

1.00. The electron density refined at the metal sites is in excellent agreement with the 261 
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electron-microprobe data (Table 2). Successive cycles were run introducing anisotropic 262 

temperature factors for all the atoms leading to R1 = 0.0247 for 611 observed reflections [Fo > 263 

4(Fo)] and R1 = 0.0250 for all 818 independent reflections. Fractional atomic coordinates 264 

and isotropic atomic displacement parameters are reported in Table 7 whereas the bond 265 

distances are given in Table 8. Structure factors and CIF are freely available online as 266 

Supplementary Material linked to this article on the GSW website of the journal, 267 

http://eurjmin.geoscienceworld.org/.  268 

 269 

8. Results and Discussion  270 

8.1 Crystal-chemical remarks 271 

The crystal structure of grundmannite (Fig. 4) is topologically identical to that of emplectite, 272 

CuBiS2 (Kyono & Kimata, 2005), with the two independent sulfur positions occupied by Se. 273 

In the structure, Bi forms BiSe3 trigonal pyramids (with two additional longer distances) and 274 

Cu nearly regular CuSe4 tetrahedra (Table 8). The entry of Se in the emplectite structure 275 

induces a strong enlargement of the unit-cell as well as in the coordination environment of Bi 276 

and Cu. The orthorhombic modification of CuBiSe2 has been not synthesized yet but 277 

calculations, using the first-principles DFT method, have shown that such a compound is 278 

thermodynamically stable (Kumar & Persson, 2014) and that the chalcostibite−emplectite 279 

(Pnma) structure is retained. The calculated unit-cell parameters for the CuBiSe2 compound 280 

are a = 6.58, b = 4.11, c = 15.05 Å, in close agreement with those measured in this work for 281 

grundmannite. The standard thermodynamic properties of CuBiSe2 were calculated by 282 

Babanly et al. (2009). The Cu(Sb,Bi)(S,Se)2 compounds are orthorhombic-type 283 

semiconductors (Kumar & Persson, 2014). 284 

Emplectite and grundmannite resulted to be isostructural. Although this could be 285 

easily guessed given the similarity of S and Se, there are many phases in the Cu−Ag−S−Se 286 

group of minerals that are not isostructural. Amongst this group, acanthite (Ag2S, S.G. P21/n, 287 

Frueh, 1958) and naumannite (Ag2Se, S.G. P212121, Wiegers, 1971) and stromeyerite 288 

(CuAgS, S.G. Cmc21, Baker et al., 1991) and eucairite (CuAgSe, S.G. Pmmn, Frueh et al., 289 

1957) are not isostructural, whereas metacinnabar (HgS, S.G. F-43m, Aurivillius, 1964) and 290 

tiemannite (HgSe, S.G. F-43m, Earley, 1950) and thalcusite (Cu2FeTl2S4, S.G. I4/mmm, 291 

Makovicky et al., 1980) and bukovite (Cu2FeTl2Se4, S.G. I4/mmm, Makovicky et al., 1980) 292 

are isostructural. As to the IMA sulfosalt systematics (Moёlo et al., 2008), grundmannite is a 293 
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binary sulfosalt and the third member of the emplectite isotypic series, after emplectite and 294 

chalcostibite (CuSbS2). 295 

8.2 Origin of grundmannite 296 

A re-study of a large collection of ore and country-rock samples from El Dragόn provided 297 

strong evidence that the available genetic concepts on the origin of this unique mineralization 298 

(Grundmann et al., 1990; Paar et al., 2012) require substantial revision and will be presented 299 

elsewhere. The most likely source of Se and accompanying elements (Cu, Co, Ni, Pb, Bi, 300 

Ag,…) is of the Kupferschiefer-type: reduced black shale rich in framboidal pyrite, copper 301 

sulfides, and organic material. The Se-mineralization was deposited in a fault zone at the 302 

contact of that shale with a hematite-rich, oxidized siltstone. Our genetic model involves the 303 

transport and deposition of Se and accompanying elements from the same low-T 304 

hydrothermal fluid (likely a heated descending meteoric water) during one single event. 305 

Kruta’ite−penroseite solid solutions were among the first selenides that crystallized from that 306 

solution, thus enriching it in elements incompatible with its structure, mainly Pb, Bi, and Hg. 307 

Grundmannite postdates the kruta’ite−penroseite solid solutions and appears to also 308 

crystallize later than the bulk of accompanying Cu−Bi−(Pb)−(Hg)−Se minerals. Together 309 

with later generations of watkinsonite and clauthalite, it constitutes the youngest primary Se-310 

mineral forming the El Dragόn deposit, precipitated probably in the stability fields of 311 

umangite and klockmannite. Thermodynamic properties and calculated phase equilibria of 312 

selenides (Simon & Essene, 1996) permit to broadly constrain the fugacities of Se2 and S2 313 

during grundmannite crystallization. Thus, the absence of berzelianite and bellidoite suggests 314 

that the selenium fugacity was in a range from below the kruta’ite−klockmannite univariant 315 

reaction to above the umangite−berzelianite univariant reaction. For a temperature of 100 °C 316 

typical for most telethermal vein-type deposits, this range corresponds to logfSe2 between 317 

−10.5 to −14.5 (Simon & Essene, 1997). The presence of hematite/goethite and the absence of 318 

chalcopyrite, pyrite and bornite imply sulfur fugacities that maximized to logfS2 of roughly 319 

−17, but most likely were much lower considering the remarkable sulfur paucity of all Se-320 

minerals. Thus, the crystallization environment of grundmannite includes a fSe2/fS2 ratio 321 

greater than unity and the presence of hematite, conditions typically prevailing during the 322 

formation of telethermal vein-type selenide mineralization (Simon & Essene, 1997).    323 
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Figure captions 414 

 415 

Figure 1. Reflected light images of (a) the grain of grundmannite, from which the structural and 416 

reflectance data were obtained (horizontal field (h.f.) ~ 250 µm); (b) grundmannite, watkinsonite, 417 

eldragonite, klockmannite, and clausthalite as fracture filling in intensely zoned kruta’ite−penroseite 418 

solid solutions (h.f. ~ 500µm); (c) grundmannite+clausthalite+watkinsonite replaced by native Au (h.f.  419 

~ 500 µm); (d) grundmannite+watkinsonite+ kruta’ite−penroseite  replaced by chalcopyrite along 420 

fractures (h.f. ~ 200 µm); (e) intimate intergrown of eldragόnite, phase “A” and various other 421 

selenides (h.f. ~ 200 µm); (f) petrovicite associated with a plethora of other selenium-bearing minerals 422 

filling a fracture in krutàite−penroseite (h.f. ~ 500µm). Abbreviations of mineral names: kps.s. = 423 

kruta’ite−penroseite solid solutions, gru = grundmannite, wat = watkinsonite, cl = clausthalite, pen = 424 

penroseite, kl = klockmannite, cha = chalcopyrite, eld = eldragόnite, pet = petrovicite,, “A” phase “A” 425 

of Paar et al. (2012). 426 

Figure 2. Microprobe-generated back-scattered electron images of (a) anhedral to subhedral grains of 427 

grundmannite (medium bright) and clauthalite (bright) enclosing kruta’ite−penroseite crystals; (b) 428 

irregularly shaped grundmannite intergrown with clausthalite; c) intergrowth of phases “A”and “B” 429 

with watkinsonite and clausthalite; (d) phases “A” ,”B” and “C” (for chemical composition see Table 430 

3) in grain contact; (e) mineral aggregate composed of phases “A” (medium bright), “B” (least bright) 431 
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and “C” (most bright; for compositional data see Table 4, ana.#4); (f) clausthalite intergrown with 432 

petrovicite and inhomogeneous acicular crystals mainly composed of phase “B” filling a fracture in 433 

kruta’ite−penroseite solid solutions, in contrast to eldragόnite occurring inside. See Fig. 1 for 434 

abbreviations of mineral names.    435 

Figure 3. Reflectance spectra of grundmannite, its S-analogue emplectite, and other Cu−Bi selenides 436 

in air. Data sources: eldragόnite – Paar et al. (2012); schlemaite – Förster et al. (2003);   emplectite – 437 

Criddle & Stanley (1993); watkinsonite – Johan et al. (1987); petrovicite – Picot & Johan (1982). 438 

Figure 4. The crystal structure of grundmannite projected down [010]. The horizontal direction is the 439 

a-axis. Cu atoms are depicted as blue tetrahedral, Bi and Se are given as violet and green spheres, 440 

respectively. Dashed lines indicate long Bi−Se distances. The unit cell is outlined.   441 
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λ (nm) R1 (%) R2  (%) λ (nm) R1 (%) R2  (%)

400 40.7 42.3 640 42.5 46.1

420 40.7 42.6 660 42.5 46.3

440 40.8 42.8 680 42.5 46.5

460 40.9 43.1 700 42.5 46.6

480 41.0 43.6

500 41.2 44.1

520 41.5 44.6

540 41.8 45.0

560 41.9 45.3 470 41.0 43.4

580 42.0 45.5 546 41.8 45.1

600 42.2 45.8 589 42.1 45.7

620 42.3 46.0 650 42.5 46.2

R1 R2 R1 R2

x 0.313 0.316 0.450 0.452

y 0.319 0.322 0.408 0.409

Y (%) 41.8 45.1 42.0 45.4

ld 577 576 586 586

Pe (%) 1.7 3.1 2.5 4.4

Table 1. Reflectance data and color values for grundmannite.

Color values

C  illuminant A  illuminant

wavelengths

Commission on Ore Mineralogy

Table



Cu Hg Pb Ni Bi Se Total

mean 14.88 0.07 1.23 0.05 44.9 38.92 100.05

1δ 0.11 0.10 0.10 0.06 0.24 0.24 0.32

min 14.69 0.00 0.99 0.00 44.62 38.44 99.38

max 15.05 0.30 1.38 0.22 45.53 39.33 100.81

Table 2.  Composition of grundmannite (wt.%) from El Dragόn.

Notes:  1δ = 1δ standard deviation.

Table



n

aver. 1δ aver. 1δ aver. 1δ aver. 1δ aver. 1δ aver. 1δ

Cu 15.51 0.35 5.33 0.83 34.18 0.18 13.34 0.28 9.31 0.43 8.53 0.23

Ag 0.45 0.24 2.62 1.20 0.10 0.05 1.02 0.28 0.73 0.25 2.12 0.20

Hg 16.51 0.19 0.83 0.40 0.01 0.02 7.67 0.22 11.43 0.30 7.08 0.27

Pb 17.12 0.13 12.23 0.43 0.00 0.00 16.87 0.13 13.55 0.24 16.54 0.21

Fe 0.00 0.00 0.01 0.03 1.47 0.23 0.00 0.00 0.00 0.00 0.02 0.03

Co 0.00 0.00 0.00 0.01 0.02 0.04 0.03 0.04 0.03 0.03 0.02 0.02

Ni 0.01 0.03 0.05 0.17 0.21 0.19 0.15 0.15 0.17 0.14 0.12 0.11

Bi 17.80 0.07 44.52 0.68 19.83 0.13 27.65 0.19 31.17 0.26 32.59 0.18

S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Se 32.55 0.11 34.53 0.54 44.33 0.16 33.52 0.20 34.00 0.32 33.75 0.07

total 99.93 0.50 100.12 0.87 100.16 0.49 100.24 0.30 100.40 0.46 100.76 0.09

apfu

Cu 2.97 0.03 1.53 0.24 5.71 0.05 4.90 0.09 2.05 0.09 3.45 0.09

Ag 0.04 0.01 0.44 0.21 0.01 0.01 0.22 0.06 0.10 0.03 0.50 0.05

Hg 0.99 0.01 0.07 0.02 0.89 0.03 0.80 0.02 0.91 0.04

Pb 0.99 0.01 1.08 0.03 1.90 0.02 0.91 0.02 2.05 0.02

Fe 0.28 0.04 0.01 0.01

Co 0.01 0.01 0.02 0.01 0.01 0.01 0.01

Ni 0.02 0.02 0.04 0.03 0.06 0.06 0.04 0.03 0.05 0.05

Bi 1.03 0.00 3.88 0.05 1.01 0.01 3.09 0.03 2.08 0.03 4.01 0.03

Se 4.98 0.01 7.98 0.04 5.96 0.03 9.92 0.04 6.01 0.05 11.00 0.03

Notes: n = number of spot analyses averaged, 1δ = 1δ standard deviation.

Table 3. Mean composition (wt.%) and formula proportions of Cu−Bi selenides associated with

grundmannite.

4

11 15 13 21 12 22

8 39 11 24 28

phase "c"petrovicite watkinsonite eldragonite phase "A" phase "B"

Table



ana.# 1 2 3 4

Cu 8.53 6.51 6.77 6.66

Ag 2.19 3.32 2.29 4.11

Hg 7.32 7.01 7.20 7.22

Pb 16.41 16.39 16.15 16.37

Fe 0.00 0.38 1.43 0.00

Co 0.00 0.09 0.06 0.13

Ni 0.11 0.39 0.25 0.40

Bi 32.43 32.37 33.05 32.55

Se 33.78 33.31 33.30 33.00

Total 100.76 99.77 100.50 100.45

Cu (apfu ) 3.45 2.69 2.75 2.74

Ag 0.52 0.81 0.55 1.00

Hg 0.94 0.92 0.93 0.94

Pb 2.04 2.07 2.01 2.07

Fe 0.00 0.18 0.66 0.00

Co 0.00 0.04 0.02 0.06

Ni 0.05 0.17 0.11 0.18

Bi 3.99 4.06 4.08 4.08

Se 11.01 11.06 10.89 10.94

Table 4. Results of spot analyses of phase "C".

Notes:  cations normalized to 4 apfu .

Table



Table 5. Calculated and observed X-ray powder diffraction data for grundmannite. 
 

hkl dcalc (Å) Icalc dobs (Å) Iobs 

002 7.6845 17.11 - - 

102 5.0225 23.10 5.01 15 

004 3.8423 18.82 3.83 15 

111 3.4901 49.45 3.49 50 

104 3.3251 30.54 
3.32 70 

200 3.3180 57.24 

013 3.2746 100.00 3.27 100 

112 3.2479 13.01 
3.24 25 

201 3.2433 15.30 

202 3.0462 6.29 3.05 5 

113 2.9365 7.56 2.940 10 

203 2.7849 7.16 2.785 10 

015 2.4923 40.52 2.490 45 

212 2.4775 8.55 2.478 10 

106 2.3897 12.40 2.390 15 

213 2.3307 44.97 2.329 50 

020 2.1290 33.31 2.128 35 

215 1.9927 30.98 1.995 35 

017 1.9514 11.64 1.952 10 

311 1.9471 31.69 1.946 30 

008 1.9211 10.28 1.922 10 

304 1.9170 21.83 1.918 20 

312 1.9019 5.71 - - 

117 1.8722 11.66 1.874 10 

024 1.8622 5.18 - - 

216 1.8306 9.98 1.832 10 

124 1.7930 10.56 1.796 10 

220 1.7919 20.07 1.790 20 

221 1.7798 5.66 - - 

314 1.7480 5.29 - - 

208 1.6626 9.74 1.664 10 

126 1.5896 7.13 1.590 5 

119 1.5416 11.17 1.542 10 

317 1.4634 6.66 1.465 5 

028 1.4263 7.51 
1.425 25 

324 1.4246 15.96 

033 1.3678 7.20 1.368 5 

228 1.3103 8.15 1.310 10 

233 1.2646 5.82 
1.262 15 

511 1.2628 9.87 

504 1.2545 7.16 1.253 5 

235 1.2012 5.06 - - 

331 1.1910 5.45 - - 

524 1.0808 7.67 - - 
Notes: calculated diffraction pattern obtained with the atom coordinates reported in Table 7 (only reflections with Irel ≥ 

5 are listed).  
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Table 6. Data and experimental details for the selected grundmannite crystal. 

 

  
  

Crystal data 
  
Formula CuBiSe2

 

Crystal size (mm) 0.075 × 0.080 × 0.095    

Form block 

Colour black 

Crystal system orthorhombic 

Space group Pnma  

a   (Å) 6.6362(5) 

b   (Å) 4.2581(3) 

c   (Å) 15.3691(9) 

V  (Å3) 434.29(5) 

Z 4 

 

 

 

 
Data collection 
  
Instrument Oxford Diffraction Xcalibur 3 

Radiation type  MoK (λ = 0.71073 Å) 

Temperature  (K) 293(2)  

Detector to sample distance (cm) 5  

Number of frames 677 

Measuring time  (s) 60 

Maximum covered 2 (°) 70.00 

Absorption correction   multi-scan (ABSPACK; Oxford Diffraction 2006)  

Collected reflections 7621 

Unique reflections 818 

Reflections with Fo > 4  (Fo) 611 

Rint 0.0257 

R  0.0546 

Range of h, k, l −10  h  10,−6  k  6, −24  l  24 

  
Refinement 

  
Refinement Full-matrix least squares on F2 

Final R1 [Fo > 4  (Fo)] 0.0247 

Final R1 (all data) 0.0250 

Number of least squares parameters 25 

Goodness of Fit 1.175 

Δρmax   (e Å-3) 1.20 

Δρmin   (e Å-3) −1.33 

  
 

 
 

 

 

Table



 

 

Table 7. Atom coordinates and equivalent isotropic displacement parameters (Å2) for 

grundmannite. 

atom x/a y/b z/c Uiso*/Ueq 

     
Cu 0.22875(10) ¼ 0.82957(5) 0.02068(13) 

Bi 0.23364(3) ¼ 0.069531(15) 0.02469(8) 

Se1 0.64523(9) ¼ 0.10055(4) 0.03118(12) 

Se2 0.85020(10) ¼ 0.82089(5) 0.03310(13) 
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Table 8. Selected bond distances (Å) and angles (°) for grundmannite. 
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Symmetry codes: (i) x−1/2, y, −z+3/2; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) 

x+1/2, y, −z+3/2; (vi) x+1, y, z. 
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