
 1 

 

 

 

 

 

 

 

The phylogeny of Anophelinae revisited: inferences about the origin and 

classification of Anopheles (Diptera: Culicidae) 

 

Ralph E. Harbach & Ian J. Kitching  

Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, 

UK 

 

Corresponding author: Ralph E. Harbach, Department of Life Sciences, Natural History 

Museum, Cromwell Road, London SW7 5BD, UK. E-mail: r.harbach@nhm.ac.uk 

 

Ralph E. Harbach, Ian J. Kitching, Department of Life Sciences, Natural History Museum, 

Cromwell Road, London SW7 5BD, UK. E-mails: r.harbach@nhm.ac.uk; 

i.kitching@nhm.ac.uk 

 

Short title: Phylogeny of Anophelinae 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Natural History Museum Repository

https://core.ac.uk/display/42046115?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:r.harbach@nhm.ac.uk
mailto:r.harbach@nhm.ac.uk


 2 

Abstract  

The evolution of anopheline mosquitoes (Culicidae: Anophelinae) has been the subject of 

speculation and study for decades, but a comprehensive phylogeny of these insects is far from 

complete. The results of phylogenetic studies based on morphological and molecular data sets 

are conspicuously ambiguous. Here we revisit the phylogenetic relationships of anopheline 

mosquitoes using state-of-the-art software and cladistic methods to analyse the data set of 

Harbach & Kitching (2005). We present a refined interpretation of relationships based on 

analyses of a revised data set that includes an additional species. Implied weighting analyses 

were conducted with TNT with the concavity constant K ranging from 1‒33. We determined 

the optimal K value by summing the GC supports for each MPC and selected the tree with the 

highest support, K = 30, as the preferred cladogram. We then collapsed the branches with GC 

support < 1 to obtain the “best” topography of relationships. Genus Chagasia is the basalmost 

taxon of Anophelinae, and genus Anopheles is recovered as monophyletic but only if 

Anopheles implexus is excluded and genus Bironella is subordinated within it. The 

Afrotropical An. implexus is recovered as the sister to all other anophelines, and Christya 

Theobald, stat. nov., is elevated from synonymy with Anopheles Meigen as a subgenus to 

accommodate it. The other anophelines comprise two large clades. The first includes the 

reciprocally monophyletic subgenera Kerteszia + Nyssorhynchus; the second consists of 

subgenus Cellia as the sister to a heterogeneous clade that includes genus Bironella and 

subgenera Anopheles, Baimaia, Lophopodomyia and Stethomyia of genus Anopheles. The 

sister relationship of Cellia and the heterogeneous clade is lost when the branches with GC < 

1 are collapsed. The monophyly and non-monophyly of the informal subordinate taxa of 

subgenera Nyssorhynchus, Cellia and Anopheles, and also evolutionary scenarios, are 

discussed in relation to previous studies. 
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Introduction 

Culicidae, mosquitoes, comprise a large and abundant group of 3,543 3,546 formally 

recongized species with distributions in temperate and tropical regions of the world. The 

species are classified in two subfamilies, Anophelinae (482 485 species) and Culicinae (3,061 

species). Subfamily Anophelinae comprises three genera: Anopheles Meigen (cosmopolitan, 

469 472 species), Bironella Theobald (Australasian, 8 species) and Chagasia Cruz 

(Neotropical, 5 species) (http://mosquito-taxonomic-inventory.info/). Mosquitoes of these 

genera are known in the vernacular as “anophelines”. 

Anopheles has been the subject of more taxonomic research than any other genus of 

mosquitoes because it includes the species that transmit malarial and filarial parasites to 

humans. The majority of anopheline species belong to this genus, which comprises seven 

subgenera: Anopheles s.s. (cosmopolitan, 182 185 species), Baimaia (Oriental, 1 species), 

Cellia Theobald (Old World, 224 species), Kerteszia Theobald (Neotropical, 12 species), 

Lophopodomyia Antunes (Neotropical, 6 species), Nyssorhynchus Blanchard (Neotropical, 39 

species) and Stethomyia Theobald (Neotropical, 5 species) (http://mosquito-taxonomic-

inventory.info/). The subgenera are based principally on the number and positions of 

specialized setae borne on the gonocoxites of the male genitalia (Christophers 1915; Reid 

1968; Harbach & Kitching 2005). The three largest subgenera, Anopheles, Cellia and 

Nyssorhynchus, are divided into hierarchical systems of informal taxonomic categories (Reid 

& Knight 1961; Harbach 1994, 2004). Subgenus Anopheles is divided into two Sections 

based on the shape of the pupal trumpet (Reid & Knight 1961) and subgenus Nyssorhynchus 

is divided into three Sections based on characters of the larvae, pupae and adults (Faran 1980; 

Harbach 1994). Subgenus Cellia and the Sections of subgenera Anopheles and 

Nyssorhynchus are divided into Series, the larger Series are divided into species Groups, and 

some Groups are further divided into Subgroups and species Complexes. It is generally 

http://mosquito-taxonomic-inventory.info/
http://mosquito-taxonomic-inventory.info/
http://mosquito-taxonomic-inventory.info/
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assumed that each level of classification comprises a more or less natural assemblage of 

species based on morphological similarity. Genus Bironella includes three subgenera, but 

unlike the larger subgenera of Anopheles, they are not subdivided into informal group taxa. 

Genus Chagasia is a small homogenous group of species that is also not subdivided (Harbach 

& Howard 2009). 

Sallum et al. (2000) conducted the first phylogenetic study of Anophelinae, based on 

morphological traits. The results indicated that genus Anopheles is paraphyletic because it 

included genus Bironella. Subgenera Kerteszia, Nyssorhynchus, Cellia, Lophopodomyia and 

Stethomyia, along with genus Bironella, were found to be monophyletic taxa dispersed 

among various Series and species Groups of subgenus Anopheles. The Christya Series of 

subgenus Anopheles was placed with Kerteszia + Nyssorhynchus and this clade was sister to 

Cellia + all other anophelines except Chagasia. 

Sallum et al. (2002) assessed anopheline relationships based on ribosomal (18S, 28S) 

and mitochondrial (COI, COII) DNA sequences for half of the species included in the 

analyses of Sallum et al. (2000). Although the results of the two studies cannot be compared 

directly, analyses of the available molecular data corroborated the paraphyly of genus 

Anopheles relative to Bironella, the sister-group relationship of Kerteszia and Nyssorhynchus, 

and the monophyly of subgenera Cellia, Lophopodomyia and Stethomyia and genus 

Bironella, which was recovered as the sister of Lophopodomyia rather than Stethomyia. 

Harbach & Kitching (2005) revised and expanded the data set of Sallum et al. (2000), 

including reinterpretation of certain homologies (especially the specialized setae of the male 

gonocoxites that diagnose the subgenera), revised coding of some characters, and addition of 

new data and two further taxa, to reassess the phylogeny of Anopheline. Parsimony analysis 

of the data set under implied weighting supported the monophyly of subgenera Cellia, 

Kerteszia and Nyssorhynchus, and the sister relationship of Kerteszia + Nyssorhynchus. 
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Subgenus Anopheles was recovered as a polyphyletic lineage basal to a clade consisting of 

Cellia + (Kerteszia + Nyssorhynchus). Bironella, Lophopodomyia and Stethomyia were 

nested within subgenus Anopheles, and subgenus Baimaia was recovered as the sister of 

Bironella + all other Anopheles. In contrast to the results of Sallum et al. (2000), Bironella 

and Stethomyia were recovered as monophyletic groups separate from subgenus Anopheles.  

In summary, the phylogenetic studies conducted to date disclose the following 

principal conclusions about the phylogeny and classification of anopheline mosquitoes: (1) 

subfamily Anophelinae is a monophyletic lineage basal to all other Culicidae; (2) genus 

Chagasia is basal to the other anopheline taxa; (3) genus Anopheles is not demonstrably 

monophyletic with regard to genus Bironella and subgenera Lophopodomyia and Stethomyia; 

(4) subgenera Kerteszia, Nyssorhynchus and Cellia are each monophyletic (subgenus 

Baimaia is monobasic); (5) Kerteszia and Nyssorhynchus are sister taxa; and (6) the 

monophyly of the informal Sections and most Series of subgenera Anopheles, Cellia and 

Nyssorhynchus is doubtful (Harbach & Kitching 1998; Sallum et al. 2000, 2002; Krzywinski 

et al. 2001a, b; Harbach & Kitching 2005; Harbach 2007, 2013). 

Harbach (2013) maintained that the preferred cladogram of Harbach & Kitching 

(2005: figs 2 and 3) is currently the best hypothesis of anopheline phylogeny because it is 

based on analyses of a greater number of taxa and morphological characters than all other 

published hypotheses. But is it really the best estimate of relationships? We thought so until 

The monophyly of the Cyclopeppteron Series of subgenus Anopheles has been in doubt since 

it was redefined by Reid & Knight (1961) to include only An. annulipalpis Lynch 

Arribálzaga (known only from Argentina and Uruguay) and An. grabhamii Theobald 

(endemic to the West Indies). In 2014, we received a request from Gustavo Rossi (Consejo 

Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina) questioned the 

inclusion of An. annulipalpis Lynch Arribálzaga (known only from Argentina and Uruguay), 
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along with An. grabhamii Theobald (endemic to the West Indies), in the Cycloleppteron 

Series (only two species) of subgenus Anopheles and asked us to re-run the 2005 data set of 

Harbach & Kitching (2005) with the addition of character data for An. annulipalpis (An. 

grabhamii was already included). The morphology-based phylogenetic study of subgenus 

Anopheles conducted by Collucci & Sallum (2007) had indicated that the two species are not 

closely related, and Gustavo wanted to confirm this based on cladistic analysis of a larger 

data set. We immediately realized that the data set should not be analysed using the same 

software and methods used in 2005. In our previous study, we analysed the data using 

implied weights, implemented by PIWE version 3.0 (for Windows) (Goloboff 1997), with the 

default value of the concavity constant, K = 3. More recently, commencing with our 

collaborative study on the phylogeny of Aedini (Reinert et al. 2009), we conducted cladistic 

analyses using TNT version 1.1 (Willi Hennig Society Edition) (Goloboff et al. 2008), in 

which any value of K can be applied, and exploring the results of analyses using a much 

broader range of K values. Furthermore, we now agree subsequent to our 2005 paper, with 

Sereno (2007) that  provided strong and logical arguments for separating the neomorphic and 

transformational elements of multistate characters should be coded separately (using 

“contingent coding”; Forey & Kitching 2000), arguments that we find compelling, and . 

Cconsequently, recoding of the multistate characters employed by Harbach & Kitching 

(2005) became necessary. We also deemed it appropriate to apply more recently developed 

and stringent methods of assessing clade support. With this as background, we present here a 

refined interpretation of anopheline relationships based on analyses of a revised data set, with 

the inclusion of An. annulipalpis. 

 

Materials and methods  
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Morphology 

As indicated in the Introduction, we added An. annulipalpis to the data set of 66 anopheline 

species analysed by Harbach & Kitching (2005: Appendix). The full data set of 69 taxa thus 

comprised an ingroup of 67 species of Anophelinae and two outgroup species from subfamily 

Culicinae: Aedeomyia (Aedeomyia) squamipennis (Lynch Arribálzaga) and Uranotaenia 

(Uranotaenia) lowii Theobald. The data set of Harbach & Kitching (2005) included 46 

compound multistate characters that required subdivision into one or more characters, 

resulting in an increase from 167 to 224 morphological characters (Appendix S1) coded from 

adults (55), male genitalia (35), fourth-instar larvae (95) and pupae (39). The coded data are 

provided in Appendix S2.  

 

Phylogenetic analyses 

Parsimony analyses were implemented with TNT version 1.1 (Willi Hennig Society Edition, 

August 2011) (Goloboff et al. 2008) using both equal weighting (EW) and implied weighting 

(IW) with values of the concavity constant, K, ranging from 1–33. The value of K indicates 

inversely the weighting “strength” applied, with low values weighting more strongly against 

homoplastic characters (measured as the number of extra steps required to fit the cladogram 

topology in question) and higher values weighting less strongly (Goloboff 1993). The 

individual character weights are summed to produce the overall “fit” and the most 

parsimonious cladogram (MPC) is that with the greatest fit. Heuristic searches were 

conducted using the new technology search options: sectorial searches, ratchet, tree drifting 

and tree fusing. For the ratchet, the up/downweighting probabilities were set to 5% and the 

number of replicates to 200. The number of cycles of tree drifting was set to 50. All other 

search parameters remained at their default settings. Analyses were terminated once the MPC 

had been found 100 times. The maximum number of trees held was set to 10,000. Multistate 
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characters were treated as unordered and cladograms were rooted between Ad. squamipennis 

and the remaining taxa. 

The relative support for each node was assessed using symmetric resampling, as 

implemented in TNT, recording the frequency differences, i.e. “Groups present / 

Contradicted” or GC values (Goloboff et al. 2003). This metric does not suffer from the 

frequency distortions seen in other methods that resample to assess group support, such as the 

bootstrap and jackknife, and which are particularly pernicious when applied to weighted data 

(Goloboff et al. 2003). The GC values assess the difference between the absolute frequency 

with which a clade is found in the resampled matrices and that in the most frequent 

alternative topology in which the clade is not recovered. The GC values range from 100, 

where the clade is recovered in all resampled matrices, to -100, where an alternative 

arrangement is found in all resampled matrices (Goloboff et al. 2003). A zero value indicates 

that levels of support and contradiction are equal. Due to time constraints, we calculated GC 

values using the traditional search options, with 100,000 replicates and the default change 

probability, and searches constrained to use only those groups found in the MPC. We then 

summed the GC supports across all groups on each MPC and used this as the optimality 

criterion to select the best topology and its associated value of K (Goloboff et al. 2003; 

González-Santillán & Prendini 2015). Cladograms were prepared and morphological 

character mappings investigated using WinClada ver. 1.00.08 (Nixon 1999‒2002).  

 

Results 

Each analysis produced only a single MPC, except for K = 3, 4 and 8, where eight, three and 

two MPCs, respectively, were found. In contrast to the study of González-Santillán & 

Prendini (2015: fig. 7), which found unimodal distributions of summed GC (∑GC) values, 

each with a single clear maximum value, our results (Fig. 1) show three peaks of ∑GC at K 
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values of 3, 8 and 30‒33, of which the highest is that for K= 30/32/33 (∑GC = 1837). 

However, as the ∑GC for K = 31 was slightly lower at 1835, we checked whether this 

decrease was simply a stochastic artefact. We replicated the GC calculations a further nine 

times for K = 30 and K = 31. The K = 30 tree yielded ∑GC values ranging from 1835‒1837 

(average = 1836.5) and the K = 31 tree yielded ∑GC values ranging from 1834‒1838 

(average = 1836.2). There is thus clearly a stochastic element to the ∑GC calculations due to 

the pseudorandom nature of the resampling procedure, and so we also repeated the procedure 

for the two MPCs found with K = 8, which had yielded the next highest ∑GC (1830). Tree 0 

yielded ∑GC values ranging from 1819‒1825 (average = 1822.1) and tree 1 yielded ∑GC 

values ranging from 1825‒1830 (average = 1826.9). The highest value for K = 8 (1830) was 

well separated from the lowest ∑GC for K = 30/31 (1835), confirming our choice of the K = 

30‒33 topology as our preferred pattern of relationships among anophelines.  

 The MPC for K = 30‒33 is shown in Figure 2. As demonstrated in previous studies 

(see Introduction), genus Chagasia is the basalmost taxon of Anophelinae. Genus Anopheles 

is recovered as monophyletic but only if genus Bironella is subordinated within it (see 

below). Anopheles (Ano.) implexus is placed as the sister to all other anopheline taxa, which 

fall into two large clades. The first comprises the reciprocally monophyletic subgenera 

Kerteszia and Nyssorhynchus. Within the second, subgenus Cellia is recovered as 

monophyletic and sister to the remaining taxa. The first to branch off within this latter clade 

is the representative of subgenus Lophopodomyia, followed by a grade comprising members 

of subgenus Anopheles. However, within the largest subclade of this latter group, subgenera 

Stethomyia and Baimaia and genus Bironella are arrayed in a terminal clade. 

However, the GC supports also suggest that some groups are very poorly supported or 

unsupported. Collapsing those groups with GC < 1 on any one of the 10 replicates of the GC 

calculations gave the topology shown in Figure 3 (maximum GC values > 0 are shown, so the 
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∑GC of the figure is greater than 1837). The GC values of six of the remaining branches 

varied among the replicates but only by (a decrease of) 1 and never all at once in any one 

replicate. There is some loss of resolution within subgenera Nyssorhynchus and Cellia, but 

they each remain monophyletic. The sister-group relationship between Cellia and the clade 

comprised of the remaining taxa is also lost with the formation of a three-way polytomy. 

Within the third clade, the sister-group relationship between subgenus Lophopodomyia and 

the remaining taxa is lost within a basal eleven-way polytomy, as is also much of that within 

subgenus Anopheles. The subclade comprising An. (Ano.) punctipennis to An. (Ano.) sinensis 

has some loss of resolution but remains monophyletic. Most importantly, however, all the 

relationships within the clade comprising An. aitkenii + (An. corethroides + (Stethomyia + 

(Baimaia + Bironella))) survive. 

 

Discussion 

The monobasic Christya Series includes only the African species An. implexus. The Whereas 

this species was recovered as the sister to subgenera Cellia + (Kerteszia + Nyssorhynchus) in 

our previous study (Fig. S2), the results of the present analyses shown in Fig. 3 suggest that 

An. implexus it is sister to all Anophelinae except genus Chagasia, although the support for 

the latter group (GC = 2) is weak. Reid & Knight (1961) noted that Anopheles implexus 

shows shares a number of affinities features with Chagasia, including speckled legs, tarsi 

with unusually broad basal pale bands and a simple pupal trumpet. The basal position of the 

tarsal pale bands in particular is unusual for an anopheline and more like certain some species 

of subfamily Culicinae. These characters indicate that An. implexus is a primitive member of 

genus Anopheles. Reid & Knight (1961) also observed that An. implexus shows affinities with 

species of the Anopheles Series of subgenus Anopheles as well as groups of the Laticorn 

Section, but also suggested a relationship with subgenus Nyssorhynchussuggesting a 
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somewhat intermediate position within the subgenus. In contrast, An. implexus and two 

species of the Arribalzagia Series comprised a terminal clade within a polyphyletic 

Myzorhynchus Series in the phylogeny of subgenus Anopheles recovered in the morphology-

based study of Collucci & Sallum (2007). Thus, the phylogenetic relationships of An. 

implexus are rather ambiguous. The results of the present study do not support a close affinity 

with subgenus Anopheles, and therefore not with species of the Anopheles and 

Myzorhynchus Series (Fig. 3). Features of the parabasal setae of the male gonocoxitethe male 

genitalia seem to indicate a closer relationship with other taxa. The gonocoxite of An. 

implexus bears a single parabasal seta that arises from an elongate prominence, whereas most 

species of subgenus Anopheles have multiple parabasal setae borne on a small protuberance. 

Exceptions includeThere are exceptions, however. An.Anopheles algeriensis and An. 

corethroides, the latter which is recovered as sister to a terminal clade comprised of 

Stethomyia + (Baimaia + Bironella) (Fig. 3), ‒ both have a single parabasal seta and that of 

the former species is borne on an elongate prominence. Another distinctive feature of An. 

implexus is the presence of posterolateral tufts of piliform scales on abdominal tergum IV, a 

feature that is shared with An. oiketorakras and An. nimbus of the Neotropical subgenera 

Lophopodomyia and Stethomyia, respectively, both of which appear to be more closely 

related to subgenus Anopheles than to An. implexus (Figs 2, 3). The scale-tufts are usually 

absent in species of subgenus Anopheles, and are spatulate rather than piliform when present. 

Larval seta 1-M of An. implexus is unique in having a long and broad rachis. The rachis is 

short or long and narrow in the other anopheline species included in the analyses. Somewhat 

similar to the results reported here, Sallum et al. (2000) found that a clade comprised of An. 

implexus + (Kerteszia + Nyssorhynchus) was the earliest lineage of genus Anopheles. The 

relationship, however, was very weakly supported (bootstrap < 50%; Bremer support 2). Reid 

& Knight (1961) suggested a relationship between An. implexus and subgenus Nyssorhynchus 
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based on the mutual occurrence of extensive pale scaling on the hindtarsi of adults and the 

unserrated leaflets of the abdominal palmate setae of larvae. In addition to the characters 

mentioned above, Wilkerson & Peyton (1990) found that the wing of An. implexus is 

distinctive in having both apical and preapical pale spots, and noted that the presence of 

speckled legs, prominent abdominal scale-tufts and pale hindtarsomeres suggested that An. 

implexus is “a possible ancestor of the New World species of the subgenera Nyssorhynchus, 

Kerteszia, Lophopodomyia, and the Arribalzagia Series”.  

 

Subgenera Kerteszia and Nyssorhynchus 

Phylogenetic studies of anopheline mosquitoes based on both morphological and molecular 

data support the reciprocal monophyly and sister relationship of subgenera Kerteszia and 

Nyssorhynchus (Sallum et al. 2000, 2002; Collucci & Sallum 2003; Harbach & Kitching 

2005). The sister relationship recovered in the collapsed tree (Fig. 3) is supported by six 

characters (Fig. S1), including three that are unique and not contradicted (63:1, accessory 

setae of gonocoxite present; 68:1, parabasal setae inserted on margin of gonocoxite; 77:1, 

specialized apical seta of ventral claspette present, spiniform and foliform). Relationships of 

the informal group taxa represented by the species that comprise the Nyssorhynchus clade are 

delineated in Figure 4. The monophyly of the subgenus is strongly supported by 12 characters 

(Fig. S1), two of which are unique and not contradicted (57:1, ventromesal connection of 

gonocoxite developed as a truncate process; 204:0, pupal seta 10-VI absent). However, the 

Myzorhynchella and Argyritarsis Sections are not monophyletic; the Myzorhynchella Section 

is paraphyletic relative to species of the Argyritarsis and Albimanus Sections. The 

Argyritarsis Series is polyphyletic and species of the Albimanus and Oswaldoi Series of the 

Albimanus Section fall in an unresolved clade together with a monophyletic Albitarsis Series 

of the Argyritarsis Section. The monophyly of the Albitarsis Series, however, is only weakly 
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supported (GC = 8 or 9). Despite the more stringent assessment of clade support, it is worth 

noting that the same pattern of relationships was recovered as in our previous study (Fig. S3). 

Bourke et al. (2010) performed a phylogenetic study of relationships among 21 

species of subgenus Nyssorhynchus based on sequences for the mitochondrial ND6 and 

nuclear white genes. When the two genes were combined in a single analysis, the 

Myzorhynchella Section was recovered as a monophyletic group in a basal relationship to the 

Albimanus and Argyritarsis Sections, neither of which, in agreement with the results of the 

present study, were recovered as a monophyletic group. It is interesting to note that species of 

the Myzorhynchella Section were recovered as two separate clades in a polytomy with a third 

clade comprised of the other sections when the ND6 sequence data were analysed alone. The 

preponderance of evidence, gleaned from analyses of morphological and molecular data 

(Sallum et al. 2000, 2002; Harbach & Kitching 2005; Bourke et al. 2010; present study), 

convincingly indicates that the current internal classification of subgenus Nyssorhynchus 

(Harbach 2013; http://mosquito-taxonomic-inventory.info/subgenus-

ltemgtnyssorhynchusltemgt) is not based on natural relationships.  

 

Subgenus Cellia 

Phylogenetic analyses of morphological and molecular data have shownindicate that 

subgenus Cellia is a monophyletic group (Krzywinski et al. 2001a, b; Sallum et al. 2000, 

2002; Harbach & Kitching 2005; Mohanty et al. 2009; Wang et al. 2014; Norris & Norris 

2015). The Cellia clade shown in the MPC (Fig. 2) is supported by a combination of four 

characters, none of which are unique (Fig. S1). However, the clade is fairly well supported as 

indicated by a GC value of 47 (Fig. 3). It is interesting to note that in the analyses of Wang et 

al. (2014), Cellia was recovered as a monophyletic group based on D2 rDNA sequences of 

28 species of Cellia and eight species of subgenus Anopheles, but was polyphyletic in a D3 



 14 

rDNA phylogeny that included sequences for 49 species of Cellia and the same eight species 

of subgenus Anopheles due to the exclusion of An. (Cellia) maculatus from the clade 

comprising subgenera Anopheles plus the remaining Cellia. 

 Mohanty et al. (2009) stated that they conducted neighbour-joining (NJ) and 

maximum parsimony analyses of sequences for the COI and COII loci of mtDNA and the D3 

and ITS regions of rDNA obtained from different numbers of Cellia species (18, 21, 26 and 

26 genetic species respectively), but only illustrated neighbour-joining trees, noting for each 

locus that the “neighbor-joining and maximum-parsimony methods produced equivalent 

topologies”. It is doubtful that “equivalent” indicates that the trees had identical topologies. 

As neighbour-joining is a phenetic method and the grouping of species, unlike the clades 

constructed from shared-derived characters in phylogenetic methods, is based on overall 

similarity; hence, the relationships portrayed in the NJ trees of Mohanty et al. are not 

“evolutionary relationships”. Consequently, their results are not relevant to the present 

discussion. 

The internal classification of Cellia stems from the framework of Edwards (1932) and 

the revised and updated schemes of Grjebine (1966), Reid (1968), Gillies & de Meillon 

(1968) and Harbach (1994). The subgenus is divided into six principal informal groups, the 

Cellia, Myzomyia, Neocellia, Neomyzomyia, Paramyzomyia and Pyretophorus Series, each 

of which has some or all of the included species classified in one or more species Groups. 

The subgenus includes 224 formally named species. The Cellia Series includes eight species, 

two of which form the subordinate Squamosus Group; the Myzomyia Series comprises 65 

species, 17 unplaced and 48 divided between four species Groups; the Neocellia Series has 

32 species, 15 unplaced and 17 classified in three species Groups; the Neomyzomyia Series 

includes 92 species, 18 unplaced and 74 divided between 10 species Groups; the 

Paramyzomyia Series has only six species split between two species Groups; and the 
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Pyretophorus Series encompasses 21 species, 10 unplaced and 11 divided between three 

species Complexes (Harbach, 2013; http://mosquito-taxonomic-inventory.info/node/11370). 

The present analysis only included 21 species (9%) of the subgenus,: two from the Cellia 

Series (one unplaced and one representing the Squamosus Group); six from the four species 

Groups of the Myzomyia Series; two fromrepresenting all the six series and all but two of the 

species groups of the Neocellia Series. (one unplaced and one representing one of the three 

species Groups); seven representing six of the 10 species Groups of the Neomyzomyia 

Series; two from the Paramyzomyia Series, representatives of the two species Groups; and 

two from the Pyretophorus Series, an unplaced species and a member of the Gambiae 

Complex. Despite the severely limited taxon representation of this and previous 

morphological (Sallum et al. 2000; Harbach & Kitching 2005) and molecular studies (Sallum 

et al. 2002; Mohanty et al. 2009; Norris & Norris 2015), it is obvious that a significant part of 

the current internal classification of Cellia does not reflect evolutionary relationships. In 

comparison with our previous study (Fig. S3), the relationships within Cellia recovered in the 

present study (Fig. 5) are more poorly resolved, but this, in part, is due to our now more 

stringent application of branch support. Whereas the Cellia, Myzomyia, Paramyzomyia and 

Pyretophorus Series were recovered previously as monophyletic groups (Fig. S3), The 

relationships of the informal group taxa delineated in Fig. 5 reveal that the Myzomyia, 

Neocellia, Neomyzomyia and Paramyzomyia Series are not monophyletic. The only the 

Cellia Series now appears to be monophyletic (strongly supported, GC = 95)., but However, 

the monophyly of the Pyretophorus Series is questionable due to the placement of An. vagus 

and An. gambiae as separate terminals within the eleven-way polytomy. These results mirror 

the results of Sallum et al. (2000), whose study included 61 fewer morphological characters 

for 64 of the 67 species included herein. As shown in many other studies (e.g. Sallum et al. 

2007; Wang et al. 2014), the Funestus Group (Myzomyia Series) and the Leucosphyrus 

http://mosquito-taxonomic-inventory.info/node/11370
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Group (Neomyzomyia Series) are monophyletic assemblages. It is noteworthy, however, that 

An. theileri Edwards of the Wellcomei Group of the Myzomyia Series was recovered within 

the Funestus Group in the maximum parsimony analyses of COI mtDNA and ITS2 rDNA 

sequence data conducted by Norris & Norris (2015), indicating that the group may not be 

monophyletic. 

Sallum et al. (2002) conducted a molecular analysis of anopheline relationships based 

on ribosomal (18S, 28S) and mitochondrial (COI, COII) DNA sequences. Contrary to the 

findings reported here and by Sallum et al. (2000), the Myzomyia, Neocellia, Neomyzomyia 

and Pyretophorus Series were recovered as monophyletic groups based on analyses of the 

ribosomal and combined ribosomal and mitochondrial sequence data. Those results, however, 

cannot be construed to confirm the monophyly of the four series because significantly fewer 

taxa were included in the analyses. Whereas the present study and that of Sallum et al. (2000) 

included 21 species of subgenus Cellia, the molecular study of Sallum et al. (2002) only 

included sequence data for nine species. In addition to five of the species included here, An. 

dirus, An. farauti (Neomyzomyia Series), An gambiae (Pyretophorus Series), An. funestus 

and An. minimus (Myzomyia Series), the molecular study included An. stephensi Liston 

(Neocellia Series, unplaced; substitution for An. superpictus), and three species, in addition to 

An. gambiae, of the Pyretophorus Series, An. arabiensis Patton (Gambiae Complex), An. 

sundaicus (Rodenwaldt) (Sundaicus Complex) and An. subpictus Grassi (Subpictus 

Complex). Despite the inclusion of three additional members of the Pyretophorus Series, in 

the absence of molecular data for An. vagus (Fig. 5), and probably also An. multicolor (sister 

to An. vagus in Fig. 2), the monophyly of the series must remain in doubt. Likewise, the 

Myzomyia and Neomyzomyia Series cannot be inferred to be monophyletic in the absence of 

data for those species included in the present study that cause these groups to be polyphyletic. 

Furthermore, the Neocellia Series cannot be regarded as being monophyletic based on the 
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inclusion of only one species of the group (i.e. An. stephensi). It is interesting to note, 

however, that Bayesian analysis of D2 rDNA sequence of 28 species of Cellia (An. vagus 

absent) support the finding of Sallum et al. (2002), whereas their parsimony analysis of D3 

rDNA sequence for 49 species of the subgenus (An. vagus included) only recovered the 

Neomyzomyia Series (four species) as monophyletic.  

One is tempted to assume that tThe molecular phylogeny of Neafsey et al. (2015) 

based on protein sequences of 1,085 single-copy orthologs for seven species of the 

Pyretophorus Series ‒ five species of the Gambiae Complex, An. christyi (unplaced) and An. 

epiroticus (Sundaicus Complex) ‒ and the phylogeny of Anthony et al. (1999) based on 

morphological data for 10 species of the group, convincingly supports the monophyly of the 

series,. but in fact it is illogical to infer the monophyly of the entire series based on limited 

taxon sampling. The phylogeny of Neafsey et al. also included lineages that correspond to the 

Myzomyia Series (three species), Neocellia Series (two species) and Neomyzomyia Series 

(two species), but the probability that these clades accurately reflect a common ancestry for 

all species of each group is doubtful in view of the relationships recovered for significantly 

more species included in the morphological and other molecular studies conducted to date. 

It is interesting to compare the relationships of the seven species of the Pyretophorus 

Series included in the study of Neafsey et al. (2015) with the relationships recovered among 

10 species of the group in the morphological phylogenetic study of Anthony et al. (1999). 

The Oriental An. epiroticus was recovered as the basal taxon in the former study whereas the 

two Afrotropical species included in the latter study (An. christyi and An. gambiae) were 

basal and paraphyletic relative to the Oriental species, with An. christyi in the most basal 

position. Anopheles christyi was also recovered basal to the Afrotropical species (Gambiae 

Complex) in the phylogeny of Neafsey et al. (2015). 
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Subgenus Anopheles 

The clade comprising subgenus Anopheles in the MPC (Fig. 2) is supported by a combination 

of six characters (Fig. S1), three of which are unique and not contradicted (66:1, gonocoxite 

with multiple parabasal setae; 67:1, parabasal seta(e) of gonocoxite  differentiated; and 69:1, 

parabasal setae borne on a small protuberance or swelling). However, despite this, the clade 

receives zero GC support and so does not appear in the collapsed tree (Fig. 3). The inclusion 

of Bironella within genus Anopheles contradicts the results of other analyses based on 

molecular and morphological data (Besansky & Fahey 1997; Foley et al. 1998; Harbach & 

Kitching 1998; Krzywinski et al. 2001b), but is consistent with the analyses of Sallum et al. 

(2002) based on ribosomal (18S, 28S) and mitochondrial (COI, COII) DNA sequences that 

support the paraphyly of genus Anopheles relative to Bironella. 

Relationships of the informal group taxa of the clade are delineated in Figure 6. As is 

the case with subgenus Cellia, the relationships within subgenus Anopheles are much less 

resolved than in our previous study (Fig. S2). The Angusticorn and Laticorn Sections, the 

Anopheles and Cycloleppteron Series of the former and the Myzorhynchus Series of the latter 

are not monophyletic. The Anopheles Series is not monophyletic because it excludes An. 

punctipennis (as previously), and two species Groups (Aitkenii and Stigmaticus) fall within a 

paraphyletic relationship to a clade comprised of Stethomyia + (Baimaia + Bironella), the 

three of which were basal and paraphyletic to all other Anopheles in the previous study (Fig. 

S2). The two species of the Cycloleppteron Series are unrelated, with An. annulipalpis sister 

to a clade comprised of the Coustani + Hyrcanus Groups. Only the Lophoscelomyia Series of 

the Angusticorn Section and the Arribalzagia Series of the Laticorn Section are recovered as 

monophyletic groups.  

When Reid & Knight (1961) proposed the classification of subgenus Anopheles, they 

listed the informal group taxa in order from the Laticorn Section, with the Christya, 
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Arribalzagia and Myzorhynchus Series, and the Angusticorn Section, with the 

Cycloleppteron, Lophoscelomyia and Anopheles Series. This order was thought to reflect 

relationships “reasonably well”, with the Christya Series being the “more primitive” and 

Anopheles Series the “more advanced”. As noted above, the results of the present study 

support the “more primitive” position of the Christya Series, but polyphyletic arrangement of 

the Anopheles Series (Fig. 6) fairly convincingly shows that it does not include the “more 

advanced” species of the subgenus. The Anopheles Series was also found to be polyphyletic 

in previous studies, with its members interspersed in a complexity of inter-group 

relationships (Sallum et al. 2000) and with Bironella, Stethomyia and Lophopodomyia 

interspersed within it (Harbach & Kitching 2005). The present results differ in that part of the 

Anopheles Series is recovered in a sister relationship to a terminal clade comprised of 

Stethomyia + (Baimaia + Bironella) (Fig. 6). It is interesting to note that collapsing those 

groups in Fig. 2 with a GC value of less than 1 does not affect the relationships within the 

clade comprising An. aitkenii + (An. corethroides + (Stethomyia + (Baimaia + Bironella))) 

(Fig. 3). Sallum et al. (2000) recovered Bironella and Stethomyia as monophyletic sister 

groups in the absence of Baimaia, and concluded that they should be classified as informal 

groups within genus Anopheles rather than generic-level taxa. In their subsequent molecular 

study (Sallum et al. 2002), Bironella was placed as sister to Lophopodomyia in a clade that 

also included Nyssorhynchus and Kerteszia, and suggested that Bironella might be treated as 

a subgenus of Anopheles. Although originally introduced as a genus (Theobald 1905), 

Bironella was treated as a subgenus of Anopheles by Christophers (1924) and some other 

authors between 1924 and 1938 (Marks et al. 1963). Belkin (1962) considered Bironella to be 

an ancient group that shares a number of features with subgenus Anopheles, notably the 

absence of cibarial armature in adult females and the position and development of seta 1-A 

on the antennae of larvae. The placement of Bi. gracilis basal to An. atroparvus (subgenus 
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Anopheles) + An. gambiae (subgenus Cellia) in the Bayesian likelihood tree of Reidenbach et 

al. (2009) derived from a data set consisting of six nuclear genes seems to support Belkin’s 

contention; however, the monophyly of genus Anopheles was not supported in all of their 

analyses ‒ the relationship of Bi. gracilis + An. atroparvus was also recovered. Considering 

the discordant relationships observed in the phylogenetic studies conducted thus far, it is not 

possible to determine objectively whether Bironella should retain generic status or be 

classified as a subgenus or species group within Anopheles. If the relationships indicated in 

Fig. 3 prove to be correct and Bironella is deemed to warrant generic status, then firmly 

established monophyletic lineages within the current concept of subgenus Anopheles may 

also require generic status. Two such groups are the Arribalzagia and Lophoscelomyia Series, 

both of which were originally established as genera (Arribalzagia Theobald, 1903a and 

Lophoscelomyia Theobald, 1904). Species of the Arribalzagia Series are the only anophelines 

that have the subcostal vein of the wing ending in an isolated dark spot distal to the sector 

dark spot (Wilkerson & Peyton 1990), which in addition to the six homoplastic characters 

shown in Fig. S1, confirms the monophyly of the series (Fig. 3: GC = 53). The monophyly of 

the Lophoscelomyia Series is strongly supported (Fig. 3: GC = 94) by a combination of five 

homoplastic characters (Fig. S1). Sallum et al. (2000), and Harbach & Kitching (2005) and 

Collucci & Sallum (2007) also found strong support for the monophyly of this group. Adults 

of the Lophoscelomyia Series are distinctive in having white scales on the coxae, dark-scaled 

legs, and dorsal and ventral scales on the last abdominal segment. Males lack leaflets of the 

aedeagus. 

Collucci & Sallum (2007) erroneously stated that in contrast “to the hypothesis of 

Harbach and Kitching (2005), the monophyly of the Cycloleppteron Series” was not 

supported by the results of their study. However, the Cycloleppteron Series was only 

represented by An. grabhamii in the study of Harbach & Kitching, and monophyly cannot be 



 21 

demonstrated from only a single included taxon. As in the present study, Collucci & Sallum 

found that An. annulipalpis and An. grabhamii are unrelated and the Cycloleppteron Series is 

a monobasic category that only includes the latter species. Whereas the two species were 

recovered in a paraphyletic relationship basal to a clade comprised of species of the 

Arribalzagia, Christya and Myzorhynchus Series in the implied weighting analysis of 

Collucci & Sallum, the results of the present study suggest that the two species are more 

distantly related, with An. annulipalpis sister to a terminal clade comprised of the Coustani 

and Hyrcanus Groups (Fig. 6). The association of An. annulipalpis with those groups of 

species is fairly well supported (GC = 38) by three homoplastic characters (Fig. S1). The 

Coustani-Hyrcanus lineage comprises a homogeneous assemblage of species that are 

distinguished by the unique presence of lateral patches of scales on the clypeus (Fig. S1, 

ch.character 6:1). Clypeal scales are absence in An. annulipalpis. In the absence of further 

information, it is not possible to assign An. annulipalpis to an existing taxonomic group, so 

for the time being it is retained in the Angusticorn Section as an unplaced species. 

The terminal clade consisting of An. aitkenii + (An. corethroides + (Stethomyia + 

(Baimaia + Bironella))) sits in stark contrast to the relationships of these taxa at the base of 

genus Anopheles in the phylogeny of Harbach & Kitching (2005), expressed parenthetically 

as Baimaia + (Bironella + (Stethomyia + (An. corethroides + (all other Anopheles)))), with 

An. algeriensis basal to three other species (An. aitkenii, An. judithae and An. sintonoides) in 

a clade that is sister to the remaining Anopheles species. The placement of these taxa at 

opposite ends of the Anopheles topologies is perhaps not as important as their apparent 

phyletic associations. The Oriental An. aitkenii, unlike the Palaearctic An. algeriensis, which 

resembles species of the Australian Stigmaticus Group, represented in the analyses by An. 

corethroides, in having a single parabasal seta, has multiple parabasal setae; this is perhaps 

why its placement as the sister to An. corethroides + (Stethomyia + (Baimaia + Bironella)) is 
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only weakly supported by a GC value of 5 (Fig. 3). The larger sister group is supported by 

three characters (Fig. S1), one of which is unique and not contradicted (140:1, ventral ramus 

(sclerotized) reaching the ventral edge of the labiohypopharynx) and a GC support of 23 or 

24. The monophyly of subgenus Stethomyia and that of genus Bironella are very strongly 

supported (GCs = 100 and 97 respectively) whereas the sister relationship of Baimaia and 

Bironella is only weakly supported by two homoplastic characters and a GC support of 25 

(Fig. 3). If Bironella, Baimaia and Stethomyia are to retain their generic/subgeneric status, 

then it would seem appropriate to afford the same rank to the Stigmaticus Group.  

The results of the present analyses do not agree with the conclusions of Krzywinski et 

al. (2001a, b), Sallum et al. (2002), Collucci & Sallum (2003) and Neafsey et al. (2015) that 

subgenus Anopheles is monophyletic. Sallum et al. (2000), who concluded likewise, included 

64 species of Anopheles in their analyses of morphological data, whereas Sallum et al. (2002) 

only included 32 species in their molecular analyses. The molecular phylogenetic studies of 

Krzywinski et al. were based on only five species representing the Anopheles (Maculipennis 

and Pseudopunctipennis Groups), Arribalzagia and Myzorhynchus (Coustani Group) Series, 

and those of Neafsey et al. included only two species of the subgenus, representing the 

Maculipennis and Hyrcanus Groups. We are confident that the inclusion of more species of 

all currently recognized informal groups of the subgenus will confirm the polyphyly of the 

subgenus. The inclusion of representatives of other taxonomic groups and additional DNA 

markers in molecular analyses will show, in agreement with morphological data, that 

subgenus Anopheles is a polyphyletic assemblage of species. 

 

Evolution of Anopheles 

If An. implexus and the species of Lophopodomyia, Stethomyia, Baimaia and Bironella are 

ignored, the three large clades shown in Fig. 2 are the same as those constructed from the 
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protein sequences of 1,085 single-copy orthologs in the study of Neafsey et al. (2015). The 

topology is the same, with Nyssorhynchus sister to a clade comprised of Anopheles and Cellia 

as monophyletic sister taxa: Nyssorhynchus + (Anopheles + Cellia). If An. implexus is indeed 

the most primitive species of Anopheles (see above), then it must have evolved from an 

ancestor that predates the splitting of the lineage that gave rise 100 million years ago to the 

ancestral lineages of Nyssorhynchus and Anopheles + Cellia (Neafsey et al. 2015). Although 

the separation of An. implexus from the other Anopheles is only weakly supported (Fig. 3, GC 

= 2), we nevertheless feel justified, based on the morphological distinctions and similarities 

with genus Chagasia noted above, in recognizing it as the monotypic member of a separate 

subgenus; hence, we hereby resurrect the generic name Christya Theobald, 1903, stat. nov., 

from synonymy with Anopheles Meigen, 1818 and recognize it as a valid subgenus for this 

species. Theobald (1903b) originally introduced Christya as a genus with Christya implexa as 

the only included species. In view of the similarities that An. (Christya) implexus shares with 

species of Chagasia (see above), it might be appropriate to recognize Christya as a separate 

genus, but doing so in the absence of molecular data for a greater number of Anopheles 

species would be premature. If, however, Christya is found to be distinct enough to be 

afforded generic status, available morphological and molecular evidence (Sallum et al. 2002; 

Neafsey et al. 2015; present study) suggests that Kerteszia + Nyssorhynchus is the most basal 

group of Anopheles. This would support the suppositions of Belkin (1962), Krzywinski et al. 

(2001b) and Harbach & Kitching (2005). Belkin (1962) hypothesized that anophelines 

initially differentiated in the American Mediterranean Region; Harbach & Kitching (1998) 

suggested a possible New World origin of Anophelinae based on the basal placement of 

Chagasia relative to Anopheles + Bironella in their phylogeny of mosquito genera; and 

Krzywinski et al. (2001b) provided support for the South American origin of Anophelinae 

based on a phylogeny of 16 anopheline species inferred from sequences of two protein-
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coding nuclear genes and the Neotropical distributions of Chagasia and subgenera 

Anopheles, Lophopodomyia, Nyssorhynchus and Stethomyia of Anopheles. However, an 

alternate hypothesis was more recently proffered by Harbach (2013), who advanced the 

theory of Christophers (1933) that the ancestral lineage of Anopheles existed before the 

breakup of Pangaea and subsequently diversified into the extant subgenera after the 

separation of the continents. The earlier evolution of the lineages that gave rise to Chagasia 

(South America) and Christya (Africa) favours the Christophers-Harbach evolutionary 

scenario, but a great deal more work needs to be done before the origins and genealogical 

relationships of Anophelinae are known with certainty, and a natural classification of the 

subfamily can be realized. 

 

Concluding comments 

In conclusion, there seems to be little agreement between the phylogenetic relationships of 

anopheline mosquitoes gleaned from studies conducted thus far,. The results of molecular 

studies in general do not agree with the results of morphological studies because they are 

based on fewer and different species. Clearly, the exemplar approach is of limited use for 

resolving deeper relationships and a natural classification of Anophelinae will not be realized 

until phylogenetic analyses include both morphological and molecular data for most or all 

species of the subfamily. For the time being, we must continue to use the current generic, 

subgeneric and informal group taxa as a framework for analysing species relationships and 

testing phylogenetic hypotheses.  
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Figure legends 

 

Fig. 1  Graph showing the summed GC supports at K values 1‒33 and a terminal equal 

weighted analysis using the groups found in the K = 30 MPC (see text for details). 

Fig. 2  The most parsimonious cladogram found for K = 30. 

Fig. 3  Tree obtained from the K = 30 MPC when GC values < 1 are collapsed (only values > 

0 are shown). An asterisk denotes values that may be 1 less (e.g. 8 instead of 9 for An. 

albitarsis + An. braziliensis) in one or more of the 10 replicates (see text for details). 

Fig. 4  The Kerteszia + Nyssorhynchus clade of figure 3 with the informal Sections and 

Series delineated. 

Fig. 5  The Cellia clade of figure 3 with the informal Series and species Groups delineated. 

Fig. 6  The terminal clade of figure 3 with the informal Sections, Series and species Groups 

of subgenus Anopheles delineated. 
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Supporting information 

 

Fig. S1. Character support for the clades of the MPC for K = 30 shown in Fig. 2. 

Numbers on the branches correspond to the characters and codes listed in Appendix S1 and 

the data set shown in Appendix S2. Closed circles indicate “unique” character states that can 

be placed onto the cladogram in only a single position, although they may be interpreted as 

undergoing subsequent transformation or secondary reversal. Open circles represent 

homoplastic character states that are placed on more than one branch of the cladogram. 

 

Fig. S2. Phylogeny of subfamily Anophelinae, modified from Harbach & Kitching 

(2005), indicating relationships within subgenus Anopheles. Filled circles indicate Bremer 

support values greater than 0.8. 

 

Fig. S3. Phylogeny of subgenera Cellia, Kerteszia and Nyssorhynchus, modified from 

Harbach & Kitching (2005), indicating relationships within subgenera Cellia and 

Nyssorhynchus. Filled circles indicate Bremer support values greater than 0.8. 

 

Appendix S1. Annotated list of morphological characters scored for the two outgroup 

and 67 ingroup taxa included in the cladistic analyses. The morphological terminology used 

herein is listed and defined in the Anatomical Glossary of the Mosquito Taxonomic Inventory 

(http://mosquito-taxonomic-inventory.info/). Numbers in brackets following character 

numbers are those that Harbach & Kitching (2005) used in whole or in part for the same 

characters. See the data matrix in Appendix S2.  

 

http://mosquito-taxonomic-inventory.info/
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Appendix S2. Data matrix for the 69 taxa and 224 morphological characters included 

in the cladistic analyses. Missing data are indicated by “?”; characters that could not be 

scored due to absence of homologous structures are indicated by “–”. Polymorphic characters 

are explicitly coded as such. See Appendix S1 for character descriptions. 

 

 


