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Abstract 
Sugary cassava or mandiocaba is a cassava variety of potential use for bioethanol production. In this study, 
laboratory-scale fermentations were carried out in a bioreactor with a working volume of 1L, using the yeast 
strain LNF CAT-1. A central composite design (CCD) was applied to determine the extent to which pH, 
temperature, and yeast concentration influence ethanol production with the aim of improving the fermentation 
process. The individual effects and the interaction of these factors were analyzed using a surface response 
method. Physicochemical properties of the material were also investigated and the analysis of root 
characterization showed high moisture content (~91%) and a low amount of starch (~4.0%), ash values close to 
1.0%, total fibers 0.4%, proteins 0.15%, and lipids 0.1%. The results obtained from the wort presented a low 
acidity (~0.2%), pH close to neutrality (~6.5%), total soluble solids values of ~5.8%, glucose content ~2.3%, 
fructose ~1.0%, and sucrose ~1.2%. The second-order polynomial regression model determined that the 
maximum ethanol production of 2.8% (v/v) would be obtained when the optimum pH, temperature, and yeast 
concentration were ~5.0, 32-36 ºC, and ~10-14 g L-1, respectively.  

Keywords: central composite design, bioethanol, alcoholic fermentation, characterization 

1. Introduction 
The development of sustainable energy resources and the reduction of greenhouse gases from fossil fuels have 
become essential topics of interest worldwide (Pradhan, Mahajani, & Arora, 2018). It is known that new sources 
of cheap fossil fuels are no longer available and experts have been issuing warnings about the possible depletion 
of current sources in the near future (Sipra & Sarwar, 2018).  

It is now clear that the replacement of current fossil energy will require the development of new strategies to 
reduce our global energy consumption and the development of a panel of renewable energy sources (Carneiro et 
al., 2017). In this scenario, sustainable biofuel production is a valuable tool to curb climate change (Creutzig et 
al., 2015). 

As an example of biofuel, bioethanol has received increasing attention due to its excellent properties, mature 
production technology, and widely available raw material. In addition to corn in the United States and China, 
sugarcane in Brazil and wheat in some European countries, cassava has also been applied to produce bioethanol 
in many countries, especially tropical countries in Africa, Asia, and Latin America (Kristensen et al., 2014; 
Zhang et al., 2016).  

Cassava (Manihot esculenta Crantz) is grown in more than 100 countries, and Brazil accounted for 6.2% of 
world production in 2018, the fifth-largest producer in the world (FAO, 2018). Among the varieties of cassava 
grown in the Amazon, there is sugary cassava, also known as mandiocaba, used since pre-Columbian times by 
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indigenous people. These cultivars have high productivity and high levels of free sugars in their roots (Carvalho 
et al., 2004; Souza et al., 2013). 

However, several physicals (temperature and osmotic pressure), chemical (pH, oxygenation, inhibitors, and 
mineral and organic nutrients) and microbiological factors (species, strain, and concentration of yeast and 
bacterial contamination), affect fermentation yield and conversion efficiency of sugar in ethanol (Lima, 
Aquarone, Borzani, & Schimidell, 2001). 

The ethanol production process from sugary cassava is similar to that of sugarcane, as it does not require the 
hydrolysis process, which starch is converted into glucose (Castelo et al., 2004; Wangpor et al., 2017; Fernades, 
Garcia, Fonseca, Leite, & Paz, 2020), becoming an alternative to the agroecological zoning of sugarcane 
imposed on the Amazon biome (Biofuels Watch Center [BWC], 2010). In this context, the present study 
evaluated the physicochemical properties of sugary cassava wort and root, as well as evaluated the effect of 
factors such as temperature, pH, and yeast concentration on alcoholic fermentation for ethanol production. 

2. Material and Methods 
2.1 Feedstock 

The sugary cassava roots used were obtained from the active germplasm bank (AGB) of Embrapa Eastern 
Amazon, Brazil. Different cultivars were collected (São Francisco, MBA. Paulo Ribeiro, Pirabas 2, Igarapé Açú 
CAS 3613) and transported to the laboratory for processing, where cleaning was carried out with the help of a 
brush and running water to remove foreign materials such as sand, straw, leaves, etc. Rotting roots were 
discarded, as they could influence the response in the fermentation process. The rest of the roots were crushed 
(with the aid of an industrial crusher) and pressed in synthetic fabric. For studying fermentation, the different 
cultivars were homogenized in a single sample. 

2.2 Wort Obtaining  

The wort, with approximately 5.8 °Brix, was first pasteurized to eliminate unwanted microorganisms, using a 
small-scale continuous system, consisting of stainless steel coil, pre-heating bath, constant temperature control, 
peristaltic pump, and flow speed control. 

The binomial time/temperature pasteurization was adjusted in 20 seconds at 90 °C. Then, the wort was cooled 
and packed in polyethylene bags with a capacity of 1 L. The resulting wort was stored in a cold chamber at 
-18±2 °C until analysis. 

2.3 Microorganism 

The yeast used was Saccharomyces cerevisiae CAT-1, obtained from LNF Latino Americana, located in Bento 
Gonçalves (RS), Brazil. The sample with a minimum of 10.109 CFU g-1 live cells and 65% viable cells were 
hydrated in the fermentation wort (100 mL 5 min-1 at 30 °C) and added to the bioreactor. 

It is important to highlight that this microorganism is highly used in Brazil by ethanol producers, as it shows 
resistance to high ethanol concentration and temperatures, low fermentation time, and remains in the process 
throughout the season. In addition, this yeast was isolated from ethanol plants in 1998 (Basso, Amorim, Oliveira, 
& Lopes, 2008; Santos et al., 2017).  

2.4 Bioreactor and Fermentation Conditions 

Fermentation runs were carried out using a TECNAL® bioreactor, on a laboratory scale with a capacity of 1.5 L. 
The equipment consists of an aeration chamber, peristaltic pumps, performance measurement modules, and 
thermostatic bath modules, in addition to a container glass bioreactor with stainless steel lid. The ethanol 
fermentation runs were performed under semi-sterile conditions. Before each fermentation, the bioreactor was 
washed with soap and water and sanitized using 1.5 mL L-1 of sodium hypochlorite (2.0-2.5% w/w of active 
chlorine). After 1 hour, 2 mL of sodium thiosulfate solution (50 g L-1) was added to neutralize residual chlorine. 
The bioreactor liquid content was then discarded past 30 minutes. After sanitization, 1 L of wort was added to 
the bioreactor along with the hydrated yeasts, and fermentation was started, with a constant agitation rate of 100 
rpm. 

2.5 Statistical Analysis 

A central composite design (DCC) was performed using Statistica 10 software (StatSoft®, USA), with two 
original levels, 2³ factorial points, 6 axial points, and 3 central points. In order to determine the best operational 
conditions for the fermentation process, the variables chosen to be studied were pH, Temperature, and yeast 
concentration. The pH varied from 3.1 to 5.9, temperature from 26.8 to 36.2, and yeast concentration in the 
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medium from 3.2 to 16.8. The alpha value of orthogonality used was 1.35313 and the coding equations for 
Temperature (X0), pH (Y0), and yeast concentration (Z0) are shown respectively in Equations 1, 2, and 3. The 
runs were performed randomly to avoid bias in the results. 

X1 = 
(X0 – 31.5)

3.5
                                    (1) 

X2 = 
(Y0 – 4.5)

1
                                    (2) 

X3 = 
(Z0 – 10)

5
                                    (3) 

2.6 Analytical Methods 

2.6.1 Moisture 

The moisture content was determined according to the AOAC method 984.25 (1984). The sample (±2 g) was 
placed in a previously weighed porcelain crucible. Then placed in the oven at 105 °C, cooled in a desiccator, and 
then weighed. This procedure was repeated until a constant weight was obtained. 

2.6.2 Ashes 

The ash content was determined according to the AOAC method 923.03 (1997). Each dry sample (±2 g) 
previously charred was placed in a porcelain crucible, incinerated in a muffle at a temperature of approximately 
550 °C until constant weight. 

2.6.3 Fiber 

The determination of the total fiber content was obtained through the acid detergent method (FDA) according to 
AOAC, (method 973.18, AOAC, 1997). 

2.6.4 Proteins 

The crude protein content was determined according to AOAC method 920.87 (1997). The total nitrogen content 
was determined using the Kjeldahl method and the protein content calculated by multiplying the nitrogen value 
by the general factor 6.25. 

2.6.5 Lipids 

The total lipid content was determined by the cold extraction method using the Bligh-Dyer method (1959). 
Before carrying out the analysis, the moisture content of the sample was reduced to approximately 10%, due to a 
large amount of water present. 

2.6.6 Total Soluble Solids  

The determination of total soluble solids (TSS) consists of the measurement of the solution refractive index. The 
results were expressed in ºBrix through the use of a digital refractometer HISEG RTD-45 (0-32 °Brix), 
according to method 932.12 of AOAC (1997). 

2.6.7 Total Reducing Sugars  

The determination of the Total Reducing Sugar (TRS) concentration expressed as glucose, present in the wort, 
was performed by the Eynon & Lane method, using the equipment referred to as REDUTEC® (TECNAL, Brazil, 
model TE-088), for the titration. This method consists of the sum of reducing sugars present in the sample and 
those from sucrose hydrolysis, according to AOAC method 31.034-6 (1984). 

2.6.8 Determination of Starch, Glucose, Fructose, and Sucrose 

The content of glucose, fructose, and sucrose (soluble sugars), present in the wort during fermentation, was 
obtained based on the enzymatic method published by Stitt, Lilley, Gerhardt and Heldt (1989), where 100 μL 
buffer containing 200 mM Imidazole, 10 mM MgCl2 was placed in each well of the ELISA plate. 4 mM NAD+, 
2 mM ATP and 2.4 U of G6PDH; 5 μL of extract (samples centrifuged 10 000 rpm 3min-1 and diluted 1:20) and 
90 μL of distilled water. Glucose, fructose, and sucrose were quantified by the addition of 5 μL of hexokinase 
(1.4 U), 5 μL phosphoglucoisomerase (0.6 U), and 5 μL invertase (0.8 U), respectively, each time the curve of 
reaction reached a plateau. The analyzes were performed in triplicate, and the readings were done at 340 nm. 

For the quantification of starch, 100 mg of fresh root were homogenized in ethanol 80% (v/v), incubated at 
70 °C for 90 min, and subjected to two centrifugations (15 000 g 10 min-1). The resulting pellet was suspended in 
KOH at 95 °C for one hour, neutralized in acetic acid, and again centrifuged (15 000 g 10 min-1). The starch was 
then hydrolyzed in citrate buffer (100 mM at pH 4.6) containing amyloglucosidase and α-amylase (adapted from 
Trethewey et al., 1998), and the released glucose was quantified as described above.  
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2.6.9 pH 

The pH determination was performed using the Mettler toledo electrode model InPro® 325x in the fermentation 
analyzes. For the previous analysis of the wort, the T-1000 bench model meter from Tekna was used. The pH 
meters were duly calibrated with the buffer solutions pH 7.0 and 4.0 at 20 °C, according to the AOAC method 
No. 981.12 (1997). 

2.6.10 Determination of Total Titratable Acidity  
The total titratable acidity was determined by the AOAC method 942.15 (1997). Titration was carried out with 
0.1 mol L-1 NaOH until pH±8.2 (referring to the color change pH of the phenolphthalein indicator). The results 
were expressed as a percentage of acid per 100 mL of wort. 

2.6.11 Determination of Ethanol Concentration 

The ethanol concentration was determined by the densimetric method. For distillation, 25 mL of sample was 
mixed with 25 mL of distilled water, collecting 50 mL of distillate in a micro distiller, model SL. 077 (SOLAB). 
The samples were collected in sterilized amber glass bottles, promptly frozen, and sent for analysis in a Rudolph 
digital densimeter, model DDM 2911. Equation 4 was used to calculate the ethanol concentration of the samples.  

Ethanol = L × 2                                     (4) 

Where, Ethanol is the concentration of ethanol in ° GL (v/v at 20 °C); L is the sample reading on the DDM 2911 
digital densimeter; 2 is the sample dilution factor.  

2.7 Fermentative Parameters 

Based on the results obtained from analytical determinations of the initial and fermented wort, calculations of the 
following fermentation parameters were performed, using Equations 5 and 6. 

Equation 5 determined the yield in gram of ethanol per gram of total reducing sugars (TRS), in percentage, after 
7 hours of fermentation. 

Equation 6 was used to determine productivity, which expresses the average ethanol production speed, after 7 
hours of fermentation. 

Yield %  = 
Cethanol7

0.511 × (TRS0  – TRS7 )
 × 100                           (5) 

Where, Yield (%) is the Ethanol Yield (%); Cethanol7, is the concentration of ethanol (g L-1) at the end of 7 
hours of fermentation; TRS0, is the initial reducing sugar (g L-1); and TRS7, is the final reducing sugar (g L-1) 
after 7 hours of fermentation.  

Pethanol = 
Cethanol7

t
                                    (6) 

Where, P ethanol is the productivity of ethanol (g L-1 h-1); Cethanol7, is the concentration of ethanol (g L-1) at the 
end of 7 hours of fermentation; and t = fermentation time (h) 

2.8 Determination of Yeast Concentration 

Wort samples were taken from the bioreactor at times 0, 0.16, 0.36, 0.5, 1, 2, 3, 4, 5 6, and 7h during 
fermentation. Then, 2 mL of previously homogenized suspension was pipetted into a microtube of known tare. 
The tubes were centrifuged and the soluble part was separated into another tube and frozen until sugar analysis 
was carried out, the precipitate was, in turn, resuspended and washed twice (10 000 rpm 3 min-1). It was dried to 
constant weight in an oven at 80 °C. The dry cell mass was then determined by mass difference, and the results 
were expressed in terms of grams of dry cells 100 mL-1 of suspension (adapted from Sperotto, 2014). 

3. Results 
3.1 Physicochemical Characterization of Root and Wort 

In the physicochemical composition of the sugary cassava root (Table 1), based on percentage, it was evident a 
high moisture content and a low amount of starch. 
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Table 1. Physicochemical composition of sugary cassava root  

Determination (%) Average±SD* 

Moisture 90.61± 0.004 
Ashes 0.11±0.001 
Total fibers   0.42±0.552 
Protein 0.15±0.007 
Lipids 0.09±0.005 
Starch 4.22±0.342 

Note. *The results were expressed as average±SD (standard deviation). 

 

Among the main characteristics, of physicochemical composition, found in the sugary cassava wort (Table 2), a 
low acidity, pH close to neutrality and a large amount of free sugars stand out.  

 

Table 2. Physicochemical composition of sugary cassava wort  

Determination Average±SD* 

Acidity** 0.24±0.040 
pH 6.55±0.014 
TSS 5.76±0.094 
Reducing Sugars (%) 3.90±0.082 
Total Sugars (%) 5.53±0.125 
Glucose (%) 2.33±0.068 
Fructose (%) 1.04±0.088 
Sucrose (%) 1.19±0.044 

Note. *Results were expressed as average±SD (standard deviation); ** (mL of NaOH 100g-1).  

 

3.2 Experimental Optimization of Fermentation 

In fermentative runs, the alcoholic concentration% (v/v) varied from 2.33% (run 1) to 2.92% (run 4), with no 
great variations between the experiment responses (Table 3). 

 

Table 3. Central composite design (CCD) matrix for ethanol production from sugary cassava wort fermentation 
by CAT-1 yeast strain 

Run 
pH Temperature (°C) Yeast concentration (g L-1)

Ethanol% (v/v) Yield (%) Productivity (g L-1 h-1)
Coded Real  Coded Real Coded Real 

1 -1 3.50  -1 28.00 -1 5.00 2.33 73.52 2.63 

2 -1 3.50  -1 28.00 1 15.00 2.52 71.99 2.84 

3 -1 3.50  1 35.00 -1 5.00 2.57 79.21 2.90 

4 -1 3.50  1 35.00 1 15.00 2.92 82.67 3.29 

5 1 5.50  -1 28.00 -1 5.00 2.72 79.67 3.07 

6 1 5.50  -1 28.00 1 15.00 2.70 77.78 3.05 

7 1 5.50  1 35.00 -1 5.00 2.53 72.30 2.85 

8 1 5.50  1 35.00 1 15.00 2.66 75.86 3.00 

9 -α 3.15  0 31.50 0 10.00 2.74 77.45 3.09 

10 +α 5.85  0 31.50 0 10.00 2.86 81.03 3.23 

11 0 4.50  -α 26.76 0 10.00 2.56 72.82 2.89 

12 0 4.50  +α 36.24 0 10.00 2.83 80.20 3.19 

13 0 4.50  0 31.50 -α 3.23 2.56 76.05 2.89 

14 0 4.50  0 31.50 +α 16.77 2.69 77.24 3.03 

15 (C) 0 4.50  0 31.50 0 10.00 2.71 77.18 3.06 

16 (C) 0 4.50  0 31.50 0 10.00 2.78 80.07 3.14 

17 (C) 0 4.50  0 31.50 0 10.00 2.84 81.87 3.20 

 

In the optimization of the ethanol production process, the significance level p ≤ 0.1 was considered, due to the 
great variability of the experimental data inherent to bioprocesses. The experiments were evaluated for pure error 
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and a complete second-order polynomial model for data adjustments was proposed. 

The analysis of variance (ANOVA) for ethanol concentration (Table 4), provided a coefficient of determination 
R2 (correlation coefficient) of 0.94 significant (p ≤ 0.1), indicating a good fit to the data. 

 

Table 4. Analysis of variance (ANOVA) for ethanol concentration corresponding to the 17 fermentation runs 

SV SS DF MS Fcalc Ftab R2 (%) 

Treatment/Regression 0.346423 9 0.038491 13.41633 2.724678 94.52 
Residue 0.020083 7 0.002869    
Lack of fit 0.011616 5 0.002323 0.548783 9.292626  
Pure error 0.008467 2 0.004233    
Total 0.366506 16     

Note. SV = source of variation; SS = sum of squares; DF = degrees of freedom; MS = mean square; F tab = 
tabulated F; F calc = calculated F; coefficient of determination R2 = 0.9452 (explained variance = 94.52%). 

 

Since the model was significant, the effects of the independent variables on the response were analyzed (Table 
5).  

 

Table 5. Estimated effects and associate p-values for pH, temperature, yeast concentration, and their interactions 

Mean/Interaction 
Effect Error t(2) p-value 

2.789654* 0.033770* 82.60808* 0.000147* 

(1) pH (L) 0.074152 0.038105 1.94596 0.191060 
pH (Q) -0.006900 0.050255 -0.13730 0.903367 
(2) Temperature (L) 0.132970* 0.038105* 3.48954* 0.073218* 
Temperature (Q) -0.121595 0.050255 -2.41955 0.136658 
(3) Yeast concentration (L) 0.141642* 0.038105* 3.71711* 0.065360* 
Yeast concentration (Q) -0.198057* 0.050255* -3.94105* 0.058766* 
1L × 2L -0.217500* 0.046007* -4.72752* 0.041949* 
1L × 3L -0.107500 0.046007 -2.33659 0.144494 
2L × 3L 0.077500 0.046007 1.68452 0.234120 

Note. * Significant values at the level of 1% (p ≤ 0.1); (L): linear term; (Q): quadratic term. 

 

3.3 Proposal for a Second-Degree Polynomial Model 

Based on the regression data of the experiment (Table 6), it was possible to develop a mathematical model for 
the Ethanol variable, through which it is possible to establish the optimal conditions for design, determining the 
critical or stationary point of the model. 

 

Table 6. Regression coefficient for the Ethanol response 

 Coefficient of Regression Deviation t(2) p-value 

Mean/Interaction -7.69838* 2.332814* -3.30004* 0.080846* 
(1) pH (L) 1.15438* 0.310620* 3.71636* 0.065383* 
pH (Q) -0.00345 0.025128 -0.13730 0.903367 
(2) Temperature (ºC) (L) 0.44935* 0.133330* 3.37019* 0.077894* 
Temperature (ºC) (Q) -0.00496 0.002051 -2.41955 0.136658 
(3) Yeast concentration (g L-1) (L) 0.07201 0.050614 1.42278 0.290760 
Yeast concentration (g L-1) (Q) -0.00396* 0.001005* -3.94105* 0.058766* 
1L × 2L -0.03107* 0.006572* -4.72752* 0.041949* 
1L × 3L -0.01075 0.004601 -2.33659 0.144494 
2L × 3L 0.00221 0.001314 1.68452 0.234120 

Note. *Significant values at the level of 1% (p ≤ 0.1); (L): linear term; (Q): quadratic term. 
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process, e.g., reduced foam formation, flocculation, and consumption of inputs. An acidic pH is important for 
controlling bacterial contamination in the industrial process. Although, in plants, a reduction in pH to 2.0-3.0 
through the use of H2SO4 has been adopted for a few hours to control bacterial contamination, this can cause 
physiological disturbances in yeast, causing a decrease in cell viability (Della-Bianca, Hulster, Pronk, Van Maris, 
& Gombert, 2014).  

Regarding the optimization of the yeast concentration, Souza et al. (2014), working with the S. cerevisiae PE-2 
in a Box-Behnken Design (BBD), found the initial yeast concentration of 10 g L-1 to be optimal, reaching the 
maximum ethanol production of 0.78 ºGL. For Shokrkar, Ebrahimi, and Zamani (2017) the optimization of the 
yeast concentration is one of the best-known techniques to improve the efficiency of the fermentation process. 

The temperature found in this work showed to have a strong relationship with yeast growth. Similarly, Lin et al. 
(2012), analyzing the factors that affect alcoholic fermentation, found that maximum rates of ethanol production 
were obtained at 30-45 ºC, achieving higher ethanol production at 30 ºC with different glucose concentrations. 
According to Mukherjee et al. (2017) and Camargo et al. (2018), S. cerevisiae CAT-1 is able to tolerate high 
temperatures (~40 ºC) and showed capacity to fermented sugars such as glucose, fructose, sucrose, mannose, 
maltose, raffinose and galactose, while other sugars such as xylose, cellobiose, mannitol and lactose cannot be 
fermented by this strain. 

As shown in Figure 2, a rapid consumption of sucrose occurred shortly after the introduction of yeast in the 
fermentation medium, probably due to the action of extracellular invertase, which hydrolyzes sucrose into 
glucose and fructose (Margetić & Vujčić, 2017; Marques et al., 2017; Fernandes et al., 2020). Therefore, there is 
a rapid increase in these sugars in the same proportion as sucrose decreases.  

The low sugar concentration in this study was not a limiting factor for ethanol production, since lower growth 
rates of S. cerevisiae occur in high concentrations of sugars (200-300 g L-1), as reported by Nuanpeng et al. 
(2016). Fast consumption of sugars probably occurred due to its low concentration in the medium, which does 
not require a long period of adaptation by the yeasts. 
5. Conclusion 
This study illustrates the huge potential sugary cassava has for ethanol production. The plant stores free sugars in 
greater quantity, as an energy source, in its roots (about 5.8% of its composition in fresh mass), which favors the 
direct fermentation process. We observed that the maximum concentration of ethanol produced after 
fermentation was 2.92% (v/v), in its original conditions of chemical properties, which means 23.1 grams of 
alcohol per liter of wort. In addition, we also observed that an increase in temperature and yeast concentration 
had a positive effect on ethanol production. The pH range studied showed that a pH slightly acidic is preferable 
by the yeast strain used. 
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