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Abstract

Agent-based Modelling of Paratransit as an Intelligent Complex

Adaptive System to Improve Efficiency

I. Ndibatya

Department of Electrical and Electronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Dissertation: PhD (Eng)

March 2021

Urban residents in Sub-Saharan Africa (SSA) face mobility challenges that limit their
access to jobs, services, markets, and socioeconomic opportunities. In most SSA cities,
public transport is predominantly provided by the inefficient paratransit system – a flex-
ible mode of passenger transport consisting of privately-owned, low-capacity unscheduled
minibuses and motorcycle taxis. There is growing interest among city authorities and
urban transport researchers in addressing the inefficiency problem associated with para-
transit. Several approaches, such as complete overhaul to bus rapid transit (BRT), and
phased banning of paratransit from the cities have previously been proposed and con-
comitant implementation projects started. However, most of such projects have either
failed to take off, or they have stalled. This is likely because of the huge capital invest-
ment required, the unique social and cultural dynamics associated with “third world”
countries, and urban sprawl due to poor city planning. This study departs from the com-
mon perspective held by several researchers and city authorities who view paratransit as
“chaotic”, thus, the justification for its total overhaul and banning. Instead, this study
aims to leverage the beneficial aspects of existing paratransit – such as flexibility, demand-
responsiveness and near-ubiquitous coverage – with the elusive objective of achieving a
more efficient paratransit state as a result.

Through theoretical modelling, field study and experimental approaches, this study
aimed to improve the efficiency of minibus taxis paratransit systems. The theoretical mod-
elling work involved modelling paratransit systems as complex adaptive systems (CAS)
and developing an agent-based model (ABM) for minibus taxi operations in an organically-
evolved paratransit setting. The field study involved an in-depth investigation of minibus
taxi operations in Kampala’s paratransit system, and collection and analysis of minibus
taxi movement data that was used to validate the agent-based model. The experimen-
tal approaches involved three separate simulation experiments, simulating the minibus
taxi transportation dynamics with varying levels of agents’ intelligence and situational
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awareness. Machine learning methods, such as random forests and convolutional neural
networks were used to train agents in the subsequent simulation experiment to improve
their intelligence during decision making. At each stage, several efficiency metrics’ values
such as passenger waiting time and minibus taxi occupancy were collected. The results
from the experiments showed that there was an improvement in the overall efficiency of
the minibus taxi paratransit system. For instance, the average passenger waiting time re-
duced from 1.2 hours to 30 minutes, indicating a 55% improvement. Whereas the average
minibus taxi occupancy increased from 42% to 51%, indicating a 21% improvement. Ac-
cordingly, we concluded that improving the micro-level agents’ intelligence and situational
awareness, results in an overall increase in the efficiency of the paratransit system.

To the transportation researchers, we recommend further work on using ABM to
include other modes of paratransit transport such as the three-wheeled rickshaws and
motorcycle taxis (boda bodas). To the city authorities, we recommend the integration of
smart mobility and ICT applications into the paratransit ecosystem to support journey
planning, booking, scheduling, and fare collection.

Key words:
Modelling paratransit; Complex adaptive systems; Agent-based modelling
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Uittreksel

Paratransit modellering as ’n intelligente, aanpasbare stelsel om

doeltreffendheid te verbeter

I. Ndibatya

Departement Elektroniese en Elektriese Ingenieurswese,
Universiteit van Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Verhandeling: PhD (Ing)

March 2021

Stedelike inwoners in Afrika Suid van die Sahara (SSA) word gekonfronteer met mo-
biliteitsuitdagings wat hul toegang tot werk, dienste, markte en sosio-ekonomiese geleen-
thede beperk. In die meeste SSA-stede word openbare vervoer oorheersend aangebied
deur die ondoeltreffende paratransit-stelsel -’n buigsame manier van passasiersvervoer
wat bestaan uit private lae-volume busse en huur-motorfietse. Daar is toenemende be-
langstelling onder stadsowerhede en navorsers van stedelike vervoer om die ondoeltref-
fendheidsprobleem so eie aan paratransit. Verskeie benaderings, soos byvoorbeeld die
volledige opknapping van busvervoer (BRT) en ’n gefaseerde verbod op paratransit in
stede, is voorheen voorgestel en verwante implementeringsprojekte is van stapel gestuur.
Die meeste van hierdie projekte het egter nie daarin geslaag om te begin nie, of hulle
is gestaak. Dit is waarskynlik as gevolg van die groot kapitaalinvestering wat benodig
word, die unieke sosiale en kulturele dinamika wat verband hou met lande van die ”derde
wˆereld” en stedelike uitbreiding as gevolg van swak stadsbeplanning.

Hierdie studie wyk af van die algemene perspektief wat deur verskeie navorsers en stad-
sowerhede gehou word, wat paratransit as “chaoties” beskou, en dus van die regverdiging
vir die totale opknapping en verbod daarvan. In plaas daarvan beoog hierdie studie om
die voordelige aspekte van paratransit te versterk - soos buigsaamheid, aanvraagresponsi-
witeit en byna alomteenwoordige dekking - met die hoop om ’n doeltreffender paratransit-
staat as gevolg daarvan te bewerkstellig.

Deur middel van teoretiese modellering, veldstudies? en eksperimentele benaderings,
het hierdie studie ten doel gehad om die doeltreffendheid van minibustaxi-paratransitstelsels
te verbeter. Die teoretiese modelleringswerk behels die modellering van paratransitstelsels
as komplekse aanpasbare stelsels (CAS) en die ontwikkeling van ’n agent-gebaseerde model
(ABM) vir minibustaxibedrywighede in ’n organies-ontwikkelde paratransit-omgewing.
Die veldstudie behels ’n diepgaande ondersoek na minibustaxibedrywighede in Kampala
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se paratransit-stelsel, en versameling en ontleding van minibustaxibewegingsdata wat ge-
bruik is om die agent-gebaseerde model te bekragtig. Die eksperimentele benaderings het
drie afsonderlike simulasie-eksperimente behels, wat die minibustaxi-vervoerdinamika met
verskillende vlakke van agente se intelligensie en situasiebewustheid simuleer. Masjienleer-
metodes soos ewekansige woude en evolusionˆere neurale netwerke is gebruik om agente in
die daaropvolgende simulasie-eksperiment op te lei om hul intelligensie tydens besluitnem-
ing te verbeter. In elke stadium is verskeie waardes vir doeltreffendheid soos die passasier-
swagtyd en die besetting van minibustaxi’s versamel. Die resultate van die eksperimente
het getoon dat die algehele doeltreffendheid van die minibus-paratransitstelsel verbeter
het. Byvoorbeeld, die gemiddelde passasierwagtyd verminder van 1,2 uur tot 30 minute,
wat dui op ’n 55% verbetering. Terwyl die gemiddelde besetting van minibustaxi van 42%
tot 51% gestyg het, wat dui op ’n verbetering van 21%.

Gevolglik het ons tot die gevolgtrekking gekom dat die verbetering van die intelligensie
en situasiebewustheid van die mikrovlakagente tot ’n algehele toename in die doeltreffend-
heid van die paratransitstelsel lei.

Vir die vervoernavorser beveel ons verdere ABM-werk aan om ander maniere van
paratransit-vervoer soos die driewiel-riksja’s en motorfiets-taxi’s (boda bodas) in te sluit.
Aan die stadsowerhede beveel ons die integrasie van slim mobiliteit- en IKT-toepassings
aan in die paratransit-ekosisteem om reisbeplanning, bespreking, skedulering en tariefin-
vordering te ondersteun.

Key words:
Paratransit van modellering; Komplekse aanpasbare stelsels; Agent-gebaseerde modellering
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Chapter 1

Introduction

1.1 Motivation

Public transport systems in many developing cities of the Global South are messy, com-
plex, and inefficient. Yet they adapt and serve, though inefficiently, the mobility needs
of the often over-populated, poorly-planned cities. Congestion, informality, and ineffi-
ciency are the major defining features of numerous public transport systems in the Global
South (Pojani and Stead, 2017, 2018; Venter et al., 2018). These transport systems com-
prise many competing actors that render the systems operationally, economically, and
politically complex (Goodfellow, 2017).

Perhaps the essential feature of public transport in the Global South is the widespread
presence of “informal transport” or “paratransit”, which refers to “a flexible mode of pas-
senger transportation that does not follow fixed schedules,” (Behrens et al., 2015a). The
paratransit system consists of shared-ride, demand-responsive privately-owned vehicles
like minibus taxis in Manila, Lagos, Johannesburg, Nairobi and Kampala; as well as
single-passenger vehicles like Kampala’s motor-cycle taxis (also referred to as “boda bo-
das”), and Nairobi’s tri-cycle taxis (also referred to as “tuk-tuks”) (Mutiso and Behrens,
2011; Booysen et al., 2013; Diaz Olvera et al., 2019). Travel by paratransit contributes
approximately 70%, 90%, 91%, and 98% of the road-based public trips in Johannesburg,
Lagos, Kampala, and Dar es Salaam, respectively (Behrens et al., 2015a; Evans et al.,
2018).

1.1.1 Background

The organic emergence of paratransit systems in the Global South, and their subsequent
evolution into fully-fledged quasi-demand-responsive transportation systems is attributed
to: the collapse of state-owned transportation enterprises in the 1990s; the World Bank
structural adjustment policies (SAPs) of the 1990s; and weak policies for regulating and
enforcing paratransit licensing (Kumar, 2011). The SAPs restricted financing to state-
owned entities leading to their eventual collapse, thus creating a transportation gap that
was filled (initially as complementary) by the loosely regulated, privately-run paratransit
services in response to demand. Paratransit has organically-evolved from being a mere
complimentary transport service to a way of life for the urban poor in several African cities
and the Global South in general (Ajay Mahaputra Kumar et al., 2008). Paratransit is
firmly entrenched, primarily due to poor planning by the authorities that has resulted in:
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urban sprawl; ‘random’ distribution of public amenities (such as schools, hospitals, and
shopping centres); and poor road infrastructure that limits general access to the transport
system. Furthermore, paratransit thrives on the irregular daily mobility characteristics
of people in developing cities (Kumar, 2011). This is because most of the population
in these cities are not formally employed. As a result, their transport schedules and
destinations are highly irregular. Thus, in addition to being the only main transport
service commuters have access to, paratransit is considered flexible and affordable for the
urban poor, and it has a near-ubiquitous coverage to the remote unreachable and highly
fragmented settlements in cities.

Despite the massive popularity of paratransit among the urban commuters in Africa,
it thrives at high health, environmental and economic cost to the users. Paratransit in
Africa substantially contributes to environmental pollution, deaths by crashes, commuter
stress, and huge economic losses to the population. In Kampala, for example, a commuter
loses 25.4 minutes for every hour travelled using paratransit, and a total of 1.457 million
man-hours are lost by commuters every day in the Greater Kampala Metropolitan Area
(GKMA) (JICA, 2010; ITP, 2010). The situation is not any better in other developing
cities of the Global South (Behrens et al., 2015a). Therefore, paratransit is often described
by scholars as inefficient, unsafe, and sometimes dangerous to the commuters (Woolf and
Joubert, 2013; Ndibatya and Booysen, 2020a). Consequently, several city authorities have
interested themselves in regulating paratransit (Jennings and Behrens, 2017), while others
have proposed a total paratransit ban in favour of modern services such as bus rapid transit
(BRT) (Plano et al., 2020), a policy that is vigorously resisted by paratransit operators,
and often leads to strikes, that seldomly transgress into riots, such as the taxi riots in
Cape Town (Bähre, 2014), Kampala (Spooner et al., 2020), and Malawi (Tambulasi and
Kayuni, 2008).

Cities in the Global South are experiencing unprecedented growth. It is estimated
that by 2050 ninety per cent of urban growth will be concentrated in Africa and Asia
(Jahan, 2016), and eighty per cent of the population in these continents will reside in
cities (Awumbila, 2017). At the same time, public authorities have announced intentions
to reform, phase out, or ban paratransit in favour of more modern, high-capacity forms of
public transit, such as, light rail transit (LRT) and BRT (Ommeh et al., 2015). Through-
out the last two decades, there has been a growing agitation among authorities in Africa
advocating for paratransit-to-BRT transition. These crusades are in part instigated by the
international donors, who make such transition plans prerequisites for city development
loans (Gauthier and Weinstock, 2010). Consequently, since the early 2000s, the number of
BRT projects have increased in the African cities of Lagos, Dar es Salaam, Nairobi, Kam-
pala, Cape Town and others (Nkurunziza et al., 2012; Vermeiren et al., 2015; Wood, 2015).
However, except for a few success stories from South Africa, Addis Ababa, and Rwanda,
most BRT projects, especially in Sub-Saharan Africa (SSA) are struggling. This is mainly
because of the high BRT infrastructure costs, corruption by the implementing authorities,
slow local acceptance, inadequate infrastructure maintenance, and poor integration with
existing paratransit (Wood, 2015). In many SSA cities, for example, BRT rollout was
planned on a corridor-by-corridor basis following the standard BRT design (Gauthier and
Weinstock, 2010; JICA, 2008, 2014; MoWT and Transport, 2009). However, ten years
later, many of the BRT projects have not taken off (e.g. Kampala KCCA (2016)), and
those that have taken off have not realised the full benefits that come with a BRT (e.g. in
Dar es Salaam) leaving paratransit still dominating public transportation, its downsides
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notwithstanding.
Experts agree that many urban dwellers in the Global South face travel conditions

that limit their ability to live healthy and productive lives. For many, travelling to work,
to school, to medical facilities, or for social activities requires long or unsafe walks, long
waits between poorly connected services in inconvenient locations, or expensive trips in
unsafe and uncomfortable vehicles. Venter et al. (2019) categorises urban commuters
in the Global South into four categories, i.e. the mobile under-served, stranded under-
served, well-located commuters, and well-located urbanites. The under-served commuters
(who are the majority in SSA) face severe transport constraints, with many commuting
by foot or bicycles for longer distances, and others spend above average amounts of time
and money on commuting (Venter et al., 2019; Ndibatya and Booysen, 2020a). They
(the experts) also rightly believe that the existence of efficient public transportation is
the key to solve mobility problems. However, most of the solutions authorities in the
Global South are pursuing are not feasible for the context of their cities because they
are costly, unsustainable, and they do not guarantee an efficient public transport system
for the future vulnerable urban poor. Most of these solutions are copied (as-they-are)
from the Global North cities in Europe and North America, and ‘pasted’ in the African
underdeveloped cities whose social contexts are completely different. Often, heading the
transport transformation agenda is the complete system overhaul (often phased) in favour
of fancy modern Metro, LRT, and BRT systems that require a long time (4-10 years)
to implement at a very high cost. For instance, the proposed BRT corridors planned
for Kampala are estimated to cost $14 million per kilometre and will take eight years
to complete (KCCA, 2016). A close analysis of the SSA cities master plans reveals the
absence of a clear plan for paratransit in these cities, save for a few excerpts acknowledging
how paratransit is chaotic, unsafe, and unreliable. We found no policy document bearing a
comprehensive plan to organise and transform paratransit (Ndibatya and Booysen, 2020b).
Whereas transport problems are universal, culture and circumstances vary per country.
It is thus, imperative that authorities and researchers study the unique characteristics of
the organically-evolved paratransit in the Global South and suggest economically feasible,
sustainable, and socially acceptable solutions that incorporate the current technological
trends and scientific research.

1.1.2 The proposed paradigm shift

Three key shifts in thinking can fundamentally reform paratransit in the Global South:

1. A paradigm shift from perceiving paratransit in developing cities as an alienating
agent of public transport, to considering it as an integrated complimentary service
with flexibility, adaptability, and near-ubiquitous coverage as its main assets.

2. Deconstruct the ‘colonial mentality’ of copying and pasting BRT design and im-
plementation of the Global North style, to redesigning BRT corridors that fit into
the existing road infrastructure, encouraging shared lanes in addition to low-cost
semi-permanent bus stop platforms and paratransit integration nodes, or exchange
centres.

3. Explore investment in smart mobility information and communications technology
(ICT) systems in all aspects of the transportation service ecosystem to meet the
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rapidly increasing mobility needs of the developing cities. Smart mobility seam-
lessly integrates all modes of transport (first-to-last mile of commute) via wireless
communications. It applies real-time data analytics and machine learning to make
transportation safer and more efficient. There is evidence suggesting that smart
mobility has the potential to enable safe, sustainable, and efficient movement of
people, thus saving lives, reducing pollution and saving commuters billions of dol-
lars annually.

Cognisant of the technological disruption wave that has swept over cities in the last
decade, developing cities in the Global South must not only find more ways to integrate
existing paratransit systems, they must also strive to understand the behaviour of pas-
sengers who rely on these services every day. This is possible with macro-level integration
of smart mobility ICT systems in transportation and paratransit in general.

This dissertation takes into consideration the first and third fundamental shifts in
thinking (mentioned earlier) to study the complex nature of organically-evolved para-
transit systems with a focus on minibus taxis (which is the significant component of
paratransit) in Sub-Saharan Africa, specifically in Uganda’s capital, Kampala. First, we
quantitatively investigated the minibus taxi operations and movement characteristics in
Kampala, intending to understand the main actors in the system; scientifically describing
their movement patterns, and estimating (at macro-level) the efficiency of the minibus taxi
system as part of the broader paratransit system. Second, we modelled the minibus taxi
paratransit system as a complex adaptive system (CAS) to scale up and simulate micro-
level behaviour of individual actors (referred to as agents) in the minibus taxi systems.
Lastly, we incorporated elements of smart mobility into the minibus taxi simulation and
used machine learning methods to optimise selected metrics, hence, improving individual
agents’ situational awareness. Then we compared the macro-level efficiency gain because
of improved agents’ situational awareness, with the results where interacting agents had
low situational awareness.

Results from this dissertation brings us a step closer to sustainably solving the effi-
ciency problem affecting the mobility of the urban poor in developing cities of Africa who
depend on paratransit systems for their daily mobility needs.

1.2 Paratransit, complex adaptive systems (CAS) and

agent-based models (ABM)

In this section, we highlight the relationship between paratransit, complex adaptive sys-
tems, and agent-based models as used in this dissertation.

Paratransit emerged because of private initiatives that developed spontaneously in
Global South cities as a stop-gap solution to the inadequacy (or lack) of institutional
transport. It organically evolved into a transport structure composed of many fragmented
and connected, formal and informal actors that operate autonomously (or independently)
without a proper form of centralised coordination. Thus, paratransit can be described as
a complex system.

Despite the complex nature of paratransit, it adapts in a pragmatic way to the local
context in many Global South cities where the institutional framework is inadequate and
where urban sprawl, topography, poor road infrastructure, and lack of funds are obstacles
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to the development of large-bus services. The complexity and adaptive properties of
paratransit prompted us to model it as a complex adaptive system (CAS).

A CAS is a dynamic system that represents individual agents and their collective
behaviour. An agent-based model (ABM) is a computational simulation model of a many-
agent system that captures the behaviours of the system’s autonomous agents and their
interactions with each other (Blume, 2015). In other words, an ABM is a computational
instantiation of a complex adaptive system (CAS). In this research, we designed and
implemented intelligent agents with optimised situational awareness, thus qualifying our
approach as the intelligent complex adaptive systems (ICAS) approach.

1.3 Research focus

This research focusses on: analysing the operations of minibus taxis in Kampala’s organically-
evolved, quasi-demand-responsive paratransit system; modelling the minibus taxi system
as a complex adaptive system; and simulating and optimising the minibus taxi system to
achieve efficiency at a macro-level. This gives rise to the following research questions, the
corresponding objectives, and the associated original contributions.

1.3.1 Research questions

Five research questions were formulated and investigated in this study:

RQ 1: How do minibus taxis operate in organically-evolved, quasi-demand-responsive
paratransit systems?

RQ 2: Are their operations efficient?

RQ 3: How do individual-level operations and autonomous interactions between minibus
taxis and passengers shape the higher-level (macro-level) system behaviour in an
organically-evolved, quasi-demand-responsive paratransit system?

RQ 4: What metrics can be used to measure efficiency in such a system?

RQ 5: What is the macro-level effect on system efficiency, of intelligent routing of au-
tonomous and situationally aware minibus taxi agents with self-selected origins and
destinations in an organically-evolved, quasi-demand-responsive paratransit system?

1.3.2 Hypothesis

This research will test the following hypotheses:

1. The transportation dynamics of organically-evolved paratransit systems in Sub-
Saharan Africa are shaped by local interactions of autonomous agents at the micro-
level of the system giving rise to a stable (often inefficient) state at macro-level
through demand and supply.

2. Improving the intelligence and situation awareness of autonomous agents in organically-
evolved paratransit systems leads to agents adapting more optimal travel behaviour
resulting in improved macro-level paratransit system efficiency.
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1.3.3 Research Objectives

Objective 1: Analyse and describe the operations of minibus taxis in an organically-
evolved, quasi-demand-responsive paratransit system, and assess the system’s effi-
ciency.

1.1 Describe the operations of minibus taxis in Kampala’s organically-evolved,
quasi-demand-responsive paratransit system.

1.2 Estimate the system efficiency from the passengers’ and drivers’ perspectives.

1.3 Characterise the movement patterns of minibus taxis in Kampala’s paratransit
system.

Objective 2: Develop and validate an agent-based model and simulator that describes
minibus taxis and passengers interaction dynamics in a quasi-demand-responsive
paratransit system and establish user-centric efficiency metrics.

2.1 Design and describe an agent-based model of minibus taxis and passengers in
Kampala’s organically-evolved, quasi-demand-responsive paratransit system.

2.2 Implement and validate the designed agent-based model in a simulator. This in-
cludes the study of the micro-level semi-autonomous interactions between Kam-
pala’s minibus taxis and passengers and analysis of the emergent behaviour at
the macro level of the system.

2.3 Establish user-centric metrics for evaluating the efficiency of minibus taxi trans-
portation in Kampala’s organically-evolved, quasi-demand-responsive paratran-
sit system.

Objective 3: Use the agent-based model simulation to assess potential improvements to
the efficiency of Kampala’s minibus taxi transportation systems and make appro-
priate system improvement recommendations.

3.1 Optimise selected efficiency metrics of Kampala’s simulated minibus taxi trans-
port system and evaluate the associated gain in system efficiency at a macro
level.

3.2 Recommend a plan for improving the efficiency of minibus taxis operations in
Kampala’s organically-evolved, quasi-demand-responsive paratransit system.
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1.3.4 Original contributions

This dissertation has introduced a new method of studying organically-evolved paratran-
sit systems as complex adaptive systems and provides insight into the mobility dynam-
ics of agents (minibus taxis and passengers) in the paratransit system and how they
autonomously interact at micro-level, synchronising their behaviour in a self-organising
process, leading to emergence of pseudo-order at the macro level of the system. The
specific contributions are summarised below.

1. It scientifically describes the characteristics associated with minibus taxi opera-
tions in an organically evolved paratransit system. They include: quasi-demand-
responsiveness ; gradual route evolution; and they exhibit a Lévy walk process move-
ment pattern when searching for passengers.

2. Developed an agent-based model for minibus taxi transport and simulated the trans-
portation dynamics in a quasi-demand-responsive setting.

3. It contributes to public transport policy paratransit improvement and streamlining
by proposing a radical shift from the current capital intensive and unsustainable
approach that emphasises transport system overhaul devoid of paratransit to a more
economically, culturally feasible and sustainable approach.
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1.4 Dissertation synopsis

This research pursues a three-stage process to achieve the main objectives and address
the research questions. Each Stage is presented substantially in two dissertation chapters
and is associated directly with one or two research objectives and research questions (refer
to Figure 1.1). This dissertation reports on the research process completed. The results
from Stage one were reported in two journal articles ((Ndibatya and Booysen, 2020a)
and the other under review in the Journal of Transport Geography), and one conference
paper (Ndibatya et al., 2016). Part of Stage three results were published in one conference
paper (Ndibatya and Booysen, 2020b). The order of the research stages (I-III) corresponds
to the logical sequence of the research process as summarised in Figure 1.1. Below is the
stage-by-stage summary of the research as presented in this dissertation.

1.4.1 Stage I (Ch3 and Ch4): Analysis and description of minibus
taxi operations in Kampala’s paratransit system

The first stage aims at analysing and describing the operations of minibus taxis in Kam-
pala’s organically-evolved paratransit system and assessing the system efficiency. At this
stage of the research, we carried out two distinct but related empirical studies that we
described substantially in Chapters 3 and 4. The first study (refer to Chapter 3) uses
a three-pronged approach. (i) We studied the operations of minibus taxis in Kampala’s
paratransit system, from basics like regulation, management, and routes, to the industry’s
unique and peculiar practices. (ii) We studied and evaluated the economics of running
a minibus taxi business, and we estimated the drivers’ profitability index (PI). (iii) We
assessed the efficiency of the minibus taxi transportation system from the passengers’ and
drivers’ perspectives. Subsequently, in Chapter 4, we studied the movement characteris-
tics of minibus taxis in Kampala’s paratransit system using floating car data. We were
interested in discovering whether minibus taxi movement patterns were consistent with
Lévy walk behaviour; whether the routes the taxis used changed topology or shape over
time, in other words, evolved; and whether their movements could suggest anything about
their level of determination when searching for passengers.

Results from Stage one show that minibus taxis in Kampala are semi-organised and
‘quasi-demand-responsive’. Their stops and routes are not published for the general pub-
lic, and the routes gradually evolve in response to demand. When searching for passen-
gers, minibus taxis adopt (either subconsciously, or through experience) a scale invariant
supper-diffusive structure synonymous with Lévy walk pattern, consisting of many short
‘steps’ interspersed with long and rare steps. The long steps fit into a power law proba-
bility distribution defined by f(x) ∼ l−α where l is the step length, and α (referred to as
the Lévy exponent) is in the range 1 < α < 3.

We made two main contributions during this stage. First, we described in geospatial
terms the network of routes and stops used by minibus taxis in Kampala, and quanti-
tatively estimated the waiting time, hold back time, and the average cost of travel per
kilometre when using minibus taxis in Kampala. Second, we have discovered and proved
(with empirical evidence) a scientific method (the Lévy walk) that explains the behaviour
of minibus taxis when searching for passengers in an organically-evolved paratransit sys-
tem. The details about methods and results are presented in detail in Chapters 3 (p. 27)
and 4 (p. 27).
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Correspondingly, Stage I covers research Objectives 1 and 2, and it addresses the
associated research questions RQ1 and RQ2, respectively.

1.4.2 Stage II (Ch5 and Ch6): Designing, simulating, and vali-
dating a minibus taxi agent-based model

This stage aims at developing, simulating, and validating an agent-based model of minibus
taxi transportation dynamics in an organically-evolved, quasi-demand-responsive para-
transit system setting. Chapter 5 (p. 61) presents the design and description of the
agent-based model (ABM). The ABM describes travel by minibus taxi in Kampala as a
collection of autonomous decision-making entities called agents. Chapter 6 (p. 79) presents
a controlled agent-based simulation experiment which is the process of model execution
that takes the ABM (designed earlier in Chapter 5) through discrete state changes over
time. During the simulation, each agent (e.g., passenger or driver in control of a minibus
taxi) individually assesses its situation and makes travel decisions based on a set of rules.
The agents repetitively interact (with self, with other agents and with their surround-
ings) in a common environment, executing various actions (such as boarding a taxi and
searching for passengers). Agents in the ABM are capable of learning and adapting their
behaviour to achieve desired goals, thereby allowing new and sometimes unanticipated
behaviour to emerge.

Specifically, the agents in the controlled simulation experiment were designed to rep-
resent (as closely as possible) the behaviour dynamics in Kampala’s minibus taxi sys-
tem. Thus, the minibus taxi agents were designed to have: limited situational awareness,
quasi-demand-responsiveness, random passenger search, Lévy walk behaviour and the oc-
casional abandonment of routes that were considered ‘unprofitable’ (with persistently low
passenger occupancy). The passenger agents were designed to have: limited situational
awareness, considerable persistence (able to move from stop to stop waiting for a taxi),
and little memory – they depended on episodic memory to make some decisions such as
where to wait for a taxi.

Analysis and validation of the simulation results indicated distributions statistically
close to the distributions obtained from the field study in Kampala. We therefore con-
cluded that the agent-based simulation closely represented the minibus taxi transport
dynamics in Kampala’s organically-evolved, quasi-demand-responsive paratransit system.
We further identified four primary metrics for evaluating the efficiency of a paratransit
system. These included: the passenger waiting time tw; minibus taxi hold-back time th;
passengers’ first leg distance dl1; and minibus taxi occupancy O.

Correspondingly, Stage II addresses objectives 2.1, 2.2 and 2.3, and answers the asso-
ciated research questions RQ3 and RQ4.

1.4.3 Stage III (Ch7 and Ch9): Optimising minibus taxi oper-
ations’ metrics to improve efficiency

This stage aims at testing hypothesis two by optimising selected metrics and improving
the intelligence and situational awareness of the simulated minibus taxi and passenger
agents. In Chapter 7 (p. 97), we set up two test agent-based simulation experiments of
minibus taxi transportation dynamics. In the first test experiment (TOR1), we improved
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the agents’ decision making based on supervised learning to improve the agents’ situa-
tion awareness. The passengers and minibus taxi agents in TOR1 observe the status of
the world; they form the current and future beliefs based on a supervised learning algo-
rithm (Random forest). The supervised learning algorithm generates situational aware-
ness scores that are used to evaluate the alternative with high utility. The second test
experiment (TOR2) further improves the agents’ decision making and situation awareness
based on a deep learning method, namely, a convolutional neural network (CNN). The
CNN was trained to optimally rank (or order) a set of choices an agent has to choose
from, such that the option with the highest utility is on top. Thus, the agent chooses the
one with higher utility.

Results from optimising and analysing selected metrics from the two test experiments
(TOR1 and TOR2) indicate substantial improvement in minibus taxi transport system
efficiency at macro-level. Thus, hypothesis two is correct.

Correspondingly, stage III addresses Objectives 3.1, and Objective 3.2, and answers
the associated research question RQ5.
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1.5 Structure of the dissertation

The contents of this dissertation are presented in nine chapters, broadly grouped into
two parts. The first part consists of Chapters 1 and 2. Chapter 1 presents the motiva-
tion behind this research, the justification for categorising organically-evolved paratransit
systems and complex adaptive systems (CAS), and the relationship between CAS and
agent-based modelling are presented in Section 1.2. Section 1.3 focuses the research on
the research questions, hypotheses, objectives, and it further expounds on the original
contributions made to the wider research community and the public transport industry in
developing cities of Sub-Saharan Africa. Chapter 2 introduces the theoretical background
to the research and presents a review of the literature related to this research.

The second part consists of Chapters 3 to 9. In these chapters, three distinct but
chronologically related research processes that were undertaken are presented (grouped
into Stages I, II, and III), and their scientific context to the broader objectives explained.
Summaries of key findings and contributions at each stage of the research process are pre-
sented at the end of each Chapter. Subsequently, in Chapter 8, the most relevant results
and individual contributions from the previous chapters are put into a broader context,
and the substance of the findings are discussed in relation to the research questions and
objectives in Section 1.3. Finally, the dissertation ends with conclusions and an outlook
to future research in Chapter 9. Figure 1.1 summarises the chronological relationship
between the research stages, dissertation chapters, research questions and objectives.

Modelling minibus taxi operations in organically-evolved paratransit systems

Stage I : Ch3 & 4
Analyse and describe 

minibus taxi 
paratransit operations

Described minibus taxi operations 
in Kampala's paratransit system

Objective 1.1 => RQ 1

Characterized Kampala's 
minibus taxi movements and 

performed Le'vy walk analysis. 

Objective 1.2 => RQ 2

CH 3

CH 4

Objective 1.2 => RQ 2
Objective 1.3 => RQ 1

Research papers 1, 2, & 3

1. An in-depth description of minibus taxi 
paratransit operations in Kampala
2.  A scientific description of minibus taxi 
mobility dynamics as a Le'vy walk process.

Contributions

Stage II : Ch5 & 6

Designed an agent-based model 
for Kampala's minibus taxi system.

Objective 2.1

Implemented the agent-based-model  
and simulated Kampala's paratransit 

transportation dynamics

CH 5

CH 6

Objective 2.2 => RQ 3
Objective 2.3 => RQ 4

1. Developed an agent-based model for 
minbus  taxi operations in a demand-
responsive  paratransit setting.
2.  Identified user-centric efficiency metrics 
for demand-responsive paratransit systems.

Contributions

Develop, simulate and validate an 
agent-based model of minibus taxi 
paratransit transportation dynamics.

Stage III : Ch 7 & 9

Optimised  Kampala's minibus taxi and
 passenger interactions  and evaluated  

macro - level paratransit efficiency

Objective 3.1 => RQ 5

Recommended measurers to improve 
paratransit efficiency in 

Kampala and other developing cities

CH 7

CH 9

Objective 3.2 

Proved that improving autonomous minibus 
taxi agents' situational awareness, adaptive 
scheduling, and routing at local micro level , 
improves efficiency at a macro level.

Contributions

Optimise minibus taxi operations  
efficiency and recommend 

relevant paratransit improvements.

Research paper 4

Figure 1.1: Research process of the dissertation.
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1.6 Research Papers

⇒ Research Paper 1: (Conference)

Ndibatya, I., Coetzee, J., and Booysen, M. J. (2016). Mapping the informal public
transport network in Kampala with smartphones: Making sense of an organically
evolved chaotic system in an emerging city in sub-Saharan Africa. In Proc. 35th
Southern African Transport Conference, Pretoria, pages 4–7.

⇒ Research Paper 2: (Journal)

Ndibatya, I. and Booysen, M. J. (2020a). Minibus taxis in Kampala’s paratransit
system: Operations, economics and efficiency. Journal of Transport Geography, 88.

⇒ Research Paper 3: (Journal)

Ndibatya, I. and Booysen, M. J. (Submitted, Oct, 2020). Characterizing the move-
ment patterns of minibus taxis in Kampala’s paratransit system, Journal of Trans-
port Geography.

⇒ Research Paper 4: (Conference)

Ndibatya, I. and Booysen, M. J. (2020b). Transforming Paratransit in Africa’s con-
gested Cities: An ICT- enabled Integrated Demand Responsive Transport (iDRT)
approach. In Miriam, C. and Paul, C., editors, IST-Africa 2020 Conference Pro-
ceedings, pages 1–10, Kampala, Uganda. IST-Africa Institute and IIMC.
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Chapter 2

Literature review

This chapter presents the literature related to the scientific methods used in this disser-
tation. It starts with the background to complex systems research. It then discusses how
organically-evolved paratransit systems in developing cities of Africa in particular, and
the Global South, in general, fit the description of a complex adaptive system (CAS). It
further explores the approaches to complex adaptive systems modelling, where the con-
cept of agent-based modelling is discussed in detail. It concludes with a discussion of
the different approaches to designing and training autonomous agents to improve their
intelligence and situational awareness.

2.1 Background to complex systems

The foundations for complex systems research dates to the works of several mathemati-
cians such as Poincare (1881, 1908), Prigogine (1961), and Lorenz (1963) in understand-
ing the unpredictable behaviour of non-linear dynamical systems. Prior to this, between
1500–1700, there had been a fundamental shift in perception of the world, from a world-
view governed by Christian theology and ethics, to that of a machine-like world governed
by natural forces and mathematical equations (Capra and Luisi, 2014). This period is also
known as the Newtonian era. In his book “On the Shoulders of Giants: The Great Works
of Physics and Astronomy”, Hawking (2002) compiled the major scientific discoveries
that epitomised the Newtonian era. Most notable of all include Galileo Galilei’s “Two
New Sciences”; Johannes Kepler’s “Mystery of the Cosmos”; Albert Einstein’s “Princi-
ple of Relativity”; and Sir Isaac Newton’s Principia (Newton, 1687, 1713, 1726). Post
the Newtonian era, complexity science has since developed two schools of thought: the
reductionist and the emergentists schools of thought.

Reductionists believe that systems can be entirely explained in terms of their compo-
nents, and that the overall functioning of the system is a sum of the individual components.
Therefore, to explain new emergent properties, reductionists reduce system elements into
lower-level components, and they develop interaction rules between lower-level compo-
nents and higher-level components (Raisio and Lundström, 2014). The reductionism phi-
losophy was held by the scientific community since the publication of Newton’s Principia,
and various theories were developed around it, e.g., the chaos theory. As demonstrated
by Lorenz (1963), chaos is some kind of order without periodicity. Lorenz’s talk en-
titled “Predictability: - Does the flap of a butterfly’s wings in Brazil set off a tornado
in Texas?” which he delivered to the 139th meeting of the “American Association for
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the Advancement of Science” fundamentally paved the way for the application of chaos
theory in other fields such as natural, social, and engineering sciences using the principle
known as the butterfly effect. The butterfly effect principle simply indicates that a small
change in the initial conditions of a modelled system can produce a significant change
in the final state of the system (Riley, 2012). Chaos is deterministic and linear, with
mathematical meaning (Hamstra, 2017), and is sensitive to its initial conditions (Holte,
1993). However, existing models of chaos describe dynamics of one (or a few) variables
(also known as low-dimensional chaos). Thus, it is not suitable for systems with many
variables.

The emergentists, on the other hand, view systems as being non-linear, thus, future
states are unpredictable (Raisio and Lundström, 2014). As systems transition from simple
to complex, the predictive mechanisms become less reliable and cannot be completely
explained in terms of their individual components. In the emergentists school of thought,
the world is viewed as an organic entity, composed of interacting components (Schneider
and Somers, 2006). The interactions tend to lead to new system states, contributing to
the system’s unpredictability. Often, what emerges is more than the sum of the processes
from which it emerges. For example, ants are capable of building very complex colony
structures using simple local interaction rules (Odell, 2002). Based on the emergence
principle, scientists have been able to study a whole spectrum of complex phenomena in
different fields ranging from biological sciences, physics, chemistry, and engineering; to
social, economic, and cognitive sciences (Bennet and Bennet, 2004; Shiell et al., 2008).

2.1.1 Complexity theory and complex systems

Complexity theory concepts emerged in the late 19th century. They were applied in many
multidisciplinary works. These works include Prigogine’s (Prigogine, 1961) work on dis-
sipative structures in non-equilibrium thermodynamics; Lorenz’s (Lorenz, 1963) work on
weather systems, non-linear pathways (i.e., the butterfly effect) and chaos theory; as well
as evolutionary thinking informed by Lamarck’s views on learning and adaptation. Lar-
mark argued that complex dynamic systems often acquire characteristics that sometimes
become inherited traits (Marion, 1999). Complexity theory allows us to understand bet-
ter how order emerges in complex, non-linear systems as diverse as cells, human beings,
galaxies, ecologies, forest ecosystems, markets, and social systems that are only partially
understood by traditional scientific methods (Schneider and Somers, 2006). Complexity
theory spans across vast disciplines in the physical, biological, and social sciences, and
greatly influences how we think about and act within the world (Schneider and Somers,
2006).

The complexity theory body of knowledge is composed of four different theories that
are often combined to model and analyse complex systems (Hooker, 2011). The theories
are as follows:

1. Systems theory: This deals with the concepts of self-organisation and adaptabil-
ity (Luhmann and Gilgen, 2012). In systems theory, a system is considered a co-
hesive collection of interrelated and interdependent parts which can be natural or
human-made. Every system is bounded by space and time, influenced by its environ-
ment, defined by its structure and purpose, and expressed through its functioning.
A system may be more than the sum of its parts if it expresses synergy or emergent
behaviour.

14

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW

2. Chaos theory: This is the study of non-linear systems, or things that may look
completely random but still have an underlying cause that may not seem obvious
on the surface (Hayles, 1991). From chaos theory, we gain an understanding of
feedback loops and non-linear systems.

3. Network theory: This uses network graphs as a representation of either symmetric or
asymmetric relations between discrete objects (Cohen and Havlin, 2010). Network
theory relies less on models and more on real-world data (Saleh et al., 2017).

4. Adaptive systems theory: This deals with the study of interacting or interdependent
entities, real or abstract, forming an integrated whole that together can respond to
environmental changes or changes in the interacting parts, in a way that either
maintains stable internal state or evolves and adapts to new states (Mart́ın H.
et al., 2008). Adaptive systems theory studies the organisation of things that do
not have centralised control and are governed by simple rules that emerge through
interaction.

In general, complexity theory views systems as a process that is self-organising. It
applies mathematical modelling of linear and predictable states when dealing with chaos
or chaotic systems, whereas it employs complex adaptive systems (CAS) to deal with
unpredictable non-linear systems.

2.2 Complex adaptive systems

Despite the ubiquity of complex adaptive systems (CAS), there is no standard defini-
tion. For purposes of this dissertation, we shall adopt a definition suggested by Abbott
and Hadžikadić (2017). A CAS is “a system composed of a large number of independent
simple components that locally interact in an independent and non-linear fashion, exhibit
self-organisation through interactions that are neither completely random nor completely
regular and are not influenced by some central or global mechanism and yield emergent
behaviour at large scales that are not predictable from observation of the behaviour of the
components”. CAS can further be described from the atomic definitions of its constituent
words, i.e., complex, adaptive and system. The word “complex” implies diversity, through
a great number, and wide variety of interdependent, yet autonomous parts. “Adaptive”
refers to the system’s ability to alter, change, and learn from past experiences. The “sys-
tem” portion refers to a set of connected, interdependent parts – a network (Zimmerman
et al., 2001).

While there are a significant number of CAS existing at different scales, complexity the-
ory reveals that there are common, interrelated principles which can be observed across
all CAS (Zimmerman et al., 2001). These principles include: Path dependence, non-
linearity, emergence, and adaptiveness (Lindberg and Schneider, 2013; Ladyman et al.,
2013). Path-dependent systems are sensitive to their initial conditions. Thus, the same
condition might affect seemingly similar systems differently, based on their histories. If
small changes in the system can lead to big effects and, within the same system, big
changes can have minimal effects, then the effects are difficult to predict; thus, the sys-
tem is non-linear. According to Lindberg and Schneider (2013), emergence refers to the
system’s interactions that could result in new system states that are different from the
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initial states. The emergence also makes CAS irreducible due to its emergent properties.
A phase transition thus occurs, changing the initial lower-level states. One of the unique
characteristics of CAS is the ability to adapt and operate between chaos and order (Turner
and Baker, 2019). By operating between chaos and order, CAS avoids the status quo while
at the same time avoiding complete chaos. This balance is self-organising and allows CAS
to learn and evolve into new emergent states (Turner and Baker, 2019).

The smallest components of CAS are often referred to as agents (Abbott and Hadžikadić,
2017). Agents can respond to stimuli. A few simple rules govern this stimulus/response
behaviour of an agent. In CAS, there are homogeneous and heterogeneous local inter-
actions of groups of agents in a variety of configurations. In systems with few agents,
these interactions can be predicted, as there are usually a limited set of interactions that
each agent can perform. These random local interactions generally yield outcomes that
approximate to the sum of each individual interaction; in some cases, however, as the com-
binations of agents increase in varying proportions, acting in different ways, complex and
potentially novel behaviours emerge from these combinations of agents that often yield
significantly greater outcomes than expected (Ladyman et al., 2013). When a specific
collection of agents combines to produce these emergent behaviours through the process
of aggregation, they are referred to as aggregate agents (Holland, 1995). These aggre-
gate agents group together with other aggregate agents to form larger complex adaptive
systems with richer sets of emergent behaviours and interactions.

Two approaches are normally used to study complex adaptive systems. The first is
the creation of simplified mathematical models that try to abstract the most important
qualitative elements into a solvable framework from which we can gain scientific insight.
In this approach, numerical methods are used. The second is Agent-based modelling and
simulation, where more comprehensive and realistic computer models representing the
interacting parts of the complex system are developed down to the lowest level of detail,
and the interactions simulated to measure the emergent behaviour (Newman, 2011). The
flexibility, ability to capture emergent phenomena, and provision for a natural description
of the system, have made agent-based modelling popular among researchers seeking to
solve problems involving real-world complex systems (Bonabeau, 2002).

2.3 Paratransit as complex adaptive systems

Available literature indicates that paratransit systems in the developing cities of the
Global South organically emerged in the late 1990s to fill the void left by the gradual col-
lapse of the state-run transport enterprises (Kumar, 2011). Since the emergence of para-
transit, it has gradually evolved into a fully-fledged quasi-demand-responsive transport
system with little or no centralised control (Ndibatya and Booysen, 2020a). The para-
transit system is composed of many interdependent components that interact non-linearly,
often operating between “chaotic” and semi-orderly states (Godard, 2013; Behrens et al.,
2015b; Diaz Olvera et al., 2019). Goodfellow (2012) documented some of the many compo-
nents that play vital roles in the paratransit system of Kampala city in Uganda, whereas
Booysen et al. (2013) identified the distributed and atomic ownership of the vehicle as
one of the factors that create many competing centres of decentralised control. However,
despite the chaotic and disorganised nature of paratransit, it adapts and serves (though
inefficiently) the mobility needs of the urban population in the developing cities of the
Global South (Pablo, 2015). This is evident in the way it has successfully responded to
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the urban sprawl problem that has characterised most poorly planned developing cities in
the last decade (Woolf and Joubert, 2013; Veng and Tetsuo, 2016; du Preez et al., 2019).
In response to the urban sprawl, existing and new paratransit routes organically evolve to
serve the transport needs of the emerging dispersed settlements (Ndibatya and Booysen,
2020a,b). We can therefore state that paratransit exhibits self-organising properties.

Based on Abbott and Hadžikadić (2017)’s definition of a complex adaptive systems,
we can classify paratransit systems in developing cities of the global South as CAS. This
is because they exhibit properties such as: Having a large number of interdependent com-
ponents, non-linear interaction of components, absence of centralised control, adaptation
and emergence of new states, and self-organisation. Thus, when modelling paratransit,
researchers ought to explore the emergentists’ school of thought.

2.4 Agent-based modelling

Agent-based modelling is the computational modelling of systems as collections of au-
tonomous interacting entities. In other words, an agent-based model (ABM) is a compu-
tational instantiation of a complex adaptive system (CAS) (Blume, 2015). Initially, ABMs
were applied in biological and social sciences and they focused on theory and hypothesis
development (Hammod, 2015). In biological sciences, ABM applications included: Hol-
land (1992) and Ohtsuki et al. (2006)’s work on evolutionary biology; and DeAngelis and
Mooij (2005)’s work on ecology. ABM use in social sciences included: Epstein (2002)’s
work on conflict; Schelling (1971)’s work on segregation; and Bendor et al. (2003)’s work
on electoral dynamics.

With the exponential growth in memory, computing power, and datasets, ABM ap-
plication have expanded to other fields such as: transportation (Ciari et al., 2014), land
use (Berger et al., 2007), economics and finance (Dawid and Neugart, 2011), market-
ing (Rand and Rust, 2011), and education (Maroulis et al., 2014). Recently, ABMs are
being used to inform policy or decisions in many fields. Examples of policy-related ABMs
applications include: Agriculture and land-use policy (Brady et al., 2012; Berger and
Troost, 2014); natural resource management (Heckbert et al., 2010); smart electricity
grids (Ringler et al., 2016); health service supply chain design (Rouzafzoon and Helo,
2016); and control of communicable diseases outbreak (Lee et al., 2010; Eubank et al.,
2004; Toroczkai and Eubank, 2006).

In their work entitled “How to halt a smallpox epidemic”, Toroczkai and Eubank
(2006) developed an ABM of the spread of smallpox through a city. The model was cali-
brated on pre-existing data, and then the effects of several different vaccination regimens
were simulated. They concluded that if detection is sufficiently fast and targeted response
is effective, then mass vaccination would not be necessary. Likewise, Weidlich and Veit
(2008) made a critical review of ABM in electric power systems, specifically the wholesale
electricity markets. They concluded that the characteristics of these markets are chal-
lenging to analyse with conventional economic optimisation and equilibrium modelling.
The market characteristics deviate from the known conditions of the “perfect competi-
tion” assumption, and the participants in the markets engage in “strategic behaviour”;
i.e., in making decisions they also consider the potential decisions, and reactions, of other
participants (Sanstad, 2015).
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2.4.1 Transportation modelling

Transportation engineers and planners have relied on transportation forecasting models for
decades to study vast complex transport-related dynamics that range from congestion and
air quality to social equity. In the past, two major approaches to travel demand modelling
were developed and used (Ortúzar and Willumsen, 2011). These were the trip-based and
activity-based approaches. The types of models developed using these approaches are also
referred to as equilibrium assignment models (Florian and Hearn, 2008). The trip-based
approach takes individual trips as the elementary subjects and considers aggregate travel
choices in four steps: trip generation, trip distribution, modal split, and route assignment.

During trip generation (trip production & attraction), the study area is divided into
zones that are similar in their traffic characteristics. For each zone, the number of trips
produced and attracted are calculated. For instance, in the morning, residential areas are
trip producers and workplaces are trip attractors Brotcorne et al. (2002). Trip distribu-
tion involves matching the trips produced in one zone to the trips attracted in another
zone. The matching follows a gravity model – trips produced at an origin and attracted
to a destination are directly proportional to the total trip productions at the origin and
the total attractions at the destination (see Equation 2.1) Brotcorne et al. (2002). For
instance, a traveller is more likely to go to work at a place closer to them than a place
further away. The result of this step is an origin-destination (OD) matrix. Modal Split
involves assigning each OD pair an estimated mode split of the available transport ser-
vices (Ortúzar and Willumsen, 2011). For example, in the high-income areas, the majority
are assumed to travel by car. In route/network assignment, the route to each assignment
is assigned to the underlying road network. This uses volume-delay functions to do the
assignment. The network loading function finds an equilibrium assignment so that all the
links are evenly loaded.

Tij =
AjFijKij∑n
z=1AzFijKiz

xPi (2.1)

where Tij = trips produced at i and attracted at j; Pi = total trip production at i; Aj
= total trip attraction at j; Fij = a calibration term for interchange ij, (friction factor)
or travel time factor (Fij = C

tnij
); C= calibration factor for the friction factor; Kij = a

socioeconomic adjustment factor for interchange ij; i = origin zone; n = number of zones.
Though the equilibrium assignment models have been used for decades by transport

planners to support transport decisions, they are not a good representative of the reality
in developing cities, and they are not very intuitive to understand and validate. Therefore,
there is a growing interest in using agent-based modelling to support decision making.
While agent-based models are not commonly used in travel demand forecasting as such,
many activity-based models are agent-based models of a sort – at least in part – though the
behaviours of the agents are typically very complex. In agent-based modelling, we model
agents. Each agent makes autonomous decisions, interacts with one another, and interacts
with their environment. ABMs are much more intuitive to understand and validate. They
also produce more detailed results that can be used in many more different comprehensive
analyses.
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2.4.2 Agent-based models of transportation

In transport applications, the important advantage of ABM is the ability to include struc-
turally rich, dynamic, and heterogeneous representations of social or environmental expo-
sures and influences (Hammod, 2015). For example, ABM can incorporate a representa-
tion of geographic information system (GIS) data, or detailed network structures (Zhang
and Levinson, 2004).

Several agent-based modelling frameworks have been developed. They include gen-
eral frameworks such as Repast (North et al., 2013), Mason, Netlogo (Robertson, 2005),
MESA (Masad and Kazil, 2015) and other frameworks specific to modelling transporta-
tion problems. Table 2.1 shows a sample of ABM frameworks developed for transport.
Figure 2.1 shows the MESA ABM framework architecture.

Figure 2.1: MESA architecture for agent-based modelling.

Table 2.1: Summary of ABM frameworks for modelling transportation.

Source Model/Tool Applications Characteristics Benefits Limitation
Jakob et al.
(2012)

AgentPolis Strategies to pre-
vent fare evasion

On-demand vehicle al-
location and routing
mechanism

Wide range of
metrics

Trip-oriented
matrices

Bell et al.
(2012)

UrbanSIM Zone-level mobil-
ity forecast

Integrates the 4-step
model and trip-based
OD matrix

Rich pub-
lic transport
ecosystem

Derived from ag-
gregate demand

Ciari et al.
(2014)

MATSim Car sharing and
autonomous on-
demand taxi ser-
vice

Mode choice based on
utility maximisation

Incorporates
land-use and
agents prefer-
ence

Difficulties in
calibration

Azevêdo
et al. (2016);
Oh et al.
(2018)

SimMobility Connected and
Autonomous Ve-
hicles to replace
public transport

Three components
to simulate short,
medium, and long-
term time horizon

Seamless inte-
gration

No interaction
with public
transport ser-
vices

Laine and
Bruun
(2017)

Brutus Planning for
MaaS

Multi-modal transport
demand forecasting

Trip-chains No information
on deployment
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2.5 Intelligent agents

An intelligent agent (IA) refers to an autonomous entity which acts rationally towards
achieving goals in an environment perceived using sensors (Franklin and Graesser, 1997;
Jokinen and Wilcock, 2019; Mills and Stufflebeam, 2017). Burgin and Dodig-Crnkovic
(2009) identified four main characteristics an intelligent agent should possess. These
characteristics are: (1) Usefulness: i.e., it should be of service to others and may assist
others or be part of a larger process. (2) Context-awareness (or situational awareness
(SA)). Naderpour et al. (2012) defines situational awareness as “the perception of the
elements in the environment within a volume of time and space, the comprehension of
their meaning and the projection of their status in the near future”. (3) Ability to learn:
an IA should be capable of learning from previous experiences. (4) Adaptability: an IA
should be able to adapt to apply what it has learned.

Russell and Norvig (2003) classified intelligent agents into five types based on the
degree of perceived intelligence and capability. The intelligent agents were classified into
simple reflex, model-based, goal-based, utility-based and learning-based agents as ex-
plained below:

i) Simple reflex agents: These are the basic form of agents that function only in the
current state. Their intelligence capability is very low, and they often ignore history.
Their responses are based on pre-defined rules. They perform well only when the
environment is fully observable.

ii) Model-based agents: These agents choose actions in the same way as reflex agents,
but they have a more comprehensive view of the environment in addition to the
capacity to store past internal states. Model-based agents update the internal state
at each step. To perform any action, it relies on both internal state and current
perception. However, it is almost impossible to find the exact state when dealing
with a partially observable environment.

iii) Goal-based agents: These agents expand upon the information model-based agents
store by including goal information, or information about desirable situations. To
attain its goal, it uses the search and planning algorithm. One drawback of goal-
based agents is that they do not always select the most optimal path to reach the
final goal. This shortfall can be overcome by using the utility agent described below.

iv) Utility agents: These agents are similar to goal-based agents but provide an extra
utility measurement which rates each possible scenario on its desired result and
chooses the action that maximises the outcome. Rating criteria examples could be
the probability of success or the resources required.

v) Learning agents: These agents can gradually improve and become more knowledge-
able about an environment through an additional learning element. The learning
element uses feedback to determine how performance elements should be changed
to improve gradually.

2.5.1 Rationality among intelligent agents

In game theory, decision theory, artificial intelligence, and economics, a rational agent is
an agent that: has clear preferences; models uncertainty via expected values of variables
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or functions of variables; and always chooses to act with the optimal expected outcome
for itself from among all possible actions (Mart́ın H. et al., 2008). Russell and Norvig
(2003) view the agent’s goal-directed behaviour to be the essence of intelligence. In
this rational-action paradigm, an IA possesses an internal “model” of its environment.
This model encapsulates all the agent’s beliefs about the world. The agent also has an
“objective function” that encapsulates all the IA’s goals. Such an agent is designed to
create and execute whatever plan will, upon completion, maximise the expected value
of the objective function (Russell and Norvig, 2003). Simon (1957) introduced the term
“bounded rationality” to tailor the concept of rationality with cognitively limited agents.
Bounded rationality has since come to refer to a wide range of behaviour which departs
from the assumptions of “perfect rationality”.

Perfect rationality assumes a hypothetical agent having complete information about
the options available, perfect foresight of the consequences from selecting any of those
options, and the computational capability to solve an optimisation problem that max-
imises the agent’s utility, which is often complex (Wheeler, 2020). However, “bounded
rationality”, introduces a risk factor associated with decision making such that the agents’
decision model accounts for the individual preferences, the existence of partial information
and the weaknesses in the individual computational capability of agents (Wheeler, 2020).

2.5.2 Situational awareness among intelligent agents

Situational awareness (SA) was defined by Jiang (2020) as the progression by an intelligent
agent through three levels: (1) the perception of environments with respect to time or
space within the situation, (2) the comprehension of their meaning, and (3) the projection
of their future status. Within a multi-agent system or team perspective, SA can be defined
as “the degree to which every team member possesses the situation awareness required
for his or her responsibilities” (Endsley, 1995). SA has been recognised as a critical
foundation for successful decision-making in agent-based systems. As observed by Burgin
and Dodig-Crnkovic (2009), SA is one of the major characteristics that makes the agents
intelligent. Thus, agents in ABMs need to adopt methods that enhance their levels of
situational awareness.

2.5.3 Learning among intelligent agents

Intelligent agents (IA) that have the ability to learn often use machine learning algo-
rithms. Machine learning (ML) investigates how computers can learn to recognise com-
plex patterns and make intelligent decisions based on data (Pedregosa et al., 2011). There
are three basic machine learning paradigms: supervised, unsupervised and reinforcement
learning (Talabis et al., 2015). Supervised learning provides powerful tools to classify and
process labelled data. Unsupervised learning is synonymous with clustering. The learn-
ing process is considered unsupervised since the input examples are not class labelled.
Clustering can also be used to discover classes within the data. Reinforcement learning
is a machine learning approach that lets users/agents play an active role in the learning
process (Schmidhuber, 2015). A reinforcement learning agent can have a “reward func-
tion” that allows the programmers to shape the IA’s desired behaviour as illustrated in
Figure 2.2a. The reinforcement learning scenario in Figure 2.2a shows that an agent takes
actions in an environment, which is interpreted into a reward and a representation of the
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state, which are fed back into the agent.
In supervised learning, there are four main types of classification tasks: binary, multi-

class, multi-label, and imbalanced classification (Schmidhuber, 2015). Widely used clas-
sification tools during supervised learning include, logistic regression, linear discriminant
analysis, K-nearest neighbours, trees, random forests, support vector machines, and neural
networks (Talabis et al., 2015; Schmidhuber, 2015).

Learning among intelligent agents can take on many facets depending on the agents
objective. For the purposes of this dissertation, we shall restrict ourselves to two learning
objectives: learning how to classify, and learning how to rank, using random forests, and
convolutional neural network (CNN), respectively. Classification problems usually involve
predicting classes of items based on predefined labels, which are often discrete values. For
example, classifying photos (Kussul et al., 2017), emails, and customer risks in banking
applications. Tools such as random forests (Breiman, 2001) and neural networks (Pelletier
et al., 2019) are used for classification problems. Recently, classification problems have
evolved to ranking problems which usually involves both classifying and ordering (Dong
et al., 2009).

2.5.3.1 Random forests

Random forests are tree-based machine learning algorithms popularly used to solve su-
pervised learning problems flexibly. A random forest consists of a collection of tree
structured classifiers {h(x,Θk), k = 1, ...} where the {Θk} are independent, identically
distributed random vectors and each tree casts a unit vote for the most popular class at
input x (Breiman, 2001). A random forest algorithm goes through four steps as illustrated
in Figure 2.2b. First, the algorithm selects random samples from the dataset provided.
Second, it creates a decision tree for each sample selected; then it gets a prediction result
from each decision tree created. Third, voting is performed for every predicted result.
Finally, the algorithm selects the most voted prediction result as the final prediction.

2.5.3.2 Convolutional neural network

Deep Convolution Neural Networks (CNN) have been used successfully for many machine
learning applications such as object recognition, machine translation, remote sensing data
classification, as well as missing data reconstruction (LeCun et al., 2015; Schmidhuber,

(a) Reinforcement
learning (b) Random forest (c) Convolutionary neural network

Figure 2.2: (a) The Reinforcement Learning (RL) scenario, (b) the process of classification
using Random Forests; (c) Example of a dense (fully connected) neural network (Pelletier
et al., 2019)

22

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW

2015). Deep learning networks are based on a concatenation of different layers of neu-
rons – simple connected processors each producing a sequence of real-valued activations–
where each layer takes the outputs of the previous layer as inputs (Pelletier et al., 2019).
Figure 2.2c shows a neural network composed of two dense (fully connected) layers, and a
“SoftMax” activation layer. The green, blue and red neurons represent the inputs, hidden
layers, and outputs, respectively. The SoftMax layer is a special case of a dense layer that
maps the output of the previous layer to a vector of class probabilities. The activation for
neuron i (class i of the total number of classes C) is an extension of multiclass sigmoid
function that can be written as:

A
[L]
i =

eZ
[L]
i∑C

j=1 e
Z

[L]
j

(2.2)

Where Z
[L]
i is the result of the linear combination of neuron i of the SoftMax layer, i.e.,

Z
[L]
i = W

[L]
i AL−1 + b

[L]
i , C. For a given training instance, the C activations sum to one

and can be interpreted as a probability distribution over the class (Pelletier et al., 2019).

2.5.3.3 Learning to rank

Learning to rank or machine-learned ranking (MLR) is the application of supervised
machine learning to construct ranking models. Ray and Triantaphyllou (1999) defined
ranking as an ordering on a set of alternatives. Dong et al. (2009) classified learning to
rank models into three classes. The first is pointwise ranking. Here the model inputs one
item at a time and assigns it a probability of being relevant but ignores the relationship
between the different items in the list. The second is pairwise ranking. Here models
perform pairwise comparisons of each item in the list and learn the probability of one item
being preferred to another item. This does not capture the entire list; it only compares
pairs (Cao et al., 2007). The third is listwise ranking. Here the function inputs one item
at a time and optimises the ordering of the list producing an optimal permutation on
the items. In some high-level APIs – such as “TensorFlow-ranking” – multi-item scoring
was introduced. Here the model inputs all the items at a time and produces the optimal
ordering (Svore et al., 2011). This allows the scoring function to use the context of other
items to make better ranking decisions (Pasumarthi et al., 2019). Ranking results are
evaluated using a range of metrics for all the ranking methods. The metrics include:
Normalised Discounted Gain (NDCG), Average Relevance Position (ARP), and Mean
Average Precision (MAP) (Dong et al., 2009).

The popular NDCG method of evaluating ranking results evolved from the Discount
Cumulative Gain (DCG) method developed by Freund and Schapire (1996); Freund et al.
(2003) and is described below. First, a Cumulative Gain (CG) is computed (Equation 2.3),
followed by a DCG (Equation 2.4), and finally a NDCG (Equation 2.5).
Each item with different relevance in the ranking list is assigned with a gain such as 0,
1, 2, or 3. And then the list built by different gains would be {3, 2, 3, 0, 0, 1, 2, 2, 3, 0, ...}.
The item’s ranking cannot be observed from the list, yet it can be solved by calculating
the Cumulated Gain (CG).

CG[i] =

{
G[1] , if i = 1

CG[i− 1] +G[i] , otherwise.
(2.3)
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The list built by CG is {3, 5, 8, 8, 8, 9, 11, 13, 16, 16, ...}. The larger the CG is, the greater
the position of the item in the list. However, the gain would be too large to be calculated
if there is a large number of items, which can be solved through computing DCG.

DCG[i] =

{
G[1] , if i = 1

DCG[i− 1] +G[i]/logi , otherwise.
(2.4)

And then the list built by DCG is {3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61, ...}.
However, people hope that there is a normalized DCG to compare the ranking results.
Finally, they proposed NDCG to estimate ranking results. The definition of NDCG is as
below (Dong et al., 2009):

NDCG = {v1/i1, v2/i2, ..., vn/in}
v : non− ideal DCG list

i : ideal DCG list

(2.5)

Learning to rank has previously been applied in: search engines to rank documents in
response to user queries (Joachims, 2002); recommendation systems to rank items for a
given user (Elsas et al., 2008); dialogue systems to rank responses for user requests; and
in question & answer systems to rank answers in response to user questions. (Dong et al.,
2009; Liu, 2011; Valizadegan et al., 2009)

2.6 Conclusion

Despite the several studies performed on complex adaptive systems modelling and, in
particular, agent-based modelling of transport systems, only a few have targeted public
transport in the developing cities of the Global South. Currently, there is no agent-
based model of paratransit systems in Sub-Saharan Africa and, more particularly, in
Uganda. However, available literature indicates that transport planning projects under-
taken in East Africa for the last decade were mainly based on the reductionist school of
thought. They depended on the equilibrium assignment models for transport planning
and transport-related decision making (JICA, 2014, 2008; ITP, 2010).

Notably, paratransit dominates the road-based public trips in several developing cities
of the Global South. For instance, paratransit contributes 70%, 90%, 91%, and 98%
of the road-based public trips in Johannesburg, Lagos, Kampala, and Dar es Salaam,
respectively (Behrens et al., 2015a; Evans et al., 2018). Additionally, paratransit exhibits
several properties of complex adaptive systems as discussed in Section 2.3. Therefore, the
traditional equilibrium assignment models that are based on the reductionist school of
thought may not provide the complete understanding of the complex dynamics associated
with paratransit systems. Therefore, in this dissertation, we depart from the traditional
practice and explore the emergentists school of thought to study the complex dynamics
in paratransit systems using complex adaptive system approaches such as agent-based
modelling.

Studies such as Hammod (2015), Azevêdo et al. (2016) and Ciari et al. (2014) demon-
strate the feasibility for the development and deployment of agent-based models in trans-
portation application. The studies illustrate the possibilities to model social interaction,

24

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW

environmental interaction, and seamless integration dynamics in addition to incorpo-
rating geographical and detailed network structures into the transportation agent-based
models (Zhang and Levinson, 2004). Furthermore, flexible implementation architectures
such as MESA (Masad and Kazil, 2015) present the opportunity to customise micro-level
agents’ structure and behaviour. Thus, overcoming the lack of flexibility encountered in
earlier transport ABM frameworks such as MATSim (Ciari et al., 2014) and AgentPo-
lis (Jakob et al., 2012).

The advances in machine learning and pattern recognition research have unlocked new
methods of applying agent-based modelling to transport problems. Using evolutionary
methods such as random forest (Breiman, 2001), convolution neural networks (Pelletier
et al., 2019) and reinforcement learning, intelligent and situationally aware agents can be
designed and trained (using data) to make more optimal micro-level decisions. Hence, new
emerging complex dynamics of transport systems at macro-level – such as self-organisation
and evolution – can be studied. Such system properties could not be fully studied using
the traditional equilibrium assignment models.
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Chapter 3

Minibus taxis in Kampala’s
paratransit system: Operations,
economics, and efficiency

Chapter 3 objectives
This chapter aims at achieving the Research Objective 1.1 and RO 1.2 of the dissertation
to answer research questions RQ1 and RQ2, respectively.
• ⇒Research Objective 1.1

Describe the operations of minibus taxis in Kampala’s organically-evolved, quasi-
demand-responsive paratransit system.

• ⇒Research Objective 1.2

Estimate the system efficiency from the passengers’ and driver’s perspectives.

To answer research questions RQ1, RQ2, and subsequently achieve Objective 1.1 and
Objective 1.2 of the dissertation, this chapter uses a three-pronged approach. First, we
studied the operations of minibus taxis in Kampala’s paratransit system, from basics
like regulation, management, and routes, to the industry’s unique and peculiar practices.
Second, we studied and evaluated the economics of minibus taxis in terms of passenger
fares, drivers’ daily cash flow, profits, and we estimated the drivers’ profitability index (PI)
of the minibus taxi business. Third, we assessed the efficiency of the paratransit system
from the passengers’ and drivers’ perspectives, and how it affects the overall minibus taxi
operations and the subsequent operational economics. To estimate the system efficiency,
we introduced the concept of hold-back time (th), which means the accumulated time a
taxi waits at stops along a route (during a trip), waiting for and loading passengers. The
hold-back time can be likened to the dwell time in scheduled public transport. However,
hold-back time is unique to minibus taxis in organically-evolved, quasi-demand-responsive
paratransit systems like those in Kampala, the Sub-Saharan Africa (SSA) and many
developing cities of the Global South, because of their unscheduled nature. The hold-
back time in such systems vary depending on the occupancy status of the taxi and the
anticipated demand along the route.
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3.1 Background to paratransit in Kampala

Across developing cities of Sub-Saharan Africa, transport authorities are struggling to
fulfil the mobility needs of rapidly growing populations, especially the urban poor. The
transport systems that are supposed to connect commuters to jobs, services and markets
have limited capacity and are loosely regulated and inefficient (Behrens et al., 2015a;
Daniel E. Agbiboa, 2018). Since the 1990s these typically quasi-demand-responsive ser-
vices – referred to in the academic literature as “paratransit” or “informal transport”
– have filled the gap left by the collapse of the colonial-era state-owned transport com-
panies (Cervero and Golub, 2007; Ajay Mahaputra Kumar et al., 2008; Kumar, 2011).
The introduction of the World Bank’s structural adjustment policies in the 1990s, coupled
with weak policies for regulating and enforcing paratransit licensing, created a barrier-free
entry into the informal transport industry in response to demand. The paratransit in-
dustry, consisting mostly of fourteen- to twenty-seater minibus taxis, therefore expanded
to dominate public transport in many cities of SSA (Booysen et al., 2013). In Uganda,
two bus companies – the Uganda Transport Company (UTC) and the People’s Transport
Company (PTC) – provided public transport services in the 1970s and 1980s. However,
after a litany of problems comprehensively documented by Kumar (2011), the companies
collapsed in the early 1990s, paving the way for the organic evolution of privately-run
paratransit with atomised ownership and dispersed financial capital.

Uganda’s informal minibus taxi industry is a vital and lucrative component of the
urban economy. It directly employs more than 100,000 people in Kampala (Uganda’s
capital city), and it provides many indirect jobs through the motor vehicle repair and
servicing industry (Pablo, 2015; Goodfellow, 2017). In 2015, Kampala had 1.5 million
residents and 16,000 minibus taxis that transported 82.6% of the commuters across its
five divisions (i.e., Central, Kawempe, Makindye, Nakawa and Lubaga) (Vermeiren et al.,
2015; KCCA, 2016; Aggrey, 2017). The remaining 17.4% of commuter travel was shared
among private cars, busses, and motorcycle taxis (boda-bodas). Though many minibus
taxis are not officially registered, Kampala’s minibus taxi fleet is estimated to be growing
at a rate of 5.4% annually (Pablo, 2015; Aggrey, 2017; Jean et al., 2018).

Although the minibus taxi ownership structure is fundamentally opaque, reports point
to wealthy politicians owning fleets of minibus taxis, several private citizens owning one or
two, and groups of individuals pooling funds to co-own one (Stewart-Wilson et al., 2017).
The capital outlay of about $15,000 for a single second-hand minibus from Japan sub-
stantially contributes to the atomised ownership of minibus taxis in Kampala (Dorothy,
2018). The $15,000 start-up capital is out of reach for many Ugandans since Uganda’s
GDP per capita is only $642 (Dorothy, 2018). The minibus taxi business has a potential
annual cash flow of $10,000 per minibus taxi and a profit of $35,000 over five years ac-
crued to the owner (Aggrey, 2017; Dorothy, 2018). However, the operations of minibus
taxis are opaque to the commuters and new drivers joining the industry; the economics
of fares paid by the commuters and the daily cash flow to drivers and owners are not well
documented; and the efficiency of paratransit in terms of passenger travel time has not
been well studied.
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3.2 Paratransit regulation and management in Kam-

pala

Regulation in public transport universally covers three dimensions: quality regulation
to ensure vehicle safety; quantity regulation to set targets for and limit the number
of vehicles operating in the system; and fare regulation. The principal objectives of
transport regulation are to ensure that: (1) services are operated in accordance with
government policy; (2) demand for public transport is satisfied as far as possible; (3)
standards of quality and safety are maintained; and (4) fares are controlled to affordable
levels (Richard, 2005).

Efforts were made to regulate Kampala’s paratransit system through statutory laws
and regulations enacted by the Ugandan Parliament and loosely enforced by the Kampala
Capital City Authority (KCCA) – the local governing body of Kampala City. The laws in-
cluded: the Traffic and Road Safety Act of 1998; the Kampala Capital City Act of 2010;
and the subsequent amendments in 2012 (Uganda Parliament, 1998, 2011, 2012). The
laws were strongly resisted by paratransit operators, backed by influential politically con-
nected owners (Goodfellow, 2010). These laws provided for the formation of a transport
licensing board and taxi owners’ and drivers’ associations to manage minibus taxi affairs
and enable collective bargaining between taxi owners, drivers, and the city authorities.
The regulations and the means of enforcing them were not clear and thus left considerable
room for discretion. For example, they left room for self-regulation through self-organised
associations like the Uganda Taxi Operators and Drivers Association (UTODA) and the
Kampala Operational Taxi Stages Association (KOTSA). Self-regulation of the quality of
service, number of vehicles and fares charged by drivers generally worsened the quality
of service provided by paratransit in Kampala. It also led to excessive competition be-
tween drivers seeking to maximise their profits, and left commuters with no choice but to
travel in often overloaded and unroadworthy vehicles that seldom adhered to traffic rules.
Goodfellow (2017) argues that the laxity in regulation enforcement and the subsequent
chaos in the paratransit industry are not coincidental: the situation serves the economic
and political purposes of the political elites who use the minibus taxi industry for political
mobilisation.

3.2.1 Minibus taxi management

Management controversy, exploitation, inefficiency and political interference are rife in
Kampala’s minibus taxi industry (Goodfellow, 2010, 2012, 2017; Phillips and Mesharch,
2018). In the early 1990s the first attempt to manage the informal taxi industry through
the monopolistic Uganda Taxi Operators and Drivers Association (UTODA) resulted in
a deadlock that Goodfellow (2017) refers to as the “double capture”. In the double
capture, political elites infiltrated the taxi industry and subsequently, UTODA wielded
enormous influence over the city authorities. UTODA engaged in behind-the-scenes multi-
institutional informal bargaining, played one arm of the state against the other, and made
it very difficult to implement transport policy in Kampala (Goodfellow, 2010). The results
of this laissez-faire manner of running the transport industry were exploitation of drivers
and an inefficient transport service. Today the bad practices of UTODA still haunt the
minibus taxi industry: the regulations are not fully implemented; the drivers and other
sector employees do not fully benefit from the industry; and commuters have to suffer an
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inefficient service riddled with delays, high and inconsistent fares, and lacking standardised
routes and schedules information (Ndibatya et al., 2016; Goodfellow, 2017).

3.3 Methods and data

This section presents our economic and efficiency metrics, data collection process, and
data processing methods. The efficiency of a public transport system can be analysed us-
ing both subjective measures, such as user opinions and satisfaction surveys, and objective
measures, such as numeric values for attributes like load factor (percentage occupancy),
travel time and total passenger-kilometres covered (Sampaio et al., 2008; Eboli and Maz-
zulla, 2011, 2012; Gorkem et al., 2014; Marcius et al., 2015). To study the operations
of Kampala’s paratransit system, both qualitative and quantitative data was collected
between January and March 2016. The collected data was associated with pre-selected
paratransit travel attributes: taxi ranks, stops, routes and route-related attributes such as
fare, hold-back time, commuter waiting time and minibus taxi occupancy. The conditions
in Kampala’s minibus taxi system have not changed substantially since 2016. Therefore,
the data that was collected and the results discussed in the subsequent sections are still
relevant.

3.3.1 Metrics

We used economic metrics – minibus taxi fares (β), taxi occupancy (O) and drivers’
profitability index (PI) – and efficiency metrics – passenger waiting time (tw), taxi hold-
back time (th), operating speed (vo) and commercial speed (vc) – to study the operational
economics and to estimate the efficiency of the minibus taxi transportation system in
Kampala’s paratransit. We define the metrics used for this study in Table 3.1.

The hold-back time (see Table 3.1) has a knock-on effect on the trip duration for
passengers passively completing their journey in the taxi. This concept is similar to a bus
waiting at a stop mid-journey due to being too early according to its schedule. But, in
the minibus taxi case, the taxi stops for an unspecified time because the driver considers
the vehicle occupancy to be too low to make the trip profitable.

3.3.2 Data collection methods

We adopted a participatory observation data collection method in which fieldworkers
acted as passengers. They used Global Positioning System (GPS)-enabled devices to
record minibus taxi movements on pre-selected routes. Global Positioning System data is
widely used by researchers to study movements because it provides precise spatiotemporal
characteristics of travel (Usyukov, 2017; Jonker and Venter, 2019). While on board and en
route to the selected destinations, the fieldworkers also engaged in open-ended questioning
of drivers to obtain qualitative information such as minibus taxi industry practices, driver
revenue and expenses.

We used two quality assurance and control strategies described by Whitney et al.
(1998) to preserve the data integrity, to detect and prevent errors in the collected data
(such as sampling errors), and to ensure the scientific validity of the results. First, the
error prevention strategies included talking to key people in the paratransit industry to
get a general understanding of minibus taxi operations before designing the data collection

30

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. MINIBUS TAXIS IN KAMPALA’S PARATRANSIT

instruments and recruiting data collection assistants (volunteers) who were familiar with
the paratransit system. We trained the volunteers in the use of GPS devices and the
data collection mobile application before starting the data collection process. Second, the
error detection strategies used during and after this process involved a daily early morning
meeting with the volunteers to update and ensure data consistency, exit interviews with
each volunteer to record further critical observations, and redoing (or validating) routes
that had erroneous data.

3.3.2.1 Sampling methods and data

We used stratified sampling to select 155 routes from the 307 routes distributed across
the five divisions of Kampala as follows: Central-99, Kawempe-10, Makindye-12, Nakawa-
10 and Lubaga-24 (refer to the “Routes count” column in Table 3.4 and Figure 3.5g for
the detailed distributions of sampled and studied routes). Four data collection volunteers
participated in the data collection exercise. The volunteers used a standard data collection
instrument to collect data about the routes, i.e., route name, route fare, stops, hold-
back time, waiting time and occupancy. Additionally, the volunteers randomly engaged
in informal chats with 54 minibus taxi drivers and collected extra data about the taxi
industry practices, drivers’ revenue and expenditure. We also talked to the leadership of
KOTSA and KCCA to get data about minibus taxi ranks, routes, the general operations,
and regulations of minibus taxis in Kampala.

Table 3.1: Description of economic and efficiency metrics

Metric Description
Minibus taxi fare
(β)

The amount of money paid by a minibus taxi passenger for a complete one-way
trip on selected a route. Note: Full trip fare was paid even for trips abandoned
midway.

Occupancy (O) The number of passengers on board a minibus taxi as a percentage of the total
taxi capacity. Note: only fourteen-seater minibus taxis were studied.

Profitability Index
(PI)

The profitability index represents the relationship between the minibus taxi
driver’s revenue and expenses for day under study. Given one minibus taxi
for one day, the driver’s profitability index is computed using the equation

PI =
∑n

i=1 Ei

R , where Ei is the expense incurred on a single item and R is the
total daily revenue. R is computed as a function of (i) trip-based passenger
fare (β), (ii) the average occupancy per trip (O), (iii) the total number of trips
per day (γ).

Waiting time (tw) The total time a passenger waits for a taxi at a stop or taxi rank.
Hold-back time (th) The accumulated time a taxi stays at stops along a route waiting for (or in

anticipation of) passengers. It includes the time spent at the stop of origin
loading the minibus taxi before embarking on the trip.

Operating speed
(vo)

The average speed at which a minibus taxi could travel from origin to desti-
nation without stopping en route. When computing the operating speed, the
hold-back time was excluded.

Commercial speed
(vc)

The overall average speed of the minibus taxis during the trip, including the
time spent at the stops (hold-back time). vc = d

T , where, d is the total trip
distance, and T is the total time taken to complete a trip.
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3.3.2.2 Participatory observation

We recruited and trained the volunteers and deployed them to collect geospatial data
using a customised mobile application (GoMetro Pro) that was pre-installed on their
smartphones running on an Android operating system (GoMetro, 2016). They travelled
around the five divisions of Kampala to locate the gazetted and ungazetted taxi ranks
and document the GPS coordinates and major routes originating from the taxi ranks.
At some taxi ranks the routes and fares were written on small placards and carried from
one minibus taxi to another in order of departure sequence (see the yellow placard in
Figure 3.1b); at others, the volunteers asked drivers to provide information about the
routes. The volunteers rode in taxis from the taxi ranks to the destinations on pre-
selected routes and recorded aspects of interest to our research such as stop location
and hold-back time. Shortly before setting off, they recorded data about the taxi fare,
waiting time and the number of passengers in the taxi. During transit, they recorded
data about the location of stops and the hold-back time at each stop. The GoMetro
Pro mobile application automatically recorded the minibus taxi’s GPS locations every
30 seconds, and these were later processed into the route’s GPS profile. The volunteers
also observed the drivers’ behaviour during the journey, such as the hand signals used for
communication between drivers and passengers on the road.

3.3.3 Data processing and analysis

We used a language-neutral Protobuf protocol developed by Google to serialise the col-
lected data for transfer to custom-developed Python libraries to be cleaned, transformed
and loaded into other Python scripts for further analysis (Blyth et al., 2019). During
the transformation process, we developed and implemented several algorithms in Python
programming language, such as a map-matching algorithm to remove multi-path errors
in the data. However, in this chapter we report only the results from these algorithms.

Preliminary data analysis was done using the Quantum Geographic Information Sys-
tem application to map the geospatial layout of minibus taxi routes, taxi ranks and stops,
relative to the administrative regions (divisions) and sub-regions (parishes) of Kampala,
as shown in Figure 3.2. We developed other customised Python libraries to analyse fur-
ther the relationships between routes, route lengths, fares per route, passenger waiting
time and minibus taxi hold-back time. In Section 3.4, we present the results from the
field study and data analysis for minibus taxi operations, economics, and efficiency.

3.4 Results

We present the results in three subsections below, i.e., minibus taxi operations, minibus
taxi economics, and minibus taxi efficiency.

3.4.1 Minibus taxi operations

Kampala’s minibus taxi operations are quasi-demand responsive, being mostly based on,
or in response to, passenger demand. The routes, stops and schedules are not static but
evolve according to passenger demand and drivers’ prior knowledge or anticipation of
demand.
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3.4.1.1 Minibus taxi ranks and stops

Kampala has seven officially gazetted minibus taxi ranks (locally known as “taxi parks”),
and 307 routes (locally known as “stages”) originate from the taxi ranks to destinations
across Kampala city and the neighbouring districts. The taxi ranks include: Old, New,
Kisenyi, Namayiba, Usafi, Namirembe and Natete Taxi Park. Of the 307 routes, KCCA
manages 122 and KOTSA manages 185 routes. Figure 3.1b shows a typical minibus taxi
rank in Kampala (the Old Taxi Park). Table 3.2 summarises the minibus taxi ranks, stops,
and routes originating from the five divisions of Kampala (Central, Kawempe, Makindye,
Nakawa and Lubaga – see Figure 3.2c). The routes in Table 3.2 indicate the routes whose
origins we documented during the study. They are according to the frequency of minibus
taxi departures, i.e., high (every 20 minutes), medium (every 40 minutes) and low (every
60 minutes). The taxi ranks and stops in Table 3.2 are according to the frequency of
passenger pickups, drop-offs, or departures in the case of taxi ranks. If the pickups/drop-
offs were frequent at a stop (every 5 to 30 minutes), we regarded it as a “major stop”,
and one with fewer (every 30 to 60 minutes) as a “minor or informal stop”.

All routes are supposed to originate from the taxi ranks. However, from interacting
with minibus taxi drivers, we established that – in response to demand and for passenger
convenience – several illegal origins are scattered around the city at ungazetted informal
stops, such as: Clock Tower, Mini Price, Namirembe Road, City Square, Nasser Road,
Mutaasa Kafeero, Mega Standard, and many others. Each route attached to a taxi rank
is managed by a committee comprising a chairman, vice-chairman, secretary, treasurer,
and welfare officer, all selected from drivers of taxis attached to the route. The committee
resolves disputes, registers new drivers joining the route and manages the welfare needs of
the members, such as loans and contributions in case of the death of any of its members.
We did not find any formally documented details about the routes and the stops. However,
the drivers we interviewed described the routes according to the significant towns they go
through. Each route from the taxi rank operates on a first-in, first-out (FIFO) queuing
system based on a ticket number booked in advance. The driver with the lowest ticket
number loads passengers first. Two people operate each minibus taxi: a driver and a
conductor. The conductor is responsible for touting passengers, negotiating, and collecting
the taxi fares.

We did not find documentation indicating the presence of formally gazetted minibus
taxis stops along the roadsides in Kampala. However, we observed that there were several
stops along the major roads. We learned – from minibus taxi drivers and other officials
– that the roadside stops are organically established (informally by drivers) according
to passenger demand, often because of increased economic, leisure and other passenger
travel attracting activities. When the demand at the location diminishes, the stop ceases
to exist. Thus, we categorised the stops as either formal or informal depending on the
frequency of pickups and drop-offs at the stop (see Table 3.2). We observed with keen
interest the presence of waiting areas for motorcycle taxis (known as “boda bodas”) at
most minibus taxi stops (major and minor), as can be seen in Figure 3.1a. We could
not verify independently whether the boda bodas attracted the minibus taxi stops or the
stops attracted the boda bodas. Every major minibus taxi stop has two to four self-
appointed wardens who often tout for passengers on behalf of the minibus taxi drivers.
They are given a commission for each pickup. The commission is negotiated according
to the number of passengers picked up from the stop: it ranges from $0.11 to $0.3 per
minibus taxi.
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Three basic characteristics of a minibus taxi paratransit system can clearly be seen
in Figure 3.1a. The first is the informality of the stop: there is no signage to say it is a
stop, but drivers stop there because of their previous knowledge of passenger demand at
that location. The second is the presence of a pseudo-modal exchange centre between two
modes of transport: motorcycle taxis and minibus taxis. We saw boda bodas dropping
off and picking up passengers from the location. The third is the dominant presence of
minibus taxis on the roads during peak hours (07:00 - 9:00 and 17:00 - 19:30). Only three
ordinary vehicles can be seen in Figure 3.1a, as opposed to at least 12 minibus taxis on
the same road segment. However, we observed that most of the minibus taxis were only
half full. This gives an idea of the low load factor (taxi occupancy) which is an indication
of the minibus taxi system inefficiency. We later confirmed (from our results in Table 3.4
and Figure 3.4a(v) that the average occupancy for minibus taxis in our sample was 69%.

3.4.1.2 Mid-trip change or abandonment of network routes

The minibus taxi route network consists of the major and minor nodes (gazetted and
ungazetted taxi ranks) that are the most common origins and destinations for Kampala
commuters. The nodes are interlinked with a series of stops (intermediate nodes), some
known and gazetted, others ad-hoc and organically evolving into major stops if passenger
demand grows. Figure 3.2a shows the distribution of taxi ranks and major and minor
stops and 3.2b and 3.2c show the aggregated number of routes originating from parishes

Table 3.2: Number of minibus taxi ranks, stops and routes (categorised according to the
frequency of taxi departures) originating from the five divisions of Kampala.

Taxi ranks Stops No. of routes & categories
Code Division Major Minor Major Informal High Medium Low Totals
101 Central 3 6 53 194 55 17 50 122
102 Kawempe 0 2 20 91 6 4 2 12
103 Makindye 0 4 41 102 4 5 6 15
104 Nakawa 0 1 19 241 3 3 6 12
105 Lubaga 0 2 19 16 14 12 4 30

Totals
3 15 152 644 82 41 68

18 796 191

(a)

Boda bodas with passengers

Minibus taxi departing

Boda bodas waiting for passengers

Minibus taxis collecting passengers

(b)

Route signage

Full minibus taxi departing

Tout

Figure 3.1: Two types of stops showing the taxis, boda bodas, route signage and touts.
(a) An informal stop at Port Bell Road; b) A formal minibus taxi rank (Old Taxi Park).
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and divisions, respectively (the circles represent parish and division centres). Minibus
taxi movements through the route network follow a near-straight course in some areas
and a winding course in others, as shown in Figure 3.3a. Several factors are responsible
for such behaviour: passenger demand (drivers wander off the main route looking for
passengers); the presence of traffic police on the main route; the state of the roads; requests
by passengers in the taxi; weather conditions; and sometimes the premature termination of
the trip in pursuit of a new route considered to be more profitable. However, we observed
that most of the diversions were made in search of passengers. Figure 3.3a shows the
winding characteristics of taxi movements on selected routes. We observed that in zones
Z1, Z2 and Z3 drivers diverted off the main route in search of passengers. In zone Z4 the
driver abandoned the trip before getting to the destination originally communicated to
the passengers and abruptly ordered all of them to disembark. He then diverted to a new
route, went south a little way searching for passengers and then headed to zone Z3, where
he resumed the search.

3.4.1.3 Industry practices

Minibus taxi drivers have developed a host of strategies to improve profits from trips
and avoid getting caught breaking the traffic rules. They believe these strategies to be
moderately effective if correctly interpreted and applied.

i) Hand and headlamp signalling

Minibus taxi drivers in a paratransit system frequently signal each other using hand
signs and headlamp flash signals for the taxis coming from the opposite direction.
Some of Kampala’s hand signs are similar to those documented in Johannesburg
by Susan Eve Woolf (2014), apart from some local differences in meaning. Taxi
hand signalling is a useful language developed out of a desperate need for transport
amongst multi-cultural and multi-lingual city travellers (Susan Eve Woolf, 2014).
Each hand sign conveys a message, such as a warning, a clue to passenger demand

(a)

Taxi ranks

Semi-forrmal stops

Informal stops

(b)

08

O

01

D

No. of routes

Inter-parish flow key

(c)

31

O

01

D

No. of routes

Inter-division flow key

Figure 3.2: (a) Spatial distribution of taxi ranks and stops; (b) inter-parish routes flows;
(c) inter-division routes flows. Note: The key shows the origin and destination routes flow
count.
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or an indication of the taxi’s destination. Figure 3.3b shows five of these. Signal (i)
is usually for driver-to-driver communication and is associated with a hilly terrain
ahead (usually within about three kilometres). It means that after the indicated
number of hills there is a high probability of passenger demand. If preceded by
a double headlight flash signal, it warns of the presence of traffic officers or mo-
bile speed trap camera ahead, alerting the other driver to reduce speed or drop off
any excess passengers. Signal (ii) is for communication both driver-to-driver (indi-
cating the presence of traffic police or a speed camera usually about 4 km ahead)
and driver-to-passenger (indicating to waiting passengers that the taxi is headed
to destinations far out of Kampala). Signal (iii) is used for communication both
driver-to-driver (indicating the presence of traffic police or a speed camera about
1 km ahead) and driver-to-passenger (indicating that the taxi is about to reach its
final destination, usually less than 2 km away). Signal (iv) is a driver-to-driver
signal indicating the presence of many passengers waiting, usually within a distance
of 1 km. Signal (v) is a driver-to-passenger signal indicating that the taxi is about
to take a detour off the main route, usually to the informal settlements.

ii) Passenger touting strategies

Passenger touting is mainly done by taxis circulating within the town rather than
heading for distant destinations, especially those that originate from the informal
roadside stops within the city. Taxis usually start the trip with few or no passen-
gers in anticipation of collecting some en route, a strategy referred to locally as
“okuvuga ekkubo” (random passenger search). To ensure a profitable trip, various
complementary sub-strategies are used. One such is called “okubala gap” (strategic
demand estimation), where the driver observes the taxis coming from both direc-
tions to either receive a signal of passenger demand ahead or estimate the presence
of demand ahead on the basis of the number of competing taxis heading in the
same direction. Another is a sub-strategy called “okukyeebakamu” (random back
off) where, depending on estimated or received negative feedback from the okubala
gap sub-strategy, the driver interrupts the trip and waits at a strategic stop for a
random period to allow for commuter demand replenishment before continuing with
the trip.

(a)

Aggressive passenger search 

Diversion from original route

Z
3

Z
4

Z
2

Z
1

(i)

(ii)

(b)

(v)

(i)

(iv)
(iii)

(ii)

Figure 3.3: (a) Movement characteristics and route abandonment; (b) Gestures used by
drivers (Susan Eve Woolf, 2014).
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3.4.2 Minibus taxi economics

We looked at the economics of the minibus taxi operations from both the passengers’ and
the drivers’ perspectives. Passengers are concerned with the fares they must pay; drivers
are concerned with their overall cash flow and profit margins to keep their taxi business
afloat. Figure 3.4b shows a positive correlation between hold-back time and route fare
(r=0.299) and between waiting time and route fare (r=0.256), and a negative correlation
between waiting time and route length (r=-0.265). Figure 3.5 shows the distributions of
each attribute between and within divisions.

3.4.2.1 Passenger fares

We related our minibus taxi fare data to the length of the routes (total distance travelled
from origin to destination). Table 3.4 shows the average route lengths, average fare
per one-way trip, and approximate fare per kilometre for the inter-divisional routes in
Kampala. Figures 3.4a(i-iii) show the general distributions of route lengths, route fares
and fare per kilometre, and Figures 3.5a and 3.5b show the distributions of route lengths
and route fares categorised according to the origins and destinations. The distances range
from 1.2 to 11.8 km.

The average cost of travel by minibus taxi at the time of our study (January–March
2016) was $0.55 (UGX 1,980) and the average fare per kilometre was $0.12 (UGX 432).
Routes within Makindye (103–103) were the least expensive at $0.22 (UGX 799); routes
from Kawempe to Nakawa (102–104) were the most expensive at $1.08 (UGX 3,884) while
routes from Central to Lubaga (101–105) were moderately priced at $0.46 (UGX 1,656).
The taxi fare per unit of distance travelled (fare per km) represents the unit cost of
travel by minibus taxi, which ranged from $0.06 (UGX 216) for trips within Makindye
to $0.28 (UGX 1,008) for those within Kawempe, as shown in Table 3.4. There is a
positive correlation (r = 0.406) between route length and route fare as shown in the
scatter matrix in Figure 3.4b. Figures 3.4a(ii-iii) show the general distribution of route
fares and fare per unit distance (fare per km), respectively, while Figure 3.5b shows the
division-level distributions of minibus taxi route fairs categorised according to division
origin and destination pairs.

3.4.2.2 Drivers’ profitability index (PI)

As noted earlier, Kampala taxis are privately owned by sole and multiple proprietors.
After acquiring a taxi, the owner usually puts it up for hire by drivers. Drivers and
taxi owners often execute an agreement (sometimes unwritten) where the driver rents the
taxis and remits to the owner a daily rental fee ranging from $26 to $30 in addition to
paying for the daily running costs of the taxi such as fuel, washing, overnight security
and a commission to the tout. The owner pays for the routine vehicle maintenance and a
monthly fee ($32) to the city authorities for the right to operate in the city.

Preliminary results from analysing data about minibus taxi occupancy, route length
and taxi fares (see Table 3.4), indicated that the minibus taxi driver’s revenue is generally
low. The average fare per kilometre is $0.12, and the average minibus taxi occupancy is
69% (10 passengers). It means that, for an average 5km trip, a driver earns $6, which
represents a 29% revenue loss due to low occupancy. Figures 3.4a(ii-v) show the general
distribution of route fare, fare per km and minibus taxi occupancy. There were some
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cases of overloading as shown in Figure 3.4a(v). Where taxi occupancy exceeded 100%,
there is a positive correlation (r = 0.46) between route fare and route length.

Based on the preliminary results about route fare, fare per km, and occupancy, we
estimated the minibus taxi drivers’ profitability index. Table 3.3 summarises the esti-
mated minibus taxi driver’s daily expenses and revenue for an average 5 km route. The
“Base” column shows the driver’s revenue and profitability index on a normal fifteen-hour
working day; the “Practice” column shows the driver’s revenue when some strategies de-
scribed in Section 3.4.1 are used; and the “Objective” column shows the revenue a taxi
driver could ideally achieve, given an improvement of the system with all 14 passenger
seats occupied and 15 trips per day – an objective expressed by the drivers who work for
approximately 15 hours a day.

3.4.3 Minibus taxi efficiency

For this study, we focused on passenger waiting time, hold-back time, and travel time
as measures of efficiency, and we assumed all other factors to be constant. The waiting
time (time spent at a stop or taxi rank waiting for a minibus taxi) and hold-back time
were recorded by the data collection assistants per route. The figures shown in Table 3.4
are of all-day averages for all the routes studied during the research period. The travel
time, operating speed, and commercial speed presented in this section were computed
from the timestamped routes profile GPS data collected using the GoMetro Pro mobile
application.

Conventionally, travel time is a function of velocity and the geometry of direct and
subsidiary routes (Sampaio et al., 2008). In a quasi-demand responsive paratransit system,
however, travel time is greatly influenced by the passengers’ waiting time and the drivers’
hold-back time. We thus included these in our analysis. Table 3.4 shows the average
waiting time, average hold-back time, average hold-back per km, operating speed, and
commercial speed for various minibus taxi routes within and between Kampala’s divisions.
Accordingly, the waiting time in Kampala’s paratransit system ranges from 22 minutes
(Central to Nakawa) to 59 minutes (Central to Lubaga), with an overall average waiting
time of 39 minutes. We found that minibus taxis from Central to Lubaga spent less
time holding back and waiting for passengers than those from Kawempe to Nakawa –

Table 3.3: Driver’s daily cash flow and estimating the profitability index for a single
rented minibus taxi.

Average driver’s expenses per day Average driver’s revenue per day
Item Cost ($) Item Base Practice Objective
Taxi rent (E1) $27.80 Occupancy per trip (O) 10 11 14
Fuel (E2) $16.70 Avg fare per passenger (β) $0.45 $0.55 $0.45
Washing bay (E3) $2.80 Trip duration (in hours) (%) 1.5 1.7 1
Security (E4) $11.10 Trips per day (γ) 10 11 15
Touts commissions (E5) $1.10 Total revenue per trip (λ = O × β) $4.5 $6.05 $6.3

Total expenses E =
∑5
i=1 Ei $59.40 Total daily revenue (R = λ× γ) $45.0 $66.55 $94.5

Profitability index (PI = R
E

) 0.76 1.12 1.59

Note: (i) Profitability index is computed as a ratio of total revenue to total expenses. (ii) A driver works for 15 hours
a day. (iii) The Objective column assumes filling every seat (14) for an objective expressed by the driver of 15 trips per
day. (iv) Occupancy O is the average number of passengers in a taxi per trip.
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Figure 3.4: Operational attributes of division-level origin–destination routes. (a) Scat-
ter matrix plot and corresponding correlation coefficients for different routes’ attributes;
(b) General statistical distribution of operational route attributes (n=155 routes).
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40 minutes as compared with 110 minutes. The hold-back time per kilometre travelled
ranged from 9 minutes (Kawempe to Nakawa) to 54 minutes (within Kawempe) with a
median of 16 minutes.

We found that the general operating speed for minibus taxis in Kampala ranges be-
tween 10 km/h and 69 km/h with a mean and standard deviation of 38 km/h and 15
km/h, respectively. In contrast, the commercial speed is low, ranging between 3 km/h
and 15.4 km/h with a mean and standard deviation of 4.9 km/h and 2.2 km/h.

3.5 Discussion

We discuss our results according to our three major themes: operations, economics, and
efficiency.

3.5.1 Operations

Minibus taxi operations in Kampala are characterised by informality in all their aspects:
regulations, regulation enforcement, management, stops and routes. The minibus taxi
routes and stops are not clearly established and labelled. The routes between two stops
or ranks are difficult to present in static maps because they are not fixed: they vary
according to demand, traffic conditions, competition, and sometimes drivers’ preference.
Ndibatya and Booysen (2020a) presented a static route map that shows an attempt by
KCCA to develop a static public transit route map for Kampala in 2017. The route map
consists of 190 stops and 110 minibus taxi routes. When compared with our results in
Table 3.2, we found a difference of 606 stops and 81 routes that do not appear on the
KCCA route map. The most probable causes of the difference in routes and stops count
are either that the routes and stops have evolved because of changing passenger demand
at different locations or that they were considered insignificant by the KCCA mapping
team.

We observed desperate attempts by drivers to make the trips profitable through rudi-
mentary strategies such as starting trips with no passengers (okuvuga ekkubo), strategic
observation (okubala gap) and random back off (okukyeebakamu), as discussed in Sec-
tion 3.4.1.3(ii). These strategies are not as effective as claimed by drivers. In fact, they
may be responsible for the fluctuating minibus taxi occupancy and subsequent low prof-
itability index presented in Table 3.3. The minibus taxi drivers adopt such ineffective
strategies due to lack of proper minibus taxi scheduling, booking and demand forecast
systems.

Kampala’s public transport sector affects the livelihood of millions every day, espe-
cially the urban poor. It is dangerous to leave it to private management by manipulative
wealthy elites (often referred to as “transport mafia”). Kampala can learn from cities like
Accra, Lagos, and Cape Town, where paratransit regulation and reforms are gradually
gaining acceptance among taxi operators. Accra and Lagos, for example, have combined
regulation with financial support to overcome resistance to reforms. This arrangement
includes an ownership reorganisation scheme whereby informal minibus owners form co-
operatives and jointly invest in higher capacity buses. Cape Town authorities have plans
to provide incentives to paratransit operators on selected routes to complement sched-
uled trunk services (du Preez et al., 2019). Alternatively, Uganda could implement a
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taxi recapitalisation policy similar to the one implemented by the South African gov-
ernment (Schalkwyk and Sadie, 2011) but avoid the mistakes that were made by that
government by involving the paratransit operators during all stages of policy formula-
tion. It is worth noting that the city authorities in Kampala are making strides towards
engaging paratransit operators in transportation planning for the city (ODA, 2020).

The complementary role played by motorcycle taxis (locally known ‘boda bodas’)
in Kampala’s paratransit industry is interesting and deserves further research. Almost
every major minibus taxi stop has a ‘boda boda’ stop nearby. Even informal minibus
taxi stops (such as the one shown in Figure 3.1a) always act as terminal positions for
boda boda trips. The boda boda stops act as inter-mode exchange centres, and they
serve the passengers’ last kilometre of commute. In a paratransit system, boda bodas
are a necessary evil because of their ability to manoeuvre and to penetrate the sprawling
townships’ deeper locations that are often unreachable using other vehicles. They become
a menace only when allowed onto highways, causing traffic interruptions and accidents.
If regulated to serve only the first and last kilometre of commute, their role in paratransit
would be substantial and a net positive.

3.5.2 Economics

Kampala’s paratransit system operates a risky but generally profitable business model
(to the taxi owners). It is characterised by restricted access to capital, no subsidies from
the government, and exploitation of drivers, especially those who do not own taxis. Entry
level capital for individual drivers and owners is mainly through personal savings, and soft
loans from friends and family members. Drivers depend on passenger payments to cover
all the operational costs. Most of the drivers rent the vehicles from owners (who pay for
repairs) at fees that vary according to the vehicle’s condition. While the taxi owners’ cash
flow is almost guaranteed, drivers are exploited, and they often make losses as illustrated
by a low profitability index in Table 3.3 (”Base” column). To make profits, drivers work
for long hours (15 hours and more per day) (see Table 3.3 “Practice” column). Vehicles
are often shared by several drivers, leading to rapid degradation due to overuse, and
sometimes overloading (see Figure 3.4a(v)). Paradoxically, the rapid vehicle degradation
in the paratransit system generates many informal, indirect, and unstable jobs through
the repair industry (Pablo, 2015).

3.5.3 Efficiency

We used two main operational attributes to measure the efficiency of minibus taxi trans-
port in Kampala’s paratransit system, i.e., the waiting and hold-back time. As sum-
marised in Table 3.4 and illustrated in Figures 3.4a(vi-x ), 3.5d, 3.5e and 3.5f we found
that travel by minibus taxi was inefficient and characterised by long passenger waiting
times (22 to 59 minutes), long hold-back times (35 to 110 minutes) and low commercial
speeds (3.1 to 15.4 km/h). The result is that a large portion of minibus taxi commuters’
travel time consists not of actual travel but of sitting in a stationary vehicle waiting for
more passengers to fill up the minibus taxi. From the driver’s perspective, the high hold-
back time leads to fewer trips per day and thus a substantial loss in revenue resulting in
a low profitability index as illustrated in Table 3.3.

We identified three factors that could be the root causes of the minibus taxi system

43

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. MINIBUS TAXIS IN KAMPALA’S PARATRANSIT

inefficiency in Kampala. First, the absence of market entry controls. The collapse of
the UTC and PTC in the early 1990s and the subsequent adoption of the World Bank
structural adjustment policies left the public transport industry open to the free mar-
ket forces of demand and supply (Kumar, 2011). With little or no entry controls, the
minibus taxi industry emerged and boomed with fragmented ownership of often old vehi-
cle fleets (Cervero and Golub, 2007; Kumar, 2011). To date, there are insufficient entry
controls into the minibus taxis business. This often leads to oversupply or undersupply
of low-quality vehicles and thus system inefficiency.

Second, inadequate regulation and enforcement thereof. Minibus taxis operations
in Kampala are largely self-regulated (Goodfellow, 2010, 2017). The taxi drivers often
determine individually the route to take for a particular trip, the fares to charge from the
commuters (leading to fare variations shown in Table 3.4), the number of passengers to
load, and when to take the vehicle for servicing (Ndibatya et al., 2016; Goodfellow, 2017).
Self-regulation often leads to overloading, overpricing, trip abandonment (illustrated in
Figure 3.3), driving unserviced vehicles and generally inadequate service provision. There
is general laxity in regulation enforcement by KCCA and KOTISA, resulting in general
system inefficiency.

Third, the lack of known minibus taxi scheduling and booking mechanisms. This leads
to wide variations in taxi occupancy: sometimes taxis are overloaded while others are half
loaded. Passengers and drivers depend on personal experience and sometimes on random
guesses to determine supply and demand. Hence, the quality of service is poor, driver
profits are low, and vehicle quality rapidly degrades, causing traffic jams and pollution.
This has a knock-on effect on businesses: they lose efficiency because the waiting times
and hold-back times prevent the workforce from getting to work on time.

3.6 Summary

In this chapter, we used economic metrics (i.e., taxi fares, occupancy, drivers’ revenue
and expenses) to estimate minibus taxi drivers’ profitability index, and efficiency metrics
(i.e., waiting time, hold-back time, and commercial speed) to estimate the efficiency of the
minibus taxi transportation system in Kampala. We found that the driver profitability
index is low – ranging between 0.76 and 1.12 – and the waiting and hold-back times
are high – ranging between 22 to 59 minutes and 35 to 110 minutes, respectively. This
indicates an overall minibus taxi system inefficiency. The absence of market entry controls
into the minibus taxi business, coupled with inadequate regulation enforcement, poor
minibus taxi scheduling and non-existent booking mechanisms, render Kampala’s minibus
taxi system inefficient to both the drivers and commuters. Furthermore, we found that the
operations of minibus taxis are riddled with informalities, from management, regulations,
to informal stops and routes.

Thus, we have described minibus taxis’ operations in Kampala’s organically-evolved,
quasi-demand-responsive paratransit system, and estimated the system efficiency from
the passengers’ and drivers’ perspectives. Hence, we have answered research questions
RQ1 and RQ2.
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Chapter 4

Characterising paratransit
movements

Chapter 4 objectives
This chapter aims to achieve the research Objective 1.3 and further support Objective
1.2 of the dissertation to answer research questions RQ1 and RQ2.
• ⇒Research objective 1.2

Estimate the system efficiency from the passengers’ and driver’s perspectives.

• ⇒Research objective 1.3

Characterise the movement patterns of minibus taxis in Kampala’s paratransit sys-
tem.

To further support the answers to the research questions RQ1 and RQ2 (see Chapter 3)
and achieve Objective 1.3, in this chapter we studied the operations of minibus taxis in
terms of their movement patterns. To do this, we used floating car data (timestamped
geo-localisation data collected by moving vehicles) to characterise the movement pat-
terns (or trajectories) of minibus taxis in Kampala’s organically-evolved, quasi-demand-
responsive paratransit system. We were interested in discovering whether minibus taxi
movement patterns were consistent with Lévy walk behaviour; whether the routes the
taxis used changed topology or shape over time, in other words, evolved; and whether
their movements could suggest anything about their level of determination when searching
for passengers.

4.1 Introduction

In most African countries, minibus taxis are the backbone of public transportation. They
transport more than 70% of the total urban travellers and dominate most social and
economic aspects of urban mobility (Behrens et al., 2015a). They form part of the broader
organically-evolved paratransit system that operates with little or no regulation in many
developing cities of Africa and the Global South (Behrens et al., 2015a). Minibus taxi
transport is flexible and semi-adaptive, with stops, schedules, fares, and routes primarily
determined by demand (Klopp and Cavoli, 2019). Unlike traditional bus rapid transit

45

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. CHARACTERISING PARATRANSIT MOVEMENTS

(BRT) systems that use buses on fixed routes and schedules developed a long time in
advance, minibus taxi drivers in a paratransit system often plan their routes according
to the occupancy status of the taxi and anticipated demand (Gauthier and Weinstock,
2010).

Rapid urban population growth (6% per annum) is reshaping urban settlements and
changing economic and social population dynamics in Africa (Awumbila, 2017; Lucas
et al., 2019). The population surge in cities, coupled with weak and non-transit-oriented
city development policies will increase the problems of urban sprawl, scattered public
amenities and unemployment. The mobility characteristics of urban dwellers will conse-
quently change, triggering a change in minibus taxi movement characteristics in response:
the static minibus taxi route maps proposed by Klopp et al. (Klopp and Cavoli, 2019)
will no longer be useful. By exploring the evolution of minibus taxi routes in Kampala’s
paratransit system, our study could pave the way for solutions to the future minibus taxi
travel problems.

Minibus taxis rarely get enough passengers to fill up before departure unless they start
trips from the major taxi ranks (which are typically few, and travellers often shun them).
They therefore search for passengers on the way to make the trips profitable. Sometimes,
they wait (“hold back”) at selected stops in anticipation of passengers turning up; some-
times they go off the main route to search for passengers in sparsely distributed places
where they anticipate demand for their services. The taxis go up and down the streets
in an apparently chaotic fashion, hooting repeatedly, calling out their destinations, ran-
domly inviting pedestrians to board the taxi, and stopping anywhere to tout for potential
passengers in total disregard of traffic and municipal laws. We suspected that analysis
of these movements of minibus taxis would demonstrate a Lévy walk pattern during the
passenger search process (shown in Figure 4.1a). A “Lévy walk” (a term we use synony-
mously with “Lévy flight”) is a pattern of movements made by a random walker, where
many short movements are randomly interspersed with long ones and occasionally very
long ones, as illustrated in Figure 4.1b(ii) (James et al., 2011). In Figure 4.1a, a minibus
taxi moves from origin (O) to destination (D) but in the process makes many detours to
hunt for passengers in off-route locations L, S, S′ and L′.

The Lévy walk theory broadly combines an organisms’ need for resources (e.g., food,
shelter, or customers) and the need to reduce risks (e.g., from predators or competitors)
with the density and renewability of resources to explain the organisms’ movement in
space. This study focuses on human movement where the minibus taxi driver represents
the ‘random walker’ and the minibus taxi travellers (trips demand) represent the resources
being searched for under some predatory risks such as police enforcement, and competition
from other minibus taxis on the same route.

4.2 Literature and applications to this study

We divided the literature into three categories: the current status of paratransit in African
cities, Lévy walk behaviour in animal and human movements, and spatial similarity anal-
ysis of mobility trajectories.
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Figure 4.1: The concepts of Lévy walk (LW), and minibus taxi movement behaviour: a) Minibus taxi
passenger search behaviour from origin (O) to destination (D); b) Lévy walks with different values of
Lévy exponent α; c) Scale-invariant and fractal properties of a Lévy walk.

4.2.1 Current status of paratransit in African cities

Until recently, the term “paratransit” meaning “beyond standard transit” or “alongside
of standard transit” was used (mostly in the United States of America) to refer to supple-
mentary public transport services that do not have fixed routes or timetables but instead
respond to travel demand and preferences and are often used by the elderly and the
disabled. However, transport researchers have also adopted the term in the context of
developing cities of Africa and the Global South to describe the informal transport that
is synonymous with public transport in these cities (Behrens et al., 2015a). Paratransit
in developing African cities is composed of diverse modes, such as minibus taxis (Booy-
sen et al., 2013), tricycle taxis, bicycle taxis (Mutiso and Behrens, 2011) and motorcycle
taxis (Diaz Olvera et al., 2019, 2016; S Kisaalita and Sentongo-Kibalama, 2007; Bradbury
and Howe, 2002; Ehebrecht et al., 2018). In some African countries, motorcycle taxis
dominate the modal share in terms of vehicle composition (e.g., in Lomé, Togo), but
minibus taxis dominate the total share of passengers transported per day (Diaz Olvera
et al., 2016; Lucas et al., 2019). In Kampala, for example, the Kampala Capital City
Authority (KCCA) estimates that motorcycle taxis comprise 42% of vehicles and carry
9% of people, minibus taxis comprise 21% of vehicles and carry 82% of people. Private
cars comprise 37% of vehicles and carry 9% of people (Evans et al., 2018).

There are five main actors involved in minibus taxis system: the owner, the driver,
the conductor, the authorities, and the users (Booysen et al., 2013; Plano et al., 2020).
The owner provides the vehicle, pays for the operating license and is responsible for the
maintenance of the vehicle (Dorothy et al., 2016). The driver rents the minibus taxi from
the owners at a pre-negotiated daily fee and makes operation-specific decisions such as,
when to provide the service, the route for a given trip, and the trip fare depending on the
demand and where to stop to pick up passengers (Dorothy et al., 2016). The conductor,
if present, is responsible for touting and collecting fares from the passengers (Ndibatya
and Booysen, 2020a; Plano et al., 2020). Most of the paratransit users in Africa’s cities
are not formally employed and thus tend to have variable and highly irregular commuting
schedules and destinations (Ndibatya and Booysen, 2020b). This influences the movement
patterns of minibus taxis in the paratransit system.
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Several mapping projects have used floating car data to describe the routes taken by
the informal paratransit minibus taxis in developing cities, such as Accra (Saddier et al.,
2016), Nairobi, Maputo (Klopp and Cavoli, 2019), Kampala (Ndibatya et al., 2016), Dar
es Salaam and Stellenbosch (Ndibatya et al., 2014). These projects have in some instances
produced route maps, such as Digital Matatu for Nairobi (matatu referring to “minibus”
in Kenya (Robert Heinze, 2018)) and the Mapas Dos Chapas for Maputo–chapa refers
to “minibus” in Mozambique–as well as the standardised data in the general transit feed
specification (GTFS) format used by developers to build mobile applications (Klopp and
Cavoli, 2019). However, the paratransit mapping projects produced static maps, and
the researchers ignored the possibility of changes in the routes that would render the
maps irrelevant after less than five years. Thus, the need to explore the concept of route
evolution in the minibus taxi system.

4.2.2 Lévy walk behaviour in animal and human movements

Movement by organisms is a biological process of great significance. In the reviewed liter-
ature, researchers have studied biologically motivated movement (searching for habitats,
avoiding predators, or foraging) of organisms with cognitive abilities ranging from the rela-
tively simple (e.g. bacteria), to the cognitively complex (e.g. humans), that demonstrates
their ability to respond to external stimuli and memorise past movement experiences. The
mechanisms by which organisms make movement-related decisions have evolved, as has
the biological context that determines the “currency of fitness” or “reward” associated
with the movement (such as net food intake, predatory risk, profit, or time savings). To
optimise the “currency of fitness”, models have been formulated. Of particular inter-
est to us is the “Lévy flight” model developed by Paul Lévy, a French mathematician.
Lévy described a particular class of random walks, in which the distance l travelled be-
tween events (referred to in this chapter as “steps”) is drawn from a “heavy-tailed” and
scale-invariant probability distribution defined by Equation 4.1 (Viswanathan et al., 1999;
Reynolds, 2018).

f(l) ∼ l−α for l ∈ [lmin,∞), (4.1)

where l is the step length and α (referred to as the Lévy exponent) is in the range
1 < α ≤ 3 (Viswanathan et al., 2011).

A Lévy walk exhibits three main properties: the probability distribution of step lengths
l is heavy-tailed; the turning angles θ between steps are normally distributed, and the step
lengths fit strongly into the power-law probability distribution (defined by Equation 4.1).
Figure 4.1c illustrates the scale-invariant property of a Lévy walk (zooming into a part of
a Lévy walk trajectory (in Figure 4.1b(ii)) reveals a statistically identical substructure),
while the Figures in 4.1b illustrate the effects of varying values of α on the Lévy walk.
Values closer to α = 1 lead to ballistic (near-straight) paths (Figure 4.1b(iii)), while values
closer to α = 3 lead to more Brownian behaviour (Figure 4.1b(i)).

Subsequently, researchers adapted the Lévy walk theory to explain the movement
behaviour of cognitively complex organisms in space when searching for patchily and ran-
domly distributed resources (Reynolds, 2015). There is empirical evidence of Lévy walks
in the movements of foraging birds such as albatross (Shlesinger, 2006); animals, such
as deers (Viswanathan et al., 1999), spider monkeys (Ramos-Fernandez et al., 2003) and
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grey seals (Shlesinger, 2006); bees, such as bumblebees (Edwards et al., 2007); and hu-
mans i.e., hunter-gatherers (Raichlen et al., 2014), fishermen (Bertrand et al., 2007), and
pedestrians (Jiang et al., 2009).

Exponents of the Lévy walk theory in the early 2000s sought to explain how organ-
isms optimise their search for sparsely distributed resources (such as food), sometimes
under predatory risks. Viswanathan et al. combined the Lévy walk model with the op-
timal foraging approach to formulate and test the Lévy flight hypothesis (Viswanathan
et al., 1999). This hypothesis states that “since Lévy flights optimise random searches,
biological organisms must have therefore evolved to exploit Lévy flights” (Viswanathan
et al., 2008). This paved the way for several predictions of optimal values of α (Lévy ex-
ponent in equation 4.1) based on the density of the resources a walker is searching for,
and how renewable the resources are. Consensus was reached that the optimal value of
the exponent α in the Lévy probability distribution, and hence the predicted movement
pattern, depends on the “depleting” and “non-depleting” nature of the resource and their
density relative to the random walker (Viswanathan et al., 1999; Ferreira et al., 2012).
Furthermore, the optimal values of α approach 1 (ballistic movement with little change in
direction) for depletable resources. For non-depletable resources, α depends on the target
density, for sparsely distributed resources α is closer to 2, and for highly dense resources
α is closer to 3 (Brownian motion) (Ferreira et al., 2012).

Lévy walk behaviour observed in human movements occur in vast contexts ranging
from hunting and foraging among preliterate societies to myriads of contexts among mod-
ern and often urban societies. Evidence of Lévy walks in humans predates history as
shown in raw material transport distances in the archaeological records (Perreault and
Brantingham, 2011). Motivated by the need to search for food, shelter and avoid preda-
tors (dangerous animals), preliterate human movements exhibited Lévy walks (Raichlen
et al., 2014; Bertrand et al., 2007). Urbanisation, industrialisation, and higher cognitive
abilities among humans have diversified the contexts in which Lévy walk behaviour can
be studied. These contexts are often determined by the travel purpose (such as travel
to shop, work, school or leisure), travel mode, and spatial scale (Rhee et al., 2011, 2008;
Brockmann et al., 2006; Cao et al., 2011; Scafetta, 2011). In all these contexts, evidence of
Lévy walks has been found. For example, Lévy walks were exhibited in GPS traces from
five different outdoor sites (Rhee et al., 2011); the circulation of bank notes (Brockmann
et al., 2006); city cabs in Beijing (Cao et al., 2011); and long-range human displacements
(from 1 to 1000 km) (Scafetta, 2011).

However, we did not find any research providing evidence (or absence thereof) of
Lévy walk behaviour in minibus taxis in a paratransit system. We contend that the
minibus taxi movements represent another context in which we can study Lévy walk be-
haviour among humans when searching for non-depletable patchily located and sparsely
distributed resources. On the basis of the visual inspection of known minibus taxi tra-
jectories illustrated in Figure 4.1a, we hypothesise that while searching for, picking up
and dropping off passengers, minibus taxi movement may be consistent with Lévy walk
behaviour.

4.2.3 Spatial similarity analysis of movement trajectories

The empirical literature on quantifying and analysing movement trajectory similarity is
sparse and scattered across application domains and classes of moving objects. Güting
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and Schneider identified two classes: objects that maintain a constant shape while mov-
ing, such as animals, human beings and vehicles, which they call moving point objects,
and those that change their shape, such as a forest fire, which they represent as poly-
gons (Güting et al., 2005). This chapter is concerned with the former.

The shape of the trajectory is significant. It illustrates how a moving object “winds”
its way through a spatial reference system, and it is quantitatively represented in terms of
tortuosity, curviness, and fractal dimension (Ranacher and Tzavella, 2014). In this study
we use only tortuosity (a property of a curve being tortuous or twisted, having many turns,
or degree of winding). Researchers use the term “tortuosity” to distinguish between a
planned, oriented, and effective behaviour (low tortuosity), and random search behaviour
(high tortuosity) (Benhamou, 2004). We found no studies that quantitatively describe
the spatial similarities and dissimilarities between minibus taxis’ movement trajectories
in a paratransit system, hence the need to fill the gap.

The literature we reviewed on the current state of paratransit in Africa, the similarity
or dissimilarity between animals and humans that use the Lévy walk search optimisa-
tion strategy, and the spatial similarity measures of movement trajectories, revealed gaps
in paratransit movement-related studies. In addition, the absence of similar studies as
applied to minibus taxi movements in a paratransit system, led us to undertake this em-
pirical study. It expands on some of the few existing and limited studies of the operations
of minibus taxis in a paratransit system in the Global South (du Preez et al., 2019; Klopp
and Cavoli, 2019; Ndibatya et al., 2016).

4.3 Methods

Having acquired and pre-processed the data from the minibus taxis, we used three meth-
ods to characterise their movement patterns. First, we modelled their trajectories as
“walks” composed of sequences of linear steps, defined rules for determining successive
steps, and then tested the Lévy walk hypothesis. Second, we compared the spatial dis-
tances of different minibus taxi trajectories to confirm or refute our route evolution claim.
Third, we analysed the tortuosity (degree of winding) of the trajectories in case it might
explain the effort drivers use to search for passengers. We used data collected from a
sample of Kampala’s taxis. To maximise the accuracy of our results, we assumed that all
GPS points were located on the earth’s surface, and we computed the distance between
them using Vincenty’s formula.

4.3.1 Data acquisition and pre-processing

Kampala, Uganda’s capital, is home to one and a half million people scattered throughout
five administrative divisions: Central, Kawempe, Lubaga, Makindye and Nakawa. Com-
muters from the latter four and beyond converge mainly in the Central division for work,
shopping, leisure, and school (ITP, 2010). Minibus taxis, which constitute 82% of the
urban public transport, throng the streets of Kampala in a seemingly chaotic pattern,
picking up and dropping off passengers at various stops in the city centre and the vari-
ous settlements (ITP, 2010). Many of the stops are informal, i.e. they are not officially
designated taxi or bus stops but they develop organically according to the demand in a
particular area.
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To study the movements of the minibus taxis in time and space, we used standard
GPS receivers with a spatial accuracy of three meters and a temporal resolution set to 20
seconds when the vehicle’s ignition is on and 10 minutes when the ignition is off. The data
collected included unique identity, timestamp, longitude, latitude, speed, and direction.

We fitted 20 minibus taxis with GPS receivers that transmitted data to our servers for
a period of eight months (Jan 2017 to August 2017). For analysis in this chapter, we used
continuous movement data from nine receivers. Data from other receivers were omitted
because of substantial discontinuities due to malfunction, vandalism of the receiver, or
frequent mechanical problems with the taxi. Preliminary statistical analysis indicated
that the nine minibus taxis under study were active for 155 to 235 days, 12 to 23 hours a
day, with peak activity occurring between 4:00 and 9:00, 12:00 and 14:00, and 16:00 and
21:00. The mean and standard deviation of days active was 186 and 71 days, respectively,
while the mean and standard deviation of hours active were 16.3 and 6 hours, respectively.

To improve performance during analysis, we used Massachusetts Institute of Technol-
ogy(MIT)’s path simplification Python library (simplification) to reduce the GPS points
while maintaining the integrity of the trajectories. Simplification is a robust high-level
implementation of the Ramer-Douglas-Peucker algorithm. Figure 4.2a shows a sample
minibus taxi trajectory for one day, Figure 4.2b the trajectory simplification process as
applied to a small section of the original trajectory, Figure 4.2c the simplified trajectory,
and Figure 4.2d the pause-based model that we used to extract Lévy walk steps and
turning angles between subsequent steps.

4.3.1.1 The pause-based model

In a pause-based model (illustrated in Figure 4.2d), we define a step as a straight-line
movement between two positions P1 and P4 (regarded as pauses) given that the instan-
taneous velocities at positions P2, P3, and P5 are higher than the threshold velocity. The
step length l is the sum of all individual segment distances that make up a step, whereas
the turning angle θ is the bearing of the next pause (P6) from the current pause (P4).

From the GPS traces, we extracted the taxis’ steps, step lengths, turning angles, and
average velocities during the step. To get these data, we re-sampled the trace data every
five minutes and re-computed the relative position in space, cumulative distance and
average velocity. Using the re-sampled data, we then extracted steps using a pause-based
model. Figure 4.2e shows the spatial distribution of steps and pauses extracted from a
minibus taxi trajectory sample in Figure 4.2a.

4.3.2 The Lévy walk as a descriptor for minibus taxi mobility

To test whether minibus taxis movements exhibit Lévy walks, we divided the minibus
taxi trajectories’ data into steps and pauses, as described in the pause-based model. We
then fitted the step lengths to a power-law distribution defined by a probability density
function: f(l) ∼ l−α where l is the step length, and α is the Lévy exponent. We then
performed a logarithmic transformation on the data and estimated the Lévy exponent α
from a power-law fit for each minibus taxi using the power-law python package (Alstott
et al., 2014).

51

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. CHARACTERISING PARATRANSIT MOVEMENTS
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Figure 4.2: a) Minibus taxi (MBT) trajectory sample for UTX-19 for one day; b) Trajectory simplifica-
tion process; c) Simplified minibus taxi trajectory of the trajectory in a; d) Pause-based model to extract
steps from a section of the minibus taxi trajectory in a; (e) Spatial distribution of steps and pauses
extracted from the simplified trajectory in c; f) Illustration of trajectory spatial distance estimation; and
g) Illustration of trajectory tortuosity estimation.

4.3.2.1 Methods to test the minibus taxi Lévy walk behaviour

To test the Lévy walk behaviour in minibus taxi movements, we performed three different
tests on the probability distributions of step lengths and step turning angles. First, we
examined the step length distribution’s mean spread (standard deviation) and skewness
to check if it was heavy-tailed. Figure 4.3a shows the general distribution of step lengths
for all minibus taxis. Second, we examined the distribution of turning angles between
steps to establish whether they were normally distributed. Figure 4.3b shows the general
distribution of step turning angles for all minibus taxis and Figures 4.5a(iv), 4.5b(iv),
and 4.5c(iv) show the probability distribution of turning angles of selected minibus taxis.
Third, we fitted the step lengths’ data to a power-law distribution after a logarithmic
transformation and estimated the Lévy exponent α to see if it was within the range
1 < α ≤ 3 (the third property of a Lévy walk (Jiang et al., 2009)). Figures 4.5a, 4.5b,
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and 4.5c show the log-log fit to step lengths and turning angles data. Furthermore,
we tested the goodness of the fit using the maximum likelihood estimation method, as
suggested by Alstott et al. (2014). We did this by comparing the R (log-likelihood) and
p (significance) values from the comparison of the best fit of power-law distribution with
other distributions, such as exponential distribution. Figures 4.5a(ii), 4.5b(ii), and 4.5c(ii)
compare the goodness of fit of an exponential fit with the power-law fit. Table 4.1b shows
the statistical summary of the Lévy walks analysis results.

4.3.3 Comparing trajectories

We analysed the similarities and dissimilarities between minibus taxi trajectories by com-
puting their spatial distances from a common fixed position X. We defined a trajectory
as the evolution of a minibus taxi’s position in space (on the earth’s surface) for 24 hours;
space as the surface of the spheroid earth; position (0.314921, 32.578705) as the latitude
and longitude coordinates of the fixed position X, which is a central location at the city
square in Kampala; and spatial distance as the unit measure of how far (in space) a one
day trajectory is from a given reference position. Given a trajectory T1 (illustrated in
Figure 4.2f) for a day D1, we computed its spatial distance ` with respect to an arbitrary
fixed reference position X(lon,lat) in space using the equation:

` =
n∑
i=0

√
di
√
βi (4.2)

where d is the Vincenty distance between the arbitrary fixed GPS position X and the
ith GPS point on the trajectory T , and β is the bearing angle between two coordinates
A(Alat, Alon) and B(Blat, Blon) on the earth’s surface, given by the equation

β = atan2(γ, θ) (4.3)

where, γ = cos(Blat)sin(|Blon−Alon|) and θ = cos(Alat)sin(Blat)−sin(Alat)cos(Blat)cos(|Blon−
Alon|).

For each minibus taxi, we normalised the values of all trajectories’ spatial distances to
fall in the range 0 to 1 to simplify the analysis and interpretation of results. Table 4.1a
and Figure 4.4b(ii) show the spatial distance distribution for the minibus taxis, sampled
per day.

(a) Step lengths l (µ = 0.83, x̃= 0.1, σ = 1.94) (b) Turn angle θ (µ = 89.36, x̃=90.08, σ = 53.33)

(km/h)

(c) Step speed s (Heads) (µ = 2.7, x̃=0.3, σ = 38.9)

(km/h)

(d) Step speed s (Tails) (µ = 20.72, x̃=19.34, σ = 6.21)

Figure 4.3: Summary distributions for all minibus taxis’ step lengths, turning angles and steps speeds
(speeds were calculated for distances where heads <= 0.676 km, and tails > 0.676 km).
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CHAPTER 4. CHARACTERISING PARATRANSIT MOVEMENTS

4.3.4 Trajectory tortuosity

To quantify and analyse the shapes of individual trajectories to describe how the minibus
taxis wind their way through the spatial reference system, we computed their respective
tortuosity values.

We estimated the tortuosity of trajectories as the ratio of a beeline distance between
the start and end of the trajectory L to the length of the travelled trajectory S (Grisan
et al., 2003) as illustrated in Figure 4.2g. For N minibus taxi sub-trajectories in a day’s
trajectory, the tortuosity τ is computed as:

τ =
N − 1

L

N∑
i=1

(
Li
Si
− 1

)
(4.4)

where N is the number of sub-trajectories, L is the beeline distance between the start
and end of the day’s trajectory, Li is the beeline distance of the ith sub-trajectory, and Si
is the cumulative length of the travelled sub-trajectory.

Spatial distance
Tortuosity

Spatial distance
Tortuosity

Spatial distance
Tortuosity

(a) Daily variation of normalised spatial distance and tortuosity.

(b) Normalised spatial distance ` (c) Normalised tortuosity τ

Figure 4.4: (a)Daily variation of spatial distance and tortuosity for selected minibus taxis, i.e., UTX-04,
UTX-13 and UTX-19; (b) Aggregate distribution of normalised spatial distance; (c) Aggregate distribu-
tion of normalised tortuosity.
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(a)

(b)

(c)

Figure 4.5: Power-law analysis of Lévy walk steps.

4.4 Results

4.4.1 Minibus taxi movements and Lévy walk behaviour

From the extracted steps, we found that the probability distribution of step lengths is
heavy-tailed, as shown in Figure 4.3a, with a mean µ and a standard deviation σ of 0.83
and 1.9 kilometres, respectively. Its positive skewness of 4.52 shows a significant bulge
on the distribution “head” and some rare long walks (“tails”) of up to 39 kilometres.
This is the first identifying characteristic of Lévy walk behaviour (Viswanathan et al.,
2011). We also found the second identifying characteristic: turning angles between steps
are normally distributed with a mean of 89.4o and a standard deviation of 53.3o, as shown
in Figure 4.3b.

Micro-level analysis and fitting of individual minibus taxi walks’ data to the power-law
function revealed a strong power-law behaviour for minibus taxis UTX-04, UTX-11, UTX-
12, UTX-13 and UTX-17, with an estimated Lévy exponent α in the range 1 < α ≤ 3 (see
power-law parameters in Table 4.1b). We further confirmed the power-law behaviour in
the steps data by comparing the goodness of fit with other distributions and computing the
log-likelihood ratio R between the candidate distributions. We also noted the significance
value p. Table 4.1b shows the corresponding values of R and p from the goodness-of-fit
comparison between power-law and two other distributions (exponential and log-normal).
The positive R values and p values greater than 0.05 further confirmed a stronger fit to the
power-law than to the exponential and log-normal distributions. Figure 4.5 shows that
the step lengths data for UTX-04, UTX-13 (4.5a and 4.5b) fit the power-law better than
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the data for UTX-19 do (6c). Figures 4.5a(iii), 4.5b(iii), and 4.5c(iii) further illustrate the
strength of power-law fit to the tails (>0.676) of the data. Figures 4.5a(iv), 4.5b(iv) and
4.5c(iv) exhibit a Gaussian mixture of turning angles with multiple Gaussian distributions
where each peak represents a major hub visited by the minibus taxi, such as a formal
taxi rank, and then makes a sharp turn. We also noted that the multi-Gaussian nature
of the turning angle distributions is responsible for the generally high standard deviation
of 53.3o observed in Figure 4.3b.

We concluded that five of the nine minibus taxis under study exhibited Lévy walk
behaviour. Jiang et al. say that to identify a Lévy walk pattern, all that is needed is
to detect power-law behaviour and then estimate the exponent α to see whether it is
within the range 1 < α < 3 (Jiang et al., 2009). For minibus taxis, UTX-04, UTX-
11, UTX-12, UTX-13 and UTX-17 the Lévy exponent α for step lengths was in the
range 1.51 ≤ α ≤ 1.98. The R values, when we compared the power-law function fit with
exponential and log-normal model fits were in the range 9.10 ≤ R ≤ 127.44. Furthermore,
the p values for those five taxis were in the range 0.62 ≤ p ≤ 0.24. This indicated a strong
fit to the power-law, and hence a significant presence of Lévy walk behaviour in minibus
taxi movement trajectories.

4.4.2 How similar are the minibus taxis’ trajectories?

The spatial distance `T of a trajectory T , given by equation 4.2, is the distance between a
fixed position X and the trajectory T , as illustrated in Figure 4.2f. We used the observed
spatial distances to describe how trajectories from the same minibus taxi differ from
each other in space. We took one day as the time interval of each taxi trajectory under
discussion. Most of the spatial distances of the minibus taxi trajectories were normally
distributed with a mean µ of 0.53 and moderately spread with a standard deviation σ
of 0.21. Figures 4.4a(i-iii) shows the daily variations of normalised spatial distances and
normalised tortuosity of three selected minibus taxis, i.e., UTX-04, UTX-13, and UTX-19,
respectively. Figure 4.4b(i) shows the distribution of normalised spatial distances for all
the minibus taxis studied. Figure 4.4b(ii) shows the distributions of distances for each of
the nine minibus taxis and Table 4.1a gives a more detailed breakdown.

We observed a moderate spread in the distribution of spatial distances. This strongly
suggests that minibus taxis often divert from the most frequented routes, leading to the
discovery (“evolution”) of new routes. This is also an indicator of growing passenger
demand in areas where the new route passes. Practically, if the taxi travelled on the same
route all the time, the spatial distances would be less spread.

4.4.3 The significance of the observed trajectory tortuosity

The shape of a trajectory illustrates how a moving object winds or twists its way through
a spatial reference system. The similarity of shapes can be expressed qualitatively (topo-
logically), or quantitatively, using parameters such as tortuosity (curviness), and fractal
dimension (Ranacher and Tzavella, 2014). We used equation 4.4 to estimate the tortuos-
ity τ of the minibus taxi trajectories. The tortuosity values were normalised to fall in the
range 0 to 1 and are summarised in Table 4.1a. Generally, the tortuosity of minibus taxi
trajectories is high. This is shown by the general distribution in Figures 4.4c(i), and at
the individual taxi level (4.4c(ii)). We argue that this tortuosity distribution is suggestive
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of minibus taxi drivers’ extreme determination to search for passengers to make the trips
profitable.

4.5 Discussion

The results from this study show that minibus taxis movements in Kampala – which
represent searching for, acquiring, loading passengers, and transporting them to their
destinations – tend to follow a Lévy walk pattern similar to movements observed in
a wide range of less cognitively complex species (Shlesinger, 2006; Viswanathan et al.,
1999), and more recently, in humans (Jiang et al., 2009; Raichlen et al., 2014; Bertrand
et al., 2007). The Lévy walk is evident in the many short steps interspersed with rare long
steps, and in the Lévy exponent α values (in the range 1 < α ≤ 3) for the greater number
of the minibus taxi trajectories (five of the nine sampled taxis). Based on the findings
(Viswanathan et al., 1999; Ferreira et al., 2012) of optimal Lévy walk for undepletable,
heterogeneous and patchily located resources, we can claim that two taxis (UTX-04 and
UTX-13) had adopted near-optimal search strategies, because they had values of α ≈ 2
(refer to Table 4.1b). The near-ballistic behaviour (α values 1.53 and 1.51) exhibited by
taxis UTX-11 and UTX-12 might indicate that the drivers were influenced by previous
knowledge of passenger demand (positive memory influence), or it could simply indicate
that they often loaded passengers from the taxi ranks. Usually, taxis that load from
the taxi ranks take longer to fill up. However, they only load “direct route passengers”
who are going to areas closer to the final destination of the taxi, and they charge a fixed
fare equivalent to the maximum amount for the passenger going furthest. We can suggest
three possible reasons for the near-Brownian (α > 3) movement behaviour of minibus taxis
UTX-15, UTX-16, UTX-18 and UTX-19. First, the drivers could be new (to the routes,
or to taxi driving) and, having not yet figured out a better passenger search strategy,
were operating a very inefficient loss-prone strategy. Second, they could be town-service
taxis operating in areas with densely distributed informal stops and uniformly distributed
short trips demand, leading them to adopt a random search strategy. Third, they might
be perennial traffic rule offenders adopting an evasive strategy to avoid encounters with
traffic officers on the main routes. This comes at the cost of never being certain of the
demand on their “by-pass” routes.

Furthermore, the high tortuosity and moderate spread of spatial distances (in Ta-
ble 4.1a) suggests that, the drivers’ search for passengers extremely energetically and
some of them even aggressively. If the trips are not profitable, one strategy drivers use
to improve profitability is to stay at a stop (hold back) until the taxi is full or almost
full. Another strategy is to explore new routes, leading to route evolution. Though we
could not verify how profitable the trips were because we lacked data on minibus taxi
occupancy, we did a visual inspection of the geospatial layout of minibus taxis routes (us-
ing quantum geographical information system (QGIS) software) from individual minibus
taxis. From the geospatial layout of the routes, we confirmed the visible change in the
shapes of significant routes over several months, and thus concluded that the taxis’ routes
evolved. Another possible reason for the route evolution is the urban sprawl mentioned
earlier. With the proliferation of informal settlements, and poor planning for the loca-
tions of amenities like schools, hospitals and shopping centres, the passenger demand is
sparsely distributed among sparsely populated patches around the city, hence the unstable
transport supply characteristics visible in route changes.
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4.6 Summary

In this chapter we have demonstrated, using a sample of nine minibus taxis in Kampala,
that minibus taxi movements in a quasi-demand-responsive paratransit system exhibit
features statistically similar to those of a Lévy walk. We argue that even the minibus taxis
that showed features outside the Lévy walk parameters will eventually subconsciously
adopt the Lévy walk strategy. This, we suspect, is because of memory influence (ability to
learn, memorise and respond to passenger demand), and the need to optimise profits. Our
research further showed that a significant number of minibus taxi routes evolved (changed
topology and shape) with time. This is suggestive of the dynamic demand patterns, and
the demand-responsive nature of the minibus taxi paratransit system. Finally, we found
that minibus taxi routes were extremely tortuous, indicating a determined, energetic, and
even aggressive search for passengers.

We were unable to verify the effectiveness of the Lévy walk strategy in minibus taxis
because we lacked data on minibus taxi occupancy. However, based on the Lévy exponent
α, we can conclude that, overall, the minibus taxi search strategies revealed by our data are
inefficient. This is because only two minibus taxis had a close to optimal Lévy exponent
(UTX-04, UTX13, with values of α=1.98 and α=1.96). We can further conclude that the
other seven minibus taxis passenger search strategies were not adequate, pointing to a
rather inefficient paratransit system.

Consequently, we have characterised the movement patterns of minibus taxis in Kam-
pala’s paratransit system and estimated the system efficiency based on the Lévy exponent
α. Therefore, we have achieved research objectives 1.2 and 1.3 and answered research
questions RQ1 and RQ2.
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Chapter 5

Agent-based modelling of urban
minibus taxis

Chapter 5 Objectives
This chapter aims to achieve Objective 2.1 of the dissertation.
• ⇒Research objective 2.1

Design and describe an agent-based model (ABM) of minibus taxis and passengers
in Kampala’s organically-evolved, quasi-demand-responsive paratransit system.

To achieve the objective of this chapter, passenger travel by minibus taxi (MBT) in
Kampala’s paratransit system was modelled using agent-based modelling as illustrated in
Figure 5.1. This agent-based model (ABM) models travel by minibus taxi in Kampala
as a collection of autonomous decision-making entities called agents. Each agent (e.g.,
passenger or driver in control of a minibus taxi) individually assesses its situation and
makes travel decisions based on a set of rules. The agents repetitively interact (with self,
with other agents and with its surroundings) in a common environment, executing various
actions (such as boarding a taxi and searching for passengers). Agents in the ABM are
capable of learning and adapting their behaviour to achieve desired goals, thereby, allowing
new and sometimes unanticipated behaviour to emerge. The overall goal is to provide a
natural description of the minibus taxi transport dynamics in a quasi-demand-responsive
paratransit system similar to the one in Kampala, Uganda.

5.1 ABM model overview

This section describes the agent-based model developed to study the dynamics of minibus
taxi transport in Kampala. The description partially follows the ODD+D protocol (Müller
et al., 2013), an extension of the ODD protocol Grimm et al. (2006). The ODD (Overview,
Design Concepts and Details) protocol provides a standardised way of describing agent-
based models, and the ODD+D extension to the protocol offers an elaborate structure
for describing the decision-making process of agents in agent-based models.

The ABM (illustrated in Figure 5.1) was developed to represent the minibus taxi
transport system in Kampala, Uganda and is used to simulate the movement dynamics of
passengers and minibus taxis (or taxi drivers) in a quasi-demand-responsive paratransit
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system in a developing city setting. The model and the subsequent simulation (described
in Chapter 6) are used to study micro-level autonomous agents’ interactions and emergent
behaviour. Subsequently the model and simulation results will enable the author to answer
research questions two and three, and to achieve objectives two and three, respectively,
as stated in Sections 1.3.1 and 1.3.3.

The agent-based model consists of three major components, namely, the agents, the
broker, and the environment. The agents are autonomous decision-making entities (pas-
sengers and minibus taxis). The broker facilitates agent-to-agent, and agent-to-environment
data exchange. The environment is the simulated space where agents reside and interact
autonomously, occasionally exchanging data through the broker. Agents are intelligent:
they can perceive their environment through sensors and act upon that environment based
on the predefined rules. Figure 5.1 shows the framework for the developed agent-based
model for minibus taxi transportation in Kampala’s paratransit system.

5.1.1 Entities and state variables

The model is composed of two active entities (passengers and minibus taxis) and two
passive entities (attractors and road network). Each entity is located at its own layer of
abstraction as illustrated in Figure 5.1. Figure 5.2 shows the UML diagram of selected
model classes. Below is the description of the layers and the associated entities.

5.1.1.1 Layer 1: Passengers (active agents)

The passengers layer represents the minibus taxi commuters in Kampala’s paratransit
system. The passenger agents on this layer plan their journeys in time and space and
maintain a journey diary that is updated as the agent interacts with other agents and the

Road segment Stop

Minor stop

Major stop
Home

Shopping

Work

Hospital

Update  
journey diaries

Taxi  search

Route search

Passenger search

Data

Data

Layer: Passengers

Layer: Minibus taxis

Layer: Road network

Layer: Attractors

AGENTS BROKER

ENVIRONMENT

Figure 5.1: Conceptual agent-based model of minibus taxi transport
in Kampala’s paratransit system.
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surrounding in the same environment. Figures 5.3a, 5.3b and 5.3c illustrate the passenger
agent journey plan, the journey diary, and the nomenclature of the journey, respectively.
Agents in the passenger layer have states (i.e., passive, waiting, onboard and arrived), and
behaviour (i.e., journey planning, searching for a taxi, executing journey, and updating the
journey diary). During journey execution, the passenger agents interact with other agents
(of similar and different types) within the same environment. Table 5.1a describes the
passenger agent states and the detailed passenger class definition is given in Appendix A.1
(Algorithm 4).

5.1.1.2 Layer 2: Minibus taxis (active agents)

The minibus taxi layer represents minibus taxis operating in Kampala’s paratransit sys-
tem. The minibus taxi agents move autonomously in the environment, occasionally chang-
ing states (passive, stopped, routing, loading, and moving) and exhibit certain behaviour
(passenger touting, route searching and dynamic route abandonment). Table 5.1b de-
scribes the minibus taxi agent states. The detailed minibus taxi class definition is given
in Appendix A.1 (Algorithm 5).

5.1.1.3 Layer 3: Road network (passive objects)

The ABM environment contains a layer of the roads network, which consists of inter-
connected road segments that provide a path constraint for the minibus taxi agents to
move. The road network is important to this agent-based model. It represents the street
network where minibus taxis operate to fulfil trips from origin to destination.

Model
+ step_no
+ pngr_wait_threshold
+ hold_back_threshold
+ load_factor_threshold
+ exit_condition

+ generateJourneyDiaries()
+ generateTripsMatrix()
+ extractStopsNetwork()
+ updateModelSchedule()
+ saveModelInstance()
+_step()

PassengerAgent
+ passenger_id
+ state
+ xy_position

+ planJourney()
+ searchForTaxi()
+ executeJourney()
+ updateJourneyDiary()

MinibusTaxiAgent

+ vehicle_id
+ state
+ xy_position
+load_factor

+ tautForPassengers()
+ searchForRoute()
+ executeTrip()
+ abandonTrip()

Stop
+ stop_id
+stop_name
+ xy_position
+ passenger_demand
+ taxi_supply

Route
+ route_id
+ route_tenacity
+ route_desc

Journey
+ journey_id
+ origin_latlon
+ dest_latlon
+ start_time
+ exp_end_time

JourneyDiary
+ jd_id
+ jn_queue
+ cjn_index
+ jny_models

Trip

+ trip_id
+ trip_start_idx
+ trip_end_idx

DataCollector

+ saveDataToDatabase()

Simulation

+ run()

Scheduler

+ activateAgents()

+ activationStages()

ModelDatabase

+ getCompletedTrips()
+ getCompletedJournies()

+ all_simulation_data

<<abstract>>
LearningSubSystem

+ trainEpisodicMemory()
+ trainAdaptiveAgents()

Figure 5.2: UML class diagram showing the most relevant classes of the model.
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5.1.1.4 Layer 4: Attractors (passive objects)

Attractors in this ABM are locations or sets of locations in the environment space that act
as points of interest to the passenger agents or minibus taxi agents. They “attract” pur-
poseful commuter journeys and thus minibus taxi trips to their locations. The attractors
layer consists of locations of passive objects in the environment such as schools, hospitals,
shopping centres, and workplaces that act as sources and destinations of purposeful jour-
neys. Another class of attractors in this layer is the stops. The stops represent locations
on the road network – usually in proximity to the attractors where minibus taxis pick up
and drop off passengers.

5.1.2 Scales

In this model, one time-step represents five minutes. Seventy days of minibus taxi and
passenger interactions were simulated.

5.1.3 Process overview and scheduling

The model initialises when passengers make daily travel plans consisting of one or many
purposeful journeys, as illustrated in Figure 5.3a. The journeys are queued and stored
in a journey diary, as shown in 5.3b. At each time step, the agents examine their jour-
ney diaries to find if there is a journey to execute depending on the time of the day.
The candidate journey is then scheduled for execution, and the journey diary updated
accordingly.

The minibus taxis are scheduled into the model based on a Gaussian submodel (de-
scribed in Section 5.3.3.1). Every minibus taxi agent searches for the best route to a
predetermined destination zone, and then instantiates a trip to the destination through
the selected route. En route, the minibus taxi searches for passengers based on a profit
maximisation utility function. They occasionally hold back at random stops in anticipa-
tion of passengers. If the trip is persistently not profitable, it is abandoned. A new trip–
anticipated to be profitable– is initiated and executed by the minibus taxi.

At the end of every passenger journey and minibus taxi trip, data relevant to how
effective the journey or trip was executed is stored and used to train agent-specific sub-
models every five days for improved future decision making. Figure 5.4a illustrates the
conceptual framework of the model, while Figure 5.4b shows snapshots of the model en-
vironment at different time steps. Environment E1 (at time step t) represents a minibus
taxi executing a trip on a pre-selected route. Along the route, there are three active
passengers. Two of the passengers whose journeys can be fulfilled by the minibus taxi are
picked up as shown in environment E2 (time step t + dt). In environment E3 (time step
t + n), one of the passengers arrives at the journey destination. The passenger who was
not picked up drops the journey after the threshold waiting time is exceeded.

A scheduler (shown in Figure 5.4) manages the time evolution of the model and the
orderly execution of all actions and activities of the system. For this ABM, a Staged
Activation type of scheduler was used. In this scheduler, the simulation goes through four
stages. The first is sensing to get data about surrounding agents and the environment.
The second is cognitive action, where agents select appropriate action to take, often based
on a utility maximisation method discussed in Section 5.2.2. The third is the physical
action, where the actual physical action takes place such as moving to a new location,

64

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 5. AGENT-BASED MODELLING OF URBAN TAXIS

boarding a taxi, or abandoning an active trip. The fourth is the update stage, where the
agents and the environment are updated with the new state.

(a) Passenger agent states

State State description

Passive (P) Has a pending trip to make or
complete

Waiting (W) Waiting at a stop
On board (OB) On board a minibus taxi
Arrived (A) Arrived

(b) Minibus taxi agent states

State State description

Passive (P) Available but not active
Stopped (S) Stopped to pick up or drop off

passengers
Routing (R) Searching for a route to take
Loading (L) Loading passengers
Moving (M) Moving to the next stop

Table 5.1: Passenger minibus taxi and agent states
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Figure 5.3: (a) Passenger agent journey plan in time and space representing three purposeful, planned
journeys – Home-to-Work, Work-to-Shop and Shop-to-Home – scheduled for execution on the same day
at 7:30, 16:00 and 18:00, respectively; (b) Journey diary showing the journey queue containing the three
journeys; and (c) Nomenclature of a single passenger journey from origin to destination.
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5.2 Design concepts

5.2.1 Theoretical background

The conceptual model of agents and interactions was created and refined based on the
participatory observation of minibus taxi travel, unstructured interviews with minibus
taxi drivers, passengers, managers of taxi associations and the director of Kampala City
Council Authority.

The decision model of the agents is based on random utility theory (Cascetta, 2009),
which is the basis of several models and theories of decision-making. According to random
utility theory, an intelligent agent (such as a person) selecting from several alternatives,
chooses one with the highest utility, where the utility function is defined as U = V + ε,
with U being the total unobservable utility, V the deterministic observable component of
the agent behaviour, and ε a random component representing the non-measurable factors
of an individual’s decision.

The random utility theory is based on the hypothesis that every agent is a rational
decision-maker, maximising utility relative to its choices (Cascetta, 2009). Specifically,
the following assumptions are made.

a) When making a choice, an agent (decision maker) i, considers mi mutually exclusive
alternatives from its choice set I i. The choice set may be different for different
agents;

b) Agent i assigns to each alternative j from its choice set a perceived utility, or
“attractiveness” U i

j and selects an alternative maximising the utility;

c) The utility assigned to each choice alternative depends on several attributes (mea-
surable characteristics) of the alternative itself and of the agent, U i

j = U i(X i
j), where

X i
j is the vector of the attributes relative to alternative j and to agent i;

d) The utility assigned by the agent i to alternative j is not known with certainty and
therefore represented by a random variable εij.

Thus, based on the above assumptions, it is usually not possible to predict with
certainty the alternative that a generic agent will select. However, we can express the
probability of choosing alternative j conditional on its choice set I i, as the probability
that the perceived utility of alternative j is greater than that of all the other available
alternatives.

pi[j/I i] = Pr[U i
j > U i

k ∀k 6= j, k ∈ I i] (5.1)

The perceived utility U i
j can be expressed by the sum of systematic utility value V i

j ,
which represents the expected value of the utilities perceived by all agents having the
same choice context as agent i and a random residual εij which is the deviation from the
utility perceived by agent i.

U i
j = V i

j + εij ∀j ∈ I i (5.2)
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5.2.2 Individual decision making

Agents of different types pursue different objectives as discussed in Sections 5.2.2.1 and
5.2.2.2. In general, passenger and minibus taxi agents’ behaviour are controlled by a series
of submodels described in Sections 5.3.3.2 and 5.3.3.3, respectively. The agents’ decision
model is based on the assumption that they have only partial information about their
surroundings, hence they are boundedly rational (Simon, 1957). The agents use a form
of inductive reasoning (Deadman et al., 2000) and rely on a general random utility model
combined with an additive form of the Cobb-Douglas function that utilises both scores
and weights to choose the appropriate behaviour rationally. The general Equation 5.3
guides the agents’ behaviour.

Utilityi =

(
n∑
k=1

scoreki × weightk

)
+ εi (5.3)

where, i is the agent, k is the dimension, and ε is the random noise (random variable, µ = 0,
α = 0.05) to represent bounded rationality. Each choice context is (also known as “choice
dimension”) is defined by available alternatives, evaluation factors and decision procedures.

The dimensions selected for this model are not universal; they were selected depending on
the type of agent and the decision to be made by the agent. For instance, if a passenger agent
wants to determine the stop where to wait for a minibus taxi, the dimensions for the model are
three (i.e., the distance to the candidate stop, the availability of routes through the candidate
stop, and the likelihood of getting picked up).

The scores for each dimension were normalised to a scale of 0 to 1, where 1 was the most
preferred score in the given dimension. They thus had meaning only relative to each other. The
values of the weights were determined through iteratively testing and varying model rules. For
a given alternative, the weights of all dimensions add up to 1.

To understand the agents’ decision rules, consider a situation in which three alternatives–
x, y and z–vary along four dimensions D1, D2, D3 and D4. Their scores and weights along
these dimensions are given by the payoff matrix in Table 5.2. The utility is computed and the
alternative with the maximum utility is selected. Tables 5.4 and 5.5 describe the dimensions,
scores, and weights used by agents to determine the utility during decision making.

5.2.2.1 Decision making: Passengers

The passenger agents’ objective is to complete scheduled journeys as optimally as possible indi-
vidually. Passenger agent decisions are made based on three submodels. First is the initial stop
model (ISM) that determines the best stop within a threshold radius to wait for a minibus taxi.
Second is the boarding choice model (BCM) that decides which minibus taxi to board. The
BCM objectives are the following: to minimise the number of connections necessary to complete

Table 5.2: Illustration of utility payoff determination by an agent given three alternatives,
each with four dimensions. Note: (i)

∑4
d=1 wad = 1, for a ∈ {x, y, z}; (ii) sad ∈ (0, 1] for

a ∈ {x, y, z} and d ∈ {1, 2, 3, 4}; (iii) ε is random variable with µ = 0; and α = 0.05.

Dimensions Noise (ε) Utility (U)
D1 D2 D3 D4

Alternatives
x sx1wx1 sx2wx2 sx3wx3 sx4wx4 εx (

∑4
d=1 sxdwxd) + εx

y sy1wy1 sy2wy2 sy3wy3 sy4wy4 εy (
∑4

d=1 sydwyd) + εy
z sz1wz1 sz1wz1 sz1wz1 sz1wz1 εz (

∑4
d=1 szdwzd) + εz
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a single journey, to minimise the travel distance, and to minimise the last leg distance. In case
the available taxi cannot fulfil the entire journey but can fulfil at least half of the journey, the
journey is split into sub-journeys (legs or connections), and the journey queue of the journey
diary is updated as illustrated in Figure 5.5b. The third is the arrival choice model (ACM) that
determines if the “last leg of commute” has been reached, or else the passenger agent waits at a
stop for a connecting minibus taxi trip. Therefore, to achieve their objectives, they continuously
learn from experience and update their short-term memory referred to as episodic memory in
this thesis. Figure 5.5a shows a state transition diagram for passenger agents and the various
submodels executed during the transitions. Section 5.3.3.2 provides a detailed discussion of select
submodels and the associated dimensions (Table 5.4) that define passenger agents’ behaviour in
the model.

5.2.2.2 Decision making: Minibus taxis

The minibus taxi agents’ objective is to maximise trip profitability by filling up the minibus taxi
– thus maximising the occupancy – and completing as many trips as possible. To achieve their
objectives, minibus taxi agents execute two submodels, the route choice model (RCM) and the
passenger touting model (PTM). The RCM determines the route a minibus taxi takes for the
current active trip. The PTM implements three strategies used by minibus taxi agents to search
for passengers effectively. The PTM implements three passenger search strategies (discovered
from our previous studies discussed in Chapter 3). First is the Lévy walk (LW) search behaviour
where the distance between consecutive stops is drawn from a Lévy probability distribution.
Second is random back off (holding back), referred to in Kampala as “okukyebakamu”, where
the minibus taxi randomly holds back at a stop waiting for passengers. The third is strategic
demand estimation, referred to as “okubala gap”, where a minibus taxi with occupancy less than
the threshold scans the demand on the route and moves ahead in anticipation for passengers
waiting at the stops ahead. To achieve their objectives, they continuously learn from experience
and update their episodic memory accordingly. Section 5.3.3.3 provides a detailed discussion
of select submodels and the associated dimensions (Table 5.5) that define minibus taxi agents’
behaviour in the model.
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Figure 5.5: Illustration of agents’ state transitions and sub-models. (a) Passenger state
diagram, (b) Passenger journey splitting during ISM, (c) Minibus taxi state diagram.

Note: P=Passive, W=Waiting, OB=On board, A=Arrived, S=Stopped, R=Routing, L=Loading, M=Moving, H=Holding
back, ISM= Initial stop model, BCM=Boarding choice model, ACM=Arrival choice model, RCM=Route choice model,
LFM=Lévy flight model, HBM=Hold-back model, PTM=Passenger touting model.
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5.2.3 Learning

In this model, there are two types of learning for passengers and minibus taxi agents. The first
is learning from experience at an individual level in which every agent implements a Gaussian
mixture learning algorithm that occasionally updates its episodic memory. The second is collec-
tive learning where data about passenger demand and transport supply at stops, together with
historical data about completed journeys and trips, is modelled and used as a basis for decision
making at the stops.

5.2.4 Individual sensing

Every passenger agent in passive or waiting states knows its current location, and the locations of
stops within an awareness radius from its position in the environment. Under some conditions,
the passenger agent can also read information about a stop such as demand (the number of
passengers waiting at a stop); and supply (the number of minibus taxis loading at a stop).
Furthermore, the passenger agent can read the routes and occupancy status (load factor) of
minibus taxis waiting at a stop.

Before starting a trip, every minibus taxi agent knows about the demand, supply, and
candidate routes on stops within a threshold radius. After starting a trip, the minibus taxi knows
about the passengers on board, and the demand and supply on stops within a one kilometre
distance on the same route.

5.2.5 Stochasticity

During journey planning, once the number of journeys originating from a zone at a given time
is determined, the originating positions are randomly distributed in the same zone.

5.2.6 Observation

We used several approaches to test, analyse, evaluate, and finally validate the model. They in-
cluded setting up and running a controlled simulation experiment with agents semi-autonomously
making individual decisions and often learning from individual experience (see Chapter 6 Sec-
tion 6.4). The control experiment results showed statistically close distributions to the distri-
bution results obtained from the field study described in Chapter 3. The model thus closely
represents the transportation dynamics of minibus taxis in Kampala’s organically-evolved, quasi-
demand-responsive paratransit system.

5.3 Implementation details

The model was implemented in Python. A simplified UML class diagram of the model is
shown in Figure 5.2 and the UML activity diagram is shown in Figure 6.1. A model simulation
environment based on MESA architecture (Masad and Kazil, 2015) was set up. The ABM
structure, components, agents and their associated rules and behaviour were implemented using
Python’s object-oriented paradigm. The model was tested and validated based on face validity
and mainly involved the interpretation of graphs (Ormerod and Rosewell, 2009; Institute of
Medicine, 2015).
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5.3.1 Input Data

The model used inputs from external data. They included:

a) A custom General Transit Feed Specification (GTFS) file containing Kampala’s minibus
taxi stops and taxi ranks.

b) Open Street Map (OSM) shapefile containing primary, trunk, secondary and tertiary
roads, as well as division and parish administration levels.

c) The 2014 population census data for Kampala from the Uganda Bureau of Statistics
(UBOS) (UBOS, 2014).

d) Traffic count data from the transport improvement study in Kampala conducted by the
Japan International Cooperation Agency (JICA) in 2010 (JICA, 2010).

5.3.2 Initialisation

The initialisation of the model involves the acquisition of user-defined model parameters, input
datasets, and creation of environment entities such as stops, road network, as well as generating
passenger journey diaries. During this stage, the environment is loaded, and the model gen-
erates a network of stops whose internal structure is a connected undirected Networkx graph
(described in Section 5.3.2.1 and illustrated in Figure 5.6c). From the Networkx graph, a Max-
imum Spanning Tree (MST) is computed by negating the weights of each edge and applying
Kruskal’s algorithm. From the MST, an origin-destination (OD) matrix of all graph nodes is
generated. From this point on, the OD matrix is used as a basis for looking up and ranking
minibus taxi routes.

Passenger journeys between zones – also known as parishes – are generated based on Kam-
pala’s 2010 population census data, traffic count data from a study conducted by JICA (2010),
and the universal gravity model as discussed in Section 5.3.2.2. The temporal distribution of
journeys throughout the twenty-four hours of the day is based on a Gaussian model trained
and fitted on hourly minibus taxi trips count in and out of the central division of Kampala.
Section 5.3.3.1 discusses the Gaussian model fit to temporal minibus taxi trips count data.

5.3.2.1 Stops network extraction

Consider a road network as a connected graph G = (V,E) consisting of a set of vertices (also
called nodes) V and a set of undirected edges E ⊆ {{u, v}|u, v ∈ V ∧ u 6= v}. Without loss
of generality we will assume that elements of V are labelled by letters A,B,C,D, F,G,H as
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Figure 5.6: Stops network extraction; (a) Road network and corresponding stops, (b)
Alignment (snapping) of stops to nearby road segments, (c) Internal representation of the
extracted stops network.
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shown in Figure 5.6a. The road network consisting of roads, road segments and edges that can
be uniquely identified.

Consider a road network shown in Figure 5.6a composed of three roads

RD1 : E{ab, bc, cd, df, fg}, RD2 : E{ch, ha}, RD3 : E{ga} and four segments

S1RD1 : E{ab, bc, cd}, S2RD1 : E{df, fg}, S1RD2 : E{ch, ha}, S1RD3 : E{ga}

Also consider the minibus taxi stops S, T, X, Y and Z located along different road segments.
We align the stops to the corresponding closest road segments and compute the stops’ relative
positions on the segment edges as described in Figure 5.6b. The segments are then transformed
to include the stops’ relative positions as new nodes, e.g.,

S1RD1 → S
′
1RD1 : E{as, sb, bt, tc, cx, xd},

S1RD2 → S
′
1RD2 : E{df, fy, yg},

S1RD2 → S
′
1RD2 : E{cz, zh, ha}

For purposes of this illustration, after alignment we assumed the stops are located in the centre
of the respective edges. We then condensed the road network into a smaller network of stops by
aggregating edges between the stops using distance as a metric, i.e.,

E{sb, bt} → E{st}; E{tc, cx} → E{tx}; E{sb, bt} → E{st}; E{xd, df, fy} → E{xy};
E{yh, fa, ag, gz} → E{yz}; E{zc, cx} → E{zx}; E{zc, ct} → E{zt}

Figure 5.6b shows how the network was condensed to a network of stops shown in Figure 5.6c.
The network of stops illustrated in Figure 5.6c was used as the reference network during the
model simulation. However, the original network was preserved to give us the ability to alter
road characteristics in the future.

5.3.2.2 Generating minibus taxi trips and passenger journeys

To generate minibus taxi trips, consider a discrete set of spatial locations (Zones) Z={zj , ..., zJ}.
The number of minibus taxi trips T generated from zone zi to zone zj per day are Tij , and the
number of trips attracted to zone zi from zone zj per day are Tji. Then the total trips generated

from zone zi to all other zones is
∑I

i TijDj and the total trips attracted from all other zones to

zone zi in
∑J

j TijOi as described in the trips matrix structure in Table 5.3a.
Minibus taxi traffic count data from a study on Kampala’s road network improvement

by JICA (2010), together with Kampala’s 2014 parish-level population census data from UBOS
(2014), were used to fit a universal Gravity model defined by Equation 5.4 and estimating the
fitting parameter γ for minibus taxi travel in Kampala. Table 5.3b shows the trips’ matrix (trips
for all motor vehicles) generated from application of the gravity model. Equation 5.5 was then
used to generate the origin-destination (OD) minibus taxi passenger journeys matrix shown in
Table 5.3c.

Tij =
minj
rγij

(5.4)

where,

Tij is the number of minibus taxi trips from zone i to zone j

mi is the source zone population size

nj is the destination zone population size

rij is the Euclidean distance between zones i and j

γ is the fitting parameter
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The data used from the traffic survey included trips from all vehicle types. We however,
were interested in minibus taxis trips. Therefore, we calculated commuter journeys based on the
percentage minibus taxi mode share (27.7%) relative to other vehicles, and the mean minibus
taxi occupancy (10.38 passengers for selected roads observed during three time segments, i.e.,
morning, midday, and evening, representing 7:00 to 8:00, 12:00 to 13:00 and 18:00 to 19:00,
respectively) recorded during the survey as defined in Equation 5.5. Table 5.3c shows the
aggregate division-level synthetic commuter journeys for the five divisions of Kampala computed
according to Equation 5.5.

Jab = Tab ×O × ω (5.5)

Table 5.3: Illustration of (a) OD trips matrix structure; (b) Trips matrix
achieved from applying the gravity model to trips count data from JICA
(2010); OD matrix of minibus taxi passenger journeys.

(a) Minibus taxi trips’ matrix structure.
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(b) Trips matrix generated by the general gravity model Equation 5.4.

Destination
Central Kawempe Makindye Nakawa Rubaga Total

O
ri
g
n

Central 69,229 16,150 30,304 12,363 22,516 150,562
Kawempe 42,672 42,555 3,687 4,784 21,787 115,485
Makindye 42,411 4,644 58,512 1,900 15,681 123,148
Nakawa 21,688 3,538 2,427 71,104 2,385 101,142
Rubaga 41,955 11,143 13,505 2,390 33,267 102,260

Total 217,955 78,030 108,435 92,541 95,636

(c) Passenger journeys OD matrix generated by Equation 5.5.

Destination
Central Kawempe Makindye Nakawa Rubaga Total

O
ri
g
n

Central 199,051 46,435 87,132 35,547 64,739 432,905
Kawempe 122,693 122,357 10,601 13,755 62,643 332,049
Makindye 121,943 13,353 168,237 5,463 45,087 354,083
Nakawa 62,359 10,173 6,978 204,442 6,857 290,810
Rubaga 120,632 32,039 38,830 6,872 95,651 294,024

Total 626,677 224,357 311,779 266,079 274,978
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where,

Jab = Passenger journeys from division a to b

Tab = Minibus taxi trips from division a to b

ω = Percentage share of minibus taxis relative to other transport modes

O = Average minibus taxi occupancy.

Note: ω = 0.277, O = 10.38 passengers

5.3.3 Submodels

5.3.3.1 Gaussian model for temporal distribution of trips

The trips generated in Section 5.3.2.2 represent aggregated passenger trips throughout the day.
We used a separate detailed hourly minibus taxi trips survey carried out by JICA in Kampala
on the 14th and 15th of January 2010 to train a Gaussian model and fit it to the sparse hourly
minibus taxi trips count data collected between 7:00 and 18:00. Figure 5.7a shows the trips
distribution inbound to and outbound from the central division whereas Figure 5.7b shows the
daily temporal profile prior to training the Gaussian model.

To train the Gaussian model, we divided the data into a ratio of 7:3 with respect to training
and test data sets. We used GPy (a Gaussian Process (GP) framework from the Sheffield
machine learning group) (GPy, 2012) with a radial basis function (RBF) kernel, and a bias
function defined in Equations 5.6 and 5.7, respectively. Figure 5.7c shows the results of the
Gaussian model fit with a double belly for inbound trips, and triple belly for the outbound
trips. Figure 5.7d shows the predication test results.

This submodel is used for estimating the temporal distribution minibus taxi trips and pas-
senger journeys.

K(x,x′) =

(
−‖ x− x′ ‖2

2σ2

)
(5.6)

where, x and x′ are two samples, represented
as feature vectors in some input space.

Kij = κ(Xi, Xj) (5.7)

where, X is the first set of inputs to the
kernel, and X2 (optional) is the second
set of arguments to the kernel.

5.3.3.2 Passenger agent submodels: ISM, BCM and ACM

This section describes the sub-models used to manage passenger agent behaviour. The state
diagram in Figure 5.5a shows the abstract description passenger agent behaviour as a series of
transitions between discrete states described in Table 5.1a. For each submodel, we discuss its
dimensions and weight choices to fit the general random utility model described in Equation 5.3.
Algorithm 1 shows the implementation snapshot of passenger journey execution behaviour.

i) Initial stop model (ISM)
The initial stop model determines the stop within a threshold radius where a passenger
agent can wait for a minibus taxi. The model has three dimensions described in Table 5.4.

ii) Boarding choice model (BCM)
The BCM submodel has three dimensions described in Table 5.4. It is used by passenger
agents to select a minibus taxi to board. If the available taxis do not completely fulfil the
journey, it is split into connecting legs (see Figure 5.5b) and the journey diary updated
accordingly.
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In data
Out data

(a) Temporal distribution

5:00 10:00 15:00 20:00

(b) Prior

5:00 10:00 15:00 20:00

(c) Posterior

5:00 10:00 15:00 20:00

(d) Prediction test

Figure 5.7: Gaussian model fit to sparse minibus taxi trips data, prior and posterior trips
profile from Gaussian model training and prediction test results for a 24-hour day.

iii) Arrival choice model (ACM)
The ACM is used to determine if the passenger agent should exit the minibus taxi para-
transit system after executing a scheduled journey. An agent is considered arrived if it
has been moved as close as possible to its intended destination; otherwise, it waits for a
connecting minibus taxi trip to move it closer to its destination.
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Table 5.4: Passenger agent submodels, dimensions, dimension metrics and associated
weights. Note: ISM= Initial stop model, BCM=Boarding choice model, ACM=Arrival
choice model.

Model Dimension description Metric Weight

ISM

First leg distance: The spatial distance from the passenger agent
location to the candidate stop (see illustration in Figure 5.3c(i)).

km 0.2

Candidate routes: The number of routes through the candidate stop
to the passenger destination. Note: Each route is scored separately
depending on its tenacity and how close it would take an agent to its final
destination. Then the aggregate score for this dimension is obtained.

* 0.4

Pickup likelihood: The probability of getting picked up from the can-
didate stop. This dimension simulates episodic memory. When the sim-
ulation starts, a default value is assumed by every agent, and it is occa-
sionally updated by the agent based on its experience at a given stop.

* 0.4

BCM

Last leg distance: The spatial distance from the candidate drop-off
stop to the final journey destination (see illustration in Figure 5.3c(iii)).
The lower the last leg distance, the higher the score for this dimension.
Note: There is a threshold last leg distance, beyond which, a journey is
split into two connection sub journeys as illustrated in Figure 5.5b.

km 0.6

Connection journey distance: The distance from the current stop
to the last leg connection stop (see illustration in Figure 5.3c(ii)).

km 0.25

Instantaneous minibus taxi load factor: The percentage of minibus
taxi occupancy at the current time step.

* 0.15

ACM

Destination distance: The spatial distance to the final journey des-
tination.

km 0.8

Connection probability: The probability of getting a connection trip
from the current stop.

* 0.2

Algorithm 1: ExecutePaxJourney Manages passenger agent behaviour
during journey execution
1 foreach TIME STEP do

Input: oPax, m // oPax: object class in Algorithm 4 (Appendix A.1); m: model objects

2 if oPax.state =‘P’ then
3 sData← oPax.sensor.getData() // Get agent surrounding data

4 initStop← oPax.runISM(sData)
5 oPax.moveTo(initStop.pos) // Move to initial stop

6 oPax.state←‘W’

7 else if oPax.state =‘W’ then
8 sData← oPax.sensor.getData()
9 oMv ←oPax.runBCM(sData)

10 if oMv ⇒ NOT NULL then
11 oPax.boardMBT (oMv)
12 oPax.state←‘OB’

13 else if oPax.wait time > m.wait threshold then
14 oPax.dropJourney()
15 oPax.state←‘P’

16 end

17 else if oPax.state =‘OB’ then
18 oPax.updateLocation(oMv.pos)
19 if oPax.pos = oPax.jny.dest pos then
20 oPax.disembark()
21 oPax.state←‘A’

22 end

23 else if oPax.state =‘A’ then
24 if oPax.runACM ⇒ TRUE then
25 oPax.endJourney()
26 oPax.state←‘P’

27 else
28 oPax.loadNextJourney() // Load the next journey in the journey leg queue

29 oPax.state←‘W’

30 end

31 end

32 end
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5.3.3.3 Minibus taxi agent sub-models: RCM and PTM

This Section describes the submodels used to manage minibus taxi agent behaviour. The state
diagram in Figure 5.5c shows the abstract description minibus taxi agent behaviour as a series
of transitions between discrete states described in Table 5.1b. For each submodel, we discuss its
dimensions and weight choices to fit the general random utility model described in Equation 5.3.
Algorithm 2 show the implementation snapshot of minibus taxi trip execution behaviour.

i) Route choice model (RCM)
Before starting a trip, a minibus taxi agent decides where to go and the route to use for
the trip. The RCM uses three dimensions (described in Table 5.5) to choose the route
with high probability of making the trip profitable.

ii) Passenger touting model (PTM) Minibus taxi agents tout (or search) for passengers based
on the PTM sub-model. The PTM consists of three dimensions, which are also sub-
models as described in Table 5.5. The dimensions include the hold back model (HBM),
the strategic demand estimation and the Lévy flight model defined by Equation 5.8 below.

f(l) ∼ l−α for l ∈ [lmin,∞), (5.8)

where l is the step length and α (referred to as the Lévy exponent) is in the range
1 < α ≤ 3 (Viswanathan et al., 2011).

Table 5.5: Minibus taxi agent submodels, dimensions, dimension metrics and associated
weights. Note: RCM=Route choice model, PTM=Passenger touting model

Model Dimension description Metric Weight

RCM

Zone trips supply: This dimension is based on a system-wide origin-
destination active trips matrix. The matrix monitors under-supplied
zones based on the transport supply threshold (as learned from the Gaus-
sian model in Section 5.3.3.1).

* 0.2

Route tenacity: This dimension deals with the trustworthiness of
route to have a threshold passenger demand and transport supply.
Route tenacity is categorised into three (0-temporary, 1-candidate and
3-designated). New routes are introduced into the systems with the
tenacity of zero, and if the usage of the route exceeds a threshold level,
they are promoted to a higher tenacity. If the usage persistently declines,
their tenacity is demoted until they are aged out of the system.

Route
tenacity

0.3

Demand & supply status: This dimension simulates the minibus
taxi driver’s episodic memory – the ability to recall previous short-term
experiences. At the start of the simulation, a low default score is assigned
to this dimension, and it is updated as the agent experience improves.

* 0.5

PTM

Hold back: The hold back dimension score is determined by the Hold-
back model (HBM) which the agent uses to randomly back off and wait
for anticipated demand replenishment on the active route.

km 0.45

Lévy flight: This dimension determines the distance between consec-
utive stops when touting for passengers. It is based on the Lévy flight
hypothesis (Equation 5.8) discussed in Chapter 3. The objective is to
generate step lengths the optimises the Lévy exponent α.

km 0.45

Strategic demand estimation: This dimension helps the minibus
taxi agent to determine whether to proceed with the unprofitable trip or
not by strategically estimating the demand ahead based on a few clues
such as the number of taxis on the same route and their respective load
factors.

* 0.1
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Hold back in this dissertation refers to the time a minibus taxi stays at a stop waiting in
anticipation for passengers. Minibus taxis use a hold back model to determine how long
to hold back at a stop to make the trip profitable.

Algorithm 2: ExecuteMbtTrip Manages minibus taxi agent behaviour
during trip execution

Input: oMv, m // Minibus taxi and model objects

1 foreach TIME STEP do
2 if oMv.state =‘P’ then
3 sData← oMv.sensor.getData() // Get agent sorrounding data

4 initStop← oMv.findInitStop(sData)
5 oMv.moveto(initStop.pos)
6 oMv.state←‘S’

7 else if oMv.state =‘S’ then
8 if oMv.trip⇒ NULL then
9 oMv.state←‘R’

10 else
11 if oMv.trip.end⇒ TRUE then
12 oMv.trip← NULL, oMv.state←‘P’
13 else if oMv.loadCond⇒ TRUE then
14 oMv.state←‘L’
15 else
16 oMv.state←‘M’
17 end

18 end

19 else if oMv.state =‘R’ then
20 sData← oMv.sensor.getData()
21 if oMv.runRCM(sData)⇒ TRUE then
22 oMv.state =‘S’
23 end

24 else if oMv.state =‘L’ then
25 sData← oMv.sensor.getData()
26 if oMv.runHBM(sData)⇒ FALSE then
27 oMv.state←‘M’, oMv.hbtm← 0 // Reset holdback timer

28 else
29 oMv.hbtm← oMv.hbtm+ 1
30 if oMv.hbtm > m.hbtm threshold then
31 oMv.abandonTrip()
32 oMv.state←‘P’, oMv.hbtm← 0

33 end

34 else if oMv.state =‘M’ then
35 sData← oMv.sensor.getData()
36 if oMv.stopInterrupt⇒ TRUE then
37 oMv.state =‘S’
38 else
39 next step length← oMv.runLFM()
40 oMv.moveToNextStop(next step length)
41 oMv.dist travelled← oMv.dist travelled+ next step length
42 if oMv.tot trip dist >= oMv.dist travelled then
43 oMv.state =‘S’
44 oMv.trip.end← TRUE

45 end

46 end

47 end

48 end
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Figure 5.8: The cognitive model of situational awareness.

5.3.3.4 The cognitive model of situational awareness

Figure 5.8 describes a framework for situation awareness. An intelligent agent senses the en-
vironment, evaluates the current environment status, it projects the future environment state
before making a decision. Once a decision is made, it performs the action and then updates its
state.

5.4 Summary

In this chapter, we have designed and described an agent-based model of minibus taxi trans-
portation in an organically-evolved, quasi-demand-responsive paratransit system similar to that
in Kampala city.

78

Stellenbosch University https://scholar.sun.ac.za



Chapter 6

ABM model simulation and results

Chapter 6 Objectives
This chapter aims to achieve the research Objective 2.2 and Objective 2.3 of the dissertation to
answer research questions three and four, respectively.
• ⇒Research objective 2.2

Implement and validate the designed agent-based model in a simulator. This includes
studying the micro-level semi-autonomous interactions between Kampala’s minibus taxis
and passengers and analysing emergent behaviour at the macro level of the system.

• ⇒Research objective 2.3

Establish user-centric metrics for evaluating the efficiency of minibus taxi transportation
in Kampala’s organically-evolved, quasi-demand-responsive paratransit system.

This chapter presents the implementation and simulation of the minibus taxi agent-based
model (ABM) developed and described in Chapter 5. The simulation results and validation are
also presented at the end of this Chapter.

6.1 Simulating minibus taxi transportation dynamics

Simulation is the process of model execution that takes the model through discrete state changes
over time. A model simulation environment based on MESA architecture (Masad and Kazil,
2015) was set up. The ABM structure, components, agents and their associated rules and
behaviour were implemented using Python programming language. At runtime, the model goes
through three phases. The first phase is initialisation, where the ABM loads the user defined
model parameters (see Table 6.2); loads the external input data (such as minibus taxi stops);
generates passenger journey diaries; and instantiates the model environment, together with the
environment entities such as the stops, the scheduler and the data collector (refer to Section 5.3.2
of Chapter 5 for an in-depth discussion of model initialisation phase).

The second phase is the runtime loop, where scheduled agents repetitively interact (with
self, with other agents and with their surroundings) in a shared environment, executing various
actions, occasionally changing and updating their states and the environment. The simulation
output data and screen are also updated during the second phase. The UML activity diagram
in Figure 6.1 shows the general view of the three phases during the ABM simulation and the
activity sequence at each phase. The third is the exit phase, where the model goes into the
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terminal state when the terminal condition is met. The rest of this chapter is about the second
phase of the ABM simulation – runtime loop.

6.2 The runtime loop

After initialisation, the scheduler manages the orderly and repetitive execution of all model
simulation activities – a process referred to as the runtime loop. During the runtime loop, the
model executes through a series of time steps until it terminates, either normally through an
exit function call or abnormally by an abort signal. The Staged Activation type of scheduler
used for this ABM simulation consists of four stages. The first stage is sensing to get data about
the surrounding agents and the environment. The second stage is cognitive action, where agents
select appropriate action to take, often based on a utility maximisation method discussed in
Section 5.2.2. The third is the physical action. This entails effecting the actual physical action
such as moving to a new location, boarding a taxi, or abandoning an active trip. The fourth
stage is the update stage. It involves updating the agents and the environment with the new
state and the associated state data (refer to Table 5.1 for the description of agent states).

At each time step, the scheduler checks the exit condition. If the exit condition is not satis-
fied, the model advances to activate or deactivate passenger or minibus taxi agents. Passenger
agents are activated based on the journeys available in the schedule that are pending execution
at the appropriate time of the day. Minibus taxi agents are activated based on a supply ma-
trix. To prevent oversupply or undersupply to different divisions of the simulated environment
(Kampala city), the model maintains an up-to-date transport supply matrix that contains a
system-wide view of division-level origin-destination minibus taxi volumes. The supply matrix
is occasionally checked. If the transport supply volumes to any division falls below a pre-defined
threshold, more minibus taxis are activated and assigned trips to the affected divisions. Or else,
excess minibus taxi trips to such divisions are set to terminal such that the minibus taxi agent
is deactivated at the end of the trip. Passenger agents are deactivated either after a successful
journey execution or if it drops the journey due to failure to get a minibus taxi to the appropriate
destination within the threshold waiting time.

6.2.1 Agent behaviour during runtime

The passenger and minibus taxi agents’ behaviours were modelled based on our previous research
findings documented in Chapters 3 and 4 of this dissertation and published in the Journal of
Transport Geography (Ndibatya and Booysen, 2020a). In the research, as mentioned earlier, we
found that:

1. In searching for, picking up and transporting passengers, Kampala’s minibus taxis trajec-
tory steps followed a heavy-tailed power-law distribution similar to a “Lévy walk”.

2. Three passenger search strategies were used by minibus taxi drivers in Kampala, i.e.,

i. random passenger search, where the minibus taxis start a trip with a few passengers
in anticipation of passenger demand build-up along the route;

ii. random back off or holding-back, where the driver interrupts the trip for a random
period to allow for passenger demand replenishment on the route before continuing;
and

iii. trip abandonment, where trips deemed unprofitable by the drivers are either aban-
doned or the trip routes are changed to new destinations with anticipated high
demand.
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3. When passengers wait at a stop for a certain period without getting a taxi, they abandon
the intended minibus taxi-based journey and often use motorcycle taxis to get to their
destinations quickly.

We, therefore, modelled the agents’ behaviour in the agent-based simulation to closely match
the expected behaviour of passengers and minibus taxis in Kampala’s paratransit system.

During the runtime loop, passenger agents examine their journey diaries to find if there is a
journey to execute depending on the time of the day. The candidate journey is then scheduled
for execution, and the journey diary updated accordingly. The minibus taxis are scheduled into
the model based on a Gaussian submodel (described in Section 5.3.3.1). Every minibus taxi
agent searches for the best route to a predetermined destination division, and then instantiates
a trip to the destination through the selected route. En-route, the minibus taxi searches for
passengers based on the three search strategies mentioned earlier, and a utility maximisation
function discussed in Section 5.2.2. The minibus taxis occasionally hold-back at random stops
in anticipation for passengers. Unprofitable trips are abandoned, and new trips anticipated to
be profitable are initiated and executed.

Passenger and minibus taxi agents store metric data related to the fully or partially executed
journeys and trips, which they use to train agent-specific submodels every five days for improved
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Figure 6.1: UML activity diagram of our ABM framework. The diagram shows the
activity sequences of the entire model algorithm. The orange box represents a loop for
each agent, and the blue boxes show the different agent steps.
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future decision making. Figure 6.1 shows the detailed activity sequence for each agent during
the runtime loop.

6.2.2 Metrics evaluated during the runtime loop

Conceptually, there are two main active and co-dependent entities at model runtime – the
journey (managed and executed by the passenger agent) and the trip (managed and executed
by the minibus taxi agent). At the beginning of the simulation, both the journeys and trips
have a reciprocal but asymmetric relationship where the demand for journeys often exceeds
the supply of trips and vice versa. Hence the simulation objective is to facilitate autonomous
agent interactions in a common environment. During the agents’ interactions, we measure and
analyse selected metrics’ values to establish emergent characteristics and other phenomena in
the simulated minibus taxi transport system. This section presents the journey and trip metrics
evaluated (see Table 6.1) and describes the relationship between the metrics (see Figure 6.2a).
Figures 6.2b and 6.2c illustrate scenarios of passenger journeys and minibus taxi trips fully
executed (6.2b(i) and 6.2c(ii)), partially executed (6.2b(ii)) and a case of trip abandonment by
a minibus taxi driver (6.2c(i)).

Consider two spatially distant locations ‘O ’ (representing a random origin in Nakulabye
parish) and ‘D ’ (representing a random destination in Kyanja parish) shown in Figure 6.2a. A
network of stops (extracted and summarised based on the method described in Section 5.3.2.1)
connects both parishes – the lowest territorial and administrative entities in Kampala city. Also
consider an imaginary journey ‘J ’ originating from O to D. The journey (J ) can be sub-divided
into three parts, namely: the first leg l1 (sometimes referred to in transport studies as the first
mile of commute); the intermediate legs l : {l2, l3, ...., ln−2, ln−1}, where n is the total number of
legs; and the last leg ln (sometimes referred to in transport studies as the last mile of commute).
The passenger agent (initially in passive state) begins the journey by executing the first leg l1
(O to A). Executing the first leg involves searching for and moving to the anticipated optimal
stop (e.g., stop A) to get and board a minibus taxi (refer to Section 5.2.2.1 for the details about
passenger decision making process). Stop A marks the beginning of the intermediate legs for
journey J shown in Figure 6.2a. At the beginning of each intermediate journey leg, a passenger
waits for a minibus taxi to take them as close as possible to the final destination D. The time
taken waiting at the stop before boarding the taxi, tw, is recorded. If the passenger fails to get a
taxi from a given stop, they may opt to try and wait at another nearby stop, until the threshold
waiting time is exceeded hence the passenger terminates the journey leg. If the leg termination
happens at the beginning of the intermediate legs (l2), the whole journey is considered to have
failed. If the leg termination happens at any other leg after l2, the journey is considered partially
fulfilled, hence the last leg distance dln is measured from the previously successful intermediate
leg destination. The journey is considered fully completed if the last successful intermediate leg
destination is within a threshold last leg distance computed as a percentage of the total spatial
distance from O to D. Finally, the passenger agent computes and stores all the journey-related
metrics’ values. Table 6.1a describes the metrics related to a passenger journey.

Also consider a minibus taxi agent (in passive state) at a random stop A. When the minibus
taxi is activated, it determines its trip destination based on an inter-division transport supply
matrix discussed earlier – a process we refer to in this dissertation as self-selection of origins
and destinations. The minibus taxi then computes an optimal route through the stops network
using route distance as a metric. Once the route to its destination is acquired, the minibus
taxi executes a trip (e.g., trip T from stop A to stop G illustrated in Figure 6.2a) following
the rules discussed in Section 5.3.3.3. During trip execution, the minibus searches for and
loads passengers who are waiting along the route. It randomly holds back at various stops to
improve its instantaneous occupancy (or load factor). Suppose the load factor is persistently
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Figure 6.2: (a) Model runtime journey and trip description; (b) Journey execution sce-
narios; (ci) Illustration of trip abandonment by a driver; (cii) Illustration of a connection
trip, i.e., fulfilling the second intermediate leg of the journey in 6.2bi.

below the minimum threshold. In that case, the trip is abandoned by the driver and a terminal
signal is sent to the passengers on board to disembark and search for connecting trips to their
respective final destinations. The distance dsi between consecutive hold-back stops is generated
from a Lévy probability distribution defined by Equation 4.1. The Lévy exponent α value in
the equation is set to α = 2.2 (an average value obtained from our research in Chapter 4).
A minibus taxi trip is considered, (i) complete, if it reaches its final destination stop G, (ii)
incomplete if it is abandoned before its final destination, and (iii) failed if it does not get enough
passengers to leave the stop of origin A. Finally, the minibus taxi agent computes and stores all
the trip-related metrics’ values. Table 6.1b describes the metrics related to minibus taxi trips.

The Figures in 6.2b illustrate two independent execution scenarios for a journey from origin
O to destination D and the associated metric measurements for each scenario. In the scenario
in Figure 6.2b(i), the passenger moves to the initial stop A (executes the first leg) and waits for
a minibus taxi for tw hours. While at stop A, a minibus taxi destined to stop Y (executing a
trip illustrated in Figure 6.2c(i)) passes by. The passenger decides to board the minibus taxi.
However, the minibus taxi abandons the trip to Y in favour of stop Z as the final destination,
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thereby dropping off the passenger at stop B. Since the passenger’s full journey length was not
fulfilled by the minibus taxi trip (Trip 1 in Figure 6.2c(i)), the passenger splits the journey (see
Figure 5.5b) into two intermediate legs, and updates the journey diary accordingly. The first
intermediate leg (l2 – from stop A to stop B) which was fulfilled by trip 1 (Figure 6.2c(i)).
The passenger waits for a connection trip at stop B for a random period below the maximum
waiting threshold. When the passenger fails to get a minibus taxi at stop B, the passenger
moves to a nearby stop C and continues waiting. While at C, another minibus taxi executing
trip 2 (X to G – Figure 6.2c(ii)) arrives at the stop and the passenger boards to fulfil the
second intermediate leg (l3 – from stop C to G). At stop G, the passenger disembarks from the
minibus taxi, computes the last leg distance (ln = l4), and tags the journey as complete. The
passenger further computes and stores other derived metrics values such as the intermediate legs
count lcount, the intermediate legs distance dl, the total waiting time tw, the total waiting stops
swcount, the first dl1 and last legs distances dl4 distances.

Table 6.1: Metrics used for evaluating the simulated minibus taxi transportation system
efficiency.

(a) Passenger journey metrics.

Metric Description Unit
Waiting time (tw) The total time a passenger agent waits (outside) for a minibus taxi at a stop

(or stops) during execution of a single journey. Note: for a multi-leg journey,
tw =

∑n
i=1 twi, where, twi is the time spent waiting for a minibus taxi at a

single stop.

hours

Stops at which waited
(swcount)

The number of stops at which a passenger waits for a minibus taxi to arrive
during a single journey execution (including a journey with multiple legs).

count

First leg distance (dl1) The spatial distance between a journey origin and the stop where the passen-
ger agent successfully boards a minibus taxi.

km

Last leg distance (dln) The spatial distance between the stop where a minibus taxi drops off a pas-
senger and the final destination of a passenger journey.

km

Intermediate legs (lcount) The number of minibus taxi connections a passenger makes to fulfil a single
journey.

count

Intermediate legs distance
(dl)

The sum of distances of all journey legs executed (while onboard a minibus
taxi) during a single journey. dl =

∑m
i=1 dli, where, dli is the distance of the

ith intermediate leg li.

km

(b) Minibus taxi trip metrics.

Metric Description Unit
Hold-back time (th) The accumulated time a minibus taxi stays at stops along a route waiting for

(or in anticipation of) passengers. It includes the time spent at the stop of
origin loading passengers before embarking on a trip.

hours

Hold-back time per km The average measure of hold-back time per unit distance travelled by a
minibus taxi during the trip.

th/km

Occupancy (O) The instantaneous number of passengers onboard a minibus taxi as a percent-
age of the total taxi capacity. Note: we modelled only fourteen-seater minibus
taxis, and the instantaneous occupancy was measured every time a minibus
taxi left a stop (during the moving (M) to loading (L) state transition).

ratio

Total trip distance (dT ) The sum of distances of all road segments from the trip origin (origin stop)
to the trip destination (destination stop). dT =

∑n
i=1 dsegi, where dseg is

the distance of the road segment between two subsequent stops on the route
where the trip was executed.

km

Trip operating speed (vo) The average speed at which a minibus taxi could travel from origin to desti-
nation without stopping en route. When computing the operating speed, we
excluded the hold-back time. Note: conceptually, vo was assumed to be con-
stant and its value set during model initialisation (see Table 6.2). However,
during the simulation execution, the values vo varied because of the need to
optimally execute the Lévy steps generated.

km/h

Trip commercial speed (vc) The overall average speed of the minibus taxis during the trip, including the
time spent at the stops (hold-back time). vc = d

t
, where, d is the total trip

distance, and t is the total time taken to complete a trip.

km/h
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Figure 6.2b(ii) illustrates a scenario of an incomplete journey execution, where, after the
first intermediate leg (l2 – A to B), the passenger failed to get a connecting trip hence recording
a longer last leg distance dl3 (in this case the last leg is l3).

6.3 Design of simulation experiments

We designed and ran two simulation experiments – the Controlled and Test experiment – to
more substantially study the minibus taxi transportation dynamics in an organically-evolved,
quasi-demand-responsive paratransit setting as well as to overcome the scaling resource lim-
itations associated with field studies. In both experiments, the passenger journeys’ demand
and the spatial and temporal characteristics of the journeys’ demand were kept constant (see
Section 6.3.1 for the journeys demand characteristics). We varied the factors that influence
demand-responsiveness in the system such as, agents’ situational awareness, passenger search
behaviour and episodic memory. We then analysed the resultant metrics’ data to assess the
effect on the overall paratransit system’s efficiency and eventually answer research questions
RQ3, RQ4, and RQ5 as stated in Section 1.3.1 of Chapter 1.

During the controlled experiment, in addition to the constant passenger journeys demand
characteristics, we tuned the minibus taxi trips distance dT distribution to closely match the
minibus taxi route lengths (with mean 5.85 km) observed during the field research (see Chap-
ter 3). We iteratively adjusted the agent’s behavioural logic, while analysing the resultant
metrics values until the distributions of metrics values closely matched the known system val-
ues observed during the field research, indicating that the dynamics in both systems were ap-
proximately the same. We further performed a statistical analysis of the metrics values (see
Tables 6.3b, 6.4b and Figures 6.5 and 6.7) to identify the related efficiency metrics.

During the test experiment (see Chapter 7), we trained the passenger and minibus taxi
agents to adopt behaviour that optimises values of the dependent efficiency metrics identified
during the controlled experiment simulation. Thus, the test experiment simulated agents with
improved situational awareness, more optimal demand responsiveness, and considerable long-
term memory. We then analysed the resultant metrics values and compared them with the
values observed from the controlled experiment.

6.3.1 Passenger journeys daily demand characteristics

The Figures 6.3a to 6.3f show the daily spatial and temporal distributions of the journeys that
were input into the simulation models. Figure 6.3a shows the journey diaries generated for
each division in Kampala and the corresponding number of journeys in their journey queues.
Correspondingly, 74% of the journey diaries generated had one journey in their journey queue
(see Figure 6.3a), 22% had two journeys, whereas 4% had three journeys in their respective
journey queues (refer to Figure 5.3 in Chapter 5 for the relationship between the journey, journey
plan, journey diary, and journey queue). The journey diaries with more than one journey in their
journey queue represent passengers who relied on the minibus taxi transport system for multiple
journeys during the same day. For example, a passenger who planned to travel by minibus
taxi for the journeys from home-to-work, work-to-shop, and shop-to-home would have a journey
diary consisting of three journeys in the journey queue, as illustrated in Figure 5.3a. Figure 6.3b
shows the division-level origin-destination heat-map of passenger journeys. Figure 6.3c shows
the distribution of journeys’ distances from the origin to destination. Figures 6.3d and 6.3e
show the spatial distribution of passengers’ journeys at the parish level in Kampala. Figure 6.3f
shows the temporal hourly distribution of passengers’ journeys throughout the simulated day.
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Figure 6.3: Description of daily passenger journeys’ demand characteristics: (a) Journey diaries per
division and their respective number of journeys in the journey queue; (b) Passenger journeys origin-
destination divisions; (c) Distribution of journeys beeline distances from origin to destination; (d) Spatial
distribution of passenger journeys’ parish origins; (e) Spatial distribution of passenger journeys’ parish
destinations; and (f) Hourly temporal distribution of passenger journeys for one day.
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6.4 Set up of the controlled experiment (CER)

This section describes the setup and execution of a controlled simulation experiment designed to
simulate the minibus taxi transportation dynamics in Kampala’s paratransit system. The simu-
lation implements the agent-based model (ABM) developed in Chapter 5. The main goal of this
controlled experiment is to replicate the minibus taxi paratransit system in Kampala as closely
as possible. As such, we tuned some of the known system characteristics (see Section 6.2.1) and
other constraining attributes such as minibus taxi trip lengths, locations of minibus taxi stops,
the spatial and temporal distribution of minibus taxi trips and passenger journeys. We simu-
lated the autonomous interactions of the minibus taxis and passenger agents, and we analysed
the metrics values associated with their journeys and trips, respectively. Finally, we validated
the simulation results by comparing the graphical result from the simulation with the results of
similar metrics obtained from the previous field research.

6.4.1 Initialisation

The initialisation phase involves loading user-defined parameters, loading external input data,
generating passenger journey diaries, determining the threshold trips matrix, and instantiating
the model environment and the environment entities. Refer to Section 5.3.2 for the details about
model initialisation.

6.4.1.1 Description of inputs

For model inputs, we used data from four primary sources. First, we developed a custom General
Transit Feed Specification (GTFS) file and loaded it with data of 796 stops that were tagged
during the field research (see Chapter 3). A standard GTFS consists of six required files, i.e.,
agency, stops, routes, trips, stop times, and calendar. However, as observed by Williams et al.
(2015), semi-formal transit systems such as minibus taxis operate differently from traditional
buses. Their GTFS thus requires customisation to cater for demand responsiveness and other
peculiar characteristics observed and discussed in Chapter 3. In this simulation setup, we only
populated the stops file. Other files such as trips, routes and stop times were dynamically built
during model execution.

Second, we loaded the Open Street Map (OSM) shapefiles for Kampala (OpenStreetMap
contributors, 2017). The files contained Kampala’s primary, trunk, secondary and tertiary
roads, as well as division and parish administration levels. We combined the roads shapefiles
with the minibus taxi stops from the GTFS files to generate a stops network at the initialisation
stage, as discussed in Section 5.3.2.1. Conceptually, the stops network is a weighted, undirected
and connected Networkx Graph.

Table 6.2: Description of some of the selected initial simulation
model parameters

Model parameter Description Value Unit
LF THRESHOLD Load factor threshold 0.3
HBM THRESHOLD Hold-back time threshold 1 Hours
WAIT THRESHOLD Waiting time threshold 2 Hours
OP SPEED Operating speed 20 km/h
SYS CAPACITY System capacity 20%
STEP TO MIN Time step to minute conversion 1:5
MBT CAPACITY Minibus taxi maximum passenger capacity 14 pax
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Third, we used Kampala’s 2014 population census data, together with traffic count data
from JICA’s 2010 transport improvement study, to model the daily public transport demand
(expected passenger journeys). The base minibus taxi supply in Kampala which was also used
as input to the simulation model (JICA, 2010; UBOS, 2014). Finally, we specified the values of
the model’s initial parameters as shown in Table 6.2.

6.4.2 Results

This subsection presents the results from a controlled simulation experiment. The simulation
represents seventy days of agents’ interactions in the virtual quasi-demand-responsive minibus
taxi paratransit system environment. The simulation scenario implements agents’ behaviour
similar to those we observed from our field study in Kampala (see Chapters 3 and 4). They
include Lévy passenger search behaviour, random back off, trip abandonment, and limited situa-
tional awareness (episodic memory – an agent’s unique memory of a specific event). The results
are presented in two parts, namely: the results related to passenger journeys (Section 6.4.2.1),
and the results related to a minibus taxi trip (Section 6.4.2.2). For purposes of presenting results
in this section, we randomly sampled and analysed results from twenty days of the seventy-day
simulation.

6.4.2.1 Results: Passenger journeys

Analysis of executed passenger journeys show low journey completion rates (40%) for the first
twenty days; moderate improvement– to 70%– between the twenty-first and fiftieth day; and
then stabilising at 80% after the fiftieth day as illustrated in Figure 6.4a. There was a substantial
percentage of partially completed journeys throughout the model simulation. Trip abandonment
by drivers contributed an insignificant share of the failed journeys compared with the journeys
that failed due to exceeding the waiting threshold at the stops.

Table 6.3a gives the statistical summary of the passenger journey metrics values measured
during the simulation execution. Figures in 6.4b and 6.4c show the distributions associated
with the respective journey metrics. The long first and last leg distances with mean values
of 1.42km and 1.72km, and standard deviation values 0.85km and 1.15km, respectively (see
Table 6.3a) suggest that passengers struggled to find the right locations with high chances
of getting a taxi. The long last leg distance could also be because of the high number of
partially completed journeys. The heavy-tailed distribution of the intermediate legs distance
is indicative of either presence of circling within the system (where passenger agents boarded
minibus taxis repeatedly without reaching their final destination) or selecting and boarding taxis
going through longer routes before getting to the passengers’ destination. The mean waiting
time of 1.17 hours and standard deviation of 1 hour was most likely caused by the observed
over-fragmentation of journeys into multiple legs. Each journey was split into two-to-three
intermediate legs. Fragmentation of journeys could further be responsible for the high number
of “stops waited at” swcount and thus the high waiting time. However, the high swcount could
also be because of difficulty in finding minibus taxis. Thus, the passenger agents had to change
to multiple locations before eventually getting a taxi to their destination.

Correlation analysis of the passenger journeys metrics values (see Figure 6.5 and Table 6.3b)
shows a strong positive correlation between waiting time and “stops waited at” (r = 0.88); stops
waited at and legs count (r = 0.86); and waiting time and intermediate legs count (r = 0.71).
There is a moderate correlation between intermediate legs distance and intermediate legs count
(r = 0.4); stops waited at and intermediate legs distance (r = 0.35); and intermediate legs
distance and waiting time (r = 0.32).
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Figure 6.4: Controlled experiment results: (a) Daily passenger journeys’ completion rates; and distri-
butions of: (b)i First leg distance dl1, (b)ii intermediate legs distance dl, (b)iii last leg distance dln; (c)i
Waiting time tw, (c)ii Intermediate legs count lcount and (c)iii Stops at which passengers waited swcount.

6.4.2.2 Results: minibus taxi trips

Results from the minibus taxi trips’ analysis show a moderate variation of minibus taxi occu-
pancy during the model runtime. Occupancy varied between 30% and 70% as illustrated in
Figure 6.6a. Table 6.4a summarises the statistical values of the trip metrics values measured,
whereas Figures 6.6 show the associated distribution plots.

Correlation analysis of metrics results values show a strong negative correlation between
hold-back per kilometre and the commercial speed (r = −0.74); trip distance and commercial
speed (r = 0.61); and moderate correlation between hold-back time and hold-back per km
(r = 0.53), commercial speed (r = −0.48), occupancy (r = 0.34), operating speed (r = −0.33);
and hold-back per km and operating speed (r = −0.43). Table 6.4b and Figure 6.7 show the
correlation analysis results.
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Figure 6.5: Scatter plot matrix visualising bivariate relationships between combi-
nations of selected journey metrics values from the controlled experiment simulation

6.4.3 Model validation

We used a combination of two validation methods for agent-based modelling– input validation,
and descriptive output validation (Xiang et al., 2005; Ormerod and Rosewell, 2009). Input

Table 6.3: Summary statistical analysis of selected metrics values of passenger journeys fully
and partially completed during the controlled experiment simulation.

(a) Mean, standard deviation, and percentage quantile values of selected journey metrics.

First leg dis-
tance (dl1)

Last leg dis-
tance (dln)

int legs dis-
tance (dl)

Waiting
time (tw)

Stops waited at
(swcount)

legs count
(lcount)

Mean 1.42 1.72 8.05 1.17 3.68 2.05
std 0.85 1.15 6.95 1.01 2.68 1.38
Q 25% 0.79 0.98 3.46 0.4 2 1
Q 50% 1.32 1.53 6.61 1 3 2
Q 75% 1.88 2.07 10.42 1.7 5 3
Max 7.08 10.82 75.54 9.8 29 14

(b) Correlation matrix of selected journey metrics values.

First leg
distance

Last leg
distance

Int legs
distance

Waiting
time

Stops
waited at

Legs
count

First leg distance (dl1) 1 -0.01 -0.03 0.1 0.1 -0.05
Last leg distance (dln) -0.01 1 0.06 -0.1 -0.13 -0.14
Int legs distance (dl) -0.03 0.06 1 0.32 0.35 0.
Waiting time (tw) 0.1 -0.1 0.32 1 0.88 0.71
Stops waited at (swcount) 0.1 -0.13 0.35 0.88 1 0.86
Legs count (lcount) -0.05 -0.14 0.4 0.71 0.86 1
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Figure 6.6: Controlled experiment results: (a) Varying minibus taxi occupancy per day; and distribu-
tions of: (b)i Total trip distance dT ,(b)ii trips operating speed vo, (b)iii trips commercial speed vc, (c)i
hold-back time th, (c)ii hold-back per km and (c)iii occupancy O.

validation uses information about parameter values that come from external knowledge of the
system’s microbehaviour. Descriptive output validation (or face validity) matches the compu-
tationally generated output with pre-existing data on the process being modelled (Institute of
Medicine, 2015). Thus, for input validation, we used the known passenger journey demand
characteristics (described in Section 6.3.1 and Figures 6.3) as inputs, as well as defining other
known agents’ behavioural constraints (described in Section 6.2.1) at runtime. Therefore, the
inputs provide a degree of microbehaviour closely consistent with the Kampala’s minibus taxi
quasi-demand-responsive paratransit system that was modelled.

Furthermore, the simulation results were validated based on face validity as mentioned ear-
lier: this involved interpretation and comparison of graphical results. We compared the distri-
butions of several metrics’ values that were arrived at during the field study (refer to the results
in Chapter 3) with the control experiment results to ascertain if the two result sets closely
match. The Figures in 6.8 show the comparisons of selected metrics values distributions of the
field results (FR) with the controlled experiment results (CER). Table 6.5 shows a side-by-side
comparison of the results from both studies, i.e., the FR and CER.

For purposes of input validation, the trips distances dT were kept in close range with mean
values of 5.01 km and 5.5km for FR and CER, respectively. The low CER occupancy ob-
served during the first thirty simulation days (see Figure 6.6a) caused the moderate difference
between the mean occupancy values (∆µ = 27%, see Table 6.5). This could be attributed
to the time minibus taxi agents had not yet built up enough episodic memory to make semi-
optimal decisions. The same reason could explain the ∆µ values observed for the Waiting time
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Figure 6.7: Scatter plot matrix visualising bivariate relationships between combi-
nations of selected minibus taxi trips metrics values from the controlled experiment
simulation

(∆µ = −0.5), Hold-back time (∆µ = 0.23), hold-back per km (∆µ = 0.09) and commercial
speed (∆µ = −0.55).

The graphical results from the controlled simulation experiment are closely related to the

Table 6.4: Summary statistical analysis of selected metrics values of minibus taxi trips fully and partially
completed during the controlled simulation experiment.

(a) Mean, standard deviation, and percentage quantile values of minibus taxi trips metrics.

Trip distance
(dT )

Hold-back
time (th)

Hold-back per
km (th/km)

Occupancy
(O)

Operating
speed (vo)

Commercial
speed (vc)

Mean 5.45 0.73 0.15 40.72 19.82 5.02
std 1.84 0.35 0.1 21.01 6.86 1.59
Q 25% 4.22 0.5 0.1 24 15.69 4
Q 50% 5.52 0.7 0.1 41 17.23 4.75
Q 75% 6.68 0.9 0.2 56 21.32 5.82
Max 16.95 1.9 0.7 99 52.1 18.5

(b) Correlation matrix of selected minibus taxi trips metrics values.

Trip dis-
tance

Hold-back
time

Hold-back
per km

Occupancy Operating
speed

Commercial
speed

Trip distance (dT ) 1 0.11 -0.61 0.01 0.26 0.61
Hold-back time (th) 0.11 1 0.53 0.34 -0.33 -0.48
Hold-back per km (th/km) -0.61 0.53 1 0.18 -0.43 -0.74
Occupancy (O) 0.01 0.34 0.18 1 -0.18 -0.2
Operating speed (vo) 0.26 -0.33 -0.43 -0.18 1 0.8
Commercial speed (vc) 0.61 -0.48 -0.74 -0.2 0.8 1
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Figure 6.8: Model validation results: Side-by-side graphical comparison of distributions of selected
journeys and minibus taxi trips metrics values from two studies, i.e., the field study results (FR) with
the controlled experiment results (CER).

Table 6.5: Model validation: Side-by-side numeric comparison of field study results (FR) with the
controlled experiment results (CER) for the mean µ, standard deviation σ, twenty-fifth quantile (Q
25%), fiftieth quantile (Q 50%) and the seventy-fifth quantile (Q 75%). ∆µ is the difference between the
mean values of the two results sets.

Mean µ Std dev σ Q 25% Q 50% Q 75%
FR CER ∆µ FR CER FR CER FR CER FR CER

Trip distance dT (km) 5.01 5.45 -0.44 2.95 1.84 2.8 4.22 4.04 5.52 6.8 6.68
Occupancy O(%) 67% 40% 27% 28% 21% 43% 24% 64% 41% 86% 56%
Waiting time tw (h) 0.67 1.17 -0.5 0.28 1.01 0.45 0.4 0.6 1 0.9 1.7
Hold-back time th (h) 0.96 0.73 0.23 0.37 0.35 0.7 0.5 0.9 0.7 1.13 0.9
Hold-back per km 0.24 0.15 0.09 0.15 0.1 0.15 0.1 0.22 0.1 0.31 0.2
Commercial speed vc (km/h) 4.47 5.02 -0.55 2.18 1.59 2.8 4 4.1 4.75 5.6 5.82
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graphical results obtained from our field study of minibus taxis transport dynamics in Kampala
as illustrated in the side-by-side comparison of both studies in the Figures 6.8 and Table 6.5.
Thus, the controlled agent-based simulation experiment closely represents Kampala’s minibus
taxis’ organically-evolved, quasi-demand-responsive paratransit system.

6.4.4 Identifying efficiency metrics

Conventionally, public transport efficiency was evaluated based on mobility. This assumes that
the faster a transport system moves passengers, the better (Litman, 2012). Levine et al. (2012)
introduced a new paradigm of evaluating transport efficiency based on accessibility – the people’s
ability to access the transport service. The quasi-demand-responsiveness, combined with the
highly atomised ownership structure in Kampala’s minibus taxi paratransit system made us
introduce the profitability dimension of evaluating efficiency from the driver’s perspective (see
Chapter 3). In the profitability paradigm, we are concerned with the driver’s ability to make
profitable trips.

We categorised the journeys and trips metrics to select the appropriate metrics for evaluating
the mobility efficiency, accessibility efficiency and profitability efficiency. Table 6.6 shows the
categorisation of metrics. Thus, in response to the research question RQ4 (see Section 1.3.1
of Chapter 1), the metrics for measuring efficiency in an organically-evolved, quasi-demand-
responsive paratransit system are: passenger waiting time tw; minibus taxi hold-back time th;
passengers’ first leg distance dl1; and minibus taxi occupancy O. The secondary efficiency
metrics were selected based on their correlation coefficient strength with the primary efficiency
metrics (refer to Tables 6.3b and 6.4b for the correlation coefficient values).

Table 6.6: Categorising metrics by mobility efficiency, accessibility efficiency and profitability efficiency.

Mobility Accessibility Profitability
Primary efficiency
metrics

Waiting time (tw),
Hold-back time (th)

First leg distance (dl1),
Last leg distance (dln)

Occupancy (O)

Secondary effi-
ciency metrics

Legs count (lcount),
Stops waited at (swcount),
Commercial speed (vc)

Hold-back time (th),
Commercial speed (vc)
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6.5 Summary

In this chapter, we set up a controlled agent-based simulation experiment of minibus taxi trans-
portation dynamics in an organically-evolved paratransit system setting. We designed minibus
taxi agents with limited situational awareness, quasi-demand-responsiveness, random passenger
search, Lévy walk behaviour and occasional abandonment of trips that were considered ‘unprof-
itable’ (with persistently low passenger occupancy). The passenger agents were designed with
limited situational awareness, considerable persistence (able to move from stop to stop waiting
for a taxi), and limited memory – they depended on episodic memory to make some decisions
such as where to wait for a taxi.

Analysis and validation of the simulation results indicated distribution statistically close
to the distributions obtained from the field study in Kampala. We can therefore conclude
that the agent-based simulation closely represents Kampala’s organically-evolved, quasi-demand-
responsive paratransit system. We further identified four primary metrics for evaluating the
efficiency of a paratransit system. These included: the passenger waiting time tw; minibus taxi
hold-back time th; passengers’ first leg distance dl1; and minibus taxi occupancy O. Thus,
answering research questions RQ3 and RQ4, and achieving Objective 2.2 and Objective 2.3.
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Chapter 7

Test experiments and optimisation
results

Chapter 7 Objectives
This chapter aims to achieve the research Objective 3.1 of the dissertation to answer research
question RQ5.
• ⇒Research objective 2.2

Optimise selected efficiency metrics of Kampala’s simulated minibus taxi transport system
and evaluate the associated gain in system efficiency at a macro level.

This chapter presents two test experiments that we set up to optimise selected efficiency
metrics identified in Section 6.4.4. To support more optimal decision making by agents, we
modified the general utility scoring Equation 5.3 defined in Section 5.2.2 to include a situational
awareness (SA) dimension Φ as described in Equation 7.1.

Ui =

(
n∑
k=1

ski × wk

)
× Φ + εi (7.1)

where, Ui is the utility associated with the ith alternative, ski is the score associated with
dimension k, wk is the weight associated with dimension k, Φ is the situational awareness score,
and ε is the random noise (random variable, µ = 0, α = 0.05) to represent bounded rationality.

Thus, given a situation in which three alternatives x, y and z vary along four dimensions
D1, D2, D3 and D4, and their scores and weights along these dimensions are given, the utility
payoff associated with each alternative is computed based on Equation 7.1 as illustrated by the
payoff matrix in Table 7.1. The alternative with the maximum utility is selected. Tables 5.4

Table 7.1: Illustration of utility payoff determination by agents given three alternatives, each with four
dimensions. Note: (i)

∑4
d=1 wad = 1, for a ∈ {x, y, z}; (ii) sad ∈ (0, 1] for a ∈ {x, y, z} and d ∈ {1, 2, 3, 4};

(iii) ε is random variable with µ = 0; and α = 0.05; (iv) Φ is the situational awareness score.

Dimensions SA (Φ) Noise (ε) Utility (U)
D1 D2 D3 D4

Alternatives
x sx1wx1 sx2wx2 sx3wx3 sx4wx4 Φx εx (

∑4
d=1 sxdwxd)Φx + εx

y sy1wy1 sy2wy2 sy3wy3 sy4wy4 Φy εy (
∑4

d=1 sydwyd)Φy + εy
z sz1wz1 sz1wz1 sz1wz1 sz1wz1 Φz εz (

∑4
d=1 szdwzd)Φz + εz
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and 5.5 describe the dimensions, scores, and weights used by agents to determine the utility
during decision making.

The main difference between the two experiments is the methods they use to determine and
score the situational awareness dimension given several alternatives. The test experiment one
(TOR1) uses the cognitive model of situational awareness integrated with the random forest
classification algorithm (Hoogendoorn et al., 2011; Buitinck et al., 2013; Pedregosa et al., 2011).
The test experiment two (TOR2) uses a neural network-based ranking mechanism to generate
the situational awareness dimension (Pasumarthi et al., 2019). The setup and results from the
two experiments are presented in the following sections.

7.1 Test experiment #1 (TOR 1)

In this experiment, the situation awareness dimension was implemented based on the cognitive
model of situational awareness developed by Endsley (1995) and improved by Matthews et al.
(2001), Hoogendoorn et al. (2011), and Bosse et al. (2012). We described the model in detail in
Section 5.3.3.4 of this thesis. The model consists of four components: Perception of elements or
cues in the environment; comprehension and integration of information about the current situa-
tion; projection of information for future events; and updating the mental model (Hoogendoorn
et al., 2011).

7.1.1 Description of experiment set up

The test simulation experiment (TOR1) was designed to simulate minibus taxi transportation
dynamics in a quasi-demand-responsive paratransit system. The simulation implements the
agent-based model (ABM) developed in Chapter 5 with agents trained to adopt behaviour
based on improved situational awareness. The passenger journey characteristics and inputs
were maintained as described in Sections 6.3.1 and 6.4.1.1, respectively.

7.1.1.1 Learning the situation awareness score for TOR1

In this experiment setup, the agents can observe the current status of the world within a thresh-
old distance. Hence, they can form a belief about the current situation. For example, a minibus
taxi agent can view the demand and supply status of the stops two kilometres ahead of its
current position. In addition to observing the current status, the agents can also infer future
beliefs based on the belief value ‘learned’ cooperatively with other agents that executed a similar
objective under considerably similar conditions. The future belief value in the simulation is asso-
ciated with the stop and the target decision submodel to be executed, i.e., the initial stop model
(ISM); the boarding choice model (BCM); the route choice model (RCM); and the passenger
touting model (PTM) (see Sections 5.3.3.2 and 5.3.3.3). The future belief value is learned using
a random forest classification algorithm that is trained with data from every ten-day window
during the simulation runtime for each stop and each target decision sub model. The current
belief and future belief are combined to form a relative score referred to as the situational aware-
ness score Φ that is used to compute the utility associated with the particular alternative (refer
to Equation 7.1 and Table 7.1).

7.1.2 Experiment #1 results

The results from test experiment TOR1 are presented in two categories. First, we present
the general macro view of test experiment one results (see Figures 7.1). Second, we present
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a comparative analysis of the results for selected metrics for the controlled experiment (CER)
results, test experiment one (TOR1), and test experiment two (TOR2) in Section 7.3 (see
Figures 7.4, 7.5 and Table 7.2).

The results show two distinct learning levels (learning levels one and two), representing the
significant points during the simulation runtime where the agents adopted significantly optimal
behaviour, thus gaining a degree of objective execution efficiency (see Figure 7.1). In general,
the journey completion rate for passenger agents in TOR1 improved from 40% before learning
level one on day 17, to 70% after learning level two on day 52 (see Figure 7.1a). The rate
of partially completed and failed journeys also reduced. Likewise, the average minibus taxi
agent occupancy improved from 50% to 65% after learning levels one and two, respectively (see
Figure 7.1b). Hence the number of passengers stranded in the system because of failure to get
transport reduced, which is an indicator of system efficiency improvement.

More test experiment one results for selected metrics will be presented in the comparative
analysis in Section 7.3
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Figure 7.1: Test experiment one variations of: (a) Passenger journeys completion rates; (b)
Percentage minibus taxi occupancy.
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7.2 Test experiment #2 (TOR 2)

In this experiment, we used a convolutional neural network (CNN)-based ranking mechanism
to implement situational awareness. This was done by training a list-wise ranking submodel (in
other words, learning-to-rank model) using Google’s TensorFlow ranking (tf-ranking) application
programming interface (API) (Pasumarthi et al., 2019). The tf-ranking API uses a multivariate
scoring function and a listwise loss ranking function to order a set of multifeatured items.
Equation 7.2 defines a listwise Softmax loss function (Ai et al., 2018), and Equation 7.4 defines
the metric scoring and evaluation function – Normalised Discounted Cumulative Gain (NDCG)
(Valizadegan et al., 2009; Qin et al., 2010).

ˆ̀(y, ŷ) = −
n∑
j=1

yjlog(ŷjg) = −
n∑
j=1

yjlog(
exp(ŷj)∑n
j=1 exp(ŷj)

) (7.2)

where, yj ∈ {0, 1}k represents the lebel of the ith sample in one-hot encoded representation and
ŷj ∈ [0, 1]k is the predicted probability with Softmax. ŷig represents the predicted probability
of the ground-truth class for the ith sample.

DCG(πf, y) =
n∑
j=1

2yj−1

log2(1 + πf(j))
(7.3)

where, πf is the ranking function, y is the dataset.

NDCG(πf, y) =
DCG(πf, y)

IDCG(y)
(7.4)

where, IDCG is the ideal DCG value of the best ranking function on the dataset y.
The goal of the learning-to-rank model is to learn a scoring function f such that, given a list

of multi-features items, it produces an optimal ordering of the items in their order of relevance.
So, the most optimal item (with higher utility) will be on top as illustrated in Figure 7.2a.
Figure 7.2b illustrates how the neuro-network layers interact during groupwise multivariate
scoring. Figure 7.2c summarises the five-step workflow used to build the ranking submodels for
test experiment two. Algorithm 3 further describes a step-by-step process of building, training,
and serialising the ranking neural network submodel for test experiment two (TOR2).

7.2.1 Description of experiment setup

The test simulation experiment (TOR2) was designed to simulate minibus taxi transportation
dynamics in a quasi-demand-responsive paratransit system. The simulation implements the
agent-based model (ABM) developed in Chapter 5 with agents trained to adopt behaviour
based on optimised situational awareness. The passenger journey characteristics and inputs
were maintained as described in Sections 6.3.1 and 6.4.1.1, respectively.

7.2.1.1 Optimising situation awareness of agents in TOR2

In this experiment setup, we modelled the passenger and minibus taxi agents’ decisions made
during the execution of the four submodels– ISM, BCM, RCM, and PTM– as ranking problems.
For example, given a set of stops within threshold radius relative to its spatial position, the
passenger agent’s objective during ISM is to get the ordering of the stops such that the first
leg distance dl1, waiting time tw, legs count lcount and last leg distance dln are optimised (see
illustration in Figure 7.2a). Thus, we trained a CNN-based ranking model with three dense
layers, an NDCG ranking evaluation metric, and a Softmax loss function. The ranking model
was implemented using tf-ranking API form Google’s TensorFlow 2.0 library. Figure 7.2c and
Algorithm 3 describes the ranking model development and training workflow.
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{x1,x2,x3}x

g([x3,x2])

f (x)

… … … … … …

X X X

(b)

Scoring 
function

Evaluation 
metrics

Loss 
function

Ranking 
estimator

tf.keras.layers.Dense()

tfr.metrics.RankingMetricKey.NDCG

tfr.losses.make_loss_fn("softmax_loss")

tf.estimator.Estimator()
group_size=31

2

3

4

tensorflow
ranking model

labeled data

ranker.train()
steps=100

5

(c)

Figure 7.2: Illustrating the multi-item ranking process: (a) Function f takes a list of unordered items,
and returns an optimal ordering π∗; (b) How groupwise multivariate scoring functions work (Ai et al.,
2018); (c) Ranking model development workflow in tensorflow 2.0.

Once deployed, the model inputs a set of origin-destination parameter pairs and returns a
ranked list according to relevance (or utility value). Depending on the decision submodel, the
origin parameters include parameters related to the current status of the system, e.g., current
demand, supply, occupancy status, waiting time, and hold-back time of active agents in the
neighbourhood.

Algorithm 3: BuildAndTrainRankingModel Build and train a multi-
item scoring ranking model

Data: paxJourneys,mbTrips, dataLabels // executed journeys and trips labelled

1 foreach AGENT DECISION SUBMODEL do
// i.e., ISM, BCM, RCM and PTM

2 Specify a scoring function // (1)Three hidden dense layer scoring function.

tf.keras.layers.Dense()

3 Specify the evaluation metrics to optimise for // (2) NDCG tfr.metrics.RankingMetricKey.NDCG

4 Specify the loss function // (3) Softmax loss, tfr.losses.make loss fn("softmax loss")

5 Build the ranking estimator // (4) Build multi-item scoring ranking estimator

tf.estimator.Estimator()

6 Load data from a mongo database
7 Extract features and labels associated with a submodel
8 Train the ranking estimator // (5) ranker.train()

9 Serialise and save ranking model

10 end
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7.2.2 Experiment #2 results

The results from test experiment TOR2 are presented in two categories. First, we present the
general macro view of the results (see Figures 7.3). Second, we present a comparative analysis of
the results for selected metrics for the controlled experiment results (CER), test experiment one
(TOR1), and test experiment two (TOR2) in Section 7.3 (see Figures 7.4, 7.5 and Table 7.2). The
results show three distinct learning levels (learning level one, two, and three), representing the
significant points during the simulation runtime where the agents adopted significantly optimal
behaviour, thus gaining a degree of objective execution efficiency.

In general, the journey completion rate for passenger agents in TOR2 improved from 45%
before learning level one on day 6, to 50% after learning level two on day 34, then to 75% on day
52 after learning level 3 (see Figure 7.3a). The rate of partially completed and failed journeys
also reduced significantly between learning level two and three. Likewise, the average minibus
taxi agent occupancy improved from 30% before learning level one, to 60% after learning level
two, then to 70% after learning level three (see Figure 7.3b). Hence the number of passengers
stranded in the system because of failure to get transport significantly reduced, which is an
indicator of system efficiency improvement.
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Figure 7.3: Test experiment two variations of: (a) Passenger journeys completion rates; (b)
Percentage minibus taxi occupancy.
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7.3 Comparative analysis of CER, TOR1 and TOR2

results

This section presents a side-by-side comparative analysis of results from three simulation ex-
periments, i.e., the controlled simulation experiment (CER in Section 6.4), test experiment one
(TOR1 in Section 7.1), and test experiment two (TOR2 in Section 7.2). The results represent
aggregate macro-level measurements of selected metrics associated with passenger agents’ jour-
neys (i.e., the first leg distance dl1, intermediate legs distance dl, last leg distance dln, waiting
time tw, intermediate legs count lcount, and the count of stops where passengers waited during
a single journey swcount), and minibus taxi agents trips (the trip distance dT , operating speed
vo, commercial speed vc, hold-back time th, hold-back per km, and minibus taxi occupancy O).
Figures 7.4 and 7.5 and Tables 7.2a and 7.2b show the statistical analysis of the journeys and
trips metrics, respectively.

Analysis of passenger agents journey data shows that there is a 33% and 49% reduction in the
mean of first leg distances between the controlled simulation experiment, and test experiments
TOR1 and TOR2, respectively (refer to Table 7.2a and Figure 7.4ai). The mean journeys last
leg distances also reduced from 1.7 km in the CER, to 1.2 km in the TOR1, then to 0.9 km in
the TOR2, representing a 31% and 46% decrease between CER, and test experiments TOR1
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Figure 7.4: Passenger journeys metrics: Comparing controlled simulation experi-
ment results (CER) with test optimisation results from two simulation experiments
(TOR1 and TOR2).
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and TOR2, respectively (Figure 7.4aiii). Furthermore, from CER, TOR1, and TOR2 results,
there was a substantial reduction in the journeys’ waiting time from 1.3 hours, to 0.8 hours and
then to 0.5 hours (Figure 7.4bi); intermediate legs count from 6 legs, to 5 legs then to 4 legs
(Figure 7.4bii); and count of stops where passengers waited for minibus taxis, from 4 stops,
to 3 stops, then to 3 stops (Figure 7.4biii). Finally, there was an increase in the intermediate
legs’ distance from 9 km in CER, to 11 km in TOR1, to 10 km in TOR2 (Figure 7.4aii). This
represents a 23% and 15% increase in the intermediate legs’ distance between CER and test
experiments TOR1 and TOR2, respectively, as shown in Table 7.2a.

Analysis of the minibus taxi trips data from the simulation experiments shows an increase
in operating speed, commercial speed, minibus taxi occupancy, and a reduction in hold-back
time and hold-back time per km. Figure 7.5aiii shows an increase in the mean commercial
speed from 4 km/h in CER to 16 km/h in TOR1, to 19 km/h in TOR2. There was a moderate
reduction in hold-back time from 0.9 hours in CE, 0.8 hours in TOR1, to 0.6 hours in TOR2
(see Figure 7.5bi). The hold-back per kilometre significantly reduced from 0.18 h/km in CER
to 0.14 h/km in TOR1, to 0.11 h/km in TOR2 (see Figure 7.5bii). The mean minibus taxi
occupancy increased from 42% in CER to 48% in TOR1, to 51% in TOR2 (see Figure 7.5biii).
This represents a 14% and 21% increase between CER and test experiments TOR1, and TOR2,
respectively, as shown in Table 7.2b.
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ment results (CER) with test optimisation results from two simulation experiments
(TOR1 and TOR2).

104

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 7. TEST EXPERIMENTS AND OPTIMISATION RESULTS

T
ab

le
7.

2:
S

u
m

m
ar

y
st

at
is

ti
cs

an
al

y
si

s
an

d
co

m
p

ar
is

on
s

fo
r

p
as

se
n

ge
r

jo
u

rn
ey

s
an

d
m

in
ib

u
s

ta
x
i

tr
ip

s
fo

r
th

e
co

n
tr

ol
le

d
an

d
te

st
si

m
u

la
ti

o
n

ex
p

er
im

en
ts

.
N

O
T

E
:

C
E

–
C

on
tr

ol
le

d
ex

p
er

im
en

t,
T

1=
T

O
R

1
–

T
es

t
si

m
u

la
ti

on
ex

p
er

im
en

t
1,

T
2=

T
O

R
2

–
T

es
t

si
m

u
la

ti
on

ex
p

er
im

en
t

2.

(a
)

C
om

p
ar

in
g

p
as

se
n

ge
r

jo
u

rn
ey

s
m

et
ri

cs
’

st
a
ti

st
ic

al
va

lu
es

fo
r

m
ea

n
,

st
an

d
ar

d
d

ev
ia

ti
on

,
an

d
p

er
ce

n
ta

ge
q
u

an
ti

le
s

Q
25

,
Q

50
,

an
d

Q
7
5
.

M
ea

n
µ

%
g
e

∆
µ

C
E

-
S

td
d

ev
σ

Q
2
5
%

Q
5
0
%

Q
7
5
%

M
a
x

C
E

T
1

T
2

C
E

-T
1

C
E

-T
2

C
E

T
1

T
2

C
E

T
1

T
2

C
E

T
1

T
2

C
E

T
1

T
2

C
E

T
1

T
2

F
ir

st
le

g
d

is
ta

n
ce

(d
l1

)
1
.4

0
.9

0
.7

3
3
%

4
9
%

0
.9

0
.6

0
.4

0
.8

0
.6

0
.6

1
.3

0
.9

0
.7

1
.9

1
.2

0
.9

7
.1

6
.2

5
.7

In
te

rm
ed

ia
te

le
g
s

d
is

ta
n

ce
(d
l)

9
1
1

1
0

-2
3
%

-1
5
%

7
9
.5

5
.7

4
.4

5
.2

5
.9

7
.6

9
.2

9
.6

1
1

1
3

1
2

7
6

5
5

4
0

L
a
st

le
g

d
is

ta
n

ce
(d
ln

)
1
.7

1
.2

0
.9

3
1
%

4
6
%

1
.2

0
.9

0
.6

1
0
.8

0
.7

1
.5

1
0
.8

2
.1

1
.4

1
1
0
.8

9
.8

8
.7

W
a
it

in
g

ti
m

e
(t
w

)
1
.2

0
.8

0
.5

3
4
%

5
5
%

1
0
.8

0
.6

0
.4

0
.3

0
.1

1
0
.7

0
.5

1
.7

1
.1

0
.8

9
.8

9
7
.5

S
to

p
s

w
a
it

ed
a
t

(s
w
c
o
u
n
t
)

4
3

3
2
1
%

2
4
%

2
1

1
3

3
2

4
3

3
4

4
4

1
7

1
5

1
1

L
eg

s
co

u
n
t

(l
c
o
u
n
t
)

6
5

4
5
%

2
7
%

3
3

1
4

4
4

5
5

4
7

7
5

3
0

3
0

2
4

(b
)

C
om

p
a
ri

n
g

m
in

ib
u

s
ta

x
i

tr
ip

s
m

et
ri

cs
’

st
a
ti

st
ic

al
va

lu
es

fo
r

m
ea

n
,

st
an

d
ar

d
d

ev
ia

ti
on

,
an

d
p

er
ce

n
ta

ge
q
u

an
ti

le
s

Q
25

,
Q

50
,

an
d

Q
7
5
.

M
ea

n
µ

%
g
e

∆
µ

C
E

-
S

td
d

ev
σ

Q
2
5
%

Q
5
0
%

Q
7
5
%

C
E

T
1

T
2

-T
1

-T
2

C
E

T
1

T
2

C
E

T
1

T
2

C
E

T
1

T
2

C
E

T
1

T
2

T
ri

p
d

is
ta

n
ce

(d
T

)
5
.4

5
.7

5
.9

-6
%

-9
%

1
.7

1
.4

1
.3

4
.3

5
5
.2

5
.5

5
.7

5
.9

6
.6

6
.6

6
.6

O
p

er
a
ti

n
g

sp
ee

d
(v
o
)

1
9

2
3

2
7

-2
1
%

-4
2
%

5
9

6
1
5

1
3

2
2

1
7

2
4

2
6

2
1

3
0

3
0

C
o
m

m
er

ci
a
l

sp
ee

d
(v
c
)

4
1
6

1
9

-3
0
0
%

-3
7
5
%

1
5

4
4

1
1

1
7

4
1
6

1
9

5
1
9

2
2

H
o
ld

-b
a
ck

ti
m

e
(t
h

)
0
.9

0
.8

0
.6

1
1
%

3
3
%

0
.3

0
.3

0
.3

0
.7

0
.6

0
.4

0
.8

0
.7

0
.5

1
.1

1
0
.8

H
o
ld

-b
a
ck

p
er

k
m

(t
h
/
k
m

)
0
.1

8
0
.1

4
0
.1

1
2
2
%

3
9
%

0
.1

0
.0

6
0
.0

5
0
.1

0
.1

0
.0

7
0
.2

0
.1

3
0
.0

9
0
.2

0
.1

7
0
.1

4
O

cc
u

p
a
n

cy
(O

)
4
2
%

4
8
%

5
1
%

-1
4
%

-2
1
%

2
1
%

1
3
%

1
5
%

2
5
%

3
8
%

4
0
%

4
2
%

4
7
%

4
9
%

5
7
%

5
8
%

6
3
%

105

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 7. TEST EXPERIMENTS AND OPTIMISATION RESULTS

7.4 Summary

In this chapter we set up two test agent-based simulation experiments of minibus taxi trans-
portation dynamics in an organically-evolved paratransit system setting. In test experiment one
(TOR1), we improved the agents’ decision making based on a situation awareness dimension.
The passengers and minibus taxi agents observe the status of the world, they form their current
and future beliefs based on a supervised learning algorithm (Random forest). The supervised
learning algorithm generates situational awareness scores that are used to evaluate the alter-
native with high utility. Test experiment two further improved the agents’ decision making
and situational awareness based on a deep learning method, i.e., convolutional neural network
(CNN). The CNN was trained to optimally rank (or order) a set of choices from which an agent
must choose, such that the option with the highest utility is on top. Thus, the agent chooses
one with higher utility.

Results from optimising and analysing selected metrics from the two test experiments (TOR1
and TOR2) indicate significant improvement in minibus taxi transport system efficiency at
macro-level. Thus, we have answered research questions RQ5, and achieved Objective 3.1 of
this dissertation.
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Chapter 8

Discussion

This chapter is presented in two contexts: First, the research questions identified in Chapter 1
are revisited and discussed in the light of accepted knowledge and the results obtained. Second,
a general discussion of the methods and outcomes of the dissertation is provided in a broader
perspective, and in relation with the stated hypotheses.

The contents of this chapter are organised into four broad themes that are logically presented
to provide the synthesis of the whole dissertation. The first theme is about the operations.
The operations aspects of minibus taxis as presented in the dissertation are summarised and
discussed. The second theme deals with efficiency : certain aspects of the paratransit efficiency
are revisited and broadly discussed. The third theme looks at the paratransit modelling and
complex adaptive system. Here we justify the reasons for modelling minibus taxi paratransit
as a complex adaptive system. The final theme focuses on paratransit efficiency improvement.
Here we discuss how we used distributed intelligence and situational awareness to improve the
simulated paratransit system efficiency. The relationships between the selected themes, the
research questions and the research hypotheses are also clearly explained.

8.1 Minibus taxi operations in a paratransit system

• ⇒Research Question 1

How do minibus taxis operate in organically-evolved, quasi-demand-responsive paratransit
systems?

In response to RQ1, we formulated research Objectives 1.1 and 1.3, and we carried out two
independent studies described in Chapters 3 and 4. As mentioned earlier, part of each chapter
addresses the Objectives 1.1 and 1.2, respectively.

The operational aspects of minibus taxis in organically evolved paratransit systems studied
and presented in this dissertation broadly encompasses four main facets. These are: minibus taxi
management; routes; passenger search strategies; and movement characteristics. The paratransit
system operates an owner-driver model characterised by extreme ownership fragmentation with
little or no centralised management. In this system, several low-occupancy vehicles (often 14-
seater minibuses) privately owned (by a single or a few individuals) operate semi-autonomously
to fulfil the mobility needs of the population. Various drivers and owners organise themselves
into associations for purposes of licensing and self-regulation, though the few existing regulations
are seldom adhered to by the drivers, and only loosely enforced by the authorities.

The minibus taxi routes, and their associated stops are not clearly established and labelled.
They often vary according to demand, traffic conditions, competition, and drivers’ preference.
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CHAPTER 8. DISCUSSION

Though there were previous attempts to map paratransit (minibus) routes in Kampala (Ndibatya
et al., 2016), our results (presented in Chapter 3) give us reason to believe that paratransit
routes evolve. For instance, KCCA developed and published a static paratransit route map
for Kampala (Ndibatya and Booysen, 2020a). However, we found evidence of new routes and
stops in addition to the absence of several routes and stops that appeared on KCCA’s static
route map. The noticeable difference in the routes’ trajectory profiles (measured using spatial
distance, see Table 4.1a, p. 54) further suggests route evolution. Broadly, this indicates: (1) the
quasi-demand-responsiveness of paratransit, i.e., the routes’ profiles and stops locations might
have shifted due to change in demand in those areas; (2) the self-organizing nature of paratransit;
and (3) the adaptation and emergence of new behaviour among the paratransit systems.

Minibus taxis in Kampala use three main strategies when searching for passengers to main-
tain a profitable business. First is the random passenger search, where the driver starts a trip
with a few passengers anticipating finding more passengers en-route to fill up the taxi. This
often leads to losses by the drivers when they do not get the anticipated passengers en-route.
Second is the random back-off or holding-back, where the driver interrupts the trip for a random
period to allow for passenger demand replenishment on the route before proceeding with the
trip. This method often works to the disadvantage of the passengers in the taxi. It dramatically
increases the passenger total travel time if the taxi they boarded frequently “holds back” during
the trip, and it leads to the general system’s inefficiency. The third is the trip abandonment,
where the trips deemed unprofitable by the drivers are either abandoned, or the trip routes are
changed to new destinations where drivers anticipate high demand. When trip abandonment
occurs, passengers disembark, and they wait for connecting trips to their destinations. This
strategy also disadvantages the passengers. Because the total waiting time and total “legs”
required to complete a single journey also increase, there is an increase in the total travel time.
Sometimes, passengers do not get connecting trips and the drop the journeys, which affects the
general efficiency of the paratransit transport system.

We discovered that during searching for, picking up and transporting passengers, Kampala’s
minibus taxis adopt a scale-invariant super diffusive movement pattern where the taxi trajectory
steps follow a heavy-tailed power-law distribution similar to the “Lévy walk” pattern defined
by f(x) ∼ l−α where l is the step length, and α (referred to as the Lévy exponent) is in
the range 1 < α < 3. In the reviewed literature, the Lévy walk strategy was found to optimise
random searches for randomly and patchily distributed replenishable resources among cognitively
complex organisms (Reynolds, 2015; Raichlen et al., 2014). As the Lévy exponent values get
closer to two (α ≈ 2), the search strategy becomes optimal (Viswanathan et al., 2011; Reynolds,
2018). Our Lévy walk strategy investigation of minibus taxi movements revealed that though the
Lévy walk search strategy was confirmed in the sample of minibus taxi trajectories we analysed
(i.e., 1 < α < 3), only 22.2% had the α values close optimal (α ≈ 2). The others were slightly
away from the optimal (refer to Table 4.1b, p. 54). This could be an indication of generally
ineffective search strategies by minibus taxi drivers that often resulted in the system inefficiency
discussed in the following section.
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8.2 Minibus taxi paratransit system efficiency

We looked at efficiency from two perspectives – the passengers’, and the drivers’ perspectives.
The passengers were concerned with executing the planned journeys and getting to their des-
tinations within the least possible time and using the least possible effort. The drivers, on the
other hand, were concerned with making the trips as profitable as possible.

• ⇒Research Question 2

Are the paratransit operations efficient?

• ⇒Research Question 4

What metrics can be used to measure efficiency in such a paratransit system?

In response to RQ2, we formulated research Objective 1.2, that we achieved in the two
independent studies described in Chapters 3 and 4. In response to RQ4, we formulated research
Objective 2.3 that we achieved in Chapter 6.

With respect to the passengers, we used two metrics to estimate the system efficiency, i.e.,
the passenger waiting time and the minibus taxi hold-back time. Results show that travel by
minibus taxi is inefficient for the passengers. It is characterised by a long waiting time (22 to 59
minutes), and a long hold-back time (35 to 110 minutes). This means that passengers waste a
lot of time either waiting for a taxi or seated in a stationary taxi that is holding back en-route
to fill up with more passengers before proceeding with the trip. Figures 3.4bvi and 3.4bvii on
page 40, respectively, show the distributions of waiting time and hold-back time recorded during
the field study period.

With respect to the minibus taxis, we used the taxi commercial speed and profitability
index to estimate the efficiency. The observed commercial speed of minibus taxis in Kampala
is low (3.1 to 15.4km/h) the profitability index is 0.76, indicating low profitability. The low
commercial speeds are partially because of high hold-back time which in turn affects the number
of trips executed per day and hence the low profitability index. Refer to Figure 3.4bx (p.40)
and Table 3.3 (p.38) for the commercial speed distribution and profitability index estimation,
respectively. To break even, drivers often work for long hours (over 15 hours) and sometimes
overload the taxis. Figures 3.4bv page 40 shows the percentage distribution of minibus taxi
occupancy of the selected minibus taxis during the field study period. Note the occurrence of
overloading (above 100% occupancy).

In response to RQ4, after modelling and simulating Kampala’s minibus taxi transport dy-
namics (see Chapter 6), we identified five primary metrics for evaluating the efficiency of minibus
taxi transportation in a paratransit system. The five metrics were broadly categorised into three,
i.e., mobility, accessibility, and profitability, as shown in Table 6.6. The mobility-related effi-
ciency metrics evaluated how fast a paratransit system moves passengers. They included waiting
time, hold-back time, and commercial speed. The accessibility-related metrics evaluated how ac-
cessible a paratransit system is from the origin and the final destination, and they include:
first leg distance and last leg distance. The profitability-related metrics evaluate how profitable
the paratransit system is to the driver, and they include minibus taxi occupancy. The waiting
time, first leg distance and last leg distance, are all related to the passenger journey, while the
hold-back time, occupancy and commercial time are related to the minibus taxi trips. Accord-
ingly, the metrics are used during optimisation to improve the efficiency of the journey and trips
executed by passengers and minibus taxis, respectively.
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8.3 Simulation and validation of paratransit as a com-

plex adaptive system

In this subsection, we discuss the intrinsic characteristics of paratransit and, in particular,
minibus taxi transportation in relation to the complex adaptive systems theory. We then align
our findings in Chapters 5 and 6 with the general emergentists’ school of thought that we in-
troduced in Sections 2.1 (pg. 13) and 2.6 (pg. 24). We also discuss the features of paratransit
that are consistent with the complex adaptive systems, thus justifying our reason for using
agent-based modelling to study Kampala’s minibus taxi system. We conclude this subsection
by discussing the observed emergent properties from the agent-based model simulation and the
macro-level analysis results for the controlled experiment (CER) presented earlier in Chapter 6.
First, we re-echo the research question we answered, and the hypothesis examined by this sub-
section.
• ⇒Research Question 3

How do individual-level operations and autonomous interactions between minibus taxis
and passengers shape the higher-level (macro-level) system behaviour in an organically
evolved, quasi demand-responsive paratransit system?

In response to RQ3, we formulated research Objectives 2.1, and 2.2, that we achieved in
Chapters 5 and 6.
� ⇒Hypothesis 1

The transportation dynamics of organically evolved paratransit systems in Sub-Saharan
Africa are shaped by local interactions of autonomous agents at micro-level of the system
giving rise to a stable (often inefficient) state at macro-level through demand and supply.

Earlier in Section 8.1, we discussed five of the minibus taxi operational characteristics that we
discovered from our field research in Kampala’s paratransit system. The first is vehicle ownership
fragmentation. This creates a large collection of small, competing entities in the paratransit
system. The second is the absence of centralised management : this allows for and enables
the fragmented entities to operate semi-autonomously. We refer to them as semi-autonomous
because we are cognizant of the role played by the few paratransit associations such as UTODA
and KOTISA that may limit their full autonomy to some extent. The third is self-organisation.
Despite the loose regulations, lack of centralised management, and lack of a scheduling system,
paratransit has a unique way of responding to demand. It often fulfils the mobility needs of the
population, despite the inefficiencies associated with it. The fourth characteristic is evolution
and adaptation. As observed in the paratransit routes and stops (see Chapter 3), unprofitable
routes are believed to have been phased out in preference to new more profitable routes and new
passenger demand dynamics. The fifth characteristic is the emergence of new behaviour because
of micro-level interactions. We discovered a new movement behaviour that emerged (the “Lévy
walk”). The Lévy walk behaviour (discussed in-depth in Chapter 4) could have emerged due to
the minibus taxi drivers’ desire to optimise their search. It is also worth noting that the Lévy
walk behaviour is observable only at larger scales (macro-level). It may not be predicted by
observing individual minibus taxi’s trajectories at lower scales (micro-level) such as one minibus
taxi’s trip trajectory. The emergent behaviour at larger scales that may not be observable from
individual components at lower scales is a key feature of complex adaptive systems. Thus,
following Abbott and Hadžikadić’s definition of a complex adaptive system, we concluded that
minibus taxi transportation dynamics in Kampala’s paratransit system exhibited characteristics
that were closely related to those of a complex adaptive system (Abbott and Hadžikadić, 2017).
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Abbott and Hadžikadić (2017) defined a CAS as “a system composed of a large number of
independent simple components that locally interact in an independent and non-linear fashion,
exhibit self-organisation through interactions that are neither completely random nor completely
regular and are not influenced by some central or global mechanism and yield emergent behaviour
at large scales that are not predictable from observation of the behaviour of the components”

Having established (with some level of certainty) that Kampala’s minibus taxi transportation
system is closely related to a complex adaptive system, we designed an agent-based model (ABM)
of Kampala’s minibus taxi paratransit system (see Chapter 5). Blume (2015) defined an ABM as
a computational instantiation of a complex adaptive system. Therefore, we set up the minibus
taxi ABM to overcome the sample-size limitation and huge costs associated with field data
collection. We sought to take advantage of the available memory and computing resources to
scale up and further study the minibus taxi paratransit transportation dynamics in a multi-agent
simulated environment.

In Chapter 6 we set up a controlled ABM simulation experiment (CER) which replicates
Kampala’s minibus taxi transportation system as closely as possible by iteratively tuning the
selected simulated system properties to match those observed in Kampala’s paratransit system
during the field study. During the simulation runtime, there were two main active and co-
dependent entities i.e., the journey (managed and executed by the passenger agent), and the trip
(managed and executed by the minibus taxi agent). We then measured several metrics’ values
associated with the journeys and trips. The results from running the controlled ABM simulation
experiment (CER) are presented in Section 6.4.2 (pg 88). Tables 6.1 (pg. 84), 6.3 (pg. 90), and
6.4 (pg. 92), respectively, show the description of metrics used, statistical results of journeys’
metrics value, and statistical results of trips’ metrics value.

Furthermore, the simulation results, showed some levels of self-organisation. Through local
agents’ interactions, without external influence, the rates of journey completion were as follows:
60% on day one to a stable 80% on day 68 (see Figure 6.4a). This may have been due to self-
organisation within the system, resulting in a slightly better state. Emergent properties such
as first leg distance, last leg distance and intermediate legs per journey were also measured (see
Figures 6.4bi pg. 89, 6.4biii pg. 89, and 6.4cii pg. 89, respectively). These properties could
hardly be studied from the field. The figures show the macro-level analysis selected metrics.
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8.4 Improving paratransit efficiency through distributed

intelligence

This subsection presents our attempts to improve paratransit efficiency in a simulated environ-
ment. We based our experiments on complex adaptive systems (CAS) theory concepts. These
concepts include: self-organisation, where a seemingly “chaotic” or disorganised system at micro-
level achieves some level of order at the macro-level as a result of micro-level agents interactions;
emergency, where new systems behaviours emerge at macro-level; and adaptation, where agents
in the system adopt new and better emerging behaviour. The cycle continues, and as observed
by Odell (2002), what emerges is always better than the sum of individual components. We
sought to influence more optimal/improved macro-level behaviour by improving the intelligence
and situational awareness of agents at a micro-level in the simulated paratransit system. We
believed that distributed intelligence among agents would have a positive effect on the system
efficiency. First, the research question and the hypothesis associated with this section are re-
echoed below.
• ⇒Research Question 5

What is the macro-level effect on system efficiency of intelligent routing of autonomous
and situationally aware minibus taxi agents with self-selected origins and destinations in
an organically evolved, quasi demand-responsive paratransit system?

• ⇒Hypothesis 2

Improving the intelligence and situation awareness of autonomous agents in organically
evolved paratransit systems leads to agents adapting more optimal travel behaviour re-
sulting in improved macro-level paratransit system efficiency.

In response to RQ5, we formulated the research objectives 3.1 and 3.2 that we achieved in
Chapters 7 and 9, respectively.

In Chapter 7, we set up two test experiments: test experiment one (TOR1) and test exper-
iment two (TOR2). The test experiments used two closely related supervised machine learning
methods (random forests and convolutional neural networks) to train agents at the micro-level
to make more intelligent decisions based on previous experiences of self, and of others. Selected
efficiency metrics’ data is stored at the end of each journey and trip. Environmental status data
– such as zone-based demand and supply – is also stored at different predefined intervals.

The comparative statistical analysis of macro-level efficiency metrics’ values recorded dur-
ing the test simulations runtime indicated a positive gain in the overall system efficiency as a
result of improved micro-level agents intelligence and situational awareness (refer to Section 7.3
pg. 103). The Figures 8.1 and 8.2 (extracted from Chapter 7, pages 99 and 102) show a side-
by-side comparison of the daily variations of the passenger journeys completion rates and the
minibus taxi occupancy, respectively. From the figures, we identified the points in time where the
simulated systems showed significant changes in states. We referred to such points as “learn-
ing levels”. Alternatively, we can think about them as points of significant self-organisation
within the simulated systems. During TOR1, we observed two such points (learning level 1,
and learning level 2) (see Figures 8.1b and 8.1c). During TOR2, we observed three such points,
i.e., learning levels one, two, and three (see Figures 8.2b and 8.2c). We drew conclusions about
efficiency based on the metrics’ results collected during the simulations runtime after the fiftieth
simulation day, because we believed, at that time, that the system had attained a certain level
of self-organisation.

From Figure 8.1, the percentage of fully completed journeys increased from approximately
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40% during the controlled experiment CER, to 60% during the test experiment TOR1, then
to 75% during test experiment TOR2 as shown in Figures 8.1a, 8.1b, and 8.1c, respectively.
There is also an observed decrease in the percentage number of partially completed and failed
journeys from CER, to TOR1, then to TOR2. Correspondingly, there was an improvement
in the percentage minibus taxi occupancy from 60% in CER, to 65% in TOR1, to 65% in
TOR2, as shown in the Figures 8.2a, 8.2b, and 8.2c, respectively. The observed increase in
percentage passenger journeys’ completion, the corresponding reduction in partial and failed
journeys, and the increase in minibus taxi occupancy are all indicators of efficiency improvement
in the simulated paratransit system.

In Chapter 6 we identified and categorised paratransit efficiency metrics according to acces-
sibility, mobility, and profitability (see Section 6.4.4 pg. 94). Subsequently, in Chapter 7, the test
experiments’ objectives were geared towards optimising these efficiency metrics at the system’s
micro-level with the hope of achieving macro-level efficiency globally. In Table 8.1 we presented
a partial extract of the statistical analysis results presented in Chapter 7 (Table 7.2 pg. 105).
The results (in Table 8.1) also strongly suggest that there was macro-level efficiency gain in the
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(c) Daily variation of passenger journeys completion rate during TOR2.

Figure 8.1: Comparing the variation of passenger journeys completion rates for
three test experiments: (a) controlled simulation experiment (CER); (b) test exper-
iment one (TOR1); and test experiment two (TOR2).
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simulated paratransit system. This is because of the overall improvements observed in all the
efficiency metrics values of the two test experiments (TOR1 and TOR2).

The mean first leg distance was reduced by 33% and 49% for CER-to-TOR1, and CER-to-
TOR2, respectively (see Table 8.1). The mean last leg distance was reduced by 31% and 46% for
CER-to-TOR1, and CER-to-TOR2, respectively. This means that passengers in TOR2 boarded
minibus taxis at places closer to their journey origins, and they were dropped off at places closer
to their final destination. Hence, their overall accessibility to the paratransit system improved.

For a single journey, the mean passenger waiting time and the mean count of stops where
passengers waited before getting a taxi reduced by 34% and 55%, respectively, for CER-to-TOR1
and CER-to-TOR2 (see Table 8.1). This signifies the improved ease with which the trained in-
telligent passenger agents waited for, found, and boarded minibus taxis. During the trip, the
hold-back per kilometre improved by 22% and 39% for CER-to-TOR1 and CER-to-TOR2, re-
spectively, whereas, the journey legs count reduced by 5% and 27% for CER-to-TOR1, and
CER-to-TOR2, respectively. The reduction in “hold-back time per kilometre”, and “journey
legs count” means that the journeys’ total travel time reduced. The percentage minibus taxi
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(c) Daily distribution of minibus taxi occupancy during TOR2.

Figure 8.2: Comparing the distributions of daily minibus taxi occupancy for three
test experiments: (a) controlled simulation experiment (CER); (b) test experiment
one (TOR1); and test experiment two (TOR2).
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occupancy increased by 14% and 21% for CER-to-TOR1 and CER-to-TOR2, respectively. Gen-
erally, the improvements in all the metrics discussed in this paragraph contribute to the general
improvement in the overall mobility and profitability in the simulated paratransit system, hence
the resulting system efficiency improvement at macro-level.

From the discussion above, and the results presented (e.g., in Figures 8.1, and Figures 8.2,
and Table 8.1), we can draw three main conclusions about the simulated paratransit system.
First, the paratransit system efficiency in TOR1 and TOR2 improved compared to CER. Sec-
ondly, the efficiency improvement observed could be as a result of improved agents’ intelligence
at micro-level in addition to improved situational awareness. Third, the simulated paratransit
system underwent self-organisation as the individual agents learned and adopted new behaviour
through micro-level interactions.

Our second hypothesis thus has been proved correct, i.e., that improving the intelligence
and situational awareness of agents at a micro-level in a paratransit system gives rise to im-
proved efficiency at a macro-level through self-organisation and adaptation. Accordingly, we
have answered the research question RQ5.

Table 8.1: Comparing the three experiments’ statistical summary of primary
macro-level paratransit efficiency metrics values and the associated categories. The
∆µ column shows the percentage change in mean values between experiments.

Mean µ %ge ∆µ
CER TOR1 TOR2 CER-TOR1 CE-TOR2

1. Accessibility
7→ First leg distance dl1 (km) 1.4 0.9 0.7 33% 49%
7→ Last leg distance dln (km) 1.7 1.2 0.9 31% 46%
2. Mobility
7→ Waiting time tw (h) 1.2 0.8 0.5 34% 55%
7→ Stops waited at swcount 4 3 3 21% 24%
7→ Hold-back time th (h) 0.9 0.8 0.6 11% 33%
7→ Hold-back per km th/km (h/km) 0.18 0.14 0.11 22% 39%
7→ Legs count lcount 6 5 4 05% 27%
3. Profitability
7→ Occupancy O (%) 42% 48% 51% -14% -21%

8.5 Summary

In this chapter, we have discussed the general aspects of minibus taxi operations, efficiency,
complex behaviour, and efficiency improvement through distributed intelligence.
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Chapter 9

Conclusion and recommendations

Through theoretical modelling, a field study and simulation-based experimental approaches,
this study aimed to improve the efficiency of minibus taxis transportation in organically-evolved
paratransit systems. The theoretical modelling work involved modelling paratransit systems
as complex adaptive systems (CAS) and developing an agent-based model (ABM) for minibus
taxi operations in an organically-evolved paratransit setting. The field study involved in-depth
investigation of minibus taxi operations in Kampala’s paratransit system, and collection and
analysis of minibus taxi movement data that was used to validate the agent-based model. The
experimental approaches involved three separate simulation experiments, simulating the minibus
taxi transportation dynamics with varying levels of agents’ intelligence and situational awareness.
The results from the experiments showed that improving the micro-level agents’ intelligence and
situational awareness improved the overall efficiency of the minibus taxi paratransit system.

9.1 Insight into research findings and conclusions

Inefficiency has been identified as the major problem affecting organically-evolved paratransit
systems in Kampala and other developing cities of the Global South. Minibus taxis contribute
above 70% of the paratransit trips. We studied their efficiency from two perspectives, namely, the
passengers’ and drivers’ perspectives. When interacting with the paratransit system, passengers
execute “journeys”, whereas minibus taxis execute “trips”. In this dissertation, we identified
and measured key efficiency metrics associated with passenger journeys (e.g., first leg distance,
last leg distance and waiting time); and those associated with minibus taxi trips (i.e., hold-back
time and occupancy). The results, from both the quantitative field study and the controlled
simulation experiment, indicate that the journeys and trips were inefficiently executed. The
mean values for the journeys’ first leg distance, last leg distance, and waiting time were 1.4
km, 1.7 km, and 1.2 hours, respectively. The mean values for the minibus taxi trips’ hold-back
time and occupancy were 0.9 hours and 42%, respectively. Most existing paratransit studies are
general, qualitative, and focus mainly on paratransit regulations and reforms. The results in
this dissertation, however, provide new quantitative insight into paratransit efficiency and the
associated efficiency metrics.

It was established that the minibus taxi operations within the paratransit system were
complex and ineffective. The operational aspect of the minibus taxi system (studied during
the field research) broadly encompassed four main facets, namely, minibus taxi management,
routes, passenger search strategies, and movement characteristics. We made four major findings
respectively-related to the four operational facets mentioned earlier. First, the minibus taxis
paratransit system in Kampala organically emerged without prior planning. The vehicles’ own-
ership is fragmented across many competing entities, with no centralised management. There
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are no streamlined booking and scheduling mechanisms, in addition to weak and loosely en-
forced regulations. In other words, they are semi-autonomous. Second, the minibus taxi routes
and their associated stops are not clearly established and labelled. They often vary according
to demand, traffic conditions, competition, and drivers’ preference. The results from routes’
profiles analysis give us reason to believe that the paratransit routes and stops evolve. Third,
when searching for passengers, minibus taxis use three main strategies. The strategies include:
random passenger search, where the driver starts a trip with few passengers anticipating to find
more passengers en-route; random back-off or holding-back, where the driver interrupts the trip
for a random period to allow for passenger demand replenishment on the route before proceed-
ing with the trip; trip abandonment, where the trips deemed unprofitable by the drivers are
either abandoned, or the trip routes are changed to new destinations. Fourth, it was further
discovered that, during searching for, picking up and transporting passengers, minibus taxis
adopt movement patterns where many short inter-stop distances (steps) are interspersed with
long steps. This pattern often follows a heavy-tailed power-law distribution similar to the “Lévy
walk” pattern defined by f(x) ∼ l−α where l is the step length, and α (referred to as the Lévy
exponent) is in the range 1 < α < 3.

We draw two significant conclusions from the minibus taxis operations described in the
previous paragraph. First, the minibus taxi paratransit system operations exhibit characteristics
that are closely related to those of a complex adaptive system (CAS). We base this finding on
Abbott and Hadžikadić’s definition of a complex adaptive system (Abbott and Hadžikadić,
2017). Second, based on quantitative results discussed earlier, the operational characteristics,
which include passenger search strategies, and movement characteristics are ineffective and thus,
they contribute to the overall minibus taxi paratransit system inefficiency. However, despite the
identified inefficiencies, the minibus taxi paratransit system adapts to fulfil the mobility needs of
the urban commuters in the developing cities. For instance, it is widely known in the literature
that developing cities in the Global South suffer from urban sprawl because of poor planning.
However, the paratransit system organically transforms to serve the ever-growing fragmented
settlements. We, therefore, believe that the paratransit system undergoes the process of self-
organisation and adaptation.

The general system-wide (macro-level) behaviours in an organically-evolved paratransit sys-
tem are shaped by local-level (micro-level) autonomous interactions between its entities, giving
rise to a stable state at macro-level. Based on the previous finding that paratransit systems ex-
hibited characteristics (such as many independent and autonomous components, no centralised
management, self-organisation and adaptation) related to complex adaptive systems, we de-
veloped an agent-based model (ABM) to simulate transportation dynamics of a minibus taxi
paratransit system. A controlled experiment (CER) of ABM simulation was setup, tuned, ran
for 68 days, and validated using the data we collected from the field study.

Improving the intelligence and situational awareness of autonomous passenger and minibus
taxi driver agents at the micro-level of the simulated paratransit system results in improved
efficiency at the macro-level of the system. Two test simulation experiments were setup, i.e., test
experiment one (TOR1) and test experiment two (TOR2). In each experiment, the passenger
and minibus taxi agents were trained to make more intelligent decisions, and to improve their
situational awareness. The training was done using supervised learning methods, i.e., random
forests and convolutional neural networks. Results from the two test experiments showed an
improvement in the macro-level efficiency metrics values. For example, the mean passenger
waiting time reduced by 34% and 55%, for CER-to-TOR1 and CER-to-TOR2, respectively.
Correspondingly, the percentage minibus taxi occupancy increased by 14% and 21% for CER-to-
TOR1 and CER-to-TOR2, respectively. From the aforementioned results, we made three main
conclusions about the simulated paratransit system. First, the minibus taxi paratransit system
efficiency in TOR1 and TOR2 improved compared to CER. Second, the efficiency improvement
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observed was as a result of improved agents’ intelligence at micro-level in addition to improved
situational awareness. Third, the simulated paratransit system underwent self-organisation as
the individual agents learned and adopted new behaviour through micro-level interactions.

9.2 Recommendations

Future work should consider including other modes of transport in the agent-based model.
The other transport modes available in the paratransit ecosystem in the developing African
cities include: the three-wheeled rickshaws and motorcycle taxis (boda bodas). These modes of
transport play a big role in fulfilling the first and last legs (or first and last miles of commute) of
the paratransit-related journeys. It would be interesting to model and investigate how intelligent
micro-level decision making by rickshaws and boda bodas would affect the overall efficiency of
the paratransit system at macro-level.

Further modelling work should be done towards developing a “flexible bus rapid transit
(BRT)” design framework that incorporates the unique and diverse mobility needs in develop-
ing cities of the Global South. We propose such framework be called the “BRT-Flexi”. The
conceptual BRT-Flexi should combine the benefits of BRT with the flexibility, adaptability, de-
mand responsiveness, and near ubiquitous characteristics of paratransit. BRT-Flexi may have
high-capacity buses running along pre-selected corridors during peak hours and seamlessly inte-
grated with low-capacity paratransit modes at different connection centres along the corridors.
We believe this will further improve transportation efficiency in the developing cities of the
Global South.

Finally, more work should be done on integrating “smart mobility” and ICT applications in
paratransit systems. The applications can support the various aspects of the paratransit system,
such as journey planning, booking, scheduling, fare collection, and payments. We believe that
integrating smart mobility systems at various aspects of the paratransit system may further
improve its efficiency.

9.3 General concluding statement

The world has moved on from working harder to working smarter or intelligently. Today we
have the technology, computing power and storage capability to develop and train advanced
models to support distributed intelligence. Indeed, the efficiency of paratransit systems in the
developing cities of the Global South can be fundamentally transformed by integrating intelligent
transport systems (ITS) in the transportation service ecosystem. The developing cities of the
Global South have unique and diverse characteristics. These characteristics are dictated by the
unique culture as well as social and economic challenges. Paratransit in such a setting works,
but it is inefficient. Rather than enforce the Global North style of transport systems that are
capital intensive, and costly to maintain, the efficiency of paratransit in developing cities of the
Global South can be improved.
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(2007). Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer.
Nature, 449(7165):1044–1048.

Ehebrecht, D., Heinrichs, D., and Lenz, B. (2018). Motorcycle-taxis in sub-Saharan Africa:
Current knowledge, implications for the debate on “informal” transport and research needs.
Journal of Transport Geography, 69:242–256.

Elsas, J. L., Carvalho, V. R., and Carbonell, J. G. (2008). Fast Learning of Document Rank-
ing Functions with the Committee Perceptron. In Proceedings of the 2008 International
Conference on Web Search and Data Mining, WSDM ’08, pages 55–64, New York, NY, USA.
Association for Computing Machinery.

Endsley, M. R. (1995). Toward a Theory of Situation Awareness in Dynamic Systems. Human
Factors, 37(1):32–64.

Epstein, J. M. (2002). Modeling civil violence: An agent-based computational approach.
Proceedings of the National Academy of Sciences, 99(suppl 3):7243–7250.

Eubank, S., Guclu, H., Anil Kumar, V. S., Marathe, M. V., Srinivasan, A., Toroczkai, Z., and
Wang, N. (2004). Modelling disease outbreaks in realistic urban social networks. Nature,
429(6988):180–184.

Evans, J., O’Brien, J., and Ch Ng, B. (2018). Towards a geography of informal transport:
Mobility, infrastructure and urban sustainability from the back of a motorbike. Transactions
of the Institute of British Geographers, 43(4):674–688.

Ferreira, A., Raposo, E., Viswanathan, G., and da Luz, M. (2012). The influence of the environ-
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Appendix A

Algorithms

A.1 Class definitions

Algorithm 4: PassengerA-
gent: Passenger Class defini-
tion
1 Class PassengerAgent
2 Data:
3 passenger id
4 state
5 journey diary
6 pos // lat lon position

7 wait time
8 load cond
9 sensor

10 Functions:
11 planJourney()
12 searchForTaxi()
13 executeJourney()
14 updateJourneyDiary()
15 disembark()
16 boardMv()
17 moveTo()
18 runISM()
19 runBCM()
20 runACM()
21 dropJourney()
22 updateLocation()
23 loadNextJourney()

24 end

Algorithm 5: MinibusTaxi-
Agent: Minibus Taxi Class defi-

nition
1 Class MinibusTaxiAgent
2 Data:
3 vehicle id
4 state
5 pos
6 pob // passengers on board

7 trip
8 sensor
9 hbtm // hold back time

10 stop interrupt

11 Functions:
12 tautForPassengers()
13 searchForRoute()
14 executeTrip()
15 abandonTrip()
16 findInitStop(sData)
17 moveTo()
18 runLFM()
19 runRCM(sData)
20 runHBM(sData)

21 end
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Algorithm 6: Model: Model

Class definition
1 Class Model
2 Data:
3 step no
4 pax wait threshold
5 hold back threshold
6 load factor threshold
7 exit condition

8 Functions:
9 generateJourneyDiaries()

10 generateTripsMatrix()
11 extractStopsNetwork()
12 updateModelSchedule()
13 saveModelInstance()
14 step()

15 end
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Glossary

autonomous Ability to make independent decisions. 5

autonomous agents Autonomous agents are software programs which respond to states and
events in their environment independent from direct instruction by the user or owner of
the agent, but acting on behalf and in the interest of the owner. 5

Global South Countries South of the equator in Africa, Asia and Latin America. 1

instantiate To instantiate is to create an instance of an object in an object-oriented program-
ming (OOP) language. An instantiated object is given a name and created in memory or
on disk using the structure described within a class declaration. 64

minibus A minibus, microbus, or minicoach is a passenger carrying motor vehicle that is de-
signed to carry more people than a multi-purpose vehicle or minivan, but fewer people
than a full-size bus. In the United Kingdom, the word ”minibus” is used to describe any
full-sized passenger carrying van. Minibuses have a seating capacity of between 8 and 30
seats. 1

paratransit A flexible transport service that provides individualised rides without fixed routes
or timetables to supplement the fixed-route mass transit. 1

passenger A passenger (also abbreviated as pax) is a person who travels in a vehicle but bears
little or no responsibility for the tasks required for that vehicle to arrive at its destination
or otherwise operate the vehicle. Passengers often ride on buses, passenger trains, airliners,
ships, ferryboats, and other methods of transportation. 1

public transport Public transport (also known as public transportation, public transit, or
mass transit) is a shared passenger-transport service which is available for use by the gen-
eral public, as distinct from modes such as taxicab, carpooling, or hired buses, which are
not shared by strangers without private arrangement. Public transport modes include city
buses, trolleybuses, trams (or light rail) passenger trains, rapid transit (metro/subways/undergrounds
etc) ferries, and minibuses common in African cities and the Global South. 1
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