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Abstract

Modelling the external ballistics of tranquilliser darts
A.J. Cilliers

Department of Mechanical and Mechatronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.
Thesis: MEng (Mech)

March 2021

To facilitate the design of tranquilliser darts, several ballistic models are in-
vestigated, derived, implemented and verified. Sensitivity analysis showed the 
required model fidelity and parameter accuracies are significantly less stringent 
for subsonic, flat trajectories. This agrees with doppler radar measurements 
suggesting drag stabilised darts have a near constant drag coefficient. This is 
further corroborated by computational fluid dynamics (CFD) analysis: aerody-
namic coefficients are independent of velocity but sensitive to angle of attack. 
The tailpiece however ensures there is little to no pitching and/or yawing, elim-
inating non-linearities due to instability (the angle of attack). Consequently, a 
single CFD analysis at an average velocity can sufficiently estimate the aero-
dynamic forces and moments. For the same reasons, Point-mass and Modified 
point-mass approximations are qualitatively on par with Rigid-body approxi-
mations (in most cases).

Due to drag stabilisation by the tailpiece, the drag coefficients measured and 
simulated are high (CD >= 0.9). Future designs' aerodynamic efficiency can 
be improved by rather using spin stabilisation. Point-mass and Modified point-
mass approximations are however unable to account for instabilities. If consid-
ered, Rigid-body approximations are recommended to confirm initial stability.
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Uittreksel

Modellering van die eksterne ballistiek van
verdowingspyle

(“Modelling the external ballistics of tranquilliser darts ”)

A.J. Cilliers
Departement Meganiese en Megatroniese Ingenieurswese,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Meg)
Maart 2021

Om die ontwerp van verdowingspyle te vergemaklik, is verskeie ballistiese mo-
delle ondersoek, geïmplementeer en geverifieer. Sensitiwiteitsanalise toon mo-
delgetrouheid asook dat parameterakkuraatheid minder streng is vir kort en 
plat trajekte. Dit stem ooreen met doppler radar metings waar die verdo-
wingspyl se sleur koëffisiënt konstant is. Berekenings vloeimeganika (BVM) 
toon dat die verskeie koëffisiënte onafhanklik is van snelheid maar sensitief vir 
invalshoek. Die stert verseker 'n klein invalshoek en bevorder sodoende die  
konstante geaardheid van die koëffisiënte. Gevolglik sal 'n eenmalige BVM  si-
mulasie, by 'n gemiddelde snelheid voldoende wees om die aerodinamise kragte  
en momente te bepaal. Vir soortgelyke redes is Puntmassa en Gemodifiseerde-
puntmassa analises kwalitatief gelykstaande aan Rigiede-liggaam analises.

As gevolg van die stert, is die sleur koëffisiënt hoog (CD >= 0.9). Aerodinamies 
kan verdowingspyle vebeter word deur eerder gebruik te maak van spin stabi-
lisasie. Puntmassa en Gemodifiseerde-puntmassa neem aan die verdowingspyl 
is stabiel, wat nie noodwendig die geval is nie. Indien spin stabilisasie oorweeg 
word, stel ons Rigiede-liggaam simulasie voor as 'n grondslag  om  stabiliteit te  
bevestig.
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Chapter 1

Introduction

Remote Drug Delivery Systems (RDDS) allow long distance (> 15 m) ad-
ministration of veterinary medication. The basic premise is as follows: a rifle
launches a tranquilliser dart injecting its medication upon impact. RDDS
made animal field studies and medical intervention routine procedure. Conse-
quently advances in zoological/veterinary research are directly related to the
refinement of RDDS (Bush, 1992).

1.1 Background

Rifles are either cartridge fired or gas based (PneuDart, 2020). Compressed
gas rifles can vary their muzzle velocity by adjusting the gauge pressure. While
useful to control impact velocity, aim (holdover) must also be adjusted accord-
ingly. Figure 1.1 shows the compressed gas rifle manufactured by Pneu-Darts.

Figure 1.1: G2 X-Calibre gauged projector (Pneu-Dart, 2020)

1
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CHAPTER 1. INTRODUCTION 2

Darts come in a wide array of designs and sizes (figure 1.2). They are routinely
categorised based on injection method. The most common are air pressurised
and percussion caps. Air pressurised darts are reusable, contrasting percussion
caps that use an explosive charge and are thus single use (Rosenfield, 2017).
No injection method is superior and choice depends on the operator's personal
preference and cost.

Figure 1.2: Pneu-Dart Type C (Pneu-Dart, 2020)

The quality of the RDDS and skill of the operator can be measured using
ethical distance.
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CHAPTER 1. INTRODUCTION 3

1.1.1 Ethical distance
Reiterating the definition provided in Caudell et al. (2009) for more general
applicability, ethical distance is the maximum range where impact is guaran-
teed to conform to preset constraints (in Caudell's case a humane kill). For
RDDS, the criteria are successful injection and acceptable ballistic trauma.
Estimating this range is difficult as each shot represents a unique event: type
of dart, range, ambient conditions and animal all vary.

Injection

Upon impact, dart orientation and velocity must allow the needle to perforate
the external epidermal layer. A perpendicular impact is preferred as intra-
muscular injection yields the fastest response. If the impact angle is sharp,
perforation might be too shallow. In extreme cases the dart can ricochet,
possibly inflicting greater injury (Rosenfield, 2017). Since trajectories are rel-
atively flat, the impact angle is mostly dependent on the impact surface and
dart stability.

Epidermal layer
Subcutaneous tissue

Muscle tissue

Figure 1.3: Injection angle

Ballistic trauma

RDDS are inherently intended to be non-lethal. Life threatening debilitation
and/or death are however underestimated possibilities (Koene et al., 2008).
To regulate the impact energy, the target must be an appropriate distance
from the RDDS operator. Too close and the physical trauma might be severe,
too far and vulnerable areas such as eyes and joints become possible collateral
damage (Hampton et al., 2016). To facilitate this daunting task, manufacturers
provide extensive tables with recommended pressures (muzzle velocities) and
holdovers for various dosages and distances (Rosenfield, 2017).
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1.2 Aeroballistics

Given sufficient information regarding the dart, it is possible to predict its flight
behaviour. This entails quantifying the dart's interaction with the enveloping
air: aerodynamic forces and moments.

1.2.1 Fluid: Ambient air
When the dart is in motion relative to the free stream, it forcefully displaces
surrounding air. As per the Navier Stokes momentum equation, a change in
fluid momentum implies the presence of forces (usually split into shear and
pressure forces). As seen in equation 1.2, fluid density ⇢ and viscosity µ are
needed to define fluid momentum (Schobeiri, 2010).

V = ẋ� V1 6= 0 (1.1)

⇢
DV

Dt
= �rp+ ⇢g + µr2

V (1.2)

To quantify these properties the ambient temperature, pressure and relative
humidity at the projectile's location must be known (Gkritzapis et al., 2007).
For most practical applications, the free stream flow field is assumed to exclu-
sively translate (V1). The relative velocity (V ) is calculated using equation
1.1.
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Flow regimes

Darts introduce disturbances that propagate throughout the free stream flow
field at the speed of sound (a). When the propagation pattern is free of
stochastic motion, the flow is laminar. When fully stochastic, the flow is
turbulent. The regime is predicted using the Reynolds number, sufficiently
high (> Recrit) and the flow is fully turbulent. Close to Recrit, the flow has
an “intermittent characteristic”: exhibits bursts of turbulence as the laminar
motion becomes unstable (White, 2010).

Re =
⇢V d

µ
(1.3)

The characteristic length is the maximum external diameter (in this case,
d = 12.7mm). Most darts operate between 50m s�1 and 90m s�1. At mean
sea level ambient conditions, darts have an average Re of 5 ⇥ 104. Darts are
thus prototypical transitional or “low Reynolds number” problems (Anderson,
2009).

Transitional flow

At lower Reynolds numbers ( 104 < Re < 105) the boundary layer is laminar
and thus prone to separate. When flow separation occurs, the already unstable
flow becomes turbulent. The newly introduced shear stresses energise the flow,
counteracting the pressure gradient and possibly reattaching the flow: known
as a laminar separation bubble (Anderson, 2009). This makes transitional flow
regimes difficult to accurately model using computational fluid analysis (CFA).
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1.2.2 Projectile: Dart
The dart geometry dictates how the enveloping fluid is displaced. Darts are
fairly blunt (excluding the needle) to distribute impact energy. This degrades
aerodynamic performance by exacerbating drag and reducing flight stability.
A stable projectile has a more predictable flight path as the angle of attack re-
mains small: aerodynamic forces and moments are complex when instabilities
are present.

1.3 Aerodynamic forces and moments

Aeroballisticians generally have the leisure of working with axis-symmetric pro-
jectiles. Taking advantage of this, the classical aeroballistic force and moment
equations (tables 1.1 and 1.2) were developed (McCoy, 1999). Sections 1.3.1
through 1.3.7 elaborates on each individual force and moment.

For most practical applications, perfect axis-symmetry is a reasonable assump-
tion. Ignoring the possibility of asymmetries would be remiss as they can effect
on the trajectory. Section 1.5.5 discusses the possible consequences of asym-
metries.

Table 1.1: Classic aerodynamic force equations

Force Equation

Drag FD = �CD⇢A

2
V V

Lift FL =
CL⇢A

2
(V ⇥ (ex ⇥ V ))

Pitching FNq+↵̇
=

CNq+↵̇⇢A

2
d V eẋ

Magnus FNP
=

CNP ⇢A

2
d (! · ex)(V ⇥ ex)
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Table 1.2: Classic aerodynamic moment equations

Moment Equation

Overturning M↵ =
CM↵⇢A

2
d V (V ⇥ ex)

Pitching MMq+↵̇
=

CMq+↵̇⇢A

2
d
2
V (ex ⇥ eẋ)

Roll dampening MLP
=

CLP ⇢A

2
d
2
V (! · ex) ex

Rolling MLS
=

CLS⇢A

2
d
2
V

2
ex

Magnus MMP
=

CMP ⇢A

2
d
2 (! · ex)(ex ⇥ (V ⇥ ex))

Coefficients

The effects of geometry, inertia and flow regime are consolidated into the
aeroballistic coefficients. The equations listed in tables 1.1 and 1.2 construe
the fact that the coefficients are comprised of intricate non-linear relationships.
Traditionally this relationship is expressed as a function of Mach number and
angle of attack (↵t): equation 1.6 is commonly used to describe the non linear-
influence of ↵t at a set Mach number (Chaves et al. (2019), McCoy (1999)).

C0 = f(Ma) (1.4)

C2 = f(Ma) (1.5)

C = C0 + C2 sin(↵t)
2 + C4 sin(↵t)

4
... (1.6)

Characteristics area

It can be any convenient value as long as it is clearly stated during the quantifi-
cation of the aeroballistic coefficients. For axis-symmetric darts the accepted
convention is to use the largest external diameter (d) to calculate the circular
cross section.

A =
⇡d

2

4
(1.7)
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1.3.1 Drag
Drag is responsible for the dart's decrease in linear momentum. When small,
a dart maintains its velocity and further distances are viable. Minimising drag
is thus a primary concern when developing high performance projectiles.

FD = �CD⇢AV

2
V (1.8)

ex

FD

V
↵t

Figure 1.4: Drag

1.3.2 Lift
Asymmetric distribution of shear and pressure effects result in a force perpen-
dicular to the relative free stream. This causes the dart to deflect laterally
based on the dart's orientation. Lift is the largest contributor towards drift.

FL =
CL⇢A

2
(V ⇥ (ex ⇥ V )) (1.9)

ex
FL

V
↵t

Figure 1.5: Lift
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1.3.3 Overturning moment
As stated previously, surface shear and pressure effects are asymmetric. Ad-
ditional to lift, the overturning moment is generated around the mass centre.
When positive, the dart is considered statically unstable: will overturn without
spin stabilisation (Tsien, 2012).

M↵ =
CM↵⇢AdV

2
(V ⇥ ex) (1.10)

ex

M↵

V
↵t

Figure 1.6: Overturning moment

To guarantee a negative value, darts are equipped with tailpieces (drag stabil-
isation). For high performance projectiles this is not viable as the additional
drag is too severe. Spin stabilisation is more aerodynamically efficient but can
be impractical if too high a spin rate is required (or when dart is dynamically
unstable). Stability is discussed thoroughly in section 1.5.4.
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1.3.4 Pitching force and moment
The dart “mixes” the surrounding air due to rapid changes in its symmetry
axis (pitching and yawing). This motion is expressed by the derivative (eẋ) of
the symmetry axis's unit vector. This is synonymous to a tangent line on the
surface of a unit sphere (see figure 1.7). Air exercises a counteracting force and
moment that dampen the motion. Both the force and moment are evaluated
in the body frame using the Coriolis theorem: eẋ becomes a function of the
dart's pitching and yawing (!y,!z) (Hibbeler, 2010).

FNq+↵̇
=

CNq+↵̇⇢AdV

2
eẋ (1.11)

MMq+↵̇
=

CMq+↵̇⇢Ad
2
V

2
(ex ⇥ eẋ) (1.12)

ex

eẋ

ex ⇥ eẋ

ex

Figure 1.7: Pitching force and moment
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1.3.5 Roll damping moment
This moment decreases the angular momentum around the symmetry axis.
While not explicitly significant, spin stabilised darts can become unstable if
the spin rate drops too low (gyroscopic stability).

MLP
=

CLP ⇢Ad
2
V

2
(! · ex) ex (1.13)

ex and MLP
!

Figure 1.8: Roll damping moment

1.3.6 Rolling moment
If a dart needs to maintain axial spin, it can be equipped with fins. Fins induce
a moment that increases axial momentum: accelerates spin.

MLS
=

CLS⇢Ad
2
V

2

2
ex (1.14)

ex and MLS

Figure 1.9: Rolling moment
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1.3.7 Magnus force and moment
A rotating dart in a cross flow experiences perpendicular force and moment
due to the Magnus effect. The axial spin deflects the cross flow laterally due
to relative velocity differences on the dart's surface (Schobeiri, 2010).

FNP
=

CNP ⇢Ad

2
(! · ex)(V ⇥ ex) (1.15)

MMP
=

CMP ⇢Ad
2

2
(! · ex)(ex ⇥ (V ⇥ ex)) (1.16)

ex

MMP

V
↵t

!

FNP

Figure 1.10: Magnus force and moment

1.4 Liquid payloads

A liquid payload exerts shear and pressure forces on the inner walls of the
housing cavity, producing external moments on the dart. An axial moment is
generated due to liquid spin up and a transverse moment from the sloshing
effect: inertial waves propagate and collide with cavity walls. When these
waves match the pitching and yawing motion of the housing, liquid resonance
occurs and can cause catastrophic destabilisation. This is largely avoided by
making sure there are no air cavities.

Several articles have been published that attempt to quantify these moments
for axis-symmetric projectiles. Cooper and Costello (2011) used a well-developed
spatial eigenvalue theory to generate liquid moment coefficients and incorpo-
rated them into a 6-DOF flight model. The analysis assumed that the projec-
tile undergoes quasi-steady coning motion, which enables calculation of liquid
moment coefficients as a function of Re and coning frequency. Rogers et al.
(2013) improved on that concept by using a dual-spin projectile model to cap-
ture liquid spin-up after launch. Their validity is however questionable as no
verification studies have been performed.
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Due to its complexity, the effect of the liquid payload is assumed negligibly
small and thus not taken into account for the remainder of this thesis.

1.5 Linearised projectile motion

Evident from the previous sections, a dart's equations of motion consist of
highly non-linear differential equations. If the aerodynamic resistances and
initial conditions are accurately known, an essentially exact solution is numer-
ically available. Being simply a table of numbers, knowing how to improve a
design is based on educated guesses. Alone, this approach can be very ineffi-
cient. Having access to a simplified closed form solution is recommended as
each variable's contribution is stated explicitly: what must be changed to alter
the dart's flight behaviour (stability criteria).

These analytical solutions have several other uses; confirm numerically so-
lution is solved correctly; regression with experimental data to estimate co-
efficients. They are thoroughly documented in multiple publications (Chaves
et al. (2019), McCoy (1999)).

1.5.1 Translational velocity
The full derivation for linearised velocity is given to show the application of
dimensionless arc length (s). Only the final solutions for pitch, yaw and spin
rate are presented.

s =
1

d

Z
ẋ (1.17)

For relatively short, windless (V1 = 0) distances the trajectory can be assumed
straight and the drag coefficient (CD) constant. Since the flight path is straight,
gravity and lateral forces are negligible.

F = FD = �CD⇢A ẋ
2

2
= mẍ (1.18)
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Linearising equation 1.18 in terms of s, it is solved using elementary 1st order
differential equation solution methods. The solution (equation 1.19) suggests
velocity decreases exponentially with distance traveled. Consequently small
reductions in drag can exponentially improve maximum viable range.

s =
1

d

Z
ẋ dt

ds

dt
=

1

d
ẋ dt =

d

ẋ
ds C

⇤
D = CD

⇢Ad

2m

ẍ = �CD
⇢A

2m
ẋ
2

ẋ = �CD
⇢A

2m

Z
ẋ
2
dt

ẋ = �CD
⇢Ad

2m

Z
ẋ ds

ẋ = �C
⇤
D

Z
ẋ ds

ẋ = ẋ0 e
�C⇤

D s

(1.19)

The alternative solution as a function of time is:

ẍ = �CD
⇢A

2m
ẋ
2

ẋ
�2dẋ

dt
= �CD

⇢A

2m
1

ẋ
� 1

ẋ0
=

✓
CD

⇢A

2m

◆
⇥ t

1

ẋ
=

✓
CD

⇢A

2m

◆
⇥ t+

1

ẋ0

(1.20)

1.5.2 Axial spin
The analytical solution for axial spin is derived in a similar fashion to equation
1.19. The result (equation 1.23) show that spin rate decays exponentially with
distance traveled.

k
�2
x =

md
2

Ix
(1.21)

Kp = �
⇥
k
�2
x C

⇤
LP

+ C
⇤
D

⇤
(1.22)

✓
!xd

ẋ

◆
=

✓
!xd

ẋ

◆����
0

e
�Kps (1.23)
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1.5.3 Yaw and Pitch
Both pitch and yaw are collectively defined in terms of a single complex variable
(⇠). Where � represents yaw and ↵ pitch.

⇠ = ↵ + �i (1.24)

Through lengthly algebra the following equation is obtained. See either Chaves
et al. (2019) or McCoy (1999) for its full derivation.

⇠ = KF0e
�F+i(�0

F s+�F ) +KS0e
�S+i(�0

Ss+�S) + i�R (1.25)

Equation 1.25 indicates the symmetry axis traces an epicyclic pattern: two
arms (KF ,KS) each rotating at a unique frequency (�0

F , �0
S). Figure 1.11 is a

visual representation of these components.

If there is no spin KF and KS are fixed in space. Lift then acts in a con-
stant direction and produces a lateral deflection that increases quadratically
with downrange distance. It is thus recommended to apply spin even if a dart
is statically stable: lateral deflection primarily becomes a consequence of yaw
of repose (�R).

↵ Pitch

� Yaw
�R

KS

KF

�
0
S

�
0
F

Flight direction (into page)

Figure 1.11: Linearised pitch and yaw
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The performance of a dart is largely synonymous to its stability. When stable,
aerodynamic resistance is less intricate resulting in a more predictable trajec-
tory. Knowing how to achieve stability is thus of interest when developing a
new dart. From equation 1.25, the classical flight stability criteria are derived.
When presented in literature, authors are often presumptuous and assume the
projectiles being investigated are statically unstable. The criteria are different
based on static stability. Current tranquilliser dart's design are predominantly
statically stable. If a more efficient design were investigated (spin stabilisation,
tailpiece omitted) the dart will likely be statically unstable.

1.5.4 Stability
The exponents in equation 1.25 can cause the analytical pitch and yaw to
grow without bound (instability). This forms the basis for the gyroscopic and
dynamic stability criteria.

Gyroscopic stability

If the frequency exponents (�0
F ,�

0
S) in equation 1.25 contain imaginary vari-

ables, ⇠ will grow without bound. The gyroscopic stability criteria ensure the
frequency exponents are real. It is customary to present the criteria in terms
the gyroscopic stability factor Sg. The factor and criteria as found in Murphy
(1954):

Sg =
I
2
x!x

2

2⇢d IyACM↵ ẋ
2

(1.26)

Gyroscopic stability criteria

(
Sg > 1, for CM↵ > 0

Sg < 1, for CM↵ < 0
(1.27)

It is worth noting that a statically stable dart is always gyroscopically stable
regardless of spin: Sg is always negative (CM↵ < 0, Sg < 0). Being gyroscopi-
cally stable does not guarantee stability, simply that �0

F and �0
S will not cause

destabilisation. If the damping coefficients �S or �F are positive, ⇠ will still
grow without bounds regardless of gyroscopic stability.
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Dynamic stabiliy

To ensure damping coefficients are negative, the dynamic stability criteria must
be met. Criteria in terms of dynamic stability factor (Sd) as found in Murphy
(1954):

Sd(2� Sd) >
1

Sg
(1.28)

Sd =
2 (CL + k

�2
x CMP )

CL � CD � k�2
y

�
CMq + CMa

� (1.29)

Figure 1.12 is a visual representation of both stability criteria (equations 1.27
and 1.28). It highlights that a statically unstable dart can only be stabilised
if the dynamic stability factor is within 0 < Sd < 2. The closer Sd is to 1, the
easier the dart is to stabilise. When the dynamic stability factor is Sd < 0 or
Sd > 2, too much spin will cause a statically stable dart to destabilise. Without
information regarding a dart's dynamic stability factor, overzealously applying
spin might thus be detrimental. When designing a new dart, the dynamic and
gyroscopic stability criteria are guides on how to improve flight performance.

�1.0 �0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Sd

0

1

2

3

4

5

|S
g
|

Only if CM↵ < 0

Always stable

Figure 1.12: Stability regions

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 18

1.5.5 Limitations of stability criteria
The dynamic and gyroscopic stability criteria are derived for a perfectly rigid
axis-symmetric projectile with a short and straight trajectory. They become
less reliable when projectiles are asymmetric, over-stabilised, have liquid pay-
loads or subjected to high ordinance trajectories.

Asymmetries

Spin stabilisation is a delicate phenomena that must be used with care. Con-
sider a rigid body whose principal moments of inertia are I1 < I2 < I3. It
is mathematically shown it can be spin stabilised around one of its extrema
principle axes (I1 or I3) (Wie, 2008). Spin around any intermediate axis is
always unstable.
The dart is assumed axis-symmetric for the stability criteria (I2 = I3). The
symmetry axis is then automatically an extrema principle axis (I1). However
darts are never perfectly axis-symmetric. In flight the spin axis will migrate
to the true extrema principle inertia axis. When the true axes are parallel
to the symmetry axes, the dart is statically unbalanced. When tilted, it is
dynamically unbalanced. These states are not mutually exclusive and tend to
occur together. Figures 1.13 and 1.14 show the implications of both instances
during flight.

I1

I3

CG

Unstable

!

I1

I3
CG

Spin axis migrates

!

I1

I3 CG

Stable

!

Figure 1.13: Dynamically unbalanced dart
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Unstable
!I1

I3

CG

I1

I3

CG
Stable

!

Figure 1.14: Statically unbalanced dart

Over stabilisation

There is a common misconception that a high spin rate is always beneficial.
Excessive spin gyroscopically fixes the angular momentum vector, preventing
the dart' s nose from following the flight arc. Since dart's trajectories are fairly
straight, over stabilisation is less relevant in comparison to high ordinance pro-
jectiles.

Range

Height

Figure 1.15: Over stabilisation
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Liquid payloads

Despite being outside the scope of this thesis, its implications should be ac-
knowledged. The stability criteria assume a dart is sufficiently presented by
a rigid body. Liquid payloads inherently violate this assumption. The dart
might be stable at the beginning of its trajectory but become unstable due to
liquid resonance or gyroscopic/dynamic instability. Liquid resonance occurs
when the sloshing of the liquid payload, matches the pitching and yawing of
the housings. This can be avoided by confirmation that there are little to no
air cavities.
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Chapter 2

Projectile model

Several viable dart approximations exist with varying fidelity and data re-
quirements. They are routinely split into three categories; Point-mass (PM);
Modified point-mass (MPM) and Rigid body (RB) (Baranowski et al. (2016),
Khalil et al. (2015), McCoy (1999)).

Sections 2.1-2.3 give the derivation of their equations of motion. The specifics
of the numerical algorithm such as initial conditions, integration techniques,
dense output and their implementation are discussed in chapter 3.

Y =
⇥
u1 u2 u3 ...

⇤T (2.1)

Ẏ =
⇥
u̇1 u̇2 u̇3 ...

⇤T (2.2)

These are generalised equations and thus not exclusive to darts. Given the
availability, all validations are done with the high speed, spin stabilised Sierra
international bullet, as defined in appendix C, at mean sea level atmospheric
conditions, with the following initial conditions; Vm = 792.48m s�1; !z =
25 rad s�1; Tw = 12 cal/turn.

Figure 2.1: Sierra international bullet

21
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2.1 Point-mass

When approximating a dart as a PM, it is assumed to have no characteristic
orientation or rotational inertia: equation of motion is derived using only
conservation of linear momentum (Elsaadany and Wen-Jun, 2014) .

2.1.1 Equation of motion
Euler's 1st law of motion states linear momentum remains constant unless
compelled to change by external forces (Hibbeler, 2010).

F = L̇ (2.3)

Substituting the linear momentum definition (L = mẋ) the result is Newton's
2nd law of motion.

F = mẍ (2.4)

2.1.2 Aeroballistic forces
Without orientation or angular velocity, only drag, gravity, Coriolis effect and
the earth's curvature effects can be applied. This exemplifies the advantage and
disadvantage of using PM: easy to quantify but other potentially significant
phenomena are neglected (modelling error).

2.1.3 State vector representation
When implemented numerically, the equations of motion are consolidated into
state vectors. This promotes modularity and simplifies numerical integration
and interpolation.

State vector:

YPM =


x

E

ẋ
s

�
(2.5)

ẎPM =


ẋ

E

ẍ
s

�
=


ẋ

s

m
�1
F

s

�
+


xc
˙ s

0

�
(2.6)

PM forces:
F

s
= FD

s
+m g

s +m⇤
s (2.7)
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2.1.4 Verification
In section 1.5, a projectile's velocity is expressed analytically (equation 1.19).
This solution is colloquially referred to as a 1-DOF approximation: straight
trajectory. Replicating this scenario in the numerical model, the drag coef-
ficient is made constant and all other forces and influences are ignored (g =
0,⇤ = 0, xc = 0) . The identical results (figure 2.2), indicate that the PM
approximation is implemented correctly.

0 200 400 600 800 1000
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700

800

V
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(m
/s

)

Analytical
Numerical

Figure 2.2: Point-mass: Analytical vs Numerical

2.2 Rigid-body

This sophisticated model expands on the PM approximation by also consider-
ing angular momentum. Quantifying angular momentum is far more laborious
than its linear counterpart (H = I · !).

2.2.1 Equation of motion
Euler's 2nd law of motion indicates angular momentum remains constant unless
compelled to change by an external moment (Hibbeler, 2010).

M = Ḣ (2.8)

Ḣ = M = İ · ! + I · !̇ (2.9)

An inertia tensor defined in a stationary frame (I r) changes as the body ro-
tates (İ r 6= 0). The Coriolis theorem circumvents the need to calculate this
derivative.
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Coriolis theorem states the time derivative of a vector observed from a fixed
inertial frame (ẋr), is equal to the rate of change of the same vector as observed
from a rotating frame (ẋr0) and adding the change resulting from the frame's
angular velocity as observed from the inertial frame ⌦

r (Hibbeler, 2010).

Applying the Coriolis theorem to the angular momentum derivative:

Ḣ
r
= Ḣ

r0
+⌦

r ⇥H
r (2.10)

Substituting the angular momentum definition (H = I · !):

M
r
= (İ · ! + I · !̇)

����
r0

+ (⌦⇥ I · !)

����
r

(2.11)

The rotating frame's angular velocity (⌦r), can be meticulously chosen to keep
the inertia tensor constant.

İ
r0
= 0 (2.12)

M
r
= (I · !̇)

����
r0

+ (⌦⇥ I · !)

����
r

(2.13)

Having the fixed inertial and rotating frame coincide, the equation reduces to
the vector form of Euler’s classic rigid body equation of motion.

M
r
= (I · !̇ +⌦⇥ I · !)

����
r

(2.14)

When truly modelling a rigid body, the rotating frame follows the body exactly
(⌦ = !). This substitution is however not performed as darts have symmetri-
cal properties that can be exploited for numerical efficiency. This is explored
later in this section.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. PROJECTILE MODEL 25

Frames of reference

The dart's orientation cannot be directly solved from equation 2.14 as it is ex-
pressed in the body frame and information is only available in the world frame.
Both concerns are addressed using an appropriate transformation matrix E.
Per definition, a transformation matrix consists of orthonormal vectors. These
unit vector are principle axes of the intended frame relative to the current
frame.

E
s
r =

⇥
ex

s
ey

s
ez

s
⇤

(2.15)

E
r
s =

⇥
eX

r
eY

r
eZ

r
⇤

(2.16)

eX
s

eY
s

eZ
s

ex
r

ey
r

ez
r

Figure 2.3: Frames of reference

The inverse of a transformation matrix is the backwards transformation ma-
trix. Being orthonormal, the inverse matrix is simply its transpose.

E
r
s · xs = x

r (2.17)
⇥
E

⇤�1
=

⇥
E

⇤T

E
r
s =

⇥
E

s
r

⇤T (2.18)

In order to integrate the body's angular velocity, many parametrisation meth-
ods have been devised to define the attitude of the fixed body frame Er

s relative
to the world frame E

s
r. The most noteworthy options being Euler symmetric

parameters and Euler angles (Henderson, 1977).

Euler angles are intuitive and simple to apply but not numerically robust.
The Euler symmetric parameters are numerically robust but conceptually ab-
stract. Having access to both is advisable for validation and versatility.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. PROJECTILE MODEL 26

Euler angles

Composed of three sequential rotations, the Euler angles describe the orienta-
tion of the body frame with respect to the world frame. Generally denoted as
�, ✓,  .

� =
⇥
� ✓  

⇤T (2.19)

Each angle corresponds to a 3-dimensional rotation around a principle axis.
The Euler angles are not unique and depend on the sequence of the elemental
rotations around the x, y and z axes. Each rotation is mathematical computed
using a corresponding elemental transformation matrix (Henderson, 1977).

Rotation around x axis:

Rx(x) =

2

4
1 0 0
0 cos(x) � sin(x)
0 sin(x) cos(x)

3

5 (2.20)

Rotation around y axis:

Ry(x) =

2

4
cos(x) 0 sin(x)

0 1 0
� sin(x) 0 cos(x)

3

5 (2.21)

Rotation around z axis:

Rz(x) =

2

4
cos(x) � sin(x) 0
sin(x) cos(x) 0

0 0 1

3

5 (2.22)
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The transformation matrix E313, is comprised of three rotations. The sub-
script 3-1-3 intuitively implies elemental rotations around the z, x and z axes.
Abbreviating cos as c and sin as s the cumulative transformation matrix is:

E313
s

r
(�, ✓, ) = Rz(�) ·Rx(✓) ·Rz( )

=

2

4
c(�)c( )� s(�)c(✓)s( ) �c(�)s( )� s(�)c(✓)c( ) s(�)s(✓)
s(�)c( ) + c(�)c(✓)s( ) �s(�)s( ) + c(�)c(✓)c( ) �c(�)s(✓)

s(✓)s( ) s(✓)c( ) c(✓)

3

5

(2.23)

Since the “fixed ” body frame orientation changes with time, the Euler angles
must change accordingly (Greenwood, 2003). The corresponding derivative:

�̇ =

2

4
�̇

✓̇

 ̇

3

5 = B313
r ·⌦r (2.24)

B313
r
=

1

sin(✓)

2

4
sin( ) cos( ) 0

sin(✓) cos( ) � sin(✓) sin( ) 0
� cos(✓) sin( ) � cos(✓) cos( ) sin(✓)

3

5 (2.25)

Equation 2.24 must be used with care as it is susceptible to numerical insta-
bility: as ✓ approaches 0, equation B313

rencroaches on a numerical singularity
(tends towards infinity). This can be circumvented by switching to a different
Euler angle parameterisation.
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Euler symmetric parameters: Unit quaternions

The Euler symmetric parameters are a 4-dimensional extension of complex
numbers consisting of a scaler (q0) and vector (q) component. They are a
convenient alternative to Euler angles since they are devoid of singularities.

(q0, q) = q0 + q1 i+ q2 j + q3 k (2.26)

q = q1i+ q2j + q3k (2.27)

Three dimensional vectors are simply pure quaternions: zero scalar value (0,q).
This pure quaternion is rotated using a triple Hamilton product.

V
s
= (q0, q) ⇧ (V

r
) ⇧ (q0, q) �1 (2.28)

The Hamilton product as defined in Crassidis and Markley (2003):

(a0,a) ⇧ (b0, b) =
�
a0b0 � a · b, a0b+ b0a+ a⇥ b

�
(2.29)

Inverse of a unit quaternion as defined in Crassidis and Markley (2003):

(q0, q)
�1 = (q0,�q ) (2.30)

Rewriting the arithmetic of equation 2.28 in terms of a rotation matrix E
s
r.

E
s
r =

2

4
2q20 + 2q21 � 1 2 (q1q2 � q3q0) 2 (q1q3 + q2q0)
2 (q1q2 + q3q0) 2q20 + 2q22 � 1 2 (q2q3 � q1q0)
2 (q1q3 � q2q0) 2 (q2q3 + q1q0) 2q20 + 2q23 � 1

3

5 (2.31)

Similar to the change in Euler angles, the change in quaternion values are a
function of the body frame's angular velocity.

(q̇0, q̇) =
1

2
(q0, q) ⇧ (0,⌦

r
) (2.32)

Unit quaternions deviate from representing rotations when they lose their unit
length. Being inevitable during numerical integration, regular normalisation
is required. A computationally efficient approach is outlined in Greenwood
(2003):

✏ = q
2
0 + q

2
1 + q

2
2 + q

2
3 � 1 6= 0 (2.33)

fq = � ✏

2
(q0, q) (2.34)

Normalised quaternion = fq + (q0, q) (2.35)
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2.2.2 Rigid-body aeroballistic forces and moments
The standardised aerodynamic forces and moments provided in tables 1.1 and
1.2 can be redefined to take advantage of the body frame (Er

s). The projectile
geometrical symmetry axis ex

r, is aligned with the x axis. Its derivative eẋ
r

is then only a function of transverse rotation (the Coriolis theorem).
The resulting body frame equations are listed in tables 2.1 and 2.2 . The
complete absence of ⌦x indicates that both F

r and M
r are independent of

the body frame's axial rotation. Consequently, for axis-symmetric darts, ⌦x

can be disregarded without introducing modelling error. While rarely perfectly
axis-symmetric, the assumption has substantial numerical benefits.

Table 2.1: Body frame expanded aerodynamic force equations

Force Equation

Drag FD
r
= �CD⇢A

2
V V

r

Lift FL
r
=

CL⇢A

2

⇣⇥
V

2 0 0
⇤T � VxV

⌘ ����
r

Magnus FNP

r
=

CNP ⇢A

2
d

⇣
!x

⇥
0 Vz �Vy

⇤T⌘
����
r

Pitch damping FNq+↵̇

r
=

CNq+↵̇⇢A

2
d V

⇣⇥
0 ⌦z �⌦y

⇤T⌘
����
r
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Table 2.2: Body frame expanded aerodynamic moment equations

Moment Equation

Overturning M↵
r
=

CM↵⇢A

2
d V

⇣⇥
0 Vz �Vy

⇤T⌘
����
r

Pitching MMq+↵̇

r
=

CMq+↵̇⇢A

2
d
2
V

⇣⇥
0 ⌦y ⌦z

⇤T⌘
����
r

Roll damping MLP

r
=

CLP ⇢A

2
d
2
V

⇣⇥
!x 0 0

⇤T⌘
����
r

Rolling MLS

r
=

CLS⇢A

2
d
2
V

⇣⇥
1 0 0

⇤T⌘

Magnus MMP

r
=

CMP ⇢A

2
d
2
⇣
!x

⇥
0 Vy Vz

⇤T⌘
����
r

Axis-symmetric dart

If a dart is perfectly axis-symmetric, the inertia tensor is preserved in the body
frame (İ r

= 0) regardless of the frame's orientation about the symmetry axis:
⌦x can be included or disregarded interchangeably. The former is however
computationally more efficient. For spin stabilised projectiles, !x is easily 3
orders of magnitude larger than !y or !z. Thus when ⌦x = 0 , equations 2.24
and 2.32 are significantly less stiff: needs fewer integration steps. When this
simplification is enforced, it is known as a 5-DOF approximation.

⌦
r
=

8
>><

>>:

!
r Asymmetric (6-DOF)

h
0 !y !z

iT
Axis-symmetric (5-DOF)

(2.36)

It is interesting to note that for a perfectly spherical projectile, the inertia
tensor is preserved regardless of ⌦: the rotating body frame's orientation can
be stationary without introducing modelling error .

⌦
r
=

⇥
0 0 0

⇤T (2.37)
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For the high velocity spin stabilised Sierra projectile, a 5-DOF simulation
is on average 8 times faster. This decrease in computation time is invaluable
for parametric analysis where several trajectories are evaluated. If not spin
stabilised, the 5-DOF approximation does not yield the same computational
benefit since !x (and thus ⌦x) is already 0. The 6-DOF approximation can
thus be used without exacerbating computation time or error.

5-DOF approximation

If significant asymmetries are present, the inertia tensor is only preserved in the
body body frame when ⌦

r matches the body's angular velocity, !r (6-DOF).

⌦
r
=

⇥
!x !y !z

⇤T (2.38)

To illustrate the modelling error, a slightly asymmetric, Sierra International
bullet is simulated using both 5 and 6-DOF approximations. Figure 2.4 shows
how the tricyclic wobble is replaced with an epicyclic motion when using the
5-DOF approach. In this case the asymmetries have minor effects on the tra-
jectory and the 5-DOF model delivers qualitatively adequate results.

Initial conditions; Vm = 792.48m s�1; !z = 25 rad s�1; Tw = 12 cal/turn.

Inertia tensor for asymmetric Sierra International bullet:

I
r
=

2

4
7.228e�1 �3e�3 �5e�4

�3e�3 5.379 �1e�3

�5e�4 �1e�3 5.379

3

5⇥ e
�7 kgm2 (2.39)
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Figure 2.4: Modelling error of 5-DOF model
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2.2.3 State vector representation
Consolidating the equations presented for the RB approximation, the following
state vectors are concatenated. They can be numerically integrated to yield
the dart's position, velocity, angular velocity and orientation.

State vector:

YRB =

2

6664

x
E

ẋ
s

� or (q0, q)
!

r

3

7775
(2.40)

ẎRB =

2

6664

ẋ
E

ẍ
s

�̇ or (q̇0, q̇)
!̇

r

3

7775
=

2

6666666664

ẋ
s

m
�1
F

s

B313
r ·⌦r or

1

2
(q0, q) ⇧ (0,⌦

r
)

I
�1 �

M �⌦⇥ I!
� ����

r

3

7777777775

+

"
xc
˙ s

0

#
(2.41)

The body frame's rotation is adjusted based on the darts geometry.

⌦
r
=

8
>>>>>>>><

>>>>>>>>:

!
r Asymmetric (6-DOF)

h
0 !y !z

iT
Axis-symmetric (5-DOF)

h
0 0 0

iT
Sphere

(2.42)

RB force and moments:

F
s

= E
s
r

�
FD

r
+ FL

r
+ FNq+↵̇

r
+ FNP

r�
+mg

s +m⇤
s (2.43)

M
r

= M↵
r
+MMq+↵̇

r
+MMP

r
+MLP

r
+MLS

r (2.44)
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Verification

To confirm the model is correctly implemented and mathematically sound,
its numerically predicted yaw and pitch are compared to the analytical ap-
proximation (equation 1.25). The same simplifications are imposed on the
numerical model; trajectory is straight; velocity is constant; spin is constant;
aeroballistic coefficients are constant; only select forces and moments are rel-
evant (FL,M↵,M↵̇,MNP ). The analytical and numerical solution yield nearly
identical results (see figure 2.5).

�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5

� (degrees)

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

↵
(d

eg
re

es
)

Analytical
Numerical

Figure 2.5: Rigid body: Analytical vs Numerical
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2.3 Modified point-mass

After the initial transient pitching and yawing dampen out, the nearly im-
perceptible yaw of repose becomes visible. The dart's orientation lags behind
the flight curve causing the spin axis to tilt towards the overturning moment
vector (Bradly, 1990).

If the transient phase is considered infinitesimally small, the dart's orientation
is sufficiently defined by the yaw of repose. The MPM method takes advan-
tage of this, resulting in a computationally efficient projectile model that can
approximate lateral forces such as lift and Magnus effect.

2.3.1 Yaw of repose
Substantial research is readily available on how to approximate the yaw of
repose. The original expression published in Lieske and Reiter (1966) has un-
dergone several iterations in the past few decades.

Original expression from Lieske and Reiter (1966).

s
�R =

�2Ix!xCL

�
V

s ⇥ ẍ
s
�
� 2md

2
!xCMP

�
V

s ⇥ (ẍs � g
s)
�

⇢AdV 2 (V 2CLCM↵ + !x
2d2CNPCMP )

(2.45)

A more efficient method was later devised by Bradly (1990):

s
�R =

2Ix!x(gs ⇥ V
s
)

⇢AdV 4CMa

(2.46)

2.3.2 Equation of motion
MPM assumes the influence of pitching and yawing is minute. Consequently,
in addition to translation, only axial spin needs to be quantified. MPM models
are thus often referred to as 4-DOF models.

Ḣx = Ix !̇x = M

!̇x = I
�1
x M

(2.47)
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2.3.3 Aeroballistic forces and moments
The classic aeroballistic forces and moments have unique expressions based
on the yaw of repose. Despite not being listed in this table, the overturning
moment is used to calculate the yaw of repose.

Table 2.3: Aerodynamic force and moment equations for MPM

Force Equation

Drag FD
s
= �CD⇢A

2
V V

s

Lift FL
s
=

CL⇢A

2
V

2 s
�R

Magnus FNP

s
=

CNP ⇢A

2
d!x(V

s ⇥ s
�R)

Moment Equation

Roll damping MLP =
CLP ⇢A

2
d
2
V !x

Rolling MLS =
CLS⇢A

2
d
2
V
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2.3.4 State vector representation
Consolidating all the relevant equations, the state vectors for MPM are:

YMPM =

2

64
x
E

ẋ
s

!x

3

75 (2.48)

ẎMPM =

2

64
ẋ

E

ẍ
s

!̇x

3

75 =

2

64
ẋ

s

m
�1
F

s

I
�1
x M

3

75+

"
xc
˙ s

0

#
(2.49)

MPM forces and moments:

F
s
= FD

s
+ FL

s
+ FNP

s
+mg

s +m⇤
s (2.50)

M = MLP +MLS (2.51)

Verification

As part of the linearised pitch and yaw solution presented in section 1.5, the
yaw of repose is expressed analytically (equation 1.25). By imposing the same
restrictions of the analytical solution on the numerical model, their solutions
become comparable; aerodynamic coefficients constant; only FD, g, FL,MLP

are relevant. The numerical and analytical solutions give identical results
(figure 2.6). This indicates MPM is correctly implemented and mathematically
sound.
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Figure 2.6: Modified point-mass: Analytical vs Numerical
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Chapter 3

Trajectory simulation

A trajectory is simply a sequence state vectors, every point expressed by equa-
tion 3.1. With the appropriate initial conditions, numerical integration and
termination criteria, entire trajectories are readily available. This chapter dis-
cusses the routines used to accomplish these aspects.

Y

����
t

= Y

����
t=0

+

Z t

0

Ẏ (3.1)

3.1 World frame

Before any initial conditions can be quantified, the world frame origin and
orientation must be concluded. The only prerequisite is an axis perpendicular
to the Earth's surface: needed to define the gravity vector. For practicality
the origin coincides with the rifle muzzle and eX points downrange towards
the target.

eX
seY

s

eZ
s

target

Figure 3.1: World frame orientation

37

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. TRAJECTORY SIMULATION 38

3.2 Initial conditions

The predominant factors that define the dart's initial state are quadrant eleva-
tion, drift correction, twist rate and muzzle velocity (QE,DC, Tw, Vm). They
define the launch state as intended by the operator (barrel orientation). From
this barrel frame, additional considerations such as initial yaw, pitch and lat-
eral throw-off can be seamlessly incorporated.

Barrel frame

The barrel's symmetry axis (exb
) is defined by quadrant elevation (QE) and

drift correction (DC). Applying them to a 3-2-1 Euler anlge transformation
the barrel frame (Es

b) is defined. Despite having no rotation around the x axis,
the component is retained to provide versatility.

E
s
b = E321

s

b
= f(DC,�QE, 0) =

⇥
exb

s
eyb

s
ezb

s
⇤

(3.2)

eX
s

eY
s

eZ
s

exb
s

exb
s

exb
s

QE

DC

Figure 3.2: Barrel frame

E321
s

b
=

2

4
c(✓2)c(✓1) �c(✓2)s(✓1) s(✓2)

c(✓3)s(✓1) + c(✓1)s(✓3)s(✓2) c(✓3)c(✓1)� s(✓3)s(✓2)s(✓1) �c(✓2)s(✓3)
s(✓3)s(✓1)� c(✓3)c(✓1)s(✓2) c(✓1)s(✓3) + c(✓3)s(✓2)s(✓1) c(✓3)c(✓2)

3

5

(3.3)

3.2.1 Position: x

Since the muzzle is the world frame origin, the initial condition is simply 0.

x0 = 0 (3.4)
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3.2.2 Velocity: ẋ
s

For most applications the velocity vector is assumed collinear with the barrel.
Deviation is possible due to static unbalance and manufacturing error. As
the dart spins inside a rifled barrel, the axis of rotation is constrained to the
geometrical symmetry axis. The gravity centre traces a helical pattern as the
dart moves forward. When the dart exits the barrel, it literally flies off on a
tangent. This phenomenon is known as lateral throw-off (Chaves et al., 2019).

The resulting velocity vector is extracted from an adjusted barrel frame (3-2-1
Euler transformation). There is no standardised way to define these changes,
it is however convenient to use a throw and roll angle (✓throw, ✓C).

arctan
Vt

Vx
= ✓throw (3.5)

ẋ
s = Vm E321(DC + ✓throw,�QE, ✓C) · [1, 0, 0]T (3.6)

ez
b

ey
b

Vt
b

✓C

Vx

Vt

ẋ0

✓throw

Figure 3.3: Lateral throw off
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3.2.3 Orientation: � and (q, q)

Ideally the dart's orientation matches the barrel (Es
b = E

s
r). It can be nec-

essary to specify an initial yaw, pitch or roll angle (�0,↵0, ✓roll). Similar to
the velocity vector, the dart's orientation (body frame) is determined from an
adjusted barrel frame (3-2-1 Euler transformation). The result (equation 3.7)
is used to define the initial Euler angles or parameters.

E
s
r

����
0

=


E321(DC + �0,�(QE + ↵0), ✓roll)

�T
(3.7)

Initial 3-1-3 Euler angles

tan(�0) =
E13

�E23
(3.8)

cos(✓0) = E33 (3.9)

tan( 0) =
E31

E32
(3.10)

Initial Euler parameters

|2q0| =
p
1 + E11 + E22 + E33 (3.11)

|2q1| =
p
1 + E11 � E22 � E33 (3.12)

|2q2| =
p
1� E11 + E22 � E33 (3.13)

|2q3| =
p
1� E11 � E22 + E33 (3.14)

For numerical accuracy, it is best to recalculate the Euler parameter based on
the largest (absolute value) parameter found from E

s
r (Greenwood, 2003).

2

664

q0

q1

q2

q3

3

775 =

2

6664

b2q0|
2

E32�E23
2|2q0|

E13�E31
2|2q0|

E21�E12
2|2q0|

3

7775
or

2

6664

E32�E23
2|2q1|
|2q1|
2

E12+E21
2|2q1|

E13+E31
2|2q1|

3

7775
or

2

6664

E13�E31
2|2q2|

E12+E21
2|2q2|
|2q2|
2

E23+E32
2|2q2|

3

7775
or

2

6664

E21�E12
2|2q3|

E13+E31
2|2q3|

E23+E32
2|2q3|
|2q3|
2

3

7775

(3.15)
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3.2.4 Angular velocity: !
r

Angular velocity is dictated by rifling twist rate, Tw (equation 3.16). Trans-
verse rotation (!y,!z) is possible due to blow by, dynamic unbalance or a
poor quality muzzle. Neither !y or !z are explicitly known and are usually
estimated to achieve the maximum pitch/yaw measured experimentally. By
definition they are pre-defined in the body frame.

!x = ẋ0
2⇡

Tw d
(3.16)

3.3 Integration

Initial conditions are propagated forward in time through numerical inte-
gration. Two major types are explored, namely Runge-Kutta methods and
Richardson extrapolation. Runge-Kutta methods combine information from
several Euler-style steps to complete a higher order Taylor series expansion.
They tend to outperform most methods when accuracy requirements are not
ultra stringent (< 10�8) (Press and Teukolsky (1992),Sandvik (2018)).

3.3.1 Classic 4th order Runge-Kutta
The classic 4th order Runge-Kutta (RK4) is still used in many modern ballistic
models: such as those seen in Elsaadany and Wen-Jun (2014), Gkritzapis and
Kaimakamis (2008) and Hainz and Costello (2005). This section explores why
RK4 has retained its prevalence despite not being the most efficient or accurate
approach. The algorithm is implemented as outlined in Press et al. (2007).

Performance evaluation

To gauge the performance of RK4, the Sierra international bullet's (as defined
in appendix C) first 100 m of flight is simulated with the following initial con-
ditions; Vm = 792.48m s�1; !z = 25 rad s�1; Tw = 12 cal/turn. Both runtime
and result are compared to a high tolerance (tol = 1e�15) Bulirsch Stöer ex-
trapolation (BS).

Relative error = f(h) = max

✓
|YRK4(h)� YBS|

|YBS|

◆
(3.17)

Normalised wall-clock time = f(h) =
tRK4(h)

tBS(tol = 1e�15)
(3.18)

There is clear convergence with increase runtime (figure 3.4). Thus, while per-
fectly adequate results can be obtained with RK4, without a convergence study
the reliability of the results are unknown. Errors can be large when underes-
timating the needed step size but being overly conservative disproportionally
exacerbates computational costs.
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For the same amount of wall-clock time as BS (tol = 1e�15), RK4 achieved a
relative error of 1e�5 (figure 3.4). For most aeroballistic problems, uncertainty
overshadows numerical integration error (shown in section 4.2). Consequently
if accuracy is the primary concern, refining the model inputs supersede the
integration algorithm: hence why it is often acceptable to use RK4. If compu-
tational efficiency is of interest (such as parametric studies), it is worth having
access to more efficient algorithms. To fill this need, Embedded Runge-Kutta
5(4) (RK54) and BS are useful alternatives depending on the needed accuracy.
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Figure 3.4: Normalised wall-clock time of classic Runge-Kutta

3.3.2 Embedded Runge-Kutta 5(4)
In order to address some of the computational and accuracy restrictions of
RK4, adaptive step size control is usually implemented. Small meticulous
steps crawl around “corners” while a great strides speed through smooth re-
gions. Adaptive step size control requires the algorithm to gauge its perfor-
mance: comparing the results of a higher and lower order Runge-Kutta. The
preposition “embedded” refers to the lower order Runge-Kutta being extracted
from the higher order Runge-Kutta.
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This variant (Dormand-prince) increases its computational efficiency by
applying “first same as last” (FSAL): the final function evaluation is also the
first evaluation of the following step. Since it would have been evaluated in
any case, it costs nothing. The algorithm is implemented as outlined in Press
et al. (2007).
Adaptive step size can however be counterintuitive due to equation stiffness:
steps need to be small to prevent numerical instabilities. The result is a dispro-
portionate increase in function evaluations, computation time and numerical
error.

Performance evaluation

RK54 outperforms BS when step tolerances larger than 10�10 are acceptable.
The same case study used in RK4, is evaluated using incrementally smaller
tolerances with both BS and RK54. Figure 3.5 shows that for higher accuracies
BS was 4 times faster.

Wall-clock time ratio = f(tol) =
tRK54(tol)

tBS(tol)
(3.19)
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Figure 3.5: Embedded Runge-Kutta 5(4) runtime wall-clock time
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3.3.3 Bulirsch-Stöer extrapolation
These methods use the idea of extrapolating the value that would be obtained
if the step size was smaller than it actually is. In particular, extrapolation to a
zero step size. Initial estimates are made using the modified midpoint method.
The hypothetical zero step size state vector is then extrapolated using the
Aitkens-Neville algorithm. The integrator is implemented as advised by Press
et al. (2007).

Performance evaluation

BS excels when accuracy constraints are stringent. This can become necessary
when working with particularly complex 6-DOF trajectories. To illustrate the
complications, the previous Sierra international bullet case study is investi-
gated using both 5-DOF and 6-DOF approximations. Being an axisymmetric
projectile, both should yield identical results: differences are the result of nu-
merical error.

Relative error = f(tol) = max

✓
|Y (tol)� Y5DOF (tol = 1e�15)|

|Y5DOF (tol = 1e�15)|

◆
(3.20)

Figure 3.6 shows the relative error is 2 orders of magnitude larger when us-
ing the 6-DOF model. The error can be attributed to equation stiffness. This
suggests that a 6-DOF simulation should be avoided unless the situation specif-
ically requires it: such as investigating the influence of asymmetries.
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Figure 3.6: Comparison of 5-DOF and 6-DOF relative error
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3.4 Termination criteria

When simulating a trajectory it is usually not explicitly known how far to
integrate. The algorithm marches along till the state vector (Y ) conforms to
some predetermined constraint: the moment of impact. Termination criteria
as an inequality:

||xtarget|| < ||xi|| (3.21)

The state vector that conforms to the constraint might actually have signif-
icant “overshoot” , especially when adaptive step size is employed. For most
uses, this is acceptable, however if the dart's state at the exact moment of
impact is needed (if investigating impact angle), some form of interpolation is
necessitated.

xn�3

xn�2

xn�1

xtarget xn

Figure 3.7: Termination criteria overshoot

To preserve the integration algorithm's order of accuracy, Press et al. (2007)
recommends rewriting the last integration step as function of which the opti-
mal step size is the root. Any root-finding algorithm such as Bisection, Newton
or Secant can then be used to solve the optimal step size.
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3.5 Dense output

While the points provided by the integration algorithm is usually sufficient, it
is often desirable to be able to define any arbitrary point along the trajectory.
This is especially necessary for BS where steps are extremely large due to the
high orders invoked. While the root finding approach discussed previously is
feasible for arbitrary points along the trajectory, it is computationally expen-
sive and therefore should be reserved for the point of impact.

Press et al. (2007) suggests using cubic Hermite interpolation as it matches
a function in both observed value and derivative (Y , Ẏ ). Any method will
suffice given enough points but Hermite interpolation excels even when steps
are sparse. Figure 3.8 shows the dense output obtained with BS. Interpolation
algorithms do not natively preserve the unity of Euler parameters, for better
accuracies the interpolated values must be normalised.
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Figure 3.8: Pitch and yaw Hermite interpolation
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3.6 Program sample calculation

The program is implemented as a python package (named BallisticsAJC) for
versatility and ease of use. The algorithm performing the simulation (named
Trajectory) is given a struct (Settings) detailing needed values and numerical
routines. Trajectory is implemented with modularity in mind: most entries
in struct represent files containing the necessary information. This allows al-
ternative parameters, models, forces and moments to be seamlessly explored
without performing major code revisions. Table 3.1 shows a sample “Settings”
struct. The python script that initiates the simulation:

from BallisticsAJC import Trajectory

Trajectory(**Settings)

Table 3.1: Struct supplied to algorithm (“Settings”)

Projectile model RB

Atmosphere model ICAO

Earth model Flat

Vb (m/s), DC (deg), QE (deg) [200. 0. 45.]

Adv initial conditions Twist_rate_18

Geodetic location West

Ambient conditions Mean

Projectile M1

Transformation method Quat

Stepping algorithm BS

First step size (sec) 0.01

Relative tolerance 1e-12

Absolute tolerance 1e-10

Target distance (m) 1000

Force & moment equations Classic

Forces All

Moments All

Dense output False

Save name testing

Figures All

Figure format pgf
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If the struct contains a “Savename” , the algorithm will write and save
several text files documenting the settings, computation time, state vectors
and state vector derivatives. This allows independent repeating of simulations
or data processing. The simplified procedure performed by “Trajectory” is
outlined in the block diagram, figure 3.9. For convenience BallisticsAJC is
equipped with an “Illustrate” routine. It natively produces several common
figures, such as height vs range, drift vs range, pitch vs yaw and angle of attack
vs time, (if the model allows it). See appendix D for relevent information and
sample outputs.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          No 
 
  
 

     Yes 
 

Setup:  
Ambient conditions, geodetic 
location, launch parameters, 

projectile properties 

Compile initial 
state vector  

Projectile 
model: compile 

state vector 
derivative 

(PM,MPM,RB)  

Atmosphere 
model: Mach 1, 

air density  
(ICAO) 

Earth model: 
Gravity, Coriolis 

and curvature 
(Sphere, Flat)  

Integrate: 
(BS, RK4, RK54)  

Impact? 

Process results: 
Dense output, impact state 
vector, figures, txt files for 

independent processing 

Figure 3.9: Trajectory algorithm: block diagram
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Chapter 4

Evaluation

The ideal numerical model is computationally inexpensive and provides suf-
ficiently accurate results from a minimal data set. The optimal solution for
a situation is however not easily realised. Results can be compromised by:
model, parameter and initial state errors (Fresconi et al., 2011).

Model error

Model error is the compromise for simplifying or disregarding factors that
define physical reality such as liquid payloads, asymmetries, forces or degrees
of freedom.

Parameter error

The cumulative effects of erroneous values compromise the model output.
Hence “high fidelity” models such as RB do not necessary entail superior pre-
cision or accuracy to MPM or PM.

Initial state error

Uncertainty in the initial state vector propagates throughout the solution: un-
der or over estimation of muzzle velocity can cause the projectile to fall short
or fly over the true impact point.

Due to the pervasive and stochastic nature of modelling error and uncertainty,
numerical models can not be proven “true” . They can only be extensively cor-
roborated. This can be facilitated by uncertainty analysis, sensitivity analysis,
benchmarking and experimental results (Saltelli et al., 2008).

49
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4.1 Benchmarking

While the models presented are intended for tranquilliser darts, they are valid
for any projectile. Benchmarking can thus be done against high ordinance
artillery trajectories for which there are several documented simulations. The
atmosphere and earth models used to incorporate the Coriolis effect, earth's
curvature, variation in pressure and temperature are outlined in appendices A
and B.

McCoy (1999) presents the analysis for the M1 artillery projectile and a stan-
dard mortar. Replicating these cases and comparing the results is an indication
of the model's validity. Additionally to McCoy, a comparative study is done
with commercial ballistics software PRODAS V3. This software has been val-
idated with experimental results and used internationally. The aeroballistic
properties of the projectiles are given in appendix C.

4.1.1 Mortar
A total of six trajectories are investigated to include a wide array of situations.
The inputs and expected results as listed in McCoy (1999) are presented in
table 4.1.

Figure 4.1: Mortar (120 mm)

Table 4.1: Mortar test cases

Run
Number

Vm

(m/s)
QE

(deg)
!y0

(rad/sec)
Range
R (m)

Apogee
H (m)

1 102 45 0.913 1010 260
2 102 65 0.913 770 420
3 102 85 0.913 165 510
4 318 45 1.795 7315 2100
5 318 65 1.795 5570 3380
6 318 85 1.795 1275 4070
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Results

The models yield similar results: RB's errors are consistently less that 1% (see
table 4.2). For a steep QE, PM and MPM have notable range errors. This
can be attributed to pronounced pitching and yawing. Near the apogee the
mortar's pitch reach values up to 40° (see figure 4.2). Only RB takes into
account the corresponding increase in aerodynamic resistance.

Relative error = �X =
|X �XMcCoy|

|XMcCoy|
(4.1)

Table 4.2: Mortar trajectory relative error

Run
Number

RB MPM PM

�R% �H% �R% �H% �R% �H%
1 0.3 0.2 0.4 0.34 0.4 0.34
2 0.19 1.13 0.62 0.95 0.62 0.95
3 0.08 0.17 6.88 0.37 6.88 0.37
4 0.1 0.27 0.12 0.15 0.12 0.15
5 0.15 0.15 0.31 0.12 0.31 0.12
6 0.01 0.11 1.78 0.16 1.78 0.16
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Figure 4.2: Mortar pitching (Vm = 105 m/s)
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4.1.2 M1 artillery projectile
A total of 8 simulations are performed with the inputs and expected results as
found in McCoy (1999) listed in table 4.3.

Figure 4.3: M1 artillery projectile

Table 4.3: M1 artillery projectile test cases

Run
Number

Twist
(Cal/turn)

Vm

(m/s)
QE

(deg)
!y0

(rad/s)
Range
R (m)

Apogee
H (m)

Drift
D (m)

1 18 205 45 1.44 3775 992 91
2 18 205 70 1.47 2360 1746 181
3 18 493 45 3.61 11494 3508 292
4 18 493 70 3.64 7408 6040 725
5 25 205 45 0.76 3770 992 66
6 25 205 70 0.79 2370 1746 137
7 25 493 45 1.97 11476 3508 213
8 25 493 70 1.98 7448 6040 522

Results

The RB model shows minor deviation with largest relative errors incurred
from drift (close to 4%, see table 4.4). This is misleading as drift's order
of magnitude is several times smaller than range and apogee. Similar to the
mortar, MPM and PM have noteworthy range errors if QE is steep. The cause
is slightly different from the mortar. Near the apogee the overturning moment
and spin cause the yaw (specifically the yaw of repose) to engorge: reaching
almost 25° (see figure 4.4).
Past the apogee an angle of attack around 7.5° is sustained for the remaining
flight. This increases the overall complexity and magnitude of the aerodynamic
forces and moments.

Relative error = �X =
|X �XMcCoy|

|XMcCoy|
(4.2)

.
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Table 4.4: M1 artillery projectile relative error

Run
Number

RB MPM PM

�R % �H % �D % �R % �H % �D % �R % �H % �D %
1 0.22 1.06 3.68 0.48 1.15 3.92 0.42 1.07 N/A
2 0.67 0.4 0.29 2.54 0.36 9.69 2.7 0.3 N/A
3 0.61 0.75 3.52 0.75 0.64 4.32 0.63 0.78 N/A
4 0.89 0.22 0.79 2.46 0.17 3.39 2.72 0.06 N/A
5 0.39 1.02 3.41 0.59 1.11 3.59 0.56 1.07 N/A
6 0.13 0.29 3.88 2.18 0.33 5.2 2.27 0.3 N/A
7 0.76 0.81 2.34 0.86 0.71 2.95 0.8 0.78 N/A
8 0.08 0.1 2.78 2.04 0.12 3.2 2.18 0.06 N/A
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Figure 4.4: M1 projectile: Pitch and yaw (Subsonic, QE = 70°)

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. EVALUATION 54

4.1.3 M107 artillery projectile
The inputs as found in Altufayl (2019) are listed in table 4.5 (constant twist
rate, Tw = 20 cal/turn).

Figure 4.5: M107 artillery projectile

Table 4.5: M107 artillery projectile cases

Run
Number

Vm

(m/s)
QE

(deg)
Range
R (m)

Apogee
H (m)

Drift
D (m)

Vel
V (m/s)

1 580 20 10837 1293 134.3 297.8
2 580 45 14851 4654 517.7 320.3
3 580 60 13056 6863 827.5 331.3
4 950 20 19099 2680 326.6 315.6
5 950 45 25642 9297 1186 335.9
6 950 60 24106 13914 1822 349.3

Results

MPM is qualitatively on par with RB: both yield highly accurate results with
largest relative errors relating to drift, �D = 6.08% (see tables 4.6-4.8). Similar
to the M1 artillery projectile, this is misleading as the magnitude of range is
several orders larger than drift.

Table 4.6: M107 artillery projectile RB relative errors

Run
Number

RB

�R % �H % �D % �V %
1 0.47 0.5 4.86 0.78
2 0.44 0.57 0.98 0.69
3 0.65 0.56 1.08 0.69
4 0.12 0.32 3.49 0.91
5 0.18 0.22 3.32 0.32
6 0.89 0.25 1.49 2.27
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Table 4.7: M107 artillery projectile MPM relative error

Run
Number

MPM

�R % �H % �D % �V %
1 0.39 0.37 5.73 0.75
2 0.43 0.45 0.38 0.68
3 0.93 0.42 1.78 0.69
4 0.02 0.18 2.47 0.9
5 0.13 0.05 1.4 0.31
6 1.49 0.02 6.08 2.22

Table 4.8: M107 artillery projectile PM relative error

Run
Number

PM

�R % �H % �D % �V %
1 0.14 0.14 N/A 0.69
2 0.23 0.17 N/A 0.68
3 0.96 0.12 N/A 0.69
4 0.21 0.02 N/A 0.87
5 0.12 0.21 N/A 0.32
6 1.53 0.29 N/A 2.22

4.2 Uncertainty and sensitivity analysis

The previous sections confirmed that given correct inputs, the models yield
accurate results. This does not imply they are “fit for purpose”. Input values
are never truly correct: models must retain their validity even when presented
with uncertainty (Saltelli et al., 2008).

Uncertainty and sensitivity analysis are nearly always performed in tandem;
latter quantifies all possible outputs based on global parameter variation; the
former apportions the overall output variance to each input parameter. Both
are paramount when developing models capable of surviving scientific inquiry
as they answer the following questions:

• How robust is the model?

• What is the relative importance of each variable?

Comparing MPM and RB, several observations regarding sensitivity can be
made before applying complex numerical analysis. In subsection 4.1.1 and
4.1.2 it is shown if a projectile maintains a small angle of attack, MPM yields
results on par with RB. This implies the properties disregarded during MPM's
derivation such as pitching and yawing are indeed minute. This is corrobo-
rated by the sensitivity analysis.
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This also exemplifies an inherent danger of sensitivity analysis. The relevance
of each input parameter depends on the situation considered. To give insight
into the overall performance, various cases must be investigated: sensitivity
analysis results will differ for each. For example the M1 artillery projectile
is used for subsonic, supersonic, low and high ordinance trajectories. To il-
lustrate the implications, 4 separate analyses are performed to encompass the
wide array of flight behaviours. The defining characteristics of these cases are
listed in table 4.9.

Table 4.9: M1 artillery projectile, sensitivity analysis cases

Run Number Twist (Cal/turn) Vm (m/s) QE (deg)
1 18 205 45
2 18 205 70
3 18 493 45
4 18 493 70

4.2.1 Time dependent sensitivity analysis
Regardless of method, sensitivity/uncertainty analysis entails; generating a
set of input parameters (B); evaluating the model for each entry to define a
corresponding set of scalar values (A); estimating sensitivity (in this case µ

⇤)
using both sets.

B = { b0, b1, b2, ... , bn } (4.3)

an = f
�
bn

�
(4.4)

A = { a0, a1, a2, ... , an } (4.5)

µ
⇤ = f

�
A,B) (4.6)

The sensitivity analysis performed differs from those encountered in literature
as the sensitivity is monitored with time. A time dependent representation
of sensitivity yields a robust guide for visualising the propagation of errors,
prioritising parameters and model selection. To accomplish this task, the set
of output parameters A, must be expressible as a function of time.
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Taking advantage of the dense output algorithm, a set of time dependent
functions are generated (F): each entry a unique projectile trajectory. Evalu-
ating these functions, a complete set of projectile state vectors are known for
any point in time.

Yn(t) = f
�
bn

�
(4.7)

F = {Y0(t),Y1(t),Y2(t), ... ,Yn(t) } (4.8)

For the sensitivity measurement's magnitude to be comparable throughout,
the property being investigated must be normalised at each instant considered.
Normalisation by the norm of the mean vector worked sufficiently well. This
is done separately for position, velocity and angular velocity.

ex

��
i

=
xi

||mean(x)|| (4.9)

eẋ

��
i

=
ẋi

||mean(ẋ)|| (4.10)

e!

��
i

=
!i

||mean(!)|| (4.11)

Atmosphere, Earth and Projectile models are all highly non-linear and cumu-
latively have upwards of 30 possible inputs ( bn ). The number of inputs and
inherent computational cost of RB makes traditional sensitivity analyses such
as Monte Carlo and One At a Time impractical as they require an exorbitant
number of function evaluations. Based on the guidelines provided in Saltelli
et al. (2008), Elementary Effects is appropriate.

Saltelli et al. (2008) outlines how to calculate B and the sensitivity measure
mu

⇤ from A. While additional sensitivity measures can be quantified using
Elementary effects, µ⇤ is usually sufficient indication of the overall sensitivity.
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4.2.2 Results
For the subsonic and flat trajectory (QE = 45°, Vm = 205m s�1), position,
velocity and angular velocity varied 3% from the mean (see figure 4.6). At
supersonic velocities and/or high QE's the deviation reaches up to 10%. While
not relevant for darts, it highlights the importance of investigating several
operating conditions. The full results are in appendix E. If a similar analysis
is performed on darts, intricate scenarios such as moving vehicles or helicopters
should also be considered: ethical range will be significantly shorter.

Relative average deviation (RAD) = max

✓����
xi �mean(x)
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Figure 4.6: Relative average deviation
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Sensitivity to launch parameters

The barrel orientation (QE and DC) and muzzle velocity (Vm) are the most
influential parameters in all scenarios considered (see figure 4.7). This suggest
optimising/accurately knowing the launch parameters might be more relevant
than the projectile. This extends to tranquilliser darts, especially when used
with compressed air rifles where muzzle velocity can be adjusted. It is worth
noting the contribution of “lateral jump” : initial yawing and pitching (!y,!z)
cause the projectile to deflect from the intended trajectory.

10 20

Time (seconds)

0.00

0.01

0.02

0.03

E
E

se
ns

it
iv

ity
m

ea
su

re
µ
⇤

xx Sensitivity

10 20

Time (seconds)

0.00

0.01

0.02

0.03

xy Sensitivity

10 20

Time (seconds)

0.00

0.01

0.02

0.03

xz Sensitivity

DC

QE

Vm

✓throw

✓C
↵0

�0

Tw

!y !z

Figure 4.7: Position sensitivity to initial conditions (Subsonic, QE = 45°)

The sensitivity of the initial state, while always relevant, eventually stops in-
creasing. In contrast sensitivity to parameters such as aerodynamic coefficients
or ambient conditions keep on increasing throughout the timespan investigated
(see figures 4.8 and 4.9). Given enough time and/or small enough uncertainty
in the initial conditions, the parameter errors will eventually overtake the ini-
tial state errors: optimising the dart can become more crucial than the rifle.
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Ambient conditions

Precisely measuring temperature and pressure is far less laborious than ac-
curately defining the aerodynamic coefficients. Their sensitivity measures are
however of similar magnitude (see figures 4.8 and 4.9). Eliminating uncer-
tainty regarding T0 and P0 is thus an effective means of improving precision.

The contribution of wind (VWY ,VWX) must not be underestimated. It ex-
acerbates lateral jump by increasing the initial angle of attack. In figure 4.8,
there is an initial spike in cross-range wind's (VWY ) sensitivity as the projectile
swerves trying to stabilise (lateral jump).
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Figure 4.8: Position sensitivity to ambient conditions (Subsonic, QE = 45°)

At supersonic velocities all parameter sensitivities increase. See appendix E
for the supersonic trajectory's results as they are not relatable to tranquilliser
darts. Relative to temperature, the effect of wind is less pronounced because
of the supersonic velocities encountered.
Predicting the onset of shock waves is crucial for supersonic trajectories. Con-
sequently, even slight changes in air density and Mach number (temperature
variation) have significant influences on the trajectory.
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Aerodynamic coefficients

For a stable projectile with a consistently small angle of attack, the contribu-
tion of CD0 , CL0 and CM↵ eclipses all other coefficients. For such cases, like the
trajectory presented in figure 4.9, (Subsonic, QE = 45°) MPM should yield
accurate results.
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Figure 4.9: Position sensitivity to aerodynamic coefficients (Subsonic, QE = 45°)

As seen in figure 4.4, for the subsonic, super elevated (QE = 70°) trajectory,
the yaw of repose reaches 23°. This large angle of attack increases the mag-
nitude and overall complexity of the aerodynamic coefficients. The sensitivity
analysis for that trajectory (figure 4.10) reflects this: several additional coef-
ficients become relevant past the apogee. If impact were to occur exclusively
before the apogee (t < 20 s), MPM would still be a viable approximation.
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Figure 4.10: Position sensitivity to aerodynamic coefficients (Subsonic, QE = 70°)
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Sensitivity analysis show that a stable and straight trajectory can be modelled
using simple approximations such as PM or MPM. Since this will generally
be the case for tranquilliser darts, RB approximations will likely not be qual-
itatively superior in most cases. In extreme conditions such as wind, moving
vehicles or helicopters, a RB analysis is likely unavoidable. A large initial
angle of attack, pitching and yawing will be present causing lateral jump and
exacerbating aerodynamic resistance.
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Chapter 5

Dart aerodynamic properties

To investigate tranquilliser dart aerodynamic behaviour, doppler radar tests
and computational fluid analyses (CFA) are performed. Radar measurements
provide a rudimentary guide and benchmark for the CFA. From both, an aer-
oballistic dart profile is assembled and applied to the projectile models to
evaluate a hypothetical “design”. The level of correspondence indicates how
viable the models are for their intended purpose: modelling tranquilliser dart
trajectories.

Only a smooth bore was available during testing and spin is thus not con-
sidered.

5.1 Doppler radar measurements

A doppler radar measures the dart's velocity along its trajectory. By moni-
toring the rate of decay, select aerodynamic traits can be inferred; complexity
of drag coefficient (linearity); average drag coefficient. Five shots are recorded
for the three darts shown in figure 5.1, namely 0.5 cc, 1 cc and 1.5 cc darts.

Figure 5.1: Professional wildlife equipment darts
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Figures 5.2 - 5.4 shows that (ẋ)�1 varies linearly with time. The consistent
gradients, suggest the intricacies (non-linearities) incurred from instability or
flow regime are absent. Consequently, CD can be assumed constant for each
individual dart without significant error. Fitting the analytical solution (equa-
tion 1.20, restated for convenience) to the measurements, an average CD is
calculated.
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Figure 5.2: Curve fitted to doppler radar measurements: 0.5 cc dart

Due to the tailpieces, these darts all have high drag coefficients (CD > 0.9).
The additional surface area of the 1 cc and 1.5 cc darts increase their drag due
to surface shear. The individual darts do not exhibit any unique behaviour,
CFA is thus only performed on the 0.5 cc dart.

0.00 0.05 0.10 0.15 0.20 0.25

Time (s)

0.0135

0.0140

0.0145

0.0150

(ẋ
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Figure 5.3: Curve fitted to doppler radar measurements: 1 cc dart
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Figure 5.4: Curve fitted to doppler radar measurements: 1.5 cc dart

5.2 Computational fluid dynamics

The objective is to quantify the dart's aero-ballistic properties: diameter, mass,
inertia and aerodynamic coefficients. The process entails recreating its geom-
etry in Autodesk® Inventor (Release 2019) and performing CFD analyses
using Ansys® Fluent (Release 19.2). Typically the aerodynamic forces and
moments are quantified at multiple angles of attack and Mach number to ac-
count for their non-linear effects. The doppler radar's results suggest this is
not necessary as the drag coefficient is almost constant.

This does not imply they are irrelevant, simply that they do not influence
these specific trajectories (short, straight, windless and no spin): complexity
is case dependent as illustrated by the sensitivity analysis in section 4.2.
Various velocities and angles of attack should thus still be investigated despite
not being applicable to the recorded trajectories. Two separate parameterised
analyses are performed to determine the coefficient's sensitivity to angle of
attack and Mach number. Since this requires several analyses, the param-
eterised simulations run autonomously: create the mesh and solve the flow
without manual intervention.
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5.2.1 Geometry refinement
The dart geometry is simple and can be easily captured, however the sharp
needle tip causes extreme warpage of adjacent cells. This makes the simulation
numerical unstable: residuals diverge. Robustness is improved by applying a
small curvature (radius = 0.2mm). The resulting mesh at the needle tip is
shown in figure 5.5.

Figure 5.5: Needle mesh after geometry refinement

5.2.2 Flow domain
External ballistic simulations are free stream simulations. The flow field sur-
rounding the dart must be large enough to represent this. For low Mach num-
ber ballistic problems like tranquilliser darts, velocity based inlet and pressure
based outlet conditions are appropriate, (Ferziger and Perić, 2002). The dart
is enveloped in a large cylinder with its volume representing ambient air at sea
level. Since no spin is being considered, the needed flow domain is decreased
by implementing a symmetry boundary condition.

Figure 5.6: Symmetry plane
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Meshing

When investigating various angles of attack, the simulation must periodically
re-mesh as the angle is incremented. To facilitate the needed autonomy, a
predominantly unstructured topology is used (tetrahedral elements). To ac-
curately capture the wake, a high mesh density region is created with more
stringent size constraints (see figure 5.7).

Figure 5.7: Mesh

There are two options to solve near-wall regions in Reynolds-averaged Navier-
Stokes based simulations: fully resolve the viscous sublayer or use wall func-
tions to approximate the flow quantities. Wall functions should only be used
when near wall effects are not the primary concern as they have deficits in
predicting flow separation. This makes them inappropriate for this simula-
tion: near wall effects and flow separation are paramount in determining the
aerodynamic coefficients (see figure 5.8). The recirculation at the dart face is
clearly visible.
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Figure 5.8: Dart pressure contours and fluid streamlines

To ensure the viscous sublayer is resolved the dimensionless wall distance (y+)
must be sufficiently small during each analysis ( 1 < y+). Some of the key
restrictions and modifications made to create the resulting grids (figure 5.7)
are listed below:

• Maximum element size for dart surface is 0.4mm

• A 20 layer inflation on dart surface (first layer 0.02mm thick)

• Maximum element size in the high density mesh region is 4.5mm

• Element growth rate in the high density mesh region is 1.1

5.2.3 Fluid properties
Darts operate exclusively at subsonic velocities (<0.3 Ma) where air can be
assumed incompressible (Anderson, 2009). Mean sea level conditions are used.

5.2.4 Solvers
Two solver types are commonly integrated into computational fluid dynamics
packages: a density-based and pressure-based solver. While density-based
solvers are suited for any flow regime, they are inefficient at low Mach numbers
(Ma < 0.3): flow is almost incompressible. Hence a pressure based solver is
appropriate for dart simulations. Additional settings used for the solver:

• Gradient set to “Green-Gauss Node-Based”.

• Discretisation methods all set to “Second Order Upwind “ .

• Pressure-velocity coupling set to “Coupled“.
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5.2.5 Turbulence model
Three viable turbulence models are considered, SST k�!, Transition k�kl�!
and Transition SST. As shown in table 5.1 both Transition SST and SST k�!
yield accurate results. SST k � ! is computationally less expensive and thus
used during the parameterised simulations.
The simulated drag will be less than the measured values. Small instabili-
ties/oscillations are always present and increase the average drag coefficient:
a zero angle of attack is an unrealistic state.

Table 5.1: Drag coefficients (↵t = 0°)

Solver CD

Doppler radar 0.898
SST k � ! 0.858
Transition k � kl � ! 1.043
Transition SST 0.863

Mesh independence

Given the prevalence of discretisation errors in CFA, mesh independence must
be investigated (Fluent, 2013). Several simulations are performed with se-
quentially smaller elements in the high mesh density region. Since the doppler
radar test had no spin, only drag, lift and overturning moment are investi-
gated. While drag showed little variation with mesh density (varied 5%, see
figure 5.9), lift and overturning moment are significantly more sensitive (vary-
ing up to 25%). To precisely model all 3 coefficients, a fine mesh is required
(> 106 elements, maximum element size 4.5mm). The study is performed at
70m s�1 and 2.5° angle of attack.

5 10 15

Elements ⇥1e5

0.96

0.98

1.00

Normalised CD

5 10 15

Elements ⇥1e5

0.9

1.0

Normalised CL

5 10 15

Elements ⇥1e5

0.8

0.9

1.0

Normalised CM↵

Figure 5.9: Mesh independence
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5.3 Results

This dart's high stability and low operating velocities allow the coefficients to
be approximated as constant. If excessive pitching or yawing is present the
drag, lift and overturning moment coefficients will become highly non-linear.

Dependency on velocity

Tranquilliser darts operate exclusively at subsonic velocities (40m s�1
< ẋ <

100m s�1). The coefficients are nearly independent of velocity in this range.
They can be approximated as constant without significant error: a single anal-
ysis at an average velocity (V = 70m s�1) would suffice. Lift has the largest
deviation from the average velocity (varies 5%, see figure 5.10), drag and over-
turning moment show very little variation (< 1%). This corroborates the
sensitivity analysis performed in section 4.2: non-linear effects from angle of
attack (such as CD2 , CL2) could be disregarded for flat trajectories. There-
fore, the experimental cases investigated PM or MPM should yield sufficiently
accurate results.
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Figure 5.10: Variation with velocity

Dependency on angle of attack

Drag, lift and overturning moment are highly sensitive to angle of attack: after
tilting 5°, drag increased 35% (see figure 5.11). The aerodynamic coefficients
will be highly non-linear if pitching or yawing (instabilities) is present. The
tailpiece however ensures the dart is stable, eliminating possible non-linearities
due to the angle of attack (instabilities). If the darts are routinely used in
windy conditions, moving vehicles or helicopters, high fidelity simulations are
unavoidable: initial angle of attack, pitching/yawing and corresponding lateral
jump will be engorged.
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Figure 5.11: Variation with angle of attack

5.3.1 Models compared with measurements
For the trajectories measured, either MPM or PM model yield sufficiently ad-
equate results: relative errors varying between 0.2% and 3%.
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Figure 5.12: PM model predicted velocity and trajectory

Pitching and yawing are always present hence why PM slightly underesti-
mates drag and the resulting velocity: assumes a zero angle of attack. RB can
take the pitching and yawing motion into account. By introducing small an-
gular velocity perturbations (!y = 1.5 rad · s�1), the RB model yields highly
accurate results (figure 5.13). The improved accuracy is offset by the labour
required to sufficiently define a Rigid-body approximation.
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Figure 5.13: RB model predicted velocity and trajectory

These results do not imply that high fidelity models such as RB are irrele-
vant. They are simply not required to model these particular dart trajectories.
As illustrated by the sensitivity analysis (4.2.1), deviation from intended im-
pact point is case dependent. If a spin stabilised dart design were developed,
its stability would need to be confirmed initially using RB.
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Chapter 6

Conclusion

Several ballistic models are investigated, derived, implemented and verified
to facilitate the design of tranquilliser darts. No model is innately superior,
each having their respective advantages. Complex models such as Rigid-body
can yield accurate results in a wide array of scenarios but are computation-
ally expensive and laborious to define. In contrast, Point-mass and Modified
point-mass are inexpensive and simple but only accurate when the projectile
is stable with minute pitching/yawing.

Sensitivity analysis (Elementary effects) showed the required model fidelity
and parameter accuracies are significantly less stringent for subsonic, flat tra-
jectories. This agrees with doppler radar measurements suggesting drag sta-
bilised darts have a near constant drag coefficient. This is further corroborated
by CFA of a 0.5 cc dart. The drag, lift and overturning moment coefficients
are nearly independent of velocity but sensitive to angle of attack. The tail-
piece however ensures that there is little to no pitching and/or yawing, further
eliminating non-linearities due to the angle of attack (instabilities). Conse-
quently, a single CFA at an average velocity will yield a sufficient estimate of
the aerodynamic forces and moments. For the same reasons, Point-mass and
Modified point-mass will be qualitatively on par with Rigid-body. This does
not imply that RB is irrelevant: if flight stability is not known, PM and MPM
are not reliable (dart might tumble).

The drag coefficients measured and simulated are high (CD >= 0.9), this
can be accredited to drag stabilisation (tailpiece). The aerodynamic efficiency
can be improved using spin stabilisation. Point-mass and Modified point-mass
will however be unable to predict gyroscopic or dynamic instabilities. If a spin
stabilised design is considered, it must (at least initially) be modelled using
Rigid-body approximations to confirm stability.
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Future studies

The models can be refined to take into account liquid payloads to analyse dart
flight performance and stability in greater detail. It is shown that the models
can predict dart trajectories. In conjunction with CFD, they can be used
to devise a more efficient tranquilliser dart design. The success will reduce
ballistic trauma and increase an operators ethical range.
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Appendix A

Atmospheric model

It is good practice to compare new numerical models with existing literature
or commercial codes. For short and flat trajectories (like those encountered
with darts), air density and speed of sound (⇢, a) can be assumed constant.
Most analyses performed in literature are however for high ordinance artillery
projectiles where this assumption is invalid: at 5000 m above sea level, air
is 40% less dense (Cavcar, 2000). For benchmarking to be viable, the model
must be able to take these changes into account.

Both ⇢ and a are indirectly only known at the launch site (through ambient
pressure and temperature). The atmospheric model propagates these quan-
tities to higher or lower altitudes. An internationally accepted model was
introduced in 1952 by the International Civil Aviation Organisation (ICAO).

A.1 ICAO

The ICAO Standard Atmosphere model can approximate air pressure, tem-
perature, density and speed of sound over a wide range of altitudes (< 80 km).
Temperature and pressure behave differently in the troposphere and tropopause.
At the boundary between the two layers:

T11 = 216.65�K (A.1)

P11 = 22632 Pa (A.2)
Using these constants and the ambient conditions at the launch site, the tem-
perature and pressure at the projectiles location is calculated.

Temperature

T =

8
>><

>>:

T0 � 6.5
xz

1000
(AL+ xz) < 11000 m

T11 (AL+ xz) => 11000 m

(A.3)
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Pressure (dry air)

P =

8
>>>><

>>>>:

P0

✓
1� 0.0065

xz

T0

◆5.2561

(AL+ xz) < 11000 m

P11exp

✓
� g0

RT11
(xz + AL� 11000)

◆
(AL+ xz) => 11000 m

(A.4)

From the pressure and temperature at the projectile's location, the correspond-
ing air density and speed of sound is calculated.

Density: dry air

Using the ideal gas law:

R = 287.04 J/(kg·K)

⇢ =
P

RT
(A.5)

Speed of sound: dry air

The speed of sound only varies with temperature.

� = 1.4

a =
p
� ·R · T (A.6)
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A.1.1 Humidity correction factors
When accuracy requirements are extremely stringent, it is recommended to
include the effects of humidity. Humid air is less dense and sound travels
faster. While not explicitly significant, for projectiles that consistently travel at
transonic speeds, slight changes in Mach number can become crucial. Murphy
(1954) provides two correction factors for density and speed of sound. The are
simply multiplied by the corresponding property for dry air (�a · a).

�a (RH) = 1 + 0.0014 (RH)

✓
Ps

101320.75

◆
(A.7)

�⇢ (RH) = 1� 0.00378 (RH)

✓
Ps

101320.75

◆
(A.8)

The saturated vapour pressure (Ps) can be accurately estimated using the
Arden Buck equations presented in (Buck, 1981). They are a group of empirical
correlations that relate saturation vapour pressure to temperature for moist
air. They are valid between 193.15 and 323.15 K.

Ps(T ) =

8
>>>><

>>>>:

611.21 exp

✓✓
18.678� T � 273.15

234.5

◆✓
T � 273.15

�16.01 + T

◆◆
T > 0

611.15 exp

✓✓
23.036� T � 273.15

333.7

◆✓
T � 273.15

6.67 + T

◆◆
T < 0

(A.9)
When no information is available regarding the launch site, it is common prac-
tice to use the average conditions at mean sea level (Cavcar, 2000).

Table A.1: International Mean Sea Level Conditions

Pressure Pave = 101325 Pa
Temperature Tave = 288.15� K (15� C)
Gravitational acceleration gave = 9.80665 m/s2
Density ⇢ave = 1.225 kg/m3

Speed of sound aave = 340.294 m/s
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Appendix B

Earth model

Similar to the atmospheric model, this is not necessary for tranquilliser darts,
but is required to benchmark the ballistic model against commercial codes.

For most ballistic problems, the earth can be approximated as a stationary
flat plane. For long distance trajectories (> 2000 m), variation in gravity,
the earth's rotation and curvature become increasingly significant. The earth
model quantifies these effect based on the geodetic location relative to the
world frame. Figure B.1 shows the reference angles and values used to de-
scribe the geodetic location. The approaches used are well documented in
Chaves et al. (2019) and McCoy (1999).

r = 6356766 m (B.1)

⌦E = 7.292115⇥ 1e�5 rad/s (B.2)
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Figure B.1: Geodetic locationB.1 Gravity

Approximating the earth as flat plane assumes gravitational acceleration is
independent of latitude and altitude. This is sufficient for applications such
as tranquilliser darts where the relevant distances are simply too short. For
this simple approximations the gravity vector can be defined as outlined in
(Cavcar, 2000).

g
s =

⇥
0 0 �9.80665

⇤T m s�2 (B.3)

This is however inadequate for high ordinance trajectories. Equation B.4 takes
into account gravity's variation with both latitude and altitude (Chaves et al.
(2019), McCoy (1999)).

g = 9.80665[1� 0.0026 cos(2LA)] (B.4)

g
s = �g


xx

r
0

✓
1� 2

xz + AL

r

◆�T
(B.5)

B.2 Coriolis effect

The world frame is in motion due to the earth's rotation. This rotating frame
causes a fictitious force that acts on the projectile known as the Coriolis effect.

⌦E
s
=

⇥
⌦E cos(LA) cos(AZ) ⌦E cos(LA) sin(AZ) ⌦E sin(LA)

⇤T (B.6)

⇤
s
= �2⌦E

s ⇥ ẋ
s (B.7)
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B.3 Curvature correction

The earth's inherent curvature means a flat approximation will under esti-
mate the horizontal displacement. These coordinates must thus be adjusted
over greater distances. Equation B.8 gives the corrected coordinates for the
projectile. It is however more convenient to use its derivative.

x
E =


xx xy

✓
xz +

x
2
x

2r

◆�T
(B.8)

In the derivative (equation B.9), the effect is expressed as a vertical velocity.
This can be seamlessly incorporated into any equation of motion.

ẋ
E =

h
ẋx ẋy

⇣
ẋz + ẋx

xx

r

⌘iT

ẋ
E = ẋ

s +
h
0 0 ẋx

xx

r

iT

ẋ
E = ẋ

s + xc
˙ s

xc
˙ s =

h
0 0 ẋx

xx

r

iT
(B.9)

This increase in velocity only alters the resulting vertical displacement and is
thus incorporated into the state vector derivative Ẏ. Illustrating this with the
Point-mass equations of motion:

YPM =


x

E

ẋ
s

�
(B.10)

ẎPM =


ẋ

E

ẍ
s

�
=


ẋ

s

m
�1
F

s

�
+


xc
˙ s

0

�
(B.11)
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Appendix C

Projectile properties

In chapter 4 the model is benchmarked against trajectories encountered in
literature. This appendix gives the properties of the projectiles used: diameter,
mass, inertia and aeroballistic coefficients. Linear interpolation is used to
describe the coefficients as functions of Mach number and/or angle of attack.

C.1 M107 artillery projectile

Figure C.1: M107 artillery projectile

m = 43.0962 kg d = 155 mm Ix = 0.14248 kgm2
It = 1.225615 kgm2

Table C.1: M107 artillery projectile aeroballistic coefficients
Mach CD0 Mach CD2 CLP

Mach CL Mach
.4 .1419 1.78 1.890 -.71 3.336 -8.7 -.02800
.6 .1431 1.79 1.901 -.71 3.365 -8.5 -.02788
.7 .1439 1.96 1.909 -.72 3.388 -8.4 -.02776
.8 .1487 2.18 1.933 -.74 3.493 -8.4 -.02754
.9 .1756 2.57 2.033 -.79 3.737 -9.3 -.02712
1.0 .3239 3.27 2.328 -.83 3.618 -11.4 -.02643
1.2 .3816 4.69 2.476 -.65 3.403 -12.6 -.02511
1.5 .3416 3.72 2.621 -.56 3.268 -13.0 -.02370
2.0 .2976 2.74 2.812 -.51 3.058 -12.4 -.02213
2.5 .2607 2.18 2.865 -.50 2.928 -11.7 -.02028
3.0 .2329 1.73 2.821 -.50 2.874 -10.5 -.01905

82

Stellenbosch University https://scholar.sun.ac.za



APPENDIX C. PROJECTILE PROPERTIES 83

C.2 Mortar

Figure C.2: Mortar

m = 13.585 kg d = 119.56 mm Ix = 0.02335 kgm2
It = 0.23187 kgm2

Table C.2: Mortar aeroballistic coefficients
Mach CD0 Mach CD2 Mach CLP

Mach CL Mach CMa0

0 .119 0 2.32 0 1.75 0 14.8 0 -.02
.8 .119 .4 2.44 .6 1.95 .5 14.8 .4 -1.02
.85 .120 .6 2.66 .8 2.02 .6 4.5 .6 -1.62
.87 .122 .7 2.87 .9 2.06 .63 1.4 .8 -2.41
.90 .126 .75 3.01 .95 2.08 .7 0.4 .9 -2.72
.93 .148 .85 3.55 .8 8.8 .92 -2.75
.95 .182 .90 4.03 .9 28.3 .95 -2.71

.95 5.20 .95 40

Mach CM↵2
Mach (CMq+↵ )0 Mach (CMq+↵ )2

0 -15.1 0 -22 0 48
.45 -15.1 .8 -21.1 .5 -46
.6 -12.7 .85 -21.9 .6 -86
.7 -8.5 .9 -24,2 .7 -144
.75 -4.5 .92 -26.8 .8 -259
.8 1.5 .95 -31.5 .85 -357
.85 13.9 .9 -468
.90 30.2 .95 -745
.95 59.9
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C.3 Sierra international bullet

Figure C.3: Sierra international bullet

m = 10.8898 g d = 7.82 mm Ix = 7.2282e�8 kgm2
It = 5.3787�7 kgm2

Table C.3: Sierra international bullet aeroballistic coefficients
Mach CD0 Mach CD2 Mach CLP

Mach CL Mach CMa0

0 .140 0 2.9 0 -.0150 0 1.75 0 3.05
.8 .140 .95 2.9 .5 -.0125 .5 1.63 .5 3.26
.85 .142 1.0 3.0 .8 -.0108 .8 1.45 .8 3.38
.90 .160 1.05 3.1 .85 -.0107 .85 1.40 .85 3.40
.95 .240 1.1 3.6 .90 -.0105 .90 1.35 .90 3.43
1.00 .430 1.2 6.5 .95 -.0103 .95 1.30 .95 3.45
1.05 .449 1.4 7.6 1.00 -.0100 1.0 1.35 1.0 3.24
1.1 .447 1.6 7.3 1.05 -.0099 1.05 1.55 1.05 3.17
1.2 .434 1.8 6.8 1.1 -.0098 1.1 1.70 1.1 3.15
1.4 .410 2.0 6.1 1.2 -.0095 1.2 1.90 1.2 3.12
1.6 .385 2.2 5.4 1.4 -.0088 1.4 2.15 1.4 3.06
1.8 .365 2.5 4.4 1.6 -.0083 1.6 2.32 1.6 2.98
2.0 .350 1.8 -.0080 1.8 2.45 1.8 2.88
2.2 .339 2.0 -.0075 2.0 2.58 2.0 2.79
2.5 .320 2.2 -.0073 2.2 2.68 2.2 2.69

2.5 -.0068 2.5 2.85 2.5 2.56

Mach CM↵2
Mach CMq Mach No. ↵2

t CMP

0 -4.3 0 1.2 0 0 -2.6
.95 -4.3 1.05 1.2 0 29.2 .06
1.0 -4.35 1.1 0.5 0 400 .06
1.05 -4.4 1.2 -3.6 .90 0 -2.6
2.5 -4.4 1.4 -7.3 1.1 0 -1.35

1.6 -8.2 1.1 18.4 .05
2.5 -8.2 1.1 400 .05

1.4 0 -.51
1.4 9.9 .24
1.4 400 .24
1.7 0 -33
1.7 5.6 .10
1.7 400 .10
2.5 0 -.33
2.5 400 .10

Stellenbosch University https://scholar.sun.ac.za



APPENDIX C. PROJECTILE PROPERTIES 85

C.4 M1 artillery projectile

Figure C.4: M1 artillery projectile

m = 14.97 kg d = 104.8 mm Ix = 0.02326 kgm2
It = 0.23118 kgm2

Table C.4: M1 artillery projectile aeroballistic coefficients
Mach CD0 Mach CD2 Mach CLP

Mach CL0 Mach CL2

0 .124 0 3.2 0 -0178 0 1.63 0 0.1
.875 .124 .88 3.2 .43 -0149 .4 1.63 .2 0.16
.925 .150 .97 6.3 .70 -0135 .7 1.41 .6 3.5
.965 .200 .99 4.0 .91 -0126 .89 1.22 .8 6.6
990 .350 1.15 5.0 1.4 -0110 .99 1.73 .985 9.2
1.025 .375 1.25 5.4 1.75 -.0101 1.09 1.57 1.09 8.8
1.085 .415 1.3 5.5 2.1 -.0094 1.5 1.97 1.3 12.0
1.19 .415 2.5 5.5 2.5 -.0087 2.0 2.25 1.5 13.7
1.35 .385 2.5 2.50 2.0 16.0
1.80 .335
2.0 .318
2.5 .276
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Mach CM↵0
Mach CM↵2

Mach CMq+↵ Mach ↵2
t CMP

0 3.55 0 -2.9 0 -3.15 0 0 .10
.46 3.55 .4 -2.9 .79 -3.15 0 403.6 .173
.61 3.76 .45 -3.1 1.15 -9.1 0 630 .345
.78 3.92 .65 -4.4 1.55 -9.5 0 1316 2.35
.87 3.96 .78 -3.45 .22 0 .10
.925 4.85 .885 -1.78 Mach ↵2

t CNP
.22 403.6 .173

.97 4.0 .98 -3.0 0 0 -.34 .22 630 .345
1.09 3.83 1.075 -2.1 0 632 -.91 .22 1316 2.35
1.5 3.75 1.25 -3.325 0 908 -1.42 .31 0 .10
2.5 3.75 1.5 -4.45 0 1316 -2.63 .31 410.8 .133

2.0 -4.6 .22 0 -.34 .31 637.7 .471
2.5 -4.6 .22 632 -.91 .31 915.9 1.276

.22 908 -1.42 .31 1316 2.35

.22 1316 -2.63 .48 0 -.46

.31 0 -.125 .48 27.5 .08

.31 21.4 -.465 .48 375.2 .022

.31 364.5 -.503 .48 1316 .94

.31 638 -1.015 .81 0 -.46

.31 1316 -2.92 .81 27.5 .08

.48 0 -.34 .81 375.2 .022

.48 348.5 -.591 .81 1316 .94

.48 1316 -2.45 .87 0 .4175

.99 0 -.34 .87 315.3 .053

.99 348.5 -.591 .87 743.9 .285

.99 1316 -2.45 .92 0 .4175
1.001 0 -.36 .92 315.3 .053
1.001 706 -1.68 .92 743.9 .285
1.55 0 -.36 .96 0 .3747
1.55 706 -1.68 .96 322.2 .05

.96 1316 .665

.995 0 .3747

.995 322.2 .05

.995 1316 .665
1.02 0 .20
1.02 322.2 .301
1.1 1316 .20
1.1 0 .301
1.21 375.7 .193
1.21 0 .50
1.21 375.7 .301
1.28 0 .193
1.28 403.6 .50
1.28 705.7 .445
1.46 0 .215
1.46 410.8 .495
1.55 0 .215
1.55 410.8 .495
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Appendix D

Algorithm sample outputs

BallisticsAJC is equipped with an “Illustrate” routine. It natively produces
several common figures, such as height vs range, drift vs range, pitch vs yaw
and angle of attack vs time, (if the model allows it). It can be either executed
within “Trajectory” as outlined in section 3.6 or at a later stage by providing
“Illustrate”with the same struct used to save a prior simulation. In this case
it simply processes the already existing data. This appendix gives the figures
resulting from the sample struct provided in (table 3.1). The corresponding
python script to process existing data:

from Ballistics_AJC import Illustrate

Illustrate(**Settings)

The code produces these figures:

0 100 200 300 400 500 600 700 800

Range (m)

0

100

200

300

400

500

600

H
ei

gh
t

(m
)

Hermite spline
Numerical solution: 239 Steps

Figure D.1: Sample output: Height vs range
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�2 �1 0 1 2 3

Yaw (degrees)

�2

�1

0

1

2
P

it
ch

(d
eg

re
es

)

Hermite spline
Numerical solution: 239 Steps

Figure D.2: Sample output: Pitch vs Yaw
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0 100 200 300 400 500 600 700 800

Range (m)

�2.5

�2.0

�1.5

�1.0

�0.5

0.0

D
ri

ft
(m

)

Hermite spline
Numerical solution: 239 Steps

Figure D.3: Sample output: Drift vs range
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Time (s)

0.0
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1.0
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A
ng
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(d
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)

Hermite spline
Numerical solution: 239 Steps

Figure D.4: Sample output: Angle of attack vs time
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0 200 400 600 800 1000

Range (m)

160

170

180

190

200

V
el

oc
ity

(m
/s

)

Hermite spline
Numerical solution: 239 Steps

Figure D.5: Sample output: Velocity vs time
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Appendix E

Sensitivity/uncertainty analysis
results

Sensitivity analysis (Elementary effects) is performed on a M1 artillery sim-
ulation (Rigid-body). Unlike traditional analyses that simply investigate a
predetermined point of impact, the entire trajectory is analysed. A time de-
pendent presentation of sensitivity yields a robust guide for understanding the
propagation of errors, prioritisation of parameters and model selection.

Four unique trajectories are analysed with distinct defining characteristics:
supersonic, subsonic and high or low ordinance (outlined in table E.1). This
appendix gives the results of the sensitivity analysis for all the parameters
investigated: location, velocity and angular velocity.

Table E.1: M1 artillery projectile cases

Run Number Twist (Cal/turn) Vm (m/s) QE (deg)
1 18 205 45
2 18 205 70
3 18 493 45
4 18 493 70
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E.1 Subsonic, QE = 45 study

E.1.1 Position sensitivity
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Figure E.1: Sensitivity to aerodynamic coefficients
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Figure E.2: Sensitivity to location and ambient conditions
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Figure E.3: Sensitivity to projectile properties
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Figure E.4: Sensitivity to location and initial conditions
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E.1.2 Velocity sensitivity
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Figure E.5: Sensitivity to aerodynamic coefficients
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Figure E.6: Sensitivity to location and ambient conditions
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Figure E.7: Sensitivity to projectile properties
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Figure E.8: Sensitivity to location and initial conditions
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E.1.3 Angular velocity
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Figure E.9: Sensitivity to aerodynamic coefficients
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Figure E.10: Sensitivity to location and ambient conditions
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Figure E.11: Sensitivity to projectile properties
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Figure E.12: Sensitivity to location and initial conditions
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E.2 Subsonic, QE = 70 study

E.2.1 Position sensitivity
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Figure E.13: Sensitivity to aerodynamic coefficients
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Figure E.14: Sensitivity to location and ambient conditions
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Figure E.15: Sensitivity to projectile properties

10 20 30 40

Time (seconds)

0.00

0.02

0.04

0.06

0.08

E
E

se
ns

it
iv

ity
m

ea
su

re
µ
⇤

xx Sensitivity

10 20 30 40

Time (seconds)

0.00

0.01

0.02

0.03

xy Sensitivity

10 20 30 40

Time (seconds)

0.00

0.02

0.04

xz Sensitivity

DC

QE

Vm

✓throw

✓C
↵0

�0

Tw

!y !z

Figure E.16: Sensitivity to location and initial conditions
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E.2.2 Velocity sensitivity
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Figure E.17: Sensitivity to aerodynamic coefficients

10 20 30 40

Time (seconds)

0.000

0.005

0.010

0.015

E
E

se
ns

it
iv

ity
m

ea
su

re
µ
⇤
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Figure E.18: Sensitivity to location and ambient conditions
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Figure E.19: Sensitivity to projectile properties

10 20 30 40

Time (seconds)

0.00

0.02

0.04

0.06

0.08

E
E

se
ns

it
iv

ity
m

ea
su

re
µ
⇤
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Figure E.20: Sensitivity to location and initial conditions
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E.2.3 Angular velocity sensitivity
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Figure E.21: Sensitivity to aerodynamic coefficients
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Figure E.22: Sensitivity to location and ambient conditions
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Figure E.23: Sensitivity to projectile properties
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Figure E.24: Sensitivity to location and initial conditions
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E.3 Supersonic, QE = 45 study

E.3.1 Position sensitivity
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Figure E.25: Sensitivity to aerodynamic coefficients

20 40

Time (seconds)

0.00

0.01

0.02

0.03

0.04

E
E

se
ns

it
iv

ity
m

ea
su

re
µ
⇤

xx Sensitivity

20 40

Time (seconds)

0.000

0.005

0.010

0.015

xy Sensitivity

20 40

Time (seconds)

0.00

0.01

0.02

0.03

xz Sensitivity

T0

P0

RH

VWX

VWY LA AZ AL

Figure E.26: Sensitivity to location and ambient conditions
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Figure E.27: Sensitivity to projectile properties
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Figure E.28: Sensitivity to location and initial conditions
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E.3.2 Velocity sensitivity
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ẋ0 Sensitivity

20 40

Time (seconds)

0.000

0.001

0.002

0.003
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Figure E.29: Sensitivity to aerodynamic coefficients
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ẋ2 Sensitivity

T0

P0

RH

VWX

VWY LA AZ AL

Figure E.30: Sensitivity to location and ambient conditions
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Figure E.31: Sensitivity to projectile properties
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Figure E.32: Sensitivity to location and initial conditions
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E.3.3 Angular velocity sensitivity
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Figure E.33: Sensitivity to aerodynamic coefficients
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Figure E.34: Sensitivity to location and ambient conditions
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Figure E.35: Sensitivity to projectile properties
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Figure E.36: Sensitivity to location and initial conditions
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E.4 Supersonic, QE = 70 study

E.4.1 Position sensitivity
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Figure E.37: Sensitivity to aerodynamic coefficients
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Figure E.38: Sensitivity to location and ambient conditions

.

Stellenbosch University https://scholar.sun.ac.za



APPENDIX E. SENSITIVITY/UNCERTAINTY ANALYSIS RESULTS 111

20 40 60

Time (seconds)

0.000

0.002

0.004

0.006

0.008

E
E

se
ns

it
iv

ity
m

ea
su

re
µ
⇤

xx Sensitivity

20 40 60

Time (seconds)

0.000

0.002

0.004

0.006

xy Sensitivity

20 40 60

Time (seconds)

0.000

0.005

0.010

xz Sensitivity

m d Ix It

Figure E.39: Sensitivity to projectile properties
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Figure E.40: Sensitivity to location and initial conditions
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E.4.2 Velocity sensitivity
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Figure E.41: Sensitivity to aerodynamic coefficients
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Figure E.42: Sensitivity to location and ambient conditions
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Figure E.43: Sensitivity to projectile properties
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ẋ2 Sensitivity

DC

QE

Vm

✓throw

✓C
↵0

�0

Tw

!y !z

Figure E.44: Sensitivity to location and initial conditions
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E.4.3 Angular velocity sensitivity
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Figure E.45: Sensitivity to aerodynamic coefficients
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Figure E.46: Sensitivity to location and ambient conditions
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Figure E.47: Sensitivity to projectile properties
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Figure E.48: Sensitivity to location and initial conditions
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Table E.2: Sample inputs and Sensitivity analysis

Input Distribution Range Units (SI) µ µ
⇤

�

Ambient conditions

T0 Uniform [ 5. 40.] �C 0.007 0.007 0.001
P0 Uniform [ 99698. 103991.] Pa -0.002 0.002 0
RH Uniform [ 8. 90.] % 0.001 0.001 0
VWX Uniform [-5.3 5.3] m s�1 0.002 0.002 0.002
VWY Uniform [-5.3 5.3] m s�1 0.001 0.003 0.003

Earth properties

LA Uniform [-38. -24.] deg 0.001 0.001 0
AZ Uniform [-180. 180.] deg 0.003 0.003 0.002
AL Uniform [ 0. 1000.] m 0 0 0

Projectile properties

m Normal [14.969 14.971] kg 0 0 0
d Normal [0.104 0.105] m -0 0 0
Ix Normal [0.022 0.024] kg m2 0.001 0.001 0
It Normal [0.22 0.243] kg m2 -0 0 0
CD0 Normal [ 95. 105.] % -0.006 0.006 0
CD2 Normal [ 95. 105.] % -0 0 0
CL0 Normal [ 95. 105.] % 0 0 0
CL2 Normal [ 95. 105.] % 0 0 0
CM↵0 Normal [ 95. 105.] % -0 0 0
CM↵2 Normal [ 95. 105.] % 0 0 0
CLP Normal [ 95. 105.] % -0 0 0
CMP Normal [ 95. 105.] % -0 0 0
CNP Normal [ 95. 105.] % 0 0 0
CN↵̇ Normal [ 95. 105.] % 0 0 0
CM↵̇ Normal [ 95. 105.] % 0 0 0

Initial conditions

DC Normal [-1. 1.] deg 0 0 0
QE Normal [44. 46.] m s�1 0.058 0.058 0
Vm Normal [204. 206.] deg 0.016 0.016 0
✓throw Normal [0. 0.054] deg 0.002 0.002 0
✓C Normal [ 0. 360.] deg 0 0 0
↵0 Normal [-0.1 0.1] deg 0 0 0
�0 Normal [-0.1 0.1] cal/turn -0 0 0
Tw Normal [17.8 18.2] rad s�1 -0 0 0
!y Normal [-1.44 1.44] rad s�1 0.001 0.002 0.002
!z Normal [-1.44 1.44] 0.001 0.001 0.002
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