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Abstract

Inverse Method for Static Load Reconstruction with
Sensitivity Filtering and Optimal Sensor Placement

M. Hanekom
Department of Mechanical and Mechatronic Engineering,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Mech)

March 2021

Static load reconstruction is a technique that uses the surface strain response 
of a prototype structure, in conjunction with a numerical model, to determine the 
magnitude of the applied loads with a least-squares estimate. A unit-load �nite-
element (FE) model describes the relationship between every input load and the 
elemental output strain where each �nite-element represents a potential location 
for mounting a strain gauge. The candidate set contains every desired potential 
gauge location-orientation combination (or candidate point). It is impossible to 
mount gauges at every candidate point, but with a D-optimal design, the optimal 
sensor placement can be determined. The response is assumed linear in order for 
the superposition principle to hold.

The D-optimal design selects elements that span the maximum volume of the 
candidate set, but makes no consideration for the practical aspects associated 
with mounting strain gauges. For example, during pilot studies, the design chose 
locations which were either inaccessible or where gauges measured incorrect strain 
values. A variety of �lters have been designed to exclude speci�c elements from 
the candidate set to prevent any practical di�culties in mounting strain gauges. 
These �lters are not limited to load reconstruction and can also be used in other 
strain gauge operations. The structural �lters remove elements at open and sharp 
edges as well as triangular �nite-elements. Next, incorrect values will be measured 
if the strain output is below the measuring capability of the sensor; thus, another 
�lter excludes elements whose numerically computed strain values are below this
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ABSTRACT iii

threshold. Experience has taught that a strain gauge should be mounted in an area
of high strain, but of low strain gradient. The �nal �lter is a statistical algorithm
that considers high strain gradients to be outliers and utilises an adjusted boxplot
method to remove candidate points that are associated with a high strain gradient.

Numerical experiments investigated the optimisation of various versions of the
candidate set, as well as how the number of candidate points in the design matrix
a�ects the reconstructed loads. All methods worked adequately, and more points
in the design (proportionality) matrix improved the accuracy with which loads
were calculated. During a physical experiment, it was found that a weighted
average proportionality matrix should be used to reconstruct the applied loads if
a strain gauge is glued over more than one �nite-element. Furthermore, the most
signi�cant source of error between the calculated and actual loads originates from
the di�erences between the FE and the actual model.
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Inverse Metode vir die Berekening van Statiese Kragte met
behulp van Sensitiwiteits�ltering en Optimale Sensor

Plasings

(�Inverse Method for Static Load Reconstruction with Sensitivity Filtering and Optimal 
Sensor Placement�)

M. Hanekom
Departement Meganiese en Megatroniese Ingenieurswese,

Universiteit van Stellenbosch,
Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Meg)

March 2021

Statiese lasrekonstruksie is 'n tegniek wat die oppervlakterespons van 'n proto-
tipe-struktuur gebruik om die grootte van die insetlaste te bepaal. As `n prototipe 
van die struktuur bestaan, kan die vervorming op die oppervlak gebruik word, 
met behulp van `n numeriese model, om die grootte van die insetlaste te bereken, 
mits die struktuur se respons linieêr is, sodat die beginsel van superposisie toegepas 
kan word. Die verhouding tussen die insetlaste en oppervlakvervorming kan bepaal 
word met behulp van `n eenheidslas-eindige elementmodel, waar elke element in die 
eindige elementmodel `n posisie voorstel waar `n rekstrokie geplak kan word teen `n 
sekere oriëntasie. Alle moontlike posisie-oriëntasie kombinasies word saamgestel in 
`n enkele struktuur, wat die kandidaatstel genoem word. Dit is ontmoontlik om `n 
rekstrokie by elke moontlik posisie-oriëntasie kombinasie (d.w.s kandidaatpunt) te 
plak, dus is 'n D-optimale ontwerp gebruik om optimale sensor plasings te bepaal. 

Die D-optimale ontwerp kies kandidaatspunte wat strek oor die volume van die 
kandidaatstel, maar maak geen voorsiening vir die praktiese aanhegtig van rek-
strokies nie. Dit veroorsaak dat die algoritme elemente kies wat ontoeganklik is, 
of die rekstrokie verkeerde lesings meet. Filters is ontwerp om sekere elemente van 
die kandidaatstel te verwyder. Hierdie �lters is nie beperk tot lasrekonstruksie 
nie en kan vir ander rekstrokie verwante toetse ook gebruik word. Die strukturele
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�lters verwyder alle driehoekige elemente, asook elemente wat teen oop en skerp
rande gevind word vanuit die numeriese model. `n Rekstrokie sal 'n verkeerde
lesing meet indien dit geplak word waar die vervorming kleiner is as die minimum
meetvermoë van die rekstrokie, dus moet elemente wat geassosieer word met `n
klein vervormingswaarde verwyder word van die kandidaatstel. Verder het erva-
ring geleer dat 'n rekstrokie ideaal in `n area met hoë vervorming geplak moet
word, maar waar die vervormingsgradiënt laag is. `n Statistiese �lter is ontwerp
wat hoë spanningsgradiënte as uitskieters sien en 'n aangepaste `boksplot' metode
is gebruik om elemente, wat geassosieer word met hierdie uitskieters, vanuit die
kandidaatstel te verwyder.

Numeriese eksperimente is uitgevoer om te ondersoek hoe verskillende variasies
van die kandidaatstel die D-optimale ontwerp beïnvloed, asook hoe die aantal
kandidaatspunte in die ontwerpsmatriks die rekonstruksie van insetlaste verander.
Dit is bevestig dat alle variasies van die kandidaatstel bevredigend werk en dat
hoe meer punte daar in die ontwerpsmatriks is, hoe meer akkuraat word die laste
gerekonstrueer. Nadat al die bogenoemde oorwegings in ag geneem is, is 'n �siese
eksperiment uitgevoer. Daar is gevind dat indien 'n rekstrokie oor meer as een
eindige-element geplak word, dat `n geweegde gemiddelde ontwerpsmatriks gebruik
moet word om die insetlaste te bereken. Verder is dit bevestig dat die grootste
oorsaak van foute ontstaan uit verskille tussen die numeriese en die werklike model.
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Chapter 1

Introduction

1.1 Project Background

The Engineering Research Chair for the Passenger Rail Agency of South Africa
(PRASA) at the Department of Industrial Engineering, Stellenbosch University,
initiated a project that aimed to predict the durability of a Commonwealth bogie-
frame of a class 5M train (Nickerson, 2017). A bogie-frame is a �load-bearing
structure, generally located between [the] primary and secondary suspension�
(BS EN 13749:2011). According to Nickerson, these trains, which have been in
operation since 1958, have �poor levels of [life] predictability [...] due to decades
of underinvestment.� Quantifying the durability of these bogie-frames is vital for
future usage and �evaluating its current market value� (Nickerson, 2017). Transnet
Engineering (TE), a subsidiary of Transnet SOC Ltd., which is responsible for the
maintenance and manufacturing of rolling stock within South Africa, currently
makes use of standards such as BS EN 13749:2011, to predict the strength of
bogie-frames.

The durability of a structure depends on the inherent strength, characterised
by its material behaviour and geometrical attributes, as well as the various applied
forces (Johannesson and Speckert, 2014). These forces can often only be approx-
imated; thus, engineers tend to design components with excessive safety factors
that, in turn, lead to more signi�cant production costs. TE's Research and De-
velopment (R&D) department realised the importance of realistically representing
the applied forces on any load-bearing structure, speci�cally bogie-frames, to pre-
dict its longevity. Any incorrect assumption could diminish its economic feasibility
(Augustine et al., 2016).

Mechanical forces are traditionally measured by placing a transducer (load cell)
within the load path (Plaskitt, 2016), i.e. between the structure and load trans-
ferring body or mechanism, but these sensors have notable limitations. It has

1
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the potential of changing the dynamic characteristic of the frame it is attached
to, which can lead to inaccurate force estimations (Gupta, 2013). Also, the load
paths are often inaccessible, and in some applications, loads are not directly mea-
surable by transducers, such as �uid-�ow induced forces (Gupta, 2013). Often
the structure needs to be modi�ed to accommodate load cells and not all desired
degrees of freedom can be measured (Augustine et al., 2016). Moreover, load cell
technologies are expensive.

1.2 Project Scope and Objectives

This study aims to develop a methodology that determines the applied forces on
any structure, without explicitly measuring these forces with a load cell, so that it
can be used in future studies to determine the applied loading on a bogie-frame.
Objectives are de�ned as follows:

� Develop a software programme for numerical data processing and optimisa-

tion. The programming tool must have two functions: process the structural
response data of a �nite-element (FE) model, in order to determine optimal
sensor placement locations. Secondly, it should determine the relationship be-
tween the input force and structural response in order to back-calculate the
imposed static forces using a linear least-squares estimate.

� Simulate a unit-load FE model of the structure. The response of this model,
which describes the relationship between the applied force and structural re-
sponse, will be used as the input data set to the software programme mentioned
above.

� Design an experiment in order to measure the actual response of the model.

Test results will be used, together with the second function of the software
programme, to calculate the imposed forces on the structure. Concurrently,
the exerted loads will be directly measured, to evaluate the accuracy of the
calculated forces.

� Develop an auxiliary software programme for geometrical and sensitivity �lter-

ing purposes. The intent is to exclude any data points from the numerical data
set to prevent the measurement of incorrect responses. The incorrect measure-
ment of the structural response can be due to both practical and numerical
constraints.

���������������������������
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This study aims to develop a methodology that determines the applied forces
on any structure, without explicitly measuring these forces with a load cell, so
that in future studies it can be used to calculate the loads applied to a bogie-
frame. Two overarching approaches exist for estimating loads. Load reconstruction

makes use of the structural response to back-calculate the applied loading, i.e.
working from the e�ect to the cause. A multi-body system (MBS) simulation
involves deconstructing a vehicle system into an interconnected dynamic (mass-
spring-damper) model. The road or rail path can be simulated to de�ne the input
loading, and, together with the dynamic model, the loads on the speci�c structure
of interest can be calculated.

Transnet Engineering currently uses the British Standard (BS) EN 13749 to
validate the mechanical strength of a bogie-frame. It requires performing an anal-
ysis, laboratory static and fatigue tests, and track tests. Commonly, a bogie that
passes the laboratory fatigue test will not be subject to track testing. Real ve-
hicle structures experience complex loading conditions that include combinations
of both time-independent (static) and time-dependent (dynamic and quasi-static)
loads. However, the laboratory tests detailed in EN 13749 utilise equivalent static
and quasi-static loading conditions, as opposed to the real dynamic load cases.
Thus, this study will also con�ne its scope to static and quasi-static loads. Quasi-
static loads are time-dependent, but the e�ect of inertia can be neglected (Gupta,
2013).

2.1 Load Reconstruction

Load reconstruction involves the transformation of an ordinary structure into a
force transducer where the magnitude of the applied loads can be determined with
an FE model and the measured structural response (Wannenburg and Heyns,
2010). This technique is suitable for static, quasi-static and dynamic loading
conditions (Gupta, 2013).

3
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There are various advantages to using this technique: �rst of all, the sensors
used to measure the structural response are inexpensive relative to load cells; thus
it is a cost-e�ective method to determine loads without a�ecting the load path
(Hunter, 2018). It was made clear by Maas (2015) that it is also bene�cial for
determining in-service loads when the technique was used on a mountain bicycle
to determine the operational loads during extreme jumps. It is computationally
e�cient, since it only needs unit-load static FE solutions for creating the strain-
load transfer matrix (Wannenburg and Heyns, 2010). However, it is required
that a prototype or similar vehicle already exists and that direct measurement of
the structural response is possible (Wannenburg and Heyns, 2010). Furthermore,
the strain-load transfer matrix is historically ill-conditioned, but Gupta (2013)
proposed the use of an exchange algorithm, and model order reduction for the
dynamic load cases, to improve the condition or sensitivity of this matrix.

Commercial software products such as True-LoadTM by Wolf Star Technolo-
gies (2017) and nCode (2020) by HBM Prenscia both use load reconstruction.
Extensive research was performed by Gupta (2013) on various techniques used to
reconstruct static, quasi-static and dynamic loads. Other researchers, from the
same institution, studied the identi�cation of dynamic moving loads (Augustine,
2015), distributed loads (Kobiske, 2015), impact loads (Chembakassery, 2018) and
transient loads (Wagle, 2018). Load reconstruction has also been used by Xiaofeng
et al. (n.d.), Slowinski (2017), Augustine et al. (2016), Maas (2015) and Murphy
and Tanner (2015) at various stages during product development.

2.2 Multi-body System (MBS) Simulation

A mechanical system is decomposed into di�erent rigid bodies with a mass and
inertia tensor which are connected by idealised constraints or force elements. These
connections describe the relative motion between the respective bodies. External
forces are loads applied from the outside onto the system - for example, the loads
imposed on the wheels of a rail-carriage system from the railroad. This set of rigid
bodies, connections and external loads de�ne the motion and reaction forces of the
system. Ultimately, a dynamic model can be constructed and used to determine
the forces between the interconnected components, such as the suspension loads
on a bogie-frame.

This technique is useful if direct measurements are not feasible (Wannenburg
and Heyns, 2010), since no existing prototype or similar vehicle is needed. A
description of the road pro�le is required, but it can be simulated from known
statistical or geometric information (Wannenburg, 2007, p.33). The rigid-body as-
sumption is not always valid for bodies such as tyres or springs, but the technique
can include the modelling of �exible bodies using the FE method (Johannesson
and Speckert, 2014). According to Johannesson and Speckert (2014), a Multi-Body
System (MBS) approach is most commonly used to calculate quasi-static and dy-
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namic forces on a vehicle structure, in order to perform fatigue analyses. However,
using MBS for estimating static loads is meaningless, since the dynamic model
reduces to a static equilibrium problem where the unknowns can be calculated by
solving the equilibrium equations.

Dietz et al. (1998) used MBS to predict the fatigue life of a railway bogie. A
freight locomotive had been modelled with SIMPACK MBS software as well as the
complete wheel-rail system. Then, the calculated dynamic loads were used in the
MBS-post-processor, FEMBS-1, to transfer these loads to an FE-model for calcu-
lating the stress distribution. Stichel and Knothe (1998) calculated the interaction
forces on a railway bogie from measured track irregularities to predict its fatigue
life. Luo et al. (1994) used a similar methodology to Stichel and Knothe (1998),
to develop a dynamic model of the vehicle using a software package developed
by British Rail, called VAMPIRE. Nickerson (2017) also used MBS to perform a
fatigue analysis on a Commonwealth bogie-frame.

2.3 Comparison of Methodologies

The objective of this study is to develop a methodology that determines the applied
forces on a structure without explicitly measuring these forces with a load cell;
the techniques associated with the two identi�ed approaches are compared in the
subsequent text. It should be noted that the scope of this study is limited to static
and quasi-static loading conditions.

Load reconstruction is suitable for determining static, quasi-static and dynamic
loading conditions, whereas MBS is not commonly associated with static loading
problems. MBS considers the entire vehicle transportation structure and the road
path, which makes this method computationally taxing. However, no existing
structure or prototype is required. Load reconstruction allows for in-service testing,
and Commonwealth bogie-frames are already in operation. Furthermore, since
it only requires linear static unit-load FE solutions for creating the strain-load
transfer matrix, load reconstruction is computationally more e�cient than MBS.

2.4 Conclusion

Two methodologies for estimating the applied loads on a bogie-frame were iden-
ti�ed and compared in this chapter. This information, together with the project
background, concluded that the load reconstruction technique would be further in-
vestigated. The succeeding chapter will elaborate on the theoretical fundamentals
of load reconstruction.
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Chapter 3

Static Load Reconstruction

3.1 Load Transducer Principle

The load reconstruction methodology depends on the behaviour of the imposed
loads as a function of time. Quasi-static forces are loads for which the e�ect of
inertia is neglected; thus, the principles for load reconstruction is similar to that
of static loads. Figure 3.1 will be used to explain the concept of transforming
a structure into its own load transducer, which forms the basis of static load
reconstruction. The �xed cantilever beam, with an axial force and bending moment
applied at its free end, has two strain gauges respectively mounted at the top and
bottom to measure the structural response.

a

b

F

Mb

SGu
εu(upper)

SGlo
εlo(lower)

Figure 3.1: Fixed cantilever beam with an axial and bending moment applied at
its free end. This schematic will be used to illustrate the concept of transforming
a structure into its own load transducer.

For a linear elastic material, the gauge response to each load, i.e. the relation-
ship between the axial force, bending moment and output strains at the upper and
lower surface, can be obtained from the stress-strain equations:

6
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These equations can be superimposed to give:

εu = − F

abE
+

1

6

Mb

a2bE
εlo = − F

abE
− 1

6

Mb

a2bE
(3.2)

which can be rewritten as a system of linear equations:


εu

εlo

 =


− 1

abE

1

6

1

a2bE

− 1

abE
−1

6

1

a2bE



F

Mb

 (3.3)

The total strain value measured by the top (or bottom) strain gauge will be equal
to the superimposed strain responses respectively caused by the axial force and
bending moment. Thus, for any arbitrary structure, such as the one in Figure 3.2,
the strain gauge measurements will equal:

ε1

ε2

ε3

f1

f2

Figure 3.2: Arbitrary structure to
illustrate the concept of superposi-
tion

ε1 = c11f1 + c12f2

ε2 = c21f1 + c22f2

ε3 = c31f1 + c32f2

⇓ (3.4)


ε1
ε2
ε3

 =

c11 c12
c21 c22
c31 c32

{f1
f2

}
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where cij is sensitivity of strain gauge i to load j. It is concluded that if the
structural response is linear and the deformations are small enough for superposi-
tion to hold, the relationship between the input loading and output surface strain
response can be written as:

ε = Cf (3.5)

ε is a (m× 1) vector of measured strains at m distinct locations and orientations,
C is a (m × n) proportionality matrix where m ≥ n, and f is a (n × 1) vector,
known as the load vector, of n applied forces on the structure (Gupta, 2013, p.32).
If the proportionality matrix is constructed from a unit-load FE model and the
strain vector is measured through physical testing, the applied force vector can be
calculated with a least-squares estimate:

f = [CTC]−1CTε (3.6)

This CTC matrix is known as the variance-covariance matrix, alternatively re-
ferred to as the information matrix.

3.2 Proportionality Matrix

It has been shown in the preceding section how static loads can be reconstructed
if the measured strain values and the relationship between the input load and
output strains, also known as the proportionality matrix, are known. However,
the conundrum is deciding where the analyst should measure these strain values,
since it will also dictate the content of the proportionality matrix. The subsequent
text will explain how the strain-load relationship in a numerical environment is
used to determine the proportionality matrix, which ultimately dictates gauge
mounting locations and orientations in an experimental environment.

3.2.1 Candidate Set

Certain key aspects of the linear equation should be de�ned �rst; thus, Equa-
tion 3.5 is expanded into its matrix form in Figure 3.3. The force vector (f) is
a one-dimensional array where each element in the vector represents an imposed
force. For instance, if two loads are applied to the structure, there will be two
elements in the load vector (see Equations 3.3 and 3.4). The problem of interest is
not necessarily identifying where forces are imposed on a structure, but instead its
magnitudes. Thus, for load reconstruction purposes, the analyst should discreetly

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 3. STATIC LOAD RECONSTRUCTION 9

choose which loads to include in the force vector. Maas (2015), for example, as-
sumed an initial set of loads that were subsequently reduced. If a force is not
included in the FE model, but acts on the physical structure, the estimated load
results will be corrupt; this is also true if too many loads are assumed.

Each �nite-element on the surface of the FE model represents a potential loca-
tion at which a strain gauge can be mounted; thus, it can be viewed as a simulated
representation of gauges in a numerical environment. If load fj is the only load
in the force vector with a magnitude of unity, and the rest of the components
equal zero, the j th column in the strain-load relationship model will be equal to
the strain �eld over the entire FE model. This idea of sequentially activating
loads with a magnitude of unity is used to construct the respective columns in this
strain-load relationship model which is also known as the candidate set.

Strain gauges only record measurements in its axial direction, but can be glued
onto a surface at di�erent orientations to measure strain in various global direc-
tions. The candidate set must be extended to also include strain measurements in
directions other than its axial direction. Henceforth, each row in the candidate set
is a speci�c combination of gauge location and orientation known as a candidate
point. Conclusively, if the superposition assumption remains true, the response
of a strain gauge at location and orientation i, equals:

εi = ci1f1 + ci2f2 + · · ·+ cijfj + · · ·+ cinfn (3.7)

where cij is the sensitivity of gauge i to load j, similar as in Equation 3.4. Equa-
tion 3.7 is a linear regression model which describes the relationship between de-
pendent (strain) and independent (applied force) variables.

3.2.2 Design Matrix

It is impossible to mount strain gauges at every possible candidate point, therefore,
it is required to identify how many gauges should be mounted where, and at
what orientation. Also, the composition of the proportionality matrix is directly
dependent on these selected candidate points.

Heath (2002) stated that inverse problems, like the load reconstruction prob-
lem, is historically ill-conditioned, which means it is sensitive to round-o� errors
and small changes in the input data. According to Gupta (2013), previous re-
searchers chose gauge locations that will decrease this sensitivity by improving
the condition of the proportionality matrix. Masroor and Zachary (1991) de�ned
a sensitivity parameter, which was directly proportional to the variance of the
force estimates, and selected various mounting locations and orientations, based
on their judgment, to reduce this variance. It was not practical to consider all pos-
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=

ε1,j

ε2,j

...

εi,j

...

εgp,j





Strain Field

Figure 3.3: The matrix and vector expansion of Equation 3.5. This schematic
shows how a unit-load vector, where fj = 1, is used to assemble the strain-load
relationship model and how this set can be extended to incorporate various gauge
location-orientations combinations. If p locations (i.e. �nite-elements) exist and
each strain gauge can be glued at g angles, the extended candidate set will consist
of g × p candidate points. The �rst p rows (or candidate points) will be at an
orientation of θ1; the next p rows will be at an orientation of θ2.
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CHAPTER 3. STATIC LOAD RECONSTRUCTION 11

sible combinations; thus, there was no guarantee that the global optimum set of
gauge location-orientation combinations were chosen. Wickham et al. (1995), how-
ever, saw the selection of gauges as an optimisation problem and used an exchange
algorithm to construct a D-optimal design.

Optimal designs are experimental designs that are optimal for some statistical
criterion (Trutna et al., 2013). The various forms of optimality criteria for a
design matrix include A-optimality, G-optimality, V-optimality and D-optimality
and are often referred to as alphabetic optimality criteria (Myers et al., 2009).
D-optimality tries to maximise the determinant of the information matrix of the
design matrix (Trutna et al., 2013) which, in succession, minimises the variances
of the model regression coe�cients of a pre-established model (Myers et al., 2009;
Trutna et al., 2013). According to Erikson (2017), the D-optimal design will choose
a subset that spans the maximum volume possible from the candidate set, which
will maximise the determinant of the information matrix. It is required that the
experimenter decide on the model of the design (e.g. a linear or second-order
response surface model) as well as specify the desired number of design points
in the design matrix. These design points are selected from a candidate set that
contains all the experiments that can possibly exist (Trutna et al., 2013).

The load reconstruction problem (Equation 3.7) is a linear model, and the can-
didate set consist of all the gauge location-orientation combinations. The method-
ology for creating this particular candidate set was explained in Section 3.2.1.
The D-optimal subset of candidate points, is known as the design matrix where
the rows correspond to optimal strain gauge locations and orientations. It is this
(m× n) subset that is also known as the proportionality matrix.

Gupta (2013) suggested the use of a sequential or k -exchange algorithm to �nd a
D-optimal design. He also noted that using D-optimality was e�cient and famous,
but that it can get stuck in a local optimum. Federov's Exchange Algorithm for
D-optimal Design is open-source software that can be used to �nd the design (or
proportionality) matrix. The algorithm was originally written in Fortran 77, but
wrapper functions make it usable in modern programming languages. There are
two shortfalls of the algorithm: it does not attempt to force di�erent points, i.e.
the same candidate point may be chosen several times and, occasionally, it fails
to �nd a full-rank starting design (Miller and Nguyen, 1994). Federov's Exchange
Algorithm uses Banachiewicz factorisation to calculate the determinant of the
information matrix:

CTC = RTDR (3.8)

where R is an upper triangular matrix and D is a diagonal matrix. The deter-
minant is equal to the product of the elements on the diagonal of D (Miller and
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Nguyen, 1994, pg. 670). According to Miller and Nguyen (1994), this method for
computing determinants is not used in other D-optimal designs. The stages of the
algorithm, as set out by Miller and Nguyen (1994), is:

1. Half of the points of the initial design are randomly selected. Sequentially
points are added to �ll the open design points by maximising the rank and
determinant for this subspace.

2. The rank of the initial design is checked. If the rank is de�cient, a candidate
point is selected that will increase the rank. A design point in the current
design, which can be removed without reducing the rank, is exchanged with
a selected candidate point. The process is repeated until the rank is equal
to n or cannot be further increased.

3. All points in the current design are considered for the exchange with any of
the available candidate points. The pair that will maximise the increase in
the determinant will be chosen for the exchange. This stage is repeated until
no further increase is obtained.

The RSTART parameter is set to TRUE; thus, a random start point (or initial
design) is created each time the algorithm runs. This procedure is repeated a
user-prescribed number of times (default of 1000 runs) in hopes of �nding a global,
and not a local, optimum from a random starting point (Miller and Nguyen, 1994,
pg. 671). A global optimum, however, is still not guaranteed.

3.3 Summary

In Figure 3.4 the general methodology for reconstructing static loads is outlined.
The linear static FE solutions for individual unit-loads in the force vector are
used to construct the candidate set. This set describes the linear relationship be-
tween the input loads and output strains for a limitless number of gauge location-
orientation combinations (or candidate points). The component cij in the candi-
date set correspond to the strain at candidate point i due to an active unit-load
at j in the load vector. A subset of candidate points, known as the design (or
proportionality) matrix, are selected from this candidate set with a D-optimality
design. The process entails selecting candidate points with an exchange algorithm
that will maximise the determinant of the information matrix of the design matrix.
Incidentally, this matrix also dictates the gauge mounting locations and orienta-
tions. The proportionality matrix and measured strain values can be utilised to
estimate the applied loads with a least-squares estimation.
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Figure 3.4: Methodology for static load reconstruction which includes constructing
a strain-load transfer candidate set from a unit-load FE model. This set is then
condensed to a matrix, using an optimisation algorithm, which is used together
with experimental measurements to inversely calculate the applied loads.
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Chapter 4

Finite-element (FE) Model
Preparations

The previous chapter described how the FE model is the link between the ap-
plied load vector and the measured strains. A well-prepared FE model is thus of
paramount importance, since it is also utilised to determine where strain gauges
should be mounted. This chapter will elaborate on the preparations that need to be
made within an FE environment to ensure compatibility with the Proportionality
or Design Matrix software (Section 5.2) and, ultimately, the testing environment.
Nastran is the default FE solver used for this project.

4.1 Two-dimensional (2D) Elements in Nastran

The load reconstruction software is only compatible with two-dimensional (2D)
elements; thus, it is necessary to understand the geometry and associated elemen-
tal coordinate systems (ECSYS) of the 2D elements frequently used in Nastran.
CQUAD4 (Figure 4.1a) is a four-node quadrilateral element and the most popular,
followed by CTRIA3 (Figure 4.1b) that is a three-node triangular element. The
orientation of the ECSYS is de�ned by the grid points order where the z axis, or
positive normal, is determined using the right-hand rule (Siemens, 2014a). Quadri-
lateral elements are often preferred for accuracy reasons, and triangular elements
are mostly used for �mesh transitions� or areas on the structure �when quadrilateral
elements are impractical� (Siemens, 2014a, pg. 4-13). FE models that primarily
consist of three-dimensional (3D) elements can be coated with 2D elements. In
the remainder of this section, all statements will apply to both quadrilateral and
triangular elements unless otherwise stated. However, when a decision needs to be
made, the choice will be partial to CQUAD4 elements.

14
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(a) CQUAD4 elements

xelement

G3

G2G1

yelement

zelement

(b) CTRIA3 elements

Figure 4.1: Element geometry and coordinate systems of the most commonly
used two dimensional (2D) elements in Nastran (Siemens, 2014a, pg. 4-15,16). Gi

indicates the respective grid points.
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4.2 Strain Gauge Considerations

Strain gauges can only measure strain at the surface of a structure; thus, the
necessary preparations must be carried out for the FE model to calculate strain
values at the structural surface. Structures of three-dimensional (3D) nature, such
as an engine or cast bogie-frame, can often only be modelled with solid elements.
These elements can exclusively output stress and strain values at centroids and
Gauss points, which are extrapolated to grid points (Siemens, 2014a, pg. 5-4).
However, it does not calculate strain values at the structural surface. One could
argue that the analyst can average the grid point outputs that shape the face of the
element tangent to the surface of the structure, but averaging after extrapolation
induces unwanted errors. Besides, there is no way of knowing which face of the
solid element is tangent to the surface without a graphical user interface (GUI).
The areas of interest for strain gauge measurements that consist of solid elements
should consequently be coated with a layer of 2D elements. Xiaofeng et al. (n.d.)
agreed that coating gives a more accurate surface output. Experience has taught
that the same material characteristics may be used for the coated elements, but
that an almost zero element thickness must be assigned not to change the sti�ness
characteristics of the structure. The validation procedure involves comparing dis-
placements at grid points before and after surface coating; if there is no signi�cant
di�erence in the calculated displacements, the surface coat is adequately applied.

Strain can either be output at the reference plane and curvatures (STRCUR)
or �ber distances (FIBER) (Siemens, 2014a, pg. 4-27). The FIBER command (see
Figure 4.4) allows the analyst to specify at which positions, through the thickness
of the 2D element, the strain output is desired. If the �ber distances (Z1, Z2)
are not speci�ed, Nastran will assume that Z1 corresponds to the bottom and Z2
to the top of the element based on the normal vector. The load reconstruction
software developed here will only consider strain values for the candidate set at
�ber distances greater than zero (Z > 0), i.e. at the top of the element surface.
To ensure compatibility with the Proportionality (or Design) Matrix software, the
analyst should review element normals and �ber locations (Figure 4.2) in the FE
environment, especially if an o�set was used to de�ne the element thickness.
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Figure 4.2: Cross-section of a two-dimensional (2D) element to explain the FIBER
command in Nastran. This schematic assumes that an o�set was not used when
the element thickness was de�ned.

Strain for all elements is recovered at the �element centre, and Gauss points
using the elemental strain matrix and the computed grid point displacements�
(Siemens, 2014a, pg. 4-28). CQUAD4 elements have the option to extrapolate
these computed values to grid points, using various methods (BILINEAR, CUBIC
and SGAGE) (Siemens, 2014a, pg. 4-29). It was decided that a strain gauge
should be attached at the centroid of an element; thus the strain results should be
requested using the CENTER command in Nastran's input �le (see Figure 4.4).

Strain gauges can only measure strain in its axial direction, and since 2D
elements are e�ectively computerised gauges, the elemental x direction will be
chosen as the simulated axial direction. It was mentioned in Section 3.2.1 that
strain gauges can be rotated on the surface of a structure to measure strain in
various global directions, where each di�erent orientation corresponds to another
candidate point. Nastran's output �le only provides strain tensors that reference
the elemental coordinate system (ECSYS); thus, the ECSYS will be used to rotate
the computerised strain gauge in-plane about the elemental normal to calculate
the strain output at various orientations.

4.3 Mesh Size Considerations

The discretisation of a structure into elements, also known as meshing, forms the
core of any FE analysis. Mesh re�nement is an iterative method that re�nes the
mesh in order to increase the accuracy of the computed solution; thus, it is an
essential operation in an FE analysis. Xiaofeng et al. (n.d.) highlighted that the
most signi�cant source of error between the calculated and actual loads originates
from the di�erences between the FE and actual model. It was understood that the
mesh size used by previous researchers in load reconstruction was dictated by the
dimensions of the strain gauges used during testing (Gupta, 2013; Dhingra et al.,

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. FINITE-ELEMENT (FE) MODEL PREPARATIONS 18

2013). For this research, it was reasoned that a mesh re�nement is critical and
that it should determine the mesh size as opposed to the dimensions of gauges.
If the mesh re�nement produces an exceptionally �ne mesh, the gauge will be
mounted over several �nite-elements and will e�ectively measure an average strain
over the �nite-elements covered by its grid length. This phenomenon will have a
direct e�ect on the choice of elements that are to be included in the proportionality
matrix, but this concern is investigated in Chapter 8.

4.4 Geometrical Considerations

The type of structure not only prescribes the element type that should be used (e.g.
plate or solid elements), but its inherent shape could also hinder the attachment of
gauges. It is occasionally not feasible to mount gauges in speci�c locations, such as
near load application areas, at an edge, between two �ushed components or other
inaccessible areas speci�c to the structure. The elements that comprise these
areas should be excluded from the group of elements submitted for computation
within the pre-processor. Consequently, the calculated strain values associated
with these elements will automatically be excluded from Nastran's results �le and
not be considered for the candidate set. Analysts and technicians often know from
experience which regions to exclude, but manually selecting elements can become
tedious and time-consuming, irrespective of how advanced the pre-processor is. A
variety of �lters were designed to automate the operation of selecting elements
in the FE model, based on its location. Details of these structural �lters can be
found in Section 5.1. The �lters do not account for all existing scenarios; thus it is
inevitably still required from the analyst to review the �lter selection and exclude
any additional elements from the group submitted for computation, within the
pre-processor.

The coordinates of the grid points in Nastran's input �le could reference any
random global coordinate system (GCSYS) if the FE model is incorrectly de�ned
(see Section A.1 for more information on the di�erent types of global coordinate
systems in Nastran). Secondly, the angle of orientation used in the candidate set
references the ECSYS of the corresponding shell element. An auxiliary function
was thus designed to assist technicians with measuring out the mounting points of
gauges. It transforms element location and orientation information to reference a
speci�c GCSYS provided that it is prede�ned in the FE environment and its label
(or ID) is known. The details of this software can be found in Appendix A.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. FINITE-ELEMENT (FE) MODEL PREPARATIONS 19

4.5 Software Speci�c Considerations

Reference has been made to how the FE model should be set up to ensure com-
patibility with the developed Proportionality (or Design) Matrix software, but in
addition to the requirements as mentioned earlier, it should also comply with the
following criteria. The example in Figure 4.3 has three distinct loads imposed on
the structure; i.e. the load vector has three components. The order of these loads
in the vector is irrelevant, but will dictate the order of the columns in the can-
didate set. The strain response to each load, with an assigned magnitude of one
(i.e. FA = FB = FC = 1), should respectively be computed as explained in Sec-
tion 3.2.1. Thus, to ensure compatibility with the software, each unit-magnitude
load component should be allocated to a subcase. The SUBCASE command is typ-
ically used in Nastran to �e�ciently analyse multiple load cases in a single analysis�
(Siemens, 2014b, pg. 8-2), where each subcase represents a separate, static loading
condition. Subcases are de�ned in the Case Control Section of Nastran's input
�le, of which an extract is provided in Figure 4.4. Requests above the �rst subcase
(indicated by A) apply to all subcases, while requests within a subcase (indicated
by B) are limited to only that subcase. The load reconstruction software only
accepts OP2 output �les; thus the Output Medium within the STRAIN requests
command in Nastran's input �le (Figure 4.4) should be set to PLOT so that the
results are reported in an OP2 �le.

FB

FA

Load Vector =



FA

FB

FC



FC

Figure 4.3: Three-load cantilever beam example used to explain the sequential
activation of unit-loads for compatibility with Proportionality (or Design) Matrix
software in Section 5.2.
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Figure 4.4: Case Control section of Nastran's input �le for the example in Fig-
ure 4.3. Three subcases are created for the load vector that consists of three
components; strain values are computed at �ber distances at the centre of each
element, and results are output in an OP2 format.

4.6 Summary

This chapter detailed the preparations that need to be made within an FE en-
vironment to ensure compatibility with the Proportionality (or Design) Matrix
software and testing environments. A concise explanation of the most commonly
used 2D elements in Nastran was provided, followed by a list of considerations
related to measuring with strain gauges. Insight was provided to the importance
of performing a mesh re�nement and its in�uence on the mesh size. Then, the
practicality to mounting gauges was considered and, lastly, it was detailed how
Nastran's input �le should be set-up to ensure compatibility with the software in
Section 5.2.
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Chapter 5

Software Development

It is required to process the FE model data in order to compile the proportion-
ality matrix and determine the strain gauge mounting locations and orientations.
This chapter will elaborate on the various pieces of software that were developed;
the �rst algorithm identi�es which �nite-elements to exclude from the candidate
set based on structural or strain-related criteria (Section 5.1), and the second al-
gorithm compiles, extends and optimises the candidate set to a proportionality
matrix that ultimately dictates gauge mounting locations and orientations (Sec-
tion 5.2). pyNastran (Doyle, 2019), an open-source Python-based software inter-
face for Nastran's input and output �les, was extensively used. It has a BDF
interface, that can read, edit and write Nastran input data, and an OP2 interface
to read large, binary results �les.

5.1 Filtering Software

It was found during trial tests that the optimisation algorithm chose candidate
points for the D-optimal design, where it was not necessarily practical to mount
strain gauges. Many of these areas can be manually removed from the solution set
submitted for computation within the FE pre-processor, which will automatically
exclude these �nite-elements from Nastran's results �le. Consequently, these ele-
ments will also not be considered in the candidate set. However, for complicated
structures, the manual selection process can become tedious and time-consuming.
Several �lters were developed in Python to identify speci�c �nite-elements that
should not be considered as candidate points. The reasons for wanting to exclude
these elements are not limited to load reconstruction, and thus these �lters are
also applicable to other strain gauge operations. The FE model in Figure 5.1 will
be used as a reference in the subsequent text to illustrate the typical di�culties
encountered when mounting strain gauges. The average element size equals 5 mm
and no mesh re�nement was performed.

21
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ρ = 2794 kg/mm3

ν = 0.33, t = 2 mm
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Figure 5.1: The sample FE model used to test the performance of �ltering software.
The strain response to the loads as indicated is also provided as reference for the
strain-related �lters.
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The FE model had to be translated into an appropriate format for a program-
ming environment �rst. Graphs were considered suitable objects, because these
data-structures consist of vertices that are linked by edges (Hagberg et al., 2019),
which meant the interaction between vertices could conveniently be added to the
metadata of the connecting edges. Each �nite-element corresponds to a vertex
within the graph; if two �nite-elements share at least one grid point within the FE
model, they are considered neighbours and an edge will be created between the
two corresponding vertices. The metadata of vertices and edges are summarised
in Figure 5.2, and each parameter will be de�ned throughout the subsequent text.

Nodes (Vertices)

Element Centroid (Cxyz)

Von Mises Strain (εVM )

Element Normal (z)

Edges (Links)

Radius (r)

Strain Gradient (SG)

Normal Angles (φ)

A

B

C

D

E

F

Number of Element Grid Points

Figure 5.2: Unidirected graph representing an FE model in a programming envi-
ronment with the associated metadata for vertices and edges.

5.1.1 Sharp Edges Filter

It was challenging to place gauges at sharp or tight corners and to remove the
installation tape subsequently; thus �nite-elements that create sharp edges should
not be considered as candidate points. A sharp edge is identi�ed by investigating
the element normals of neighbours; for example, in Figure 5.1 it is observed that the
angle between normals is not parallel but instead within the range 0° < φ < 180°.

The elemental z-axes, or normals, can be calculated by taking the cross-product
of intersecting vectors in the plane of the element (see Figure 4.1). Then, the angle
between the normals of neighbouring �nite-elements A and B in Figure 5.1, is:

φAB = cos−1

(
zA · zB

‖zA‖ ‖zB‖

)
(5.1)
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which is assigned to the graph edge that connects vertices A and B. For this
particular example, all vertices linked by an edge where the normal angle is within
the range 85° < φ < 95°, were added to the subset of elements that should be
removed from the candidate set. The analyst needs to specify this range as an
argument to the Sharp Edges �lter.

(a) One layer (b) Two layers

Figure 5.3: Results of the Sharp Edges �lter on a sample FE model. In (a) only
one layer of elements was removed and in (b) two layers of elements were removed
from the sharp edge.

5.1.2 Open Edges Filter

It was not easy to mount gauges at open edges during trial tests, because the
rough-textured surface �nish typically found at edges, hindered the placement of
sensors. Also, if a gauge needs to be mounted at the centre of Element C in
Figure 5.1 at an orientation aligned with the elemental x axis, for example, the
gauge will physically not �t. Simply moving the gauge inward is not an appropriate
solution, particularly if a high strain gradient exists within that area. The high
strain gradient phenomenon is detailed in Section 5.1.5.

A quadrilateral element at an open edge typically has �ve or less neighbouring
elements; however, if the element is warped, it can have more (see Figure 5.1).
This �lter identi�es all vertices with �ve or less neighbours and adds the associ-
ated �nite-elements to a subset that should be removed from the candidate set.
However, for this speci�c example where no mesh re�nement was performed, �nite-
elements with six or fewer neighbours were added to the subset. nNeighbours is
an argument to the Open Edges �lter (default value of 5) that can be adapted by
the analyst. In Figure 5.4a it is seen that the �lter failed to select the encircled
element because it has seven neighbours, but it was accounted for when a second
surrounding layer was selected in Figure 5.4b. It is important that the analyst
reviews the �lter selections.
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(a) One layer (b) Two layers

Figure 5.4: Results of the Open Edges �lter on a sample FE model. In (a) only
one layer of elements was removed and in (b) two layers of elements were removed
surrounding the open edge.

5.1.3 Triangular Element Filter

Quadrilateral elements are preferred for reasons provided in Section 4.1; thus, tri-
angular elements should not be included in the candidate set. However, if the
structure is modelled with 3D tetrahedral elements, triangular elements will auto-
matically be used for the surface coat (see Section 4.2); thus, for that particular
situation, triangular elements should not be excluded from the candidate set. The
results for Figure 5.1 are shown in Figure 5.5:

(a) One layer (b) Two layers

Figure 5.5: Results of the Triangular Element �lter on a sample FE model. In
(a) only one layer of surrounding elements was removed and in (b) two layers of
surrounding elements were removed from the triangular element.
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5.1.4 Minimum Strains Filter

In a load reconstruction pilot test, candidate points which corresponded to lo-
cations where the strain response was too small to be accurately measured by
a strain gauge, were selected. The D-optimal design will inevitably pick �nite-
elements with small strains, since it chooses a subset of candidate points that span
the largest volume possible from the entire candidate set, without taking the actual
strain values into account (Erikson, 2017). The strain response, however, is de-
pendent on the input loading; thus, the output �le of an FE model that estimates
the load magnitudes are required in order for this �lter to work. The loads are
indicated in Figure 5.1 and the elements, where εVM ≤ 10−3 mm/mm, are shown
in Figure 5.6. This threshold will be di�erent for various experiments and depends
on the minimum measuring ability of the strain gauge.

126

31

46
32

34

630 636
631

411

12

11

Figure 5.6: The minimum strain �lter

Table 5.1: Minimum strain �lter

Element ID Von Mises (εVM )

11 80.33× 10−6

12 241.24× 10−6

31 739.94× 10−6

32 539.03× 10−6

34 907.65× 10−6

46 539.82× 10−6

126 831.40× 10−6

411 578.72× 10−6

630 876.05× 10−6

631 383.51× 10−6

636 983.64× 10−6

5.1.5 Strain Gradient Filter

Strain gradient is the rate at which strain changes through a structure, and ex-
perience has taught that gauges should be glued in areas of high strain, but with
small strain gradients. The typical problem associated with large strain gradients
is matching the measured strain value to a �nite-element in the FE model. Barry
(2017), for example, found that at multiple locations the measured value did not
correspond to the simulated strain value and it speci�cally occurred in areas with
large strain gradients. Barry (2017) proceeded to investigate elements in a 20 mm
radius of the approximate strain gauge position, and the gauge-element correla-
tions were improved by choosing di�erent �nite-elements within this vicinity. An
extract from Barry (2017) is provided in Table 5.2, where the initially calculated
and improved percentage di�erences are compared. To conclude, if a gauge is not
precisely glued on the exact candidate point as intended in an area with large
strain gradients, the sensor could measure extreme erroneous strain values that
will in�uence the accuracy of the reconstructed loads.
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Large strain gradients in an FE model can be ampli�ed if the step from one ele-
ment to another adjacent element is too large, but by executing a mesh re�nement
or smoothing operation, the e�ect of this exaggerated gradient can be reduced
(Cook et al., 2002). Barry (2017), however, performed mesh re�nements on all
simulations to ensure that the models were converged yet pairing measured and
simulated values persisted in being a problem (Barry, 2017, p.87). Conclusively, a
�lter needs to be designed that pre-processes the strain data so that the placement
of gauges in areas where it could potentially measure erroneous values due to large
strain gradients, can be avoided.

Table 5.2: The percentage di�erence calculated between measured and simulated
strain values at elements in the FE model that correspond to the actual location of
the gauge. Then, the percentage di�erence was calculated between the measured
and simulated strain values of neighbouring elements within a 20 mm proximity
of the initially selectd element. Barry (2017) accepted values below 20 % which
are indicated in bold.

Strain Initial Element Nearby Elements Strain Initial Element Nearby Elements
Gauge % Di�erence % Di�erence Gauge % Di�erence % Di�erence

A 62.0 % -15.7 % M 50.0 % -33.3 %
C -10.0 % -15.1 % N 20.0 % -9.4 %
D -3.4 % -14.6 % O 24.0 % -16.5 %
E 31.3 % 19.2 % P 21.5 % -7.8 %
F 172.0 % 19.9 % S 124.6 % 10.8 %
K 38.1 % 16.4 % T 18.2 % 9.7 %
L 25.9 % -10.0 % W 17.4 % 26.1 %

Strain gradient depends on the interaction between �nite-elements; thus, an
appropriate parameter should be assigned to the graph edges. Strain values are
direction-dependent, which makes it mathematically incorrect to compare the sim-
ulated strain values of di�erent �nite-elements if these values do not reference the
same coordinate system. For example, in Figure 5.1, the elemental coordinate
systems (ECSYS) of Elements A and B from Section 5.1.1 are not identical, thus
εx of Element A cannot be compared to εx of Element B. The reader is reminded
that Nastran only outputs strain in the coordinate system of the element. There-
fore, the gradient is calculated using the Von Mises strain, since it is an equivalent
measure that is coordinate system independent and incorporates all directions of
in-plane strain. The strain gradient between two neighbouring elements equal:

SGAB =
|εA − εB|
rAB

(5.2)
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where εA is the Von Mises strain of Element A and εB is the Von Mises strain of
Element B at the surface of the structure. The radius, rAB, is the distance between
the element centroids:

rAB =
√

(Cx,A − Cx,B)2 + (Cy,A − Cy,B)2 + (Cz,A − Cz,B)2 (5.3)

The centroid of each element equals the vector average of either its three (CTRIA3)
or four (CQUAD4) grid points G1, G2, G3 or G4 (Figure 4.1).

Cxyz =


(G1x +G2x +G3x)/3

(G1y +G2y +G3y)/3

(G1z +G2z +G3z)/3

 or


(G1x +G2x +G3x +G4x)/4

(G1y +G2y +G3y +G4y)/4

(G1z +G2z +G3z +G4z)/4

 (5.4)

The strain gradients are assigned to the graph edges and the �nite-elements
associated with large strain gradients should be identi�ed next. However, the
di�culty lies in choosing a mathematically justi�able border that classi�es strain
gradient as being acceptable or �too high�. In statistics, a large strain gradient
can be considered an outlier which is a data point signi�cantly di�erent from the
rest of the data. According to Aggarwal (2013), most outlier detection algorithms
compute the �outlierness� of a data point based on how it deviates from a standard
pattern. The strain gradients were calculated for the FE model in Figure 5.1 and
graphed in Figure 5.7.
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Figure 5.7: Histogram of calculated strain gradients for the FE model in Figure 5.1.
The data is skewed to the right and follows a Weibull distribution.
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The data pro�le of the strain gradient is shown in Figure 5.7, and it is seen in
this histogram that the data is severely skewed to the right and follows a Weibull
distribution. A statistically signi�cant point that classi�es data points in the tail as
outliers, should be determined next. Common practice is to transform skewed data
to a distribution that is as �normal� as possible to increase the validity of the asso-
ciated statistical analyses (Feng et al., 2014). The aim is to ultimately introduce
symmetry into the data set. Statistical analyses tools for outlier detection of nor-
mal distributions include the use of standard deviations or the interquartile range
(IQR). Techniques to introduce symmetry in the data set were tried and proven
to be unsuccessful (see Appendix B). Further research found a method proposed
by Hubert and Van der Veeken (2008) on how to detect outliers in skewed data,
by adjusting a boxplot which does not rely on the assumption of a symmetrically
distributed data set.

A boxplot, also known as a box-and-whisker plot, is a popular tool to visualise
the data distribution of univariate data. The interquartile range of the data is
enclosed in a box of which the edges represent the 25th percentile (lower quartile)
and 75th percentile (upper quartile) as shown in Figure 5.8. The whiskers, w1 and
w2, of a standard plot, equals:

[Q2 − 1.5 IQR, Q3 + 1.5 IQR] (5.5)

of which the IQR equals Q3 − Q1. Q2 are the median or middle value of the
data set, Q1 are the middle value between w1 and Q2 and Q3 is the middle value
between Q2 and w2. The whiskers, w1 and w2, are the �minimum� and �maximum�
values respectively and excludes any outliers. Any values that extend beyond the
whiskers are considered to be outliers (Walpole et al., 2016). For this application
it is only required to consider values that are greater than w2.

Box

Whisker Whisker

w1 w2

Q2 Q3Q1

Lower Quartile Upper QuartileMedian

Figure 5.8: Standard boxplot with associated labels.

The method proposed by Hubert and Van der Veeken (2008) adjusts the
whiskers to di�erent scales on either side of the median; this adjusted boxplot
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method has proven to make a more acceptable distinction between regular obser-
vations and outliers whilst not assuming any distribution of the data (Hubert and
Vandervieren, 2008). The intervals are adjusted to:

[Q1 − 1.5e−4MC IQR, Q3 + 1.5e3MC IQR] (5.6)

if MC > 0 and

[Q1 − 1.5e−3MC IQR, Q3 + 1.5e4MC IQR] (5.7)

for MC < 0. The medcouple, MC, is a robust alternative measurement of skewness
as opposed to the classical skewness coe�cient (Brys et al., 2004). For univariate
data {x1, ..., xn} from a continuous unimodal distribution, the medcouple equals:

MC = med
xi≤Q2≤xj

h(xi, xj) (5.8)

where for all xi 6= xj, the kernel function is given by,

h(xi, xj) =
(xj −Q2)− (Q2 − xi)

xj − xi
(5.9)

A speci�c de�nition applies for the special case where xi = Q2 = xj and can be
found in Brys et al. (2004). This case, however, �occurs with zero probability�
(Hubert and Vandervieren, 2008, pg. 5). The medcouple thus equals the median
of all h(xi, xj) values for which xi ≤ Q2 ≤ xj. If the medcouple is equal to
zero, Equations 5.6 and 5.7 will reduce to Equation 5.5. Robustats, which is a
high-performance computation library of robust statistical estimators, was used to
calculate the medcouple (Bovo, 2020).

No elements must be removed from the FE solution set before applying this
�lter, since it is an outlier based technique which is in�uenced by the total number
of data points within the population. Secondly, since the strain values are required,
the analyst must estimate magnitudes for the applied loads. As opposed to the
Minimum Strains �lter, the number of elements that will be detected by the �lter is
not proportional to the magnitudes of the loads; thus, an assumed scaled value will
also be satisfactory. This statement is explained with an example in Section 8.1.
The Strain Gradient �lter was applied to the sample FE model with the assumed
load case in Figure 5.1. The vertices, which are linked by the edges that contain
strain gradient metadata that are considered to be outliers, were identi�ed and
the associated elements are shown in the FE environment. The outliers detected
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by the adjusted boxplot is compared to the outliers that would have been detected
by a standard boxplot in Figures 5.9 and 5.11. It is observed that the standard
boxplot detected more outliers than the adjusted boxplot method. Elements were
commonly selected at discontinuities, such as sharp edges, and in areas near loads
and constraints; these are all areas where large strain gradients are expected.

(a) Standard boxplot method (113 outliers) (b) Adjusted boxplot method (25 outliers)

(c) Strains of standard boxplot method (d) Strains of adjusted boxplot method

Figure 5.9: Results of the Strain Gradient �lter on a sample FE model. Using the
standard boxplot method (a) and the adjusted boxplot method (b). The strain
overlays of these elements are provided in (c) and (d).
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5.1.6 Concluding Remarks

All elements selected by the structural �lters, i.e. the Sharp Edges, Open Edges
and Triangular Element �lters, are shown in Figure 5.10. It is observed that
the candidate points are signi�cantly reduced, solely due to the impracticality of
mounting gauges in these selected areas. The reader is reminded that the structural
�lters can be used without any knowledge of the simulated strain values, but the
same is not true for the strain related �lters. The strain response is dependent
on the input loading, thus it is required that the user provides an FE model that
approximates the respective load cases, if these �lters are used for static load
reconstruction. Table 5.3 summarises the default parameters for each �lter, which
can be adjusted by the analyst.

(a) One layer (b) Two layers

Figure 5.10: Results of all structural �ltering on a sample FE model. In (a) only
one layer of surrounding elements was removed and in (b) two layers of elements
were removed.

Table 5.3: Default argument values for developed pieces of software

Variable Default Value Variable Default Value

Open Edges nNeighbours 5 Min. Strains minStrain 10−4 mm/mm

Sharp Edges phi 85° ≤ φ ≤ 90° Layers nLayers 1
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5.2 Proportionality (or Design) Matrix Software

This function extracts the unit-load strain data from the output �le of the FE
model using pyNastran. If the model was prepared as explained in Section 4.2
and Section 4.5, the software will loop over the subcases and add the informa-
tion of each subcase into dataframes (two-dimensional labelled data structures in
Python), shown in Figure 5.12a. A total thickness of 1.6 mm was assigned about
the reference plane and strain values were computed at the centre (CEN) of the el-
ements. The εxx values at �ber distances greater than zero (fiber_distance > 0),
which translates to the axial direction of gauges at the surface of the structure,
are read into another dataframe (Figure 5.12b) which constitutes the �rst p rows
of the candidate set.

Strain in ECSYS

Principal StrainsSection 4.2Section 4.2

(a) Dataframe as read from Nastran's OP2 �le.

(b) Dataframe constituting preliminary candidate set

Figure 5.12: The dataframe of elemental strain values, when read by OP2 interface,
is shown in (a). This example contains the calculated strain values of Subcase 1 of
an FE model with the input �le shown in Figure 4.4. The dataframe in (b) contains
the �rst p rows of the candidate set. This FE model consists of �ve �nite-elements
(p) and has three imposed unit-loads (n).
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Strain in the elemental x-direction was chosen as the computerised axial direc-
tion of gauges; it is required to create an extended candidate set to accommodate
various gauge orientations on the surface of a structure. Gauges can only be ro-
tated in-plane (Figure 5.13), thus the axial strain at any angle θ equals (Hibbeler
and Sekar, 2013, pg. 536):

εθ = εxx + εyy + (εxx − εyy)cos(2θ) +
εxy
2
sin(2θ) (5.10)

The candidate set was extended to include four rotations (g = 4) at θ = 0°, 45°, 90°
and 135° for which the results from Equation 5.10 were concatenated to construct
the extended candidate set. These orientations can be modi�ed, and the analyst
is not limited to using all four of these angles.

xx

yy yy

xx

εθ

θ

Figure 5.13: Schematic of in-plane strain transformation to demonstrate the rota-
tion of gauges on the surface of a structure.

The second function is Federov's Exchange Algorithm (Miller and Nguyen,
1994), that reduces the extended candidate set to a design matrix that is ulti-
mately used as the proportionality matrix in Equation 3.5. The candidate set that
contains all the possible gauge location-orientation combinations is an argument
(or variable) passed to the algorithm, and the candidate points that will maximise
the determinant of the information matrix will be selected from this set. It is
worth noting that the algorithm is deterministic; thus multiple random starting
designs (default = 1000 runs) are evaluated before selecting the best design ma-
trix, to deal with the presence of local minima. It also is required that the user
passes the algorithm an integer value m (≥ n) that equals the number of desired
design points in the design matrix. However, as mentioned in Section 3.2.2, the
algorithm does not attempt to force unique points, i.e. the same candidate point
may be chosen several times; consequently, it will not necessarily �nd m distinct
points.
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5.3 Summary

This chapter detailed the various pieces of software that were developed. The �rst
algorithm identi�es which �nite-elements to exclude from the candidate set, based
on certain structural and strain related criteria. The second algorithm compiles,
extends and optimises the candidate set to a proportionality matrix that dictates
gauge mounting locations and orientations.
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Chapter 6

Implementation of Filters

The previous chapter detailed the design of the �ltering software and its application
on a simple FE model. Four numerical models were additionally made available
and used to test the performance of each �lter. Three models were originally
from another research project on reinforced pipes by Barry (2017), and the last
model is a commercial model of a hauler truck sub-assembly constructed by a local
engineering company.

6.1 Case Study I: Reinforced Pipe Simulations

Barry and Venter (2019) investigated reinforced steel pipes for bulk water pipelines.
FE analyses were performed to investigate the stress-strain behaviour of various
models and to evaluate the experimentally obtained measurements of the Amer-
ican Water Works Association's (AWWA) M11 design model. The pipes were
modelled as mid-plane shell models and meshed with �rst-order bi-linear quadri-
lateral shell elements. A surface-to-surface �xed contact was used at the collar
(Figure 6.1a) and wrapper (Figure 6.1c) interfaces since a zero relative displace-
ment was assumed. Rigid (RBE2) elements constrained all nodes at the open ends
of the pipes to an independent, imaginary centre node to which a force equal to
the internal pressure was assigned. An independent node at one end was fully
constrained to prevent rigid body motion.

37
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(a) Collar Reinforced Tee (b) Crotch Reinforced Tee (c) Wrapper Reinforced Tee

Figure 6.1: FE models of reinforced pipes as provided by Barry (2017). The
reinforcements are highlighted in blue.

6.1.1 Structural Filters

The results of the Open Edges �lter are provided in Figures 6.2a, 6.2c and 6.2e.
Elements with �ve or fewer neighbours were considered (nNeighbours = 5), since
a mesh re�nement was already performed on all models. In Figure 6.2c it is seen
that the �lter did not select all elements on the crotch plate. However, the gaps
are accounted for when the second layer of elements are removed (Figure C.1c).
None of these models contain any triangular 2D elements. The results of the Sharp
Edges �lter are provided in Figures 6.2b, 6.2d and 6.2f. Neighbouring elements
with normal angles within the range 5° < φ < 175° are highlighted. It is observed
in Figures 6.2d and 6.2f that elements were selected on the vertical extension of the
pipes. Further inspection on the wrapper reinforced model shows that the angles
for these adjacent elements are within the range 5° < φ < 5.5°. The investigation
was repeated for the crotch reinforced model, and the �ndings are summarised in
Table 6.1.

Table 6.1: Incorrectly selected elements by Sharp Edges �lter on pipe models.

Model
Total Elements

in Mesh
Elements Incorrectly
Selected by Filter

Range
Average Element

Size [mm]

Collar 110174 0 - 10
Crotch 48262 268 5.0 < φ < 5.5 20
Wrapper 70973 15 5.0 < φ < 6.6 10
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The crotch model was most a�ected by the incorrect selection of elements by the
Sharp Edges �lter. It has a coarser mesh than the other models, which means that
a single �nite-element covers a greater surface area; this resulted in the normals
of neighbouring elements not to be parallel on a curved surface. Filters were
designed to automate the selection process of elements that need to be excluded
from the candidate set, because manually selecting these elements is tedious and
time-consuming. It is, however, still required that the analyst reviews the �lter
selected elements in the FE pre-processor.

6.1.2 Strain Filters

Strain �lters identify any �nite-elements that are not measurable by a strain gauge
or elements within an area with large strain gradients. For these �lters to work with
load reconstruction, estimates of the load magnitudes need to be made. However,
since these models were externally procured and are real-life simulations with
known loads, the models were used with forces magnitudes as provided. The
strain response of each model is shown in Figure 6.3 for reference.

The Minimum Strains �lter was used to select all elements with simulated
strain values below 100 µmm/mm, and the results are shown in Figure 6.4. For the
crotch reinforced pipe, one can see that the Minimum Strains �lter chose elements
within the dark blue areas, which corresponds to small strains. The results of the
Strain Gradient �lter, that follows the adjusted boxplot outlier detection method,
are shown in Figure 6.5. It is observed that the algorithm managed to identify
elements in areas with rapidly changing strain contours. These areas are at the
pipe intersections, and where the reinforcements of the collar and wrapper models
connect to the pipe; it is expected to �nd high strain gradients at structural
discontinuities. Outliers were also detected at the edges where reaction forces
were applied. These loads get extrapolated to the dependent nodes of the RBE2
constraints, and it is expected to �nd a strain gradient at these load distribution
points.
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(a) Open Edges: Collar (b) Sharp Edges: Collar

(c) Open Edges: Crotch (d) Sharp Edges: Crotch

(e) Open Edges: Wrapper
(f) Sharp Edges: Wrapper

Figure 6.2: Structural �lters on reinforced pipes with single layer removal. The
elements in green are elements that are kept and those in orange are �ltered out.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. IMPLEMENTATION OF FILTERS 41

(a) Collar Reinforced Tee

(b) Crotch Reinforced Tee

(c) Wrapper Reinforced Tee

Figure 6.3: Strain results of reinforced pipes as provided by Barry (2017).
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(a) Collar Reinforced Tee

(b) Crotch Reinforced Tee

(c) Wrapper Reinforced Tee

Figure 6.4: Minimum Strains �lter on reinforced pipes. The elements in green are
elements that are kept and those in orange are �ltered out.
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(a) Collar Reinforced Tee

(b) Crotch Reinforced Tee

(c) Wrapper Reinforced Tee

Figure 6.5: Strain Gradient �lter, using the adjusted boxplot method, on reinforced
pipes. The elements in green are elements that are kept and those in orange are
�ltered out.
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(a) Collar Reinforced Tee

(b) Crotch Reinforced Tee

(c) Wrapper Reinforced Tee

Figure 6.6: All �lters on reinforced pipes. The elements in green are elements that
are kept and those in orange are �ltered out.
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6.2 Case Study II: Hauler Truck Sub-Assembly

An FE model was created of a sub-assembly on a hauler truck. This model does
not solely consist out of two-dimensional (2D) elements, as was the case for the
reinforced pipe simulations and other models used for testing the �lters. The result
of all structural and strain �lters are shown in Figure C.3.

6.2.1 Structural Filters

The results of the Open Edges �lter for single and double layer removals are shown
in Figures 6.7a and C.2a and the �ndings were similar to the reinforced pipe simu-
lations. It was noticed in Figure 6.7a that the Open Edges �lter chose certain trian-
gular elements, but since the Triangular Element �lter will remove these elements,
it is not a cause for great concern. In Figure 6.7a it appears as if elements were
wrongfully selected where the dark blue mesh connects to the turquoise mesh, as
shown in the insert; however, these elements do not share nodes with the turquoise
mesh, due to the impracticality of welding the parts together within that area.

The results of the Sharp Edges �lters are shown in Figure 6.7b and Figure C.2b.
Normal angles within the range 85° < φ < 95° (perpendicular elements) were
considered. It appears that not all elements (encircled in red) were selected; the
angles between these elemental normals are actually at an average of 65°. The area
where the 3D mesh �ts into the 2D mesh was also not part of the selection, because
these elements are not connected with mutual nodes. Note that the aim of the
�lters is to decrease the user's input, but not completely remove their contribution.
One's discretion should be used when choosing a range of angles and to always
validate the �lter selection.

6.2.2 Strain Filters

The results of the Minimum Strains �lter are shown in Figure 6.8a where strain
values below 100 µmm/mm were �ltered out. Results for the Strain Gradient �l-
ter, that follows the adjusted boxplot outlier detection method, are shown in Fig-
ures 6.8b. Elements were selected by the �lter at locations where high strain gra-
dients are expected. Outliers were typically identi�ed where the di�erent meshes
connect, such as sharp edges, and within the vicinity of applied loads and con-
straints (encircled with red). The �lter also managed to select elements that
comprise the modelled welds, i.e. according to the �lter a large strain gradient
exist in the welded areas.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 6. IMPLEMENTATION OF FILTERS 46

(a) Open Edges Filter

(b) Sharp Edges Filter

Figure 6.7: Structural �lters on hauler truck model with single layer removal.
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6.3 Summary of Filter Selection

Various �ltering functions were tested on four real-life FE analyses which allowed
the evaluation of the software and further development thereof. Table 6.2 sum-
marises the percentage elements that each respective �lter removed from the FE
models. For the hauler model, 7.47 % of the elements can be excluded from the
candidate set, only due to the inability of mounting a strain gauge at sharp edges.
Any elements that the �lters `incorrectly' selected were not excluded from these
calculations, and individual �lters might have removed similar elements. The �All
Filters� row refers to the combined number of elements removed by all �lters.
Conclusively, the �lters signi�cantly reduce the e�ort required to manually select
�nite-elements, but the user is still required to review all �lter selections to identify
any elements that were incorrectly selected as in Figures 6.2d and 6.2f.

Table 6.2: Summary of elements removed by �lters on real-life FE models.

Collar Crotch Wrapper Hauler Model

Total 2D
Elements 110 174 100 % 48 262 100 % 70 973 100 % 123 750 100 %

Open
Edges 728 0.66 % 717 1.49 % 520 0.73 % 2 965 2.40 %

Sharp
Edges 2 415 2.19 % 713 1.48 % 2 306 3.25 % 9 245 7.47 %

Triangular
Elements - - - 1 362 1.10 %

Minimum
Strains 13 488 12.24 % 1 119 2.32 % 13 457 18.96 % 2 638 2.13 %

Strain
Gradient 6 525 5.92 % 5 464 11.32 % 5 818 8.20 % 10 376 8.38 %

All
Filters 19 939 18.10 % 6 264 12.98 % 19 654 27.69 % 17 379 14.04 %
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Chapter 7

Numerical Investigations on Design
Matrix

Reducing the candidate set to a proportionality matrix seems straightforward un-
til certain practicalities are considered. For example, typical loading conditions
experienced by un-powered railway bogies with central pivoting and two side-
bearers (see Figure 7.1) are illustrated in Figure 7.2. Potentially, nine loads can
be imposed on the bogie, but not necessarily all simultaneously. According to
BS EN 13749:2011, two cases are considered for mass bearing vertical forces: in
Case 1, the mass of a coach or wagon is either entirely carried by the pivot (Fp)
or in Case 2, also known as rolling, the force is applied to both the pivot and
one side-bearer (either Fz1 or Fz2). If a train vehicle travels around a bend, an
additional transverse axle force (±Fy) will also act on the bogie. If the wheels do
not align accurately with the rail, longitudinal lozenging forces will exist.

Figure 7.1: An un-powered railway bogie with central pivoting and two side-beares
(Connor, 2019).

49
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Fx1 (Fx2)

(Fx2)
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Mass Bearing Forces

Axle Forces

Longitudinal Lozenging Forces

Figure 7.2: Typical forces experienced by a bogie with a central pivot and two
side-bearers.

It will be investigated whether all potential forces should be included in the
candidate set or only those active during a particular operation. This aspect was
not dealt with in the literature studied, since previous work by other researchers
only had a single load case where all components were active. It will be investi-
gated how the optimisation process, that dictates gauge mounting locations and
orientations, is a�ected and how the number of design points in the proportionality
matrix in�uences the reconstruction of loads. The numerical model in Figure 7.3,
which was the initial concept for a physical load reconstruction experiment, will be
used for these studies. It should be noted that a mesh re�nement was performed,
but that no �ltering was applied.

Tr
an
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na
l C
on
st
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ts

Unit Load B

Unit Load A
Unit Load C

Unit Load D

Figure 7.3: Finite-element (FE) model of initial testing setup that is used for
numerical studies.
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7.1 Optimal Number of Strain Gauges

A decision needs to be made on how many candidate points to include in the
proportionality matrix, since it ultimately dictates the number of strain gauges
that should be mounted. According to Gupta (2013), more gauges will result in
a better estimate of the applied loads, since additional information is known, but
it was also noted in Section 3.2.2 that Federov's Exchange Algorithm does not
attempt to force unique design points. This characteristic of the algorithm can
cause duplicate rows in the design matrix to exist.

In Test Cases 1 to 3, all four potential loads are simultaneously applied at
unit-load positions and will be used to investigate the statements as mentioned
earlier. One should be reminded that the minimum number of candidate points to
be included in the proportionality matrix, m, must be equal or greater than the
number of columns in the candidate set, i.e. m ≥ n. Thus, there should be at least
four rows in the design matrix for Test Cases 1 to 3. The linear static solution of
each test case in Figure 7.4 was solved, and a uniformly distributed random error
was arbitrarily added to the strain results, i.e.

Cf ′ = ε + e (7.1)

where e is a (m× 1) vector with −0.05εi ≤ ei ≤ 0.05εi. The candidate set of each
test case was constructed from the same unit-load model in Figure 7.3, thus the
design (or proportionality) matrices will be identical for all test cases.

13kN
15kN 12kN

14kN

(a) Test Case 1

12kN
13kN 14kN

15kN

(b) Test Case 2

14kN
12kN 15kN

13kN

(c) Test Case 3

Figure 7.4: Test cases for investigating how the number of design points (i.e.
strain gauges) in�uence load reconstruction. All four potential loads are applied
simultaneously.
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The least-squares estimation of f ′ was determined for 100 di�erent error in-
duced strain vectors (i.e. ε + e). The percentage root-mean-square (RMS) error
between the applied and calculated forces were determined as follows (Gupta, 2013,
pg. 30):

e%rms =

(√∑
(fapp − frec)2√∑

(fapp)2
× 100

)
% (7.2)

where fapp is the measured (or known) applied load, and frec is the reconstructed
load. This calculated RMS error for Test Cases 1 to 3 is plotted in Figure 7.5 and
Figure 7.6 against the number of design points (m) the user requested to be in the
design matrix. As mentioned, even though the user requests m design points, the
algorithm does not always manage to �nd m distinct design points. The propor-
tionality (or design) matrices used in Figure 7.5 only contain the distinct design
points, and in Figure 7.6, the duplicate points were included in the proportionality
matrix, i.e. the same row may appear multiple times.

From Figure 7.5 it can be seen that the optimal number of design points for this
particular model equals double the number of unit-loads (candidate set columns
(n)) and that it exceeds the performance of 9 design points. Even though the
user increased the request for design points, Federov's Exchange Algorithm failed
in �nding the corresponding amount of distinct points. Figure 7.6 proves that
adding duplicate points makes no signi�cant improvement in the calculated RMS
error, which is con�rmed by Figure 7.7. The minimum RMS error in Figure 7.6
corresponds to 9 design points; however, only 8 of these points are distinct. It is
thus concluded that, for this particular experiment, a number of strain gauges that
equals double the number of unit-loads (i.e. eight strain gauges) are the optimal
quantity for reconstructing the applied loads and it is su�cient to only include the
distinct design points in the proportionality matrix.

7.2 Di�erent Optimisation Methods

In the introduction of this chapter, it was explained how a bogie has multiple
potential forces, but that not all are necessarily simultaneously applied. If a bogie
travels around a bend and the vehicle mass is carried by the pivot and one side-
bearer, only three of the nine potential loads will be imposed (Fp, Fz1 or Fz2, and
+Fy or −Fy). An option exists to optimise the full candidate set, i.e. the nine-
column set, and to only reduce columns after optimisation to ensure compatibility
with Equation 3.5. Alternatively, one can optimise a partial candidate set, i.e. a
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Figure 7.5: The e�ect of the number of design points (i.e. strain gauges)
on the calculated RMS error of reconstructed loads with only distinct
points in the proportionality matrix.
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Figure 7.6: The e�ect of the number of design points (i.e. strain
gauges) on the calculated RMS error of reconstructed loads with dupli-
cate points in the proportionality matrix.
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Figure 7.7: The e�ect of the number of design points in the proportionality
matrix on the calculated RMS error.

reduced three-column set. Similarly, the model in Figure 7.3 contains a set of four
loads, yet in Test Cases 4 to 9 only a subset of these loads are imposed.

Three di�erent optimisation methods are illustrated in Figure 7.8. The �rst
method optimises the full candidate set, and the columns of the output matrix
are reduced to the proportionality matrix, the second method optimises a partial
candidate set, and the last method performs a double optimisation where the full
candidate set is optimised, followed by the partial optimisation of the consequent
design matrix. The resultant proportionality matrices will be used to reconstruct
the loads with a least-squares estimate. It is expected that the partial optimisation
method will be the best performer, since it optimises a candidate set without break-
ing the D-optimality criterion. Both the full and double optimisation methods add
an extra variable to the candidate set that changes the actual mathematical model
in question. However, if one chooses the partial or double optimisation method,
there is the potential for having di�erent sets of strain gauges for each load case,
which is not practical.
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Figure 7.8: Candidate set optimisation techniques
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The three optimisation methods will be applied to the test cases in Figures 7.9,
and the performance of each method will be investigated and compared in the
following text. Based on the �ndings in Section 7.1, only unique design points
will be used throughout these optimisation processes as well as an error induced
strain vector, explained in Equation 7.1, for the force calculations. It should be
noted that the minimum number of design points that can be included in the
proportionality matrix depends on the number of columns in the candidate set
before candidate set reduction (Miller and Nguyen, 1994).

Test Cases 4 to 9 can be considered sub-loading conditions of Test Cases 1 to 3.
As mentioned, the sequence in which unit-loads are applied to the unit FE model
will dictate the order of the columns in the candidate set and, consequently, the
columns in the design (or proportionality) matrix. For example, in Test Case 4
there is no load at location D - i.e. the load at this location equals zero - thus
whenever the columns of either the candidate set or matrix need to be reduced
(see Figure 7.8), the fourth column will be removed. Similarly, for Test Case 6,
the �rst column will be removed during column reduction.

13kN
15kN 12kN

14kN

(a) Test Case 4

13kN
15kN 12kN

14kN

(b) Test Case 5

13kN
15kN 12kN

14kN

(c) Test Case 6

13kN
15kN 12kN

14kN

(d) Test Case 7

12kN
14kN

14kN

(e) Test Case 8

15kN 15kN

13kN

(f) Test Case 9

Figure 7.9: Test cases for investigating how various optimisation techniques in�u-
ence load reconstruction.
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The di�erent methods are compared in Figures 7.10 and 7.11. The full op-
timisation method resulted in the lowest average RMS error, except for Test
Cases 6 and 9, even though it was expected that the partial optimisation method
would outperform the other methods. It can be due to the ability of the opti-
misation algorithm to �nd more distinct design points when optimising the full
candidate set, as opposed to the other candidate sets. It is also clear from all plots
that the average RMS error decreased as the number of distinct design points in
the proportionality matrix increased, except for Test Case 6 and 9. The partial
and double optimisation methods failed to increasingly �nd distinct design points
even though the request for more increased.

7.3 Summary

From Test Cases 1 to 3 it was found that only considering distinct design points
in the proportionality matrix, is su�cient for load reconstruction. Then, it was
con�rmed that smaller RMS errors are calculated if the number of distinct design
points in the proportionality matrix increased, however, the optimal number of
design points, for this particular example, equalled double the amount of columns
in the candidate set, i.e. m = 2n = 8 even though nine distinct points were
found. Ultimately, eight strain gauges should be mounted for the particular model
in Figure 7.3.

It can be deduced from Section 7.2 that the full optimisation method may be
used to determine which design points to include in the proportionality matrices.
This implies that only one candidate set needs to be optimised, thus less compu-
tational e�ort is required. Also, Test Cases 4 to 9 will all have the same design
points, and thus only a single set of strain gauges can be mounted to reconstruct
multiple test cases. Ultimately, choosing the full optimisation method decreases
both the computational and physical e�ort for performing load reconstruction.
However, it is worth noting that actual locations and orientations of gauges were
not investigated. There is thus the possibility that the design points which the
algorithm selected, are not conducive for practically mounting gauges.

Conclusively, even though the full optimisation method is preferred, all three
methods seem to work adequately. It is thus advised that the analyst run all three
methods and select the most practical set of results. This will be demonstrated in
Chapter 8.
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(a) Test Case 4

(b) Test Case 5

(c) Test Case 6

Figure 7.10: E�ect of various optimisation methods on the reconstruction of loads
in Test Cases 4 to 6.
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(a) Test Case 7

(b) Test Case 8

(c) Test Case 9

Figure 7.11: E�ect of various optimisation methods on the reconstruction of loads
in Test Cases 7 to 9.
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Chapter 8

Experimental Implementation

The numerical implementation of the various software and the considerations made
concerning optimising di�erent candidate sets were investigated in the previous
chapters. This chapter will incorporate all these aspects into an actual static load
reconstruction test. A bogie was not available for testing; thus, it was decided
to use a representative, but a geometrically simpli�ed structure where loads were
applied by suspending weights (see Figure 8.1). The strain response was mea-
sured with uni-directional electrical resistant strain gauges, and the ability of the
technique to reconstruct multiple loads was investigated.

Steel Clamp

Weights

Figure 8.1: Physical setup of multiple load reconstruction experiment. This speci�c
image corresponds to the setup for Load Case 3
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Geometrical mid-planes meshed with 2D elements were used to model the struc-
ture numerically. Washers were inserted between the aluminium tube and the steel
clamp on all four sides; thus the translation degrees of freedom (DOF) of all nodes
in the circular areas were constrained with RBE2 elements as indicated in Fig-
ure 8.2. Similarly, a single DOF was constrained on the sides of the frame. A
mesh re�nement was performed, welds were not modelled, and the default mate-
rial properties for an aluminium alloy in the FE pre-processor was used.

2014 Aluminium Alloy
E = 73.119 GPa
ρ = 2794 kg/mm3

ν = 0.33, t = 3 mm
Shell Elements: 16925

x

y

z

DOF 1

DOF 1

DOF 1,2,3

DOF 1,2,3

Force A

Force B

Force C

Force D

Figure 8.2: Finite-element (FE) model of the experimental setup for the recon-
struction of multiple statically applied loads.

8.1 Gauge Locations and Orientations

The optimal candidate points for the un�ltered FE model, i.e. the candidate set
that consist of all 2D elements (Candidate Set 1), were determined �rst. The user
requested an initial number of four design points and sequentially increased the
demand; the resultant optimal candidate points are summarised in Table D.1 for
each number of design points requested. Ultimately, a consolidated total of 14
unique gauge locations and orientations combinations were found, which are high-
lighted in Figure 8.3. The algorithm selected elements that are either inaccessible
due to the presence of a washer; or at sharp edges where it is challenging to glue
gauges.
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(16 295 Elements)

Full Set Optimisation
(Figure 7.8a)

14 Unique
Design Points

End

Figure 8.3: Optimal candidate points from un�ltered Candidate Set 1 using the full
optimisation method. The user requested an initial number of four design points
and subsequently increased the demand. 14 di�erent gauge location-orientation
combinations were obtained.

Next, the respective structural and strain �lters were applied. The strain re-
sponse of the unit-load model is not su�cient for implementing the strain �lters;
thus, the response of the respective load cases had to be obtained with approxi-
mate force magnitudes. No elements must be removed from the FE solution set
before this stage, since the Strain Gradient �lter is an outlier based algorithm
which is in�uenced by the total number of data points within the population. One
should also mention that for the Strain Gradient �lter speci�cally, scaled values
of the applied forces can be assumed. For example, it is presumed that weights
of 8 kg and 4 kg will be suspended at Forces C and D. The same outliers will be
detected by the Strain Gradient �lter if loads with magnitudes 4 kg and 2 kg were
assigned, as opposed to loads with magnitudes 8 kg and 4 kg, to Forces C and D.
It is only important for the loads to be accurately approximated relative to one
another. If the forces are linearly scaled, the strain data will be scaled accordingly,
and the same outliers will be detected. The load cases with assumed magnitudes
are shown in Figures 8.4a, 8.4c & 8.4e and the elements identi�ed by the Strain
Gradient �lter are shown in Figures 8.4b, 8.4d & 8.4f. It is observed that the �lter
selected elements at sharp edges and at the areas where loads and constraints are
applied.
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8 kg

4 kg

(a) Load Case 1: Assumed Loads (b) Load Case 1: 439 Elements

8 kg
4 kg

(c) Load Case 2: Assumed Loads (d) Load Case 2: 269 Elements

8 kg
4 kg

(e) Load Case 3: Assumed Loads (f) Load Case 3: 368 Elements

Figure 8.4: Assumed force magnitudes of load cases investigated during experi-
mental testing and used for strain gradient �ltering. The orange elements are the
elements selected for removal by the Strain Gradient �lter.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 8. EXPERIMENTAL IMPLEMENTATION 65

The elements in blue in Figure 8.5 were selected by the Open, Sharp Edges
and Triangular Elements �lters with default settings, as shown in Table 5.3. The
elements in magenta were selected by the analyst based on the knowledge of how
the frame will be attached to the support structure, how it was assembled and
how the forces will be applied with additional clearance for the welds. All ele-
ments highlighted in Figures 8.4 and 8.5 were removed from Candidate Set 1. The
resultant �ltered set, which excludes all these selected elements, i.e. Candidate
Set 2, now only consist of 9091 elements.

Welding Clearance

Welding Clearance
Welding Clearance

Clearance around 
washer

Clearance around 
washerClam

ping Area

Clam
ping Area

Clearance around 
washer

Clearance around 
washer

Figure 8.5: Elements identi�ed by analyst and structural �lters that should be
removed from the un�ltered FE model (Candidate Set 1).

In was concluded in Chapter 7 that more candidate points in the design matrix
result in better load reconstruction. It was also found that all three optimisation
methods had satisfactory results. Ultimately, the method that �nds the most dis-
tinct design points will be preferred, provided that it is physically feasible to mount
strain gauges at the designated design points. Yet, it was thought necessary to
repeat the process utilised in Section 7.2 with the assumed load cases in Figure 8.4
on Candidate Set 2, for which the results are shown in Figure 8.6.
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(a) Load Case 1

(b) Load Case 2

(c) Load Case 3

Figure 8.6: E�ect of various optimisation methods on the reconstruction of load cases
in Figures 8.4a, 8.4c & 8.4e. The graphs show the calculated RMS errors after loads
were reconstructed, as well as the unique candidate points in the design matrix.
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The full optimisation method outperformed the partial and double optimisation
methods, except for Load Case 2, due to its ability to �nd more distinct candidate
points for the design (or proportionality) matrix. Noteworthy is the ability of the
partial optimisation method to consistently outperform the double optimisation
method. Furthermore, the minimum RMS error corresponded to a design matrix
with �ve candidate points, which are shown in Figure 8.7, with the corresponding
orientations indicated with arrows and in brackets. It was deemed feasible to
mount strain gauges at each of these locations and orientations. The user should
choose the optimisation method that �nds the most design points. Next, the
practicality of mounting strain gauge at the output candidate points should be
con�rmed. If all methods manage to �nd the same number of design points, and
there are no practical concerns, the full optimisation method is favoured, followed
by the partial optimisation method.

12 687 (45°)

13 565 (135°)

7 015 (90°)

1 729 (0°)

10 147 (90°)

Gauge A

Gauge B

Gauge C

Gauge D

Gauge E

Figure 8.7: Optimal candidate points from Candidate Set 2, using the full opti-
misation method. Five design points were requested by the user to obtain these
candidate points, based on the conclusions made from Figure 8.6.
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8.2 Experimental Setup

The strain responses were measured with uni-directional electrical resistant (350 Ω)
strain gauges in quarter-bridge con�gurations. Gauges were mounted at the loca-
tions and orientations as indicated in Figure 8.7. However, the size of the welds
was underestimated when areas were excluded from the candidate set (Figure 8.5).
In Figure 8.8 it is shown where the strain gauge was meant to be mounted (on
Element 1 729) and where it was actually placed. The strain gradient �lter did
not exclude this area from the candidate set; thus, this shift was considered not
to be a problem. It should be noted that the welds were not modelled; thus, the
residual stresses and strains are not accounted for in the FE model.

7
 m

m

9
.5

 m
m

x

z

Figure 8.8: Actual placement of Gauge A relative to Element 1 729 (red square).

Weights of 3.609 kg and 8.435 kg were suspended from the aluminium frame
similarly as indicated in Figures 8.4a, 8.4c & 8.4e. For data capturing, a QuantumX
M1615b data acquisition (DAQ) system was used to record the measured values
at a sample rate of 5 Hz. The weights were suspended for 60 seconds to allow the
system to stabilise; this process was repeated �ve consecutive times. A coe�cient
of variance (COV), which is the ratio of the standard deviation to the average,
was calculated and is commonly used to indicate the level of dispersion around
the average. The purpose of calculating the COV was to serve as an indication of
the repeatability of the measured values. Wili et al. (2017) studied the e�ective
yield properties of human trabecular bone and the COV was similarly used on the
strain measurements. 44.4 % of the test values (8 out of the 18 tests) yielded a
COV of less than 10 % and 33.3 % of the test values yielded a COV between 10 %
and 20 %. According to Ebrahimi (2018), an acceptable COV is dependent on
the kind of research, but that a COV ≤ 10 % is typically considered as good, a
COV between 10 % and 30 % is satisfactory and COV ≥ 30 % is unacceptable.
Based on the information from Wili et al. (2017) and Ebrahimi (2018), all strain
measurements for which a COV of less than 10 % are calculated, will be accepted.
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8.3 Measured Strain Values

The measured strain results are summarised in Table 8.1 and detailed in Table D.2,
Table D.3 and Table D.4. An unacceptable COV value of 200.3 % was calculated
for Gauge A in Load Case 3. It should be noted that the strain value is close to
the minimum measuring capability of these strain gauges (1× 10−9 mm/mm) and
that the analyst failed to verify and exclude any elements from the candidate set
with strain values below this threshold. Based on these realisations, it is expected
that the gauge will measure incorrect values and consequently yield a high COV.

Table 8.1: Experimentally measured strain values

Load Case 1 Load Case 2 Load Case 3

Strain [mm/mm] % COV Strain [mm/mm] % COV Strain [mm/mm] % COV

Gauge A −6.53× 10−05 -4.1 % −7.23× 10−06 -3.1 % 9.66× 10−08 200.3 %
Gauge B −3.28× 10−05 -0.7 % 5.20× 10−05 4.7 % 1.07× 10−05 2.8 %
Gauge C −4.98× 10−04 -0.1 % −2.88× 10−04 -0.1 % 6.14× 10−05 3.5 %
Gauge D −4.16× 10−04 -0.2 % −2.66× 10−04 -0.4 % −1.03× 10−04 -2.3 %
Gauge E −3.69× 10−04 -0.3 % −2.41× 10−04 -0.6 % −1.04× 10−04 -1.1 %

8.4 Actual Gauge Locations

A strain gauge measures an average strain value over the surface area covered
by the active grid length. It is possible that the physical location of the gauge
might be o� due to measuring di�culties encountered during test setup as for
Gauge A in Section 8.2. The actual location of the active grid of each strain
gauge was measured and the corresponding �nite-elements were determined. Then,
a percentage surface coverage was calculated if a gauge happens to cover more
than one element; this value indicates which fraction of the overall active grid
falls onto a speci�c element. The results are shown in Figures 8.9 and 8.10 and
Tables 8.2 and 8.3, as well as in Figures D.1 to D.3 and Tables D.5 to D.7.
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Figure 8.9: Location of Gauge A

Table 8.2: Surface cover-
age of Gauge A

Element % Coverage

1729 30.2 %

1730 15.6 %

2374 18.4 %

2375 35.9 %
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Figure 8.10: Location of Gauge D

Table 8.3: Surface cover-
age of Gauge D

Element % Coverage

12679 18.1 %

12680 1.8 %

12686 19.1 %

12687 54.9 %

12731 2.4 %

12732 2.0 %

12733 1.9 %

8.5 Load Reconstruction

The proportionality (or design) matrix describes the relationship between the input
loading and output strain response and at this point there are di�erent variations
of this matrix that can be used for load reconstruction. First of all, there is the
option of using the original design matrix obtained in Section 8.1, where each row
corresponds to an optimal candidate point obtained from the full optimisation
method. This matrix is shown in Figure 8.11. It was mentioned in Section 3.2.1
that component cij in the proportionality matrix, is the sensitivity of gauge i to
load j. If the �rst row in Figure 8.11 is inspected, it is observed that Element 1729
is the most sensitive to Force D and least sensitive to Force A. This knowledge
can be used in future studies to compare the elements selected by experienced
technicians to the location selected by the algorithm.
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It was pointed out that the gauges do not necessarily line up with these initial
candidate points and, for this particular mesh size, the gauge is actually mounted
over several �nite-elements. Subsequently, it was decided to create a variation
of the design matrix, where each row consist of the averaged candidate points
of all elements onto which the strain gauge is mounted. This matrix is shown
in Figure 8.12. However, the strain gauge does not equally cover all elements
(Section 8.3) and a weighted average should rather be calculated. This matrix is
shown in Figure 8.13. The data used to construct the proportionality matrices in
Figures 8.12 and 8.13 are provided in Sections D.4 and D.5.
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Figure 8.11: Expanded equation that describes the relationship between the input
loading and measured strains, with only the original optimal candidate points
included in the proportionality (design) matrix.
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Figure 8.12: Expanded equation that describes the relationship between the input
loading and measured strains, with only averaged candidate points included in the
proportionality (design) matrix.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 8. EXPERIMENTAL IMPLEMENTATION 72





−5.35× 10−13

−1.05× 10−11

1.19× 10−05

−5.24× 10−06

−4.58× 10−06

−4.74× 10−11

8.09× 10−06

−1.42× 10−05

−1.44× 10−05

−1.33× 10−05

−2.78× 10−06

−2.47× 10−06

−3.65× 10−05

−3.39× 10−05

−3.09× 10−05

−4.57× 10−05

−2.40× 10−06

−3.20× 10−05

−2.48× 10−05

−3.10× 10−05

Weight Avg. for Gauge A

Weight Avg. for Gauge B

Weight Avg. for Gauge C

Weight Avg. for Gauge D

Weight Avg. for Gauge E

fA fB fC fD

fA

fB

fC

fD




Load Vector

=





εA

εB

εC

εD

εE

Measured Strain Values

Figure 8.13: Expanded equation that describes the relationship between the input
loading and measured strains, with weighted averaged candidate points included
in the proportionality (design) matrix.

8.5.1 Load Case 1

The results of the reconstructed loads for Load Case 1 are shown in Table 8.4 and
it is clear that loads were not satisfactorily reconstructed. Since the magnitude
of the weights used for experimentation is known, it was decided to solve the FE
model with these loads as a starting point for further investigations. First of all,
the measured values are compared to the element that is mostly covered by the
strain gauge. For example, the majority of Gauge B (38.6 %) is mounted on
Element 7029, thus the measured strain value of Gauge B will be compared to the
strain response of Element 7029. The results are summarised in Table 8.5.

Table 8.4: Results of reconstructed loads for Load Case 1

Applied Load Original Design
Matrix

Averaged Design
Matrix

Weighted Averaged
Design Matrix

Force C (8.435 kg) 11.880 kg 40.84 % 11.781 kg 39.67 % 12.152 kg 44.08 %

Force D (3.609 kg) 0.108 kg 96.99 % 0.601 kg 83.35 % 0.666 kg 81.55 %

RMS Error - 53.53 % - 49.04 % - 51.68 %
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Table 8.5: Measured and calculated strain values for Load Case 1

Average Measured Calculated FE % Di�erence
Strains [mm/mm] Strains [mm/mm]

Gauge A & Element 2 375 −6.53× 10−05 −2.24× 10−04 244.0 %
Gauge B & Element 7 029 −3.28× 10−05 −2.95× 10−05 10.1 %
Gauge C & Element 10 147 −4.98× 10−04 −3.86× 10−04 22.4 %
Gauge D & Element 12 687 −4.16× 10−04 −4.04× 10−04 3.0 %
Gauge E & Element 13 559 −3.69× 10−04 −3.37× 10−04 8.9 %

An error value of 244.0 % was calculated for the strain measured by Gauge A
and Element 2375. The strain values of the surrounding elements in the FE model
were looked into and the results are shown in Table 8.6. A better correlation was
found between the measured value and the strain calculated at Element 2372, but
when compared to the position of Gauge A, it can be seen that Element 2372 is
approximately 8 mm away from where the gauge is actually mounted (Figure 8.14).
The scattered errors calculated for the surrounding elements is an indication of a
high strain gradient in the vicinity, which was not detected by the Strain Gradient
�lter. This suggests that the Strain Gradient �lter is not strict enough in selecting
outliers. Secondly, in the introduction to this chapter, it was mentioned that
the welds were not included in the FE model, which suggests that within this
speci�c vicinity the FE model does not accurately predict the real life structure,
which can lead to high discrepancies. Furthermore, an error value of 22.4 % was
calculated between Gauge C and Element 10147. If strain values of the surrounding
elements are compared to the strain measured by Gauge C, it can be seen in
Table D.18 that an error of only 1 % is calculated between the measured strain
value and Element 10146. In addition, from the matrix in Figure 8.13 it is noted
that Gauges A and C are the most sensitive to Loads C and D.
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Figure 8.14: Location of
Gauge A in the FE model
with surrounding elements

Table 8.6: Strain values of elements sur-
rounding Gauge A for Load Case 1.

Element FE [mm/mm] Measured [mm/mm] % Error

1691 −1.93× 10−04 −6.53× 10−05 196 %
1729 −2.27× 10−04 −6.53× 10−05 248 %
2375 −2.24× 10−04 −6.53× 10−05 244 %
1692 −1.45× 10−04 −6.53× 10−05 122 %
1730 −1.62× 10−04 −6.53× 10−05 148 %
2374 −1.49× 10−04 −6.53× 10−05 128 %
1693 −1.13× 10−04 −6.53× 10−05 72 %
1731 −1.14× 10−04 −6.53× 10−05 74 %
2373 −1.02× 10−04 −6.53× 10−05 56 %
1694 −8.38× 10−05 −6.53× 10−05 28 %
1732 −8.09× 10−05 −6.53× 10−05 24 %
2372 −6.80× 10−05 −6.53× 10−05 4 %

Average Error 112 %

Xiaofeng et al. (n.d.) stated that the most signi�cant source of error between
the calculated and actual loads originates from the di�erences between the FE and
actual model. It was decided to reconstruct the loads with a proportionality ma-
trix that consists of the elements for which the smallest percentage di�erence was
calculated, to investigate this statement made by Xiaofeng et al. (n.d.). In reality
this will not be possible, since the magnitudes of the applied loads are not known.
This `adapted' proportionality matrix is shown in Figure D.4. Forces C and D were
respectively reconstructed to be 8.731 kg (3.51 %) and 3.623 kg (0.39 %) with an
RMS error of 3.23 %. In a non-experimental environment the analyst would not
have the luxury of comparing the measured strains to the numerically calculated
values. However, this signi�cant improvement emphasises the importance of hav-
ing a FE model that truly represents the real-life response. This correlation is
the ultimate indicator for accurate load reconstruction. The e�ects of the strain
gradient phenomenon is also actively illustrated here.

8.5.2 Load Case 2

The results of the reconstructed loads for Load Case 2 are shown in Table 8.7.
These results are noticeably better than the loads reconstructed for Load Case 1.
It is also proven that it is worth the e�ort to calculate the weighted averaged
design matrix, since an RMS error of 12.48 % was obtained, in comparison to an
18.83 % RMS error for the averaged design matrix and an 17.96 % RMS error for
the original design matrix.
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Table 8.7: Results of reconstructed loads for Load Case 2

Applied Load Original Design
Matrix

Averaged Design
Matrix

Weighted Averaged
Design Matrix

Force B (8.435 kg) 7.051 kg 16.41 % 7.093 kg 15.91 % 7.778 kg 7.78 %
Force C (3.609 kg) 4.503 kg 24.77 % 4.697 kg 30.15 % 4.654 kg 28.97 %

RMS Error - 17.96 % - 18.83 % - 13.46 %

The di�erence between the numerically calculated and experimentally mea-
sured strain values were also compared, as for Load Case 1. From Table 8.8 it
is seen that an error value of 48.5 % was calculated for the strain measured by
Gauge A and Element 2375. The strain values of the surrounding elements in the
FE model were looked into and the results are in Table D.19. A better correlation
was found between the measured value and the strain calculated at Element 2374.
From Table D.19 it is clear that the error values are still scattered, but that the
average error in this vicinity improved (from 112 % for Load Case 1 to 64 %).
This improvement in the reconstructed loads is the direct result of the more ac-
curate correlation between real-life and FE models. Furthermore, an error value
of 20.6 % was calculated between Gauge C and Element 10147. If strain values of
the surrounding elements are compared to the strain value measured by Gauge C,
it can be seen in Table D.20 that an error of only 3 % is calculated between the
measured strain value and Element 10146.

Table 8.8: Measured strain values for Load Case 2

Average Measured Calculated FE % Di�erence
Strains [mm/mm] Strains [mm/mm]

Gauge A & Element 2 375 −7.23× 10−06 −1.07× 10−05 48.5 %
Gauge B & Element 7 029 5.20× 10−05 5.59× 10−05 7.5 %
Gauge C & Element 10 147 −2.88× 10−04 −2.29× 10−04 20.6 %
Gauge D & Element 12 687 −2.66× 10−04 −2.64× 10−04 1.1 %
Gauge E & Element 13 559 −2.41× 10−04 −2.05× 10−04 14.9 %

8.5.3 Load Case 3

A COV of 200.3 % was calculated for Gauge A in Load Case 3, due to the inability
of the strain gauge to accurately measure below its minimum measuring capacity.
This is con�rmed by the strain values in the FE model for the elements surrounding
Gauge A (see Table D.21). Since the measurements of Gauge A for Load Case 3 is
unreliable, it was decided to exclude the �rst row of the respective proportionality
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matrices. The reconstructed loads for Load Case 3, with these reduced matrices,
are shown in Table 8.9. Once again, the e�ort of calculating the weighted averaged
design matrix paid o�, since an RMS error of 15.26 % was calculated in comparison
to an 19.13 % RMS error for the averaged design matrix and an 19.49 % RMS
error for the original design matrix. The measured strain values were compared
to the numerically calculated strains and the results are shown in Table 8.10. It
was satisfying to note that even though three of the four gauges had a percentage
error greater than 20 %, the loads were still reconstructed with an RMS error of
only 15.26 %.

Table 8.9: Results of reconstructed loads for Load Case 3

Applied Load Original Design
Matrix

Averaged Design
Matrix

Weighted Averaged
Design Matrix

Force A (8.435 kg) 10.474 kg 24.43 % 10.183 kg 20.72 % 9.833 kg 16.57 %
Force B (3.609 kg) 2.952 kg 18.20 % 3.450 kg 4.41 % 3.684 kg 2.08 %

RMS Error - 19.49 % - 19.13 % - 15.26 %

It is seen that an error value of 158.9 % was calculated for Gauge B and
Element 7029, but no elements in the vicinity showed any better correlation. The
strain values of the surrounding elements in the FE model are in Table D.21. Note
that Element 7029 was still included in the matrix, even though an 158.9 % was
calculated for the numerical and measured responses.

Table 8.10: Measured strain values for Load Case 3

Average Strain Calculated FE % Di�erence
[mm/mm] Strains [mm/mm]

Gauge B & Element 7 029 1.07× 10−05 2.77× 10−05 158.9 %
Gauge C & Element 10 147 6.14× 10−05 3.90× 10−05 36.5 %
Gauge D & Element 12 687 −1.03× 10−04 −1.00× 10−04 2.9 %
Gauge E & Element 13 559 −1.04× 10−04 −7.83× 10−05 24.7 %
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8.6 Summary

An experiment was designed to test the ability of the load reconstruction technique
to determine the applied loads on a simpli�ed structure. First of all, the original
candidate set was reduced through �ltering, after which the resultant candidate
set was optimised. From this last optimisation the optimal gauge locations and
orientations were determined. Known weights were suspended from an aluminium
frame and the strain results were captured at the optimal candidate points (design
points). The measured strain values were used to reconstruct the loads with various
versions of the proportionality matrix. Since the magnitude of the loads were
known, the measured and calculated strain values could be compared.
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Conclusion

9.1 Project Summary

A methodology for estimating the applied forces, without explicitly measuring
these loads, were developed. It was assumed that the structural response remains
linear in order for the principle of superposition to hold. Then, the measured strain
response of a prototype structure can be used, in conjunction with an FE model,
to determine the magnitude of the applied loads with a least-squares estimate.
First of all, the linear relationship between the input loading and output strain
response had to be determined. This strain-load relationship model, also known
as the candidate set, is constructed from the linear static strain solutions of unit-
load FE models. Each column in the candidate set equals the strain �eld over the
discretised model, due to an individual applied unit-load. The rows correspond to
the strain response of a `virtual' strain gauge at various locations and orientations.
Next, the strain gauge mounting locations and orientations had to be established.
Optimal sensor placements were determined with a D-optimal design; this design
selects candidate points that will maximise the determinant of the information
matrix. These optimal candidate points dictates sensor placements and comprises
the proportionality (or design) matrix.

A variety of �lters were designed to exclude speci�c �nite-elements from the
candidate set to prevent any practical di�culties in mounting strain gauges. The
three structural �lters remove triangular �nite-elements as well as elements at
open and sharp edges. It was found during trial tests that incorrect values will
be measured if the strain output is below the minimum measuring capability of
the gauge; a fourth �lter was designed to identify all elements for which strain
values below this minimum measuring ability were computed. Experience has
taught that a strain gauge should be mounted in areas of high strain, but of low
strain gradient. The �fth and �nal �lter is an outlier based algorithm, designed to
remove elements that are associated with areas of high strain gradient. An adjusted
boxplot approach identi�es which computed strain gradients are unacceptable.
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It was numerically investigated how the number of candidate points in the pro-
portionality matrix a�ects the accuracy of the reconstructed loads; the conclusion
was that more points will ensure that loads are accurately reconstructed. The full
optimisation method is the preferred method of optimisation, since only a single
set of gauges need to be mounted to reconstruct multiple load cases. Finally, all
considerations were incorporated into a single physical experiment, where the abil-
ity of the technique to reconstruct multiple loads was investigated. It was found
that if a gauge is mounted over more than one �nite-element, the loads were more
precisely reconstructed with a weighted average proportionality matrix than a ma-
trix that consists of the original optimal candidate points. As was expected, the
ultimate indicator for accurate load reconstruction is the correlation between the
FE and real-life model; the better the correlation, the more accurately the loads
will be reconstructed. It was also illustrated how strain gradients result in incor-
rect strain measurements. The methodology that should be followed to reconstruct
loads in future studies, is outlined in Figure 9.1.

Start

End

Assumed Numerical Model

Structural & Strain Gradient Filters

(Candidate Set 1)

Remove Filter & Analyst Selections
from Candidate Set 1

Candidate Set 2

D-Optimal Design
(Full, Partial or Double)

Optimal Candidate Points

(Design Matrix)

Review Optimal Points

for Minimum Strains Criteria

Figure 9.1: Final methodology for static load reconstruction

9.2 Future Recommendations

It was found in Chapter 8 that the greatest source of error between the calculated
and actual loads originates from the di�erences between the FE and actual model.
In future studies, a calibration step can be added to the methodology, where known
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loads are applied to the structure in order to validate the accuracy of the FE
model. Another interesting activity would be to compare the optimal candidate
points selected in the D-optimal design to locations and orientations chosen by
various engineers and technicians who mount strain gauges based on experience.

The designed �lters were exceptionally e�ective, especially for complicated
structures, like in Chapter 6. There is the option to develop more structural
�lters that will automate the removal of elements with limited manual input from
the analyst. One could design a �lter that removes elements in areas where loads
and constraints are applied, since these regions are often inaccessible. Then, there
is also the opportunity to design a �lter that evaluates the quality of an element
and excludes those that are considered to be `too warped'. It was found that mea-
suring the elemental coordinate systems (ECSYS) of warped or distorted elements
can be di�cult. Lastly, a �lter that removes welds and the surrounding areas with
high residual strains and stresses, can be designed.

Furthermore, the Strain Gradient �lter is a �rst of its kind and there is de�nitely
an opportunity to improve its performance. For example, it was found in Chapter 8
that the �lter did not manage to detect the strain gradient around Gauge A for
Load Cases 1 and 2. The current method uses the Von Mises strain to avoid
the directional characteristic of strain values. Alternatively, one could consider
using supervised machine learning methods, such as classi�cation, to identify areas
of high strain and do a local strain gradient analysis. As another option, the
use of alternative skewness measurement, as opposed to the medcouple, can be
investigated. Perhaps this could improve the outliers detected by the adjusted
boxplot method. The transformation approach proposed in Appendix B.1 were
rejected due to its inability to introduce symmetry into the data set. However,
it was recollected that these methods actually managed to identify more outliers
than the adjusted boxplot method in Section 5.1.5. These ideas could perhaps be
revisited and tested experimentally.

In Chapter 7 it was established that more candidate points in the propor-
tionality matrix improves the accuracy of the reconstructed loads. However, in
Figure 8.6 it was seen that the D-optimal design could not select more than �ve
unique candidate points from a �ltered candidate set. For future studies, the
following approach is advised if the analyst wishes to increase the number of can-
didate points in the design matrix even though the D-optimal design cannot �nd
more distinct design points. Firstly, the maximum number of design points of
the �ltered candidate set should be determined similarly to how the design points
in Figure 8.7 were determined. Next, these selected candidate points should be
removed from the candidate set with a layer of �nite-elements surrounding these
candidate points. If bordering layers are not removed, the D-optimal design will
simply choose �nite-elements next to the original optimal candidate points; this
occurence is noticed in Figure 8.3. After the original optimal candidate points,
with a bordering layer of �nite-elements, are removed from the �ltered candidate
set, this further reduced candidate set can be optimised for a second round.
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Appendix A

Gauge Placement Function

Each candidate point in the candidate set corresponds to a speci�c combination of
gauge location and orientation. This angle of orientation is de�ned with respect to
the elemental coordinate system (ECSYS) of the corresponding two-dimensional
(2D) element (Figure A.1). For a given list of 2D elements and corresponding
orientation angles, this function yields the coordinate points and orientation angles
of the gauges in any desired global coordinate system (GCSYS).

x

y

z Axial Direction

θ

Element & ECSYS
Strain Gauge

Figure A.1: Orientation of strain gauge with respect to a quadrilateral element
and its elemental coordinate system (ECSYS).

A.1 Coordinate Systems in Nastran

A short description of coordinate systems in Nastran is �rst required. Two types
of global coordinate systems exist: the basic coordinate system is the implicitly
de�ned absolute coordinate system and local coordinate systems can be explicitly
de�ned in addition to the basic coordinate system. Local coordinate systems can be
created using two di�erent approaches: Type CORD1x de�nes a local coordinate
system using the ID's of three grid points and Type CORD2x uses the coordinate
of three points in a previously de�ned coordinate system (Siemens, 2014b, pg. 6-2).
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The `x' in the acronym can either be replaced by an `R', `S' or `C' that respec-
tively refers to a rectangular, spherical or cylindrical coordinate system. Only the
CORD2R data card will be considered, since modern pre-/post-processor no longer
makes use of Type CORD1x data cards and rectangular coordinate systems are
su�cient. Another type of coordinate system is the elemental coordinate system
(ECSYS). This coordinate system is inherent to the �nite-element and schematics
can be found in Figure 4.1.

The user is allowed to choose between releasing the location of the strain gauge
in a prede�ned global rectangular coordinate system, either with respect to the
origin of that coordinate system, or with respect to a reference node (Figure A.2).
It was found during experimentation that creating an additional local coordinate
system is sometimes unnecessary; one could just as well de�ne the position of the
strain gauge based on another known grid point (or node).

Strain Gauge

x
y

z

Reference
Node

Figure A.2: Strain gauge position relative to the origin of a global coordinate
system (GCSYS) or a reference node.

A.2 Mathematical Background

The axial direction of the strain gauge can be visualised as a vector in the xy-
plane of the ECSYS as shown in Figure A.1. This vector, denoted as A, can be
transformed to global coordinates, using vector transformations. The magnitude
of A remains the same, irrespective of the coordinate system (Widnall, 2009):

A = A1i1 + A2i2 + A3i3 = A′1i
′
1 + A′2i

′
2 + A′3i

′
3 (A.1)

thus, the components of A in the global coordinate system (GCSYS) can be de-
termined in terms of the components in ECSYS, by taking the dot product of the
unit vectors,

A′j = A1i
′
j · i1 + A2i

′
j · i2 + A3i

′
j · i3
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and as a result, 
A′1

A′2

A′3

 =


i′1 · i1 i′1 · i2 i′1 · i3

i′2 · i1 i′2 · i2 i′2 · i3

i′3 · i1 i′3 · i2 i′3 · i3




A1

A2

A3

 (A.2)

The dot product of two unit vectors equal the cosine of the angle between these
vectors. From this, the transformation matrix is given as:

Q =


i′1 · i1 i′1 · i2 i′1 · i3

i′2 · i1 i′2 · i2 i′2 · i3

i′3 · i1 i′3 · i2 i′3 · i3

 =


cos(θ11) cos(θ12) cos(θ13)

cos(θ21) cos(θ22) cos(θ23)

cos(θ31) cos(θ32) cos(θ33)

 (A.3)

The orientation of the strain gauge relative to the GCSYS is depicted in Figure A.3
and can be calculated using Equations A.2 and A.4:

α = cos−1(A′1)

β = cos−1(A′2)

γ = cos−1(A′3)

(A.4)

z′, i′3

y′, i′2x′, i′1

z, i3

y, i2

x, i1

A

α
β

γ

Figure A.3: Rotation angles of vector A relative to a global coordinate system
(GCSYS).
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A.2.1 Performance of Strain Gauge Placement Function

The function was assessed on its ability to �nd the correct location and orientation
of a strain gauge in a desired global coordinate system. Calculating its orientation
is more complicated than �nding the location of the strain gauge and will be elab-
orated on in the following content. A sample FE model (Figure A.4) was created
of which the material parameters, mesh size, boundary and loading conditions are
not of importance. Three local coordinate systems were additionally de�ned. It is
important to note that these local coordinate systems will not be written to the
Nastran's input �le if it is not referenced, for example by a boundary condition,
in the model itself.

148

22

30°60° xglobal

yglobal

zglobal

xelemental

x30°
x60°

y60°

y30°

Figure A.4: Sample FE model to test mounting function.

CQUAD4 elements were chosen using a random integer generator and the EC-
SYS of these elements are shown in Figure A.4. It was assumed that the strain
gauges need to be mounted at 0° and 45° with respect to the ECSYS of each ele-
ment. The results for Element 1 is shown in Table A.1 and proofs that the function
accurately obtains the correct angles of orientation in any locally de�ned global
coordinate system.
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Table A.1: Results of mounting function.

θ GCSYS Theoretical Calculations Mounting Function Output
α β γ α β γ

0° 30° 60 150 90 59.999 149.997 90.000
60° 30 120 90 30.003 120.000 90.000

45° 30° 15 105 90 15.006 104.999 90.000
60° 15 75 90 15.006 75.001 90.000
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Appendix B

Symmetric Outlier Detection
Methods

An attempt was made to introduce symmetry in the strain gradient data set to
eventually use outlier detection methods commonly associated with normally dis-
tributed data, such as the use of standard deviations or the interquartile range
(IQR). Symmetry is commonly achieved by means of transformation, such as tak-
ing the logarithm of each data point. The FE model in Figure B.1 was used to
test the transformation technique.

1kN

1kN

Fixed Constraint

E = 73 GPa
ρ = 2794 kg/mm3

ν = 0.33, t = 3 mm

Figure B.1: Sample FE model used to test other outlier detection techniques.
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The logarithm of each data point (strain gradient) of Figure B.1 is graphed
in Figure B.4, where it is seen that the distribution is more symmetrical than
the data in Figure 5.7. A standard boxplot, i.e. whose whiskers are de�ned by
Equation 5.5, was used to identify outliers. A total of 194 outliers were detected
and highlighted in Figure B.2. These elements are scattered all over the FE model
and does not conform to what is desired. By transforming the data points, the
outliers are brought closer to the original data set before attempting to detect
them; thus, the outlier detection algorithm is more likely to eliminate good data
points.

Figure B.2: Outliers detected based on logarithmic transformation and standard

boxplot procedures.

It was decided to combine the adjusted outlier detection method with logarith-
mic transformation, since the data in Figure B.4 is not perfectly symmetric based
on the analyst's subjective opinion. The boxplot and corresponding histogram is
shown in Figure B.5. A total of 148 outliers were identi�ed and highlighted in
Figure B.3. This method conforms better to what is desired as opposed to the
previous model, but is more conservative than the method in Section 5.1.5.

Figure B.3: Outliers detected based on logarithmic transformation and adjusted

boxplot procedures.
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Filtering Function Application
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(a) Open Edges: Collar (b) Sharp Edges: Collar

(c) Open Edges: Crotch (d) Sharp Edges: Crotch

(e) Open Edges: Wrapper (f) Sharp Edges: Wrapper

Figure C.1: Structural �lters on reinforced pipes with double layer removal.
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(a) Open Edges Filter

(b) Sharp Edges Filter

Figure C.2: Structural �lters on hauler truck model with double layer removal.
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(a) Wireframe View

(b) Elemental View

Figure C.3: All �lters on hauler truck model.
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Appendix D

Additional Experimental Material

D.1 Candidate Points of Un�ltered Candidate Set
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D.2 Measured Strain Responses

Table D.2: Measured strain values at optimal design points for Load Case 1

Gauge A Gauge B Gauge C Gauge D Gauge E

Measurement 1 −6.54× 10−05 −3.30× 10−05 −4.98× 10−04 −4.15× 10−04 −3.69× 10−04

Measurement 2 −6.53× 10−05 −3.31× 10−05 −4.97× 10−04 −4.18× 10−04 −3.68× 10−04

Measurement 3 −6.18× 10−05 −3.24× 10−05 −4.99× 10−04 −4.17× 10−04 −3.69× 10−04

Measurement 4 −6.99× 10−05 −3.27× 10−05 −4.97× 10−04 −4.16× 10−04 −3.70× 10−04

Measurement 5 −6.39× 10−05 −3.27× 10−05 −4.97× 10−04 −4.15× 10−04 −3.71× 10−04

Average −6.53× 10−05 −3.28× 10−05 −4.98× 10−04 −4.16× 10−04 −3.69× 10−04

Standard Deviation 2.66× 10−06 2.38× 10−07 5.96× 10−07 9.02× 10−07 1.02× 10−06

COV [%] -4.08 % -0.73 % -0.12 % -0.22 % -0.28 %

Table D.3: Measured strain values at optimal design points for Load Case 2

Gauge A Gauge B Gauge C Gauge D Gauge E

Measurement 1 −7.18× 10−06 5.38× 10−05 −2.89× 10−04 −2.67× 10−04 −2.41× 10−04

Measurement 2 −6.83× 10−06 4.95× 10−05 −2.88× 10−04 −2.64× 10−04 −2.43× 10−04

Measurement 3 −7.46× 10−06 5.44× 10−05 −2.88× 10−04 −2.68× 10−04 −2.40× 10−04

Measurement 4 −7.40× 10−06 4.87× 10−05 −2.89× 10−04 −2.67× 10−04 −2.40× 10−04

Measurement 5 −7.28× 10−06 5.39× 10−05 −2.88× 10−04 −2.66× 10−04 −2.39× 10−04

Average −7.23× 10−06 5.20× 10−05 −2.88× 10−04 −2.66× 10−04 −2.41× 10−04

Standard Deviation 2.23× 10−07 2.44× 10−06 2.60× 10−07 1.18× 10−06 1.52× 10−06

COV [%] -3.08 % 4.69 % -0.09 % -0.44 % -0.63 %
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Table D.4: Measured strain values at optimal design points for Load Case 3

Gauge A Gauge B Gauge C Gauge D Gauge E

Measurement 1 2.91× 10−07 1.01× 10−05 6.15× 10−05 −1.06× 10−04 −1.05× 10−04

Measurement 2 3.57× 10−07 1.06× 10−05 6.21× 10−05 −1.01× 10−04 −1.06× 10−04

Measurement 3 −5.87× 10−08 1.09× 10−05 6.48× 10−05 −1.04× 10−04 −1.04× 10−04

Measurement 4 2.51× 10−08 1.09× 10−05 5.86× 10−05 −1.01× 10−04 −1.05× 10−04

Measurement 5 −1.32× 10−07 1.09× 10−05 5.99× 10−05 −9.98× 10−05 −1.02× 10−04

Average 9.66× 10−08 1.07× 10−05 6.14× 10−05 −1.03× 10−04 −1.04× 10−04

Standard Deviation 1.93× 10−07 3.04× 10−07 2.12× 10−06 2.40× 10−06 1.18× 10−06

COV [%] 200.30 % 2.84 % 3.46 % -2.34 % -1.13 %

D.3 Percentage Gauge Cover
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Figure D.1: Location of Gauge B

Table D.5: Surface cover-
age of Gauge B

Element % Coverage

7022 18.7 %

7023 6.8 %

7029 38.6 %

7030 14.2 %

7416 7.1 %

7417 14.7 %
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Figure D.2: Location of Gauge C

Table D.6: Surface cover-
age of Gauge C

Element % Coverage

10146 37.5 %

10147 57.5 %

10148 4.9 %
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Figure D.3: Location of Gauge E

Table D.7: Surface cover-
age of Gauge E

Element % Coverage

13558 12.6 %

13559 45.4 %

13565 0.4 %

13566 31.8 %

13607 9.8 %

D.4 Averaged Design Matrix

Table D.8: Averaged candidate point corresponding to Gauge A

Design Point Column A Column B Column C Column D

1729, 0° −2.44× 10−13 −1.23× 10−10 −4.49× 10−06 −5.25× 10−05

1730, 0° −4.36× 10−13 −3.79× 10−11 −2.71× 10−06 −3.86× 10−05

2374, 0° −7.22× 10−13 1.21× 10−11 −1.28× 10−06 −3.82× 10−05

2375, 0° −7.32× 10−13 −4.76× 10−11 −2.97× 10−06 −5.52× 10−05

Averaged Design Point −5.34× 10−13 −4.91× 10−11 −2.86× 10−06 −4.61× 10−05

Table D.9: Averaged candidate point corresponding to Gauge B

Design Point Column A Column B Column C Column D

7022, 90° −9.80× 10−12 8.29× 10−06 −2.51× 10−06 −2.31× 10−06

7023, 90° −6.30× 10−12 5.65× 10−06 −1.67× 10−06 −1.56× 10−06

7029, 90° −1.07× 10−11 7.67× 10−06 −2.44× 10−06 −2.48× 10−06

7030, 90° −6.89× 10−12 5.41× 10−06 −1.62× 10−06 −1.69× 10−06

7416, 90° −1.36× 10−11 1.22× 10−05 −3.34× 10−06 −2.92× 10−06

7417, 90° −1.50× 10−11 1.07× 10−05 −3.30× 10−06 −3.13× 10−06

Averaged Design Point −1.04× 10−11 8.31× 10−06 −2.48× 10−06 −2.35× 10−06
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Table D.10: Averaged candidate point corresponding to Gauge C

Design Point Column A Column B Column C Column D

10146, 90° 1.52× 10−05 −1.68× 10−05 −4.32× 10−05 −3.79× 10−05

10147, 90° 1.01× 10−05 −1.29× 10−05 −3.33× 10−05 −2.92× 10−05

10148, 90° 6.71× 10−06 −8.73× 10−06 −2.25× 10−05 −1.97× 10−05

Averaged Design Point 1.07× 10−05 −1.28× 10−05 −3.30× 10−05 −2.89× 10−05

Table D.11: Averaged candidate point corresponding to Gauge D

Design Point Column A Column B Column C Column D

12679, 45° −4.09× 10−06 −1.21× 10−05 −2.79× 10−05 −2.24× 10−05

12680, 45° −4.13× 10−06 −1.52× 10−05 −3.58× 10−05 −2.60× 10−05

12686, 45° −5.95× 10−06 −1.23× 10−05 −2.86× 10−05 −2.22× 10−05

12687, 45° −5.45× 10−06 −1.55× 10−05 −3.67× 10−05 −2.61× 10−05

12731, 45° −6.83× 10−06 −1.56× 10−05 −3.70× 10−05 −2.57× 10−05

12732, 45° −3.80× 10−06 −1.85× 10−05 −4.42× 10−05 −3.01× 10−05

12733, 45° −3.49× 10−06 −1.84× 10−05 −4.39× 10−05 −2.99× 10−05

Averaged Design Point −4.82× 10−06 −1.54× 10−05 −3.63× 10−05 −2.61× 10−05

Table D.12: Averaged candidate point corresponding to Gauge E

Design Point Column A Column B Column C Column D

13558, 135° −4.10× 10−06 −1.52× 10−05 −3.58× 10−05 −3.73× 10−05

13559, 135° −4.08× 10−06 −1.22× 10−05 −2.82× 10−05 −2.74× 10−05

13565, 135° −5.42× 10−06 −1.55× 10−05 −3.65× 10−05 −3.84× 10−05

13566, 135° −5.79× 10−06 −1.24× 10−05 −2.87× 10−05 −2.85× 10−05

13607, 135° −3.53× 10−06 −1.83× 10−05 −4.37× 10−05 −4.73× 10−05

Averaged Design Point −4.58× 10−06 −1.47× 10−05 −3.46× 10−05 −3.58× 10−05

D.5 Weighted Averaged Design Matrix

Table D.13: Weighted averaged candidate point corresponding to Gauge A

Design Point Weights Column A Column B Column C Column D

1729, 0° 30.15 % −7.36× 10−14 −3.71× 10−11 −1.36× 10−06 −1.58× 10−05

1730, 0° 15.58 % −6.80× 10−14 −5.91× 10−12 −4.22× 10−07 −6.01× 10−06

2374, 0° 18.38 % −2.59× 10−13 4.34× 10−12 −4.59× 10−07 −1.37× 10−05

2375, 0° 35.89 % −1.35× 10−13 -8.74× 10−12 −5.47× 10−07 −1.01× 10−05

Weighted Design Point 100.00 % −5.35× 10−13 −4.74× 10−11 −2.78× 10−06 −4.57× 10−05
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Table D.14: Weighted averaged candidate point corresponding to Gauge B

Design Point Weights Column A Column B Column C Column D

7022, 90° 18.67 % −1.83× 10−12 1.55× 10−06 −4.68× 10−07 −4.31× 10−07

7023, 90° 6.79 % −4.28× 10−13 3.84× 10−07 −1.13× 10−07 −1.06× 10−07

7029, 90° 38.57 % −4.12× 10−12 2.96× 10−06 −9.42× 10−07 −9.56× 10−07

7030, 90° 14.17 % −9.76× 10−13 7.67× 10−07 −2.29× 10−07 −2.39× 10−07

7416, 90° 7.08 % −9.64× 10−13 8.63× 10−07 −2.36× 10−07 −2.06× 10−07

7417, 90° 14.73 % −2.20× 10−12 1.57× 10−06 −4.86× 10−07 −4.16× 10−07

Weighted Design Point 100.00 % −1.05× 10−11 8.09× 10−06 −2.47× 10−06 −2.40× 10−06

Table D.15: Weighted averaged candidate point corresponding to Gauge C

Design Point Weights Column A Column B Column C Column D

10146, 90° 37.54 % 5.70× 10−06 −6.29× 10−06 −1.62× 10−05 −1.42× 10−05

10147, 90° 57.53 % 5.84× 10−06 −7.43× 10−06 −1.91× 10−05 −1.68× 10−05

10148, 90° 4.93 % 3.31× 10−07 −4.31× 10−07 −1.11× 10−06 −9.72× 10−07

Weighted Design Point 100.00 % 1.19× 10−05 −1.42× 10−05 −3.65× 10−05 −3.20× 10−05

Table D.16: Weighted averaged candidate point corresponding to Gauge D

Design Point Weights Column A Column B Column C Column D

12679, 45° 18.06 % −7.38× 10−07 −2.18× 10−06 −5.05× 10−06 −4.05× 10−06

12680, 45° 1.77 % −7.30× 10−08 −2.68× 10−07 −6.33× 10−07 −4.60× 10−07

12686, 45° 19.06 % −1.13× 10−06 −2.35× 10−06 −5.46× 10−06 −4.23× 10−06

12687, 45° 54.88 % −2.99× 10−06 −8.53× 10−06 −2.01× 10−05 −1.43× 10−05

12731, 45° 2.37 % −1.62× 10−07 −3.70× 10−07 −8.75× 10−07 −6.07× 10−07

12732, 45° 1.99 % −7.57× 10−08 −3.68× 10−07 −8.79× 10−07 −5.99× 10−07

12733, 45° 1.88 % −6.55× 10−08 −3.45× 10−07 −8.24× 10−07 −5.62× 10−07

Weighted Design Point 100.00 % −5.24× 10−06 −1.44× 10−05 −3.39× 10−05 −2.48× 10−05

Table D.17: Weighted averaged candidate point corresponding to Gauge E

Design Point Weights Column A Column B Column C Column D

13558, 135° 12.59 % −5.16× 10−07 −1.91× 10−06 −4.51× 10−06 −4.69× 10−06

13559, 135° 45.39 % −1.85× 10−06 −5.53× 10−06 −1.28× 10−05 −1.24× 10−05

13565, 135° 0.40 % −2.17× 10−08 −6.20× 10−08 −1.46× 10−07 −1.54× 10−07

13566, 135° 31.82 % −1.84× 10−06 −3.95× 10−06 −9.15× 10−06 −9.06× 10−06

13607, 135° 9.80 % −3.46× 10−07 −1.80× 10−06 −4.28× 10−06 −4.64× 10−06

Weighted Design Point 100.00 % −4.58× 10−06 −1.33× 10−05 −3.09× 10−05 −3.10× 10−05
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D.6 Additional Load Reconstruction Material

D.6.1 Load Case 1
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Figure D.2: Location of
Gauge C in the FE model
(repeated from page 98)

Table D.18: Strain values at elements sur-
rounding Gauge C for Load Case 1.

Element FE [mm/mm] Measured [mm/mm] % Di�erence

9442 −5.20× 10−04 −4.98× 10−04 4 %
10146 −5.01× 10−04 −4.98× 10−04 1 %
10145 −4.95× 10−04 −4.98× 10−04 1 %
9441 −3.95× 10−04 −4.98× 10−04 21 %
10147 −3.86× 10−04 −4.98× 10−04 22 %
10100 −3.78× 10−04 −4.98× 10−04 24 %
9440 −2.66× 10−04 −4.98× 10−04 46 %
10148 −2.61× 10−04 −4.98× 10−04 48 %
10101 −2.55× 10−04 −4.98× 10−04 49 %





−6.58× 10−13

−1.07× 10−11

1.52× 10−05

−5.45× 10−06

−4.08× 10−06

6.66× 10−11

7.67× 10−06

−1.68× 10−05

−1.55× 10−05

−1.22× 10−05

6.23× 10−07

−2.44× 10−06

−4.32× 10−05

−3.67× 10−05

−2.82× 10−05

−2.03× 10−05

−2.48× 10−06

−3.79× 10−05

−2.61× 10−05

−2.74× 10−05

(2372, 0°)

(7029, 90°)

(10146, 90°)

(12687, 45°)

(13559, 135°)

0

0

fC

fD





Load Vector
(Load Case 1 )

=





−7.23× 10−06

5.20× 10−05

−2.88× 10−04

−2.66× 10−04

−2.41× 10−04

Measured Strain Values

Figure D.4: `Adapted' proportionality matrix for Load Case 1
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D.6.2 Load Case 2

+- 4 mm

+
- 

4
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m

Figure 8.14: Elements sur-
rounding Gauge A (repeated
from page 74)

Table D.19: Strain values at elements sur-
rounding Gauge A for Load Case 2.

Element FE [mm/mm] Measured [mm/mm] % Di�erence

1691 −1.58× 10−05 −7.23× 10−06 119 %
1729 −1.62× 10−05 −7.23× 10−06 124 %
2375 −1.07× 10−05 −7.23× 10−06 48 %
1692 −1.10× 10−05 −7.23× 10−06 52 %
1730 −9.78× 10−06 −7.23× 10−06 35 %
2374 −4.61× 10−06 −7.23× 10−06 36 %
1693 −7.82× 10−06 −7.23× 10−06 8 %
1731 −5.24× 10−06 −7.23× 10−06 28 %
2373 −5.54× 10−07 −7.23× 10−06 92 %
1694 −5.36× 10−06 −7.23× 10−06 26 %
1732 −2.55× 10−06 −7.23× 10−06 65 %
2372 2.25× 10−06 −7.23× 10−06 131 %

Average Error 64 %
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Figure D.2: Location of
Gauge C in the FE model
(repeated from page 98)

Table D.20: Strain values at elements sur-
rounding Gauge C for Load Case 2.

Element FE [mm/mm] Measured [mm/mm] % Di�erence

9442 −3.01× 10−04 −2.88× 10−04 4 %
10146 −2.97× 10−04 −2.88× 10−04 3 %
10145 −3.01× 10−04 −2.88× 10−04 4 %
9441 −2.29× 10−04 −2.88× 10−04 20 %
10147 −2.29× 10−04 −2.88× 10−04 21 %
10100 −2.29× 10−04 −2.88× 10−04 20 %
9440 −1.55× 10−04 −2.88× 10−04 46 %
10148 −1.55× 10−04 −2.88× 10−04 46 %
10101 −1.55× 10−04 −2.88× 10−04 46 %
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D.6.3 Load Case 3
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Figure 8.14: Elements surrounding
Gauge A (repeated from page 74)

Table D.21: Strain values at elements sur-
rounding Gauge A for Load Case 3.

Element FE [mm/mm] Measured [mm/mm] % Di�erence

1691 −9.05× 10−10 9.66× 10−08 -100.94 %
1729 −4.46× 10−10 9.66× 10−08 -100.46 %
2375 −1.78× 10−10 9.66× 10−08 -100.18 %
1692 −3.46× 10−10 9.66× 10−08 -100.36 %
1730 −1.41× 10−10 9.66× 10−08 -100.15 %
2374 3.75× 10−11 9.66× 10−08 -99.96 %
1693 −9.61× 10−11 9.66× 10−08 -100.10 %
1731 5.81× 10−11 9.66× 10−08 -99.94 %
2373 1.59× 10−10 9.66× 10−08 -99.83 %
1694 8.75× 10−11 9.66× 10−08 -99.91 %
1732 1.79× 10−10 9.66× 10−08 -99.81 %
2372 2.35× 10−10 9.66× 10−08 -99.76 %
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Figure D.1: Elements surrounding
Gauge B (repeated from page 98)

Table D.22: Strain values at elements sur-
rounding Gauge B for Load Case 3.

Element FE [mm/mm] Measured [mm/mm] % Di�erence

7417 3.84× 10−05 1.07× 10−05 259 %
7416 4.40× 10−05 1.07× 10−05 311 %
7415 4.66× 10−05 1.07× 10−05 335 %
7029 2.77× 10−05 1.07× 10−05 159 %
7022 2.99× 10−05 1.07× 10−05 180 %
7015 3.08× 10−05 1.07× 10−05 188 %
7030 1.95× 10−05 1.07× 10−05 83 %
7023 2.04× 10−05 1.07× 10−05 91 %
7016 2.06× 10−05 1.07× 10−05 93 %
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Figure D.2: Elements surrounding
Gauge C (repeated from page 98)

Table D.23: Strain values at elements sur-
rounding Gauge C for Load Case 3.

Element FE [mm/mm] Measured [mm/mm] % Di�erence

10145 6.27× 10−0.5 6.14× 10−0.5 2 %
10146 6.75× 10−0.5 6.14× 10−0.5 10 %
9442 6.27× 10−0.5 6.14× 10−0.5 2 %
10100 3.64× 10−0.5 6.14× 10−0.5 41 %
10147 3.90× 10−0.5 6.14× 10−0.5 37 %
9441 3.64× 10−0.5 6.14× 10−0.5 41 %
10101 2.43× 10−0.5 6.14× 10−0.5 60 %
10148 2.51× 10−0.5 6.14× 10−0.5 59 %
9440 2.43× 10−0.5 6.14× 10−0.5 60 %
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Figure D.3: Elements surrounding
Gauge E (repeated from page 99)

Table D.24: Strain values at elements sur-
rounding Gauge E for Load Case 3.

Element FE [mm/mm] Measured [mm/mm] % Di�erence

13607 −9.58× 10−0.5 −1.04× 10−0.4 7.7%
13565 −1.02× 10−0.4 −1.04× 10−0.4 2.1%
13566 −9.37× 10−0.5 −1.04× 10−0.4 9.8%
13558 −8.95× 10−0.5 −1.04× 10−0.4 13.8%
13559 −7.83× 10−0.5 −1.04× 10−0.4 24.5%
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