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Mammalian cell surfaces are decorated with complex glycoconjugates that terminate

with negatively charged sialic acids. Commensal and pathogenic bacteria can use host-

derived sialic acids for a competitive advantage, but require a functional sialic acid

transporter to import the sugar into the cell. This work investigates the sodium sialic acid

symporter (SiaT) from Staphylococcus aureus (SaSiaT). We demonstrate that SaSiaT

rescues an Escherichia coli strain lacking its endogenous sialic acid transporter when

grown on the sialic acids N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic

acid (Neu5Gc). We then develop an expression, purification and detergent solubilization

system for SaSiaT and demonstrate that the protein is largely monodisperse in solution

with a stable monomeric oligomeric state. Binding studies reveal that SaSiaT has a higher

affinity for Neu5Gc over Neu5Ac, which was unexpected and is not seen in another SiaT

homolog. We develop a homology model and use comparative sequence analyses to

identify substitutions in the substrate-binding site of SaSiaT that may explain the altered

specificity. SaSiaT is shown to be electrogenic, and transport is dependent upon more

than one Na+ ion for every sialic acid molecule. A functional sialic acid transporter is

essential for the uptake and utilization of sialic acid in a range of pathogenic bacteria,

and developing new inhibitors that target these transporters is a valid mechanism for

inhibiting bacterial growth. By demonstrating a route to functional recombinant SaSiaT,

and developing the in vivo and in vitro assay systems, our work underpins the design of

inhibitors to this transporter.
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INTRODUCTION

Mammalian cell surfaces are decorated with complex
glycoconjugates, such as glycoproteins and glycolipids. Found
at the terminal non-reducing positions of these cell-surface
glycoconjugates are negatively charged sialic acids, which
mediate a diverse array of cellular interactions, recognition and
adhesion.

Sialic acids comprise a large family of nine-carbon
acidic monosaccharides, the most common of which is N-
acetylneuraminic acid (Neu5Ac). While Neu5Ac is ubiquitously
synthesized, the closely related sialic acid, N-glycolylneuraminic
acid (Neu5Gc) is not. Although Neu5Ac and Neu5Gc sialic acids
are widely expressed on mammalian tissues, human cells do not
synthesize Neu5Gc. This is because humans have an inactivating
mutation in the gene encoding CMP-N-acetylneuraminic acid
hydroxylase, the rate-limiting enzyme for the generation of
Neu5Gc in the cells of other mammals (Varki, 2001).

Mammalian commensal and pathogenic bacteria that colonize
sialic acid rich tissues, such as the respiratory or gastrointestinal
tract, have evolved mechanisms to use host-derived sialic acids
for a competitive advantage; this suggests a link between
sialic acid uptake/utilization and survival in vivo (Almagro-
Moreno and Boyd, 2009). Some bacteria, such as Haemophilus
influenzae (Vimr et al., 2000; Bouchet et al., 2003), and Neisseria
meningitides (Vimr et al., 2004) incorporate sialic acid into their
cell surface macromolecules to trick the host’s innate immune
response. Others, such as Escherichia coli (Vimr and Troy, 1985;
Chang et al., 2004), Staphylococcus aureus (Olson et al., 2013),
and Vibrio vulnificus (Jeong et al., 2009) use a suite of enzymes
(North et al., 2013, 2014a,b, 2016) to degrade sialic acids as a
source of carbon, nitrogen and energy. Notably, H. influenzae
also metabolizes sialic acids in this way, and must make a
metabolic decision between cell surface sialylation and sialic acid
degradation (Vimr et al., 2000).

Bacteria that import sialic acids have evolved multiple
mechanisms of transport across the cytoplasmic membrane. To
date, four unique transporter families have been recognized,
including those from the ATP binding cassette (ABC) (Post
et al., 2005), tripartite ATP-independent periplasmic (TRAP)
(Allen et al., 2005), major facilitator superfamily (MFS) (Vimr
and Troy, 1985), and sodium solute symporter (SSS) (Severi
et al., 2010; Wahlgren et al., 2018) transporter families (North
et al., 2017). Whilst most bacteria possess only one type of sialic
acid transporter, there are a few exceptions that are predicted to
express two family types (Severi et al., 2010). It is not understood
why these organisms produce more than one type of sialic
acid transporter, but it is possible that they import sialic acid
derivatives that are known in biological contexts.

Developing novel inhibitors that target bacterial sialic acid
transporters may be a valid mechanism for inhibiting bacterial
growth—several lines of evidence support this. It has been
shown that a dedicated and functional sialic acid membrane
transporter is required for the uptake of sialic acids (Vimr and
Troy, 1985; Severi et al., 2005, 2010). Moreover, in vivo mouse
studies demonstrate that sialic acid uptake and utilization is
essential for colonization and persistence in a range of pathogenic

bacteria (Chang et al., 2004; Almagro-Moreno and Boyd, 2009;
Jeong et al., 2009; Pezzicoli et al., 2012). Knocking out the
respective sialic acid transporter genes in Salmonella enterica
serovar Typhirium and Clostridium difficile impairs outgrowth
during post-antibiotic expansion (Ng et al., 2013), and E. coli
during intestinal inflammation (Huang et al., 2015). Humans
readily synthesize the Neu5Ac type of sialic acid and have
dedicated membrane transporters to deploy it onto their surface.
These share little homology to the bacterial transporters (North
et al., 2017) so inhibitors to the bacterial transporters may not be
toxic.

Recently, we determined the high-resolution outward-facing,
and open, substrate-bound structure of the SiaT sialic acid
transporter from Proteus mirabilis (PmSiaT) (Wahlgren et al.,
2018). SiaT transporters belong to the SSS family. PmSiaT adopts
the LeuT-fold with Neu5Ac bound near the center of the protein,
and two Na+ ions for transport.

This work investigates the SiaT sodium sialic acid symporter
from S. aureus (SaSiaT). We demonstrate that SaSiaT can
be purified and stably occupies a monomeric oligomeric
state. We characterize the functionality of SaSiaT with two
different sialic acids, and the kinetics of sialic acid membrane
transport.

MATERIALS AND METHODS

Molecular Biology Techniques
The S. aureus (strain RF122) siaT (Accession AJ938182.1) gene
was codon optimized for E. coli (GeneArt, ThermoFischer
Scientific; Supplementary Figure 1). For purification of
recombinant protein and functional studies, siaT was amplified
by PCR using Sa_siaT-F1 and Sa_siaT-R1 oligonucleotides
(Supplementary Table 1) and cloned into the pWarf(-) (Hsieh
et al., 2010) vector using the In-Fusion HD Cloning Kit
(Clontech). The pWarf(-) vector carries a C-terminal human
rhinovirus 3C protease (HRV3C) cleavage site followed by a
green fluorescence protein (GFP)-tag and an 8 × histidine
(His)-tag. The amplified fragment was cloned into pWarf(-)
digested with the BamHI (3′) and XhoI (5′) restriction enzymes
to generate pWarf(-)Sa_siaT with kanamycin resistance. This
was transformed into StellarTM Competent Cells (Clontech),
purified using the DNA-SpinTM Plasmid DNA Purification
Kit (iNtRon Biotechnology), and verified by DNA sequencing
(Eurofins).

For bacterial growth experiments, siaT was amplified
by PCR using Sa_siaT-F2 and Sa_siaT-R2 oligonucleotides
(Supplementary Table 1) and cloned into the low-copy vector
pJ422-01 also using the In-Fusion HDCloning Kit. The amplified
fragment was cloned into pJ422-01 digested with the EcoR1
(3′) and Nde1 (5′) restriction enzymes to generate pJ422-
01Sa_siaT with ZeocinTM resistance. This was transformed into
StellarTM Competent Cells (Clontech), purified using the DNA-
SpinTM Plasmid DNA Purification Kit (iNtRon Biotechnology),
and verified by DNA sequencing (Genetic Analysis Service,
University of Otago). The pJ422-01Sa_siaT plasmid was
subsequently transformed into the E. coli JW3193 1nanT strain
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[NBRP (NIG, Japan): E. coli] (Baba et al., 2006) generating the
complementation strain E. coli JW3193 1nanT-siaT.

Protein Production and Purification
The pWarf(-)Sa_siaT plasmid was transformed into E. coli
Lemo21(DE3) and grown in terrific broth media supplemented
with kanamycin (50µg/mL), chloramphenicol (34µg/mL), L-
rhamnose (100µM), and induced with 0.4mM isopropyl β-
D-1-thiogalactopyranoside (IPTG) at 26◦C overnight, with
shaking at 180 rpm. For isothermal titration calorimetry and
proteoliposome measurements, the protein was expressed in
PASM-5052 auto-induction media (Lee et al., 2014). Cells were
solubilized in phosphate-buffered saline (PBS), supplemented
with cOmpleteTM EDTA free protease inhibitor tablets (Roche),
lysozyme (0.5 mg/mL), DNaseI (5µg/mL), MgCl2 (2mM)
and lysed by sonication using a Hielscher UP200S Ultrasonic
Processor at 70% amplitude in cycles of 0.5 s on, 0.5 s off, for
30min. Cell debris was pelleted by centrifugation at 24,000 g,
for 25min, at 4◦C and the cell membranes were collected by
ultracentrifugation at 230,000 g, for 2 h, at 4◦C and stored at
−80◦C until further use. Cell membranes were solubilized in
2% (w/v) n-dodecyl-ß-D-maltoside (DDM) for 2 h at 4◦C and
unsolublized material was removed by ultracentrifugation at
150,000 g. The protein was first purified using immobilized metal
affinity chromatography; the supernatant was loaded onto a 5mL
HisTrap HP column (GE Healthcare) equilibrated with Buffer A
(70mM Tris-HCl, pH 8.0, 150mM NaCl, 20mM imidazole, 6%
glycerol, 5mM β-mercaptoethanol, and 0.0174% (w/v) DDM).
The column was washed with Buffer A, followed by a 10%
wash with Buffer B (Buffer A with 500mM imidazole) and
protein was eluted using 50% Buffer B. Protein was concentrated
and simultaneously exchanged into Buffer C (50mM Tris-HCl,
pH 8.0, 150mM NaCl, 0.0174% (w/v) DDM). For analytical
ultracentrifugation experiments, Buffer C contained 0.174%
DDM. The GFP-tag was cleaved with HRV3C protease in
a 1:12.5 mass ratio (HRV3C:SaSiaT) at 4◦C for 18 h. Size
exclusion chromatography was performed as a final purification
step using a HiLoad 16/60 Superdex 200 column in Buffer C.
Protein concentration was determined using a NanoDrop 1000
spectrophotometer at 280 nm, using an extinction coefficient of
75,750 M−1cm−1, and a molecular weight of 56.7 kDa following
HRV3C cleavage of the GFP-tag.

Analytical Ultracentrifugation
Sedimentation velocity experiments were performed in a
Beckman CoulterModel XL-I analytical ultracentrifuge equipped
with UV/Vis scanning optics. Reference buffer solution (50mM
Tris-HCl, 150mMNaCl, pH 8.0) and sample solutions (including
reference buffer solution with 0.174% DDM, and SaSiaT at four
concentrations: 0.6, 0.4, 0.2, and 0.1mg mL−1) were loaded
into 12mm double-sector cells with standard Epon 2-channel
centerpieces and quartz windows. Cells were mounted in an eight
hole An-50 Ti rotor and centrifuged at 50,000 rpm at 12◦C.
Interference and absorbance measurements at a wavelength of
280 nm were recorded over a radial position range of 5.8 to
7.3 cm within the cell, with measurements taken at sediment
boundary intervals of 0.003 cm. The partial specific volume of

SaSiaT was calculated using SEDNTERP (Laue et al., 1992) and
buffer density and buffer viscosity were experimentally measured
with an Anton Paar DMA4100M density meter and Anton Paar
Lovis 2000 ME microviscometer, respectively. The van Holde-
Weischet and 2DSA-Monte Carlo analyses were performed
using UltraScan III (Demeler and van Holde, 2004; Brookes
and Demeler, 2007; Demeler and Brookes, 2007; Demeler,
2010).

Bacterial Growth Experiment
E. coli strains JW3193 1nanT, JW3193 1nanT_siaT, and E.
coli BW25113, which served as a wild type control, were
grown (37◦C, 250 rpm) overnight in low salt Luria-Bertani (LB)
media. For 1nanT_siaT, the LB media was supplemented with
ZeocinTM (25µg/mL). Overnight cultures were diluted to an
OD600 of 0.05 and further grown (37◦C, 250 rpm) in low salt
LB media supplemented with 1mM IPTG until they reached
mid-logarithmic phase (OD600 of 0.35). Bacterial cultures were
harvested by centrifugation (6,000 rpm, 10min, 4◦C), washed
three times in M9 minimal media and diluted to an OD600

of 0.5. Cultures (20 µL) were added to a Costar Flat Bottom
96 well plate with lid containing M9 minimal media (180
µL) supplemented with ZeocinTM (25µg/mL), IPTG (1mM),
thiamin hydrochloride (7µM) and either N-acetylneuraminic
acid (Neu5Ac, 4 mg/mL, 12.9mM), N-glycolylneuraminic acid
(Neu5Gc, 4 mg/mL, 12.3mM) or glucose (0.4%) as the sole
carbon source. In addition, bacterial growth was monitored
in M9 minimal media without any carbon source. Growth
at 37◦C, with shaking at 250 rpm, was recorded at 600 nm
every 10min using the FLUOstar Omega microplate reader
(BMG labtech). Growth curves represent the mean of four
measurements ± standard error of the mean, or three
measurements ± standard error of the mean for the control
experiments.

Microscale Thermophoresis
The binding affinities for two sialic acids and purified SaSiaT
were determined using microscale thermophoresis. Experiments
were performed on a Monolith NT.LabelFree instrument
(NanoTemper Technologies) (Wienken et al., 2010; Soares da
Costa et al., 2016; Stifter et al., 2018). Purified SaSiaT was
diluted to 2µM in PBS buffer supplemented with 0.0174%
(w/v) DDM, and incubated with Neu5Ac (from 0.3µM to
10mM), and Neu5Gc (0.08µM to 2.5mM), for 5min prior to
taking measurements. The samples were loaded into Monolith
NT Standard Treated Capillaries (NanoTemper Technologies).
Microscale thermophoresis measurements were carried out at
25◦C using 20% LED power, and 20%microscale thermophoresis
infrared laser power. The dissociation constants (Kd) were
determined using the mass action equation via the NT
Analysis software version 1.5.41 (NanoTemper Technologies),
using the signal from Thermophoresis + T-jump for triplicate
experiments.

Isothermal Calorimetry
Purified SaSiaT was concentrated to a final concentration of 170–
240µM using membrane ultrafiltration with a molecular weight
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cutoff of 50 kDa. The flow through was used to dilute 100mM
stock solutions of sialic acid to concentrations of 2.5–4mM for
Neu5Ac and 2–2.4mM for Neu5Gc. Protein sample (206 µL)
was loaded into the sample cell, and 70 µL of the respective
sialic acid was loaded into the injection syringe. The system was
equilibrated to 25◦C with a stirring speed of 750 rpm. Titration
curves were initiated by a 1 µL injection followed by 4 µL
injections every 180 s. Background corrections were obtained by
injection of sialic acids into buffer and buffer into protein with the
same parameters. Biological triplicate experiments were analyzed
using ORIGIN 7 with the first injection excluded. The curves
were fitted into a single-site binding isotherm and Kd values
were determined. Measurements were made using a Micro-200
Isothermal titration calorimeter or a PEAQ Isothermal titration
calorimeter (MicroCal, Malvern).

Sequence Alignment and Homology
Modeling of SiaT in an Outward-Facing
Open Conformation
Multiple protein sequence alignment was performed between
SaSiaT and additional SiaT from various bacterial species, as
described elsewhere (Wahlgren et al., 2018). This was used
to compare conservation of the Neu5Ac binding site between
organisms. A second multiple protein sequence alignment was
performed between SiaT from 19 strains of S. aureus, to compare
conservation of the Neu5Ac binding site between different
isolates. These include S. aureus RF122, S. aureus ED133, S.
aureus NR153, S. aureus XQ, S. aureus 93b_S9, S. aureus
CFSAN007883, S. aureus HZW450, S. aureus MS4, S. aureus
SA268, S. aureus SA40, S. aureus SA957, S. aureus M013, S.
aureus FDA209P, S. aureus FDAARGOS_43, S. aureus NRS271,
S. aureus MW2, S. aureus NRS143, S. aureus USA400-0051, S.
aureus EDCC5464. Alignments were generated using ClustalW
(Larkin et al., 2007).

The outward-facing open conformation of SaSiaT was
modeled on the outward-facing open structure of SiaT from
P. mirabilis (PmSiaT). These transporters share ∼41% sequence
identity. To build a homology model, an alignment between the
two protein sequences was first generated using a global sequence
alignment with EMBOSS stretcher (Myers and Miller, 1988).
MEDELLER (Kelm et al., 2010) was used to create the model of
SaSiaT in the outward-facing open conformation using PmSiaT
(pdb entry 5nv9) as a template structure. Next, GROMACS 5.1.2
(Abraham et al., 2015) was used for energy minimization of
the SaSiaT homology model, using the GROMOS 54A7 force
field. The resulting structure was superimposed onto the PmSiaT
structure with Neu5Ac bound using a Structural Alignment of
Multiple Proteins (STAMP) structure-based sequence alignment
in VMD MultiSeq. The structure was manually edited using
COOT (without further energy minimization) to remove a clash
between the sidechain of Tyr79 and the Neu5Ac. The sidechain
was rotated to overlay with that of the corresponding residue
(Phe78) in the template PmSiaT structure. Other residues in the
substrate binding site of the homology model were rotated to
better represent the conformations found in the substrate bound
PmSiaT template.

Proteoliposome Assays
Purified SaSiaT was reconstituted into proteoliposomes using
a protocol previously optimized for PmSiaT, with some
modifications (Wahlgren et al., 2018). Briefly, 5 µg of protein
was mixed with 120 µL 10% C12E8, 100 µL of 10% egg yolk
phospholipids (w/v, sonicated as previously described to form
liposomes, Scalise et al., 2014). Next, 20mM of K+-gluconate
buffered by 20mM Tris-HCl, pH 7.0 was added to create a
final volume of 700 µL. The mixture was incubated with 0.5 g
Amberlite XAD-4 resin under rotatory stirring (1,200 rev/min)
at 25◦C for 40min (Scalise et al., 2015). After reconstitution,
600 µL of proteoliposomes were loaded onto a Sephadex G-
75 column (0.7 cm diameter × 15 cm height) pre-equilibrated
with 20mM Tris-HCl, pH 7.0, 40mM sucrose to balance
internal osmolarity. To generate a K+ diffusion potential,
valinomycin (0.75 µg/mg phospholipid) prepared in ethanol was
added to the proteoliposomes following Sephadex G-75 column
chromatography, as previously described (Scalise et al., 2014;
Wahlgren et al., 2018). As a control, ethanol was added to
proteoliposomes, which did not exert any effect on the transport
activity. After 10 s of incubation with valinomycin/ethanol,
transport was started by adding 50µM [3H]-Neu5Ac to the
proteoliposomes in the presence of 25mM NaCl. The initial
rate of transport was measured by stopping the reaction after
5min, i.e., within the initial linear range of [3H]-Neu5Ac uptake
into the proteoliposomes. Transport was terminated once [3H]-
Neu5Ac was removed by loading each proteoliposome sample
(100 µL) on a Sephadex G-75 column (0.6 cm diameter × 8 cm
height). Proteoliposomes were eluted with 1mL 50mMNaCl and
collected in 4mL of scintillation mixture, vortexed and counted.
Radioactivity uptake in liposome controls (without incorporated
protein) was negligible with respect to transport data. Uptake
data were fitted in a first-order rate equation for time course
plots, and kinetic data were fitted with a Michaelis-Menten or
Hill equations. Non-linear fitting analysis was performed by
Grafit software (version 5.0.13). To measure the specific activity
of SaSiaT, the amount of protein was estimated by NanoDrop.
All measurements are presented as means ± SD from three
independent experiments.

RESULTS AND DISCUSSION

Expression of SaSiaT Rescues an E. Coli

Strain That Lacks its Endogenous Sialic
Acid Transporter
To demonstrate sialic acid transport by SaSiaT, we first
showed that SaSiaT rescues the growth of an E. coli strain
lacking the endogenous NanT sialic acid transporter (1nanT)
when grown on Neu5Ac or Neu5Gc (Figure 1). The Neu5Ac
and Neu5Gc differ by the addition of a hydroxyl at the
C11 methyl of the N-acetyl group in Neu5Gc (Figure 1A).
While E. coli JW3193 1nanT grows in M9 minimal media
supplemented with glucose (Table 1), it is not able to utilize
Neu5Ac or Neu5Gc as the sole carbon source (Figure 1B,
data in green). After complementation of E. coli JW3193
1nanT with pJ422-01Sa_siaT (to produce E. coli JW3193

Frontiers in Chemistry | www.frontiersin.org 4 July 2018 | Volume 6 | Article 233

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


North et al. On SiaT From Staphylococcus aureus

∆ nanT

∆ nanT_siaT

Wildtype

0 1000 2000 3000
0.0

0.5

1.0

1.5

2.0

2.5

Time (min)

O
D

6
0
0
n
m

Neu5Ac

Wildtype

∆ nanT

∆ nanT_siaT

0 1000 2000 3000
0.0

0.5

1.0

1.5

2.0

2.5

Time (min)
O

D
6
0
0
n
m

Neu5Gc

O

CO2

OH

HO

OH

HO
OH

N
H

O

N-acetylneuraminic acid (Neu5Ac)

1

2

3

4
5

6789

N-glycolylneuraminic acid (Neu5Gc)

B

A

O

CO2

OH

HO

OH

HO
OH

N
H

O

HO

1

2

3

4
5

6789

10 10

1111

Wild type
Wild type

FIGURE 1 | Bacterial growth experiments demonstrate SaSiaT function. (A) The chemical structures of Neu5Ac and Neu5Gc. (B) Growth of E. coli wild type (orange),

1nanT (green), and its complemented derivative 1nant_siaT (blue) on Neu5Ac and Neu5Gc. While 1nanT is unable to utilize Neu5Ac and Neu5Gc, SaSiaT is able to

rescue the growth of 1nanT on both Neu5Ac and Neu5Gc sialic acids as the sole carbon source.

TABLE 1 | Growth rates of the E. coli wild type, 1nanT and 1nanT_siaT in M9 minimal media containing different carbon sources.

Strain Neu5Ac Neu5Gc Glucose No carbon source

Wild type 3.56 (0.04) × 10−3 3.3 (0.1) × 10−3 5.5 (0.2) × 10−3 –

1nanT – – 4.3 (0.5) × 10−3 –

1nanT_siaT 1.3 (0.3) × 10−3 1.9 (0.05) × 10−3 3.86 (0.05) × 10−3 –

Values represent the growth rate/min. A dash (–) indicates no growth. Values in brackets represent the standard error of measurement, where n = 4.

1nanT_siaT), the ability to grow on both sialic acids is
restored (Figure 1B, data in blue). Notably, the growth rate
of 1nanT_siaT is faster when grown in M9 minimal media
containing Neu5Gc as the sole carbon source, as opposed to
Neu5Ac (Table 1). This could reflect more efficient transport
of Neu5Gc, due to a higher affinity for Neu5Gc compared to
Neu5Ac.

Curiously, E. coli 1nanT_siaT reached higher final optical
density compared to wild type E. coli BW25113 (Figure 1B,
data in blue compared to data in orange). This was unexpected,
perhaps suggesting that the native E. coli NanT may be regulated
in some way, thereby limiting sialic acid uptake. E. coli
1nanT_siaT exhibits an extended lag-phase compared to wild
type E. coli BW25113. Since SiaT expression was pre-induced
with IPTG (see section Materials and Methods), it is likely
that the growth lag is due to an increased metabolic burden
caused by the overexpression of SiaT itself. This also explains the
reduced growth rates of 1nanT_siaT compared to the wild type
(Table 1).

In short, we demonstrate that the SaSiaT is functional in vivo
and observe a preference for Neu5Gc in terms of maximum
growth rate.

Recombinant SaSiaT Is Stably Purified as a
Single Species
SaSiaT was successfully overexpressed, solubilized, and purified
to homogeneity in buffer containing DDM detergent. The
profile from size exclusion chromatography (Figure 2A) shows
a dominant peak at ∼55mL, with a shoulder to the left that is
consistent with a small amount of a larger component, possibly
an aggregate. Analytical ultracentrifugation studies at protein
concentrations ranging from 0.1 to 0.6mg/mLwere used to assess
the stability and oligomeric state of purified recombinant SaSiaT
prior to functional studies. Analyses of absorbance data from
analytical ultracentrifugation experiments, using van Holde-
Weischet sedimentation coefficient distributions (Figure 2B),
reveal a largely monodisperse solution with a major component
at ∼8 S. However, as evidenced by the shift of the distribution
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FIGURE 2 | Recombinant SaSiaT can be stably purified and occupies a predominantly single oligomeric state. (A) Size-exclusion chromatography trace of SaSiaT at

its final purification step. To the left of a main dominant peak there is a small shoulder, which may represent aggregate. (B) van Holde-Weischet sedimentation

coefficient distributions show a dominant component at ∼8S. (C) 2DSA-Monte Carlo analysis of sedimentation velocity data of SaSiaT at 0.6 mg/mL, as implemented

by UltraScan III, shows a main peak comprising 70% of the signal.

to the right, the van Holde-Weischet analysis also suggests that
some protein may be aggregated. 2DSA-Monte Carlo analysis
(Figure 2C) determines a major component at 8.2 S with a
frictional ratio of 1.05, which is consistent with a molecular
weight of 160 kDa (assuming a mass averaged v-bar of 0.76
for the detergent:protein complex). This is consistent with
a SaSiaT monomer surrounded by ∼200 DDM molecules.
This monomeric species represents ∼70% of the total sample.
The 2DSA-Monte Carlo analysis also shows a series of larger
components ranging from 10.5 to 13.0 S with an increasing
frictional ratio, that represent a small amount of aggregate.
Overall, our studies demonstrate that SaSiaT can be stably
expressed and purified using the detergent DDM. Furthermore,
when solubilized in DDM, it is largely a monomer that associates
with∼200 DDMmolecules in solution.

Binding Studies Demonstrate That SaSiaT
Has an Altered Specificity
Given the increased growth rate observed when grown on
Neu5Gc compared to Neu5Ac, the binding affinity of Neu5Ac
and Neu5Gc to recombinant SaSiaT was determined using
microscale thermophoresis (Figure 3A) and isothermal titration
calorimetry (Figure 3B). By microscale thermophoresis, SaSiaT
has a considerably higher affinity for the Neu5Gc sialic acid (Kd

= 39 ± 4µM) compared to the Neu5Ac sialic acid (Kd = 113
± 6µM). Consistent with this, isothermal titration calorimetry
experiments confirmed that SaSiaT has a higher affinity for
Neu5Gc (Kd = 18 ± 2µM) than Neu5Ac (Kd = 106 ± 2µM).
Interestingly, PmSiaT is the opposite, and displays a more similar,
but higher binding affinity for Neu5Ac (Kd

Neu5Ac = 58 ± 1µM)
compared to Neu5Gc (Kd

Neu5Gc = 85 ± 2µM) using microscale
thermophoresis (Wahlgren et al., 2018). Thus, SaSiaT reveals
different substrate specificity compared to PmSiaT.

Three Substitutions in the Active Site of
SaSiaT may Explain Altered Substrate
Specificity
To reconcile at the molecular level the observed difference
in substrate specificity, and ultimately, the difference between

SaSiaT and PmSiaT, amino acid sequence analyses and homology
modeling were used to examine the differences in the active site.

The Neu5Ac binding site, as determined in PmSiaT (pdb entry
5nv9), is conserved among SiaT transporters from a number
of bacterial species (Figure 4A) (Wahlgren et al., 2018). When
comparing the sequences between SaSiaT and PmSiaT, there are
three substitutions in SaSiaT (PmSiaT-Gln82 to SaSiaT-Asn83,
PmSiaT-Phe78 to SaSiaT-Tyr79, and PmSiaT-Phe243 to SaSiaT-
Asn244, Figure 4A) that we predict are involved in substrate
binding. These residues are highly conserved among S. aureus
isolates (Supplementary Figure 2); they are, therefore, not specific
to any particular isolate of S. aureus.

To map these substitutions within the putative active site, a
homology model of SaSiaT was built based upon the outward-
facing open structure of PmSiaT (pdb entry 5nv9) (Figure 4B).
Superposition of the SaSiaT homology model with PmSiaT
(r.m.s.d. = 0.172 Å for 364 α-carbon atoms) demonstrates that
the PmSiaT-Gln82 to SaSiaT-Asn83, PmSiaT-Phe243 to SaSiaT-
Asn244, and PmSiaT-Phe78 to SaSiaT-Tyr79 substitutions in
SaSiaT may be responsible for the altered substrate specificity
observed in the binding experiments, since they are close to the
C11methyl group of theN-acetyl moiety of Neu5Ac (Figure 4B),
which is hydroxylated in Neu5Gc.

In the PmSiaT crystal structure, the side chain of Gln82
(SaSiaT-Asn83) is in a position to form two hydrogen bonds
with the hydroxyl group at C9 and the hydroxyl group at C7 of
the Neu5Ac glycerol tail (Figure 4C) (Wahlgren et al., 2018). In
SaSiaT, the side chain of the Asn83 substitution is shorter than
a Gln, which creates more space in the substrate-binding cavity.
SaSiaT-Asn83 may be in a position to bond the additional C11
hydroxyl of Neu5Gc (Figure 4C), but only if the C11 hydroxyl
points toward the glycerol tail. Like PmSiaT-Gln82, SaSiaT-
Asn83 is still in position to hydrogen bond the hydroxyl group
at C9 of the glycerol tail, albeit with a longer hydrogen bond
length.

The C10 carbonyl of the N-acetyl moiety in Neu5Ac is
coordinated by the amide from the side chain of Gln82 through a
water molecule, while the methyl group of the N-acetyl moiety
of Neu5Ac is facing toward a hydrophobic patch formed by
Phe78 and Phe243 (Figure 4C) (Wahlgren et al., 2018). In
SaSiaT, Tyr79, and Asn244 replace the equivalent positions of
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FIGURE 3 | Orthogonal binding experiments demonstrate substrate ambiguity. (A) Microscale thermophoresis binding assay to measure the affinity of SaSiaT for

Neu5Ac and Neu5Gc sialic acids. Raw data are shown with the fit for three independent experiments with Neu5Ac (left) and Neu5Gc (middle). The Kd values are

reported as the mean ± uncertainty in the mean of the fit using the signal from Thermophoresis + T-jump, from triplicate experiments, where n = 1 (we define n as the

number of different recombinant protein preparations, which we view as equivalent to biological replicates). The Kd and associated error of each fit is given in

Supplementary Table 2. The shift in Kd between both sialic acids is shown (right). SaSiaT has a tighter affinity for Neu5Gc than Neu5Ac. (B) Representative isothermal

titration calorimetry raw data (top panel) and binding isotherm (bottom panel) of one isothermal titration calorimetry experiment obtained by successive titration of

Neu5Ac (left) or Neu5Gc (right) with purified SaSiaT. The fit of a single binding site is shown in the bottom panels (black line). Kd values are reported as the mean ±

SEM of the fit from three experiments using different protein preparations (n = 3).

PmSiaT-Phe78 and PmSiaT-Phe243 (Figure 4B). SaSiaT-Asn244
could facilitate a new interaction with the additional C11
hydroxyl group of Neu5Gc, and the side chain hydroxyl group
of SaSiaT-Tyr79 could create a more hydrophilic environment in
the vicinity, which may be important for Neu5Ac and Neu5Gc
discrimination.

There are other examples where the preference for Neu5Gc
is mediated by new interactions, via hydrogen bonds, with the
extra hydroxyl group present in Neu5Gc. A similar preference
for Neu5Gc over Neu5Ac has been reported for the subtilase
cytotoxin (SubAB) produced by Shiga-toxigenic E. coli (Byres
et al., 2008), and the porcine rotavirus (Yu et al., 2012), both
of which bind to glycans terminating with sialic acids. The
crystal structure of SubB-Neu5Gc complex (pdb entry 3dwa)
shows that the C11 hydroxyl group of the glycolyl in Neu5Gc
forms important hydrogen bonds with the side chain of a
Tyr, and the main chain of a Met (Byres et al., 2008). The
crystal structure of the porcine rotavirus strain CRW-8 spike
protein domain VP8 (pdb entry 3tay) has similar interactions
between the glycolyl of Neu5Gc with the side chain of a Thr,
and the main chain of a Tyr (Yu et al., 2012). Mutation of

these residues results in a significant loss of activity. Similarly,
the VP1 capsid protein from human polyomavirus 9 (HPyV9)
has a preference for Neu5Gc over Neu5Ac (Khan et al.,
2014). However, the VP1 capsid protein from a closely related
homolog, monkey-derived simian B-lymphotropic polyomavirus
(LPyV), has no such preference (Khan et al., 2014). Again,
the preference for Neu5Gc is acquired by specific hydrogen
bonds with the glycolyl of Neu5Gc, which LPyV cannot
form.

In conclusion, we suggest that the altered specificity of SaSiaT
for Neu5Gc over Neu5Ac, compared to PmSiaT, may be afforded
by Asn substitutions at the 83 and 244 positions, and a Tyr
substitution at position 78, in the substrate-binding site of
SaSiaT.

Proteoliposome Assays Delineate the
Kinetics of Sialic Acid Membrane Transport
To demonstrate the ability of purified recombinant SaSiaT to not
only bind sialic acids, but to also transport them across a lipid
membrane, we reconstituted the protein into proteoliposomes
using native E. coli lipids and measured time dependent
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FIGURE 4 | Sequence alignment and homology modeling probe substrate ambiguity. (A) Amino acid sequence alignment of SaSiaT with SiaT transporters from eight

additional bacterial species (Wahlgren et al., 2018). SiaT transporters from S. aureus, P. mirabilis, Morganella morganii, S. enterica, Vibrio fischeri, Plesiomonas

shigelloides, Photobacterium profundum, Clostridium perfringens, C. difficile, and Streptococcus pneumoniae are aligned. Important residues in the Neu5Ac binding

site in PmSiaT (pdb entry 5nv9) are shown. Residues highlighted with black boxes are highly conserved, and important residues implicated in Neu5Ac binding in

PmSiaT are numbered according to SaSiaT. (B) Superposition of the SaSiaT homology model (green) and PmSiaT (gray) with Neu5Ac bound (black). Residues are

labeled according to SaSiaT, with PmSiaT in parentheses. A water molecule from PmSiaT is shown in yellow. PmSiaT coordinates are from pdb entry 5nv9. Black

dashed lines depict hydrogen bonds, or a salt bridge with Arg136. On the right, the binding site has been rotated 90◦ and the substituted residues are shown. (C) The

PmSiaT-Neu5Ac interaction network (Wahlgren et al., 2018) with Gln82, Phe78, and Phe243 is represented as a Ligplot+ diagram (Laskowski and Swindells, 2011)

using PDB entry 5nv9. Hydrogen bonds (dashed lines), hydrophobic contacts (arcs with spokes), and an interacting water molecule (yellow) are shown.

uptake of [3H]Neu5Ac (Figure 5A). The transporter mediated
a Na+-dependent uptake of [3H]Neu5Ac, stimulated by an
imposed membrane potential. Similar to PmSiaT (Wahlgren
et al., 2018), in the presence of an imposed membrane

potential, transport at equilibrium was almost doubled (185
± 15 nmol/min/mg) compared with transport in the absence
of an imposed membrane potential (95 ± 5 nmol/min/mg)
(Figure 5A). Transport of [3H]Neu5Ac in liposomes without
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FIGURE 5 | Proteoliposome assays demonstrate the ability to transport sialic acid, which is dependent on Na+. (A) Proteoliposome transport was started by adding
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through Sephadex-G75 columns. Data were fitted to the first-order rate equation. (B) The transport of [3H]-Neu5Ac over a range of concentrations in the presence of

25mM NaCl was measured in proteoliposomes reconstituted with purified recombinant SaSiaT, with an imposed K+ diffusion membrane potential, over 5min. Data

were fitted to the Michaelis-Menten equation. (C) The transport of 50µM [3H]-Neu5Ac in the presence of NaCl over a range of concentrations was measured in

proteoliposomes reconstituted with purified recombinant SaSiaT, with an imposed K+ diffusion membrane potential, over 5min. Data were fitted to the Hill equation.

All data are presented as mean ± SD from three independent experiments.

SaSiaT protein was negligible with respect to reconstituted
SaSiaT proteoliposomes.

In optimal proteoliposome transport conditions with an
imposed membrane potential, [3H]Neu5Ac is transported by
SaSiaT with a KM of 42 ± 9µM and a Vmax of 110 ± 11
nmol/min/mg (Figure 5B). This is lower (a higher binding
affinity) than the measurements made using microscale
thermophoresis and isothermal titration calorimetry, which may
reflect the altered solubilization of the transporter in lipid, as
opposed to detergent. The KM for [3H]Neu5Ac transport by
SaSiaT is almost twice that of PmSiaT (Wahlgren et al., 2018).
Consistent with the binding experiments, the molecular basis
of this difference is likely that SaSiaT has a lower affinity for
Neu5Ac compared to PmSiaT.

The kinetics of Na+ transport by SaSiaT was measured in
proteoliposomes, giving a KM of 4.9 ± 0.5mM (Figure 5C). As
demonstrated by the cooperativity index calculated from the Hill
plot, the transport stoichiometry is more than one for Na+. This
is in the same order calculated for PmSiaT, which transport two
Na+ for every Neu5Ac (Wahlgren et al., 2018).

To conclude, proteoliposome experiments demonstrate that
the recombinant SaSiaT is functional and able to transport
Neu5Ac, that an electrogenic gradient drives transport, that the
affinity for Neu5Ac is less than for PmSiaT, and that two Na+

ions are transported for every sialic acid.

CONCLUSIONS

Overall, we demonstrate that SaSiaT is a functional sialic acid
transporter, with a considerably higher binding affinity for
Neu5Gc over Neu5Ac. Compared to PmSiaT, in which Neu5Gc
and Neu5Ac have similar binding affinities (Wahlgren et al.,
2018), SaSiaT has altered substrate specificity. We propose that
three residues unique to the SaSiaT substrate-binding site (Tyr79,
Asn83, and Asn244) achieve a higher affinity to Neu5Gc. Like
SubAB, the porcine rotavirus, and HPyV9, which also have a

preference for Neu5Gc over Neu5Ac (Byres et al., 2008; Yu
et al., 2012; Khan et al., 2014), specific hydrogen bonds with the
C11 hydroxyl of Neu5Gc, and a hydrophilic environment in the
vicinity of theNeu5Gc glycolyl chain, afford this specificity (Khan
et al., 2014).

Although humans cannot synthesize Neu5Gc, they can
acquire it from red meat and milk in the diet (Varki, 2010;
Varki et al., 2011). Consequently, metabolic incorporation of
Neu5Gc has been identified in the human gut epithelium and
kidney vasculature (Tangvoranuntakul et al., 2003; Byres et al.,
2008; Banda et al., 2012). Since some bacteria and viruses can
discriminate between sialic acid variants (Byres et al., 2008; Yu
et al., 2012; Khan et al., 2014; Stencel-Baerenwald et al., 2014),
this could, in turn, influence their host or tissue range. It is
possible that the ability of SaSiaT to bind Neu5Gc with higher
affinity (compared to Neu5Ac) confers an advantage to S. aureus
in specific niches.

Because a functional sialic acid transporter is essential for the
uptake and utilization of sialic acid in a range of pathogenic
bacteria, these transporters present a new avenue for drug
design. The work presented here underpins the development
of inhibitors that target SiaT transporters, and in particular, S.
aureus.
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