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Summary

Antibodies are highly functional glycoproteins capable of providing

immune protection through multiple mechanisms, including direct patho-

gen neutralization and the engagement of their Fc portions with sur-

rounding effector immune cells that induce anti-pathogenic responses.

Small modifications to multiple antibody biophysical features induced by

vaccines can significantly alter functional immune outcomes, though it is

difficult to predict which combinations confer protective immunity. In

order to give insight into the highly complex and dynamic processes that

drive an effective humoral immune response, here we discuss recent appli-

cations of ‘Systems Serology’, a new approach that uses data-driven (also

called ‘machine learning’) computational analysis and high-throughput

experimental data to infer networks of important antibody features associ-

ated with protective humoral immunity and/or Fc functional activity. This

approach offers the ability to understand humoral immunity beyond sin-

gle correlates of protection, assessing the relative importance of multiple

biophysical modifications to antibody features with multivariate computa-

tional approaches. Systems Serology has the exciting potential to help

identify novel correlates of protection from infection and may generate a

more comprehensive understanding of the mechanisms behind protection,

including key relationships between specific Fc functions and antibody

biophysical features (e.g. antigen recognition, isotype, subclass and/or gly-

cosylation events). Reviewed here are some of the experimental and com-

putational technologies available for Systems Serology research and

evidence that the application has broad relevance to multiple different

infectious diseases including viruses, bacteria, fungi and parasites.
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Introduction

In 1796, Edward Jenner inoculated a child with matter

from a cowpox sore on a milkmaid’s hand, and noted that

the child was then protected against smallpox infection.1

This event was the beginning of modern-day vaccines,

which have transformed society and saved millions of lives.

As the success of vaccines has been wonderfully beneficial,

it has influenced our approach to the study and treatment

of infectious diseases. Vaccination methods today remain

largely based on broad single-target approaches, similar to

those first employed by Jenner more than 200 years ago.2

More specifically, many of the currently licensed vaccines

focus on inducing a single immune correlate, with the

detection of total binding antigen-specific antibodies or

neutralizing antibodies being the most common assessment

for protection against pathogens including polio virus,

influenza virus, yellow fever virus, hepatitis viruses, human

papillomavirus, Bordetella pertussis and pneumococci.3,4

However, for many of the world’s deadliest pathogens,

including Ebola virus, Plasmodium falciparum (malaria)

and human immunodeficiency virus (HIV), the develop-

ment of an effective vaccine has been hindered largely by

our inability to elucidate the immune correlates of protec-

tion by traditional approaches.

The importance of Fc-mediated functional
antibodies for protection and control of diseases

Antibodies are highly functional glycoproteins that are a

vital immune component for protection and control of

infectious diseases. For a number of vaccines (e.g. polio,

influenza, tetanus) neutralizing antibodies against the

pathogen or toxins have been identified as the correlates
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of protection. Interestingly, for many other vaccines (eg.

hepatitis A), total pathogen-specific binding antibodies

have been identified as correlates of protection, yet the

specific mechanisms behind these pathogen-specific bind-

ing antibodies remain unclear.4 Beyond neutralization,

antibodies are capable of providing immune protection

through multiple additional mechanisms, via engagement

of their Fc (Fragment crystallizable) portions. To date,

only one licensed human vaccine (that for pneumococ-

cus) has identified Fc-mediated functional antibodies as a

correlate of protection.5 However, there is growing evi-

dence that supports the role for Fc functional antibodies

in the control of a wide range of pathogens including

bacterial, viral, fungal and parasitic infections. These anti-

bodies have the unique capacity to bridge the gap

between innate and adaptive immunity, by harnessing

both the specificity of the humoral adaptive immune

response provided by the antibody’s Fab (Fragment anti-

gen-binding) region, which recognizes the pathogen, as

well as by rapidly activating Fc Receptor (FcR) innate

immune effector cell responses (e.g. complement) via the

antibody’s Fc region. Activation can induce a range of

anti-pathogenic immune responses including but not lim-

ited to antibody-dependent cellular cytotoxicity (ADCC),

antibody-dependent cellular phagocytosis (ADCP), anti-

body-dependent complement activity and antibody-

dependent cytokine, chemokine and/or enzyme release

(Fig. 1). Importantly, FcR innate immune effector cells

are abundantly located throughout the body and can be

recruited by these non-neutralizing antibodies without

any need for prior antigen sensitization.6,7

Emerging evidence from multiple infectious disease

models strongly suggest that functional antibodies are

important for mediating control and/or protection against

viral, bacterial, fungal and parasitic pathogens. Moreover,

the fact that several bacterial (e.g. Streptococcus8) and

viral (e.g. herpes simplex virus9) pathogens have evolved

to encode proteins that specifically protect them from Fc-

mediated antibody functions,10 further supports the

notion that these non-neutralizing anti-microbial proper-

ties of antibodies play a vital role in protection from

infectious diseases. Examples of the importance of Fc

functional antibodies in the control and/or protection of

different pathogens are summarized in Table 1.

Lessons learned from HIV vaccines trials

Despite three decades of intense research, the development

of an effective vaccine against HIV continues to produce

lacklustre results. To date, only one human Phase III HIV

vaccine trial has shown a modest, but significant, level of

efficacy (31�2%).11 Surprisingly, this RV144 vaccine trial did

not induce CD8+ T-cell cellular immunity, broadly neutral-

izing antibody responses or high antigen-specific antibody-

binding levels.11,12 Instead immune correlates analysis iden-

tified the importance of antibodies targeting the V1V2

region of the HIV envelope and ADCC activity, in the

absence of high levels of IgA.12,13 Follow-up analyses discov-

ered additional features of the humoral immune response

associated with protection, including the preferential induc-

tion of IgG3 responses,14,15 which were able to mediated

multiple antibody effector functions including ADCC, anti-

body-mediated cytokine and chemokine production from

natural killer cells and ADCP in a coordinated manner,

otherwise known as polyfunctional antibody immunity.15

Furthermore, multiple non-human primate (NHP)

simian immunodeficiency virus (SIV)/ simian–human

immunodeficiency virus (SHIV) vaccine studies have

recently been conducted highlighting the complexity of

potential correlates of protection. Administration of an

adenovirus vector 26 (AD26) prime followed by an envel-

ope protein boost in NHP was able to provide 50% pro-

tection against repetitive SIV challenges.16 Interestingly,

protective efficacy was not associated with a neutraliza-

tion, but instead polyfunctional antibody immune

responses (incorporating six different antibody Fc func-

tions) were associated with protection.16 Similarly, other

NHP studies have correlated both ADCP and antibody-

dependent complement deposition with protective effi-

cacy.17 More recently, partial protection from SHIV infec-

tion was observed in NHP when administered with a

canary pox prime (ALVAC)/ recombinant pentavalent

envelope protein vaccine.18 Multiple humoral immune

correlates were associated with decreased risk of infection,

including plasma antibody binding to HIV-infected cells,

ADCC antibody titres, natural killer cell-mediated ADCC

and antibody-mediated activation of macrophage inflam-

matory protein-1b.18

Figure 1. Dynamic complexity of the humoral immune response. (a) The functional capacity of the humoral immune response is determined by

complex biophysical antibody features including (i) the pathogen being targeted and the ability of the antibody’s Fab to recognize different anti-

gens, (ii) an antibody’s Fc region’s diversity, which in turn can modulate the antibodies capacity to engage with (iii) Fc receptor/immune mole-

cules and (iv) availability of the Fc receptors on different effector cells/immune molecules in the surrounding environment. (b). The combination

of the pathogen targeted (e.g. infected cell versus small infectious particles) and binding by an antibody’s Fab determines opsonization, neutral-

ization and immune complex formation. The composition of the Fc-regions of these antibodies can in turn modulate the functional immune

response by surrounding effector cells/immune molecules potentially inducing a range of functions including but not limited to ADCC, anti-

body-mediated secretion of cytokines, antibody-mediated enzyme release/NET (neutrophil extracellular trap) formation, antibody-dependent

phagocytosis, antibody-mediated complement activity, mucus trapping etc., dependent on the cellular Fc receptor expression or immune compo-

nents available.
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These recent human and NHP HIV vaccine studies have

highlighted our limited understanding of humoral immune

responses and challenges us to shift our analysis of poten-

tial humoral immune correlates from being a univariate or

‘one component at a time’ paradigm (e.g. neutralization or

total antibody-binding titres alone) to a multivariate ‘many

components at once’, or systems concept for design of new

strategies for more difficult to vaccinate diseases, based on

systems-level properties of humoral immunity or as it has

been more simply termed ‘Systems Serology’.19,20

Complexity of functional antibodies

Upon vaccination or infection by a pathogen, the

humoral immune response aims to produce diverse,

highly polyclonal antibodies to target the foreign patho-

gens. The functional capacity of the humoral immune

response is determined by multiple cumulative factors

defined by an antibody’s biophysical features that are

modulated by genetic, molecular and environmental fac-

tors (Fig. 1 and summarized in Table 2). These include

the ability of the antibody to effectively recognize the for-

eign antigen dictated by an antibody’s Fab region, along

with the capacity of the antibody to engage with sur-

rounding Fc effector cells and immune components

(modulated by the antibody Fc portion).

Despite an antibody’s Fc region often being referred to

as the ‘constant’ region, the Fc is surprisingly diverse,

with subtle modifications having the capacity to signifi-

cantly alter engagement and affinity to FcRs and/or other

Fc-binding immune components, including complement

and mucins. These include differences in immunoglobulin

isotypes: IgA, IgD, IgE, IgG and IgM, of which IgG is the

most predominant immunoglobulin present in healthy

human plasma.21 Although each isotype has its own char-

acteristic properties and functions, IgG is most commonly

associated with mediating Fc effector responses, although

IgA,22 IgM23 and IgE24 also induce vital roles in protec-

tive immunity by activating their respective FcR innate

immune cells and/or complement. For example, the

importance of IgE and activation of FceR effector cells for

protection against parasitic infections has been well docu-

mented.25 As an additional level of complexity,

immunoglobulin isotypes also express different subclasses.

For example, IgG consists of four subclasses, IgG1, IgG2,

IgG3 and IgG4, each binding with varying affinity to dif-

ferent FccRs.26,27

Beyond subclass, Fc function is also determined by

changes in antibody glycosylation, particularly the glycan

structure attached at asparagine 297 (Asn297) of the anti-

body Fc heavy chain,28,29 which can have important func-

tional consequences by influencing the affinity of IgGs for

their respective FccRs on effector cells and complement

proteins. Complete aglycosylation of an antibody abol-

ishes FccR and complement binding,30 whereas the pres-

ence or absence of particular glycan forms can

alternatively inhibit or enhance Fc functionality.31,32

Table 2 summarizes the many different features of the

antigen–Fab antibody and antibody Fc–FcR interactions

that can modulate Fc functionality and lists example

assays available to allow for the in-depth assessment of

these antibody features. Systems Serology aims to use

high-throughput assays, to collate a holistic assessment of

all antibody features that can potentially modulate Fc

functionality, providing us with a detailed portrait, or

humoral immune ‘signature’ associated with protection

or control of infection. Although many of these assays

have been developed and optimized for use

Table 1. Examples of functional antibodies involved in the control of infectious viral, bacterial, fungal and parasitic pathogens

Antibody function Virus Bacteria Fungus Parasite

Antibody-dependent

cellular cytotoxicity

Human immunodeficiency

virus (HIV)12,15,18,48–50

Influenza virus,51–53

Ebola virus,54,55 Herpes

simplex virus56

Salmonella typhi,57

Chlamydia trachomatis,58

Mycobacterium tuberculosis33

Cryptococcus neoformans,59

Aspergillus60
Schistosomiasis25

Strongyloides stercoralis,61

Plasmodium62

Antibody-mediated

phagocytosis

HIV,15,17,45 Influenza

virus63,64
Salmonella paratyphi A,65

Clostridium difficile toxin A,66

Mycobacterium tuberculosis67

Paracoccidioides brasiliensis,68

Aspergillus fumigatus69
Plasmodium,70 Toxoplasma

gondii71

Antibody-mediated

complement

Ebola virus,55 HIV17,45 Pseudomonas aeruginosa,

Salmonella,72 Borrelia

burgdorferi73

Aspergillus fumigatus,69

Candida albicans74
Strongyloides stercoralis,61

Plasmodium75

Antibody-mediated

enzyme and/or

cytokine release

HIV,15,18,45,48,76

Influenza virus52,53
Mycobacterium tuberculosis33 Paracoccidioides

brasiliensis68
Schistosoma,25

Leishmania77,80

Plasmodium78,79

Non-neutralizing

antibody-mediated

pathogen inhibition

HIV81 Coxiella burnetii,82 Chlamydia83 Plasmodium62,84
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predominately against viruses (especially HIV18,19), these

assays have the potential to be adapted and optimized for

examination of other infectious diseases.33

Generating insights into the complexity of the
humoral response: Systems Serology

Given the complexity of antibody biophysical features, a

quantitative, systems approach will provide new perspec-

tive and insight into key quantitative relationships

between the features that characterize a vaccine response,

confer protection or underpin a desired functional

response. A quantitative understanding of relationships

between antibody biophysical features, Fc functional

responses and clinical outcomes could enable design of

new vaccine regimens specifically targeted to enhance or

suppress key parts of this system; altering overall network

humoral immunity rather than a single component

(Fig. 1b). Though advancements in experimental tech-

nologies now enable the measurement of large numbers

of biophysical antibody features (detailed in Table 2), a

major challenge still remains in determining the relative

importance of alterations in these antibody features that

occur with vaccination, and key quantitative relationships

that drive a desired immune response or confer protec-

tion. ‘Data-driven’ modeling (also called ‘machine learn-

ing’) approaches34 hold great promise for better

understanding antibody systems, as they enable integra-

tion of high-throughput experimental data to mathemati-

cally identify relationships between antibody biophysical

features that are associated with important functional

outcomes, vaccine regimen, or protection/control of

infection (Fig. 2). These approaches can be applied as

useful hypothesis-generating tools for new systems-level

Table 2. Antibody biophysical features that can modulate Fc functionality

Fab Examples measurements Example assays References

Masking/availability,

Antigen density

Abundance of antigen available

on pathogen/infected cells

85,86

Size Smaller pathogen e.g. virus

Larger pathogen e.g. parasite, or infected cell

Immune complex assays 87,88

Antigen target Protein

Glycoprotein

Glycan

Glycolipid

Protein, glycan, glycolipid, glycoprotein

screening arrays,

89–92

Epitope Conformational

Linear

Overlapping peptide arrays

Protein scaffold arrays Multiplex

ELISAs

Intracellular Cytokine Staining (ICS)

93–97

Antibody–antigen affinity Equilibrium constant Surface plasmon resonance

Chaotrope

98–100

Distance Distance from cell membrane Assays with variable epitope distances 101

Breadth Clades, strains, serotypes Protein arrays

Multiplex

102,103

Fc Examples Assays References

Isotype IgG, IgA, IgM, IgE, IgD Multiplex

ELISAs

95,104

Subclass IgG1, IgG2, IgG3, IgG4, IgA1, IgA2 Multiplex

ELISAs

95,104

Glycosylation Fucose

Galactose

Bisecting GlcNAC

Sialic acid

Mass spectrometry

HPLC

CE

Multiplex

31,33,104,105

Allotype IgG1 (six alleles)

IgG2 (one allele)

IgG3 (13 alleles)

IgA (three alleles)

sequencing

ELISAs

106–108

FcR/Complement binding C1q, MBL, FccRI, FccRIIa, FccRIIb,
FccRIIIa, FcRcIIIb, FcaR, FcER
(and respective polymorphisms)

ELISA

Multiplex

102,104

FcR affinity FcR binding kinetics Surface plasmon resonance 109,110
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mechanisms involving multiple antibody features, and

have the potential to accelerate our understanding of the

humoral immune system by helping to define areas of

interest for further experimental testing and additional

quantitative models. The value of data-driven approaches

in identifying gene and transcriptional signatures corre-

lated with vaccine response has been demonstrated in a

wide range of vaccinology applications.35–37 However,

many of these previous studies have specifically focused

on identifying genetic and transcriptional correlates of

vaccine protection, especially for cellular immunity. In

contrast, application of Systems Serology instead aims

to focus upon gaining insights to functional humoral

immunity.

Data-driven tools: overview and examples

Data-driven models have the potential to provide both

better classification of vaccine responses (e.g. between

protective and non-protective vaccines) as well as give

systems-level insight into networks of antibody biophysi-

cal features involved in important functional responses.

Altogether, they are able to generate a valuable network

‘picture’ (Fig. 1b) of key events that may contribute to a

specific functional immune response or clinical outcome.

In general, all data-driven approaches involve analysis of

a large data set (‘X’: Fig. 2). In the case of Systems Serol-

ogy, this may include measurements of the antibody’s

biophysical features (e.g. antibody Fab recognition, anti-

body isotype, glycosylation, Fc receptor; detailed in

Table 2) believed to contribute to a particular outcome

(e.g. functional response, vaccine regimen, or protection).

A subset of data-driven modelling approaches [including

principal component analysis (PCA) and correlation net-

works] only employ this X data set, searching for signifi-

cant multivariate relationships between measured

features. This subset of approaches is considered ‘unsu-

pervised’ in that they evaluate relationships between fea-

tures in X without information about an outcome. The

strength of unsupervised approaches lies in the ability to

v
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sure antibody biophysical and functional data (X) in parallel with functional or clinical outcomes (Y). Upon collation, the data sets can be inter-

rogated by unsupervised and supervised machine learning computational techniques, including principal component analysis (PCA), correlation

networks, partial least square discriminant analysis and regression (PLSDA and PLSR), and decision trees. The correlation network figure was

kindly contributed by Manu Kumar and Doug Lauffenburger (MIT).

ª 2017 The Authors. Immunology Published by John Wiley & Sons Ltd., Immunology, 153, 279–289284

K. B. Arnold and A. W. Chung



search for features involved in the differentiation of out-

comes in a completely unbiased way. Systemic, unbiased,

examination of broad antibody profiles provides us with

a more comprehensive understanding of the mechanisms

behind specific functions, potentially revealing novel cor-

relates between antibody features and functions that

would not normally be identified by traditional

approaches.

Other data-driven approaches are considered ‘super-

vised’ [including partial least squares discriminant analy-

sis (PLSDA), partial least squares regression (PLSR) and

decision trees, Fig. 2], as they identify key relationships in

X that are related to an important functional or clinical

outcome (‘Y’; e.g. functional response, vaccine regimen,

or clinical outcome; Fig. 2). Supervised approaches are

especially useful for gaining mechanistic insight into net-

works or systems of immune parameters driving an out-

come, because they identify direct relationships between

the two. Both unsupervised and supervised approaches

are useful in Systems Serology research, depending on the

question being asked and the nature of the data. One

major advantage of all data-driven approaches is integra-

tion, or the ability to merge disparate data sets into a

whole. By combining measurements from different

sources into the same model, quantitative relationships

between biophysical features associated with a clinical or

functional outcome can be linked across experimental

assays, tissue compartments, and time. Below we give

examples of specific data-driven approaches that have

been applied in Systems Serology research. In each case,

we leave detailed mathematical descriptions to other pub-

lished work, but highlight applications, advantages and

limitations of each in the context of Systems Serology

use.

Unsupervised approaches

Perhaps the simplest way to visualize relationships

between many different measured parameters is through

the construction of correlation networks (Fig. 2).19,38

These diagrams allow for the visualization of significant

correlative relationships between paired measured features

of interest. These networks can be created by first com-

puting either the Pearson (parametric) or Spearman

(non-parametric) correlation coefficient for each pair of

measured variables. Relationships across all features can

then be visualized through either a web-like structure or

a heat map that indicates the direction and strength of

each significant correlation. The main advantage of corre-

lation networks is that they are easy to create and inter-

pret, and so often give useful insight into potential

mechanistic relationships between features. One drawback

is that they are unsupervised, and do not directly relate

identified correlative relationships to a clinical or func-

tional outcome of interest (Y). Therefore they have little

use as predictive tools. Additionally, only pairwise rela-

tionships between measured features are considered; so,

true multivariate signatures involving three or more mea-

sured features are unattainable. This approach has been

used previously to examine antibody network connectivity

between antibody biophysical features and functions asso-

ciated with the humoral response elicited by four differ-

ent HIV vaccines (VAX003, RV144, HVTN204 and

IPCAVD001).19 Vastly different network topographies or

‘humoral signatures’ were observed between the different

vaccines trials and were able to highlight important

mechanisms behind the moderately protective RV144

trial. More specifically, IgG1 and IgG3 where highly con-

nected with multiple antibody Fc effector functions

including ADCC, ADCP and antibody-dependent comple-

ment deposition, indicating their importance in modulat-

ing multiple Fc functions, whereas these interactions were

not observed for the other non-efficacious vaccine trials.

Principal component analysis39 is an unsupervised

approach that can be used to determine signatures of

measured features that account for the most variation

between samples, in a set of measured features. For exam-

ple, given data set ‘X’ (Fig. 2) containing measurements

of antibody biophysical features, PCA identifies orthogo-

nal, linear combinations (‘signatures’) of these measured

features (termed ‘Principal Components’) that account

for the most variation in the data, without any informa-

tion about functional or clinical outcomes (Y). Both

advantages and disadvantages of PCA arise from the fact

that it is an unsupervised approach – the algorithm

receives no information about the outcome. This is

advantageous, in that response differences can be visual-

ized in an unbiased way, but disadvantageous in that it is

not inherently hypothesis-driven. Although the identified

principal components represent signatures of measured

features that account for the most variation in the data,

they are not specifically identified to discriminate between

outcomes of interest, as a functional or clinical response

(Y) is not included in the model. Hence, they can provide

insight into important relationships between measured

features, but they cannot directly predict how those fea-

tures are associated with a functional or clinical outcome.

Previously Systems Serology application of PCA applied

to Mycobacterium tuberculosis serology studies was able to

identify the importance of antibody glycosylation in dis-

tinguishing latent from active infection.33

Supervised approaches

Partial least squares discriminant analysis and partial least

squares regression40,41 are supervised methods that identify

signatures of measured features (X) quantitatively related

to a functional or clinical outcome (Y) (Fig. 2). Thus,

both PLSDA and PLSR require input of both a data set

of measured antibody features (X), as well as a measured
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outcome (Y). PLSDA and PLSR are differentiated by the

fact that in PLSDA, Y contains a discrete class or label

information (e.g. vaccine 1, vaccine 2, etc.) for each out-

come, whereas Y for PLSR contains continuous numerical

data (e.g. ADCC measurements that can range from 0 to

100% cytotoxicity). Y is often a single column of data

(e.g. only one outcome variable), but it can also be a

matrix with multiple columns in situations for which

there are several outcomes of interest. These algorithms

determine orthogonal linear combinations (‘signatures’)

of experimentally measured features (X) that best differ-

entiate between outcomes (Y). Each sample can then be

scored and plotted on these signatures (termed ‘latent

variables’) to determine model accuracy for predicting

clinical outcome based on measured features. Each identi-

fied latent variable (signature), contains ‘loadings’, or

specified amounts of each of the measured features.

PLSDA and PLSR are especially useful for hypothesis-dri-

ven Systems Serology research as they specifically search

for signatures directly associated with an outcome [in

contrast to PCA, which only evaluates overall variation in

the data set (X)]. An important consideration in using

PLS algorithms is to ensure that models are not ‘over-

fit’,40 i.e. that the model contains only information about

important underlying relationships rather than including

random error or noise. This can be avoided by perform-

ing cross-validation (reviewed for PLSDA in ref. 40),

whereby a smaller portion of the data is reserved to test a

model generated by majority of the data. The ability of

the model to accurately predict each sample in the test

set can then be used to calculate cross-validation error, a

measure of the model’s predictive ability. If cross-valida-

tion error is high, the model can be improved by per-

forming ‘feature selection’ to remove features that

contribute to random error. There are a number of dif-

ferent feature selection algorithms that may be used

depending on the nature of the data set, some examples

of these include use of variable importance projection

(VIP) scores42 and the least absolute shrinkage and selec-

tion operator (LASSO).43,44 One key advantage of PLS

approaches for Systems Serology research is that loadings

on latent variables of a feature-selected model can give

great insight into co-varying serological features that are

most involved in differentiating a functional or clinical

outcome. In other words, the ‘minimum signature’ that

best defines a vaccine response can give a picture of key

antibody features that would be best used to reconstruct

the system (Fig. 1b) for theoretical analysis.

The application of PLSDA/PLSR analysis has been suc-

cessfully applied in a wide range of Systems Serology set-

tings, including to identify humoral immune correlates of

the moderately protective human HIV RV144 vaccine

trial, in NHP SIV/SHIV vaccine studies, and to examine

the humoral responses induced by topical anti-retrovirals

for pre-exposure prophylaxis following HIV

infection.18,19,43,45 In the study of topical anti-retrovirals

for pre-exposure prophylaxis following HIV infection,43 a

PLSDA model used with least absolute shrinkage and

selection operator feature selection identified a signature

of seven measured antibody features that differentiated

women in the topical anti-retrovirals and placebo groups

with 77% cross-validation accuracy, indicating that topi-

cal anti-retroviral application was associated with a speci-

fic antibody signature including measurements from

different time-points (6 and 12 months) and tissue com-

partments (plasma and cervicovaginal lavage). Individual

antibody measurements did not differentiate between

groups. Altogether this illustrates the utility of PLSDA for

differentiating functional or clinical outcomes and for

integrating antibody measurements to identify new

hypotheses for mechanisms that may vary over time or

tissue compartments.

Decision trees38,46 (Fig. 2) provide unique insight into

humoral responses in that they are easy to interpret,

and can give useful information about the hierarchy of

importance and critical ranges (e.g. concentration, bind-

ing affinity) of measured antibody features for a partic-

ular functional or clinical outcome. For these reasons,

they can be especially useful for giving insight into

potential mechanistic relationships between measured

serological features. A decision tree algorithm works by

performing a series of binary tests on the data set of

measured antibody features (X), to split samples into

groups based on the functional or clinical outcome (Y).

The specific binary test performed is selected by the

user, and is termed a ‘split criterion’.46 Each split fur-

ther purifies samples based on functional or clinical

outcomes of interest (e.g. vaccine 1 versus vaccine 2

versus vaccine 3, etc.; Fig. 2). The result is a tree-like

structure that illustrates the hierarchy of importance of

measured features based on outcome, with specific mea-

surement ranges required for each node selected by the

algorithm. As with other supervised approaches, an

important consideration in using decision tree algo-

rithms is cross-validation to prevent overfitting (de-

scribed above). If cross-validation determines a decision

tree is overfit, ‘pruning’ may be used to improve the

model, whereby peripheral branches of the tree are

removed if they contribute little to classification. More

detailed information on decision-tree cross-validation

and pruning is reviewed in.46

Future outlook

Although the data-driven models used in current Systems

Serology applications offer the exciting opportunity to

integrate high-throughput data to identify key antibody

features associated with a protective immune response,

insight is still limited to multivariate statistical associa-

tions, without quantitative understanding of true cause–
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effect relationships that underpin mechanistic function.

Although carefully planned experiments based on data-

driven models give some insight in this direction, they

too are limited. Other quantitative approaches will be

needed to truly understand the underlying complexity of

these systems; moving beyond statistical associations and

towards a quantitative systems-level understanding of

mechanism. This will require the use of equation-based

methods, also called ‘theory-driven’ approaches, where

mathematical models are constructed based on previous

knowledge of a system. Data-driven models can provide

the underlying framework for these models – used to

decide key parameters that should be included for a given

question, boundaries and important input/output. Once

constructed, these theory-driven models will provide a

valuable hypothesis-testing tool, lending insight into (i)

the importance of key antibody parameters in the forma-

tion of immune complexes and (ii) the relative impor-

tance and synergistic effects of multiple antibody

alterations involved in a functional or clinical outcome.

These types of approaches have already been employed to

optimize the design of antibodies that trap viruses in

mucus of the female reproductive tract, determining opti-

mal quantitative ranges of antibody binding affinities that

maximize both virion binding and antibody mobility in

mucus.47

Clearly Systems Serology technologies, both experimen-

tal assays and the application of analytical technologies,

are still in their infancy. Over time, high-throughput

assays to assess biophysical antibody features and func-

tions will continue to be developed and improved, encap-

sulating a wider range of infectious diseases and allow for

the examination of antibody features and functions rele-

vant to different tissue compartments and locations. Fur-

thermore, Systems Serology applications can potentially

be expanded to address other diseases associated with

humoral immunity, including autoimmune diseases and

selective cancers. There is no doubt that Systems Serology

will continue to evolve to capture broader applications

providing us with an increasingly comprehensive under-

standing of protective humoral immunity.
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