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To address the long-known relationship between supernumerary centro-

somes and cancer, we have generated a transgenic mouse that permits

inducible expression of the master regulator of centriole duplication, Polo-

like-kinase-4 (Plk4). Over-expression of Plk4 from this transgene advances

the onset of tumour formation that occurs in the absence of the tumour sup-

pressor p53. Plk4 over-expression also leads to hyperproliferation of cells in

the pancreas and skin that is enhanced in a p53 null background. Pancreatic

islets become enlarged following Plk4 over-expression as a result of equal

expansion of a- and b-cells, which exhibit centrosome amplification. Mice

overexpressing Plk4 develop grey hair due to a loss of differentiated melano-

cytes and bald patches of skin associated with a thickening of the epidermis.

This reflects an increase in proliferating cells expressing keratin 5 in the basal

epidermal layer and the expansion of these cells into suprabasal layers. Such

cells also express keratin 6, a marker for hyperplasia. This is paralleled by a

decreased expression of later differentiation markers, involucrin, filaggrin

and loricrin. Proliferating cells showed an increase in centrosome number

and a loss of primary cilia, events that were mirrored in primary cultures

of keratinocytes established from these animals. We discuss how repeated

duplication of centrioles appears to prevent the formation of basal bodies

leading to loss of primary cilia, disruption of signalling and thereby aberrant

differentiation of cells within the epidermis. The absence of p53 permits cells

with increased centrosomes to continue dividing, thus setting up a neoplastic

state of error prone mitoses, a prerequisite for cancer development.
1. Introduction
The centrosome was first described almost simultaneously by Edouard van

Beneden working in Liège and Theodor Boveri in Munich in 1887 (reviewed

in [1]) as a structure at the poles of the mitotic spindle that persisted through

the life cycle of the cell. Towards the end of the nineteenth century tumour

cells were already observed to have multiple spindle poles, and now we

know supernumerary centrosomes to be present in a wide range of solid and
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haematological tumours, including pancreatic, ovarian, colon

and prostate cancer, multiple myeloma, non-Hodgkin’s and

Hodgkin’s lymphoma, and acute and chronic myeloid leu-

kaemia [2–7]. Abnormalities have been detected at both

early [8–10] and advanced stages of disease where they

generally indicate poor prognosis [11]. Amplified centrosomes

also correlate with metastasis of head and neck, prostate and

breast tumours [12–14]. However, despite these long-known

associations, the contribution of centrosomal amplification to

oncogenesis remains unclear.

Centrosome number is normally tightly controlled within

the cell division cycle. At the core of centrosomes lie the nine-

fold symmetrical centrioles. Cells enter mitosis with two

pairs of orthogonally arranged centrioles that separate to

form the two centrosomes at the poles of the spindle. The

centrioles disengage upon the completion of mitosis

and enable both individual centrioles to initiate the dupli-

cation process. Centriole duplication is controlled by

Polo-like-kinase-4 (Plk4) that phosphorylates the centriole

protein Stil/Ana2 allowing it to recruit Sas6, the core com-

ponent of the centriole cartwheel [15–18]. Elevating Plk4

expression through its ectopic expression or by eliminating

the SCF ubiquitin-protein ligase required for Plk4 destruction

results in the formation of multiple centrosomes [19–23].

The loss of centrioles has different consequences in differ-

ent organisms and tissues. Drosophila can tolerate centriole

loss in some, but not all, tissues, allowing defective cell div-

isions to continue [23–27]. However, centrioles also serve

as basal bodies, the foundations of cilia and flagellae

[28,29], and so are essential to fashion the fly’s sensory

organs for correct physical coordination [24,30]. In mamma-

lian cells, the physical removal of centrosomes prevents cell

cycle progression but eventually centrioles reform by a

de novo pathway and the cell cycle resumes [31–33]. In the

mouse, there is a greater reliance on centrioles to generate pri-

mary cilia essential for many types of cell signalling.

However, unlike mutants that lack cilia, mutant embryos

deficient for the centriole component Sas4 and thereby lack-

ing centrioles exhibit extensive apoptosis associated with

elevated p53 expression [34]. Apoptosis was rescued in

embryos double mutant for Sas4 and p53, thus identifying

a p53-dependent apoptotic pathway triggered by loss of cen-

trioles. This has been further supported by experiments to

eliminate Plk4 activity from cultured cells using either an

auxin-inducible degradation system or pharmacological inhi-

bition of the enzyme using a small molecule, centrinone

[33,35]. In both these cases, loss of Plk4 activity results in

loss of centrioles and a p53-dependent arrest of cell cycle

progression, the mechanism of which is not understood.

The consequences of Plk4 over-expression also vary in

different organisms and in different cell types. Over-expression

or stabilization of Plk4 in either cultured Drosophila cells or

mammalian cells leads to multiple centrosomes [19,21–23,36]

and in fertilized Drosophila eggs drives the formation of thou-

sands of centrioles at the expense of the normal progression of

nuclear division cycles [20]. Strikingly this also happens in

unfertilized eggs in which centrioles have been naturally elimi-

nated during oogenesis and in which there is no incoming

sperm to provide a basal body. Thus, in this circumstance, cen-

triole formation is entirely driven by Plk4. Moreover, elevated

expression of Plk4, and indeed perturbation of centrosome

function through several routes, can promote tumourigenesis

in flies [37,38].
Correct centrosome behaviour is also required for the devel-

opment of cerebral cortex of the mammalian brain. Deficiency

of any of several centrosome components including Plk4 results

in microcephaly [39–41]. To study the effects of elevating Plk4

expression in the mouse brain, Marthiens et al. [42] generated

transgenic animals in which Plk4 expression could be activated

in the central nervous system in response to a tissue-specific

Cre-mediated recombination event. This led to a microce-

phaly-like condition that was ascribed to the poor clustering

of amplified centrosomes leading to abnormal mitoses and con-

sequent apoptosis. Cell death could be overcome by removing

p53 function, leading to the accumulation of aneuploidy cells

that would differentiate rather than proliferate.

We wished to examine the consequences of elevated Plk4

expression, and thereby centrosome amplification, in other

tissues in the mouse. To have temporal control on the over-

expression of Plk4, we have developed a mouse line in

which Plk4 is under the control of a doxycycline-inducible

promoter. Induction of Plk4 expression in this mouse leads

to an early onset of tumour formation in p53 null mice,

behavioural defects suggesting abnormalities of brain devel-

opment in agreement with a previous study [39], and

hyperproliferation of cells in the pancreas and in the skin.

Here we focus upon characterizing defects in the skin of these

animals and show that elevated Plk4 leads to amplification of

centrosomes and loss of primary cilia. Together this leads to

both hyperproliferation and uncontrolled differentiation of

the basal epidermis. We discuss how these phenotypes can

arise and how we might account for the enhancement of these

phenotypes when the p53 gene is deleted.
2. Results
2.1. Elevated Plk4 expression dramatically advances the

onset of tumour formation in p53-deficient mice
Centrosome amplification has been identified as a marker of

poor prognosis of aggressive, drug-resistant tumours in breast,

pancreatic and colorectal cancer patients [43,44], but the relation-

ship of centriole amplification to oncogenesis is uncertain. To

address this in a model system, we generated a transgenic

mouse that allows the inducible over-expression of wild-type

mPlk4, the master regulator of centriole duplication. The

vector comprised the reverse-tetracycline-controlled transactiva-

tor (rtTA) linked to a tetracycline-responsive element (TRE)

regulating expression of wild-type mPlk4 and was targeted to

the ROSA26 locus. This enabled the inducible and reversible

over-expression of Plk4 at any time of development in the result-

ing transgenic animals or in cultured cells derived from them

(figure 1a). We designate the homozygous transgenic mouse

harbouring the inducible extra copy of wild-type Plk4 as

Plk4OE/ Plk4OE.

As p53 was reported to overcome both the cell cycle arrest

associated with loss of centrioles resulting from deletion of

Sas4 or degradation or inhibition of Plk4 [33–35] and

the cell death resulting from elevated Plk4 expression in the

mouse brain [42], we were prompted also to determine the

consequences of centrosome amplification induced by Plk4

over-expression in a p53 knockout (KO) background (from

now on p53KO). These mice show accelerated tumour for-

mation, behavioural defects and cell hyperproliferation

associated with elevated Plk4 expression in several tissues
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Figure 1. Tumour formation following tetracycline-inducible conditional Plk4 expression. (a) Doxycycline associates with the rtTA that binds the TRE, leading to transcriptional
activation of Plk4. (b) Tumour incidence in Plk4 transgenic mice in wild-type background (Plk4OE/Plk4OE) or p53 null background (Plk4OE/Plk4OE; p53KO/p53KO) with or without
treatment with doxycycline (þDOX) to promote Plk4 over-expression. The differences observed between Plk4OE/Plk4OE; p53KO/p53KO (n¼ 24) and Plk4OE/Plk4OE; p53KO/p53KO

þDOX (n ¼ 14) survival curves are significant (**p , 0.01; Student’s t-test). (c) Proportions of sarcomas and lymphomas. Note that animals that developed sarcomas also
showed lymphomas. (d ) Architecture of thymus and lymph nodes is obliterated and replaced by sheets of large, round cells with vesicular nuclei (Vn, black arrows). Apoptotic
cells were also present (Ap, black asterisk). (e) Multicentric high-grade large cell lymphoma. (f ) Kidney has normal architecture but contains multifocal cortical interstitial and
sub-capsular infiltrates of large lymphocytes (Li). (g) Large sheets of lymphocytes (Li) attached to pericardial surface of heart wall. (h – j ) These tumours are sarcomas isolated
from Plk4OE/Plk4OE; p53KO/p53KO mice. Typically, large masses of cells extended into muscle fibre bundles (M) and into attached adipose surrounding nerves and blood vessels.
(i,j) Higher magnifications of sarcomas showing pleomorphic and anaplastic cells. Examples of giant (G) or multinucleated (MM) cells are indicated. These tumours were found
close to the front limbs with high percentage of mitotic cells (an average of 5 – 10/40� field). (k) Paraffin section of samples from sarcomas where stained to revealg-tubulin or
acetylated-tubulin (green). DNA is shown in red. Three different samples were analysed and showed a high mitotic index (8.55+ 2.53%, n¼ 1400 cells/sample) in agree-
ment with histological analysis made after H&E staining. (l ) Proportion of cells that show one pair or two pairs of centrioles per cell or show centriole/centrosome amplification
(more than 2 pairs of centrioles). (m) Mitotic progression in sarcomas from cryostat sections. (n) Proportions of mitotic abnormalities in sarcomas. Quantification in
(l – n) performed in three different sarcomas; 500 – 1000 cells analysed per sarcoma.
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including the pancreas and skin. Here we describe some key

features of mice that are expressing elevated levels of Plk4

and focus upon how this affects development of the skin

and pancreas.

We first wished to address the effects of Plk4 over-

expression upon tumour formation and so carried out
parallel studies on the viability of the Plk4OE/Plk4OE line

with or without the addition of doxycycline (þDOX) to pro-

mote Plk4 over-expression. Plk4OE/Plk4OE and Plk4OE/

Plk4OE (þDOX) mice remained healthy during the period

of study. Litter sizes were reduced in Plk4OE/Plk4OE

(þDOX), but tumour formation was not observed during
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the first 35 weeks (figure 1b). We found that approxima-

tely one half of Plk4OE/Plk4OE; p53KO/p53KO mice on a

doxycycline-free diet developed tumours by the age of 20

weeks and all had tumours by 35 weeks. This time course

of tumour appearance parallels previous reports for p53

homozygous null mice [45]. Interestingly, when Plk4

over-expression was induced in the Plk4OE/Plk4OE; p53KO/

p53KO mice by the addition of DOX from eight weeks

onwards, tumour formation was accelerated; half of the

mice developed tumours by 15 weeks and all died within

26 weeks (red line; figure 1b).

The tumours arising in Plk4OE/Plk4OE; p53KO/p53KO mice

were highly similar whether or not doxycycline was adminis-

tered and comprised mainly lymphomas and sarcomas

(figure 1c). The lymphomas invaded a variety of tissues

including the thymus, kidney and heart (figure 1d–g). How-

ever, a wide variety of sarcomas arose more frequently and

earlier after Plk4 over-expression. All animals that succumbed

to sarcomas also had lymphomas. The sarcomas were typically

localized close to the front limbs and developed very rapidly

within one week. These tumours had highly pleomorphic

and anaplastic cells that displayed a high incidence of mitosis

(an average of 5–10 mitotic figures per 40� field) suggesting

they are highly malignant (figure 1h–j) and centrosome amplifi-

cation was detected in 34.79+5.48% of cells from sarcomas

(figure 1l ). The mitotic figures in these Plk4 over-expressing

tumour cells were typically bipolar with multiple centrosomes

at the poles (71%). Centrosome clustering was lost in 12.7+
10.7% of prometaphase cells that were multipolar (figure 1k–n).

Although we failed to detect any multipolar anaphases, we

found chromatid lagging in 23.4+10.6% of anaphase figures

(figure 1n). It will be of future interest to identify and characterize

the mesenchymal cells in which these tumours arise.

We conclude that Plk4 over-expression significantly

advances the onset of tumour formation in p53 null mice and

that this is associated with an increased frequency of mitoses

that generate aneuploid cells characteristic of many tumours.
2.2. Elevated Plk4 expression induces hyperproliferation
of cells in the pancreas

The above findings raised the question of whether we could

identify any tissues exhibiting common cellular changes

that could be associated with events anticipating tumour

development particularly in the absence of p53 function.

Systematic histological examination of the tissues of

Plk4OE/Plk4OE mice revealed that although pancreases had

normal lobular architecture with intact acinar cell clusters,

there was enlargement of the islets of Langerhans when

over-expression of Plk4 was induced (figure 2a–c,e). The

diameter of the islets was increased by approximately 30%

and the density of cells within the islets more than doubled

under these conditions (figure 2e– f ). To determine whether

this reflected differential proliferation of the major two endo-

crine cell types, we stained pancreas sections with antibodies

against glucagon and insulin to detect a- and b-cells, respect-

ively. This revealed a proportionate increase in the number

of both glucagon- and insulin-positive cells following induc-

tion of Plk4 over-expression (82.8+6.7% b-cells versus

79.8+ 6.0% in Plk4OE/Plk4OE islets without and with DOX,

respectively; figure 2d– f ). Because loss of p53 is known

to exacerbate the effects of both decreased and increased
centrosome number [33,35,42], we also examined the effects

of Plk4 over-expression on the pancreas in p53 null mice.

Plk4 over-expression now resulted in a more than doubling

in the diameters of the islets although the cell density was

not as high as when p53 was present (figure 2e,f ). Again,

there was an increase in both a- and b-cells in similar pro-

portions (89.8+3.2% b-cells versus 85.5+3.1% in Plk4OE/

Plk4OE; p53KO/p53KO without and with DOX). The size of

the islets directly correlated with the levels of Plk4 transcripts

(figure 2g) and immunostaining of the islets revealed elev-

ated Plk4 protein following treatment of the mice with

doxycycline (figure 2g,h,j) and an increase in centrosome

number (figure 2h,i). Plk4 was present in punctate bodies

corresponding to centrosomes, and these increased in the

number from one such body in non-doxycycline-treated,

p53 þ/þ cells to four or more in p53 null cells over-

expressing Plk4 (figure 2j ). Thus, elevated expression levels

of Plk4 and higher centrosome numbers correlate with

hyperproliferation of a- and b-cells in the pancreas that is

exacerbated in the absence of p53.
2.3. Elevated Plk4 over-expression affects melanocyte
differentiation

A striking feature of the Plk4OE/Plk4OE mice was skin lesions

that include alopecia at the time of weaning followed by

regrowth of hair around one month after birth. Animals

that did not lose hair had grey coats (figure 3a,b). Most of

the grey hair did not persist and there was a regain of

some black fur within the first month. This phenotype led

us to examine the effects of Plk4 over-expression upon

melanocytes and the melanin pigment produced by

them. Melanocytes are located in the interfollicular epidermis

and within hair follicles, and differentiate from neural-

crest-derived melanocyte stem cells (MSCs). These MSCs

are intermingled with hair follicle stem cells in the bulge

and the hair germ. Differentiated melanocytes produce and

transfer melanin to the adjacent keratinocytes during the

anagen (growth) phase of the cyclical process of hair regener-

ation (reviewed in [46]). Using Fontana-Masson staining, we

found a reduction of melanin granules in the bulge of

2-day-old Plk4OE/Plk4OE mice and their apparent absence

from follicles, both in a wild-type or p53KO/p53KO back-

ground (figure 3d ). We also stained skin sections to

examine melanin distribution at 20 days. This revealed a

reduction in melanin in Plk4OE/Plk4OE mice irrespective of

whether animals were treated with doxycycline and that

was accentuated if the animals were also null for p53

(figure 3e). As an alternative way to assess melanin pro-

duction, we determined the relative levels of transcripts for

tyrosinase, the enzyme catalysing the first step in melanin

synthesis and which is expressed in melanocytes [47]. Tyrosi-

nase mRNA was reduced both in untreated Plk4OE/Plk4OE

mice that show some elevation of basal Plk4 mRNA levels

and following doxycycline treatment to induce Plk4

expression. Tyrosinase transcripts were further reduced in a

p53 null background (figure 3c). Taken together these obser-

vations point to reduced melanin biosynthesis in response to

elevated Plk4, an effect enhanced in the absence of p53 so

accounting for the grey hair of the animals.

We then wanted to determine whether the grey hair was a

consequence of reduced melanin production or a reduced
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Figure 3. Plk4 over-expression leads to loss of hair and its pigmentation. (a) Plk4OE/Plk4OE; p53KO/p53KO mouse exhibiting typical hair loss phenotype. (b) Plk4OE/Plk4OE;
p53KO/p53KO mice showing varying degrees of greying hair. (c) Q-RT-PCR analysis of Plk4 and tyrosinase transcripts in extracts of total back skin from mice of indicated
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(d ) Fontana-Masson staining of cryosections of P2 back skin from mice of indicated genotypes. þDOX indicates treatment with doxycycline. (e) Fontana-Masson staining
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number of melanocytes undergoing activation/differentiation.

To this end, we carried out immunofluorescence upon cryosec-

tions of the back skin of animals 2 days after birth (P2) to

detect the MSC population undergoing differentiation

(figure 3f– i). The tyrosine kinase receptor, c-KIT and dopa-

chrome tautomerase (DCT) are hallmarks to identify the MSC

population (reviewed in [46]). MSCs co-expressing Kit and

microphthalmia-associated transcription factor (MITF), the

master regulator of melanocyte differentiation (reviewed in

[46]), identify the differentiated melanocyte subpopulation. We

found a reduced number of KITþMITFþDCTþ cells in the

bulge when Plk4 was over-expressed, particularly in a p53KO/

p53KO background (figure 3i). This population is responsible

for pigmentation of growing hair. However, the number of

MSCs (expressing DCT and KIT) in the bulge that will renew

the melanocyte population in subsequent hair cycles did not

vary significantly between the different genotypes and treat-

ments (an average of 4.35–5 KITþDCTþ cells per bulge). This

strongly suggests that Plk4 over-expression compromises

melanocyte differentiation and subsequent melanin synthesis.
2.4. Plk4 over-expression affects cell proliferation
in epidermis

The above experiments also revealed a thickening of the epi-

dermis and some apparently invaginated hair follicles when

Plk4 levels were elevated in Plk4OE/Plk4OE; p53KO/p53KO

mice. Thus, we decided to explore the epidermal phenotype

in greater detail. The epidermis is a stratified structure con-

taining self-renewing stem cells within the basal layer that

express keratins 5 and 14 (K5, K14) and that through

delamination and/or asymmetrical cell division give rise to

non-proliferative, spinous and granular layers (expressing

keratins 1 and 10 (K1, K10) and Involucrin) and outer

layers of terminally differentiated stratum corneum cells

(reviewed in [48]). The increased cell density within the

epidermal basal layer of Plk4 over-expressing samples

(figure 3e) prompted us to ask whether cell proliferation

was affected as a result of increased levels of Plk4.

To address whether there was an increased number of

cycling cells within the basal epidermis, we analysed skin

from 2-day-old pups (P2) and 20–day-old pups (P20) using

Ki67 as a marker for proliferating cells (figure 4a–c). In

wild-type skin (þ/þ), Ki67-positive cells are solely found

in the basal layer, as these are the only cycling cells in unper-

turbed circumstances (figure 4a). We found Ki67-positive

cells in the basal layer did not increase significantly following

doxycycline treatment of Plk4OE/Plk4OE mice (n ¼ 300/

sample; 59.5+ 19.4% in Plk4OE/Plk4OE; p53KO/p53KO

versus 63.9+ 9.4% in control (þ/þ)). However, in the skin

of Plk4OE/Plk4OE; p53KO/p53KO mice, doxycycline treatment

also led to the appearance of Ki67-positive cells in the supra-

basal layers (n ¼ 425 cells/sample, 7.40+ 3.90%) within 2

days after birth (asterisk in figure 4a). We also examined

the distribution of keratin 6 (K6), which is normally restricted

to the hair follicles but is also found in the interfollicular epi-

dermis in conditions of hyperplasia the epidermis [49,50].

Strikingly, we found that K6 was widely expressed in basal

and suprabasal cells after induction of Plk4 expression in

either a wild-type or p53 null background (arrowheads in

figure 4a). Whereas in normal skin there is a clear separation

between basal (K5-positive cells) and suprabasal (K10-
positive cells) layers, induction of Plk4 expression in either

a wild-type or p53 null background led to an expansion of

K5-positive cells. This was particularly evident in Plk4OE/

Plk4OE; p53KO/p53KO doxycycline-treated mice at 20 days

(figure 4d ), where both Ki67- and K5-positive cells were

significantly expanded to suprabasal layers and K6 staining

extended to most of the epidermis and hair follicles. There

was also an increase in the number of cells expressing the

early differentiation marker, K10.

The above findings were mirrored by the quantitation of

mRNA levels for these markers. Over-expression of Plk4 in

a p53 null background led to a notable increase in the

expression of the basal marker K14 and a reduction in

mRNA levels for involucrin, filaggrin and loricrin, markers

of late stages of differentiation figure 4b). We also found a

reduction of the transcript levels of DNp63, a p53 family

member that controls expansion of epidermal cells and pro-

motes differentiation [51] (figure 4c). This, together with a

similar reduction in expression of the Cdk inhibitor p21

(mp21; figure 4c), is compatible with delayed terminal dif-

ferentiation [52–54]. In agreement, with these results,

percentage of Ki67-positive cells is significantly increased in

Plk4OE/Plk4OE; p53KO/p53KO doxycycline-treated mice at

20 days, suggesting increased proliferation sustains the

higher number of suprabasal cells in these samples compared

to control (figure 4e,f ).

Taken together our findings indicate that elevated

expression of Plk4 results in hyperproliferation of the epidermis.

Specifically, we observed an expansion of basal progenitor cells

in suprabasal layers and a decreased expression of genes associ-

ated with terminal differentiation. These observations accord

with the thickening of the epidermis and disrupted hair follicle

morphology as a consequence of Plk4 over-expression.

2.5. Plk4 over-expression induces centriole over-
duplication and primary cilia disappearance
in epidermis

We next considered whether the alterations we had observed

in the regulation of cell proliferation and differentiation in the

epidermis could reflect changes mediated by elevated Plk4

upon the centrosomes and/or primary cilia, both of which

rely upon centrioles for their correct formation and function.

To this end, we stained skin sections to reveal acetylated

a-tubulin, a marker of the primary cilia, and Plk4 itself,

which associates with centrioles, either in basal bodies or cen-

trosomes. In the skin of wild-type mice, the great majority of

cells of the basal epidermis showed bodies of Plk4 staining

associated with the base of single primary cilia (figure 5a).

Over-expression of Plk4 during development led to increased

numbers of centrosomes in the basal epidermis and a loss of

primary cilia (figure 5a,c). Loss of primary cilia and mis-posi-

tioning of centrosomes was particularly dramatic when Plk4

over-expression occurred in a p53 null background (12.2+
4.5% of cells with primary cilia in Plk4OE/Plk4OE; p53KO/

p53KO (þDOX) versus 35.3+4.9% in Plk4OE/Plk4OE;

p53KO/p53KO; figure 5a,c). We were still able to observe

some residual primary cilia in hair follicles even though

these cells had extra centrioles (figure 5b). However, consist-

ently, only a single primary cilium was formed (figure 5b),

and these cilia were longer than those in wild-type cells

(figure 5d ). Thus, the effects of elevated Plk4 may differ in
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different cell types. In the majority of cells of the basal epider-

mis, Plk4 over-expression results in elevated numbers of

centrosomes that form at the expense of primary cilia. This

correlates with the increased proliferation of these cells. A pri-

mary cilium is still able to form alongside additional

centrosomes in some hair follicle cells after Plk4 over-

expression but these primary cilia are abnormal in structure.

We then prepared primary cultures of keratinocytes from

our mouse lines as these can be cultured under conditions

that permit either cell proliferation or, following the addi-

tion of calcium, the formation of cell–cell contacts and

cellular differentiation. Induction of Plk4 over-expression
following addition of doxycycline to primary Plk4OE/Plk4OE-

derived keratinocytes cultured in low concentrations of

calcium reproducibly resulted in centriole over-duplication.

(figure 6a,b). By 48 h after addition of calcium, adherens junc-

tions formed and tight junctions and desmosomes were

assembled. Such cells expressed markers of early and late differ-

entiation and grew on top of each other to form a pseudo-three-

dimensional epidermis. Under these conditions, a single

primary cilium formed at the surface of approximately 40% of

cells in either wild-type control cells or in Plk4OE/Plk4OE cells

without Plk4 induction. Addition of doxycycline to the

medium promoted the formation of supernumerary centrioles
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and the formation of fewer primary cilia (figure 6b,c). When

a primary cilium was formed, there was only one per cell

even though multiple centrioles could be present. Moreover,

these primary cilia were significantly longer than in wild-type

cells or Plk4OE/Plk4OE cells that had not been induced to

over-express Plk4 (figure 6d).

Thus, over-expression of Plk4 results in supernumerary

centrosomes both in cells of the basal epidermis and in cultures

of primary keratinocytes. In both cases, cells appear to fail to

leave the proliferative state and they fail to form primary

cilia. This suggests that over-expression of Plk4 leads to an

alteration in the balance between proliferation and differen-

tiation of the progenitor epidermal cells. Cilia formation

could be compromised either directly by the increased

number of centrosomes or as a consequence of a failure of

cells to cease cycling sufficiently to enable ciliogenesis. It is

known that the primary cilia receive and transmit extracellular

signals during development [55–57] and that several ciliary

mutants display defects in the commitment of progenitors to

differentiate. It is also known that lack of primary cilia in

cells of the basal epidermis would compromise the signalling

events required to promote their correct differentiation [58,59],

so accounting for the defects that we see in cell differentiation

in the skin of Plk4 over-expressing mice.
3. Discussion
The great majority of tumour cells are both aneuploid and

have multiple centrosomes [7,8,60], leading to the suggestion

that these properties may be causally related. However, the

extent to which chromosome instability resulting from mul-

tiple centrosomes contributes to tumour formation is not

clear because centrosome clustering at mitosis usually

ensures the fidelity of chromosome transmission on bipolar

spindles [61]. The transgenic mouse we have generated

allows us to induce centriole duplication in response to

elevated Plk4 and so begin to address the relationship

between multiple centrosomes and tumour formation. Our

findings that elevating Plk4 perturbs the balance between

proliferation and differentiation in different tissues in a

manner exacerbated by loss of the p53 tumour suppressor

gives the potential to identify links between supernumerary

centrosomes and early steps in tumourigenesis.

Mice deficient for p53 are susceptible to tumour formation

[62] and, moreover, the embryonic fibroblasts established

from such mice show supernumerary centrosomes [63]. One

interpretation of these findings has been that p53 might mediate

cell cycle arrest in response to increased centrosome numbers as

part of a tetraploidy checkpoint to monitor completion of cyto-

kinesis [64] or by monitoring DNA damage or spindle defects in

these cells [65–67]. Others have proposed a direct role for p53 in

directly regulating centrosome duplication [68–70]. While it

remains difficult to distinguish cause from effect, growing evi-

dence points towards a p53-mediated response to changes in

centrosome integrity that receives support from our present

study and earlier findings. p53 deletion overcomes either the

block to cell progression or apoptosis resulting from depletion

of several different centrosome proteins in cultured cells [71]

or centriole loss in Sas4 knockout mouse embryos [34]. More-

over, recent studies have identified a p53 response that is

triggered by the inhibition or the destruction of Plk4 that pre-

vents centriole duplication [33,35]. DNA damage, stress,
chromosome mis-segregation, prolonged time in mitosis

[33,35], nor the Hippo-signalling pathway, recently shown to

respond to cytokinesis failure [72], were responsible for trigger-

ing this p53-dependent arrest in a senescent-like G1 state in

response to centrosome loss. We now show that defects in the

pancreas and skin resulting from Plk4 over-expression are

enhanced by the loss of p53. We do not know the nature of

this p53-dependent response to either gain or loss of centro-

somes but it seems possible that it uses a common pathway as

both situations can perturb spindle organization and dynamics

and cell cycle progression.

The tumour formation that we observe, however, appears

dependent upon the loss of p53 function; it is exacerbated by

Plk4 over-expression but is not seen following Plk4 over-

expression alone. It will be important in future studies to

identify the origins of these tumour cells, particularly the sar-

comas that appear with increased frequency when Plk4 levels

are elevated. That we see tissue hyperplasia rather than neo-

plasia in the pancreas and skin might reflect the time course

of the development of different tumour types in the absence

of p53. Usually, p53 null mice first develop lymphomas and

most do not survive for long enough for sarcomas to arise.

Nevertheless, sarcoma formation predominates in mice in

which lymphocytes have been genetically eliminated and it

is conceivable that the development of carcinomas, as

would occur in the skin, would be masked by these earlier

events of lymphoma and then sarcoma formation [73].

The hyperplasia we observe in the pancreas in response to

elevated Plk4 and enhanced in the absence of p53 appears to

affect the differentiated endocrine cells equally. Thus, the

enlarged islets of Langerhans maintain similar proportions of

a- and b-cells suggesting that both populations have prolifer-

ated and differentiated. In the skin, on the other hand,

elevated Plk4 permits proliferating cells to expand into the

suprabasal layers of the epidermis where they show inap-

propriate expression of differentiation markers. This too is

enhanced in a p53 background. The shift in the balance of

cell proliferation and differentiation could reflect persistence

of the centriole as a structure associated with the centrosome

and so keeping the cell prepared for cell division. It could

also result from a loss of barrier function due to the disruption

in the stratified epidermal architecture as occurs, for example,

in the inflammatory response (reviewed in [74]). The stratifica-

tion of the skin occurs when polarized cells of the basal

epidermis undergo divisions perpendicular to the basal cell

layer to produce the differentiating upper layers [75]. Multiple

centrosomes might affect the orientation of mitotic spindles

thus perturbing the mechanism that delivers cells from the

basal to the suprabasal layers in an orderly manner.

Alternatively, the abnormal differentiation in Plk4 over-

expressing, p53 null cells could reflect loss of primary cilia

that we observe to reciprocate additional centrosome for-

mation both in cells of the basal epidermis and in cultures

of primary keratinocytes established from this skin. The differ-

entiation of cells entering the spinous layer is a Notch

signalling-dependent process [76] and a failure of ciliogenesis

has been reported to compromise Notch signalling and result

in defective epidermal differentiation [58]. Thus, in the absence

of sufficient primary cilia, the signalling pathways required for

correct differentiation would be defective. Reduced signalling

activity was also previously reported in cultured cells expres-

sing elevated levels of Plk4 [77]. However, in the examples

studied by these authors, cells with extra centrosomes often



Table 1. Primers for mPlk4 and genotyping.

mPlk4RosaFor 50GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCGGCGTGCATCGGGGAGAGGATCGAGGACTTTAAG30

mPlk4RosaRev 50GGGGACCACTTTGTACAAGAAAGCTGGGTTTAGGAGTTGGATTAGAAAACATCAGAAGGATGGAAGAAAG30

Plk4Insert_Forward 50CCGCGCCTGTCCTTTCTCCC30

Plk4Insert_Reverse 50GTCCGGCCAGGACGACGAGG30

Wt_Rosa_locus 50GGCAAGCACCACCACTGGCTGGC30

Wt_Rosa_locus 50GAAGTGTAACTGTGGACAGAGGAGCC30

IMR8306_p53Mut_FW 50CTATCAGGACATAGCGTTGG30

IMR7778_p53_Rev 50ATACTCAGAGCCGGCCT’30

IMR7777_p53_FW 50ACAGCGTGGTGGTACCTTAT30
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formed more than one primary cilium. These cilia were associ-

ated with reduced concentrations of signalling molecules and

this appeared to be responsible for the reduction in signalling

activity. This contrasts to our findings in keratinocytes where

supernumerary centrosomes appear to form at the expense

of the formation of cilia. The occasional cell that we do find

with two primary cilia of increased length seems at odds

with these earlier findings. The net outcome of disrupted sig-

nalling is the same although in one case it appears to be the

consequence of the inefficient operation of the signalling

machinery and in the other through the loss of the mechanical

apparatus, the cilia themselves.

In addition to the work we now report, another study has

described a p53-dependent response to mitotic abnormalities

resulting from Plk4 over-expression in the developing mouse

brain [42]. These authors described how this led neural stem

cells to undertake multipolar mitoses leading to aneuploid

cells that were directed to p53-dependent apoptosis. They

reported that loss of p53 allowed aneuploid cells to accumulate

and differentiate thereby reducing the proportion of proliferat-

ing cells and reducing brain size. These consequences seem to

differ from the ones we now report in the pancreas and

skin where p53 enhances the effects of Plk4 over-expression

by allowing cells to proliferate. This suggests that the

responses to the supernumerary centrosomes resulting from

over-expression of Plk4 might differ in different tissues.

Our study highlights the importance of the p53 pathway

in monitoring defects elicited by the elevated expression of

Plk4. The increase in centrosome numbers and decrease in

primary cilia strongly suggest that the effects we observe

reflect the principal function of Plk4 to drive centrosome

duplication, although we cannot at this stage exclude an

involvement of Plk4 in regulating other aspects of cellular

physiology (e.g. [78,79]). Further studies are now required

to dissect out the precise manner by which the p53 pathway

is triggered together with the mechanisms whereby elevated

Plk4 affects cell cycle progression and cellular architecture,

how these might affect the differentiation programme of the

cell and how this could contribute to tumour development.
4. Material and methods
4.1. Generation of mESCs inducibly expressing Plk4

from the Rosa26 locus
The rtTA gene and response element (ClonTech) were cloned

into a Rosa26 targeting vector [80] upstream of Gateway
elements attR1/attR2. mPlk4 cDNA flanked by attL1/attL2

sites was introduced into the vector by Gateway cloning

(Life Technology), yielding a Rosa26 targeting vector

harbouring tetracycline-inducible cDNA for Plk4. Primers

used for subcloning the mousePlk4cDNA were mPlk4Rosa-

For and mPlk4RosaRev (table 1). The targeting vector was

introduced into JM8 mESCs by electroporation, and success-

ful integrations were selected for with 1 mg ml21 puromycin.

Correct targeting was confirmed by long-range PCR across

the 50 homology arm of clonal puromycin-resistant cell lines.

4.2. Histological analysis of skin and pancreas
Samples were fixed in 4% paraformaldehyde in PBS at 48C
overnight and then dehydrated and embedded in paraffin

wax. Eight micrometre sections were stained with haema-

toxylin and eosin for histological analysis. Samples from

dorsal skin or pancreas were washed in PBS, embedded in

OCT compound and kept at 2808C prior to cryosectioning

for immunofluorescence.

4.3. Fontana-Masson staining
Fontana-Masson staining of backskin cryosections was per-

formed following the protocol provided in the Fontana-Masson

kit (Abcam, ab150669).

4.4. Culture of kerotinocytes
Mouse keratinocytes were isolated from the backskin of 2-

day-old pups from each genetic background using dispase

and trypsin. After filtration in 40 mm cell strainers, cells

were cultured in low calcium medium (50 mM Ca2þ) on

plates coated with coating matrix (Gibco) as previously

described [81]. Once confluency was reached, coverslips

were either fixed in 2208C methanol to visualize centrosomes

or cultures were shifted to 2 mM Ca2þ media for 48 h to

analyse cytoskeleton and primary cilium formation.

4.5. Antibodies
Primary antibodies were obtained from the following sources:

rabbit anti-Cep192 [82] (1 : 1000), rabbit anti-keratin 5 ab52635

(Abcam, 1 : 1000), chicken anti-keratin 5 #905901 (BioLegend,

1 : 1000), rabbit anti-keratin 10 ab76318 (Abcam, 1 : 1000),

rabbit anti-keratin 6 #905701 (BioLegend, 1 : 1000), rabbit

anti-cKit ab5506 (Abcam), rabbit anti-Ki67 ab15580

(Abcam, 1 : 500), mouse anti-g-tubulin monoclonal GTU-88



Table 2. Primers for RT-QPCR.

Plk4 forward 50AGGAGAAACTAATGAGCACCACA30

Plk4 reverse 50TGGCTCTCGTGTCAGTCCAA30

GAPDH forward 50AAGGTCATCCCAGAGCTGAA30

GAPDH reverse 50CTGCTTCACCACCTTCTTGA30

K1 forward 50GAACACTAAGCTGGCCCTGGACAT30

K1 reverse 50CCTCGGGAGTAACTGGTGGAAACA30

K5 forward 50CAGTGTGCCAACCTCCAGAACG30

K5 reverse 50AGCCCGCTACCCAAACCAAGAC30

K10 forward 50GGAGGGTAAAATCAAGGAGTGGTA30

K10 reverse 50TCAATCTGCAGCAGCACGTT30

K14 forward 50GACGCCGCCCCTGGTGTG30

K14 reverse 50 GGTGGCGATCTCCTGCTC30

filagrin forward 50GGAGGCATGGTGGAACTGA30

filagrin reverse 50TGTTTATCTTTTCCCTCACTTCTACATC30

involucrin forward 50GTCCGGTTCTCCAATTCGTGTTT30

involucrin reverse 50GCAATTGGAAGAGAAGCAGCATCAG30

loricrin forward 50TCACTCATCTTCCCTGGTGCTT30

loricrin reverse 50GTCTTTCCACAACCCACAGGA30

DNp63 forward 50CTGGAAAACAATGCCCAGAC30

DNp63 reverse 50GAGGAGCCGTTCTGAATCTG30

mp21_forward 50GTGGGTCTGACTCCAGCCC30

mp21_reverse 50CCTTCTCGTGAGACGCTTAC30

tyrosinase forward 50GCGAAGGCACCGCCCTCTTT30

tyrosinase reverse 50TCCCACCAGTGCTGCCCCAA30
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(Sigma, 1 : 200), rabbit anti-g-tubulin T3559 (Sigma, 1 : 500), rat

anti-PLK4 [78] (1 : 1000), mouse anti-centrin2/3 S3332 (Santa

Cruz Biotechnology, 1 : 500), guinea-pig anti-insulin ab7842

(Abcam, 1 : 50), mouse monoclonal anti-glucagon ab10988

(Abcam, 1 : 200), mouse monoclonal anti-acetylated-tubulin

clone 6-11B-1 (Sigma, 1 : 200), mouse anti-MITF ab80651

(Abcam, 1 : 200), rabbit anti-DCT ab74073 (Abcam, 1 : 200),

mouse anti-E-cadherin clone ECDD-2 (Invitrogen, 1 : 200), rat

anti-mouse-cKIT clone 2B8 (Biolegend). Secondary antibodies

used (1 : 2000 for immunofluorescence) were conjugated with

Alexa 488, Alexa 568 or Alexa 647 (Invitrogen) and had minimal

cross-reactivity to other species.

4.6. Fixation protocol for tissues and cells
For identification of centrosomal proteins by immuno-

fluorescence, preparations were fixed (12 min in ice-cold

methanol), quickly rinsed in 1�PBS and then permeabilized

in 1�PBS; 0.1% Triton-X100 for three times, for 5 min each.

Preparations were blocked with 1�PBS; 0.1% Tween 20;

10% FBS for 1 h, followed by primary antibody incubation

in the same solution for at least 2 h at room temperature.

Washes were performed in 1�PBS; 0.1% Tween 20 for

30 minutes before the addition of secondary antibody in

1�PBS; 0.1% Tween 20 with 10% FBS. Preparations were

washed as previously, mounted in Vectashield with DAPI

and sealed.

4.7. Microscopy
Images were collected on a Zeiss LSM 510 Meta Laser Scan-

ning Confocal Microscope using 63X/1.4 or 100X/1.4 oil

objectives, and the LSM 510 v. 4.2 software. Images were

deconvolved using HUYGENS PROFESSIONAL software; proces-

sing and analysis was performed with IMAGEJ v. 1.50b and

Adobe PHOTOSHOP CS5.

4.8. RT-qPCR conditions
RNA was isolated from the different tissues with RNAqueous

Kit (Ambion) and RT-QPCR was performed using Power

SYBRw Green RNA-to-CTTM 1-Step Kit (Life Technologies)

on a Stepone Plus 96 RT system (Life Technologies) with

GAPDH as reference gene. Primers pairs (forward and

reverse) used for each gene are indicated in table 2. Specificity

was confirmed by subsequent melting curve analysis or gel

electrophoresis. Levels of PCR product were expressed as a

function of GAPDH. Reactions were performed in triplicate
for at least three biological samples and fold changes calcu-

lated using the 22DDCT method.
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17. Kratz A-S, Bärenz F, Richter KT, Hoffmann I. 2015
Plk4-dependent phosphorylation of STIL is required
for centriole duplication. Biol. Open 4, 370 – 377.
(doi:10.1242/bio.201411023)

18. Moyer TC, Clutario KM, Lambrus BG, Daggubati V,
Holland AJ. 2015 Binding of STIL to Plk4 activates
kinase activity to promote centriole assembly. J. Cell
Biol. 209, 863 – 878. (doi:10.1083/jcb.201502088)

19. Cunha-Ferreira I, Rodrigues-Martins A, Bento I,
Riparbelli M, Zhang W, Laue E, Callaini G, Glover
DM, Bettencourt-Dias M. 2009 The SCF/Slimb
ubiquitin ligase limits centrosome amplification
through degradation of SAK/PLK4. Curr. Biol. 19,
43 – 49. (doi:10.1016/j.cub.2008.11.037)

20. Rodrigues-Martins A, Riparbelli M, Callaini G, Glover
DM, Bettencourt-Dias M. 2007 Revisiting the role of
the mother centriole in centriole biogenesis. Science
316, 1046 – 1050. (doi:10.1126/science.1142950)

21. Rogers GC, Rusan NM, Roberts DM, Peifer M, Rogers
SL. 2009 The SCF Slimb ubiquitin ligase regulates
Plk4/Sak levels to block centriole reduplication.
J. Cell Biol. 184, 225 – 239. (doi:10.1083/jcb.
200808049)

22. Habedanck R, Stierhof Y-D, Wilkinson CJ, Nigg EA.
2005 The Polo kinase Plk4 functions in centriole
duplication. Nat. Cell Biol. 7, 1140 – 1146. (doi:10.
1038/ncb1320)

23. Bettencourt-Dias M et al. 2005 SAK/PLK4 is required for
centriole duplication and flagella development. Curr.
Biol. 15, 2199 – 2207. (doi:10.1016/j.cub.2005.11.042)

24. Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG,
Khodjakov AL, Raff JW. 2006 Flies without
centrioles. Cell 125, 1375 – 1386. (doi:10.1016/j.cell.
2006.05.025)

25. Rodrigues-Martins A, Bettencourt-Dias M, Riparbelli
M, Ferreira C, Ferreira I, Callaini G, Glover DM. 2007
DSAS-6 organizes a tube-like centriole precursor,
and its absence suggests modularity in centriole
assembly. Curr. Biol. 17, 1465 – 1472. (doi:10.1016/
j.cub.2007.07.034)

26. Varmark H, Llamazares S, Rebollo E, Lange B, Reina
J, Schwarz H, Gonzalez C. 2007 Asterless is a
centriolar protein required for centrosome function
and embryo development in Drosophila. Curr. Biol.
17, 1735 – 1745. (doi:10.1016/j.cub.2007.09.031)

27. Conduit PT, Wainman A, Raff JW. 2015 Centrosome
function and assembly in animal cells. Nat. Rev.
Mol. Cell Biol. 16, 611 – 624. (doi:10.1038/nrm4062)

28. Fuller MT. 1993 The development of Drosophila
melanogaster. I. Cold Spring Harbor, NY: Cold Spring
Harbor Laboratory Press.

29. Chevalier RL. 1969 The fine structure of
campaniform sensilla on the halteres of Drosophila
melanogaster. J. Morphol. 128, 443 – 463. (doi:10.
1002/jmor.1051280405)

30. Baker JD, Adhikarakunnathu S, Kernan MJ. 2004
Mechanosensory-defective, male-sterile unc mutants
identify a novel basal body protein required for
ciliogenesis in Drosophila. Development 131, 3411 –
3422. (doi:10.1242/dev.01229)

31. Khodjakov AL, Rieder CL. 2001 Centrosomes
enhance the fidelity of cytokinesis in vertebrates
and are required for cell cycle progression. J. Cell
Biol. 153, 237 – 242. (doi:10.1083/jcb.153.1.237)

32. Mahoney NM, Goshima G, Douglass AD, Vale RD.
2006 Making microtubules and mitotic spindles in
cells without functional centrosomes. Curr. Biol. 16,
564 – 569. (doi:10.1016/j.cub.2006.01.053)

33. Wong YL et al. 2015 Cell biology. Reversible
centriole depletion with an inhibitor of Polo-like
kinase 4. Science 348, 1155 – 1160. (doi:10.1126/
science.aaa5111)

34. Bazzi H, Anderson KV. 2014 Acentriolar mitosis
activates a p53-dependent apoptosis pathway in
the mouse embryo. Proc. Natl Acad. Sci. USA 111,
E1491 – E1500. (doi:10.1073/pnas.1400568111)

35. Lambrus BG, Uetake Y, Clutario KM, Daggubati V,
Snyder M, Sluder G, Holland AJ. 2015 p53 protects
against genome instability following centriole
duplication failure. J. Cell Biol. 210, 63 – 77. (doi:10.
1083/jcb.201502089)

36. Holland AJ, Fachinetti D, Zhu Q, Bauer M, Verma
IM, Nigg EA, Cleveland DW. 2012 The autoregulated
instability of Polo-like kinase 4 limits centrosome
duplication to once per cell cycle. Genes Dev. 26,
2684 – 2689. (doi:10.1101/gad.207027.112)

37. Castellanos E, Dominguez P, Gonzalez C. 2008
Centrosome dysfunction in Drosophila neural stem
cells causes tumors that are not due to genome
instability. Curr. Biol. 18, 1209 – 1214. (doi:10.1016/
j.cub.2008.07.029)

38. Basto R, Brunk K, Vinadogrova T, Peel N, Franz A,
Khodjakov AL, Raff JW. 2008 Centrosome
amplification can initiate tumorigenesis in flies. Cell
133, 1032 – 1042. (doi:10.1016/j.cell.2008.05.039)

39. Martin C-A et al. 2014 Mutations in PLK4,
encoding a master regulator of centriole
biogenesis, cause microcephaly, growth failure and
retinopathy. Nat. Genet. 46, 1283 – 1292. (doi:10.
1038/ng.3122)

40. Godinho SA, Pellman D. 2014 Causes and
consequences of centrosome abnormalities in
cancer. Phil. Trans. R. Soc. B 369, 20130467.
(doi:10.1098/rstb.2013.0467)

41. Mahmood S, Ahmad W, Hassan MJ. 2011
Autosomal recessive primary microcephaly (MCPH):
clinical manifestations, genetic heterogeneity and
mutation continuum. Orphanet. J. Rare Dis. 6, 39.
(doi:10.1186/1750-1172-6-39)

42. Marthiens V, Rujano MA, Pennetier C, Tessier S,
Paul-Gilloteaux P, Basto R. 2013 Centrosome
amplification causes microcephaly. Nat. Cell Biol. 15,
731 – 740. (doi:10.1038/ncb2746)

43. Glinsky GV. 2006 Genomic models of metastatic
cancer: functional analysis of death-from-cancer
signature genes reveals aneuploid, anoikis-resistant,
metastasis-enabling phenotype with altered cell
cycle control and activated Polycomb group (PcG)
protein chromatin silencing pathway. Cell Cycle 5,
1208 – 1216. (doi:10.4161/cc.5.11.2796)

44. Finetti P et al. 2008 Sixteen-kinase gene expression
identifies luminal breast cancers with poor
prognosis. Cancer Res. 68, 767 – 776. (doi:10.1158/
0008-5472.CAN-07-5516)

45. Harvey M, McArthur MJ, Montgomery CA, Butel JS,
Bradley A, Donehower LA. 1993 Spontaneous and
carcinogen-induced tumorigenesis in p53-deficient
mice. Nat. Genet. 5, 225 – 229. (doi:10.1038/
ng1193-225)

46. Mort RL, Jackson IJ, Patton EE. 2015 The
melanocyte lineage in development and disease.
Development 142, 620 – 632. (doi:10.1242/dev.
106567)

47. Wasmeier C, Hume AN, Bolasco G, Seabra MC.
2008 Melanosomes at a glance. J. Cell. Sci. 121,
3995 – 3999. (doi:10.1242/jcs.040667)

48. Hsu Y-C, Li L, Fuchs E. 2014 Emerging interactions
between skin stem cells and their niches. Nat. Med.
20, 847 – 856. (doi:10.1038/nm.3643)

49. Weiss RA, Eichner R, Sun TT. 1984 Monoclonal
antibody analysis of keratin expression in epidermal
diseases: a 48- and 56-kdalton keratin as molecular
markers for hyperproliferative keratinocytes. J. Cell
Biol. 98, 1397 – 1406. (doi:10.1083/jcb.98.4.1397)

50. Stoler A, Kopan R, Duvic M, Euchs E. 1988 Use of
monospecific antisera and cRNA probes to localize

http://dx.doi.org/10.1073/pnas.032479999
http://dx.doi.org/10.1158/1078-0432.CCR-04-0773
http://dx.doi.org/10.1158/1078-0432.CCR-04-0773
http://dx.doi.org/10.1038/sj.onc.1205772
http://dx.doi.org/10.1038/sj.onc.1205772
http://dx.doi.org/10.1080/00016480802165767
http://dx.doi.org/10.1080/00016480802165767
http://dx.doi.org/10.1038/ncomms6267
http://dx.doi.org/10.1016/j.cub.2014.08.061
http://dx.doi.org/10.1242/bio.201411023
http://dx.doi.org/10.1083/jcb.201502088
http://dx.doi.org/10.1016/j.cub.2008.11.037
http://dx.doi.org/10.1126/science.1142950
http://dx.doi.org/10.1083/jcb.200808049
http://dx.doi.org/10.1083/jcb.200808049
http://dx.doi.org/10.1038/ncb1320
http://dx.doi.org/10.1038/ncb1320
http://dx.doi.org/10.1016/j.cub.2005.11.042
http://dx.doi.org/10.1016/j.cell.2006.05.025
http://dx.doi.org/10.1016/j.cell.2006.05.025
http://dx.doi.org/10.1016/j.cub.2007.07.034
http://dx.doi.org/10.1016/j.cub.2007.07.034
http://dx.doi.org/10.1016/j.cub.2007.09.031
http://dx.doi.org/10.1038/nrm4062
http://dx.doi.org/10.1002/jmor.1051280405
http://dx.doi.org/10.1002/jmor.1051280405
http://dx.doi.org/10.1242/dev.01229
http://dx.doi.org/10.1083/jcb.153.1.237
http://dx.doi.org/10.1016/j.cub.2006.01.053
http://dx.doi.org/10.1126/science.aaa5111
http://dx.doi.org/10.1126/science.aaa5111
http://dx.doi.org/10.1073/pnas.1400568111
http://dx.doi.org/10.1083/jcb.201502089
http://dx.doi.org/10.1083/jcb.201502089
http://dx.doi.org/10.1101/gad.207027.112
http://dx.doi.org/10.1016/j.cub.2008.07.029
http://dx.doi.org/10.1016/j.cub.2008.07.029
http://dx.doi.org/10.1016/j.cell.2008.05.039
http://dx.doi.org/10.1038/ng.3122
http://dx.doi.org/10.1038/ng.3122
http://dx.doi.org/10.1098/rstb.2013.0467
http://dx.doi.org/10.1186/1750-1172-6-39
http://dx.doi.org/10.1038/ncb2746
http://dx.doi.org/10.4161/cc.5.11.2796
http://dx.doi.org/10.1158/0008-5472.CAN-07-5516
http://dx.doi.org/10.1158/0008-5472.CAN-07-5516
http://dx.doi.org/10.1038/ng1193-225
http://dx.doi.org/10.1038/ng1193-225
http://dx.doi.org/10.1242/dev.106567
http://dx.doi.org/10.1242/dev.106567
http://dx.doi.org/10.1242/jcs.040667
http://dx.doi.org/10.1038/nm.3643
http://dx.doi.org/10.1083/jcb.98.4.1397


rsob.royalsocietypublishing.org
Open

Biol.5:150209

15
the major changes in keratin expression during
normal and abnormal epidermal differentiation.
J. Cell Biol. 107, 427 – 446. (doi:10.1083/jcb.
107.2.427)

51. Danilova N, Sakamoto KM, Lin S. 2008 p53 family in
development. Mech. Dev. 125, 919 – 931. (doi:10.
1016/j.mod.2008.09.003)

52. Deng C, Zhang P, Wade Harper J, Elledge SJ, Leder
P. 1995 Mice Lacking p21CIP1/WAF1 undergo
normal development, but are defective in G1
checkpoint control. Cell 82, 675 – 684. (doi:10.1016/
0092-8674(95)90039-X)

53. Brugarolas J, Chandrasekaran C, Gordon JI, Beach D,
Jacks T, Hannon GJ. 1995 Radiation-induced cell
cycle arrest compromised by p21 deficiency. Nature
377, 552 – 557. (doi:10.1038/377552a0)

54. Martı́n-Caballero J, Flores JM, Garcı́a-Palencia P,
Serrano M. 2001 Tumor susceptibility of
p21(Waf1/Cip1)-deficient mice. Cancer Res. 61,
6234 – 6238.

55. Bershteyn M, Atwood SX, Woo W-M, Li M, Oro AE.
2010 MIM and cortactin antagonism regulates
ciliogenesis and hedgehog signaling. Dev. Cell 19,
270 – 283. (doi:10.1016/j.devcel.2010.07.009)

56. Goetz SC, Anderson KV. 2010 The primary cilium: a
signalling centre during vertebrate development.
Nat. Rev. Genet. 11, 331 – 344. (doi:10.1038/
nrg2774)

57. Santos N, Reiter JF. 2010 Tilting at nodal windmills:
planar cell polarity positions cilia to tell left from
right. Dev. Cell 19, 5 – 6. (doi:10.1016/j.devcel.2010.
07.001)

58. Ezratty EJ, Stokes N, Chai S, Shah AS, Williams SE,
Fuchs E. 2011 A role for the primary cilium in Notch
signaling and epidermal differentiation during skin
development. Cell 145, 1129 – 1141. (doi:10.1016/j.
cell.2011.05.030)

59. Croyle MJ et al. 2011 Role of epidermal primary
cilia in the homeostasis of skin and hair follicles.
Development 138, 1675 – 1685. (doi:10.1242/dev.
060210)

60. Nam H-J, Chae S, Jang S-H, Cho H, Lee J-H. 2010
The PI3 K-Akt mediates oncogenic Met-induced
centrosome amplification and chromosome
instability. Carcinogenesis 31, 1531 – 1540. (doi:10.
1093/carcin/bgq133)

61. Quintyne NJ, Reing JE, Hoffelder DR, Gollin SM,
Saunders WS. 2005 Spindle multipolarity is
prevented by centrosomal clustering. Science 307,
127 – 129. (doi:10.1126/science.1104905)

62. Donehower LA, Harvey M, Slagle BL, McArthur MJ,
Montgomery CA, Butel JS, Bradley A. 1992 Mice
deficient for p53 are developmentally normal but
susceptible to spontaneous tumours. Nature 356,
215 – 221. (doi:10.1038/356215a0)

63. Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande
Woude GF. 1996 Abnormal centrosome
amplification in the absence of p53. Science 271,
1744 – 1747. (doi:10.1126/science.271.5256.1744)

64. Andreassen PR, Lohez OD, Lacroix FB, Margolis RL.
2001 Tetraploid state induces p53-dependent arrest
of nontransformed mammalian cells in G1. Mol.
Biol. Cell 12, 1315 – 1328. (doi:10.1091/mbc.12.5.
1315)

65. Uetake Y, Sluder G. 2004 Cell cycle progression after
cleavage failure: mammalian somatic cells do not
possess a ‘tetraploidy checkpoint’. J. Cell Biol. 165,
609 – 615. (doi:10.1083/jcb.200403014)

66. Wong C, Stearns T. 2005 Mammalian cells lack
checkpoints for tetraploidy, aberrant centrosome
number, and cytokinesis failure. BMC Cell Biol. 6, 6.
(doi:10.1186/1471-2121-6-6)

67. Aylon Y, Michael D, Shmueli A, Yabuta N, Nojima H,
Oren M. 2006 A positive feedback loop between the
p53 and Lats2 tumor suppressors prevents
tetraploidization. Genes Dev. 20, 2687 – 2700.
(doi:10.1101/gad.1447006)

68. Tarapore P, Horn HF, Tokuyama Y, Fukasawa K. 2001
Direct regulation of the centrosome duplication
cycle by the p53-p21Waf1/Cip1 pathway. Oncogene
20, 3173 – 3184. (doi:10.1038/sj.onc.1204424)

69. Tarapore P, Tokuyama Y, Horn HF, Fukasawa K. 2001
Difference in the centrosome duplication regulatory
activity among p53 ‘hot spot’ mutants: potential
role of Ser 315 phosphorylation-dependent
centrosome binding of p53. Oncogene 20,
6851 – 6863. (doi:10.1038/sj.onc.1204848)

70. Shinmura K, Bennett RA, Tarapore P, Fukasawa K.
2007 Direct evidence for the role of centrosomally
localized p53 in the regulation of centrosome
duplication. Oncogene 26, 2939 – 2944. (doi:10.
1038/sj.onc.1210085)

71. Mikule K, Delaval B, Kaldis P, Jurcyzk A, Hergert P,
Doxsey S. 2007 Loss of centrosome integrity induces
p38-p53-p21-dependent G1-S arrest. Nat. Cell Biol.
9, 160 – 170. (doi:10.1038/ncb1529)
72. Ganem NJ, Cornils H, Chiu S-Y, O’Rourke KP, Arnaud
J, Yimlamai D, Thery M, Camargo FD, Pellman D.
2014 Cytokinesis failure triggers hippo tumor
suppressor pathway activation. Cell 158, 833 – 848.
(doi:10.1016/j.cell.2014.06.029)

73. Landuzzi L et al. 2014 Genetic prevention of
lymphoma in p53 knockout mice allows the early
development of p53-related sarcomas. Oncotarget 5,
11 924 – 11 938. (doi:10.18632/oncotarget.2650)

74. Simpson CL, Patel DM, Green KJ. 2011
Deconstructing the skin: cytoarchitectural
determinants of epidermal morphogenesis. Nat.
Rev. Mol. Cell Biol. 12, 565 – 580. (doi:10.1038/
nrm3175)

75. Williams SE, Ratliff LA, Postiglione MP, Knoblich JA,
Fuchs E. 2014 Par3-mInsc and Gai3 cooperate to
promote oriented epidermal cell divisions through
LGN. Nat. Cell Biol. 16, 758 – 769. (doi:10.1038/
ncb3001)

76. Estrach S, Cordes R, Hozumi K, Gossler A, Watt FM.
2008 Role of the Notch ligand Delta1 in embryonic
and adult mouse epidermis. J. Invest. Dermatol.
128, 825 – 832. (doi:10.1038/sj.jid.5701113)

77. Mahjoub MR, Stearns T. 2012 Supernumerary
centrosomes nucleate extra cilia and compromise
primary cilium signaling. Curr. Biol. 22,
1628 – 1634. (doi:10.1016/j.cub.2012.06.057)

78. Coelho PA, Bury L, Sharif B, Riparbelli MG, Fu J,
Callaini G, Glover DM, Zernicka-Goetz M. 2013
Spindle formation in the mouse embryo requires
Plk4 in the absence of centrioles. Dev. Cell 27,
586 – 597. (doi:10.1016/j.devcel.2013.09.029)

79. Martindill DMJ, Risebro CA, Smart N, Franco-Viseras
MDM, Rosario CO, Swallow CJ, Dennis JW, Riley PR.
2007 Nucleolar release of Hand1 acts as a molecular
switch to determine cell fate. Nat. Cell Biol. 9,
1131 – 1141. (doi:10.1038/ncb1633)

80. Vooijs M, Jonkers J, Berns A. 2001 A highly efficient
ligand-regulated Cre recombinase mouse line shows
that LoxP recombination is position dependent.
EMBO Rep. 2, 292 – 297. (doi:10.1093/embo-
reports/kve064)

81. Nowak JA, Fuchs E. 2009 Isolation and culture of
epithelial stem cells. Methods Mol. Biol. 482,
215 – 232. (doi:10.1007/978-1-59745-060-7_14)

82. Zhu F et al. 2008 The mammalian SPD-2 ortholog
Cep192 regulates centrosome biogenesis. Curr. Biol.
18, 136 – 141. (doi:10.1016/j.cub.2007.12.055)

http://dx.doi.org/10.1083/jcb.107.2.427
http://dx.doi.org/10.1083/jcb.107.2.427
http://dx.doi.org/10.1016/j.mod.2008.09.003
http://dx.doi.org/10.1016/j.mod.2008.09.003
http://dx.doi.org/10.1016/0092-8674(95)90039-X
http://dx.doi.org/10.1016/0092-8674(95)90039-X
http://dx.doi.org/10.1038/377552a0
http://dx.doi.org/10.1016/j.devcel.2010.07.009
http://dx.doi.org/10.1038/nrg2774
http://dx.doi.org/10.1038/nrg2774
http://dx.doi.org/10.1016/j.devcel.2010.07.001
http://dx.doi.org/10.1016/j.devcel.2010.07.001
http://dx.doi.org/10.1016/j.cell.2011.05.030
http://dx.doi.org/10.1016/j.cell.2011.05.030
http://dx.doi.org/10.1242/dev.060210
http://dx.doi.org/10.1242/dev.060210
http://dx.doi.org/10.1093/carcin/bgq133
http://dx.doi.org/10.1093/carcin/bgq133
http://dx.doi.org/10.1126/science.1104905
http://dx.doi.org/10.1038/356215a0
http://dx.doi.org/10.1126/science.271.5256.1744
http://dx.doi.org/10.1091/mbc.12.5.1315
http://dx.doi.org/10.1091/mbc.12.5.1315
http://dx.doi.org/10.1083/jcb.200403014
http://dx.doi.org/10.1186/1471-2121-6-6
http://dx.doi.org/10.1101/gad.1447006
http://dx.doi.org/10.1038/sj.onc.1204424
http://dx.doi.org/10.1038/sj.onc.1204848
http://dx.doi.org/10.1038/sj.onc.1210085
http://dx.doi.org/10.1038/sj.onc.1210085
http://dx.doi.org/10.1038/ncb1529
http://dx.doi.org/10.1016/j.cell.2014.06.029
http://dx.doi.org/10.18632/oncotarget.2650
http://dx.doi.org/10.1038/nrm3175
http://dx.doi.org/10.1038/nrm3175
http://dx.doi.org/10.1038/ncb3001
http://dx.doi.org/10.1038/ncb3001
http://dx.doi.org/10.1038/sj.jid.5701113
http://dx.doi.org/10.1016/j.cub.2012.06.057
http://dx.doi.org/10.1016/j.devcel.2013.09.029
http://dx.doi.org/10.1038/ncb1633
http://dx.doi.org/10.1093/embo-reports/kve064
http://dx.doi.org/10.1093/embo-reports/kve064
http://dx.doi.org/10.1007/978-1-59745-060-7_14
http://dx.doi.org/10.1016/j.cub.2007.12.055


 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Coelho, PA; Bury, L; Shahbazi, MN; Liakath-Ali, K; Tate, PH; Wormald, S; Hindley, CJ; Huch,

M; Archer, J; Skarnes, WC; Zernicka-Goetz, M; Glover, DM

 

Title: 

Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and

associated tissue hyperplasia in the mouse.

 

Date: 

2015-12

 

Citation: 

Coelho, P. A., Bury, L., Shahbazi, M. N., Liakath-Ali, K., Tate, P. H., Wormald, S., Hindley, C.

J., Huch, M., Archer, J., Skarnes, W. C., Zernicka-Goetz, M.  &  Glover, D. M. (2015). Over-

expression of Plk4 induces centrosome amplification, loss of primary cilia and associated

tissue hyperplasia in the mouse.. Open Biol, 5 (12), pp.150209-.

https://doi.org/10.1098/rsob.150209.

 

Persistent Link: 

http://hdl.handle.net/11343/270518

 

File Description:

Published version

License: 

CC BY


	Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse
	Introduction
	Results
	Elevated Plk4 expression dramatically advances the onset of tumour formation in p53-deficient mice
	Elevated Plk4 expression induces hyperproliferation of cells in the pancreas
	Elevated Plk4 over-expression affects melanocyte differentiation
	Plk4 over-expression affects cell proliferation in epidermis
	Plk4 over-expression induces centriole over-duplication and primary cilia disappearance in epidermis

	Discussion
	Material and methods
	Generation of mESCs inducibly expressing Plk4 from the Rosa26 locus
	Histological analysis of skin and pancreas
	Fontana-Masson staining
	Culture of kerotinocytes
	Antibodies
	Fixation protocol for tissues and cells
	Microscopy
	RT-qPCR conditions
	Competing interests
	Funding

	References


