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Abstract  

Health economic evaluation is a fundamental component in helping inform health care 

providers and policy makers in making decisions on priorities in health care. This is 

particularly relevant in today’s tight budgetary climate and in response to continued calls 

for sustainable health care systems. Economic evaluation evidence has influenced and 

contributed to many areas of health policy making, at all levels of the health care system 

– from shaping guidelines that guide clinical care to informing decision for subsidy of 

pharmaceuticals and medical services. For these evaluations to be useful to decisions 

makers, they need to provide useful and reliable information and to achieve this, 

methodological guidelines should be followed, and robust evidence of effectiveness and 

cost is paramount. With recent advances in information technology, data and statistical 

methods and implementation of electronic health records, health decision makers are 

increasingly seeking real-world, generalisable evidences to complement and support 

policy and clinical decisions. 

This thesis aims to demonstrate the usefulness and practicality of applying real-world 

longitudinal data in health economics research and applications. It features six individual 

health economics studies which explore longitudinal data and show their value and 

contribution towards advancing economic evaluation methodologies and better decision 

making. Each of the studies answer specific research questions and contribute to the 

research literature through methodological research to improve consistency in 

extrapolating costs, utility inputs and modelling long-term outcomes, generating robust 

evidence for resource allocation decisions, promoting a better understanding of real-

world heterogeneity and approaches to optimise patient outcomes. Collectively, these 

studies highlight important variations in the cost and outcomes of health care delivery in 

real-world settings, provide useful insights into the implications of such variations and 

demonstration of translating research findings to implementation. 
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Chapter 1 : Introduction 

1.1. Health economics and medical decision making 

In the last half century, global health care expenditures have risen steeply, rising 

approximately 7% annually in Australia [1]. This, combined with improvements in 

medical technology, growing consumer demand for health care, an ageing population and 

emergence of new diseases, have made it increasingly challenging for health care 

providers and policy makers to prioritise health care resource allocation. Against such 

constraints, it is crucial to maximise population health gains within limited available 

resources and to conduct evaluations in a rigorous, structured and evidence-based 

manner. Health economics provides the foundational economic theory for priority setting 

and economic evaluation offers a framework to quantify the resources required for an 

intervention and the relative health gains likely to be achieved. Economic evaluation 

involves comparing the costs and benefits of health interventions and strategies of 

competing alternatives, allowing for efficient and equitable decisions about the allocation 

of scarce resources [2]. It helps encapsulate both costs and outcomes into a single 

summary measure, the incremental cost-effectiveness ratio (ICER; ∆costs/∆outcomes), 

which represents the economic value of an intervention compared to an alternative.  

The two most common evaluation methods are cost-effectiveness and cost-utility 

analyses. Cost-effectiveness analysis allows the analysis of outcomes in any measure of 

effectiveness that is relevant and common to both comparators; for example, number of 

cancer cases averted in the comparative analysis of two cancer screening strategies or 

change in HbA1c in diabetic interventions. In cost-utility analysis, health effects in the 

form of quality-adjusted life years (QALYs) are used to capture impact on both quality 

(measured using preference-based quality-of-life instruments) and life extension benefits 

derived from the health intervention. As a result, the ICER expressed as cost per QALY 

allows for reasonable comparison across different types of interventions, which is useful 

in helping decision makers allocate scarce resources across competing healthcare 

programs.  

Over the last few decades, the use of economic evaluation has become increasingly 

widespread [3-5], with at least 1,000 published annually in the recent decade [6, 7]. 

Economic evaluation is considered a fundamental component in the assessment of 
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treatment interventions (surgical procedures and medications), prevention programs 

(vaccination [8], health promotion and screening strategies [9]), medical diagnostics and 

delivery of healthcare services, particularly for countries with universal single payer 

health insurance systems. They play a critical role in health technology assessments 

(HTA), which are comprehensive review processes instituted by funding bodies to jointly 

assess the safety, effectiveness, cost-effectiveness and budget impact of health 

interventions and technologies.  

The Australian Government Pharmaceutical Benefits Advisory Committee (PBAC) was 

the first in the world to put forward guidelines for mandatory assessment of the cost and 

value for money for pharmaceutical reimbursements in the early 90s [10], requiring 

demonstration of evidence on not just effectiveness but also cost-effectiveness to 

government. Since then, many international HTA agencies such as the National Institute 

of Health and Care Excellence (NICE) in the UK, Canadian Agency for Drugs and 

Technologies in Health (CADTH), Pharmaceutical Managements Agency (PHARMAC) 

in New Zealand, German National Institute for Quality and Efficiency in Health Care 

(IQWiG) and Zorginstituut Nederland (ZIN) in The Netherlands have also established 

national guidelines on how economic evaluations should be conducted and the resultant 

outcomes of such assessments play a prominent role in the decision for government 

subsidy of pharmaceuticals and medical services [11]. 

While understandably not all medical and health policy decisions are made based on the 

results of economic evaluations, they can help decision makers make informed choices 

on the most efficient use of available resources. Economic evaluation evidence has 

influenced and contributed to many areas of health policy making, relevant to all levels 

of the health care system. For example, cost-effectiveness analyses have helped shape 

clinical guidelines on the optimal age for colorectal screening [12, 13], frequency of 

screening for cervical cancer [14-16], national childhood vaccination strategies [17], 

which in turn influence and affect decisions in clinical practice. Cost-effectiveness results 

have also been used to challenge existing national guidelines and to help refine 

recommendations by identifying risk groups most likely to benefit, as in the case for the 

use of statin for primary or secondary prevention of coronary heart disease depending 

patient’s risk factors [18].  
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Beyond employing economic evaluations when considering public investments for 

effective and costlier novel technologies, it has been argued that evaluations should also 

be applied to the disinvestment of interventions that offer low-value [19]. The concept of 

value-based care is gaining popularity and a number of countries are shifting towards a 

value-driven healthcare system [20-22] with a focus on improving outcomes and reducing 

costs [23]. This has necessitated broadening the remit of cost-effectiveness and cost-

utility analyses to assess value in health care [24]. Further, the importance in delivering 

care that is of good value has also been emphasised at the clinician level as evidenced by 

the growth in value frameworks that have been developed in certain disease-specific 

disciplines by organisations such as the European Society of Medical Oncology, 

American Society of Clinical Oncology and American Heart Association [25-27]. These 

frameworks aim to integrate clinical benefits and cost to assist in selecting options that 

provides the best value of care, which is increasingly appreciated in an era where 

healthcare costs have grown significantly.  

1.2. Limits and quality of economic evaluations 

For economic evaluation to be useful to decisions makers, it needs to provide relevant, 

useful, robust and reliable information. To achieve this, methodological guidelines have 

been produced and should be followed. Between 1990 and 2010, there was a growing 

pool of at least 76 published reviews on economic evaluation  methodologies [28]. The 

sheer volume of reviews conducted to assess the scientific rigor and adherence to 

recommendations highlights the significant effort in ensuring continuous improvement. 

Many are seeking to raise awareness about the importance of conducting and producing 

high-quality economic evaluations. However, findings consistently show that published 

evaluations have considerable methodological differences in the incorporation of costs, 

quality-of-life inputs, extrapolation techniques and assumptions, characterising 

uncertainty and in general, lack adherence to guidelines [5, 28-34]. Even within the same 

disease areas [35-37] or for the same interventions [38] discrepancies have been observed. 

Lack of trust and understanding in the methods of cost-effectiveness analyses can 

diminish credibility and result in resistance to their use in medical and policy decision 

making [39]. 
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Encouragingly, calls for higher methodological quality [40-43] have been answered by 

the growing amount of literature focused on health economics methodologies [44-47], the 

development of national pharmacoeconomic guidelines [48], having clear publication and 

reporting standards [49-51] and the introduction of repositories for economic evaluations 

[52-54]. Studies have shown that the quality of economic evaluation studies have 

improved over time [55]. However, contributions to improve quality of data inputs and 

initiatives for consistency have been uneven, particularly on estimating cost and the 

standardisation of costing methods. A review on the costing methodologies of published 

cost-effectiveness analyses found that although improvements such as clearer reporting 

of methods were observed over time, considerable variations in types of costs included in 

analyses persist [56]. Reasons for this can be methodological (resource valuation 

approach, scope and breath of costs included), and related to the perspective taken. 

Although numerous guidelines for best practices exist, recommendations vary. For 

example, the NICE guidance [57] states that resource costs and savings should be 

considered from the perspective of the NHS and personal social services (health system 

perspective) and to limit the scope of costs considered to those related to the condition of 

interest. This varies considerably from the recommendations made by the Second Panel 

on Cost-Effectiveness in Health and Medicine [58] which advocates for both health 

system and societal perspectives, and suggests inclusion of a broader scope of cost 

categories such as unrelated health care costs resulting from the additional life-years 

produced by the intervention. As demonstrated by Lomas et al. [59], the extent of cost 

categories will not only affect incremental cost-effectiveness ratios (ICERs) but also the 

certainty. This has the potential to affect decisions made by policymakers with 

implications for valid comparisons across different types of interventions. Therefore, a 

clearer understanding of the consequences from inconsistent methodologies is required.  

While there is research and guidance on the extrapolation of effectiveness of interventions 

within economic evaluations (e.g. survival), there is less clarity and agreement concerning 

the handling of costs. This lack of guidance on assessment and measurement of costs was 

highlighted by Drummond in 1992 [10] when the PBAC issued their first HTA guideline 

for pharmaceutical reimbursements. One example is the treatment of future cost in 

economic evaluations. There continues to be debate around the extent and types of future 

costs to include [60-65] and methods used to extrapolate [66]. Although there appears to 

be a growing consensus among international HTA agencies to include all future medical 
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costs [67, 68], variations in guidelines persist which can limit comparability or analyses 

and interpretation of results [69, 70]. While it is acknowledged that the lack of reliable 

cost estimates and/or the unavailability of costs data beyond the study period can be a 

limitation for inclusion [71-73], this issue is further compounded by the lack of guidance 

to appropriately extrapolate using available resources [66]. This is important considering 

cost represents a critical component of economic evaluations and assumptions made 

regarding the approach to extrapolation can have a significant impact on assessment of 

cost-effectiveness. There are important subsequent decision-making implications, such as 

the funding of new medications and technologies. 

The proliferation of methods and instruments used to obtain patient preferences and value 

health states demonstrates the importance researchers have placed in validating and 

advancing techniques to improve methodological issues of measuring health. Patient-

reported outcomes measures (PROMs) are instruments commonly used to measure 

outcomes and provide valuable information about the effectiveness of the intervention 

from the patient’s perspective. Outcomes such as health-related quality-of-life are 

important components of economic evaluations as they are used to derive utilities to 

calculate quality-adjusted life years (QALYs), necessary for cost-utility analyses. These 

analyses and the use of cost per QALY metric plays a major role in policy decisions on 

the acquisition and use of health technologies. They are widely used and advocated by 

national institutions including NICE, CADTH and PBAC.  

Patient-reported outcomes are commonly collected at intervals within the time frame of 

a clinical study, most commonly at the start (baseline) and at the end of the study. 

Therefore, extrapolation of utilities, oftentimes alongside life expectancy of patients for 

modelled analysis on a lifetime horizon is needed. This requires appropriate methods and 

assumptions in modelling quality-of-life values as the approach employed can influence 

evaluation results important to subsequent reimbursement decisions made by policy 

makers [74, 75]. Currently, there is limited guidance on the appropriate methodologies 

for extrapolating utilities and existing methods rely on use of assumptions in economic 

models [66]. While health economists are generally comfortable in making modelling 

assumptions often in the absence of data, the excessive use of assumptions or those that 

do not adequately capture the complexity of patients may undermine the value and 

relevance of results. Clinicians may be more accustomed to actual data (e.g. real-world 
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data). Therefore, opportunities to improve availability of data inputs and techniques of 

analysis can strengthen the rigor of economic evaluations.  

Beyond methodological research and the use of economic analyses for efficient 

allocation, the recognition of the value of patient-reported outcomes in measuring quality 

of care and benchmarking of providers has prompted substantial efforts in the collection 

of such data. A good example of this the NHS England’s National Patient Reported 

Outcomes Measures Program that has been routinely collecting patient-reported 

outcomes for selected surgeries since 2009. The  information is used to monitor 

performance and inform commissioning decisions [76]. Increasingly, there have been 

calls to routinely integrate these measures into clinical practice to improve patient 

engagement to achieve better health outcomes with shared-decision making and patient-

centred care [77-80]. The appeal to use PROMs to optimise patient outcomes is growing 

and will become increasingly important as healthcare systems are transitioning from 

volume- to value-based health care. This will mean a focus on  sustainability of healthcare 

systems and outcomes may be tied to reimbursements [81]. As PROMS are increasingly 

integrated into clinical practice, there is a pressing need to make better use of collected 

data and translate patient-level collected data into valuable information to improve health 

outcomes and delivery of care [82-84].  

Often results of cost-effectiveness analysis summarised based on the average for the total 

population are used to make population reimbursement decisions which may mask and 

overlook important underlying heterogeneity within the patient population. This can 

result in either health benefits forgone when an intervention is deemed not cost-effective 

on average or inefficiencies and suboptimal use of available resources when intervention 

may not be cost-effective to all within the population [85]. Heterogeneity relate to patient 

demographics, preferences and clinical characteristics, all of which have differing 

implications on baseline risk, treatment effect, health state utility and resource utilisation 

patterns [86]. Whilst patient heterogeneity is recognised as an important consideration in 

economic evaluations [87], it remains infrequently assessed [88] and can lead to 

inefficiencies in healthcare spending and limit maximisation of population gains [85, 89].  

The benefits of exploiting heterogeneity through targeted care are evident in the growing 

movement towards personalised medicine, most prominent in cancer treatment strategies 

[90-95], acknowledging a key approach towards improving patient outcomes by ensuring 
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patients receive the best possible medical care for their needs. Further, gains made from 

individualised care can far outweigh decisions made based on population-level cost-

effectiveness analysis. In an example by Basu and Meltzer [89], the authors showed the 

value of identifying cost-effective treatments for prostate cancer at the individual patient-

level was 100 times greater than the value of identifying cost-effective treatments at the 

population level. Understanding and capturing heterogeneity can be complex and will 

require appropriate source of information (e.g. individual patient-level data) as well as 

specific guidelines for optimal identification and robust analytical strategies for cost-

effectiveness at subgroup level which are currently inadequate [86, 96]. Initiatives to 

facilitate collection of data and leveraging appropriate data sources can help contribute to 

future methodological research in improving current approaches, promote a better 

understanding of real-world heterogeneity, and ultimately optimise patient outcomes, and 

ensure better overall societal healthcare resource allocation decisions.  

Undoubtedly, greater consistency in the conduct of economic evaluations is essential if 

policy makers, healthcare providers and clinicians are to rely on these to make decisions 

on reimbursements, priority setting and to determine the best value care. Moving 

forwards, health decision makers are increasingly seeking real-world, generalisable 

evidences (beyond data collected from randomised clinical trials) to complement and 

support policy and clinical decisions [97-99]. At a broader level, demonstrated evidence 

of effectiveness, safety and cost-effectiveness may not always translate into real-world 

implementation and effective policy change [100, 101], therefore evidence of benefits of 

changing practice, particularly on a national scale, can be valuable to policy makers and 

health service providers in setting priorities and implementing policies.  

1.3. Real-world, longitudinal data for health economics research and 
applications 

Longitudinal data refers to the collection of data from the same group of subjects 

(commonly patients but can be entities such as households or hospitals) over a period of 

time. The collection of such data can be intentional for research purposes; for example, 

through longitudinal studies such The Longitudinal Study of Australian Children (LSAC) 

which follows a cohort of children to study their development and life course trajectories 

[102] and Framingham Heart Study for the study of cardiovascular diseases over time 

[103]. These large-scale studies, however, can be complex, time consuming and 
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expensive to conduct and limited by issues such as loss-to-follow-up and under-

representation of minority population subgroups (e.g. migrants) limiting generalisability 

of results [104, 105].  

Routinely collected administrative data typically used for reporting purposes or obtained 

from purpose-built databases such as registries can also be considered longitudinal in 

nature. These data can also be referred to as real-world data [99, 106, 107], broadly 

representing data generated from routine clinical practice such as hospitalisations, 

physician consultations, medical and prescriptions claims. The use of data from these 

sources for health research has become increasingly common, with the growing amount 

of research and published literature as well as public investments to establish data linkage 

centres and national registries [108, 109]. They are efficient sources of information as 

data are consistently and continuously collected based on patients’ access to health 

services and can overcome issues around generalisability, recall bias and loss-to-up 

prevalent in primary data collection approaches [110-112].  

The strength of longitudinal data is that they allow critical longer-term insights into the 

health or care of the population (or individual), thus offering detailed and ordered 

information on health conditions, disease progression and patterns of care and changes 

over time. Such data therefore provides health economics researchers and evaluators 

opportunities to investigate and address many of the limitations described in Section 1.2. 

For instance, data generated from contact with the health care system provides researchers 

information about health care utilisation for any length of time or for any given year [113]. 

This flexibility can be useful for conducting cost analyses such as cost-of-illness studies 

to obtain both prevalence-based and incidence-based cost estimates for understanding the 

burden of the disease for priority setting and allocation considerations [114]. This also 

generates reliable cost inputs that can be used to populate predictive models and cost-

effectiveness models. Further, administrative data on health service utilisation provides 

important real-world evidence that reflects current clinical practices thus providing 

clearer guidance when accounting for resource use beyond a trial setting and for 

undertaking extrapolations in economic models. Improvements in the availability of 

reliable data and validating modelling assumptions can improve the applicability of 

economic evaluations. 
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The population coverage offered by real-world, longitudinal data offers greater external 

validity by including patients often not represented in randomised control trials and can 

provide large patient numbers ideal for examining heterogeneity and rare events. It is a 

valuable source of capturing and understanding patient differences (demographics, 

clinical characteristics and preferences). Data can be used as a source of information to 

generate useful inputs to inform baseline event risks for modelling of disease progressions 

over time and can also capture health inequities, preferences and behaviours for various 

subpopulations [115-117]. This can offer insights into the variations of care and outcomes 

across a wider, representative population in real-world settings. This presents 

opportunities to study of the implications of sub-optimal care and develop strategies to 

improve the value of care and efficiency of the health system. 

Information from real-world, longitudinal data are made available in various forms 

depending on data availability, accessibility and the purpose of their use. Data can be 

presented in aggregate form or at individual-level relating to a single patient (or entity). 

The richness of individual-level data can be further expanded with data linkage. Data 

collected on individuals from different sources can be brought together to create a 

powerful platform allowing researchers and policy makers a much larger picture and 

greater potential to conduct real-world research to better map care pathways, understand 

population health issues and improve outcomes [118].  

These information-rich sources capture many useful health and economic outcomes such 

as survival, adverse events, patient-reported outcomes, resource utilisation and associated 

costs which can be leveraged to strengthen the rigour of economic evaluations. They offer 

enormous health economics research opportunities for better research design and 

analysis, which ultimately influences decisions on reimbursements, priority setting and 

patient outcomes. Although the use of longitudinal data in health economics research has 

grown tremendously in the past few decades, its application in economic evaluations 

remains sparse (Figure 1.1). Maximising the potential and applications of available health 

data can be a cost-effective and time-efficient way of generating evidence particularly 

when the infrastructure is already in place. Using data to influence policy is important, 

and more can be done to maximise the use of routinely collected administrative data to 

generate real-world evidence to guide effective and cost-effective evidence-based care.   
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Figure 1.1: Annual number of publications involving use of longitudinal data published 
in selected health economics journals between 1984 and 20191 
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1.4. Overarching aim  

This thesis aims to demonstrate the usefulness and practicality of applying real-world, 

longitudinal data in health economics research and evaluations. It features six individual  

health economics studies which explore longitudinal data in various forms – aggregate, 

individual-level and individual-level with population-linkage – and shows their value and 

contribution towards advancing economic evaluation methodologies and better decision 

making.  

In this thesis, I showcase how different types of real-world, longitudinal data can be 

maximised as part of health economics research. These studies demonstrate a broad range 

of applications of longitudinal data and aim to make specific contributions in three key 

areas:  

 
1 Results from a search of the following terms (panel, longitudinal or fixed-effect) for publications related 
to longitudinal data and terms (cost-effectiveness, cost-utility or economic evaluation) to indicate relevance 
to economic evaluations. Health economics journals searched include Health Economics, Journal of Health 
Economics, Value in Health and Pharmacoeconomics. 
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I. Extrapolation of costs in economic models  

II. Modelling and translating long-term outcomes, specifically health-related quality-

of-life (QoL) outcomes 

III. Generating real-world evidence to inform future economic evaluations and 

resource allocation considerations.  

Table 1.1 summarises the health economics applications using various forms of 

longitudinal data presented in this thesis. Each of the studies answer specific research 

questions that contribute towards better informed decision making by generating and 

providing robust evidence for resource allocation considerations. They also test 

commonly applied economic evaluation assumptions and contribute towards advancing 

current modelling approaches. These studies, along with the methods employed and their 

key contributions, will be discussed in turn in the next section.  
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Table 1.1: Studies presented in this thesis and their health economic applications 

   Chapter / Study Application 
   I : EXTRAPOLATION OF COSTS 
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Aggregate 

2 
Incorporating future 
medical costs: Impact on 
CEA 

• Assess implications of 
incorporating future medical costs  

• Synthesise future cost inputs for 
economic model 

 3 
National cost savings from 
an ambulatory program for 
LR FN patients 

• Leverage historical data for future 
trends 

  II : MODELLING & TRANSLATING OUTCOMES 

 

Individual-
level 

4 
Using PROMs to guide 
patient-centred care and 
optimise outcomes 

• Uncover heterogeneity of QoL 
outcomes  

• Demonstrate value of care 

 5 

Co-morbidities and sex 
differences in long-term 
QoL outcomes among 
patients with and without 
diabetes 

• Modelling QoL outcomes by 
patient subgroups 

  6 
Exploring the impact of 
QoL on survival 

• Examine correlation between 
QoL and survival 

• Assess implications on survival 
extrapolation 

  III : GENERATING REAL-WORLD EVIDENCE 

 

Individual-
level + 

Population
-linked 

7 

Economic burden of sepsis 
in cancer: Health care cost 
estimates from a 
population-based study 

• Quantify cost of cancer care and 
excess (net) cost of sepsis 

 CEA, cost-effectiveness analysis; FN, febrile neutropenia; LR, low-risk; PROMs, patient-
reported outcome measures; QoL, quality-of-life 

1.5. Chapter content 

Section I: Extrapolation of costs in economic models 

In Chapter 2, I examine the contended issue relating to the inclusion of future medical 

costs in economics evaluation. I provide an applied example using data from a clinical 

study to evaluate the cost-effectiveness of a sepsis intervention in cancer patients. The 

evaluation was conducted under three scenarios reflecting the different types of costs – 

no future cost, lifetime disease-related (cancer) costs and all future medical costs 
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including those unrelated to cancer. As cost data were not available beyond the study 

period, I make use of published regression equations derived from longitudinal data [119, 

120] to obtain aggregated population lifetime cost estimates to populate the cost-

effectiveness models. Cost estimates were derived by age, sex, cancer type and phase of 

cancer to account for heterogeneity among cancer patients and were included in a time-

dependent Markov model structured to capture life course transitions (e.g. variations due 

to ageing and death). I find that incorporating future medical costs into the economic 

model increases the ICER. This is perhaps not surprising. However, the scenarios 

presented with and without future medical costs clearly demonstrate their potential to 

result in different policy decisions. The exclusion of future costs from an economic 

evaluation means that decisions made will not adequately reflect a healthcare system 

perspective and are not considered in conjunction with the potential impact the 

intervention has on healthcare budgets in the longer term [121]. Importantly, this study 

demonstrated that incorporating future medical costs in an economic evaluation in cancer 

patients was feasible through the use of  publicly available data and structuring economic 

models to adequately reflect changes in costs over time.  

In Chapter 3, I make use of publicly available aggregate-level data on national 

hospitalisation trends to extrapolate the findings from an economic evaluation of an 

ambulatory program for low-risk febrile neutropenia patients to inform broader uptake. 

In this study, in addition to demonstrating the cost-effectiveness of the program, annual 

data of febrile neutropenia hospital admissions collected and reported by the Independent 

Pricing Authority (IHPA) were leveraged to extrapolate the cost benefits. Failure or 

delayed implementation of safe and cost-effective programs can result in inefficiencies 

and waste of limited resources [122, 123]. Therefore, providing strong supportive 

evidence that demonstrates sustainability of the program and significant return-on-

investment to the healthcare system may provide a strong case for institutions and policy 

makers for resource allocations considerations and bridge the gap between translation to 

research findings to implementation [124]. 

Section II : Modelling and translating long-term outcomes, specifically health-related 

quality-of-life (QoL) outcomes 

Chapters 4, 5 and 6 are three published research studies focused on long-term quality-of-

life outcomes of total knee replacement patients. In these studies, I use patient-level data 
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collected over a 10-year period extracted from the St. Vincent’s Melbourne Arthroplasty 

Outcomes (SMART) Registry. Total knee replacement is generally considered to be an 

effective procedure as patients typically experience a significant improvement in their 

quality-of-life within the first year following surgery with the effects tending to plateau 

in subsequent years [125-127]. Although this pattern of recovery is well-known, 

outcomes of patients can differ [128-130], consequently effectiveness gained from 

surgery can vary considerably across patients.  

In Chapter 4, I employ latent class growth analysis, a unique statistical technique to 

analyse routinely collected measures to explore variations in the long-term quality-of-life 

outcomes among a cohort of SMART Registry patients. By identifying distinct quality-

of-life trajectories, I demonstrate the presence of significant heterogeneity in outcomes 

among total knee replacement patients and show that not all patients benefit from the 

procedure the same way. This, therefore, challenges a commonly applied utility 

extrapolation assumption; i.e. assuming utilities are homogenous with respect to patient 

characteristics and time. While total knee replacement is widely regarded as cost-

effective, using the identified quality-of-life trajectories, I show the distinct variations in 

health gains (QALYs) from the intervention which raises the question if the expensive 

surgical intervention is cost-effective for all patients. This highlights the limitations of 

current practice of allocating resources based on population-averaged cost-effectiveness 

ratios [131] and the need for better incorporation of heterogeneity in economic 

evaluations in order to maximise health gains within resource constraints. I also 

demonstrate the potential of translating routinely collected patient-reported outcomes 

data to facilitate shared decision making and optimise patient outcomes by correlating 

quality-of-life trajectories with patient characteristics.  

In recognising the significant heterogeneity in quality-of-life outcomes among total knee 

replacement patients, I proceed to verify this in Chapter 5 by examining whether quality-

of-life trajectories differ between patients with and without diabetes. As outcome data are 

collected from the same individuals at repeated intervals over time, it is important to 

employ appropriate methods to analyse these longitudinal quality-of-life data to avoid 

misleading results [132]. To account for the longitudinal structure of the data and possible 

correlation between quality-of-life measures of individuals over time, I use multi-level 

regression to model these repeated measures to estimate utility changes over time and 
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make comparisons across both patient groups. I find that even after controlling for 

possible confounders such as age, sex, existing co-morbidities and socioeconomic status, 

patients with diabetes exhibit poorer outcomes following surgery compared to those 

without diabetes and these differences were sustained over time. This further highlights 

the differences among patient groups and the inadequacies of simplistic assumptions 

when modelling long-term outcomes such as utilities. 

In Chapter 6, I examine the importance of the relationship between quality-of-life and 

mortality and its influence on survival estimates. There is a growing body of evidence 

that indicates patient-reported outcomes such as quality-of-life to be important predictors 

of mortality [133-138]. However, current health economic models rarely capture the 

correlation between quality-of-life and mortality when extrapolating survival. This is 

important as survival estimates are often translated into health outcomes such as life 

expectancy and QALYs to quantify health effects. Imprecise survival extrapolations 

could misinform policy decisions. I develop survival models to investigate the 

implications of neglecting this correlation and estimate the impact on incremental 

outcomes for a cohort of total knee replacement patients. I find that incremental QALYs 

differed by as much as 9.5% when quality-of-life variables were included in models when 

estimating survival, noting that even small differences in the denominator can lead to 

quite different cost-effectiveness results and can have an impact of decision making. With 

the increasing availability of patient-level data and collection of patient-reported 

outcomes, the new generation of disease progression models and modelled economic 

evaluations should consider accounting for this important correlation. 

Section III : Generating real-world evidence to inform future economic evaluations  

Populating economic models with accurate data can be challenging and inputs used are 

often compromised when original data is unavailable, as demonstrated in the evaluation 

of the sepsis protocol presented in Chapter 2. Learning from my evaluation experience, I 

recognise the value of reliable real-world evidence to inform future economic evaluations 

and the current knowledge gaps on the burden of sepsis, and thus motivated the following 

research study. The acute nature of infections often makes it difficult to capture the 

longer-term implications, thus resulting in our limited understanding of its true burden, 

both clinically and economically. In Chapter 7, I make use of a population-linked dataset 

on a large cohort of cancer patients identified from the Ontario Cancer Registry which I 
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successfully secured access to. This allowed me to study the pattern of healthcare service 

utilisation by cancer patients, when and why (including infection episodes), the type of 

care – hospital admissions, physician consultations, cancer clinic visits, type of treatment, 

long-term care – over the course of their cancer diagnosis and subsequent years. 

Leveraging on this important resource, I estimated the cost of care of cancer patients with 

and without sepsis and the excess cost due to sepsis. These cost estimates can be used in 

cost-effectiveness models for decisions on sepsis interventions and are useful in helping 

inform development of sepsis programs and policies across the cancer care continuum, 

which can include prevention, screening, treatment and end-of-life care. 

1.6. Thesis structure 

Following this introductory chapter, six papers are presented in Chapters 2 to 7 

showcasing the use of longitudinal data across a range of health economic applications. 

Across these chapters, I demonstrate the quantum of work produced during my 

candidature using a wide range of health economics and longitudinal modelling methods, 

including decision-analytic modelling, survival analysis, economic evaluation, latent 

class growth analysis and multi-level modelling. I make contributions in three key areas 

relevant towards advancing economic evaluation methodologies and better-informed 

decision making and health policy design. A summary of the key contributions from each 

of the research studies presented in this thesis alongside the methods applied is provided 

in Table 1.2.  

Table 1.2: Summary of methods employed and key contributions from each of the studies 
presented in this thesis 

Chapter / Study Methods of 
analysis 

Key contributions 
Methodology Clinical and policy 

 I : EXTRAPOLATION OF COSTS 

2 

Incorporating 
future medical 
costs: Impact 
on CEA 

• Cost-utility 
analysis 

• Decision tree 
analysis 

• Markov model 

Demonstrate feasibility 
of appropriately 
including future 
medical costs 

Provide evidence of 
cost-effectiveness of 
sepsis protocol and 
highlight potential 
differences in cost-
effectiveness results 

3 
National cost 
savings from 
an ambulatory 

• Cost-
effectiveness 
analysis 

Undertake evaluation 
beyond cost-

effectiveness analysis 

Offer strong evidence 
for national 

implementation of a 
cost-effective program 
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program for 
LR FN patients 

• GLM 
regression 

• Cost 
projections 

 II : MODELLING & TRANSLATING OUTCOMES 

4 

Using PROMs 
to guide 
patient-centred 
care and 
optimise 
outcomes 

• Latent class 
growth analysis 

• Multinomial 
logistic 
regression 

Employ novel 
application of 

technique to uncover 
heterogeneity 

Show important 
heterogeneity in 

longer-term outcomes 
and variations in the 
value of surgery for 

different patient groups 

5 

Co-morbidities 
and sex 
differences in 
long-term QoL 
outcomes  

• Multi-level 
modelling 

Demonstrate method to 
assess patterns of 

change of repeated 
QoL measures over 
time and generate 

utility values for cost-
effectiveness analyses 

Highlight notable 
differences in long-
term QoL patterns 

among specific patient 
subgroups (diabetes, 
females) and need for 
tailored post-surgery 

management 

6 
Exploring the 
impact of QoL 
on survival 

• Survival 
analysis 

• Life table 
methods for life 
expectancy 

Advance 
understanding of 

influence and 
consequence of 

correlation between 
QoL and mortality 
when extrapolating 
survival outcomes 

Quantify impact of 
unaccounted 

correlation and 
heterogeneity on cost-
effectiveness results 

 III : GENERATING REAL-WORLD EVIDENCE 

7 

Economic 
burden of 
sepsis in cancer 
patients 

• Matching (case-
control) 

• Panel data 
manipulation 

• Survival-
adjusted 
estimation of 
costs 

Generate short- and 
long-term cost 

estimates 

Provide key insights on 
burden of sepsis and 

useful inputs for future 
economic evaluations 

and resource allocation 
decisions 

CEA, cost-effectiveness analysis; FN, febrile neutropenia; GLM, generalised linear model; LR, low-risk; 
PROMs, patient-reported outcome measures; QoL, quality-of-life 

 

In Chapter 8, I conclude with a summary of the research findings, discussion on 

implications and translational value of findings, strengths and limitations, and provide 

suggestions for directions for future research.   
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SECTION I : Extrapolation of Costs 
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analysis 
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future medical 
costs: Impact 
on CEA 

+ Cost-utility 
analysis 

+ Decision tree 
analysis 

+ Markov model 

Demonstrate 
feasibility of 
appropriately 

including future 
medical costs 
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cost-effectiveness of 
sepsis protocol and 
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differences in cost-
effectiveness results 
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National cost 
savings from 
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LR FN patients 
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effectiveness 
analysis 

+ GLM 
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projections 

Undertake evaluation 
beyond cost-

effectiveness analysis  
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for national 

implementation of a 
cost-effective program 
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utility values for cost-
effectiveness analyses 
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differences in long-
term QoL patterns 

among specific patient 
subgroups (diabetes, 
females) and need for 
tailored post-surgery 

management 
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on survival 

+ Survival 
analysis 

+ Life table 
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expectancy 
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influence and 
consequence of 
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QoL and mortality 
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survival outcomes 
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unaccounted 

correlation and 
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effectiveness results 

 III : GENERATING REAL-WORLD EVIDENCE 
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Economic 
burden of 
sepsis in cancer 
patients 
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control) 

+ Panel data 
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adjusted 
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Generate short- and 
long-term cost 
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Provide key insights on 
burden of sepsis and 

useful inputs for future 
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and resource allocation 
decisions 
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2.1. Abstract  

Background 

The inclusion of future medical costs in cost-effectiveness analysis remains a 

controversial issue. The impact of capturing future medical costs is likely to be 

particularly important in patients with cancer where costly lifelong medical care is 

necessary. The lack of clear, definitive pharmacoeconomic guidelines can limit 

comparability and has implications for decision-making. 

Objective 

To demonstrate the impact of incorporating future medical costs through an applied 

example using original data from a clinical study evaluating the cost-effectiveness of a 

sepsis intervention in cancer patients.  

Methods 

A decision analytic model was used to capture quality-adjusted life-years (QALYs) and 

lifetime costs of cancer patients from an Australian healthcare system perspective over a 

lifetime horizon. The evaluation considered three scenarios: 1) intervention-related costs 

(no future medical cost), 2) lifetime cancer costs and 3) all future healthcare costs. Inputs 

to the model include patient-level data from the clinical study, relative risk, cancer 

mortality and future medical costs sourced from published literature. All costs are 

expressed in 2017 Australian dollars and discounted at 5%. To further assess the impact 

of future cost on cancer heterogeneity, variation in survival and lifetime costs between 

cancer types and the implications for cost-effectiveness analysis was explored. 

Results 

The inclusion of future medical costs increased incremental cost-effectiveness ratios 

(ICER) resulting in a shift from intervention being a dominant strategy (cheaper and more 

effective) to an ICER of $7,526/QALY. Across different cancer types, longer life 

expectancies did not necessarily result in greater lifetime healthcare costs. Incremental 

costs differed across cancers depending on the respective costs of managing cancer and 

survivorship thus resulting in variations in ICERs.  
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Conclusions 

There is scope for including costs beyond intervention costs in economic evaluations. The 

inclusion of future medical costs can result in markedly different cost-effectiveness 

results, leading to higher ICERs in a cancer population, with possible implications for 

funding decisions.  

2.2. Key points for decision makers 

There remain inconsistencies in the recommendations across international 

pharmacoeconomic guidelines regarding the inclusion of future medical costs hence 

variations exist across economic evaluation literature.  

There is value in the inclusion of future medical costs in economic evaluation to support 

decision-makers considerations relating to future healthcare budgets.  

This study demonstrated the practicability of including future medical costs in an 

economic evaluation in cancer patients, which can be an important consideration for 

future cost-effectiveness analyses.  

There is considerable heterogeneity in the ICERs across different cancer types and the 

type of future costs included do not impact all cancers consistently. 

2.3. Introduction 

The inclusion of future costs in cost-effectiveness analysis (CEA) is a contentious issue, 

particularly when costs are unrelated to the intervention being evaluated. Fundamentally, 

the aim of CEA is to aid decision-makers to optimally allocate scarce healthcare resources 

to maximise population health gains. To achieve this, appropriate costs and benefits need 

to be accounted for in order to determine if the benefits outweigh the costs. Much health 

economics research has contributed to a better understanding of quantifying and 

extrapolating outcomes (utilities, life years and quality-adjusted life years) in CEA to 

fully capture the lifetime benefits of an intervention. Therefore, it has been argued the 

same philosophy should be applied to costs (i.e. inclusion of all costs necessary to attain 

the lifetime benefits captured) for consistency [1, 2] and to achieve utility maximisation 

[3].  
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The inclusion of related medical costs, those that are a direct consequence of the 

intervention under study, is common practice in economic evaluations and the general 

agreement is that they should be accounted for. However, there is much debate around 

the inclusion of unrelated future medical costs. These are healthcare costs that are 

expected incur as a consequence of added life years resulting from the intervention; i.e. 

not directly related the intervention but conditional on survival due to the intervention. 

Therefore, the impact of future costs is most relevant to life-extending technologies where 

the omission of medical costs incurred in the additional surviving years could risk 

overstating the cost-effectiveness of these interventions compared to those that improve 

quality-of-life. This relative overstating of cost-effectiveness could ultimately result in 

loss of population health benefits [4]. Conversely, some have reasoned that omission of 

future costs2 is unlikely to have any substantial impact as long as decisions are made 

based on consistent use of cost data [5, 6]. Costs in health economics are however linked 

to the context of a decision so that information about inputs, timing, technology and who 

the decision maker is are all critical to have accurately reflected [7]. Others have argued 

the case that to include future costs would result in inequitable outcomes; for example in 

patient populations where future medical costs inevitably includes expensive ongoing 

healthcare costs such as dialysis costs for chronic kidney disease patients [8, 9]. 

Although it appears that the growing consensus is to include all future medical costs [10, 

11], variations in pharmacoeconomic guidelines persist. Many agencies involved with 

health technology assessment for reimbursement recommend that only costs related to 

the intervention studied should be included. For example, National Institute for Health 

and Care Excellence (NICE) in the UK recommends that “costs that are considered to be 

unrelated to the condition or technology of interest should be excluded” [12]. Likewise, 

in Australia, the Pharmaceutical Benefits Advisory Committee (PBAC) suggests similar 

recommendations [13]. However, this has been challenged by the recent recommendation 

of the second US Panel on Cost-effectiveness in Health and Medicine. They propose that 

all costs both present and future, whether related or unrelated, should be included in cost-

effectiveness analyses [14]. In recent years, there has also been a change in national 

guidelines for technology appraisals to include all future costs such as those from the 

 
2 Note that in this article, the focus is on medical costs only. Future cost discussions do extend to non-
medical costs which includes productivity and consumptions costs in the added life years. A comprehensive 
discussion around future costs including non-medical costs have been described elsewhere [18]. 
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Netherlands [15]. Given the lack of agreement or clear methodological recommendations 

large variations in the incorporation of costs across CEAs is unsurprising and can limit 

the comparability and interpretation of results [16, 17].  

The impact of capturing future medical costs is likely to be particularly important in 

patients with cancer as treatment costs are higher than many other diseases [19-21]. Costs 

are also rising rapidly with the availability of new technologies, particularly those that 

improve survivorship [22]. It is also important to recognise that the care of cancer patients 

does not only involve the treatment of primary disease, but also requires management of 

complications arising that can impact survival [23]. To most, it may seem obvious that 

the inclusion of more cost categories or future costs would necessarily increase the 

incremental cost-effectiveness ratio (ICER), particularly for life-prolonging interventions 

due to added life years. This has been demonstrated in a review of cancer-related CEAs 

for interventions that extend life expectancy where the authors retrospectively 

recalculated alternative ICERs based on assumptions regarding inclusion of future related 

and unrelated costs [17]. Further, none of the cost-effectiveness studies reviewed included 

unrelated future medical costs and one-third did not include medical costs related to the 

disease. ICERs can vary considerably depending on the costing methodology employed 

which can have important decision-making implications particularly in the funding of 

new cancer pharmacotherapies. 

Cancer care costs are substantial at the time of diagnosis, and lifetime cancer care will 

continue to impact healthcare costs throughout the remaining life of the patient [24-27]. 

Furthermore, there can be important differences in treatment costs as this can vary 

depending on the time since diagnosis, stage and cancer type [26-29], resulting in 

variations in healthcare costs. Therefore, if future medical costs are to be incorporated 

into CEA, an improved understanding of economic evaluation methodology and the 

consequences for priority setting (i.e. the degree of variation in cost-effectiveness ratios 

for treatment of patients with different types of cancer) is needed. 

The objective of this study is to demonstrate the impact of incorporating future medical 

costs through an applied example using original data from an Australian clinical study 

evaluating the impact of sepsis intervention in cancer patients (see Appendix 2 in 

Supplementary Materials for more details on sepsis management and an overview of the 

Australian healthcare system). To address this question, an economic evaluation 
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considering only intervention costs (no future medical cost) is undertaken and compared 

with evaluations that considered ongoing lifetime medical costs related and unrelated to 

cancer. As survival and lifetime costs between cancer types vary, the analysis was also 

conducted across different cancers to better understand the implications for CEA. 

Information from this study will assist decision making for clinicians and policymakers 

and also add to the understanding of how incorporation of future costs impacts resource 

allocation for cancer interventions. 

2.4. Methods 

2.4.1. Study setting 

An economic evaluation of a hospital-wide sepsis pathway intervention (SP) in a cancer 

hospital was performed comparing the cost and outcomes of patients pre- and post-

pathway intervention. The analysis was undertaken from the perspective of the healthcare 

system/payer. Details of the implementation study including identification of sepsis and 

non-sepsis cohorts, and the clinical outcomes have been described elsewhere [30, 31].  

Briefly, the SP intervention supported nurse-initiated sepsis care, early medical review, 

and prompt antibiotic and fluid resuscitation and was implemented in Peter MacCallum 

Cancer Centre (PMCC), Melbourne Australia in March 2013. Two patient cohorts were 

compared; patients in the SP cohort (post-intervention) and non-SP cohort (pre-

intervention). Detailed hospitalisation costs were available for 275 patients, 184 (86.8%) 

and 91 (82.0%) in the SP and non-SP cohorts respectively. Patient demographic and 

clinical characteristics are presented in Appendix 3 Table S2.1 in Supplementary 

Materials. For more details on the study setting and costing of the intervention see 

Appendix 3 and 4 in Supplementary Materials.  

2.4.2. Overview of analysis 

To demonstrate and quantify the implications of different assumptions regarding the 

incorporation of future medical costs on the cost-effectiveness of the SP intervention, the 

evaluation was conducted under three scenarios reflecting the different sets of costs 

incorporated in the analysis. 

(1) Intervention-related costs - no future medical costs; 
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(2) Excess cancer costs - intervention and lifetime disease-related costs; 

(3) All future costs - intervention, disease-related and all other health care costs  

Model structure 

A decision analytic model was developed to capture both the quality-adjusted life-years 

(QALYs) and lifetime costs of cancer patients. The lifetime model consists of two-parts; 

a decision tree and a cohort time-dependent Markov model to capture the long-term 

impact (lifetime modelling) of the SP intervention (Appendix 5 Figure S2.1 in 

Supplementary Materials). The decision tree represents the initial acute hospitalisation 

episode as observed and measured in the implementation study [31]. Survivors at 30-days 

enter the life-long Markov model that consists of a simple two-state model (Alive and 

Dead) to extrapolate full life expectancy. The combination of a decision tree and Markov 

model captures the short-term mortality of the initial episode reflecting the limited 

duration of most clinical studies and the subsequent risk of death of survivors by 

extrapolation of survival and costs over a 40-year lifetime time horizon [32, 33].  

Data inputs 

Cancer patients were assumed to be newly diagnosed and clinical effectiveness of the 

intervention (30-day mortality) as observed in the clinical study was applied similarly 

across cancer types. Future medical costs due to cancer (excess cancer costs) and other 

(unrelated) healthcare costs were sourced from New Zealand data published by Blakely 

et al [28, 34] providing reliable national estimates derived from large population-linked 

data. As robust Australian population cost estimates for lifetime medical costs were not 

available for the variety of cancers considered, this cost data was deemed to be most 

appropriate. Further, similarities between the Australian and New Zealand healthcare 

systems and in their hospital funding systems [35] makes this a reasonable source. Both 

countries also share treatment guidelines; for example [36]. Cancer costs were calculated 

based on coefficients published by the referenced source which provided specific costs 

for different cancer types and by time since diagnosis. This allowed the incorporation of 

detailed lifetime cost information into the model appropriate for the evaluation of future 

medical costs. The method of deriving specific cancer costs is described in Appendix 6 

in Supplementary Materials. Death transition costs were included in the model reflecting 
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the substantial and elevated healthcare costs incurred in the months immediately prior to 

death.  

All parameter inputs were entered as probability distributions to capture uncertainty as 

listed in Table 2.1. Data for the decision tree were sourced from the clinical 

implementation study reflecting the average survival probabilities and hospitalisation 

costs of both cohorts. The base-case analysis utilised mortality rates and lifetime cancer 

costs for all-cancers combined. A scale-up factor [37] was used to inflate the mortality 

rate, reflecting the impact of sepsis on patient mortality in a cancer specific population. 

This was calculated using relative risks sourced from a large cohort study examining 

excess mortality risk in sepsis patients [38] and were assumed to last up to two years 

following the sepsis episode concurrent to reported findings in Australia [39]. Excess 

mortality rates due to cancer were estimated from relative survival data sourced from the 

Australian Institute of Health and Welfare (AIHW) [40] which publishes national health 

statistics. The method of estimating mortality rate is described in Appendix 7 in 

Supplementary Materials. 

To calculate QALYs, time spent in the Alive health state (i.e. life years gained) was 

multiplied by assigning sepsis specific utility value. Utilities up to 5 years post-sepsis 

were sourced from published studies evaluating long-term quality of life of critically ill 

patients with cancer or severe sepsis [41, 42].  

Analytical methods 

The model was run over a lifetime horizon with monthly cycles for a cohort with starting 

age 60 years reflecting the average age of patients in the implementation study. Half-

cycle corrections were applied. Probabilistic sensitivity analysis (PSA) was undertaken 

by running 10,000 simulations of lifetime modelling for the two cohorts. A series of one-

way sensitivity analyses were also undertaken to explore the implications of the 

assumptions made and data sources used in the model. Cost-effectiveness acceptability 

curves were used to present the uncertainty in cost-effectiveness. Net monetary benefit 

(NMB) was also calculated to further elucidate differences across costing scenarios and 

cancer types assuming a plausible threshold of $50,000 in Australia [43].  

Both the costs and benefits were discounted at 5% annually as per Australian 

Pharmaceutical Benefits Advisory Committee recommendations [13] and were varied in 
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sensitivity analyses. All costs are expressed in 2017 Australian dollars adjusted using the 

Consumer Price Index and purchasing power parities from the Australian Bureau of 

Statistics [44] and Organisation for Economic Co-operation and Development (OECD) 

[45], respectively. Reporting follows the International Society for Pharmacoeconomics 

and Outcomes Research (ISPOR) consolidated health economic evaluation reporting 

standards guideline [46] (Appendix 1 in Supplementary Materials).  

As significant heterogeneity exists between cancer types, there is value in investigating 

cost-effectiveness within a disease [47]. Therefore, in addition to the base-case analysis 

(all cancers combined), the impact of future medical costs was similarly conducted for a 

number of the most commonly diagnosed cancers. All costs and mortality inputs 

(Appendix 5 Table S2.3 in Supplementary Materials) were cancer specific as obtained 

from sources referenced above. All original data were analysed using STATA statistical 

software (version 14.0, Texas, USA) and the CEA model was built using TreeAge Pro 

2017 (Massachusetts, USA).  

2.5. Results 

2.5.1. Cost-effectiveness analysis 

Comparisons of cost-effectiveness results for all three scenarios are presented in Table 

2.2.  Incremental costs and ICERs increased as more cost resource categories were 

included into the analysis. In scenario 1, when considering intervention-related costs only 

(no future medical cost), the SP was a dominant strategy (cheaper and more effective than 

the non-SP cohort). This changed for scenarios 2 and 3. In the all future healthcare cost 

scenario, the ICER increased to $7,526.09/QALY gained. The incorporation of future 

costs also had an impact on the probability of the SP implementation being cost-effective 

at willingness-to-pay (WTP) threshold below $25,000/QALY as shown in Figure 2.1.  

A number of one-way sensitivity analyses were conducted to test the robustness of the 

model and results are presented in Figure 2.2. Overall, the model was most sensitive to 

changes in the time horizon. The model was also sensitive to the discount rate, 

assumptions on prevalence and ongoing risk of sepsis. For instance, in comparison to the 

base-case ICER, when time horizon was reduced to 5 years in the model, the intervention 
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became a dominant strategy and reducing the discount rate to 0% increased ICER to 

$10,992.87.  

2.5.2. Analyses by cancer types and future costs 

Figure 2.3 shows the breakdown of lifetime costs and QALYs across different types of 

cancer. Intervention-related costs, composed predominantly of hospitalisation costs (blue 

bars) were higher for the non-SP cohort than SP cohort, therefore the intervention 

appeared to be a dominant strategy across all cancer types when no future costs were 

taken into account. With the inclusion of future costs, total lifetime healthcare costs varied 

depending on the type of cancer (Figure 2.3). As more cost sets were incorporated into 

the analysis, incremental costs increased and differed across cancers depending on the 

cost of managing the respective cancers and survivorship. The full set of results can be 

found in Appendix 8 Table S2.4 in Supplementary Materials. The cost-effectiveness of 

SP intervention varied depending on the type of cancer and a similar trend of increasing 

ICER was observed as future medical costs were included into the CEA analysis. 

Correspondingly, NMBs varied across cancer types and were substantially lower when 

future medical costs were included in the analysis (Appendix 8 Figure S2.2 in 

Supplementary Materials).  

Figure 2.4 shows the cost-effectiveness acceptability curves with all costs included across 

different cancer types compared to the base-case (all cancers combined). Heterogeneity 

across cancer types is evident and this had an impact on decision uncertainty. For 

example, at a WTP of $50,000/QALY, the probability of SP intervention being cost-

effective varied from 0.54 (leukaemia) to 0.70 (myeloma) to close to 1 for cancers such 

as breast, melanoma, prostate, colorectal and Hodgkin’s lymphoma.  

2.6. Discussion 

This study demonstrated that the incorporation of future medical costs in the economic 

evaluation of a sepsis intervention in cancer patients can produce different cost-

effectiveness results that may affect decisions made by policymakers. The CEA results 

based on intervention-related costs only showed that SP is highly likely to be a cost-

saving dominant intervention. However, when extrapolated to lifetime with future 

medical costs, the intervention was no longer a dominant strategy but rather had an ICER 
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of $7,526/QALY gained. Although the sepsis intervention remains cost-effective by 

Australian standards [43], the scenarios presented with and without future medical costs 

clearly demonstrate their impact and potential to result in different policy decisions 

depending on WTP thresholds.  

Future costs are likely to have substantial impact for life-extending interventions where 

survivors will require continuous and/or future medical attention that can translate into 

substantial ongoing healthcare costs. This has been demonstrated in disease areas such as 

type 1 diabetes [48], chronic heart failure [49] and chronic kidney disease [8, 50]. This is 

similarly important in cancer patients who require lifelong medical care and surveillance, 

further adding to the burden on the patient and healthcare system. The exclusion of these 

costs mean that decisions made using the cost-effectiveness ratios will not adequately 

reflect a healthcare system perspective and are not considered in conjunction with the 

potential impact these interventions will have on healthcare budgets longer term [51]. For 

countries that do not explicitly incorporate future cost in funding decisions, it is still 

important to recognise the impact of these costs. If decision makers are to use cost-

effectiveness analyses to efficiently allocate resources within a fixed healthcare budget, 

then excluding future medical costs from analysis will not fully achieve this aim due to 

systematic biases that can arise from exclusion [4, 10].  

The difference in the resultant ICER due to the inclusion or exclusion of future healthcare 

costs could be large enough to influence decisions based on a fixed threshold as 

demonstrated by van Baal et al [4]. When future costs are incorporated in our economic 

model, the impact is an increase in the ICER ranging from 92% to 290%. This change is 

similar to the impact observed in a review of cancer-related CEAs [17] that reported an 

average of 292% increase in ICER when incorporating future cost. A wide range of 

impacts have also been observed in other disease models (for example, a 57% decrease 

in Type 1 diabetes intervention [48] and 1776% increase in end-stage renal disease care 

[50] reflecting the broad range of methods and cost inputs. The extent of the impact of 

future costs will not only affect the resultant ICERs but the certainty under which 

decisions have to be made [52]. Additionally, as value-of-information analysis is 

increasingly becoming an important component in pharmacoeconomic assessments, 

further uncertainty generated from the inclusion of additional cost components have also 

shown to increase the expected value of perfect information (EVPI) [49] which may result 
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in the need to invest extra resources to eliminate all uncertainty in adopting the 

intervention. Given the large degree of variation observed, a much better understanding 

and consistency of how economic evaluations should be undertaken is warranted.     

As cancer patients are unlikely to be a homogenous population, using cancer specific 

inputs to extrapolate both outcomes and costs through lifetime modelling provided a 

better differentiation across cancer types compared to averaging inputs across all cancer 

patients. Importantly, results from the analysis showed that the impact of future cost differ 

across cancer types due to two aspects; cost of managing cancer and relative survival. 

Longer life expectancies did not necessarily result in greater lifetime healthcare costs 

(Figure 2.3). High ICERs were observed for cancers such as leukaemia, myeloma and 

brain were driven by high ongoing cancer costs and lower relative survival indicating 

immediate trade-offs between costs of intervening and level of benefits attainable.  

These results have demonstrated that the distinct cancer characteristics matter resulting 

in different cost-effectiveness results in subgroups according to the cancer type. 

Incorporating heterogeneity in economic evaluations has been controversial due to ethical 

considerations as subgrouping may lead to equity constraints in the provision of 

healthcare to certain populations. However, it is acknowledged that there is value in 

incorporating heterogeneity in economic evaluations [47, 53, 54]. Whilst it was useful to 

establish, these results are not intended to exclude certain groups from treatment as 

decisions on resource allocations are based on numerous factors other than cost-

effectiveness such as clinical effectiveness and equity/ethical considerations, all of which 

need to be clear, transparent and acceptable. Therefore, there is value in incorporating 

heterogeneity in cost-effectiveness analyses to allow for better decision making [47, 55] 

and an understanding of how savings are being generated. 

The ambiguity of what is related and unrelated medical costs has led to inconsistencies 

in the conduct of cost-effectiveness analyses and interpretation of results [8, 16]. This 

study has demonstrated the important implication the type of costs included has on the 

ICER (Figure 2.1) and depending on the types of costs considered, it could have more 

impact on some cancers compared to others (Appendix 8 Figure S2.3 and S2.4 in 

Supplementary Material). In practice, how costs are classified is subject to the discretion 

of the analyst and it is often difficult to distinguish these costs [52, 56]. Alternative 

suggestions to overcome this conundrum is to ignore the distinction between related or 
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unrelated particularly if all future medical costs are to be included in the economic 

evaluation of life-extending technologies [57, 58]. As national guidelines are standards 

for performing economic evaluations in healthcare, it is therefore pertinent to advocate 

for clearer and consistent pharmacoeconomic guidelines around costing methodologies. 

2.6.1. Limitations 

The economic model represents a necessary simplification in capturing excess cancer 

mortality rates and lifetime healthcare costs. Despite this limitation, the model estimated 

a life expectancy of 20.05 and 13.51 for non-septic breast and colon cancer patients 

respectively which is comparable to the published life expectances calculated from the 

US Surveillance, Epidemiology, and End Results (SEER) registries [59]. Similarly, for 

lifetime cancer costs, estimates obtained were within the ranges of those published 

internationally [60, 61]. Simplifying assumptions were made to ensure comparable 

scenarios across different cancer types to better understand the impact of future costs. 

However, it is acknowledged that analysis by cancer stage and sepsis severity could be 

an important consideration that has not been adequately captured in this study thus 

warranting future research. It would be important to better understand the impact of sepsis 

and the intervention across various types and severity of cancer patients. 

The lack of precise or reliable cost estimates can be problematic and the unavailability of 

cost data beyond the study period (for example, post-hospitalisation) is often cited as a 

limitation [62-64]. While it is agreed that incorporating future medical costs into 

economic evaluations is not an easy task to accurately quantify and disaggregate, this 

analysis adds to the growing literature of economic evaluations that include future costs 

and has demonstrated the practicality of doing so. In countries like The Netherlands where 

guidelines mandate the inclusion of such costs, resources to facilitate the inclusion of such 

costs have been developed and made publicly available [65]. The increasing availability 

of access to individual-level population-linked data from routine collection of health-

related data has availed researchers to capture healthcare resource use and provide health 

system costs estimates by disease type, age, sex and proximity to death [26-28, 34, 66]. 

Another commonly employed approach to account for future medical costs is to use 

average health expenditure per person by age and sex [67, 68]. The availability of such 

sources demonstrates the feasibility to include reasonable cost estimates into economic 

evaluations. Furthermore, Meltzer and Johansen [69] argues for the inclusion of rough 
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estimates rather than the complete omission of such costs to avoid significant biases in 

cost-effectiveness results favouring life-extending technologies over those which 

improve quality-of-life.  

2.7. Conclusion 

This CEA provides evidence for potential bias in ICER results if future medical costs of 

surviving patients are not included in an economic evaluation. The impact of inclusion 

(excess cancer costs or all other healthcare costs) and non-inclusion of future medical 

costs in the analysis are clearly distinguished providing an important example for the 

economic evaluation methods literature. The analysis demonstrates cost-effectiveness for 

cancer types showing the heterogeneity in cost-effectiveness results which will be an 

important input into treatment, planning and policy decisions. 
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2.8. Tables and figures 

Table 2.1: Data input for lifetime model 

Decision tree     
 SP cohort Non-SP cohort   
Variable Mean SE Mean SE Distribu

tion 
Source 

Hospitalisation cost 
  Survived a  34,998.94 2262.65 43,118.74 4168.72 Gamma [31] 
  Died a  36,207.10 8029.32 43,723.60 9164.93 Gamma [31] 
Sepsis 
pathway cost 

141.83 70.92 f - - Gamma g 

Probability of 
death at 30-
days 

 0.09   0.02   0.20   0.04  Beta [31] 

Markov 
model b 

      

Variable Mean SE   Distribu
tion 

Source 

Relative risk of death due to sepsis    
  31-90 days 2.27 1.19 

 
 Log 

normal 
[38] 

  91-180 days 1.74 1.24 
 

 Log 
normal 

 

  181-365 days 1.43 1.19 
 

 Log 
normal 

 

  1-2 years 0.99 1.16 
 

 Log 
normal 

 

       
Prevalence of 
sepsis 

0.02 0.01 f   Beta [70] 

       
Utilities (post-hospitalisation)     
  Month 1 0.41 0.02   Beta [42] 
  Month 3 0.56 0.02   Beta  
  Month 6 0.60 0.02   Beta  
  Month 12 0.67 0.02   Beta  
  Month 18 0.67 0.02   Beta  
  Month 42 0.64 0.04   Beta [41] 
  Month 60+ 0.68 0.04   Beta  
       
 Male  Female    
 Mean SE Mean SE   
Excess mortality due to cancer c [40] 
  0-1 year  0.206 0.103 f 0.190 0.095 f Beta  
  1-5 years 0.042 0.021 f 0.041 0.021 f Beta  
  5-10 years 0.019 0.009 f 0.016 0.008 f Beta  
  10-15 years 0.014 0.007 f 0.010 0.005 f Beta  
  15-20 years 0.010 0.005 f 0.006 0.003 f Beta  
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Future medical costs e    
 Cancer-related      [28] 
  1-5 months   3,399.04   196.03   3,873.83   241.36  Gamma  
  6-11 months  1,139.37   68.07   1,298.54   83.57  Gamma  
  12-23 months  425.97   23.65   485.48   29.48  Gamma  
  24+ months  191.24   6.64   217.96   9.32  Gamma  
  Pre-death d 60,356.59   3,522.63  68,788.26  4,339.95  Gamma  
       
 All other healthcare     [34] 
  Recurring 
monthly  

 186.42    93.21 f 169.17 84.58 f Gamma  

  Pre-death d 
30,305.00 

15,152.5
0f 33,065.00 

16,532.5
0f 

Gamma  

       
SE standard error, SP sepsis pathway. 
a Patients who survived or died at 30-days 
b Inputs for the Markov model applies to both the SP and non-SP cohorts 
c Calculated from relative survival rates published in [40] 
d Pre-death cost incurred in the 12 months prior to death 
e Lifetime excess healthcare cost post-hospitalisation 
f In the absence of reported measure of uncertainty around these estimates, standard 
error (SE) is assumed to be half the mean [71]  
g Detailed costing methodology described in Appendix 4 in Supplementary Materials 
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Table 2.2: Incremental cost-effectiveness results 

 SP 
cohort 

Non-SP 
cohort Difference ICER 

% of 
simulated 
ICERs in 

SE 
quadrant 

QALY gained  4.87  4.27 0.60   
      
Cost scenarios      
 Intervention-
related  35,247 43,240 -7,993 SP 

dominates 96 

 Excess cancer 
costs 104,585 104,056 529 884 46 

 All healthcare 
costs 136,934 132,430 4,505 7,526 25 

      
ICER incremental cost-effectiveness ratio, QALY quality-adjusted life year, SE south-
east, SP sepsis pathway. 
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Figure 2.1: Cost-effectiveness acceptability curve for all cancers combined (base-case) 
reflecting the impact of costs included in analysis.  

 

QALY quality-adjusted life-year 

  



50 
 

Figure 2.2: Tornado diagram showing the impact of different variables and assumptions 
on cost per QALY from one-way sensitivity analysis (base-case).  

 

CI confidence interval, LL lower limit, QALY quality-adjusted life-year, RR relative risk, 

UL upper limit 
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Figure 2.3: Breakdown of lifetime costs and QALYs across different cancer types. Base-
case represents all cancers combined. 

 

Blad bladder, Colrec colorectal, Hodg Hodgkin’s lymphoma, Leuk leukaemia (AML), 

Meln melanoma, Myel myeloma, Oeso oesophagus, Panc pancreas, Prost prostate, QALY 

quality-adjusted life years, SP sepsis pathway. 
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Figure 2.4: Cost-effectiveness acceptability curves across various cancer types for all 
healthcare costs scenario (all future medical costs).  

 

QALY quality-adjusted life years   



53 
 

2.9. References 

1. Nyman JA. Should the consumption of survivors be included as a cost in cost–

utility analysis? Health Economics. 2004;13(5):417-27. 

2. Van Baal PH, Feenstra TL, Hoogenveen RT, Ardine de Wit G, Brouwer WB. 

Unrelated medical care in life years gained and the cost utility of primary 

prevention: in search of a ‘perfect’cost–utility ratio. Health economics. 

2007;16(4):421-33. 

3. Meltzer D. Accounting for future costs in medical cost-effectiveness analysis. 

Journal of Health Economics. 1997 1997/02/01/;16(1):33-64. 

4. van Baal P, Meltzer D, Brouwer W. Future costs, fixed healthcare budgets, and 

the decision rules of cost‐effectiveness analysis. Health economics. 

2016;25(2):237-48. 

5. Garber AM, Phelps CE. Economic foundations of cost-effectiveness analysis. 

Journal of health economics. 1997;16(1):1-31. 

6. Lee RH. Future costs in cost effectiveness analysis. Journal of Health Economics. 

2008;27(4):809-18. 

7. Culyer AJ. Cost, context and decisions in Health Economics and cost-

effectiveness analysis. 2018. 

8. Grima DT, Bernard LM, Dunn ES, McFarlane PA, Mendelssohn DC. Cost-

effectiveness analysis of therapies for chronic kidney disease patients on dialysis. 

Pharmacoeconomics. 2012;30(11):981-9. 

9. van Baal P, Morton A, Brouwer W, Meltzer D, Davis S. Should cost effectiveness 

analyses for NICE always consider future unrelated medical costs? British 

Medical Journal. 2017;359. 

10. Rappange DR, van Baal PH, van Exel NJA, Feenstra TL, Rutten FF, Brouwer 

WB. Unrelated medical costs in Life-Years gained. Pharmacoeconomics. 

2008;26(10):815-30. 

11. Feenstra TL, van Baal PH, Gandjour A, Brouwer WB. Future costs in economic 

evaluation: a comment on Lee. Journal of health economics. 2008;27(6):1645-9. 

12. The National Institute for Health and Care Excellence. Guide to the methods of 

technology appraisal 2013. 2013  [Accessed 7 May 2018]; Available from: 

https://www.nice.org.uk/process/pmg9/chapter/foreword 

https://www.nice.org.uk/process/pmg9/chapter/foreword


54 
 

13. Pharmaceutical Evaluation Branch DoH. Guidelines for preparing submissions to 

the Pharmaceutical Benefits Advisory Committee (PBAC). 2017  [Accessed 14 

Feb 2018]; Available from: https://pbac.pbs.gov.au/ 

14. Sanders GD, Neumann PJ, Basu A, Brock DW, Feeny D, Krahn M, et al. 

Recommendations for conduct, methodological practices, and reporting of cost-

effectiveness analyses: second panel on cost-effectiveness in health and medicine. 

Jama. 2016;316(10):1093-103. 

15. The National Health Care Institute (Zorginstituut Nederland). Guideline for 

economic evaluations in healthcare. 2016  [Accessed 29 Apr 2018]; Available 

from: 

https://english.zorginstituutnederland.nl/publications/reports/2016/06/16/guideli

ne-for-economic-evaluations-in-healthcare 

16. Stone PW, Chapman RH, Sandberg EA, Liljas B, Neumann PJ. Measuring costs 

in cost-utility analyses. Variations in the literature. International journal of 

technology assessment in health care. 2000 Winter;16(1):111-24. 

17. Olchanski N, Zhong Y, Cohen JT, Saret C, Bala M, Neumann PJ. The peculiar 

economics of life-extending therapies: a review of costing methods in health 

economic evaluations in oncology. Expert review of pharmacoeconomics & 

outcomes research. 2015;15(6):931-40. 

18. de Vries LM, van Baal PH, Brouwer WB. Future Costs in Cost-Effectiveness 

Analyses: Past, Present, Future. PharmacoEconomics. 2018:1-12. 

19. Kinge JM, Sælensminde K, Dieleman J, Vollset SE, Norheim OF. Economic 

losses and burden of disease by medical conditions in Norway. Health Policy. 

2017;121(6):691-8. 

20. Mariotto AB, Robin Yabroff K, Shao Y, Feuer EJ, Brown ML. Projections of the 

cost of cancer care in the United States: 2010–2020. Journal of the National 

Cancer Institute. 2011;103(2):117-28. 

21. Kantarjian H, Steensma D, Rius Sanjuan J, Elshaug A, Light D. High cancer drug 

prices in the United States: reasons and proposed solutions. Journal of oncology 

practice. 2014;10(4):e208-e11. 

22. Warren JL, Yabroff KR, Meekins A, Topor M, Lamont EB, Brown ML. 

Evaluation of trends in the cost of initial cancer treatment. Journal of the National 

Cancer Institute. 2008;100(12):888-97. 

https://pbac.pbs.gov.au/
https://english.zorginstituutnederland.nl/publications/reports/2016/06/16/guideline-for-economic-evaluations-in-healthcare
https://english.zorginstituutnederland.nl/publications/reports/2016/06/16/guideline-for-economic-evaluations-in-healthcare


55 
 

23. Guy Jr GP, Yabroff KR, Ekwueme DU, Rim SH, Li R, Richardson LC. Economic 

burden of chronic conditions among survivors of cancer in the United States. 

Journal of clinical oncology: official journal of the American Society of Clinical 

Oncology. 2017;35(18):2053. 

24. Ramsey SD, Berry K, Etzioni R. Lifetime cancer-attributable cost of care for long 

term survivors of colorectal cancer. The American journal of gastroenterology. 

2002;97(2):440-5. 

25. Zheng Z, Yabroff KR, Guy JGP, Han X, Li C, Banegas MP, et al. Annual Medical 

Expenditure and Productivity Loss Among Colorectal, Female Breast, and 

Prostate Cancer Survivors in the United States. JNCI: Journal of the National 

Cancer Institute. 2016;108(5):djv382-djv. 

26. Chang S, Long SR, Kutikova L, Bowman L, Finley D, Crown WH, et al. 

Estimating the Cost of Cancer: Results on the Basis of Claims Data Analyses for 

Cancer Patients Diagnosed With Seven Types of Cancer During 1999 to 2000. 

Journal of Clinical Oncology. 2004 2004/09/01;22(17):3524-30. 

27. Goldsbury DE, Yap S, Weber MF, Veerman L, Rankin N, Banks E, et al. Health 

services costs for cancer care in Australia: Estimates from the 45 and Up Study. 

PloS one. 2018;13(7):e0201552. 

28. Blakely T, Atkinson J, Kvizhinadze G, Wilson N, Davies A, Clarke P. Patterns of 

cancer care costs in a country with detailed individual data. Medical care. 

2015;53(4):302. 

29. Etzioni R, Ramsey SD, Berry K, Brown M. The impact of including future 

medical care costs when estimating the costs attributable to a disease: a colorectal 

cancer case study. Health Economics. 2001;10(3):245-56. 

30. Thursky K, Haeusler G, Teh B, Comodo D, Dean N, Brown C, et al. Using process 

mapping to identify barriers to effective management of sepsis in a cancer 

hospital: lessons for successful implementation of a whole hospital pathway. 

Critical Care. 2014 12/03;18(Suppl 2):P53-P. 

31. Thursky K, Lingaratnam S, Jayarajan J, Haeusler GM, Teh B, Tew M, et al. 

Implementation of a whole of hospital sepsis clinical pathway in a cancer hospital: 

impact on sepsis management, outcomes and costs. BMJ Open Quality. 2018;7(3). 

32. Soares M, Welton N, Harrison D, Peura P, Hari M, Harvey S, et al. An evaluation 

of the feasibility, cost and value of information of a multicentre randomised 

controlled trial of intravenous immunoglobulin for sepsis (severe sepsis and septic 



56 
 

shock): incorporating a systematic review, meta-analysis and value of information 

analysis. Health Technology Assessment. 2012. 

33. Fowler RA, Hill-Popper M, Stasinos J, Petrou C, Sanders GD, Garber AM. Cost-

effectiveness of recombinant human activated protein C and the influence of 

severity of illness in the treatment of patients with severe sepsis. Journal of critical 

care. 2003;18(3):181-91. 

34. Blakely T, Atkinson J, Kvizhinadze G, Nghiem N, McLeod H, Davies A, et al. 

Updated New Zealand health system cost estimates from health events by sex, age 

and proximity to death: further improvements in the age of ‘big data’. NZ Med J. 

2015;128(1422):13-23. 

35. Ministry of Health NZ. Casemix and Diagnosis Related Group (DRG) Allocation 

– AR-DRG v7.0. 2017  [Accessed 18 Feb 2019]; Available from: 

https://www.health.govt.nz/nz-health-statistics/classification-and-

terminology/using-icd-10-am-achi-acs/casemix-and-diagnosis-related-group-

drg-allocation-ar-drg-v70 

36. Aitken JF, Barbour A, Burmeister B, Taylor S, Walpole E, Smithers BM. Clinical 

practice guidelines for the management of melanoma in Australia and New 

Zealand. 2008. 

37. Pharoah P, Hollingworth W. Cost effectiveness of lowering cholesterol 

concentration with statins in patients with and without pre-existing coronary heart 

disease: life table method applied to health authority population. 1996. 

38. Prescott HC, Osterholzer JJ, Langa KM, Angus DC, Iwashyna TJ. Late mortality 

after sepsis: propensity matched cohort study. bmj. 2016;353:i2375. 

39. Davis JS, He V, Anstey NM, Condon JR. Long term outcomes following hospital 

admission for sepsis using relative survival analysis: a prospective cohort study of 

1,092 patients with 5 year follow up. PloS one. 2014;9(12):e112224. 

40. Australian Institute of Health and Welfare. Cancer in Australia 2017. Canberra: 

AIHW; 2017. [Accessed 24 Dec 2017] 

41. Cuthbertson BH, Elders A, Hall S, Taylor J, MacLennan G, Mackirdy F, et al. 

Mortality and quality of life in the five years after severe sepsis. Critical Care. 

2013;17(2):R70. 

42. Normilio-Silva K, de Figueiredo AC, Pedroso-de-Lima AC, Tunes-da-Silva G, da 

Silva AN, Levites ADD, et al. Long-term survival, quality of life, and quality-

https://www.health.govt.nz/nz-health-statistics/classification-and-terminology/using-icd-10-am-achi-acs/casemix-and-diagnosis-related-group-drg-allocation-ar-drg-v70
https://www.health.govt.nz/nz-health-statistics/classification-and-terminology/using-icd-10-am-achi-acs/casemix-and-diagnosis-related-group-drg-allocation-ar-drg-v70
https://www.health.govt.nz/nz-health-statistics/classification-and-terminology/using-icd-10-am-achi-acs/casemix-and-diagnosis-related-group-drg-allocation-ar-drg-v70


57 
 

adjusted survival in critically ill patients with cancer. Critical care medicine. 

2016;44(7):1327-37. 

43. George B, Harris A, Mitchell A. Cost-effectiveness analysis and the consistency 

of decision making. Pharmacoeconomics. 2001;19(11):1103-9. 

44. Consumer Price Index, Australia, Dec 2017. [Internet] 2017  [Accessed 28 Dec 

2017]; Available from: http://www.abs.gov.au/ausstats/abs@.nsf/mf/6401.0 

45. OECD.Stat. Purchasing Power Parities (PPP), data and methodology. [Internet] 

2017  [Accessed 31 Dec 2017]; Available from: 

https://stats.oecd.org/Index.aspx?DataSetCode=PPPGDP 

46. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. 

Consolidated health economic evaluation reporting standards (CHEERS)—

explanation and elaboration: a report of the ISPOR health economic evaluation 

publication guidelines good reporting practices task force. Value in Health. 

2013;16(2):231-50. 

47. Sculpher M. Subgroups and heterogeneity in cost-effectiveness analysis. 

Pharmacoeconomics. 2008;26(9):799-806. 

48. Meltzer D, Egleston B, Stoffel D, Dasbach E. Effect of future costs on cost-

effectiveness of medical interventions among young adults: the example of 

intensive therapy for type 1 diabetes mellitus. Medical care. 2000:679-85. 

49. Ramos IC, Versteegh MM, de Boer RA, Koenders JM, Linssen GC, Meeder JG, 

et al. Cost effectiveness of the angiotensin receptor neprilysin inhibitor 

sacubitril/valsartan for patients with chronic heart failure and reduced ejection 

fraction in the Netherlands: a country adaptation analysis under the former and 

current Dutch pharmacoeconomic guidelines. Value in Health. 2017;20(10):1260-

9. 

50. Manns B, Meltzer D, Taub K, Donaldson C. Illustrating the impact of including 

future costs in economic evaluations: an application to end‐stage renal disease 

care. Health economics. 2003;12(11):949-58. 

51. Mandelblatt JS, Ramsey SD, Lieu TA, Phelps CE. Evaluating frameworks that 

provide value measures for health care interventions. Value in Health. 

2017;20(2):185-92. 

52. Lomas J, Asaria M, Bojke L, Gale CP, Richardson G, Walker S. Which costs 

matter? Costs included in economic evaluation and their impact on decision 

http://www.abs.gov.au/ausstats/abs@.nsf/mf/6401.0
https://stats.oecd.org/Index.aspx?DataSetCode=PPPGDP


58 
 

uncertainty for stable coronary artery disease. PharmacoEconomics-open. 2018:1-

11. 

53. Ioannidis JP, Garber AM. Individualized cost-effectiveness analysis. PLoS 

medicine. 2011;8(7):e1001058. 

54. Ramaekers BL, Joore MA, Grutters JP. How should we deal with patient 

heterogeneity in economic evaluation: a systematic review of national 

pharmacoeconomic guidelines. Value in Health. 2013;16(5):855-62. 

55. Leung W, Kvizhinadze G, Nair N, Blakely T. Adjuvant trastuzumab in HER2-

positive early breast cancer by age and hormone receptor status: a cost-utility 

analysis. PLoS medicine. 2016;13(8):e1002067. 

56. Weinstein MC, Manning W. Theoretical issues in cost-effectiveness analysis. 

Journal of Health Economics. 1997;16(1):121-8. 

57. Gros B, Soto Álvarez J, Ángel Casado M. Incorporation of future costs in health 

economic analysis publications: Current situation and recommendations for the 

future. Expert review of pharmacoeconomics & outcomes research. 

2015;15(3):465-9. 

58. van Baal PH, Feenstra TL, Polder JJ, Hoogenveen RT, Brouwer WB. Economic 

evaluation and the postponement of health care costs. Health economics. 

2011;20(4):432-45. 

59. Capocaccia R, Gatta G, Dal Maso L. Life expectancy of colon, breast, and 

testicular cancer patients: an analysis of US-SEER population-based data. Annals 

of Oncology. 2015;26(6):1263-8. 

60. de Oliveira C, Pataky R, Bremner KE, Rangrej J, Chan KK, Cheung WY, et al. 

Phase-specific and lifetime costs of cancer care in Ontario, Canada. BMC cancer. 

2016;16(1):809. 

61. Lang K, Lines LM, Lee DW, Korn JR, Earle CC, Menzin J. Lifetime and 

treatment-phase costs associated with colorectal cancer: evidence from SEER-

Medicare data. Clinical Gastroenterology and Hepatology. 2009;7(2):198-204. 

62. Talmor D, Greenberg D, Howell MD, Lisbon A, Novack V, Shapiro N. The costs 

and cost-effectiveness of an integrated sepsis treatment protocol. Critical care 

medicine. 2008;36(4):1168-74. 

63. Suarez D, Ferrer R, Artigas A, Azkarate I, Garnacho-Montero J, Gomà G, et al. 

Cost-effectiveness of the Surviving Sepsis Campaign protocol for severe sepsis: a 



59 
 

prospective nation-wide study in Spain. Intensive care medicine. 2011;37(3):444-

52. 

64. Jones AE, Troyer JL, Kline JA. Cost-effectiveness of an emergency department 

based early sepsis resuscitation protocol. Critical care medicine. 2011;39(6):1306. 

65. van Baal PH, Wong A, Slobbe LC, Polder JJ, Brouwer WB, de Wit GA. 

Standardizing the inclusion of indirect medical costs in economic evaluations. 

Pharmacoeconomics. 2011;29(3):175-87. 

66. Brown ML, Riley GF, Schussler N, Etzioni R. Estimating health care costs related 

to cancer treatment from SEER-Medicare data. Medical care. 2002:IV104-IV17. 

67. Cobiac LJ, Tam K, Veerman L, Blakely T. Taxes and subsidies for improving diet 

and population health in Australia: a cost-effectiveness modelling study. PLoS 

medicine. 2017;14(2):e1002232. 

68. Australian Institute of Health and Welfare. Health system expenditure on disease 

and injury in Australia, 2004–05. Canberra: AIHW; 2010. [Accessed 24 Oct 2018] 

69. Meltzer D, Johannesson M. Inconsistencies in the" societal perspective" on costs 

of the Panel on Cost-Effectiveness in Health and Medicine. Medical Decision 

Making. 1999;19(4):371-7. 

70. Danai PA, Moss M, Mannino DM, Martin GS. The epidemiology of sepsis in 

patients with malignancy. Chest. 2006;129(6):1432-40. 

71. Briggs A, Sculpher M, Claxton K. Decision modelling for health economic 

evaluation: OUP Oxford; 2006. 

 

  



60 
 

2.10. Supplementary materials 

Appendix 1 

CHEERS Checklist 
Items to include when reporting economic evaluations of health interventions 
 

Section/item 
Item 
No Recommendation 

Reported on page 
No/ line No 

Title and abstract 

Title 1 Identify the study as an economic 
evaluation or use more specific terms 
such as “cost-effectiveness analysis”, 
and describe the interventions 
compared. 

Title 

Abstract 2 Provide a structured summary of 
objectives, perspective, setting, 
methods (including study design and 
inputs), results (including base case 
and uncertainty analyses), and 
conclusions. 

Abstract; Para 1-5 

Introduction 

Background and 
objectives 

3 Provide an explicit statement of the 
broader context for the study.  

Present the study question and its 
relevance for health policy or practice 
decisions. 

Introduction; Para 
1-6 

Methods 

Target population 
and subgroups 

4 Describe characteristics of the base 
case population and subgroups 
analysed, including why they were 
chosen. 

Methods; Para 1, 9 

Appendix 2 in 
Supplementary 
Materials 

Setting and location 5 State relevant aspects of the system(s) 
in which the decision(s) need(s) to be 
made. 

Methods; Para 1 

Appendix 2 & 3 in 
Supplementary 
Materials 

Study perspective 6 Describe the perspective of the study 
and relate this to the costs being 
evaluated. 

Methods; Para 1 
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Section/item 
Item 
No Recommendation 

Reported on page 
No/ line No 

Comparators 7 Describe the interventions or 
strategies being compared and state 
why they were chosen. 

Methods; Para 1, 2 

Appendix 2 in 
Supplementary 
Materials 

Time horizon 8 State the time horizon(s) over which 
costs and consequences are being 
evaluated and say why appropriate. 

Methods; Para 3 

Discount rate 9 Report the choice of discount rate(s) 
used for costs and outcomes and say 
why appropriate. 

Methods, Para 8 

Choice of health 
outcomes 

10 Describe what outcomes were used as 
the measure(s) of benefit in the 
evaluation and their relevance for the 
type of analysis performed. 

Methods; Para 1, 3, 
4, 5, 6 

Measurement of 
effectiveness 

11a Single study-based 
estimates: Describe fully the design 
features of the single effectiveness 
study and why the single study was a 
sufficient source of clinical 
effectiveness data. 

NA 

11b Synthesis-based estimates: Describe 
fully the methods used for 
identification of included studies and 
synthesis of clinical effectiveness 
data. 

Methods; Para 3-9 

Appendix 4, 5 & 6 
in Supplementary 
Materials 

Measurement and 
valuation of 
preference based 
outcomes 

12 If applicable, describe the population 
and methods used to elicit preferences 
for outcomes. 

NA 

Estimating 
resources and costs 

13a Single study-based economic 
evaluation: Describe approaches used 
to estimate resource use associated 
with the alternative interventions. 
Describe primary or secondary 
research methods for valuing each 
resource item in terms of its unit cost. 
Describe any adjustments made to 
approximate to opportunity costs. 

Methods; Para 3, 4 

Appendix 3 & 5 in 
Supplementary 
Materials 
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Section/item 
Item 
No Recommendation 

Reported on page 
No/ line No 

13b Model-based economic 
evaluation: Describe approaches and 
data sources used to estimate resource 
use associated with model health 
states. Describe primary or secondary 
research methods for valuing each 
resource item in terms of its unit cost. 
Describe any adjustments made to 
approximate to opportunity costs. 

Methods ; Para 4 & 
5 

Appendix 5 in 
Supplementary 
Materials 

Currency, price 
date, and 
conversion 

14 Report the dates of the estimated 
resource quantities and unit costs. 
Describe methods for adjusting 
estimated unit costs to the year of 
reported costs if necessary. Describe 
methods for converting costs into a 
common currency base and the 
exchange rate. 

Methods; Para 8 

Choice of model 15 Describe and give reasons for the 
specific type of decision-analytical 
model used. Providing a figure to 
show model structure is strongly 
recommended. 

Methods; Para 3 

Appendix 4 (Fig. 
S2.1) in 
Supplementary 
Materials 

Assumptions 16 Describe all structural or other 
assumptions underpinning the 
decision-analytical model. 

Methods; Para 3-9 

Analytical methods 17 Describe all analytical methods 
supporting the evaluation. This could 
include methods for dealing with 
skewed, missing, or censored data; 
extrapolation methods; methods for 
pooling data; approaches to validate 
or make adjustments (such as half 
cycle corrections) to a model; and 
methods for handling population 
heterogeneity and uncertainty. 

Methods; Para 3-9 

Appendix 4, 5 & 6 
in Supplementary 
Materials 

Results 

Study parameters 18 Report the values, ranges, references, 
and, if used, probability distributions 
for all parameters. Report reasons or 
sources for distributions used to 

Methods; Para 3-9 ( 
Table 2.1) 
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Section/item 
Item 
No Recommendation 

Reported on page 
No/ line No 

represent uncertainty where 
appropriate. Providing a table to show 
the input values is strongly 
recommended. 

Appendix 4 (Table 
S2.3) in 
Supplementary 
Materials 

Incremental costs 
and outcomes 

19 For each intervention, report mean 
values for the main categories of 
estimated costs and outcomes of 
interest, as well as mean differences 
between the comparator groups. If 
applicable, report incremental cost-
effectiveness ratios. 

Results; Para 1, 3 
(Table 2.2, Fig 2.3) 

Characterising 
uncertainty 

20a Single study-based economic 
evaluation: Describe the effects of 
sampling uncertainty for the 
estimated incremental cost and 
incremental effectiveness parameters, 
together with the impact of 
methodological assumptions (such as 
discount rate, study perspective). 

NA 

20b Model-based economic 
evaluation: Describe the effects on 
the results of uncertainty for all input 
parameters, and uncertainty related to 
the structure of the model and 
assumptions. 

Results; Para 2, 4 
(Figure 2.1, 2.2, 
2.4) 

Characterising 
heterogeneity 

21 If applicable, report differences in 
costs, outcomes, or cost-effectiveness 
that can be explained by variations 
between subgroups of patients with 
different baseline characteristics or 
other observed variability in effects 
that are not reducible by more 
information. 

Results; Para 3, 4 
(Figure 2.1, 2.2, 
2.4) 

Appendix 7 (Table 
S2.4) in 
Supplementary 
Materials 

Discussion 

Study findings, 
limitations, 
generalisability, and 
current knowledge 

22 Summarise key study findings and 
describe how they support the 
conclusions reached. Discuss 
limitations and the generalisability of 
the findings and how the findings fit 
with current knowledge. 

Discussion; Para 1-
8 
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Section/item 
Item 
No Recommendation 

Reported on page 
No/ line No 

Other 

Source of funding 23 Describe how the study was funded 
and the role of the funder in the 
identification, design, conduct, and 
reporting of the analysis. Describe 
other non-monetary sources of 
support. 

Information 
provided via the 
submission system  

Conflicts of interest 24 Describe any potential for conflict of 
interest of study contributors in 
accordance with journal policy. In the 
absence of a journal policy, we 
recommend authors comply with 
International Committee of Medical 
Journal Editors recommendations. 

Information 
provided via the 
submission system 

 
For consistency, the CHEERS Statement checklist format is based on the format of the 
CONSORT statement checklist. 
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Appendix 2 

Sepsis management in cancer patients in Australia 

Cancer patients can present with sepsis in many different settings in the hospital; 

inpatient, outpatient, during radiotherapy or chemotherapy, aphaeresis or to the 

emergency department. The presence of neutropenia and/or immunocompromise are 

recognised risk factors for sepsis and are generally included in clinical guidelines for 

sepsis. Approaches to standardise sepsis management though bundles of care have led to 

improved awareness, patient management and outcomes [1, 2]. There is no national 

standardised approach for sepsis in Australia, although there are some high-profile 

programs such as the NSW CEC Sepsis Kills program, and the Think Sepsis Act Fast 

initiative in Victoria which was adapted from the whole of hospital cancer sepsis pathway 

implemented in Peter MacCallum Cancer Centre (PMCC) [3]. The sepsis pathway 

intervention implemented in PMCC employed a whole-of-systems approach to improve 

recognition and resuscitation of sepsis in cancer patients across their treatment journey. 

The hospital-wide intervention supported nurse-initiated sepsis care, early medical 

review, and prompt antibiotic and fluid resuscitation. The associated antimicrobial 

recommendations included recommendations for neutropenic fever (less than 50% of 

cancer patients with sepsis in this), as well as other common infections such as post-

surgical infections and pneumonia. 

 
Australian health system  

The Australian healthcare system is a hybrid model; a mix of both public and private. The 

government provides universal access via Medicare to basic healthcare needs for all 

Australians in public healthcare institutions, including hospitals. Medicare is funded 

through taxation and government-imposed levy [4]. Australians can access cancer 

services through Medicare for: 

(1) free treatment in public hospitals and cancer centres;  

(2) free or subsidised out-of-hospital medical services (GP and specialist services) 

and diagnostic and pathology services; 

(3) low cost ($40.30 general population or $6.50 concessional [5]) approved 

pharmaceuticals including many chemotherapy and anti-cancer drugs.  
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Healthcare is also provided in the private sector which includes hospital care, allied health 

care such as physiotherapy and dental. Individuals can purchase private health insurance 

for extended healthcare coverage to access these services.  

In Australia, cost-effectiveness analyses are routinely used as part of Health Technology 

Assessment to inform funding and reimbursement decisions for medical services and 

pharmaceuticals. 

Health system financing  

The Australian health system is funded by all levels of government. Funding for tertiary 

hospital services is shared between the Federal and State governments and is funded via 

activity-based funding arrangements. This means that funding is dependent on the 

services provided and the mix patients treated. The average cost of public hospital 

separations is determined based on the Australian Refined Diagnostic Related Group 

(AR-DRG). Countries such as France [6] and New Zealand [7] also allocate funding via 

the DRG system. Primary and specialist care services and medicines are primarily funded 

by the Federal government with set fees that are reimbursed.  

At the hospital level, patient-level cost data consists of direct and indirect costs based on 

resources and services associated with each inpatient admission; for instance, imaging 

and pathology services and medical. Medical costs usually include costs of all medical 

and surgical staff and supplies used in medical units of the hospital. Hospital staff are 

renumerated based on agreed standard rates of salary for medical staff.  
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Appendix 3 

Study Setting 

An economic evaluation of a hospital-wide sepsis clinical pathway in a cancer hospital 

was performed comparing the cost and outcomes of patients pre- and post-pathway 

implementation. The analysis was undertaken from the perspective of the healthcare 

system/payer. The setting was the Peter MacCallum Cancer Centre (PMCC), a 100 

inpatient-bed tertiary cancer hospital providing haematology, medical oncology, cancer 

surgery and radiation oncology services. Details of the implementation study and the 

clinical outcomes have been described elsewhere [3, 8].  Briefly, the SP supported nurse-

initiated sepsis care, early medical review, and prompt antibiotic and fluid resuscitation 

and was implemented in PMCC in March 2013. Patients were included in the SP cohort 

if they had hospital ICD-10 codes for sepsis and relevant identification from the 

antimicrobial approvals system used for stewardship (Guidance, Melbourne Health) for 

periods between March and December 2013. To compare with a similar population who 

did not receive the SP, a pre-implementation cohort (non-SP) were identified using 

similar methods presented between March and December 2012. The implementation 

study included a total of 323 patients (212 in SP and 111 in non-SP). 

Patient Characteristics 

Detailed hospitalisation costs were available for 275 patients, 184 (86.8%) and 91 

(82.0%) in the SP and non-SP cohorts respectively. Three surgical patients had costs 

greater than $300,000 and were considered serious outliers and were excluded from 

analysis. Patient demographic and clinical characteristics are presented in Appendix 2 

Table S2.1 in Supplementary Materials. Patients in the SP cohort were older (61.13 vs. 

57.94 years, p=0.082), and more had surgery in the 30 days prior to the sepsis episode 

(15.93% vs. 6.67%, p=0.032). All other baseline characteristics were similar between the 

two cohorts.  

Table S2.1: Description of patient characteristics between cohorts 

Characteristics SP cohort Non-SP cohort p-value 
 (N = 182) (N = 90)  
Surgical (%) 35 (19.23%) 10 (11.11%) 0.090 
Non-surgical a (%) 147 (80.77%) 80 (88.89%)  
    
Age (mean, SD) 61.13 (13.5) 57.94 (15.5) 0.0824 
Female (%) 75 (41.2%) 36 (40.0%) 0.849 
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Heart rate (mean, SD) 103.74 

(17.72) 
107.64 (19.38) 0.0983 

Systolic BP (mean, SD) 119.06 
(23.46) 

118.0 (22.21) 0.7214 

Respiratory rate (mean, SD) 21.20 (4.66) 23.17 (21.41) 0.2376 
Temperature (mean, SD) 38.26 (0.87) 38.66 (4.81) 0.2741 
Neutrophil count (mean, SD) 5.5 (7.91) 5.03 (6.33) 0.6278 
Neutropenia (%) 71 (39.01%) 42 (47.19%) 0.200 
Surgery in the last 30 days (%) 29 (15.93%) 6 (6.67%) 0.032 
    

BP blood pressure, SD standard deviation, SP sepsis pathway. 
a Non-surgical defined as haematology, medical oncology and radiation oncology 
patients 

 

Clinical Effectiveness  

Patients in the SP cohort demonstrated significantly lower rates of ICU admission 

(18.68% vs. 36.67%, p<0.05) and 30-day all-cause mortality (8.79% vs. 20.0%, p<0.05). 

Detailed key outcomes were previously reported in the implementation study [3].  
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Appendix 4 

The cost of implementing the SP protocol consisted of staff costs quantified by accounting 

for time spent by the different levels of staff involved in the development and 

implementation of the SP (Table S2.2). This was broadly categorised into three main 

phases which included reviewing the feasibility of the pathway, staff education and 

training, and implementation. The total cost consisted largely of staff cost and the bulk 

was for the implementation phase which required an infectious disease physician and a 

nurse project officer to manage the program. 30% was added to staff costs to account for 

overhead costs. These costs were assumed to incur only in the first year of implementation 

covering 500 sepsis cases. After one year, the cost of the pathway is assumed to be fully 

integrated into the ongoing framework of continuing medical education for all staff. The 

estimated total implementation cost of the SP at PMCC was $70,916.54 over one year at 

a cost per patient of approximately $141.83.  
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Table S2.2: Estimated costs to implement SP protocol in PMCC 

Key phases Role Staff involved Number 
of staff 

Time per 
staff 

(hours) 

Wage per 
hour ($) a 

Total cost 
($) 

Staff resource        
Sepsis Working 
Party 

Reviewing feasibility of 
pathway 

Senior nurse 7 6 45.66 1,862.45 
Specialist ID 2 6 125.35 1,460.70 
Registrar ID 1 6 68.32 398.08 
Senior pharmacist 1 6 52.93 308.40 

Training and 
Education 

Nursing and medical 
team education sessions; 
including cannulation 
training, Nurses’ forum 

Senior nurse 
(cannulation)  

8 2 45.66 709.50 

Senior nurse project 
officer (forum) 

8 3 48.41 1,128.32 

Senior nurse project 
officer (team 
education) 

1 5.33 48.41 250.74 

Specialist ID 1 3 125.35 365.18 
Registrar ID 1 3 68.32 199.04 

Implementation Pathway form design, 
communication and 
liaison & project 
management 

Senior pharmacist 1 20 52.93 1,028.00 
Specialist ID 1 69.33 125.35 8,439.62 
Grade 5 nurse project 
officer 

1 780 48.41 36,670.40 

Total staff cost  54,392.76 
Total staff cost (+ 30% overhead cost) 70,710.59 
Other 
administrative 
resource 

Printing of hospital 
documentation and 
education materials 

    205.95 

Total implementation cost 70,916.54 
       

ID infectious disease, PMCC Peter MacCallum Cancer Centre, SP sepsis pathway 
a Source of cost from Peter McCallum Cancer Centre (PMCC) new staff webpage [1] and from the main investigator of the SP 
implementation team.  
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Appendix 5 

Figure S2.1: TreeAge model for lifetime modelling 

 

Table S2.3: Data inputs for cancer sub-group analyses  

 Male  Female    
Variable Mean SE b Mean SE b Distribution Source 
Markov 
model a 

      

Excess mortality due to cancer     [9] 
Leukaemia (AML) 
0-1 year  0.83471 0.417355 0.7962879 0.398144  Beta  
1-5 years 0.10723 0.053614 0.1065460 0.053273  Beta  
5-10 years 0.018204 0.009102  0.0224099 0.011205  Beta  
10-15 years 0.006711 0.003356   0.0117377 0.005869  Beta  
15-20 years 0 0 0.0115258 0.005763  Beta  
       
Colorectal       
0-1 year  0.1485 0.07425 0.16134 0.080672  Beta  
1-5 years 0.05279 0.026397 0.04513 0.022565  Beta  
5-10 years 0.02041 0.010203 0.01538 0.007688 Beta  
10-15 years 0.008373 0.004186 0.006505 0.003252  Beta  
15-20 years 0.002415 0.001207 0.0004 0.0002  Beta  
       
Breast c       
0-1 year  0.03149 0.015745 0.02122 0.010612 Beta  
1-5 years 0.03321 0.016605 0.01974 0.009872 Beta  
5-10 years 0.02716 0.013582 0.01366 0.006828 Beta  
10-15 years 0.02466 0.01233 0.011103 0.005551 Beta  
15-20 years 0.014299 0.00715 0.009209 0.004604 Beta  
       
Melanoma       
0-1 year  0.03563 0.017814 0.01816 0.009082 Beta  
1-5 years 0.02019 0.010093 0.01131 0.005657 Beta  
5-10 years 0.00837 0.004186 0.00486 0.002429 Beta  
10-15 years 0.003429 0.001715 0.00201 0.001005 Beta  
15-20 years 0.003633 0.001816 0.001003 0.000501 Beta  
       
Lung       
0-1 year  0.95972 0.47986 0.76357 0.381785 Beta  
1-5 years 0.22356 0.11178 0.1967 0.09835 Beta  



72 
 

5-10 years 0.07479 0.037397 0.06076 0.030381 Beta  
10-15 years 0.048414 0.024207 0.036544 0.018272 Beta  
15-20 years 0.019523 0.009761 0.023307 0.011653 Beta  
       
Prostate d       
0-1 year  0.0141 0.007049 - - Beta  
1-5 years 0.01047 0.005235 - - Beta  
5-10 years 0.01131 0.005657 - - Beta  
10-15 years 0.017112 0.008556 - - Beta  
15-20 years 0.01516 0.00758 - - Beta  
       
Pancreas       
0-1 year  1.272966 0.636483 1.298283 0.649142 Beta  
1-5 years 0.281299 0.14065 0.271736 0.135868 Beta  
5-10 years 0.069628 0.034814 0.062668 0.031334 Beta  
10-15 years 0.018204 0.009102 0.023532 0.011766 Beta  
15-20 years 0 0 0 0 Beta  
       
Myeloma       
0-1 year  0.196015 0.098007 0.205795 0.102897 Beta  
1-5 years 0.130785 0.065393 0.130018 0.065009 Beta  
5-10 years 0.108601 0.0543 0.110677 0.055339 Beta  
10-15 years 0.069345 0.034672 0.083406 0.041703 Beta  
15-20 years 0.028774 0.014387 0.047144 0.023572 Beta  
       
Brain       
0-1 year  0.636767 0.318383 0.693147 0.346574 Beta  
1-5 years 0.198311 0.099155 0.160592 0.080296 Beta  
5-10 years 0.055151 0.027575 0.039203 0.019601 Beta  
10-15 years 0.030863 0.015432 0.023757 0.011878 Beta  
15-20 years 0.014514 0.007257 0.020407 0.010203 Beta  
       
Oesophagus 
0-1 year  0.707246 0.353623 0.776529 0.388264 Beta  
1-5 years 0.192991 0.096496 0.16926 0.08463 Beta  
5-10 years 0.046386 0.023193 0.056738 0.028369 Beta  
10-15 years 0.012801 0.006401 0.036065 0.018032 Beta  
15-20 years 0 0 0.03969 0.019845 Beta  
       
Hodgkin’s Lymphoma 
0-1 year  0.074724 0.037362 0.064005 0.032003 Beta  
1-5 years 0.014299 0.00715 0.01516 0.00758 Beta  
5-10 years 0.009418 0.004709 0.009838 0.004919 Beta  
10-15 years 0.006298 0.003149 0.009628 0.004814 Beta  
15-20 years 0.009209 0.004604 0.004245 0.002122 Beta  
       
Bladder       
0-1 year  0.235722 0.117861 0.382726 0.191363 Beta  
1-5 years 0.079499 0.03975 0.087391 0.043696 Beta  
5-10 years 0.035586 0.017793 0.031565 0.015782 Beta  
10-15 years 0.021072 0.010536 0.019082 0.009541 Beta  
15-20 years 0.013228 0.006614 0.004041 0.00202 Beta  
       
 Male  Female    
 Mean SE Mean SE Distribution Source 
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Future medical costs e      
Cancer-related      [10] 
Leukaemia (AML) 
1-5 months   5,957.52   506.13   5,935.14   546.42  Gamma  
6-11 months  2,436.68   215.75   2,427.57   232.03  Gamma  
12-23 months  1,585.71   128.73   1,579.83   140.83  Gamma  
24+ months  924.98  45.09   921.58   56.58  Gamma  
Pre-death f 111,617.50   8,724.92  111,201.50   9,576.36  Gamma  
       
Colorectal        
1-5 months   7,185.04   581.91   6,051.33   524.93  Gamma  
6-11 months  2,367.46   193.62   1,993.75   172.77  Gamma  
12-23 months  867.21   69.91   730.33   62.64  Gamma  
24+ months  302.62   14.18   254.86   14.26  Gamma  
Pre-death f  82,793.44   6,568.75   69,725.87   5,899.96  Gamma  
       
Breast c       
1-5 months   4,109.61   389.71   4,109.61   389.71  Gamma  
6-11 months  1,659.80   150.53   1,659.80   150.53  Gamma  
12-23 months  461.25   38.78   461.25   38.78  Gamma  
24+ months  191.44   8.93   191.44   8.93  Gamma  
Pre-death f  62,491.53   7,075.82   62,491.53   7,075.82  Gamma  
       
Melanoma       
1-5 months   730.12   90.54   495.58   67.13  Gamma  
6-11 months  115.70   14.64   78.54   10.85  Gamma  
12-23 months  80.57   9.48   54.70   7.14  Gamma  
24+ months  21.37   1.63   14.51   1.38  Gamma  
Pre-death f  59,558.90  11,805.45  40,425.56   8,307.35  Gamma  
       
Lung        
1-5 months   5,181.20   659.87   4,990.65   656.11  Gamma  
6-11 months  1,377.98   188.40   1,327.33   186.78  Gamma  
12-23 months  827.50   111.62   797.12   111.01  Gamma  
24+ months  462.37   36.82   445.41   38.80  Gamma  
Pre-death f  51,425.64   4,953.10   49,537.57   5,061.47  Gamma  
       
Prostate d       
1-5 months   1,445.77   221.74    Gamma  
6-11 months  776.64   119.07    Gamma  
12-23 months  137.76   20.42    Gamma  
24+ months  36.05   2.97    Gamma  
Pre-death f  70,466.46  19,683.17   Gamma  
       
Pancreas        
1-5 months   4,046.87   1,003.05   4,251.21   1,080.69  Gamma  
6-11 months  1,584.91   426.20   1,665.05   457.77  Gamma  
12-23 months  984.15   261.32   1,034.07   281.48  Gamma  
24+ months  451.39   69.99   474.33   78.86  Gamma  
Pre-death f  47,959.46   8,937.53   50,390.73   9,827.31  Gamma  
       
Myeloma       
1-5 months   6,013.67   758.30   6,261.91   851.55  Gamma  
6-11 months  3,829.33   476.48   3,986.64   531.00  Gamma  
12-23 months  1,779.27   224.00   1,852.44   249.86  Gamma  
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24+ months  1,277.52   92.86   1,330.21   117.45  Gamma  
Pre-death f  93,915.62  11,150.36   97,779.39  12,543.41  Gamma  
       
Brain   8,663.50   1,619.02   8,679.16   1,676.63  Gamma  
1-5 months   2,344.12   470.22   2,348.46   485.38  Gamma  
6-11 months  643.89   132.34   645.13   136.73  Gamma  
12-23 months  373.86   42.99   374.61   47.27  Gamma  
24+ months  81,888.84  11,635.16   82,045.71  12,357.93  Gamma  
Pre-death f  8,663.50   1,619.02   8,679.16   1,676.63  Gamma  
       
Oesophagus        
1-5 months   9,780.89   2,469.10   8,617.66   2,286.49  Gamma  
6-11 months  2,808.39   740.56   2,473.76   678.13  Gamma  
12-23 months  949.06   243.50   835.53   222.28  Gamma  
24+ months  444.18   65.97   391.22   64.85  Gamma  
Pre-death f  62,566.79  11,959.32   55,096.66  11,257.80  Gamma  
       
Hodgkin’s 
lymphoma 

      

1-5 months   5,715.04   1,137.68   6,322.59   1,318.74  Gamma  
6-11 months  1,296.63   260.39   1,434.58   301.93  Gamma  
12-23 months  761.39   140.01   842.50   164.36  Gamma  
24+ months  377.96   36.05   418.27   48.34  Gamma  
Pre-death f  75,274.04  14,078.83  83,285.74  16,431.66 Gamma  
       
Bladder       
1-5 months   6,315.75   976.93   5,606.96   918.03  Gamma  
6-11 months  2,003.62   314.16   1,778.86   295.30  Gamma  
12-23 months  720.67   105.63   639.89   100.47  Gamma  
24+ months  242.27   17.90   215.12   20.04  Gamma  
Pre-death f 114,509.90  16,160.83  101,666.40  15,376.88  Gamma  
       
All other healthcare costs g     [11] 
Recurring 
monthly 

186.42    93.21f 169.17 84.58 f Gamma  

Pre-death f 30,305.00 15,152.50f 33,065.00 16,532.50f Gamma  
AML acute myeloid leukaemia, SE standard error 
a Inputs for the Markov model applies to both the SP and non-SP cohorts 
b In the absence of reported measure of uncertainty around these estimates, SE is 
assumed to be half the mean [12].  
c Proportion of males = 0.0089 
d Proportion of males = 1.0 
e Lifetime excess healthcare cost due to cancer 
f Pre-death cost incurred in the 12 months prior to death  
g Applied to all cancer types 
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Appendix 6 

Deriving future medical costs due to cancer (excess cancer cost) 

Future medical costs due to cancer (excess cancer costs) were sourced from data 

published by Blakely et al [10] providing robust national estimates derived from large 

population-linked data. Cancer costs were calculated based on coefficients published by 

the referenced source’s Supplemental Digital Content Table 2 to obtain age and sex 

specific costs for different cancer types and by time since diagnosis and instructions for 

calculations. These coefficients allow for calculations of costs for different combinations 

of age, sex and phase hence allowed the incorporation of detailed lifetime cost 

information into the model appropriate for the evaluation of future medical costs.  

Below is an example of how excess costs were calculated for a 60-year-old male with 

pancreas cancer at 7 months since diagnosis. The table below represents the relevant 

coefficients obtained from the above referenced source [10]. The authors have specified 

that age has been centered at 62.5 and excess cost (per person per month) is reflected in 

2011 New Zealand dollars.  

 Pancreas 

Parameter Est. s.e. 

Intercept 5.6653 0.1522 

Females 0.0476 0.0601 

Year 0.0808 0.0217 

Age -0.5993 0.115 

Age2 -0.0642 0.0125 

Age3 -0.0153 0.0044 

6-11 Post 1.3357 0.2041 

Age×6-11 Post 0.3849 0.1549 

Using the above coefficients, costs for our above example can be calculated by: 
exp(5.6653 + (-0.25*-0.5993) + (-0.252*-0.0642) + (-0.253*-0.0153) + 1.3357 + (-
0.25*0.3849) 
=$1,153.81 

This value was converted to Australian dollars using published OECD purchasing power 

parity rates [13] and inflated to 2017 dollars using Consumer Price Index [14]. Variances 

around cost estimates were generated by 5000 random draws using STATA statistical 

software (version 14.0, Texas, USA). This was similarly calculated for all other cancers 
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included in the analysis and included in the model for cancer sub-group analysis as shown 

in Table S2.3 Appendix 5 above.  

This resource was deemed to be the most reliable due to the unavailability of robust 

Australian population cost estimates for lifetime medical and the diverse variety of 

cancers that were considered in this analysis. Furthermore, Australian and New Zealand 

healthcare systems are very similar and share some cancer treatment guidelines; for 

example [15]. Death transition costs were included in the model reflecting the substantial 

and elevated healthcare costs incurred in the months immediately prior to death.  
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Appendix 7 

Estimation of life years gained for cancer patients with sepsis 

The ongoing mortality rate of cancer patients who have had sepsis was estimated using: 

1- {[ (1 - EMR) *θ ] * (1 - qx) 

where EMR is the excess mortality rate due to cancer, θ is the scale-up factor adjusting 

for mortality due to sepsis and qx is the mortality rate of the Australian general population. 

The all-cause mortality rate of the general population was used as an approximate 

estimation of mortality due to other causes besides cancer in this population as deaths due 

to cancer in the overall population would be small. [16] 

The increased risk of mortality due to sepsis is accounted for by adjusting the mortality 

rate of cancer patients through the scale-up factor, θ, estimated as [17]: 

θ = RR / [RR * p + ( 1 + p )] 

where RR is the relative risk of mortality due to sepsis and p is the prevalence of sepsis 

among cancer population.  

Excess mortality rate for each of the cancer types were calculated from relative survival 

published by the Australian Institute of Health and Welfare [9] using: 

Relative survival = exp(-EMR * time) 
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Appendix 8 

Table S2.4: Incremental cost-effectiveness results across cancer types 

Sub-group analysis by 
cancer type SP cohort Non-SP 

cohort Difference ICER 
($/QALY) 

Leukaemia     
QALY gained 1.62 1.42 0.20  

  No future cost 35,246.97 43,239.71 -7,992.74 SP 
dominates 

  Excess cancer costs  155,692.66   148,882.25   6,810.42   33,736.39  
  All healthcare costs  184,781.16   174,395.68   10,385.48   51,446.01  
     
Colorectal     
QALY gained 5.16  4.53 0.63  

  No future cost 35,246.97 43,239.71 -7,992.74 SP 
dominates 

  Excess cancer costs  135,789.09   131,424.89   4,364.20   6,881.97  
  All healthcare costs  168,430.58   160,054.63   8,375.95   13,208.14  
     
Breast     
QALY gained 7.32 6.42 0.90  

  No future cost 35,246.97 43,239.71 -7,992.74 SP 
dominates 

  Excess cancer costs  107,793.67   106,870.19   923.48   1,026.91  
  All healthcare costs  142,286.13   137,123.42   5,162.71   5,740.98  
     
Melanoma     
QALY gained 7.30 6.40 0.90  

  No future cost 35,246.97 43,239.71 -7,992.74 SP 
dominates 

  Excess cancer costs  60,078.58   65,019.44  -4,940.86  SP 
dominates 

  All healthcare costs  94,858.41   95,524.72  -666.31  SP 
dominates 

     
Lung     
QALY gained 0.91 0.80 0.11  

  No future cost 35,246.97 43,239.71 -7,992.74 SP 
dominates 

  Excess cancer costs  96,683.05   97,125.10  -442.05  SP 
dominates 

  All healthcare costs  121,999.12   125,042.54   3,043.42   27,183.91  
     
Prostate     
QALY gained 7.09 6.22 0.87  

  No future cost 35,246.97 43,239.71 -7,992.74 SP 
dominates 

  Excess cancer costs  105,677.47   105,014.08   663.39   760.90  
  All healthcare costs  140,419.52   135,486.23   4,933.30   5,658.46  
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Pancreas     
QALY gained 0.47 0.41 0.06   

  No future cost 35,246.97 43,239.71 -7,992.74 SP 
dominates 

  Excess cancer costs  88,848.65   90,253.58  -1,404.93  SP 
dominates 

  All healthcare costs  114,722.61   116,746.41   2,023.80   35,410.03  
     
Myeloma     
QALY gained 2.87 2.52 0.35  

  No future cost 35,246.97 43,239.71 -7,992.74 SP 
dominates 

  Excess cancer costs  193,635.18   182,161.51   11,473.67   32,543.01  
  All healthcare costs  224,008.23   208,801.61   15,206.62   43,130.84  
     
Brain     
QALY gained 1.43 1.25 0.18  

  No future cost 35,246.97 43,239.71 -7,992.74 SP 
dominates 

  Excess cancer costs  136,873.62   132,376.12   4,497.49   25,577.98  
  All healthcare costs  165,762.72   157,714.66   8,048.06   45,770.60  
     
Oesophagus     
QALY gained 1.28 1.12 0.16  

  No future cost 35,246.97 43,239.71 -7,992.74 SP 
dominates 

  Excess cancer costs  120,682.44   118,174.89   2,507.55   15,996.84  
  All healthcare costs  149,412.04   143,373.53   6,038.51   38,522.51  
     
Hodgkin’s lymphoma     
QALY gained 6.72 5.89 0.83  

  No future cost 35,246.97 43,239.71 -7,992.74 SP 
dominates 

  Excess cancer costs  142,181.30   137,031.47   5,149.83   6,237.08  
  All healthcare costs  176,384.07   167,030.62   9,353.46   11,328.19  
     
Bladder     
QALY gained 3.49 3.06 0.43  

  No future cost 35,246.97 43,239.71 -7,992.74 SP 
dominates 

  Excess cancer costs  147,408.66   141,616.37   5,792.28   13,517.61  
  All healthcare costs  178,374.72   168,776.60   9,598.11   22,399.37  
     

ICER incremental cost-effectiveness ratio, QALY quality-adjusted life-year, SP sepsis 
pathway 
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Figure S2.2: Net monetary benefit (NMB) for different costing scenarios across cancer 
types.  

NMB calculated using NMB = ∆E λ - ∆C where ∆E is the QALYs gained, λ is the 
willingness-to-pay at $50,000 and ∆C is the incremental cost.  

 

QALY quality-adjusted life-year  
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Figure S2.3: Correlations of cost-effectiveness (cancer costs only scenario) by cancer 
types, with (A) lifetime recurring medical costs and (B) 5-year relative survival.  

Dotted line indicating a willingness-to-pay threshold of $50,000 per QALY. All cancers 
combined = base-case as indicated by the red triangle.  

 

QALY quality-adjusted life-year 
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Figure S2.4: Correlations of cost-effectiveness (all healthcare costs scenario) by cancer 
types, with (A) lifetime recurring medical costs and (B) 5-year relative survival.  

Dotted line indicating a willingness-to-pay threshold of $50,000 per QALY. All cancers 
combined = base-case as indicated by the red triangle.  

 

QALY quality-adjusted life-year 
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3.1. Abstract  

Objective 

The management of low-risk febrile neutropenia (FN) patients through ambulatory 

programs has demonstrated comparative safety and effectiveness to inpatient strategies. 

However, there is limited evidence of benefits of changing practice particularly on a 

national scale. The aim of the study was to estimate costs and benefits of the program 

over a 10-year time horizon. 

Methods 

A comparative cost analysis from health system perspective comparing costs and length 

of stay (LOS) of patients enrolled in an ambulatory program to a historical cohort who 

did not receive the program. Generalised linear models were used for analysis and 

bootstrapped to account for uncertainty. National data of identified FN admissions were 

used to inform future projections, with varying proportions of low-risk patients and 

eligibility for ambulatory program. 

Results  

The overall LOS for patients in ambulatory cohort was 1.9 days (95% CI,1.0-2.8) shorter, 

a 50% reduction in inpatient bed-day. Whilst patients in ambulatory cohort incurred 

additional costs due to care received outside hospital ($828.03 (SD,124.3)), the mean total 

cost incurred remained substantially lower compared to historical cohort ($2,979 

(95%CI,772-5,391). On a national scale, this could translate into $62.7 million in costs-

averted and 41,347 bed-days saved over ten years if the low-risk prediction rate and 

eligibility for ambulatory programs remained at currently observed rate. 

Conclusions 

The wider implementation of a safe and effective ambulatory program to manage low-

risk FN patients can result in significant return-on-investment for the healthcare system 

by eliminating avoidable costs due to unnecessary lengthy hospital admissions.   
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3.2. Key question summary 

1. What is known about the topic? 

There is strong evidence demonstrating outpatient treatment of low-risk FN patients to be 

an effective and cost-effective strategy compared to continued inpatient hospitalisation.  

2. What does this paper add? 

This study demonstrates the sustainability of the ambulatory program in ensuring cost 

benefits and inpatient bed through real-life implementation data. It also provides evidence 

of the substantial cost and bed days potentially averted when the cost savings and 

difference in length of stay are estimated on a national scale over a 10-year time horizon.  

3. What are the implications for practitioners? 

The management of low-risk FN patients through ambulatory or outpatient programs is 

safe and effective approach. There is strong evidence demonstrating the likely cost 

savings and considerable bed-days saved which can be reallocated to meet other medical 

demands.  

3.3. Introduction 

Febrile neutropenia (FN) is a common and potentially life-threatening complication for 

cancer patients undergoing chemotherapy which necessitates prompt treatment. 

Historically, this involved in-hospital management with broad spectrum intravenous (IV) 

antibiotics [1]. However, it is recognised that FN patients are a heterogenous population, 

where only a small proportion of FN patients are at high risk of complications or death 

[2]. Therefore, not all FN patients necessarily require inpatient care The Multinational 

Association of Supportive Care in Cancer (MASCC) risk index [2] is validated clinical 

tool that has been successfully used to identify FN patients with a low risk of 

complications. Clinical studies have shown that low-risk FN patients can be successfully 

treated with oral instead of IV antibiotics without compromising patient’s safety [3, 4]. 

The management of these patients through ambulatory or outpatient programs has also 

demonstrated comparative safety and effectiveness compared with inpatient management 

strategies [5-7]. In addition to having a shorter length of hospital stay, the benefits of 



88 
 

outpatient care include improved health-related quality of life [8, 9], reduced risk of 

hospital-acquired infections and lower costs [10-13]. 

There is consistent evidence demonstrating outpatient treatment of low-risk FN patients 

to be a cost-effective strategy compared to continued inpatient hospitalisation [12, 14]. 

Whilst the advantages of ambulatory programs are evident, there remain inconsistencies 

in the practices in managing these patients [15-17]. Patient willingness, suitability of 

home environment, and/or prevailing medical condition have been identified as possible 

reasons for the low uptake [16, 18]. Clinician acceptance has also been recognised as a 

potential barrier [19]. Although much is known about the potential barriers that could 

explain the slow uptake, there is limited evidence of the potential benefits of changing 

practice particularly on a national scale. A better understanding of the implications of 

different management strategies are increasingly important to inform healthcare resource 

allocation decisions in a budget constrained environment.  

This study builds upon an existing evaluation of an ambulatory program implemented at 

the Peter MacCallum Cancer Centre (PMCC), a tertiary cancer centre in Australia. The 

PMCC ambulatory program for FN patients is a nurse-led model of care with MASCC 

risk assessment performed for patients presenting with FN. Patients were recruited into 

the program following 3 stages of evaluation: (1) risk stratification using the MASCC 

risk index (low risk defined as score ≥ 21), (2) suitability for switching from intravenous 

to oral antibiotics and (3) suitability for early discharge, after at least one dose of IV 

antibiotics and 24-hour observation. Patients in the ambulatory program are discharged 

with a course of oral antibiotics, followed up by ambulatory care nurses and reviewed by 

an infectious disease physician within one week post-discharge. Figure 3.1 shows a 

representation of the evaluation process. In its first year of implementation, the early 

discharge of eligible low-risk FN patients reduced inpatient length of stay from 4.0 to 1.1 

days, resulting in 72.5 inpatient bed days saved across 25 patients and this translated into 

a net cost reduction of $71,895 after accounting for implementation and operational costs. 

4 out of 25 patients (16%) required readmission and no deaths were reported. A detailed 

description of the program including its implementation, safety and cost in the first year 

has been reported by Teh et al. [11]. 

The aims of this study are to demonstrate the sustainability of the program in ensuring 

cost benefits, and to model the potential cost averted and inpatient bed days saved over 
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10 years if the program is rolled out nationwide. Information from this study will assist 

decision making for clinicians and policymakers by providing estimates of the economic 

impact of introducing ambulatory care programs as standard of care across Australia to 

manage low-risk FN patients.  

3.4. Methods 

Cost analysis 

A cost analysis from the healthcare perspective was performed comparing patient’s costs 

and length of hospital stay. Patients were prospectively enrolled in the ambulatory 

program between March 2014 and February 2017. These patients were compared to a 

historical cohort of retrospectively identified consecutive FN patients from February to 

July 2011 who were assessed to be low-risk using the MASCC risk index, fulfilled 

eligibility criteria to switch to oral antibiotics and be discharged into a theoretical 

ambulatory program [11]. These patients were identified from medical records. Patients 

in the historical cohort were subjected to the standard of care prior to the implementation 

of the ambulatory program which was hospital admission of all FN patients with a course 

of IV antibiotics until resolution of fever and neutropenia. Inpatient admission costs were 

calculated based on each patient’s Australian Refined Diagnosis Related Group (AR-

DRG) [20] and length of stay.  

Ambulatory care costs were estimated based on the components of resource used. This 

included staff time spent on home nursing visits, follow-up phone call by nurse co-

ordinator, consultation to develop appropriate follow-up protocol by infectious disease 

physician, physician and nurse time required to review the patient in a specialist clinic, 

two sets of blood tests, and patient discharge information pack. Patients in the ambulatory 

cohort were also discharged with a prescription for a one-week standard course of 

antibiotics. These patients were followed-up for the duration of the ambulatory program 

(7 days) and re-admitted patients were treated with IV antibiotics and their length of stay 

recorded.   

Generalised linear models (GLM) were used to analyse cost and length of stay. For costs, 

distribution family of Gamma was determined using the Modified Parks Test and its log 

link determined using Pearson correlation, Pregibon and Modified Homer & Lemeshow 
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tests and for length of stay, Poisson distribution with log link was used [21, 22]. Age, sex 

and cancer types were included in the models to control for possible baseline imbalances. 

The choice of models was also based on Akaike Information Criterion (AIC). To account 

for sampling uncertainty, sensitivity analysis was undertaken using bootstrapping with 

1000 replications using the recycled predictions method [22]. 

Projected cost and bed days averted 

National data of all FN hospital admissions among cancer patients aged 15 and above 

between 2009 to 2014 were obtained from the Independent Hospital Pricing Authority 

(IHPA), a national government agency responsible for collecting and reporting hospital 

use and expenditure data. The selection criteria for FN patients as described by 

Lingaratnam et al. [23] was used. The data captured all FN inpatient episodes, irrespective 

of risk types and were used to inform on future trends for hospital presentation with FN.  

The proportion of low-risk FN patients varies internationally. A review of the 10-year of 

MASCC index reported low-risk prediction rates in the range of 70-75% across several 

international studies [13] whereas Australian studies evaluating early discharge strategies 

indicated a 56-65% low-risk prediction with up to 41% of these episodes subsequently 

converted to ambulatory care [15, 24]. Inpatient bed days and cost averted over 10 years 

were therefore calculated using bootstrapped results with proportions of low-risk (LR) 

ranging from 50-80% and 30-60% eligibility for ambulatory program (EA). 

All costs are expressed in 2017 Australian dollars adjusted using the Consumer Price 

Index from the Australian Bureau of Statistics [25] and discounted at 5% annually as per 

Australian recommendations [26]. All data were analysed using STATA statistical 

software (version 14.0, Texas, USA).  

Ethics approval 

The study was approved by the Peter MacCallum Cancer Centre Ethics Committee. 

3.5. Results  

Between March 2014 and February 2017, 50 low-risk FN patients were enrolled into the 

ambulatory program (25 patients in first year, 25 patients in years 2 and 3). The baseline 

characteristics of patients in the ambulatory and historical cohorts are described in Table 
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3.1. Both cohorts were well balanced except for gender where there was a lower 

proportion of males in the ambulatory program compared to the historical cohort 

(p=0.016). Of the 50 patients in the ambulatory cohort, 5 hospital re-admissions (10%) 

were recorded and no deaths reported. Time to re-admission was approximately 1.4 days 

(SD, 0.7).  

Cost analysis 

A breakdown of the components, program protocol, quantity or time required as well as 

costs of resource used for the ambulatory program is provided in Table 3.2. The mean 

cost of providing ambulatory care outside of hospital over a one-week period was 

$828.03, (SD, 124.3) per patient.  

A comparison of length of stay and total cost between the two cohorts is presented in 

Table 3.3. Patients in the ambulatory cohort had a significantly shorter length of initial 

hospital admission of 2.1 days (95% CI, 1.3-2.9; p<0.001). 4 patients were re-admitted to 

the same hospital and their average length of stay ranged from 0.7 to 5.6 days. Overall, 

patients in the ambulatory cohort had a total length of hospital stay of 1.9 days (SD, 1.7). 

This was 1.9 days (95% CI, 1.0-2.8; p<0.001) shorter than patients in the historical cohort 

indicating a 50% reduction in inpatient bed utilisation as a result of the early discharge 

protocol. Mean total cost incurred by the ambulatory cohort remained lower than the 

historical cohort. The cost difference between the two cohorts was $2,839 (95% CI, 949-

4730; p=0.004). 

Bootstrapped results from both GLM regressions are presented in Table 3.3. These 

estimates closely reflect those from the direct comparison analysis. However, the 

bootstrapped results for total cost difference yielded a wider 95% confidence interval.  

National projections 

Data obtained from IHPA showed an average increase of FN hospitalisation episodes by 

approximately 4% annually, increasing from 7,350 in 2010 to 8,708 in 2015. Assuming 

this increase remains constant over the next 10 years, it is estimated that by 2020 and 

2025 the number of FN episodes would increase to 10,318 and 12,012, respectively. 

Figure 3.2 shows the actual and projected number of hospitalisation episodes of FN in 

Australia.  
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The estimated cumulative bed days and cost averted over 10 years would vary depending 

on the low-risk prediction rates as well as proportion of low-risk patients eligible for the 

ambulatory program. Figure 3.3 reflects the ranges of cost-averted and bed days saved 

over 10 years if the ambulatory program were to continue to produce a cost saving of 

$2,979 per patient. Based on the best available Australian evidence [15, 24], a scenario 

reflecting a LR prediction rate of 60% and 40% EA, the estimated discounted total cost 

averted over 10 years would be $62.7 million (95%CI, 16.2-113.4). This cost is associated 

with a cumulative total of 41,347 (95%CI, 21137-62130) bed days saved.  

3.6. Discussion 

The ambulatory program to manage low-risk FN patients in an outpatient setting at PMCC 

represents a real-world implementation of the program with proven effectiveness and has 

demonstrated sustained cost-benefit to the health system since it was implemented in 

2014. The safety of patients was not compromised with an overall re-admission rate of 

10% and no deaths reported. On average, the ambulatory program cost $828 per patient 

for care provided in their homes and follow-up consultations. Despite this, the mean total 

cost of the ambulatory cohort was $2,979 (per patient) lower compared to care delivered 

to the historical cohort, even after taking into account re-admission costs. This cost saving 

was mainly driven by the shorter length of hospital stay due to early discharge.  

In Australia, the cost of managing FN is considerable. In 2015, it was estimated that there 

were 8,708 inpatient episodes of FN among cancer patients, totalling an estimated $251 

million (data provided from IHPA). This estimate captures all FN episodes irrespective 

of risk type and equated to $28,801 per episode with an average length of stay of 14.8 

days. This is similarly observed in the US, where a large study conducted in 2010 

assessing the economic burden of FN-related hospitalisation among cancer patients 

showed a mean hospitalisation cost of US$18,880 [31]. The lower cost observed in the 

US study is likely due to the inclusion of less severe cancer groups (leukaemia and 

myeloma were excluded) hence the shorter length of stay. Nonetheless, the mean cost per 

day of hospitalisations were comparable. It is evident that the economic burden of 

hospitalisations related to FN is significant and is not unique to Australia. It is also widely 

recognised that a large proportion of FN patients are of low-risk [13-15], therefore there 

is scope to reduce the national average length of stay of FN patients and alleviate the cost 
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burden through the implementation of effective and safe strategies such as early discharge 

programs for low-risk FN patients. 

For the first time, this study has demonstrated the substantial cost and bed days potentially 

averted when the cost savings and difference in length of stay are estimated at a national 

scale. Most cost studies have primarily focused on the delivery of ambulatory care and its 

comparison to an existing standard of care (inpatient strategy). The strengths of the 

present study include real-life implementation data and the use of national statistics to 

inform future projections. The estimated total cost and bed days averted over 10 years is 

$62.7million and 41,347 respectively if the low-risk prediction rate and proportion 

converted to ambulatory programs remained at the current rate as indicated by local 

studies. Despite the wide 95% confidence intervals, the ambulatory program remains a 

cheaper and more effective option compared to inpatient management of these low-risk 

patients and is likely to translate well to other centres nationally.  

This cost analysis adds to the growing literature that have demonstrated outpatient 

treatment strategies to manage low-risk FN patients to be a cost-effective approach 

compared to inpatient management. Although this study was conducted in the Australian 

setting, similar early discharge programs have been implemented elsewhere therefore 

these results could be applied internationally. In this study, a mean reduction of 2 inpatient 

days and potential cost-savings of $2,979 per patient (40% reduction in cost) were 

observed. A randomised-controlled single centre study conducted in the UK has also 

reported a 2-inpatient day reduction and outpatient treatment was 44% cheaper [14], while 

a US study reported a larger difference of 4.4 days and a 49% cost reduction [8]. Potential 

cost-savings were estimated to be up to 55% in an economic modelling analysis in the 

Canadian setting [12]. As such, the potential cumulative bed days and cost averted could 

possibly be larger in these countries.   

It is acknowledged that such ambulatory programs would require significant initial 

investments to ensure successful implementation, which include institutional support for 

the required infrastructure, a committed multi-disciplinary team and well-defined 

protocols to manage patient monitoring and follow-up [32]. Furthermore, funding to 

ensure sustainability of a program often also requires sound evidence and justification. 

The projected cost-savings demonstrated at a national scale in this study provides a strong 

case for institutions and healthcare policy makers in making resource allocation decisions 
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for the ambulatory program. Additionally, efficiencies in running the program could also 

translate into higher adoption rates thus greater cumulative cost and bed-days saved; for 

example, a 10% increase in the proportion eligible for the ambulatory program above the 

current 40% would result in an additional $15.7 million and 10,337 bed-days saved 

(Figure 3.3). 

It is recognised that the study has several limitations. The small sample size of this study 

is an important limitation subject to biases and inadequate statistical power. Although the 

estimated cost and bed-day averted are consistent with findings in the literature [8, 12, 

14, 15], it is acknowledged that there is a large amount of uncertainty around the 

extrapolated estimates based on small sample size. As such, the wide confidence intervals 

should be taken into account when interpreting the results. It is also acknowledged that 

the use of a historical cohort can have an impact on the economic analysis as changes in 

practice can change over time affecting resource use. However, hospitalisation costs were 

calculated based on each patient’s AR-DRG and length of stay hence likely to overcome 

this issue. Although there was a disproportionate distribution by gender, results from the 

regression analysis (GLM) did not indicate any significant differences between males and 

females on the cost and length of stay outcomes. There was a drop in the number of 

patients recruited for the ambulatory program in the second and third year (n=25) 

compared to first (n=25). While this can be largely ascribed to the discontinuity in funding 

a dedicated nurse to help with patient recruitment after the first year, other factors such 

as patient/physician willingness, medical concerns and psychosocial factors could 

potentially also have an influence [15, 16, 24]. In light of the substantial potential savings 

in terms of costs and bed days demonstrated in this study, considerations to allocate 

resources to implement and support the continuity of an ambulatory program to manage 

low-risk FN patients is warranted. 

3.7. Conclusions 

The economic burden of hospitalisations related to FN is significant. The management of 

low-risk patients through ambulatory or outpatient programs is a safe and effective 

approach. Further, there have been consistent evidence to demonstrate the likely cost 

savings. A national roll-out of an ambulatory program across Australia could result in up 

to $62.7 million cost-averted and 41,347 bed days saved over ten years if the low-risk 
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prediction rate and proportion converted to ambulatory programs remained at the current 

rate. 
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3.8. Tables and figures 

Table 3.1: Characteristics of patients across the two cohorts 

Patient characteristics Ambulatory cohort Historical cohort p-value 
 n=50 n=27  
Mean age (SD) 49.2 (15.7) 50.1 (18.2) 0.8185 
Male (%) 19 (38.0) 18 (66.7) 0.016 
Malignancy type (%)   0.982 
  Haematological 11 (22.0) 6 (22.2)  
  Solid organ 39 (78.0) 21 (77.8)  
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Table 3.2: Components and associated costs of ambulatory program 

Components Timing of provision Quantity/Time required Unit cost Mean 
utilisation h Source 

Discharge information 
pack 

On discharge 1 pack per patient $3.75 /patient a 1 pack   

Antibiotic prescription  On discharge 1-week supply of medication $38.65 
/prescription b 

1 prescription [27] 

Pathology (blood tests) On discharge and home 
visit 1 (Day 1) 

2 sets as per protocol $69.30 /set c 2 sets [28] 

Home nursing service Home visit 1 & 2 (Day 1 
and 2) 

2 x 45-minute reviews $168.30 /45-
min review d 

1.98 reviews  

Infectious Disease 
physician 

Day 3 30-minute protocol development and 
phone advice 

$188.50 /hour e 0.45 hours [29] 

Nurse co-ordinator Day 3 2 hours: Co-ordinate program and 
patient follow-up via phone 

$57.29 /hour f 1.8 hours [30] 

Infectious Disease 
physician 

Between Day 5 and 7 45-minute outpatient clinic $188.50 /hour e 0.68 hours [29] 

Hospital re-admissions  Based on patient-level data $1,863.94 /day 
g 

2.11 days  

a  Calculated based on market price 
b Prescription for amoxicillin-clavulanic acid (875/125mg BD) and ciprofloxacin (750mg BD) 

c Medicare Benefit Scheme (MBS) item numbers 65070 & 66512 

d Based on hospital administrative records 
e Based on hourly rates of a Year 2 specialist + 30% overhead cost 
f Based on hourly rates of a Registered nurse grade 4A Year 2 +30% overhead cost 
g Based on mean inpatient cost of ambulatory cohort 
h Average resource used per patient  



98 
 

Table 3.3: Comparison of length of stay and total cost between cohorts 

 Ambulatory 
cohort  

Historical 
cohort  Difference 

(95% CI) 
p-

value  Mean (SD) Mean (SD) 
 n=50 n=27   
Length of stay 
(days)     

Initial hospital 
admission 1.7 (1.5) 3.8 (2.1) 2.1  

(1.3-2.9) <0.001 

Re-admission a 2.1 (2.3) -   

Total length of stay 1.9 (1.7) 3.8 (2.1) 1.9  
(1.0-2.8) <0.001 

Bootstrapped (SE) b 1.92 (0.23) 3.89 (0.43) 1.96  
(1.00-2.95)  

Cost ($)     
Initial hospital 
admission 

3293.3 
(3106.1) 

7354.0  
(4907.9) 

4060.7 
(2239. 7-5881.7) <0.001 

Ambulatory care 
cost 

828.0  
(124.3) -   

Re-admission 3933.3 
(3782.3) -   

Total cost  4514.7 
(3374.8) 

7354.0  
(4906.9) 

2839.3 
(948.9-4729.7) 0.004 

Bootstrapped (SE) b 4493.65 
(463.57) 

7472.58 
(1034.17) 

2978.93 
(771.85-5390.96)  

a Based on 4 patient re-admissions. One patient was re-admitted to a different hospital 
therefore length of stay was undetermined. Missing data was imputed with mean length 
of re-admission 
b Results from GLM regressions, bootstrapping with 1000 replications 
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Figure 3.1: Diagrammatic representation of the evaluation process for ambulatory 
program eligibility 

 
 

a Febrile neutropenia defined as fever of ≥ 38.3 °C or ≥ 38.0 °C on two occasions and an 
absolute neutrophil count of < 1.0 × 109 cells/L 
b Assessment using MASCC risk assessment and eligibility screening tool published in 
Teh et al. [11] 
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Figure 3.2: Actual and projected number of hospitalisation episodes of FN in Australia  
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Figure 3.3: Estimated cumulative (A) cost-averted and (B) bed days saved over 10 years by % identified as low-risk (LR) FN and by % 
eligible for ambulatory program (EA).  

Marker ‘X’ represents estimates based on best available Australian evidence.  
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SECTION II : Modelling Long-Term Outcomes 

Chapter / Study Methods of 
analysis 

Key contributions 
Methodology Clinical and policy 

 I : EXTRAPOLATION OF COSTS 

2 

Incorporating 
future medical 
costs: Impact 
on CEA 

+ Cost-utility 
analysis 

+ Decision tree 
analysis 

+ Markov model 

Demonstrate 
feasibility of 
appropriately 

including future 
medical costs 

Provide evidence of 
cost-effectiveness of 
sepsis protocol and 
highlight potential 
differences in cost-
effectiveness results 

3 

National cost 
savings from 
an ambulatory 
program for 
LR FN patients 

+ Cost-
effectiveness 
analysis 

+ GLM 
regression 

+ Cost 
projections 

Undertake evaluation 
beyond cost-

effectiveness analysis  

Offer strong evidence 
for national 

implementation of a 
cost-effective program 

 II: MODELLING & TRANSLATING LONG-TERM OUTCOMES 

4 

Using PROMs 
to guide 
patient-centred 
care and 
optimise 
outcomes 

+ Latent class 
growth analysis 

+ Multinomial 
logistic 
regression 

Employ novel 
application of 

technique to uncover 
heterogeneity 

Show important 
heterogeneity in 

longer-term outcomes 
and variations in the 
value of surgery for 

different patient groups 

5 

Co-morbidities 
and sex 
differences in 
long-term QoL 
outcomes  

+ Multi-level 
modelling 

Demonstrate method 
to assess patterns of 
change of repeated 
QoL measures over 
time and generate 

utility values for cost-
effectiveness analyses 

Highlight notable 
differences in long-
term QoL patterns 

among specific patient 
subgroups (diabetes, 
females) and need for 
tailored post-surgery 

management 

6 
Exploring the 
impact of QoL 
on survival 

+ Survival 
analysis 

+ Life table 
methods for life 
expectancy 

Advance 
understanding of 

influence and 
consequence of 

correlation between 
QoL and mortality 
when extrapolating 
survival outcomes 

Quantify impact of 
unaccounted 

correlation and 
heterogeneity on cost-
effectiveness results 

 III : GENERATING REAL-WORLD EVIDENCE 

7 

Economic 
burden of 
sepsis in cancer 
patients 

+ Matching (case-
control) 

+ Panel data 
manipulation 

+ Survival-
adjusted 
estimation of 
costs 

Generate short- and 
long-term cost 

estimates  

Provide key insights on 
burden of sepsis and 

useful inputs for future 
economic evaluations 

and resource allocation 
decisions 
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4.1. Abstract 

Purpose 

As patient-reported outcome measures (PROMs) are increasingly integrated into clinical 

practice, there is a need to translate collected data into valuable information to guide and 

improve the quality and value of patient care. The purpose of this study was to investigate 

health-related quality-of-life (QoL) trajectories in the five years following total knee 

replacement (TKR) and the patient characteristics associated with these trajectories. The 

feasibility of translating QoL trajectories into valuable information for guiding patient-

centered care was also explored.  

Methods 

Data on patients who underwent TKR between 2006 and 2011 from a single-institution 

registry were extracted including patient-reported QoL (captured using the Short Form 

Survey (SF-12) instrument) up to 5 years post-surgery. QoL trajectories were modelled 

using latent class growth analysis. Quality-adjusted life-years (QALYs) were calculated 

to illustrate longer term health benefit. Multinomial logistic regression analyses were 

performed to examine the association between trajectory groups and baseline patient 

characteristics. 

Results 

After exclusions, 1,553 patients out of 1,892 were included in the analysis. Six unique 

QoL trajectories were identified; with differing levels at baseline and improvement 

patterns post-surgery. Only 18.4% of patients were identified to be in the most positive 

QoL trajectory (low baseline, large sustainable improvement after surgery) associated 

with the greatest gain in QALY. These patients were likely to be younger, have no co-

morbidities and report greater pain at pre-surgery than most in other QoL trajectories.  

Conclusions 

Our findings demonstrate the importance of underlying heterogeneity in QoL trajectories, 

resulting in variable QALY gains. There is scope in translating routinely collected 

PROMs to improve shared decision making allowing for more patient engagement. 
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However, further research is required to identify suitable approaches of its 

implementation into practice to guide clinical care and maximize patient outcomes.  

4.2. Key points for decision makers 

• There is strong evidence indicating important heterogeneity in QoL trajectories in 

TKR patients indicating not all patients benefit from the surgical procedure in the 

same way.  

• Knowledge of the combination of characteristics that predisposes a patient to 

trajectories with poor health gains can be useful in anticipating possible outcomes 

and mitigating such risks. 

• Associating patient-reported outcomes such as QoL to patient characteristics can 

facilitate delivery of individualized health care as it allows patient engagement in 

shared decision making to help optimize outcomes. 

4.3. Introduction 

The value of patient-reported outcomes measures (PROMs) to evaluate outcomes after 

surgery is gaining recognition and the need to integrate these into clinical practice is 

becoming increasingly important [1-6]. For surgical interventions such as total knee 

replacement (TKR), patient-reported outcomes generally include pain, function and 

health-related quality-of-life (QoL). Patients typically experience a significant 

improvement in these outcomes within the first year following surgery and the effects 

tend to plateau in subsequent years [7-11]. Although this pattern of recovery is well-

known, it is unclear if it can be universally applied because up to 20% of TKR patients 

do not gain clinically meaningful improvement following surgery [12, 13]. Recent 

research on longer-term functional outcomes identified a subgroup with delayed 

functional gains [14] which indicates that longer-term recovery patterns, and 

consequently effectiveness gained from surgery, differ considerably across patients. 

Therefore, it is important to better understand the longer-term implications of TKR, 

particularly in patients who experience poorer outcomes and whether these patients can 

be identified early to optimize their outcomes.  
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There is growing evidence that QoL is an important predictor of outcomes such as 

complications, hospitalisation and mortality [15-18]. This suggests that a better 

understanding of patients’ QoL trajectories can reveal important information on disease 

progression and outcomes. QoL PROMs have the additional benefit of capturing the 

necessary information for cost-effectiveness analysis allowing decision makers to 

compare the value of health interventions and prioritize resource allocation. Further, 

associating patterns of QoL with patient characteristics may help identify groups for 

whom TKR may be of higher or lower value. This can help facilitate the rational 

deployment of TKR to those who stand to benefit the most while targeting others for more 

appropriate alternative interventions or management strategies. This is important as 

healthcare systems are transitioning from volume- to value-based health care as a means 

of improving sustainability of the healthcare system whilst also optimizing patient 

outcomes and experience [19, 20]. This is particularly relevant for surgical interventions 

such as TKR, which are performed in high volumes annually and are associated with 

considerable health care costs, amounting to $11.8 billion in 2014 in the US alone [21]. 

In this study, we aimed to identify unique QoL trajectory groups for TKR patients from 

routinely collected PROMs, demonstrate the distinct variations in health gains and 

explore the individual characteristics related to group membership, using a rich data 

source with 5 years QoL data. By quantifying health gains using quality-adjusted life 

years (QALYs), a commonly used outcome in economic evaluations such as cost-

effectiveness analyses, we demonstrate the feasibility of how QoL trajectories can be 

translated into valuable information for guiding patient-centered care. This will also 

provide a better understanding of the value of surgery across different trajectory groups.  

4.4. Material and Methods 

4.4.1. Data  

The St. Vincent’s Melbourne Arthroplasty Outcomes (SMART) Registry prospectively 

captures clinical and patient-reported outcomes in all patients undergoing elective hip and 

knee replacement at the study institution in Melbourne, Australia. The study institution is 

a tertiary referral centre for joint replacement surgeries and receives state-wide referrals. 

Registry data collection started in 1998 and to date, has recorded over 10,000 procedures 

with approximately 800 registered annually [11, 22, 23]. This dataset is ideal to answer 
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the research question regarding longer term trajectories as at least 5 years of annual 

follow-up data are available. This included patients who had TKR between January 1, 

2006 and December 31, 2011. Individuals were excluded if they had missing baseline 

QoL score, no QoL scores at all subsequent time points, underwent early revision or died 

within 2 years of surgery. Our analysis included patients with at least two QoL scores. 

For individuals that underwent bilateral knee surgery during the study period, only the 

most recent TKR was included in the analysis. Sensitivity analyses were conducted to 

assess the effect of our exclusion criteria. 

Baseline data on patients were prospectively collected and included baseline socio-

demographic and patient characteristics such as age, gender, body mass index (BMI), 

smoking status, co-morbidity measures such as Charlson Co-morbidity Index (CCI) and 

American Society of Anesthesiologist (ASA) Physical Status Classification. Cultural and 

linguistic diversity was measured via the need for an interpreter, socioeconomic status 

was measured via the Socio-Economic Index for Areas (SEIFA) [24] and geographical 

accessibility index (ARIA+) [25] reflected rurality. Clinical variables included bilateral 

knee surgery, Kellgren-Lawrence scale [26] describing radiographic severity of 

osteoarthritis and the Knee Society Scores (KSS) [27] subscales for pain and function. 

4.4.2. Quality-of-life measurements 

Patients completed the 12-item Short Form Survey (SF-12) prior to surgery and annually 

post-operatively. Baseline and annual QoL scores up to 5 years post-surgery were 

considered for analysis. SF-12 responses were transformed into utility values using a 

published algorithm [28]. A utility value is a general index of wellbeing used for 

economic evaluation where 1 is equivalent to ‘full health’ and 0 is equivalent to being 

‘dead’ with scoring algorithms based on public preferences for health states.  

4.4.3. Statistical analysis 

Latent class trajectory analysis 

Latent class growth analysis (LCGA) was used to identify subgroups of patients 

according to their trajectory of QoL (described using utility values) pre-surgery and up to 

5 years following TKR. LCGA is a semi-parametric technique used to classify distinct 
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subgroups that follow a similar pattern of change over time hence appropriate for 

analyzing longitudinal data [29]. This means that patients exhibiting similar patterns of 

QoL are grouped forming sets of homogenous classes. LCGA is able to accommodate 

missing data such that patients with missing QoL values at several time points are not 

excluded from the analysis thus minimizing the exclusion of patients [30, 31]. 

Identifying trajectory groups 

As the number of potential trajectories is unknown, a series of models considering 1 to 8 

classes were estimated. The censored normal model was selected as the most appropriate 

for the available data. The Bayes Information Criteria (BIC) is a commonly used criteria 

to assess model fit, where higher BIC values indicate better model fit [32]. The choice for 

optimal model was guided by a combination of factors including our research objective, 

goodness-of-fit statistics Akaike’s Information Criteria (AIC), model interpretability, 

posterior group-membership probability diagnostics [31, 32]. The latter set of diagnostics 

included ensuring all groups displayed average group posterior probabilities above 0.7 

[29] and odds of correct classification (OCC) were greater than 5 [32]. Patients were 

assigned to the trajectories which they had the highest posterior probability of 

membership.  

Estimating QALYs 

Quality-adjusted life-year (QALY) is a common metric used to measure health benefit 

and incremental outcomes are of interest for economic analysis to quantify the value of 

interventions [33]. QALYs for each QoL trajectories were calculated using patient-level 

utility values using the area under the curve method [34]. To quantify the effectiveness 

(health benefit) gained from the intervention, QALYs gained (incremental QALYs) were 

calculated for each patient assuming the patient experienced no change from baseline 

utility if the patient had not had a TKR [10, 35-38]. 

Multinomial logistic regression analysis 

Based on assigned trajectories, multinomial logistic regression analysis weighted by 

probability of class membership was performed to examine the association between 

trajectory groups and baseline patient characteristics. The multivariable model included 

variables identified as potentially important discriminators of class membership in the 
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univariable multinomial logistic regression analyses (those displaying associations at 

P<0.10). Tests for collinearity were conducted with variance inflation factor (VIF) greater 

than 10 and tolerance of less than 0.1 considered to indicate the presence of multi-

collinearity. The trajectory group with the highest incremental QALYs was used as 

reference category against which other trajectory groups were compared. All analyses 

were conducted using Stata SE14 (StataCorp, College Station, TX, USA), employing Traj 

plugin for LCGA.  

4.5. Results 

4.5.1. Study population 

1,553 TKR patients were included in the analysis after 339 cases were excluded based 

on: missing baseline QoL (n=3), no follow-up QoL (n=36), early death (n=14), early 

revision (n=32) and bilateral surgeries where the most recent surgery was already 

included (n=254). Table 4.1 displays the baseline patient characteristics who were on 

average 70.1 years (SD,8.5) and 67.4% were female and mean QoL utility of 0.56 

(SD,0.11) pre-operatively. Of those included, complete QoL data from baseline and 

across all 5 years were available for 1,218 patients (78%).   

4.5.2. Model selection 

The model with six classes was chosen to achieve a balance between model parsimony 

and adequately identifying distinct QoL patterns to demonstrate heterogeneity within the 

cohort to provide insights on the longer-term QoL outcomes and the potential value of 

surgical intervention across different patient groups. The 6-class model produced six 

distinct QoL trajectories (Figure 4.1) and met all diagnostic tests criteria. The probability 

of membership for allocated class ranged between 0.78 and 0.85 and displayed OCC 

above the minimum value of 5 (full results can be found in Supplementary Material 

Tables S4.1 and S4.2). The addition of excluded individuals in the sensitivity analysis 

produced similar results.  

4.5.3. Characterization of classes 

The trajectories were characterized by 3 main phases; pre-surgery, post-operative 

improvement (period between pre-surgery and Year 1) and maintenance (after Year 1). 
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Table 4.2 provides the description for each of the trajectories, total and incremental 

QALYs gained over the 5-year period.  

Total QALYs of the trajectory with lowest QoL (Trajectory 1) was 2.62 (SD, 0.19) and 

the number of QALYs increased with higher utility values for subsequent trajectories. In 

terms of effectiveness gained from TKR, incremental QALYs were lowest for Trajectory 

1 (0.16 (SD,0.35)) and greatest gain for trajectory 5 (1.42 (SD,0.40)). Although patients 

in Trajectory 6 had the greatest number of QALYs, estimated incremental gains from 

TKR were small at 0.39 (SD, 0.37) compared to most other trajectories. 

4.5.4. Characterization of patients across trajectory groups 

Baseline patient socio-demographic and clinical characteristics were compared across the 

6 QoL trajectories and are provided in Supplementary Material Table S4.3. Patient 

characteristics differed across trajectories. The mean age of patients in Trajectories 3 and 

5 was lower than in other trajectories. There was a higher proportion of females in 

trajectories reporting poorer QoL. Trajectory 1 had the largest proportion of patients 

reporting severe baseline pain (71.3%) and lowest baseline KSS function (26.7 (SD,19.8)) 

compared to others.  

Although there was a low chance of collinearity (tolerance range between 0.79 and 0.98; 

mean VIF=1.14) when all variables were included, to achieve a parsimonious model, only 

patient characteristics displaying associations of P<0.10 from the univariable regression 

models (Supplementary Material Table S4.4) were included in the final multivariable 

model. These were age, gender, BMI, interpreter, CCI, ASA, rurality, baseline KSS pain 

and function. Results from multivariable multinomial logistic regression are presented in 

Table 4.3 (Supplementary Material Figure S4.1), showing the relative risk of belonging 

in the respective trajectory for each patient characteristic.  

Compared to patients with the greatest incremental QALY (Trajectory 5), patients with 

the lowest gains from TKR (Trajectory 1) are more likely to have co-morbidities, high 

ASA score, need an interpreter, more likely to report lower KSS function score (poorer 

mobility) and less likely to be in rural residence. Patients with moderate, sustained gains 

in Trajectory 2 are more likely to be older, female, require an interpreter, have co-

morbidities, less likely to be in a rural residence, more likely to report lower KSS function 
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score and are less likely to report severe pain compared to those with large gains 

(Trajectory 5). Patients exhibiting slow progressive improvement (Trajectory 3) were 

found to be more likely to have co-morbidities and report mild than moderate/severe pain 

compared to those whose improvement peaked earlier (Trajectory 5). Compared to 

Trajectory 5, patients in Trajectory 4 were older, have co-morbidities, and less likely to 

report moderate/severe pain. Patients consistently reporting high QoL (Trajectory 6) were 

likely to be older, less likely to report moderate/severe pain and more likely to report 

higher KSS function score compared to Trajectory 5. A summary of these findings is 

presented in Table 4.4. 

4.6. Discussion 

Using latent class growth analysis, we identified 6 distinct QoL trajectories indicating the 

presence of significant heterogeneity in QoL outcomes among TKR patients. Although 

most patients exhibited a trajectory profile that is commonly reported in the literature 

(improvement within 1 year followed by a plateau), the distinct difference observed in 

this study is that patients had variable gains following surgery and not all patients 

maintained the improvement. This highlights that patients will not universally achieve 

large QoL improvement following TKR as is commonly reported in the literature. 

Trajectory 5 (large sustainable improvement after surgery) was identified to be the most 

positive QoL trajectory with the greatest gain in QALYs. However, only 18.4% of the 

patients were classified in this trajectory and were likely to be younger, have no co-

morbidities and report greater pain at pre-surgery than most in other QoL trajectories.  

While much research has focused on identifying potential risk factors and integrating 

these to improve medical decision making, associating patient-reported outcomes such as 

QoL to these patient characteristics can facilitate delivery of individualized health care as 

it allows patient engagement in shared decision making to help optimize outcomes [20, 

39]. The unique QoL trajectories identified in this study clearly show variations in the 

benefits of TKR; one-year post-surgery and in the longer term, and the combination of 

patient characteristics associated with each trajectory. Whilst there are limitations in 

employing the current findings to deterministically identify patient subgroup most likely 

to have poor outcomes, knowledge of the combination of characteristics (Table 4.4) that 

predisposes a patient to trajectories with poor health gains (for example, trajectories 1, 2 
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and 6) can be useful in anticipating possible outcomes and mitigating such risks. This 

may include managing pre-surgery expectations [40], personalizing self-management 

plans [41], careful planning in managing co-morbidities to optimize patients prior to 

surgery [42] and tailoring pre-surgery management through mindfulness training to 

maximize outcomes in these patients [43].  

There is also potential to use this information to improve post-surgical management to 

optimize care. Correlating patient characteristics with patient-reported QoL responses can 

help clinicians track progress and identify patients who are unlikely to obtain the 

maximum effectiveness from the treatment; for example, elderly female patients with 

moderate pain pre-surgery who consistently report low QoL may not benefit fully from 

the standard prescribed post-surgical management and may require an individualized 

approach. This gives both the patients and providers opportunity to engage and plan 

follow-up consultations based on goals and expectations for physical [44-46] or mental 

health [43] therapies to improve outcomes. Recognizing the variability in health 

trajectories could also enable patients to have realistic expectations, to better understand 

their clinical course and facilitate discussions with their surgeons [1]. This allows for the 

opportunity to tailor the evolving care post-surgery on an as-needed basis. While 

understanding the patient characteristics associated with these trajectories is important, it 

is acknowledged that beyond these characteristics, psychological factors such as pain-

related beliefs and psychological distress can also influence TKR outcomes [47-49] and 

should be considered alongside.    

To date, trajectory analysis on TKR patients have mostly focused on pain and function 

trajectories and have also demonstrated heterogeneity within the TKR population; 

commonly identifying the presence of a subgroup with poor pain and/or function 

outcomes comprising between 14% and 23% of the study cohort [11, 50, 51]. While it is 

unclear if patients with a low QoL trajectory (Trajectory 1) were non-responders or those 

reporting poor pain/function outcomes after surgery, some similarities in the 

characteristics of these patients were observed. Patients in Trajectory 1 had higher BMI, 

were more likely to be co-morbid, report severe pain, have low mental and physical well-

being (Supplementary Material Table S4.3) which are consistent with the predictors of 

non-responders [22] or poor pain and function outcomes [11, 50]. For these patients, the 

prescribed standard surgical treatment and follow-up plans are unlikely to be adequate, 
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thus resulting in poor patient outcomes and low value care. Therefore, by maximizing the 

use of PROMs to better understand potential QoL trajectories, clinicians can be better 

informed on how they may plan to manage subgroups with these characteristics and 

assign patients to more appropriate level of surveillance and better supportive care or 

alternative rehabilitation programs to optimize the outcomes of those who are truly 

experiencing low QoL long-term after surgery.  

This study showed that improvement in QoL following surgery was observed to be the 

greatest among younger patients; Trajectory 5 and Trajectory 3 albeit over a longer 

period. Although the observed associations were statistically significant, they were 

relatively weak, and this could be due to the small number of patients under the age of 60 

(approximately 12% of sample). Historically, younger patients are considered as less 

appropriate candidates compared to elderly patients due to the higher risk for revision 

[52]. This is likely related to duration of prostheses survivorship and higher levels of 

activity among younger patients [53]. While revision risk is an important consideration, 

the current study provides additional insights. It may be useful for clinical practice to 

consider the potential benefits and value to be gained from the intervention when making 

surgical recommendations, particularly in younger patients [54]. Post-marketing 

surveillance and advances in technology have led to improvements in prostheses 

survivorship which have now reached 90% at 20 years and even 82% at 25 years [55]. 

Therefore, having to wait for advanced age to be suitable for surgery may represent a 

missed opportunity to improve an individual’s well-being and labor force productivity. 

As PROMs including QoL are increasingly recognized as an important consideration in 

clinical care, it is important these are routinely captured pre- and post-surgery using 

relevant tools to evaluate the effectiveness and value of intervening [56]. These findings 

also reinforce the need to encourage PROMs collection beyond the one-year post-surgery 

mark as delayed improvers (Traj 3) or diverging trends (e.g. Traj 4 and 5) can be 

indicators of sub-optimal care. Beyond routine collection of PROMs, there also needs to 

be considerations in integrating these into shared decision-making tools and identifying 

suitable approaches to implement these in practice to better guide clinical care and 

improve the value of surgery. Additionally, risk stratification is an important approach in 

advancing research [57], thus the ability to identify homogenous subgroups based on a 
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combination of characteristics amongst a heterogenous cohort can be useful in selecting 

the right patients for trials of novel interventions allowing for a more targeted approach.  

Because of the rapidly growing rates of utilization and large costs associated with TKR, 

the judicious use of scarce healthcare resources is ever more important to ensure 

sustainability for health insurers and health systems. Further, the appropriateness of the 

surgery in selected patients has also been called into question where studies showed up 

to one-third of TKRs were deemed to be inappropriate procedures [58, 59]. Therefore, it 

is important to target those whom we can maximize outcomes and improve value of care. 

We find patients reporting good QoL prior to surgery (Trajectory 6) were among those 

with small gains. Though it is uncertain if these patients have merely adapted to their 

condition hence report higher levels of QoL than others with the same condition [60], it 

may be important to understand the rationale for surgical intervention in these patients. 

While TKR is widely regarded as a cost-effective procedure in general, this raises the 

question if TKR is necessarily cost-effective for all patients. Some groups of patients may 

require additional care and healthcare services demands to improve their outcomes. This 

may be relevant to patients exhibiting poor long-term QoL outcomes with small gains in 

health benefit such as those in Trajectories 1, 2 and 6, which in combination contributes 

to a significant proportion (55%) of the cohort. Therefore, further research to quantify the 

healthcare needs and assess the cost-effectiveness across these sub-groups would be 

helpful in understanding the true value of surgery amongst the group of heterogenous 

TKR patients.  

4.6.1. Limitations 

Several limitations should be considered when interpreting these results. The 

generalizability of the findings could be limited as patients were from a single-center. 

However, the demographics of patients in this study closely reflect those reported in our 

National Joint Replacement Registry [61]. It is acknowledged that changes to modifiable 

characteristics such as comorbidity over time can affect QoL trajectories [62]. However, 

it is difficult to ascertain the extent of this in the current study unless such information is 

also captured over time. QoL assessments can be subject to biases known as response 

shifts where patients could change the way they evaluate themselves and respond to 

surveys over time [63]. While studies have shown that changes in health outcomes were 

underestimated when response shifts were not accounted for in TKR patients [64, 65], 
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another has shown that despite adjusting for large response shifts, it did not change the 

authors’ clinical interpretation of the results [66]. In the context of our study where all 

patients were surveyed in the same manner across time, it is unlikely to change the 

conclusions drawn from our analysis. It is noted that our assumption of no change from 

baseline made in the calculation of incremental QALYs may result in an overestimation 

of QALYs as a result of regression to the mean [67]. Conversely, deterioration in QoL 

due to aging or absence of surgery may also result in an underestimation. The application 

of our assumption follows published economic evaluations [10, 34, 35, 37, 38]. Variables 

such as co-morbidity, ASA, KL scores and socio-economic indicators (SEIFA) were 

dichotomized to avoid small cell sizes which could reduce the sensitivity of our analysis.   

4.7. Conclusion 

There is strong evidence indicating important heterogeneity in QoL trajectories in TKR 

patients resulting in variable gains in QoL and QALYs across different trajectory groups. 

This indicates not all patients benefit from the surgical procedure in the same way. With 

the growing recognition to support patient-centered care, PROMs may have a particular 

usefulness when employed alongside patient characteristics for tracking and guiding 

clinical care to maximize patient outcomes and justifying costs of surgical intervention. 

Future research should focus on identifying approaches of its implementation into clinical 

practice. 
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4.8. Tables and figures 

Table 4.1: Baseline characteristics 

 No. (%) 
Total number of patients 1553  
Patient characteristics   
Age, mean (SD) 70.1 8.5 
Female 1047 67.4 
BMI, mean (SD) 32.8 6.0 
Aetiology     
  Osteoarthritis 1456 93.8 
  Other a 97 6.3 
Bilateral surgery  382 24.6 
Smoker     
  No 1065 68.6 
  Ex 381 24.5 
  Yes 107 6.9 
Interpreter 231 14.9 
CCI     
  0 875 56.3 
  1+ 678 43.7 
ASA     
  1/2 901 58.0 
  3/4 652 42.0 
KL     
  <4 757 48.7 
  4 796 51.3 
SEIFA deciles     
  1-5 562 36.2 
  6-10 991 63.8 
Rural residence 263 16.9 
Patient-reported outcomes     
KSS pain b     
  Mild 88 5.7 
  Moderate 596 38.4 
  Severe 869 56.0 
KSS function b, mean (SD) 36.0 20.5 
SF-12, mean (SD)     
  PCS 23.1 8.0 
  MCS 45.6 16.1 
  Utility  0.56 0.11 

a Other aetiology includes rheumatoid arthritis and avascular osteonecrosis.  
b KSS pain scores were categorised as follows; none (50), mild occasional (45) mild on 
stairs (40), mild on walking (30), moderate occasional (20), moderate continual (10) and 
severe pain as (0) points. KSS function score assesses walking, stair ability and use of 
walking aids and ranges for 0 to 100 with a higher score indicating better function. 
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Abbreviations: ASA, American Society of Anesthesiologist; BMI, body mass index; 
CCI, Charlson Co-morbidity Index; KL, Kellgren-Lawrence scale; MCS, mental 
component score; PCS, physical component score; SEIFA, Socio-Economic Index for 
Areas; KSS, Knee Society Score.  
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Table 4.2: Description of each QoL trajectories by phases and estimated QALYs over 5-years 

 Traj 1 Traj 2 Traj 3 Traj 4 Traj 5 Traj 6 
Phases       
Pre-surgery QoL  Low Low Low Low Low High 
Post-surgery QoL improvement at year 1 Small Moderate Moderate Large Large Moderate 
Maintenance of trajectory after year 1  Maintained Maintained Improving Declined Maintained Maintained 
Measure of health gains      
Total QALY (SD) a 2.62 (0.19) 3.15 (0.17) 3.55 (0.20) 3.80 (0.19) 4.20 (0.20) 4.42 (0.20) 
Incremental QALY (SD) a b 0.16 (0.35) 0.42 (0.46) 0.75 (0.47) 0.85 (0.43) 1.42 (0.40) 0.39 (0.37) 

a Complete case analysis 
b QALYs gained as a result of TKR assuming patient experienced no change from baseline utility if the patient not had a TKR 
Abbreviations: QALY, quality-adjusted life-years; QoL, quality-of-life; Traj, trajectory 
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Table 4.3: Multivariable multinomial logistic regression showing relative risk (RRR) of belonging in each of the trajectory groups compared 
to Trajectory 5 (highest incremental QALYs/health gains)  

  Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4 Trajectory 6 

Variable RRR 95% CI P 
Value RRR 95% CI P 

Value RRR 95% CI P 
Value RRR 95% CI P 

Value RRR 95% CI P 
Value 

Age 1.00 0.98-1.03 0.73 1.03 1.01-1.05 0.004 1.00 0.97-1.03 0.90 1.03 1.01-1.06 0.001 1.04 1.01-1.07 0.02 
Female 1.30 0.88-1.91 0.19 1.46 1.04-2.06 0.03 1.17 0.72-1.91 0.52 1.33 0.91-1.94 0.14 0.70 0.41-1.17 0.17 
BMI 1.02 0.99-1.05 0.29 1.02 0.99-1.05 0.17 1.01 0.98-1.05 0.46 1.03 1.00-1.06 0.07 0.98 0.94-1.02 0.35 
                 

Interpreter 2.61 1.49-4.59 0.001 2.22 1.30-3.78 0.003 1.76 0.84-3.70 0.14 1.56 0.84-2.87 0.16 1.00 0.35-2.87 0.99 
                 

CCI                

  0 1 [Reference] a 1 [Reference] a 1 [Reference] a 1 [Reference] a 1 [Reference] a 
  ≥1 2.71 1.85-3.95 <.001 2.15 1.53-3.03 <.001 1.99 1.25-3.17 0.004 1.84 1.25-2.69 0.002 1.07 0.62-1.84 0.82 
                 

ASA 
score  

               

 1/2 1 [Reference] b 1 [Reference] b 1 [Reference] b 1 [Reference] b 1 [Reference] b 
 3/4 2.10 1.44-3.08 <.001 1.29 0.92-1.81 0.15 1.33 0.84-2.12 0.22 1.32 0.90-1.95 0.15 0.71 0.39-1.29 0.26 
                 

Rural 
residence 0.47 0.28-0.80 0.005 0.66 0.44-0.99 0.04 0.68 0.37-1.23 0.20 1.02 0.67-1.56 0.91 0.96 0.54-1.73 0.90 

                 

KSS pain                

  Mild 1 [Reference] a 1 [Reference] a 1 [Reference] a 1 [Reference] a 1 [Reference] a 
  
Moderate 0.41 0.14-1.15 0.09 0.46 0.19-1.09 0.08 0.29 0.10-0.86 0.03 0.33 0.14-0.79 0.01 0.23 0.09-0.59 0.003 

  Severe 0.60 0.22-1.68 0.33 0.38 0.16-0.91 0.03 0.33 0.11-0.95 0.04 0.25 0.10-0.61 0.002 0.12 0.04-0.34 <.001 
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KSS 
function c 0.98 0.97-0.98 <.001 0.99 0.98-1.00 0.008 1.00 0.98-1.01 0.53 1.00 0.99-1.01 0.53 1.03 1.01-1.04 <.001 

a Overall P Value < 0.001 
b Overall P Value = 0.001 
c Per point increase in KSS function score. The score assesses walking, stair ability and use of walking aids and ranges for 0 to 100 with a 
higher score indicating better function. 

Abbreviations: ASA, American Society of Anesthesiologist; BMI, body mass index; CCI, Charlson Co-morbidity Index; KSS, Knee 
Society Score; RRR, relative risk ratio 
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Table 4.4: Patient characteristics associated with each of the trajectories compared to Trajectory 5 (highest incremental QALYs/health gains).  

Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4 Trajectory 6 
 Older  Older Older 
 Female    

High ASA score (3 and 
above)     

Need interpreter Need interpreter    
Have co-morbidities Have co-morbidities Have co-morbidities Have co-morbidities  

Less likely to be in rural 
residence 

Less likely to be in rural 
residence    

Report lower (below 40) 
KSS function score a 

Report lower (below 40) 
KSS function score a   Report higher (above 40)  

KSS function score a 

 Less likely to report 
severe pain a 

Less likely to report 
moderate/severe pain a 

Less likely to report 
moderate/severe pain a 

Less likely to report 
moderate/severe pain a 

a KSS pain scores were categorised as follows; none (50), mild occasional (45) mild on stairs (40), mild on walking (30), moderate 
occasional (20), moderate continual (10) and severe pain as (0) points. KSS function score assesses walking, stair ability and use of 
walking aids and ranges for 0 to 100 with a higher score indicating better function. 



126 
 

Figure 4.1: QoL trajectory profiles and class membership for six-class model  

 

Traj 6 – High baseline, moderate sustained improvement (6%) 

Traj 5 – Low baseline, large sustained improvement (19%) 

Traj 4 – Low baseline, large unsustained improvement (18%) 

Traj 3 – Low baseline, moderate improving (8%) 

Traj 2 – Low baseline, moderate sustained improvement (31%) 

Traj 1 – Low baseline, small sustained improvement (18%) 
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4.10. Supplementary materials 

Table S4.1: Comparison of fit statistics for models containing 1 to 8 classes 

No. of 
classes BIC AIC 

Min 
PP 

Max 
PP 

Proportion in each class (%) 
1 2 3 4 5 6 7 8 

1 4142.2 4155.6  1.00 100        
2 5842.0 5868.7 0.96 0.96 52.6 47.4       
3 6087.1 6127.2 0.85 0.94 31.7 35.1 33.2      
4 6149.8 6203.3 0.81 0.87 18.8 33.2 26.5 21.5     
5 6233.6 6300.4 0.76 0.88 17.8 10.9 32.6 15.7 22.9    

  6 a 6279.0 6359.2 0.78 0.85 18.4 29.6 9.1 17.8 18.6 6.5   
7 6291.3 6384.9 0.69 0.82 15.1 9.4 25.8 17.6 15.2 10.9 6.1  
8 6299.5 6406.5 0.68 0.83 5.1 10.8 27.4 12.2 16.4 15.4 6.6 6.1 

a Model selected 

Abbreviations: AIC, Akaike Information Criteria; BIC, Bayes Information Criteria; PP, 
average posterior probability of class membership 

 

  



135 
 

Table S4.2: Group membership probability diagnostics for models containing 1 to 8 
classes 

No. of 
classes 

QoL 
trajectory # 

No. in 
each 

trajectory 

Average 
posterior 

probability 

Odds of 
correct 

classification 

Probability 
of group 

membership 

Total 
probability 

2 1 817 0.964 24.154 0.526 0.525 
 2 736 0.963 28.631 0.474 0.475 
       
3 1 492 0.899 19.248 0.317 0.315 
 2 545 0.849 10.416 0.351 0.351 
 3 516 0.935 28.835 0.332 0.333 
       
4 1 292 0.839 22.482 0.188 0.191 
 2 516 0.825 9.485 0.332 0.327 
 3 411 0.807 11.606 0.265 0.265 
 4 334 0.873 25.004 0.215 0.217 
       
5 1 276 0.845 25.206 0.178 0.182 
 2 170 0.763 26.190 0.109 0.120 
 3 507 0.815 9.068 0.326 0.310 
 4 244 0.776 18.564 0.157 0.162 
 5 356 0.884 25.749 0.229 0.226 
       

6 a 1 286 0.849 25.395 0.181 0.183 
 2 481 0.815 9.601 0.315 0.301 
 3 121 0.785 34.208 0.097 0.112 
 4 279 0.817 19.505 0.186 0.180 
 5 292 0.780 18.385 0.162 0.160 
 6 94 0.822 72.466 0.060 0.064 
       
7 1 234 0.818 25.283 0.151 0.152 
 2 146 0.692 21.692 0.094 0.107 
 3 400 0.726 7.653 0.258 0.240 
 4 273 0.816 20.735 0.176 0.170 
 5 236 0.757 17.362 0.152 0.148 
 6 169 0.775 28.253 0.109 0.120 
 7 95 0.819 69.333 0.061 0.063 
       
8 1 79 0.825 88.222 0.051 0.063 
 2 168 0.681 17.582 0.108 0.118 
 3 425 0.777 9.264 0.274 0.248 
 4 190 0.694 16.281 0.122 0.125 
 5 254 0.821 23.381 0.164 0.161 
 6 239 0.756 17.050 0.154 0.146 
 7 103 0.725 37.029 0.066 0.076 
 8 95 0.823 71.223 0.061 0.063 

a Model selected 
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Table S4.3: Patient profiles by QoL trajectories (Traj) 

 Traj 
1 

 Traj 
2 

 Traj 
3 

 Traj 
4 

 Traj 
5 

 Traj 
6 

 P Value a 

 No. (%) No. (%) No. (%) No. (%) No. (%) No. (%)  
 286 18.42 481 30.97 121 7.79 279 17.97 292 18.80 94 6.05  
Patient characteristics 
Age, mean 
(SD) 70.4 9.0 71.1 8.8 68.5 8.7 70.6 7.4 68.1 8.4 70.2 8.0 

<.001 

Female 206 72.0 348 72.4 81 66.9 186 66.7 184 63.0 42 44.7 <.001 
BMI, mean 
(SD) 33.7 6.7 33.0 6.1 32.9 5.8 32.9 5.5 32.3 5.8 30.7 4.5 0.001 
Aetiology             0.55 
  Osteoarthritis 264 92.3 449 93.4 112 92.6 262 93.9 278 95.2 91 96.8  
  Other b 22 7.7 32 6.7 9 7.4 17 6.1 14 4.8 3 3.2  
Bilateral 
surgery  57 19.9 118 24.5 28 23.1 84 30.1 68 23.3 27 28.7 0.101 
Smoker             0.31 
  No 193 67.5 337 70.1 85 70.3 184 66.0 202 69.2 64 68.1  
  Ex 66 23.1 108 22.5 26 21.5 82 29.4 75 25.7 24 25.5  
  Yes 27 9.4 36 7.5 10 8.3 13 4.7 15 5.1 6 6.4  
Interpreter 66 23.1 91 18.9 16 13.2 32 11.5 21 7.2 5 5.3 <.001 
CCI             <.001 
  0 127 44.4 252 52.4 64 52.9 158 56.6 209 71.6 65 69.2  
  1+ 159 55.6 229 47.6 57 47.1 121 43.4 83 28.4 29 30.9  
ASA             <.001 
  1/2 122 42.7 271 56.3 70 57.9 163 58.4 203 69.5 72 76.6  
  3/4 164 57.3 210 43.7 51 42.2 116 41.6 89 30.5 22 23.4  
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KL             0.16 
  <4 147 51.4 219 45.6 69 57.0 142 51.3 138 47.4 41 43.6  
  4 139 48.6 261 54.4 52 43.0 135 48.7 153 52.6 53 56.4  
SEIFA deciles             0.37 
  1-5 93 32.5 174 36.2 38 31.4 110 39.4 108 37.0 39 41.5  
  6-10 193 67.5 307 63.8 83 68.6 169 60.6 184 63.0 55 58.5  
Rural residence 27 9.4 64 13.3 20 16.5 62 22.2 66 22.6 24 25.5 <.001 
Patient-reported outcomes 
KSS pain c              
  Mild 9 3.2 24 5.0 8 6.6 23 8.2 8 2.7 16 17 <.001 
  Moderate 73 25.5 188 39.1 42 34.7 124 44.4 118 40.4 51 54.3  
  Severe 204 71.3 269 55.9 71 58.7 132 47.3 166 56.9 27 28.7  
KSS function c, 
mean (SD) 26.7 19.8 32.9 19.7 38.0 20.2 40.1 20.1 40.2 18.4 52.2 17.3 P<.001 
SF-12, mean 
(SD)              
  PCS 21.8 7.2 22.8 7.5 23.5 7.4 22.9 8.3 22.1 7.6 31.4 9.3 P<.001 
  MCS 36.7 14.8 43.2 15.2 45.2 15.3 50.0 15.3 48.7 15.3 63.3 5.6 P<.001 
  Utility  0.49 0.08 0.55 0.09 0.56 0.10 0.59 0.09 0.56 0.08 0.81 0.07 P<.001 

a Comparisons across trajectory groups using chi2 test for categorical variables and one-way ANOVA for continuous variables  
b Other aetiology includes rheumatoid arthritis and avascular osteonecrosis.  
c KSS pain scores were categorised as follows; none (50), mild occasional (45) mild on stairs (40), mild on walking (30), moderate 
occasional (20), moderate continual (10) and severe pain as (0) points. KSS function score assesses walking, stair ability and use of 
walking aids and ranges for 0 to 100 with a higher score indicating better function. 
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Abbreviations: ASA, American Society of Anesthesiologist; BMI, body mass index; CCI, Charlson Co-morbidity Index; KL, Kellgren-
Lawrence scale; MCS, mental component score; PCS, physical component score; REF, reference; RRR, relative risk ratio; SEIFA, Socio-
Economic Index for Areas; KSS, Knee Society Score; Traj, trajectory.  

Table S4.4: Univariable multinomial logistic regression showing relative risk (RRR) of belonging in each of the trajectory groups compared 
to Trajectory 5 (highest incremental QALYs) 

 Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4 Trajectory 6 

Variable RRR 95% CI 
P 

Value 
RRR 95% CI 

P 
Value 

RRR 95% CI 
P 

Value 
RRR 95% CI 

P 
Value 

RRR 95% CI 
P 

Value 
Age 1.03 1.01-1.05 0.004 1.04 1.03-1.06 0.000 1.01 0.98-1.03 0.519 1.04 1.02-1.05 0.000 1.03 1.01-1.06 0.018 
Female 1.53 1.07-2.19 0.019 1.50 1.10-2.06 0.011 1.14 0.72-1.80 0.569 1.17 0.82-1.66 0.390 0.49 0.30-0.79 0.003 
BMI 1.04 1.01-1.07 0.004 1.02 1.00-1.05 0.083 1.02 0.99-1.06 0.206 1.02 1.00-1.05 0.098 0.95 0.91-0.99 0.007 
                 

Aetiology                
  OA 1 [Reference] a 1 [Reference] a 1 [Reference] a 1 [Reference] a 1 [Reference] a 

  Other f 1.50 0.75-3.04 0.254 1.36 0.71-2.62 0.358 1.42 0.59-3.43 0.433 1.13 0.54-2.37 0.753 0.59 0.16-2.15 0.421 
                
Bilateral 
surg 

0.84 0.56-1.25 0.387 1.14 0.80-1.61 0.463 1.06 0.63-1.77 0.825 1.42 0.97-2.08 0.073 1.34 0.79-2.28 0.280 

                
Smoking 
status 

               

  No 1 [Reference] b 1 [Reference] b 1 [Reference] b 1 [Reference] b 1 [Reference] b 
  Ex 0.92 0.62-1.37 0.689 0.81 0.57-1.15 0.231 0.76 0.45-1.29 0.308 1.16 0.80-1.70 0.437 1.00 0.58-1.72 0.988 
  Yes 1.87 0.95-3.67 0.069 1.38 0.73-2.62 0.325 1.63 0.69-3.83 0.262 0.84 0.39-1.85 0.674 1.14 0.42-3.10 0.795 
                
Interpr. 3.84 2.25-6.54 0.000 3.00 1.80-4.99 0.000 1.94 0.96-3.92 0.064 1.67 0.93-3.01 0.088 0.70 0.25-1.95 0.497 
                 

CCI                
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  0 1 [Reference] c 1 [Reference] c 1 [Reference] c 1 [Reference] c 1 [Reference] c 

  ≥1 3.32 2.33-4.72 0.000 2.33 1.69-3.19 0.000 2.12 1.35-3.32 0.001 2.01 1.41-2.87 0.000 1.15 0.69-1.93 0.585 
                 

ASA 
score  

               

 1/2 1 [Reference] c 1 [Reference] c 1 [Reference] c 1 [Reference] c 1 [Reference] c 

 3/4 3.13 2.21-4.43 0.000 1.75 1.28-2.40 0.000 1.66 1.06-2.61 0.026 1.69 1.19-2.41 0.003 0.68 0.40-1.19 0.178 
                 
KL                
  <4 1 [Reference] d 1 [Reference] d 1 [Reference] d 1 [Reference] d 1 [Reference] d 

  4 0.86 0.62-1.20 0.373 1.08 0.80-1.45 0.630 0.74 0.48-1.14 0.175 0.84 0.60-1.18 0.322 1.19 0.74-1.92 0.470 
                
SEIFA 
deciles 

               

  1 to 5 1 [Reference] d 1 [Reference] d 1 [Reference] d 1 [Reference] d 1 [Reference] d 

  6 to 10 1.25 0.88-1.77 0.219 1.00 0.73-1.36 0.983 1.39 0.87-2.21 0.166 0.91 0.64-1.28 0.573 0.84 0.52-1.36 0.479 
                
Rural 
residence 

0.35 0.21-0.56 0.000 0.51 0.34-0.74 0.001 0.60 0.34-1.03 0.076 0.90 0.60-1.35 0.618 1.10 0.64-1.91 0.725 

                
KSS pain                

  Mild 1 [Reference] e 1 [Reference] e 1 [Reference] e 1 [Reference] e 1 [Reference] e 
  
Moderate 

0.46 0.17-1.26 0.131 0.46 0.20-1.08 0.076 0.29 0.10-0.84 0.023 0.30 0.13-0.72 0.007 0.17 0.07-0.43 0.000 

  Severe 0.95 0.35-2.55 0.912 0.46 0.20-1.07 0.071 0.36 0.13-1.01 0.052 0.23 0.10-0.55 0.001 0.07 0.03-0.18 0.000 
                 
KSS 
function g 

0.997 
0.996-
0.997 

0.000 0.998 
0.997-
0.999 

0.000 0.999 
0.998-
1.000 

0.219 1.000 
0.999-
1.001 

0.934 1.004 
1.002-
1.005 

0.000 

a Overall P Value = 0.64 
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b Overall P Value = 0.20 
c Overall P Value < 0.001 
d Overall P Value = 0.26 
e Overall P Value = 0.005  

f   Other aetiology includes rheumatoid arthritis.  
g Per point increase in KSS function score. The score assesses walking, stair ability and use of walking aids and ranges for 0 to 100 with a 
higher score indicating better function. 

Abbreviations: ASA, American Society of Anesthesiologist; BMI, body mass index; CCI, Charlson Co-morbidity Index; Interpr., 
Interpreter; KL, Kellgren-Lawrence scale; RRR, relative risk ratio; SEIFA, Socio-Economic Index for Areas; KSS, Knee Society Score; 
Traj, trajectory.  
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Figure S4.1: Relative risk ratio with 95% confidence intervals (multivariable multinomial 
logistic regression) of being in each trajectory vs. reference trajectory (Trajectory 5) for 
each covariate in the model.  
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5.1. Abstract 

Improved understanding of quality-of-life (QoL) outcomes can provide valuable 

information on intervention effectiveness and guide better patient care. The aim of this 

study was to examine whether QoL trajectories differ between patients with and without 

diabetes and identify to what extent patient characteristics are related to poor QoL 

outcomes after total joint replacement (TKR). Multilevel modelling was used to analyse 

long-term QoL patterns of patients undergoing TKR between 2006 and 2011. Patient-

reported QoL at baseline and up to 5 years post-surgery were included. Of the 1553 TKR 

patients, one-fifth (n = 319) had diabetes. Despite there being no significant differences 

in QoL at baseline, patients with diabetes consistently reported lower QoL (on average 

by 0.028, p < 0.001) and did not improve to the same level as patients without the disease 

following surgery. Compared to males, females had significantly lower QoL (by 0.03, p 

< 0.001). Other baseline patient characteristics associated with important differences in 

QoL included presence of respiratory disease and mental health disorder. Patients with 

diabetes exhibit significantly poorer QoL compared to patients without diabetes, 

particularly among females. Knowledge of risk factors that impact on QoL can be useful 

for clinicians in identifying characteristics related to poor QoL outcomes and be used to 

guide patient-centered care. 

5.2. Introduction 

The global prevalence of diabetes has almost tripled in the last two decades and is the 

highest among those over the age of 65 years [1]. Among those with diabetes, 50% also 

suffer from arthritis [2], for which many will require surgery for relief of symptoms. Total 

knee replacement (TKR) is now one of the most common surgical procedures [3] and the 

rate of surgeries performed each year continues to grow [4,5]. TKR is proven to be an 

effective intervention for severe osteoarthritis by improving patients’ pain, mobility, well-

being and quality-of-life (QoL) [6–8]. 

Patient-reported outcome measures (PROMs) are important measures of clinical care as 

they provide valuable information on the effectiveness of the surgical intervention from 

the patient’s perspective. The most prominent use of PROM data is in estimating quality-

adjusted life years for informing the value of an intervention, through economic 

evaluations such as cost-effective analyses. As practices shift towards patient-centred 
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care and QoL, PROMs facilitate shared decision making with patients to tailor care based 

on individual needs. These measures can be used to track patient progress and the disease 

impact on patients’ overall QoL. 

Impairment in health, functional capacity and pain are some of the mains reasons patients 

seek surgical care. PROMs in the form of generic QoL instruments, such as the Short 

Form 12 Health Survey (SF-12), are valuable tools to assess patients’ response to 

treatment. While significant improvement to patients’ QoL is commonly observed after 

TKR, patients with diabetes frequently report lower QoL than the general population [9–

12]. Evidence regarding surgical complications and outcomes in relation to TKR in the 

presence of diabetes remains controversial [13–18]. Some studies have shown the risk of 

infections, revisions and surgical complications to be greater in patients with diabetes 

[13–16], while others have demonstrated otherwise, showing no significant differences 

in revision, surgical complication rates and functional outcomes of TKR between patients 

with and without diabetes [17,18]. 

The majority of these studies assess the quality of surgical care through traditional clinical 

outcome measures. It is unclear whether patient-reported QoL trajectories differ between 

patients with and without diabetes after TKR. The average summary scores reported in 

the literature provide limited information about individual change and are usually over a 

short period post-surgery. A better understanding of longer-term QoL trajectories can be 

useful in guiding diabetes care and can help patient and physician understand the impact 

of surgery on patient well-being [19]. Using annual QoL measures collected from a large 

registry cohort of TKR patients over a 5-year period, we examined if and to what extent 

QoL trajectories differ between patients with and without diabetes and what patient 

characteristics or subgroups were related to poor QoL outcomes. 

5.3. Methods 

5.3.1. Data source and study population 

The St. Vincent’s Melbourne Arthroplasty Outcomes (SMART) Registry is a repository 

of clinical and patient reported outcomes for all patients who undergo elective hip and 

knee replacement at the study institution. Prospectively collected baseline data on patients 

who underwent TKR between 1 January 2006 and 31 December 2011 were available and 
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this included age, sex, body mass index (BMI), smoking status and American Society of 

Anesthesiologist (ASA) Physical Status Classification and self-reported co-morbidities 

including diabetes. Socioeconomic status was collected according to the Socio-Economic 

Index for Areas (SEIFA) [20] and geographical accessibility index (ARIA+) [21] 

reflecting rurality. Other clinical variables included contralateral knee surgery and 

radiographic osteoarthritis severity using the Kellgren–Lawrence grading system. 

Patients were required to have baseline QoL and at least one follow-up post-surgery to be 

included in the analysis. Individuals were excluded if they underwent early revision or 

died within 2 years of surgery. For individuals that underwent staged bilateral knee 

surgery during the study period, only the most recent TKR was included in the analysis. 

All patients were followed-up for up to 5 years. 

5.3.2. Quality-of-life measurements 

Patients completed SF-12 surveys within 12 weeks prior to surgery and annually post-

operatively. Baseline and annual QoL scores up to 5 years post-surgery were analysed. 

SF-12 responses were transformed into utility values between 0 and 1, where 0 is 

equivalent to being ‘dead’ and 1 is equivalent to ‘full health’, using the published Brazier 

algorithm [22]. The algorithm is widely used to score SF-12 responses in clinical trials, 

outcomes assessments and economic evaluations. 

5.3.3. Diabetes classification 

Patients were classified as diabetes or no diabetes based on self-reported information 

collected at baseline prior to surgery. Patients identified to have diabetes were further 

verified through checks of their patient medical records for information on anti-diabetic 

medication use (none, oral or subcutaneous) and glycated haemoglobin A1c (HbA1c) 

collected within 6 months of the date of surgery. Patients with diabetes were then further 

classified as having adequate glycaemic control (HbA1c < 7.0% (53 mmol/mol)) and poor 

control (HBA1c ≥ 7.0% (53 mmol/mol)). 

5.3.4. Statistical analysis 

Differences in proportions between patients with diabetes and no diabetes were compared 

using the Pearson’s chi-squared test and paired t-tests for continuously distributed 
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variables. Multilevel modelling was used to determine whether changes in QoL differed 

depending on diabetes status. This approach was used in this study as it can account for 

the longitudinal nature of the data, assess patterns of change of repeated measures over 

time, both within and between patients, and account for missing values [23,24]. This 

modelling approach can produce more robust coefficients compared to standard cross-

sectional techniques as it allows for a flexible method of modelling within-cluster 

correlation; i.e., account for the correlation between QoL measures of individuals over 

time [23]. Time was modelled as a categorical predictor to allow for the flexibility in 

capturing QoL patterns over time and to facilitate comparisons across time points [25]. 

Diabetes status was included in the model as a main effect, and an interaction term with 

time was included if interaction terms were significant. The analysis was conducted for 

both males and females separately and combined, with and without controlling for 

possible confounders including age at surgery, sex, BMI, smoking status, radiographic 

osteoarthritis severity, existing co-morbidities, rurality and socio-economic status. 

Variables included in the final model were those variables that demonstrated evidence of 

significant association with QoL utility values (p < 0.05) identified using backwards 

stepwise elimination and cross validated using forwards stepwise selection. Separate 

models were also fitted to assess if QoL trends differed between patients on different 

types of antidiabetic medications and by glycaemic control. All analyses were conducted 

using Stata SE14 (StataCorp, College Station, TX, USA), employing Stata command 

MIXED for multilevel mixed-effects linear regression. 

5.4. Results 

A total of 1892 patients were identified from the registry. Patients were excluded if they 

had missing baseline utility score (n = 3), no follow-up utility scores (n = 36), underwent 

early revision (n = 32) or died within 2 years of surgery (n = 14). For individuals that 

underwent bilateral knee surgery during the study period (n = 254), only the most recent 

TKR was included in the analysis. After excluding 339 cases, 1553 TKR patients were 

included in the analysis (Figure 5.1). At five-year follow-up, 1218 (78.43%) patients had 

complete SF-12 responses at all six time points (including baseline). 

Of the 1553 TKR patients, approximately one-fifth (n = 319) were identified to have 

diabetes. Table 5.1 summarizes the baseline characteristics of all patients according to 
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diabetes status. Patients with diabetes were observed to be more likely to have higher 

BMI, report co-existing cardiovascular disease and scored higher on the ASA scale. Apart 

from these characteristics, there were no significant differences between other 

characteristics. Of note, both groups had similar mean baseline QoL utility values. 

Among patient with diabetes, 203 patients (63.64%) and 31 (9.72%) were on oral and 

subcutaneous medications, respectively, while the remaining 85 (26.65%) were not on 

any medication. Information on HbA1c was available for 159 patients (49.84%). Among 

these patients, 99 (62.26%) had adequate glycaemic control (mean HbA1c was 6.34% (46 

mmol/mol) (SD, 0.43)) and the remaining were classified as having poor control with 

mean HbA1c of 8.21% (66 mmol/mol) (SD, 1.21). 

Figure 5.2 shows the patterns of quality-of-life over 5 years from pre-surgery to 5-years 

post-surgery of patients by diabetes status and sex. In general, QoL improved markedly 

by 1-year post-surgery and plateaued in subsequent years. Despite both groups starting 

out with the same level of QoL at baseline, results from the multilevel model indicated 

that patients with diabetes consistently report lower QoL (on average by 0.028, p < 0.001) 

and did not improve to the same level as patients without the disease (Table 5.2). There 

were also evident differences between males and females (Figure 5.2). Females were 

found to have significantly lower QoL (by 0.030, p < 0.001) compared to males and the 

impact of diabetes on QoL was much more pronounced in females than in males. There 

were observable differences between the patterns of recovery between females and males. 

Females with and without diabetes have the same level of improvement up to 1 year post-

surgery, however, their QoL trajectories diverge in subsequent years, resulting in a 

significant difference in QoL between those with and without diabetes. Contrarily, among 

males, those with diabetes achieve less improvement at 1-year post-surgery than those 

without diabetes but this difference reduces in subsequent years. Other risk factors 

associated with important differences in QoL included pre-existing respiratory or mental 

health conditions, ASA score, rurality and aetiology of disease (see Table 5.2). 

Subgrouping by glycaemic control (HbA1c) and medication types did not reveal any 

statistically significant differences in QoL trends among patients with diabetes (Figures 

S5.1 and S5.2 in Appendix A). 
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5.5. Discussion 

While studies examining QoL in patients with diabetes frequently report lower QoL than 

those without diabetes [10–12], there is much less literature reporting the long-term 

differences in QoL outcomes following a major surgical procedure such as TKR. In this 

longitudinal analysis of QoL outcomes after TKR, we found that despite there being no 

significant difference in QoL at surgery and achieving substantial improvement in QoL 

following TKR surgery, patients with diabetes do not achieve the same gains in health 

outcomes as patients without diabetes. This difference was most pronounced among 

females, with this patient subgroup persistently reporting lower QoL across the 5-year 

post-surgery period. These findings are useful in helping guide care among patients with 

diabetes and in facilitating discussions of expected outcomes and impact of surgery on 

their QoL. An important finding was the sex difference in outcomes highlighting the need 

to consider if females with diabetes should be managed differently in order to maximise 

their outcomes. 

Studies examining functional outcomes after knee replacement found that patients with 

diabetes have lower ranges of motion and are at higher risk of limitations on daily 

activities and living post-surgery compared to patients without diabetes [16,26,27]. This 

may, in part, explain the poorer QoL observed in our study, and, if so, there may be a role 

for diabetes specific rehabilitation programs to maximise their outcomes. These could 

include lifestyle interventions to improve physical function [28] or exercise programs 

structured together with supervision to improve QoL [29]. Currently prescribed regimens 

tend not to discriminate between patient types, therefore, tailoring post-operative 

rehabilitation programs according to patients’ needs and relevant risk factors such as 

diabetes, other co-morbidities and by gender may be important. Because QoL utility 

values follow a rise and plateau pattern over time, the period after surgery (first year post-

surgery) appears to be an important window to maximise patient outcomes from which 

the effects will plateau. 

Although there are differences in patient-reported QoL across patient subgroups, it is also 

important to know if this translates into a meaningful difference. The minimal clinically 

important difference is commonly used to capture the smallest amount of change that 

would be considered beneficial to the patient [30]. The findings from this study indicate 

that improvements in QoL attained from TKR was substantial and significant, and that 
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the differences observed between diabetes and no diabetes (on average 0.028, p < 0.001), 

and between female and male are important as they are within the range considered 

clinically important [31]. 

The sex differences reported in this study concur with existing literature which found 

females experiencing worse outcomes compared to males. This is not unique to knee 

surgery, as similar observations have been made in patients with stroke [32,33], 

rheumatoid arthritis [34] and in bipolar disorders [35]. The specific reasons for this are 

unclear but pain can have substantial impact on patient’s QoL outcomes and women with 

osteoarthritis may experience more pain and greater pain sensitivity which can translate 

into poorer QoL [36,37]. It may also be possible that women may be exposed to greater 

socioeconomic disadvantage than men which may have an impact on their recovery and 

QoL following surgery [38]. It would be important for future research to examine this to 

aid our understanding of differences in outcomes after TKR and to identify contributors 

to sex differences. Particular attention should also be paid to modifiable risk factors to 

poor response. Comorbidities in diabetes patients have been found to be associated with 

lower QoL and its negative impact on QoL increases with the number of comorbidities 

or a comorbidity index/score [39,40]. In this study, we found that patients reporting 

conditions that are treatable such as respiratory and mental health disorders are at 

significant risk of reporting poorer QoL (Table 5.2). This provides important information 

for clinicians to identify patients reporting these conditions as strategies to mitigate these 

factors may show outcome benefits. 

Patients with diabetes are often ‘optimized’ pre-operatively, starting in primary care, 

which includes attaining good glycaemic control, sufficiently managing other diabetes-

related co-morbidities and ensuring careful planning of care at all stages of the patient 

pathway [41,42]. Given that a patient’s baseline QoL is likely to be strongly correlated 

with their subsequent QoL over the follow-up period [43], there is scope to leverage the 

use of PROMs to optimize patients’ well-being pre-operatively to improve post-surgical 

outcomes. A recent randomised controlled study investigating the efficacy of a mental 

health enhancement program prior to joint surgery found the program an effective 

strategy in improving pain and physical function among those at risk of poor response to 

surgery [44]. This therefore suggests that optimizing other aspects of patient’s well-being 



150 
 

beyond medication management and glycaemic control could also be an important 

consideration in ensuring better QoL outcomes post-surgery. 

In general, TKR is widely regarded as a cost-effective procedure. However, studies have 

shown that patients with diabetes are associated with longer length of hospitalization and 

increased costs [45,46]. Given that QoL utility values are a key component in health 

economic analyses for assessing the value of the intervention, our findings indicate that 

patients with diabetes, particularly females and those with poor glycaemic control are less 

likely to achieve the same value compared to patients without diabetes. This aligns with 

a recent study identifying diabetes and females to be predictors of low-value care from 

the patients and payers’ perspectives, respectively [47]. Therefore, cost-effectiveness 

results based on population averages may not adequately reflect the true value of the 

intervention and more needs to be done to identify vulnerable populations that require 

better care and quantify the value of intervening. This can be important as healthcare 

systems are transitioning from volume- to value-based health care and emphasis has been 

placed on optimizing patient outcomes and experience [48]. The regression coefficients 

presented in this paper can be used to derive QoL utility values to assess the cost-

effectiveness of specific subgroup populations. 

Our study has several limitations. Patients included in this analysis were from a single 

institution which can limit the generalisability of the findings. However, the 

demographics of patients in this study closely reflect those reported in our National Joint 

Replacement Registry [5]. It was difficult to distinguish between type 1 and type 2 among 

diabetes patients based on the information captured in the registry; thus, it is unclear if 

QoL trajectories between these subgroups would be different, which warrants further 

research. A substantial amount of HbA1c information was missing as these were not 

documented in patients’ medical records which limited the interpretation of our results 

by HbA1c subgroups. While we do not know the reason for this missing information and 

it is uncertain if the missingness is related to an acknowledgement of good glycaemic 

control, this highlights the need for protocolised screening of diabetes and 

hyperglycaemia (with or without diagnosis of diabetes) as both are known risk factors for 

poor outcomes post-surgery [49,50]. 
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5.6. Conclusions 

Patients with diabetes exhibit significantly poorer QoL compared to patients without 

diabetes following TKR and this is emphasized in females. These findings highlight the 

need for a better understanding of patient and physiologic differences and for tailoring 

management to optimise patient outcomes. Knowledge of risk factors that impact on QoL 

after TKR may be used to guide patient-centered care.
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5.7. Tables and figures 

Table 5.1: Demographic and clinical characteristics according to diabetes status 

 No diabetes Diabetes p-value for 
difference  n % n % 

Demographics 1234 79.46 319 20.54  
Age (SD) 69.90 8.73 70.67 7.74 0.149 
Female 838 67.96 209 65.31 0.416 

Smoking status     0.321 
  No 840 68.05 225 70.53  
  Ex 303 24.57 78 24.45  
  Yes 91 7.38 16 5.02  

SEIFA     0.400 
  1-5 453 36.71 109 34.17  
  6-10 781 63.29 210 65.83  

Rurality     0.093 
  Metropolitan 1015 82.24 275 86.21  

  Regional 219 17.76 44 13.79  
Clinical characteristics      

BMI     <0.001 
  <30 449 36.39 64 20.06  

  30-35 406 32.9 104 32.6  
  35-40 238 19.29 104 32.6  
  40+ 141 11.43 47 14.73  

Aetiology     0.067 
  Osteoarthritis 1148 93.03 308 96.55  

  Other 86 7.97 11 3.44  
Kellgren and Lawrence score †     0.677 

  ≤3 597 48.54 159 49.84  
  4 633 51.46 160 50.16  

Bilateral surgery  196 15.88 52 16.3 0.856 
Reported co-morbid conditions      

  Cancer 108 8.75 20 6.27 0.151 
  Cardiovascular  984 79.74 297 93.1 <0.001 

  Respiratory  225 18.23 57 17.87 0.88 
  Mental health disorder 223 18.07 71 22.26 0.089 

Pre-operative status      
ASA     <0.001 
  1/2 773 62.64 128 40.13  
  3/4 461 37.36 191 59.87  

Patient-reported QoL (SD) 0.57 0.11 0.56 0.11 0.138 

* Other combines rheumatoid arthritis and avascular necrosis 

† KL score missing for 4 patients  



  

 
 

Table 5.2: Effect of patient characteristics on changes in QoL over time: coefficients estimated from multilevel regression model 

Description All Female Male 
Coef. 95%CI p-value Coef. 95%CI p-value Coef. 95%CI p-value 

Year since surgery             
  1 0.164 0.155 0.172 0.000 0.161 0.151 0.172 0.000 0.168 0.153 0.184 0.000 
  2 0.161 0.152 0.170 0.000 0.159 0.148 0.170 0.000 0.164 0.147 0.180 0.000 
  3 0.152 0.143 0.161 0.000 0.152 0.141 0.162 0.000 0.152 0.136 0.169 0.000 
  4 0.139 0.129 0.148 0.000 0.140 0.129 0.151 0.000 0.136 0.119 0.153 0.000 
  5 0.132 0.123 0.142 0.000 0.134 0.123 0.146 0.000 0.127 0.109 0.145 0.000 

Diabetes -0.003 -0.017 0.010 0.655 -0.002 -0.018 0.014 0.792 -0.004 -0.029 0.020 0.719 
Diabetes x year interaction              

  1#Diabetes -0.024 -0.043 -0.005 0.015 -0.017 -0.041 0.007 0.159 -0.037 -0.071 -0.003 0.031 
  2#Diabetes -0.036 -0.056 -0.017 0.000 -0.044 -0.068 -0.020 0.000 -0.024 -0.059 0.011 0.186 
  3#Diabetes -0.028 -0.048 -0.008 0.006 -0.033 -0.058 -0.009 0.007 -0.018 -0.053 0.018 0.321 
  4#Diabetes -0.034 -0.055 -0.013 0.001 -0.041 -0.066 -0.016 0.001 -0.021 -0.057 0.016 0.262 
  5#Diabetes -0.026 -0.047 -0.005 0.016 -0.038 -0.063 -0.013 0.003 -0.003 -0.041 0.035 0.892 

Female -0.030 -0.040 -0.020 0.000 - - - - - - - - 
Respiratory -0.020 -0.032 -0.008 0.001 -0.018 -0.032 -0.004 0.014 -0.026 -0.049 -0.002 0.031 

Mental health disorder -0.040 -0.052 -0.028 0.000 -0.034 -0.048 -0.020 0.000 -0.053 -0.076 -0.030 0.000 
ASA             
  1/2 Ref    Ref    Ref    
  3/4 -0.028 -0.037 -0.018 0.000 -0.028 -0.039 -0.016 0.000 -0.026 -0.044 -0.009 0.004 

Rurality             
  Metropolitan Ref    Ref    Ref    

  Rural 0.031 0.018 0.043 0.000 0.030 0.014 0.046 0.000 0.032 0.012 0.053 0.002 
Aetiology             

  Osteoarthritis Ref    Ref    Ref    
  Other -0.030 -0.049 -0.011 0.002 -0.020 -0.042 0.003 0.083 -0.055 -0.093 -0.017 0.005 

Constant 0.601 0.578 0.623 0.000 0.571 0.562 0.581 0.000 0.607 0.592 0.621 0.000 
Random effect             
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Residual standard 
deviation at each time 

point (SE)             
  0 0.108 0.002 - - 0.105 0.002 - - 0.115 0.004 - - 
  1 0.148 0.003 - - 0.147 0.003 - - 0.150 0.005 - - 
  2 0.152 0.003 - - 0.150 0.003 - - 0.156 0.005 - - 
  3 0.153 0.003 - - 0.152 0.003 - - 0.155 0.005 - - 
  4 0.151 0.003 - - 0.150 0.003 - - 0.154 0.005 - - 
  5 0.152 0.003 - - 0.150 0.003 - - 0.156 0.005 - - 

* Other combines rheumatoid arthritis and avascular necrosis. ASA: American Society of Anaesthesiologist (ASA) Physical Status 

Classification, CI: confidence interval, Coef: coefficient 



  

 
 

Figure 5.1: Flow diagram of patients included in the longitudinal analysis 

 

QoL: quality-of-life. 



  

 
 

Figure 5.2: Long-term patterns of QoL utility value changes in total joint replacement (TKR) patients in (A) females and (B) males.  

The solid black lines represent no diabetes group; the grey dotted lines represent the diabetes group. Data points represent the time coefficients for 
each group predicted by the multilevel model adjusted for covariates. The error bars represent the 95% confidence intervals. 
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5.9. Supplementary materials 

Appendix A 

Figure S5.1: QoL utility value changes among TKR patients by HbA1c control 

 

Those in the diabetes group were further sub-grouped into patients with poor (HbA1c ≥ 
7%) and adequate glycaemic control (HbA1c < 7%), and those with missing HbA1c 
values. Data points represent the time coefficients for each group predicted by the 
multilevel model adjusted for covariates. The error bars represent the 95% confidence 
intervals.  

HbA1c: glycated haemoglobin, QoL: quality-of-life, TKR: total knee replacement 

 

  

.5
.5

5
.6

.6
5

.7
.7

5
Q

oL
 u

til
ity

  v
al

ue
s

Pre-surgery Year 1 Year 2 Year 3 Year 4 Year 5
Time

No diabetes Diabetes (adequate control)
Diabetes (poor control) Diabetes (missing HbA1c)



164 
 

Figure S5.2: QoL utility value changes among TKR patients by medication use 

 

Those in the diabetes group was further categorised by the types of anti-diabetic 
medication use. The data points represent the time coefficients for each group predicted 
by the multilevel model adjusted for covariates. The error bars represent the 95% 
confidence intervals. 
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6.1. Abstract 

Background 

There is growing evidence that quality-of-life (QoL) has a strong association with 

mortality. However, incorporation of QoL is uncommon in standard survival modelling. 

Methods  

Using data extracted from a registry of patients undergoing total knee replacement (TKR), 

the impact of incorporating QoL in survival modelling was explored using four 

parametric survival models. QoL was incorporated and tested in two forms which are 

baseline and change in QoL due to intervention. Life expectancy and quality-adjusted life 

years (QALYs) were calculated and comparisons made to a reference model (no QoL) to 

translate the findings in the context of modelled economic evaluations. 

Results 

A total of 2,858 TKR cases (2,309 patients) who had TKR between 2006 and 2015 were 

included in this analysis. Increases in baseline and change in QoL were associated with a 

reduction in mortality. Compared to the reference model, differences of up to 0.32 life 

years and 0.53 QALYs were observed and these translated into a 9.5% change in 

incremental effectiveness. These differences were much larger as the strength of the 

association between QoL and mortality increased. 

Conclusions 

This work has demonstrated that the inclusion of QoL measures (at baseline and change 

from baseline) when extrapolating survival does matter. It can influence health outcomes 

such as life expectancy and QALYs, which are relevant in cost-effectiveness analysis. 

This is important because neglecting the correlation between QoL and mortality can lead 

to imprecise extrapolations thus risk misleading results affecting subsequent decisions 

made by policy makers. 
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6.2. Introduction 

Extrapolation of survival beyond the study period is often required to capture outcomes 

over a longer time frame, such as lifetime horizon, to adequately inform policy makers 

on funding decisions. A variety of extrapolation approaches can be employed in health 

economic analysis; for instance, directly derived from life tables [1-3] or by modelling 

survival to extrapolate observed trends in the hazard for death [4, 5]. The increasing 

availability of individual-level data has allowed analysts to more accurately model 

survival to the population of interest [6-8]. Survival modelling approaches can vary from 

standard (semi-)parametric methods to complex flexible models and there have been 

much guidance on model selection to avoid inconsistent and biased analyses [9-15]. 

Underpinning most economic models is a variant of a survival model used to generate 

hazard functions required for estimating survival. These survivor functions can be used 

to inform transition probabilities in a Markov model [16] and have helped inform a range 

of health economic disease progression models [17-19], which simulate both individuals’ 

life expectancy and health states that impact on patients’ quality-of-life (QoL). 

The relationship between self-reported health and mortality is well-documented and 

numerous studies have demonstrated the predictive significance of such measures on 

health outcomes [20-22]. Patient-reported outcomes such as QoL have consistently been 

demonstrated to be an important predictor of mortality in patients with chronic diseases 

such as diabetes, pulmonary arterial hypertension, cancer and also in the general 

population [23-27]. These studies have shown that patients reporting poorer QoL 

generally have poorer survival even after controlling for standard risk factors such as 

demographic and clinical characteristics [28, 29]. Similarly, change in QoL has also been 

reported to be associated with mortality [25, 30]. Considering the growing evidence for 

this, it can be important for health economic models to account for the relationship 

between varying levels of QoL and mortality to capture survival estimates for a complete 

economic analysis. This is important because imprecise extrapolations could misinform 

policy decisions.  

The purpose of this paper is to examine the importance of the relationship between QoL 

and mortality and how this could influence survival estimates. We illustrate this using a 

cohort of registry patients who have undergone total knee replacement (TKR) extracted 

from the St. Vincent’s Melbourne Arthroplasty Outcomes (SMART) Registry as our case-
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study. We consider the aspects of QoL measurement (baseline and change due to 

intervention) that are relevant to economic evaluations and correlations that could have 

implications for estimating survival. Changes in QoL can be important particularly in the 

context of surgery because changes after surgery can be large [31, 32] therefore the degree 

to which this can influence survival estimates may be important.  

The structure of the paper is as follows. First, we explain the significance of the 

correlation between QoL and survival and where this can be of importance in health 

economic models. We then empirically explore the effects of QoL on survival and 

develop survival models to quantify this. In health economic analyses, gains in health 

outcomes such as life expectancy (LE) and quality-adjusted life year (QALY) are most 

relevant. Therefore, survival estimates are used to calculate LE and QALYs to translate 

our findings and its implications in the context of modelled economic evaluations. The 

discussion draws together the potential implications on current practices of extrapolating 

survival, highlight areas for further research directions and limitations of the current 

study.  

Current survival extrapolation approaches and their underlying QoL assumptions on 

mortality 

A common approach of extrapolating survival in economic evaluations that typically do 

not have access to individual-level data is to apply population derived mortality estimates 

from publicly available life tables. For example, data based on age and sex from national 

life tables were applied to estimate QALYs gained until the end of the patient’s life [1-3, 

33]. Although a reasonable approach, it does not take into account the influence of 

specific patient characteristics of the underlying population on survival estimates [4]. 

Importantly, it also assumes no correlation between QoL and mortality. 

In cases where individual data is available, survival can be estimated through survival 

analysis if information on death is also collected. These approaches commonly include 

baseline demographic and patient characteristics such as age, gender and co-morbidity 

measures to generate survival estimates relevant to the patient population of interest. 

However, such an approach also neglects any potential correlation between QoL and 

mortality.  
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Irrespective of the extrapolation technique employed, current health economic models 

rarely capture the correlation between QoL and survival. We postulate that if QoL is 

correlated with mortality, it could influence survival and consequently, LE and QALYs 

which are relevant to economic evaluations.  

Significance of correlation between QoL and survival in modelled economic evaluations 

In the following section, it is assumed that preference-based health-related QoL can be 

measured at an individual level which we denote as 𝑈𝑈𝑖𝑖 and similarly the time the 

individual experience that health state is denoted by 𝐿𝐿𝐿𝐿𝑖𝑖 where i denotes the individual. 

We assume that 0 < 𝑈𝑈𝑖𝑖 < 1 and for simplicity, impose time invariance on 𝑈𝑈𝑖𝑖 over the 

period used in the evaluation which for many studies is remaining life expectancy. 

While the QALY is ultimately a product of both utility (U) reflecting health status and 

LE, the assessment of these outcomes has been considered largely independently with 

little recognition that health status and survival should be jointly modelled as they could 

be highly correlated. We illustrate the significance of the correlation between QoL and 

survival using the following well-known identity [34] 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 𝐸𝐸(𝑈𝑈 ∙ 𝐿𝐿𝐿𝐿) =  𝐸𝐸(𝑈𝑈) ∙ 𝐸𝐸(𝐿𝐿𝐿𝐿) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑈𝑈, 𝐿𝐿𝐿𝐿) 

where E indicates the expected value and 𝑐𝑐𝑐𝑐𝑐𝑐(𝑈𝑈, 𝐿𝐿𝐿𝐿) denotes the covariance of U and 

LE. If U and LE are uncorrelated (i.e. statistically independent), then 𝐸𝐸(𝑈𝑈 ∙ 𝐿𝐿𝐿𝐿) =  𝐸𝐸(𝑈𝑈) ∙

𝐸𝐸(𝐿𝐿𝐿𝐿) and the product of two expected values is likely to be the more efficient estimator. 

However, if those within the cohort with higher levels of U also have longer survival, 

indicating a positive correlation, then 𝑐𝑐𝑐𝑐𝑐𝑐(𝑈𝑈, 𝐿𝐿𝐿𝐿) > 0 and this approach would result in 

downward biased estimates. Therefore, calculating QALYs on the assumption that quality 

and quantity of life is independent can bias QALY estimates. Further illustration is 

provided in Appendix 1 and for detailed explanations, see [34].  

While it is likely that the incorporation of standard baseline characteristics will provide 

valid survival estimates and will at least partially capture 𝑐𝑐𝑐𝑐𝑐𝑐(𝑈𝑈, 𝐿𝐿𝐿𝐿), there is growing 

evidence indicating QoL is an important independent predictor of mortality in addition to 

these standard risk factors [23, 28, 35-37]. Therefore, current extrapolation approaches 

that do not capture the full correlation between QoL and survival could give rise to the 

potential for systematic bias in QALY outcomes. 
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Health economic evaluations involves comparisons between alternative interventions, 

therefore are primarily concerned with the incremental outcomes associated with health 

care interventions. Additionally, one must also consider the effect a treatment may have 

on baseline utility (𝑈𝑈0𝑖𝑖 ), which is denoted as ∆𝑈𝑈𝑖𝑖 to represent the change in quality-of-life 

after the intervention. Importantly, ∆𝑈𝑈𝑖𝑖 may vary across patients; for example, some 

patients experience a great improvement in their QoL which should be reflected in them 

having a higher ∆𝑈𝑈𝑖𝑖, while for a proportion of patients ∆𝑈𝑈𝑖𝑖 < 0 indicating that the 

intervention has not had any positive impact.  

As far as we are aware the statistical relationship between ∆𝑈𝑈𝑖𝑖 and survival has not been 

widely studied. It is plausible that it is likely to be positively correlated with survival for 

most interventions (i.e. patients have greatest improvement in quality of life are expected 

to live longer). Given the bounded nature of health outcomes, lower values of 𝑈𝑈0𝑖𝑖  will 

provide greater scope for improvement as 𝑈𝑈0𝑖𝑖 + ∆𝑈𝑈𝑖𝑖 < 1 and if this is true, then the 

correlation is likely to be negative. However, it is also plausible that for some diseases 

and treatments there is a positive correlation if those with better initial quality of life 

respond more to treatment. In the next section we will explore this issue empirically for 

the case of TKR. 

6.3. Methods 

Data source and study population 

Data on all patients, aged 55 and above, who had TKR between January 1, 2006 and 

December 31, 2015 were extracted from the SMART Registry. It captures clinical and 

patient-reported outcomes in all patients who undergo elective hip and knee replacement 

at the study institution. Baseline data were prospectively collected and included patient 

socio-demographic variables and self-reported co-morbidities. Patients complete a 

general health questionnaire (SF-12) within 12 weeks prior to surgery and annually post-

operatively. Mortality data was recorded and verified with information from the 

Registrars of Births, Deaths and Marriages via the Australian Orthopaedic Association 

National Joint Replacement Registry [38]. Individuals were excluded from analysis if 

they had missing baseline utility value, underwent revision or died in the first year of 

follow-up. 
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A total of 2,858 TKR cases (2,309 patients) contributed to this analysis. All patients were 

followed up until December 31, 2016, the latest date with complete death records at time 

of data extraction. The mean duration of follow-up was 5.71 years (SD, 2.75) with the 

longest duration being 10.99 years. Within this period, 295 (12.78%*) of patients died. 

Baseline (pre-surgery) and 12 month post-surgery utilities were calculated from SF-12 

responses using the published SF-6D algorithm [39]. Among those patients who have 

been followed-up for at least 5 years, 92.4% of patients had completed the SF-12 surveys 

at all 5 time points. Therefore, using this as a proxy to indicate that patients have not been 

loss to follow-up, the follow-up rate is 92.4%. Change (improvement or deterioration) in 

utility (∆U) was calculated as the difference between baseline and 12-month utilities. To 

facilitate comparisons, the cohort was grouped into tertiles by baseline utility with the 

first tertile representing one-third of the cohort with the lowest baseline utility and the 

third tertile representing those with the highest baseline utility. Further details of the 

patient population used in this case study can be found in Appendix 2.  

Exploring the empirical relationship between QoL and survival 

To visually examine the impact of different baseline and change in QoL utility values on 

survival, Kaplan-Meier survival curves were plotted. Comparisons were made between 

the lowest and highest tertiles by baseline utility and also between those who improved 

or deteriorated following surgery. Log-rank test was performed to test for differences 

between groups. 

Survival models for all-cause mortality  

To illustrate and quantify both the impact and extent of influence QoL has on mortality 

risk, four risk equations were developed to estimate the hazard of all-cause mortality for 

patients undergoing TKR using parametric survival models, where time at risk starts 12 

months post-surgery. For simplicity, only sex and relevant utilities were included, and 

age was used as the time scale of the model thus allowing for more efficient within sample 

predictions [12]. The four survival models demonstrated the extent of QoL impact on 

mortality risk. Model 1 served as the reference model with sex as the only covariate, 

Model 2 contained sex and baseline utility, Model 3 contained sex and change in utility, 

and lastly Model 4 included sex, baseline utility and change in utility. Model 1 represents 

 
* Corrected post-publication 



172 
 

a simplification of the most common method of estimating survival where mortality risk 

is defined by non-modifiable patient characteristics such as sex and does not include 

patient-reported outcomes such as QoL. As individual patients were allowed to contribute 

multiple knee surgeries (maximum of 2) to the analysis, this was taken into account by 

clustering the analysis at the level of the individual patient [40].  

Various parametric distributions (exponential, Weibull, Gompterz, log-logistic and log-

normal) were considered. The Gompertz distribution was determined to be the best fit 

through assessments based on graphical exploration and both Akaike and Bayesian 

Information Criterion (AIC/BIC) [15, 41]. Graphical plots, measures of model fit and 

Stata codes are provided in Appendix 3. These assessed fit to available data 

(demonstrating internal validity) and external validation included comparing mortality 

rates and life expectancies by age and gender from life-tables published by the Australian 

Bureau of Statistics [42]. It is possible that other patient demographic and clinical 

characteristics (e.g. body mass index (BMI), smoking status, socioeconomic status) could 

influence survival therefore risk equations including these additional covariates were 

tested in sensitivity analysis (outlined in Appendix 4). All analyses were conducted using 

Stata 14.2 SE (Stata Corp, College Station). 

Translating findings in the context of modelled economic evaluations 

Relevant to economic evaluations and health economic disease progression models, 

survival estimates are commonly translated into life years and/or QALYs to quantify 

health effects derived from an intervention. As such, survival functions generated were 

used to estimate the life expectancies for each individual patient using standard life table 

methods (outlined in Appendix 5). QALYs were calculated using the area under the curve 

method [43] using patient-level utilities and estimated life expectancies, and assuming 

linearity between the two utility scores, which is a common approach in cost-effectiveness 

studies [44, 45]. Incremental QALYs (gained from TKR) was calculated as the difference 

in QALYs observed and QALYs expected assuming a control group where the patient 

did not undergo surgery and experienced no change from baseline utility, as is standard 

in literature [45-49]. LEs and QALYs from each of the models were compared to the 

reference model (Model 1) to demonstrate the impact of incorporating QoL when 

estimating survival. To further illustrate the possible impact across different subgroups 

within the cohort, a simulation exercise was conducted to show how LE and QALY might 
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vary across ages at different levels of baseline utility. Inputs for change in utility were the 

mean change at each level of baseline utility as observed in the cohort.  

Assessing the strength of association between QoL and mortality on incremental 

outcomes 

The relative size of the impact on estimated LEs and QALYs is likely to be larger with 

stronger associations between QoL and mortality. This will in turn have an impact on 

incremental outcomes such as incremental QALYs that are of interest in economic 

evaluations. We tested the impact of the strength of association by imposing a range of 

5% increments and decrements on the hazard ratios of QoL predictors generated from 

each of the survival models on the same cohort. LEs, QALYs and incremental QALYs 

were calculated as per methods described above and compared to the base case to examine 

the magnitude of change in incremental outcomes as the association increases or 

decreases. We present the results to show the effects of varying strengths of association 

on incremental QALYs for each of the models.  

6.4. Results 

The average utility of the cohort was 0.56 (SD, 0.11) at baseline and improved by 0.16 

(SD, 0.19) 12 months after surgery. Figure 6.1A shows the patterns of QoL following 

TKR for an average TKR patient and for each tertile group. Patients in the second tertile 

were observed to have a very similar pattern to the cohort average. The pattern of QoL 

varied depending on baseline utility. Patients with a lower baseline utility exhibited a 

greater magnitude of improvement post-surgery than those with higher utility thus 

showing a negative correlation between baseline and change in utility at 12 months (∆U) 

(Figure 6.1B). This is likely to be due to ceiling effects where there is less room to 

improve beyond a maximum utility value of 1, particularly for those with high baseline 

utility.  

Observed relationship between QoL and survival 

Figure 6.2 shows the Kaplan-Meier survival plots of (A) patients with low baseline utility 

(first tertile) compared to high baseline utility (third tertile) and (B) patients who 

deteriorated (∆U≤0) compared to those who improved (∆U>0) after surgery. Patients with 

low baseline utility were observed to have higher mortality risk compared to high baseline 
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utility patients (P=0.019) and patients who did not improve (∆U≤0) after surgery were 

also observed to be at a greater risk of death (P<0.001). This highlights the higher rate of 

mortality among those with lower utility values. 

Coefficients and hazard ratios from survival models 

The coefficients and hazard ratios for each of the models for all-cause mortality are 

presented in Table 6.1. Results from all models indicated that being female was associated 

with a significant reduction in all-cause mortality hazard by up to 45.6%. Results from 

Model 2 indicate a 9% reduction in hazard of death for every 0.1 unit increase in baseline 

utility, although not statistically significant (P=0.115). Incorporating change in utility 

(Model 3) produced a statistically significant coefficient, indicating a 15% (95%CI, 7.8-

21.6%) reduction in hazard of death for each 0.1 unit increase in utility change. Results 

from Model 4 showed a statistically significant relationship with mortality indicating that 

a 0.1 unit increase in baseline utility is associated with a 18.8% reduction in hazard of 

death (95% CI, 8.02-28.3%), while a 0.1 unit greater improvement in utility 12 months 

following surgery was associated with a 20.0% (95% CI, 12.4-27.0%) reduction in hazard 

of death. These results point to evidence of a relationship between QoL and overall 

survival; particularly for change in utility. Similar results were produced from our 

sensitivity analysis with models including additional covariates (patient demographic and 

clinical characteristics). These results can be found in Appendix 4. The inclusion of QoL 

variables improved model fit as Models 2, 3 and 4 have lower AIC/BIC values (Table 

6.1) compared to Model 1. 

Life expectancy and QALY estimates 

The results (Table 6.2) show that compared to the reference model, incorporating baseline 

utility into the survival model had a very small impact (less than a 0.2% change) on the 

average LE and QALY of the cohort. Change in utility had a larger impact as observed 

by Models 3 and 4, with differences of up to 0.32 years of life expectancy and 0.53 

QALYs. Although small in absolute numbers, the relative differences in incremental 

QALYs were up to 9.5% compared to the reference model and these may not be 

insignificant to incremental cost-effectiveness results. Similar results were obtained using 

models that included patient demographic and clinical characteristics (see Appendix 4 for 

sensitivity analysis results).  
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Results from the simulation exercise are presented as contour plots (Figure S6.4 in 

Appendix 6) for each of the models showing the differences in estimated LE across ages 

55 to 90 at varying baseline utility. LEs generated from Model 1 for each year in age were 

the same irrespective of baseline utility while Models 2, 3 and 4 showed variations in LE 

at different utility levels. Generally, patients with higher baseline QoL were observed to 

have longer LEs compared to those with lower QoL. While variations in health outcomes 

were small when the cohort was considered collectively (Table 6.2), these differences 

were much larger at different levels of baseline utility. For example, the LE of a 65-year 

old female estimated using Model 1 was 24.9 years regardless of baseline utility. Using 

Model 4, the estimated LE for 65-year old female patients with baseline utility in the first 

tertile (low baseline) is 24.6 years and 26.5 years for those in the third tertile (high 

baseline).  

Impact of strength of association on incremental QALYs 

Figure 6.3 shows how incremental QALYs change (compared to base case incremental 

QALYs presented in Table 6.2) for Models 2, 3 and 4 as the strength of association 

between QoL and mortality varies. Across all models, it is observed that as the strength 

of the association increases, the change in incremental QALYs increases. Using Model 4 

as an example, reducing the QoL hazard ratios by 20% (representing an increase in 

strength of association), resulted in a 30.3% increase in incremental QALYs. This was 

similarly observed using Models 2 and 3 with a 29.6% and 15.6% change from the base 

case estimates, respectively. The observed curves appear to plateau with further increases 

and decreases in the % change in QoL HRs (i.e. as HRs become very small and big, 

respectively), particularly for Model 4 and 2. The impact of strength of association 

appears much weaker in Model 3 as observed by the flatter curve, thus indicating larger 

changes in HR of change in QoL are required for the same impact on incremental QALYs.  

As Model 4 incorporates the effects of both baseline and change in QoL, this may explain 

its asymmetrical shape which does not sit between the curves of Models 2 and 3. Within 

Model 4, the impact of QoL appears to be influenced by baseline QoL based on the 

similarities in the shape of the curve with Model 2. This may likely be due to the larger 

scale of baseline QoL compared to the change in QoL, which is on a smaller scale; i.e. 

the mean baseline QoL utility of the cohort is 0.56 while the mean change in QoL of the 

cohort is 0.16. As baseline QoL is much larger than the change in QoL, the same relative 
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change on either of these variables will have very different impacts and expected to be 

larger for baseline QoL.  

6.5. Discussion 

Using an example of TKR, survival models were developed to investigate the relationship 

between QoL and survival, and its implications on outcomes relevant to economic 

evaluations. In this case study, it was postulated that QoL (utility value) could affect 

mortality risk; via the baseline utility and the change in utility 12-months post-surgery. 

The results from this study suggest that the inclusion of QoL measures when extrapolating 

survival can influence outcomes such as LEs and QALYs. The main implication this has 

for economic evaluations is that while there has been much research pointing towards a 

positive relationship between the two [23-26, 50, 51], it is uncommon to quantitatively 

consider QoL when extrapolating survival. This therefore overlooks the possible 

correlation between the two. If a positive correlation is present, patients with higher QoL 

are expected to exhibit longer LE compared to those with lower QoL. This will translate 

to more QALYs thus impacting cost-effectiveness results.  

Although the absolute impact on LE and QALYs on the overall cohort was small (0.32 

years and 0.53 QALYs respectively), these translated into a 9.5% change in incremental 

effectiveness, noting that even small differences in the denominator can lead to quite 

different cost-effectiveness results and can have an impact on decision making. TKR is 

generally considered a cost-effective procedure [1, 45], therefore in this case, inclusion 

of QoL is less likely to have a substantial impact on decision-making if based on cost-

effectiveness thresholds. However, the impact on decisions based on ranking of 

interventions could be more pronounced although dependent on the competing 

alternatives compared. The differences in incremental effectiveness were much larger 

when examined at different levels of QoL and can provide valuable information on the 

value of intervening within a cohort. Further, the inclusion of QoL into survival models 

enables important patient-level heterogeneity to be incorporated and allows for subgroup 

analyses which can have important economic and clinical implications; for instance, 

targeting a subgroup of younger patients with poorer QoL. 

In most modelling approaches, utilities are often incorporated as a fixed uniform utility 

for a health state that is applied to all patients in the health state [52] therefore not taking 
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into account the potential influence of QoL on survival and potentially neglecting the 

underlying heterogeneity in patient-reported outcomes. Approaches that consider QoL 

when estimating outcomes such as survival are not new as techniques such as quality-

adjusted survival analysis [53] have been used; for instance, Hayes et al. [28] developed 

a diabetes simulation model which considers the significance of QoL as a predictor of 

future events and incorporates dynamically changing utilities when extrapolating long-

term outcomes. Simulated results showed patients reporting full health (utility=1) had 4.7 

years longer life expectancy and enjoy 10.9 QALYs more compared to a patient with a 

baseline utility of 0.6. This large difference in QALYs suggests a potential for bias if the 

effect of QoL was omitted.  

The integration of QoL in health economic models will require estimation of risk 

equations for transition probabilities that explicitly include measure of health status such 

as utilities as demonstrated in this case study. While it is acknowledged that such analyses 

would require access to individual-patient level data, such information is becoming 

increasingly available particularly as health status instruments are routinely used in many 

clinical studies. Further, as a new generation of risk equations are published, these can 

further inform future health economic models. The survivor functions estimated in this 

study can potentially be applied as an external data source to extrapolate survival in cases 

where patient-level data is not available using the framework and methods described by 

Jackson et al. [12]. For example, these survival functions can be used to extrapolate longer 

term mortality of the treatment and/or control group of patients that have common 

characteristics to those in this study, such as patients with osteoarthritis. Mortality can be 

adjusted to the baseline utility and change in utility captured in trials of such populations 

using the hazard ratios presented in this study.  

The associations between QoL and mortality could differ depending on the disease or 

intervention which may be due to the underlying pathophysiology of the disease. As 

health economic models are increasingly used in cost-effectiveness analysis to evaluate 

new drugs and treatment strategies and there is a need to test this correlation in working 

economic models in different disease areas as evidence suggests that health-related QoL 

indicators exhibit important predictive value for survival over clinical and demographic 

baseline characteristics. This has been demonstrated across various chronic diseases such 

as diabetes [23, 54], end-stage renal disease [35, 55], cardiovascular diseases [51, 56] and 
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in cancer [57, 58]. In such cases, the exclusion of an important predictor such as QoL can 

result in omitted variable bias when estimating survival [59]. The results presented in this 

study also indicate that the relative impact on incremental outcomes is likely to be 

dependent on the strength of the association between QoL and mortality (Figure 6.3). 

Therefore, approaches to estimate survival for economic evaluations should examine 

potential correlations and consider the inclusion of QoL.  

Incorporating the effects of change in utility is rarely considered when extrapolating 

survival. The results from this study have shown that it is important to measure change 

(pre and post) and consider the possible effects of correlations for interventions such as 

surgery where large improvements in QoL are observed. This analysis has highlighted 

the importance of having pre- and post-measures which can be used in clinical settings to 

not just measure patient’s baseline QoL but also to include post-intervention assessment 

which can reveal important information on disease progression and outcomes; for 

example, would patients who respond favourably to an expensive cancer treatment also 

have better survival? 

The clear relationship between baseline and change in utility (Figure 6.1B) appears to be 

important. It shows that individuals with the lowest QoL have the greatest potential to 

gain which will have a significant impact on incremental QALYs. It is acknowledged that 

the observed correlation is an artefact (mathematical coupling) resulting from the 

calculation of two variables commonly noted in pre- and post-measurements [60-62]. 

Specific methods for resolution are beyond the scope of this paper and have been widely 

discussed in the literature [62, 63]. Regardless, results from this case study have 

demonstrated that the correlation between baseline and change in QoL is relevant when 

considering extrapolating survival and effectiveness. It is difficult to ascertain to what 

extent this correlation is accounted for in most economic evaluations. Generally cost-

effectiveness analyses apply an average change that is similar across all subgroups [64] 

and do not consider this potential correlation. However, in doing so, it is likely one would 

underestimate the improvements of those with low baseline and overestimate for those 

with high baseline. Therefore, this needs to be carefully considered as this could have 

implications for economic evaluations, particularly in subgroup analyses.  

There are several limitations to the current analysis. Linear assumptions were made 

regarding the interpolation and extrapolation of utility. These assumptions are commonly 



179 
 

employed in most modelling approaches [45-49] however it is noted that potential 

regression to the mean effects may result in an overestimation of QoL and therefore 

QALYs [65]. Although there are a number of survival analysis techniques such a time-

dependent survival analysis and frailty models that can model correlated data and were 

considered for this analysis, these models impose a large number of assumptions and 

results can be difficult to interpret. Therefore, to clearly demonstrate our aims, we opted 

for survival analysis methods that are most commonly used to estimate survival in 

economic evaluations [4, 5, 9, 41].  

Preference-based measures such as EQ-5D are more commonly used to derive utility 

values for economic evaluations. This analysis uses utility values derived from SF-12. 

Although differences in utility values from different instruments are well-documented 

[66-68] and are likely due to the constructs of these instruments [69], utility values 

derived from instruments such as EQ-5D and HUI3 have similarly been shown to be 

strong predictors of mortality [23, 26]. The advantage of using SF-12 is that it is less 

prone to ceiling effects compared to EQ-5D [70] and therefore is better able to 

discriminate between patients with different levels of improvement following surgery. 

Conversely, it suffers from floor effects which makes it less useful in describing severe 

health states [66]. It remains unclear if utility values from different instruments would 

provide the same level of discrimination by baseline and change in utility values as 

observed in this study and if the association between QoL and mortality would differ 

depending on the instruments used. Further research is required to examine if survival 

extrapolation using other instruments would give different results that could influence 

decision-making and compromise comparability of cost-effectiveness analyses.  

6.6. Conclusion 

This research aimed to investigate the effect of accounting for the relationship between 

QoL (baseline and change) and mortality when extrapolating outcomes to a lifetime 

horizon illustrated with a case study in total knee replacement surgery. The results showed 

that correlations between QoL and mortality can influence health outcomes such as life 

expectancies and QALYs and consequently incremental QALYs. Although observable 

differences in LE and QALYs were small, this could translate into an important difference 

in incremental QALYs and can be relevant in cost-effectiveness calculations. Therefore, 
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future approaches to estimate survival for economic evaluations should consider the 

inclusion of QoL because overlooking this correlation can result in imprecise 

extrapolations and risk misleading results affecting subsequent decisions made by policy 

makers. 



181 
 

6.7. Tables and figures 

Table 6.1: Coefficients and hazard ratios from Gompertz proportional hazards survival model for all-cause mortality 

 Model 1 Model 2 
Parameter Coef. (95%CI) HR (95%CI) Coef. (95%CI) HR (95%CI) 
Gamma 0.12 (0.11,0.14)   0.13 (0.11,0.14)   
Constant -13.25 (-14.78,-11.71) 0.00 (0.00,0.00) -12.74 (-14.43,-11.05) 0.00 (0.00,0.00) 
Female -0.52 (-0.77,-0.28) 0.59 (0.46,0.76) -0.56 (-0.81,-0.31) 0.57 (0.45,0.73) 
Baseline utility a - - - - -0.09 (-0.21,0.02) 0.91 (0.81,1.02) 
Change in utility a - - - - - - - - 
AIC/BIC  -10.49 7.39   -11.55 12.28  
   
 Model 3 Model 4 
Parameter Coef. (95%CI) HR (95%CI) Coef. (95%CI) HR (95%CI) 
Gamma 0.12 (0.10,0.14)   0.12 (0.10,0.14)   
Constant -12.80 (-14.37,-11.23) 0.00 (0.00,0.00) -11.52 (-13.30,-9.74) 0.00 (0.00,0.00) 
Female -0.52 (-0.77,-0.27) 0.59 (0.46,0.76) -0.61 (-0.86,0.36) 0.54 (0.42,0.70) 
Baseline utility a - - - - -0.21 (-0.33,-0.08) 0.81 (0.72,0.92) 
Change in utility a -0.16 (-0.24,-0.08) 0.85 (0.78,0.92) -0.22 (-0.31,0.13) 0.8 (0.73,0.88) 
AIC/BIC  -26.78 -2.94   -38.42 -8.64  

a Increase in utility per 0.1 unit  
Note: Model 1 (reference model) with sex as the only covariate, Model 2 contained sex and baseline utility, Model 3 contained sex and 
change in utility, and lastly Model 4 included sex, baseline utility and change in utility 
Coef.: Coefficient; HR: Hazard ratio; 95%CI; 95% Confidence interval 
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Table 6.2: Estimated life expectancies and QALYs of the cohort from each of the models 
 Model 1 Model 2 Model 3 Model 4 

 Mean SD Mean SD Diff a % change  Mean SD Diff 
a 

% 
change 

Mean SD Diff a % change 

Life 
expectancy 18.39 6.46 18.37 6.47 -0.03 -0.16% 18.67 6.69 0.28 1.52% 18.71 6.80 0.32 1.74% 

QALY 
(TKR) 13.84 5.6 13.85 5.68 0.01 0.07% 14.21 6.20 0.37 2.67% 14.37 6.56 0.53 3.83% 

QALY (no 
surgery) b 10.78 4.08 10.82 4.29 0.05 0.46% 10.87 4.03 0.10 0.93% 11.02 4.46 0.24 2.23% 

Incremental 
QALY 3.06 3.37 3.03 3.33 -0.04 -1.31% 3.34 3.65 0.27 8.82% 3.35 3.70 0.29 9.48% 

a Difference in comparison to Model 1 (reference).  
b Assuming the patient’s baseline quality of life is carried forward for life and QALY calculated using area under the curve method.  
Note: Model 1 (reference model) with sex as the only covariate, Model 2 contained sex and baseline utility, Model 3 contained sex and 
change in utility, and lastly Model 4 included sex, baseline utility and change in utility 
Diff: Difference; QALY: Quality-adjusted life years; TKR: Total knee replacement 
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Figure 6.1: (A) Variation in the pattern of QoL following TKR across groups (tertiles) categorised by baseline utility (B) Mean change in 
utility at 12 months across tertile groups.  

Error bars represent the 95% confidence intervals.  
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Figure 6.2: Kaplan-Meier survival curves (A) Survival differences by baseline utility (B) 
Survival differences by change in utility  

*Note: Analysis time begins 12 months after surgery 
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Figure 6.3: Change in incremental QALYs against change in QoL HR across models 
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6.9. Supplementary materials  

Appendix 1 

Illustrating the impact of the correlation between U and LE on QALYs.  

QALY is ultimately a product of both utility (U) reflecting health status and life 

expectancy (LE). A common approach employed to calculate lifetime QALYs in 

economic evaluations (for example, [1-3]) that typically do not have access to individual-

level data is to assume that remaining QALYs for the population by simply multiplying 

𝐸𝐸(𝑈𝑈) by 𝐸𝐸(𝐿𝐿𝐿𝐿) (method 1) where E indicates the expected (mean) value and LE derived 

from publicly available life tables. For example, in reference to the table below across 

two hypothetical scenarios A and B, the mean of utility is 0.46 and the mean of estimated 

life expectancy is 16.52. The calculated QALY using method 1 is 7.61 which is the same 

across both scenarios. Such an approach will only hold when 𝑈𝑈 and LE are statistically 

independent and more generally the relationship can be described using the following 

well known identity [4] 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 𝐸𝐸(𝑈𝑈 ∙ 𝐿𝐿𝐿𝐿) =  𝐸𝐸(𝑈𝑈) ∙ 𝐸𝐸(𝐿𝐿𝐿𝐿) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝑈𝑈, 𝐿𝐿𝐿𝐿) 

 Estimated life expectancies (LE) 
 Utility (U) A B 
 0.50 20.24 20.24 
 0.46 14.46 25.81 
 0.41 9.77 9.77 
 0.52 23.42 17.42 
 0.52 25.81 7.21 
 0.35 7.21 15.50 
 0.46 16.88 16.88 
 0.48 17.42 14.46 
 0.35 7.21 15.50 
Expected value, E 0.46 16.52 16.52 
Correlation between U and LE 0.95 0.03 
Calculated QALYs   
  Method 1: E(U)E(LE)  7.61 7.61 
  Method 2: E(U*LE) 7.86 7.62 
Covariance  0.26 0.01 

 

However, if this assumption of independence between utility and LE does not hold, based 

on the above mathematical entity, there is an additional covariance term that needs to be 



194 
 

accounted for. For example, if there is a correlation between utility and LE, meaning that 

we assume higher levels of baseline utility have longer survival as in scenario A below 

(i.e. quality of life is positively correlated with survival which has been demonstrated in 

diabetes [5] and cancer [6]), then there is some degree of covariance that is not captured, 

and so this would bias QALY estimates downwards (7.86 vs. 7.61). Where the assumption 

of independence between utility and LE holds, this is less likely to matter.
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Appendix 2 

Data Source 

Data on all patients, aged 55 and above, who had TKR between January 1, 2006 and 

December 31, 2015 were extracted from the St. Vincent’s Melbourne Arthroplasty 

Outcomes (SMART) Registry which captures clinical and patient reported outcomes in 

all patients who undergo elective hip and knee replacement at the study institution. 

Baseline data were prospectively collected and included patient socio-demographic 

variables and self-reported co-morbidities. Follow-up data captured an extensive range of 

outcomes, including surgery and prosthesis-related variables. Patients complete a general 

health questionnaire (SF-12) within 12 weeks prior to surgery and annually post-

operatively. Mortality data is recorded and verified with information from the Registrars 

of Births, Deaths and Marriages via the Australian Orthopaedic Association National 

Joint Replacement Registry [7]. Individuals were excluded from analysis if they had 

missing baseline utility value, underwent revision or died in the first year of follow-up. 

Utilities were calculated from SF-12 measures using the published SF-6D algorithm [8]. 

For a small proportion of patients (n=45, 1.6%), 12-month utilities were missing and these 

were imputed using linear interpolation between measurement points where available, 

and for patients where subsequent measurement points were missing, their baseline 

utilities were carried forward to 12 months [9]. Change (improvement or deterioration) in 

utility was calculated as the difference between baseline and 12-month utilities.  

A total of 2,858 TKR cases (2,309 patients) contributed to the analysis (Table S6.1) after 

108 cases were excluded based on: missing baseline utility (n=3), deceased in first year 

of follow-up (n=23) or revision surgery (n=82). The average age of patients undergoing 

TKR was 70.66 years (SD, 7.72) and two-thirds (67%) were female. The mean duration 

of follow-up was 5.71 years (SD, 2.75) with the longest duration being 10.99 years. 

Within this period, 295 (12.78%*) of patients died. A comparison between survivors and 

those who died showed that those who were deceased were observed to be significantly 

older (69.99 vs. 76.49 years; p=0.000), significantly fewer females (68.40% vs. 54.92%; 

p=0.000) and with a significantly smaller change in utility following surgery (0.16 vs. 

 
* Corrected post-publication 
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0.11; p=0.000). The average QoL utility was 0.56 (SD, 0.11) at baseline and on average, 

patients’ utility improved by 0.16 (SD, 0.19) 12 months after surgery. 

Table S6.1: Patient characteristics 

 All cases Survivors Deceased p-value 
a 

Number of cases 2858  2563  295   
Mean age (SD) 70.66 7.72 69.99 7.53 76.49 6.79 <0.001 
Female (%) 1915 67.00 1753 68.40 162 54.92 <0.001 
Deaths (%) 295 10.32      
Follow-up, years 
(SD) 5.71 2.75 5.77 2.78 5.19 2.47  

        
Utility (SD)        
Baseline 0.56 0.11 0.56 0.11 0.56 0.12 0.854 
12 months after 
surgery 0.72 0.16 0.72 0.16 0.67 0.16 <0.001 

Difference at 12 
months 0.16 0.19 0.16 0.16 0.11 0.16 <0.001 

a statistical test between survivors and deceased 
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Appendix 3 

Figure S6.1: Kaplan-Meier survival curve of the observed data 

 

Figure S6.2: Predicted survival curves from various parametric survival models fitted to 
the observed data 

 

Graphical exploratory analysis (Figure S6.2) showed Gompertz and Weibull distributions 

to have the most suitable fit. Further determination of the best fit was explored through 

Akaike and Bayesian Information Criterion (AIC/BIC). Lower AIC/BIC values indicated 

better fit therefore was used as the criteria to guide final choice. Table S6.2 shows the 

AIC/BIC values from various distributions for all four models.      

0.
00

0.
25

0.
50

0.
75

1.
00

Su
rv

iv
al

60 70 80 90 100
Age (years)

Kaplan-Meier survival estimate

0.
00

0.
25

0.
50

0.
75

1.
00

Su
rv

iv
al

60 70 80 90 100
Age (years)

Observed survival (KM) Gompertz
Weibull
Loglogistic

Lognormal



198 
 

Table S6.2: Measures of model fit for survival models  

Model 
diagnostics  

Model 1 Model 2 Model 3 Model 4 
AIC BIC AIC BIC AIC BIC AIC BIC 

Gompterz -10.49 7.39 -11.55 12.28 -26.78 -2.94 -38.42 -8.64 
Exponential 230.15 242.06 231.26 249.13 202.56 220.44 194.34 218.17 
Weibull -7.45 10.43 -8.56 15.28 -23.91 -0.08 -35.75 -5.96 
Loglogistic 9.76 27.64 8.05 31.88 -9.42 14.41 -22.82 6.97 
Lognormal 16.54 34.41 14.84 38.67 -1.04 22.79 -13.45 16.34 

Note: Model 1 (reference model) with sex as the only covariate, Model 2 contained sex 
and baseline utilities, Model 3 contained sex and change in utility, and lastly Model 4 
included sex, baseline utilities and change in utility 
AIC: Akaike information criterion; BIC: Bayesian information criterion 
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Figure S6.3: Cox-Snell residual plots 
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Stata codes to fit each of the survival models used in the study are listed below.  

Age was used as the time scale of the model. Time at risk starts 12 months post-surgery 

and patients are censored at death or end of follow-up period (whichever comes first). 

Female is the dummy for female sex, rsSF6d_Preop is the baseline utility score, 

rsdiff_SF6d is the difference in utility (between baseline and 12 months post-surgery). 

Utility scores are scaled by a factor of 10 to allow ease of interpretation of coefficients. 

All cases are analysed individually, however patients who have multiple surgery (max 2 

on both knees) are clustered for analysis. [Parameterisation] is a place holder for the 

specification of the survival function: weibull, gompertz, exponential, loglogistic and 

lognormal. 

Models fitted to the SMART Registry data 

stset censored_date, failure(died) enter (time enter_at12m) 
origin (time DOB) id(patid) scale(365.25)  

Model 1 

streg female, dist([Parameterisation]) vce(cluster patCode)  

estat ic 

Model 2 

streg rsSF6d_Preop female dist([Parameterisation]) 
vce(cluster patCode)  

estat ic 

Model 3 

streg rsdiff_SF6d female, dist([Parameterisation]) 
vce(cluster patCode)  

estat ic 

Model 4 

streg rsSF6d_Preop rsdiff_SF6d female, 
dist([Parameterisation]) vce(cluster patCode)  

estat ic 
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Appendix 4 

Sensitivity analysis - Survival models for all-cause mortality including patient socio-

demographic and clinical characteristics 

Additional covariates that were considered in the models were socio-demographic and 

clinical characteristics (at baseline) as extracted from the registry. These included sex, 

body mass index (BMI), smoking status (yes/no), Charlson Comorbidity Index (0/>1), 

aetiology of disease (osteoarthristis/other), radiographic osteoarthritis severity using the 

Kellgren-Lawrence grading system, Socio-Economic Index for Areas (SEIFA) [10] to 

describe socioeconomic status and the need for an interpreter. The final model was 

determined using backwards stepwise elimination where covariates were dropped from 

the regressions with an exit criterion of P>0.1. Significant coefficients and hazard ratios 

in the risk equations for Models 1 to 4 are presented in Table S6.3. Life expectancies and 

QALYs were estimated for each of these models following methods described in the main 

manuscript and the results are presented in Table S6.4.  
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Table S6.3: Coefficients, hazard ratios from Gompertz proportional hazards survival model for all-cause mortality (including patient socio-
demographic and clinical characteristics) 

 Model 1 Model 2 
Parameter Coef. (95%CI) HR (95%CI) Coef. (95%CI) HR (95%CI) 
Gamma 0.13 (0.11,0.15)   0.13 (0.11,0.15)   
Constant -13.72 (-15.34,-12.10) 0.00 (0.00,0.00) -13.29 (-15.06,-11.51) 0.00 (0.00,0.00) 
Female -0.44 (-0.69,-0.18) 0.65 (0.50,0.83) -0.47 (-0.73,-0.22) 0.62 (0.48,0.81) 
Smoker (0/1) 0.75 (0.21,1.28) 2.11 (1.23,3.61) 0.74 (0.20,1.27) 2.09 (1.23,3.57) 
Co-morbidity (0/1) 0.38 (0.13,0.63) 1.46 (1.13,1.87) 0.37 (0.12,0.62) 1.44 (1.12,1.85) 
Baseline utility a - - - - -0.08 (-0.20,0.04) 0.92 (0.82,1.04) 
Change in utility a - - - - - - - - 
   
 Model 3 Model 4 
Parameter Coef. (95%CI) HR (95%CI) Coef. (95%CI) HR (95%CI) 
Gamma 0.12 (0.10,0.14)   0.12 (0.10,0.14)   
Constant -13.25 (-14.91,-11.59) 0.00 (0.00,0.00) -12.07 (-13.95,-10.19) 0.00 (0.00,0.00) 
Female -0.44 (-0.70,-0.19) 0.64 (0.50,0.83) -0.53 (-0.79,-0.27) 0.59 (0.45,0.76) 
Smoker (0/1) 0.71 (0.18,1.25) 2.04 (1.19,3.47) 0.66 (0.13,1.19) 1.94 (1.14,3.30) 
Co-morbidity (0/1) 0.33 (0.08,0.58) 1.39 (1.08,1.79) 0.29 (0.03,0.54) 1.33 (1.03,1.72) 
Baseline utility a - - - - -0.19 (-0.31,-0.06) 0.83 (0.73,0.94) 
Change in utility a -0.16 (-0.24,-0.07) 0.86 (0.79,0.93) -0.21 (-0.30,-0.12) 0.81 (0.74,0.89) 

a Increase in utility per 0.1 unit  
Note: Model 1 (reference model) with only sociodemographic and clinical characteristics, Model 2 additionally includes baseline utilities, 
Model 3 additionally includes change in utility, and lastly Model 4 additionally includes baseline utilities and change in utility 
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Table S6.4: Estimated life expectancies and QALYs of the cohort from each of the models (including patient socio-demographic and clinical 
characteristics) 

 Model 1 Model 2 Model 3 Model 4 

 Mean SD Mean SD Diff a % change  Mean SD Diff a % 
change 

Mean SD Diff 
a 

% 
change 

Life 
expectancy 18.30 6.56 18.28 6.56 -0.02 -0.12% 18.55 6.75 0.25 1.36% 18.58 6.82 0.28 1.54% 

QALY 
(TKR) 13.80 5.73 13.81 5.80 0.01 0.06% 14.14 6.26 0.33 2.42% 14.27 6.56 0.47 3.40% 

QALY (no 
surgery) b 10.76 4.18 10.80 4.34 0.04 0.38% 10.84 4.11 0.08 0.77% 10.97 4.47 0.21 1.94% 

Incremental 
QALY 3.05 3.39 3.01 3.36 -0.03 -1.06% 3.30 3.64 0.25 8.23% 3.31 3.67 0.26 8.59% 

a Difference in comparison to Model 1 (reference).  
b Assuming the patient’s baseline quality of life is carried forward for life and QALY calculated using area under the curve method.  
Note: Model 1 (reference model) with only sociodemographic and clinical characteristics, Model 2 additionally includes baseline utilities, 
Model 3 additionally includes change in utility, and lastly Model 4 additionally includes baseline utilities and change in utility 
Diff: Difference; QALY: Quality-adjusted life years; TKR: Total knee replacement 
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Appendix 5 

Estimation of life expectancy using standard life table methods 

Life expectancies for each individual patient were estimated using standard life table 

methods (for detailed methodology, please refer to [11]. Using the hazard ratios and 

standard errors derived from each of the risk equations (Gompertz parametric survival 

models – Table 1 in publication), survivor function S(t) (i.e. probability of each individual 

is alive at time t) can be derived using the following: 

𝑆𝑆(𝑡𝑡|𝑥𝑥𝑘𝑘) = exp(−
1
𝛾𝛾

  exp(𝛽𝛽0 + 𝑥𝑥𝑘𝑘𝛽𝛽𝑥𝑥) (exp(𝛾𝛾𝛾𝛾) − 1)) 

Where 𝛽𝛽0 is the regression constant, 𝛽𝛽𝑥𝑥 represent the coefficients for k explanatory 

variables such as age and 𝛾𝛾 describes the hazard. 

From this, the annual probability of mortality, q(v), to age 100 was calculated using q(v) = 

1 - S(v+1)/ S(v)), where v is the number of years 12 months from age at surgery.  q(v) was 

then used to estimate the number alive lv from an initial population size (l0) of 10000. The 

number of years lived was then calculated using L(v) = [l(v) + l(v+1)] /2 and total number of 

years (Tv) lived beyond 12 months after surgery up to 100 years = T0 = Lv+Lv+1+…+L100. 

Life expectancy was that calculated by ev = Tv/lv.  
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Appendix 6 

Figure S6.4: Variations in estimated life expectancies across ages and different levels of 
baseline utility simulated using each of the models.  

Note: Marker `X’ represents the cohort mean. 
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SECTION III : Generating Real-World Evidence 

Chapter / Study Methods of 
analysis 

Key contributions 
Methodology Clinical and policy 

 I : EXTRAPOLATION OF COSTS 

2 

Incorporating 
future medical 
costs: Impact 
on CEA 

+ Cost-utility 
analysis 

+ Decision tree 
analysis 

+ Markov model 

Demonstrate 
feasibility of 
appropriately 

including future 
medical costs 

Provide evidence of 
cost-effectiveness of 
sepsis protocol and 
highlight potential 
differences in cost-
effectiveness results 

3 

National cost 
savings from 
an ambulatory 
program for 
LR FN patients 

+ Cost-
effectiveness 
analysis 

+ GLM 
regression 

+ Cost 
projections 

Undertake evaluation 
beyond cost-

effectiveness analysis  

Offer strong evidence 
for national 

implementation of a 
cost-effective program 

 II: MODELLING & TRANSLATING LONG-TERM OUTCOMES 

4 

Using PROMs 
to guide 
patient-centred 
care and 
optimise 
outcomes 
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7.1. Abstract  

Objective 

Cancer patients are at significant risk of developing sepsis due to underlying malignancy 

and necessary treatments. Little is known about the economic burden of sepsis in this 

high-risk population. We estimate the short- and long-term healthcare costs associated 

with sepsis in cancer patients using individual-level linked-administrative data.  

Design 

Population-based cohort study of costs of care associated with sepsis in cancer patients 

over 5 years. 

Setting 

Health care system (through data sources capturing up to 90% of all healthcare resources 

provided to the population of Ontario, Canada) 

Patients 

Cancer patients aged ≥18, diagnosed between 2010 and 2017. Cases were identified if 

diagnosed with sepsis during the study period, and were matched 1:1 by age, sex, cancer 

type and other variables to controls without sepsis. 

Interventions 

None 

Measurements and Main Results 

We estimated mean costs (2018 Canadian dollars) for patients with and without sepsis up 

to 5 years. Excess cost associated with sepsis presented as a cost difference between the 

two cohorts. Haematological and solid cancers were analysed separately. 77,483 cancer 

patients with sepsis were identified and matched. 64.3% of the cohort were aged ≥65, 

46.3% female and 17.8% with haematological malignancies. Among solid tumour 

patients, the excess cost of care associated with sepsis was $29,081 (95% CI, 28,404-

29,757) in the first year, rising to $60,714 (95% CI, 59,729-61,698) over 5 years. This 
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was higher for haematology patients; $46,154 (95% CI, 45,505-46,804) in year 1, 

increasing to $75,931 (95% CI, 74,895-76,968).  

Conclusions 

Sepsis imposes substantial economic burden and can result in a doubling of cancer care 

costs, particularly during the first year of cancer diagnosis. These estimates are helpful in 

improving our understanding of burden of sepsis along the cancer pathway and to deploy 

targeted strategies to alleviate this burden. 

7.2. Introduction 

Sepsis is a potentially life-threatening organ dysfunction caused by the body’s response 

to infection [1]. It is a major cause of morbidity and mortality [2-7] contributing up to 

one-fifth of deaths reported globally in 2017 [8]. Patients with cancer are at high risk of 

developing sepsis. It is estimated that cancer patients are 10-times more likely to develop 

sepsis compared to non-cancer patients [9]. Numerous factors contribute to this risk 

including underlying malignancy, immune dysfunction following life-saving treatments, 

recurrent hospitalisations, and the need for invasive procedures. The cost of managing 

sepsis is high. Sepsis is among the most expensive conditions treated in hospitals, 

amounting to approximately $24 billion in hospital costs in the US in 2013 alone [10, 11]. 

This tops other high-cost hospitalisations such as acute myocardial infarctions ($12.1 

billion). Based on US projections, the burden of cancer is even larger at $158 billion [12]. 

While much is known about cancer care costs at various phases of patient’s cancer 

journey from initial diagnosis to end-of-life, it is unclear how much of this burden is 

attributed to sepsis. 

Although sepsis incidence and its associated outcomes such as mortality have been well 

described in the literature [5-9, 13-16], majority of these studies were focused on severe 

sepsis and were not specific to cancer. Limited attention has focused on the economic 

burden of sepsis in the high-risk cancer population. Among those that quantified costs, 

estimates [7, 14-17] have relied solely on hospital admissions data which is likely to 

capture only the most severe cases and potentially miss sepsis burden incurred outside of 

the hospital. Robust cost estimates that provide long-term estimates beyond the index 

hospitalisation are lacking. 
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In this study, we aim to describe short- and long-term healthcare costs of care of cancer 

patients with and without sepsis in Ontario, Canada. We use population-linked 

administrative data to capture health services use including those beyond inpatient 

hospitalisations. This provides a unique opportunity to study the economic burden of 

sepsis across the entire health care system and will be useful to align appropriate resources 

for health workforce capacity, infrastructure including sepsis programs to achieve 

efficient allocation of public resources across various services and inform on need for 

further research. 

7.3. Materials and methods 

We conducted a population-based retrospective cohort study using patient-level 

administrative health data to determine healthcare costs associated with sepsis in patients 

up to 5 years following cancer diagnosis. This study protocol was approved by research 

ethics board at the University of Toronto (#37526) and University of Melbourne 

(#1953663). 

7.3.1. Patient cohort and data source 

Patients were selected from the Ontario Cancer Registry [18] and included in study if 

aged 18 and above, whose first diagnosis for a primary cancer occurred between January 

1, 2010 and December 31, 2017. Patients were followed until death or end of analysis 

period, March 31, 2018. Patients were excluded if cancer diagnosis was first identified at 

death, or if there was previous cancer diagnosis prior to the study period. Cancer patients 

were classified by tumour site according to International Classification of Diseases-

Oncology (ICD-O) topography code corresponding to their primary cancer diagnosis and 

classified into two broad groups - haematological and solid cancers [19]. 

Individual-level data on all patient healthcare resource use from diagnosis up to study end 

date were obtained from ICES in Toronto, Ontario. These data describe resource 

utilisation for residents of Ontario, Canada (population 14.6 million) covered by Ontario 

Health Insurance Plan (97%). The data sources include inpatient hospitalisations, 

emergency department, cancer clinic visits, physician services, diagnostic tests, long-term 

care, prescription drugs, chemotherapy and radiotherapy (Appendix 1 for details). These 

datasets were linked using unique encoded identifiers and analysed at ICES. These data 
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sources capture up to 90% of all healthcare resources provided universally and paid for 

by Ontario Ministry of Health and Long-Term Care [20] and have been used in numerous 

costing analyses [21-23]. 

7.3.2. Identification of sepsis, cases and controls 

Sepsis is defined as life-threatening organ dysfunction caused by dysregulated host 

response to infection [1] and was identified using ICD-10-CA diagnosis codes captured 

within the data source. We applied the explicit and implicit definition for case finding 

recently published by the Global Burden of Disease Group [8] which reflects the most 

current definition of sepsis, and thus allowed for better case ascertainment (Appendix 2). 

Cancer patients were classified as cases if identified with sepsis within the 5-year study 

period and within 1 month prior to cancer diagnosis. The ‘1 month prior’ inclusion period 

allowed for some flexibility in accuracy of diagnosis dates and also inclusion of patients 

whose sepsis presentation may have been the result of undiagnosed cancer [24]. Cancer 

patients were classified as potential controls if no sepsis record was identified throughout 

the study period. Cases (cancer patients with sepsis) were hard (exact) matched 1:1 by 

age (+/-2 years), sex, cancer type, year of cancer diagnosis and rurality to cancer patients 

without sepsis (controls) selected from the same patient cohort [25, 26].  

7.3.3. Estimating costs 

The cost analysis is undertaken from the healthcare payer perspective. Costs for all 

healthcare services were estimated as described in [20]. Costs for inpatient 

hospitalisations, emergency department and ambulatory care visits and long-term care 

were estimated by multiplying resource intensity weight by cost per weighted case or day. 

Costs for medications, chemotherapy and physician services were available directly in 

the data. Radiation costs were based on the intensity of resource use captured by National 

Hospital Productivity Improvement Program (NHPIP) codes and unit cost obtained from 

Earle et al. [27]. Details of costing methodology are described in Appendix 1. All costs 

were adjusted to 2018 Canadian dollars using healthcare component of the Statistics 

Canada Consumer Price Index [28]. 

As patients were observed over different time periods, not all patients had complete cost 

information across the entire 5-year period. Therefore, to estimate costs with incomplete 
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follow-up data (common in longitudinal studies), methods that take into account this form 

of censoring is required to ensure unbiased cost estimates [29, 30]. This was done by 

partitioning the study period into monthly intervals and adjusting observed costs at each 

interval by the survival probability of corresponding interval [31]. This provided 

estimates for mean monthly cost of care for cancer patients with sepsis (cases) and 

without sepsis (controls). The average total (cumulative) cost across 5 years was 

estimated as the sum across 60-monthly intervals. Excess (net) cost due to sepsis were 

estimated as the difference between the sepsis cases and no sepsis controls [32, 33]. As 

costs and survival probabilities are likely to be different between haematological and solid 

cancers, these patients were analysed separately. As cost of care at the end-of-life which 

is expected to be high [21, 33] and an important contributor to overall costs, costs in the 

last 6 months of life were segmented into a separate category of ‘terminal care costs’ to 

distinguish these. Sub-group analyses by sex and age groups were also conducted. 

Bootstrapping with 1000 replicates was used to calculate the 95% confidence intervals 

for all costs. A number of additional analyses were performed to test the robustness of the 

results. These sensitivity analyses are described and presented in Appendix 3. All tests of 

significance used two-sided P-values at less than 0.05. Analyses were conducted using 

Stata version 16. 

7.4. Results 

7.4.1. Study cohort and patient characteristics 

A total of 485,105 cancer patients met eligibility criteria of the study and 83,028 patients 

(17.1%) experienced at least one sepsis episode over study period. Of these cases, 

matches were found for 77,483 (93.3%) patients. 64.3% were aged 65 and above, 46.3% 

were female and 17.8% had haematological malignancies. Among those with solid 

tumours, lung (18.2%), colorectal (16.3%), breast (9.8%) and prostate (8.7%) were the 

most common cancer types. Leukemia (59.4%) formed the largest proportion of patients 

in the haematology group. Table 7.1 describes baseline characteristics of cancer patients 

with sepsis by malignancy type.  

Across the 5-year period, a large proportion of sepsis episodes occurred in the first year 

of cancer diagnosis. Among haematology patients, 68.2% of first sepsis episodes were 

within the first year and this was 53.2% for solid tumour patients. A higher proportion of 
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haematology patients (41.0%) had >1 episode of sepsis compared to solid tumour patients 

(26.7%). The difference in five-year overall survival between cancer patients with sepsis 

and without sepsis was statistically significant (log rank test p<0.001) across both cancer 

types (Appendix 4).   

Overall, controls were well matched to cases, except on income quintiles (Appendix 5). 

Unmatched individuals were observed to be older, more likely to be male, have a 

haematological malignancy and more likely to have died by the end of the study period 

(Appendix 6).  

7.4.2. Cost of care of sepsis 

The monthly cost of care by malignancy type across the 5-year period for sepsis cancer 

patients and matched controls are presented in Figure 7.1. In general, healthcare costs 

were higher among those with sepsis compared to those without sepsis irrespective of 

malignancy types. Cost of care of sepsis for haematology patients is at least double that 

of a non-sepsis patient, and this difference is greatest particularly in the first 12 months 

of cancer diagnosis. In solid tumour patients, sepsis resulted in at least a 61% increase in 

overall cost of care. Across the 5-year period, total excess (net) cost of care associated 

with sepsis is substantial (Table 7.2) and is higher among haematology patients at $75,931 

(95% CI, 74,895-76,968) compared to solid tumour patients at $60,714 (95% CI, 59,729-

61,698).  

A large proportion of excess cost of care associated with sepsis was incurred in the first 

12 months of cancer diagnosis and this gradually declined in subsequent months (Figure 

S7.2 in Appendix 7). Across the 5-year period, approximately 39% of the total excess 

cost was attributed to terminal care cost (last 6 months of life) in solid tumour patients. 

In haematology patients, the proportion of terminal care cost increased gradually over the 

5-year period, from 36.8% at six months to above 90% by year 5.  

Figure 7.2 shows variations in 1-year cumulative excess sepsis cost across different sub-

groups by sex and age categories. Similar patterns were observed for costs over a longer 

time horizon (2- and 5-years). Costs of care and the resulting excess cost associated with 

sepsis were higher for males and highest among males with a haematological malignancy. 

Across age groups, costs of care generally rose with increasing age. Among those aged 
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≤65, 5-year healthcare costs of patients with sepsis were at least twice that compared to 

patients without sepsis, resulting in higher excess cost among these patients compared to 

older patients. These results indicate that the burden of sepsis was highest among those 

in younger age categories (full results in Appendix 8).  

7.5. Discussion 

This study used patient-level administrative data to estimate for the first time whole of 

system healthcare cost of cancer patients with and without sepsis and has documented the 

excess cost of care associated with sepsis over a 5-year period. Our results indicate that 

compared to patients without sepsis, cancer patients with sepsis have significantly higher 

rates of mortality with less than one-third surviving 5-years post-cancer diagnosis. Cost 

of care associated with sepsis is substantial in cancer patients, resulting in up to an 85% 

increase for solid tumour patients and up to a 179% increase for haematology patients. 

This translated into an excess cost associated with sepsis of $29,081 in the first year, 

rising to $60,714 over 5 years for solid malignancies. This was higher for haematology; 

$46,154 in the first year, increasing to $75,931 after 5 years. These findings indicate that 

sepsis is a high cost, high mortality condition in cancer patients requiring urgent need for 

interventions and health policies to alleviate this significant burden.  

Excess cost associated with sepsis was highest in the first month of cancer diagnosis and 

remained high through the first year. This coincides with the initial phase of cancer care 

covering the diagnosis and initial treatment (chemotherapy or surgical intervention or 

radiotherapy) when patients are at increased risk of sepsis with neutropenic fever and 

other infections. This highlights the need for increased attention at this critical stage on 

the cancer pathway. Sepsis has been found to commonly occur within 14 days of cancer 

treatment [24], therefore strategies to increase vigilance and improve early recognition 

and timely interventions may be warranted in helping reduce this significant excess 

burden. There needs to be increased focus on the implementation of clinical pathways in 

both the emergency and hospital wards, and to strengthen initiatives for prompt sepsis 

identification and diagnosis particularly in the first year of cancer diagnosis [17]. Clinical 

pathways for sepsis have demonstrated efficacy in reducing mortality [34] which can also 

impact future costs of managing sepsis and cancer [35]. Therefore, effective 
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implementation of sepsis pathways can have a big impact in driving down costs and 

improving patient outcomes.  

The excess cost burden of sepsis was found be highest among haematological 

malignancies, males and younger (below age 55 years) patients. The higher cost of care 

among haematology patients compared to solid tumour patients was unsurprising as 

similar findings have been reported [12, 21, 36] reflecting more intensive chemotherapy 

regimens that may then progress to allogenic stem cell transplant within the first few 

months of diagnosis. We had anticipated excess cost of sepsis to remain substantial over 

the study period due to morbidities related to sepsis [4, 37, 38] and increased risk of sepsis 

in cancer survivors [39] which necessitates a greater level of care. However, we observed 

a long tail with much lower excess cost (Figure 7.1) over the 5-year time horizon. This is 

likely to reflect the acute nature of sepsis which requires intensive and expensive 

treatments when it occurs, most commonly within first year of diagnosis. It could also be 

due to a multitude of factors; for instance, episodes of sepsis can lead to changes in the 

management of these patients including reduced intensity of treatments, cessation of 

therapy and/or prevention strategies for further episodes [40, 41]. Conversely, it may also 

be an indication of a lack of support, coordination and availability of post-sepsis care. A 

large multi-national survey of sepsis survivors (n=1731) reported approximately half of 

sepsis survivors were dissatisfied with hospital support services [42] and may not be 

accessing necessary services. Further research to better understand pathways of care of 

cancer patients with sepsis is warranted. Enhancing our understanding of the role of 

different healthcare services can help guide policy design and allocation of healthcare 

sources to alleviate both the cost and illness burden of sepsis on health system as well as 

patients. 

A key strength of this study is the use of population-linked healthcare datasets which 

captures nearly all publicly funded healthcare services thus providing a whole of system 

view of the impact of sepsis. It provides a valuable opportunity to gain critical insights 

on the implications and burden of sepsis across the cancer care continuum which was not 

possible without access to robust linked-administrative datasets and systems. Data 

generated from contact with the healthcare system provides important real-world 

evidence and a more accurate reflection of the economic burden across the healthcare 

system. They provide a broader and longer view of the impact of sepsis in cancer patients, 
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going beyond the limited hospital estimates currently available. These cost estimates are 

helpful in informing resource allocation and health policy prioritisation considerations 

and can also be used in cost-effectiveness models for decisions on sepsis interventions 

and are useful in helping inform development of sepsis programs and policies across the 

cancer care continuum, which can include prevention, screening, treatment and end-of-

life care.  

With the growing use of novel cancer treatment strategies such as immunotherapies as 

emerging standards of care, this could change patterns of sepsis currently observed [43, 

44]. In light of this, cost estimates presented in this study can be an important input for 

economic models when evaluating the value of these expensive new therapies and inform 

policy decisions on the value of cancer care. The large differences in costs of care between 

haematology and solid tumour patients requires further examination into the impact of 

sepsis across different tumour types, particularly haematological malignancies. For 

example, patients with acute myeloid leukemia tend to have poorer outcomes and may be 

more susceptible to sepsis. Additionally, future research should also aim to better 

understand how the duration, timing and severity of sepsis will impact costs and this can 

contribute towards a fuller understanding of the economic burden of sepsis in cancer 

patients.  

There is a lot of heterogeneity in capturing sepsis from administrative datasets which can 

lead to variations in our understanding and monitoring of sepsis [45]. This can also result 

in differences in cost estimates produced as demonstrated in our sensitivity analysis 

(Appendix 3). Applying an alternate sepsis definition (Sepsis-2) resulted in more sepsis 

cases captured which produced lower cost estimates. This may be due to the high negative 

predictive value of the approach (i.e. potential of increase in false positives) [46]. In the 

current analysis, we applied a comprehensive approach reflecting the most recent sepsis 

definition to ensure better case ascertainment [1, 8]. Further, capturing sepsis cases using 

the explicit and implicit codes provides a more realistic capture of sepsis and its 

associated costs than would be reflected through sepsis-specific codes only [47].  

It is acknowledged that health care costs can vary across jurisdictions, particularly among 

those with differently funded health systems; for instance, cancer care costs often higher 

in the US compared to universal, publicly funded health systems in Canada and New 

Zealand [12, 21, 22, 33, 36, 48]. However, given the similarity in disease patterns and 
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cancer care strategies across the developed world, these results may be generalisable and 

can be valuable to other similar settings that currently lack a clear view of the economic 

burden of sepsis in cancer patients. Similar studies using large population-based samples 

for generating real-world estimates will be helpful in enhancing our understanding of the 

role of different healthcare services. This will further help guide policy design and 

allocation of healthcare sources to alleviate both the cost and illness burden of sepsis on 

health system as well as patients. 

There are some limitations that should be considered when interpreting these results. The 

presence of sepsis could be confounded by a number of factors such as cancer stage or 

grade at diagnosis, treatments and comorbidities. Although we have attempted to match 

for cancer type, complete information on these potential confounders were not available 

to allow further matching in the analysis. It is possible that patients with sepsis had a late 

cancer stage at diagnosis, were on more aggressive treatments and/or had existing 

comorbidities which may predispose sepsis cases to incur higher costs[48, 49]. This could 

result in over-estimation of the excess cost of sepsis. Large variations in survival and 

costs have been observed across different cancer types [21, 36], and an exploration of 

burden of sepsis to reflect this heterogeneity will also be important. The cost estimates 

presented in this study should be interpreted as associations rather than a causal impact 

of sepsis, but do offer a measure of the economic burden of sepsis care in cancer patients 

across 5 years of diagnosis which has not been previously quantified.  

7.6. Conclusion 

In summary, this study has demonstrated the substantial economic burden of sepsis in 

cancer patients over a 5-year period from initial cancer diagnosis using real-world 

population-linked data for a large cohort of cancer patients. Key efforts in improving 

sepsis prevention, recognition and management needs to be focused in the first year of 

cancer diagnosis when mortality and costs are highest. Given the increased susceptibility 

of this high-risk population to sepsis, these cost estimates are helpful in improving our 

understanding of burden of sepsis along the cancer pathway and to deploy targeted 

strategies to alleviate this burden. There should also be continued efforts in refining these 

estimates to reflect the heterogeneity across different cancer types.  
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7.7. Tables and figures 

Table 7.1: Characteristics of cancer patients with sepsis by malignancy type 

Characteristic Haematology 
(n = 13,762) 

Solid tumour 
(n = 63,721) 

Age, No. (%)   
  18-34 496 (3.6) 964 (1.5) 
  35-44 554 (4.0) 1,962 (3.1) 
  45-54 1,343 (9.8) 6,141 (9.6) 
  55-64 2,541 (18.5) 13,655 (21.4) 
  65-74 3,486 (25.3) 18,639 (29.3) 
  75-84 3,521 (25.6) 15,821 (24.8) 
  85+ 1,821 (13.2) 6,539 (10.3) 
Female, No. (%) 6,115 (44.4) 29,765 (46.7) 
Urban/rural residence, No. (%)   
  Urban 12,236 (88.9) 56,034 (88.3) 
  Rural 1,526 (11.1) 7,473 (11.7) 
Income quintile, No. (%)   
  Low 2,878 (21.0) 14,509 (22.8) 
  Medium-low 2,955 (21.5) 13,788 (21.7) 
  Medium 2,679 (19.5) 12,531 (19.7) 
  Medium-high 2,628 (19.1) 11,675 (18.4) 
  High 2,590 (18.9) 11,060 (17.4) 
Type of cancer, No. (%)   
  Haematology   
  Leukaemia 8,174 (59.4) - 
  Lymphoma 3,367 (24.5) - 
  Myeloma 2,221 (16.1) - 
  Solid tumour   
  Lung - 11,601 (18.2) 
  Colorectal - 10,415 (16.3) 
  Breast a - 6,271 (9.8) 
  Prostate - 5,565 (8.7) 
  Bladder - 2,929 (4.6) 
  Others  - 26,940 (42.3) 
Year of cancer diagnosis, No. (%)   
  2010 1,767 (12.8) 7,881 (12.4) 
  2011   1,698 (12.3) 8,441 (13.3) 
  2012  1,725 (12.5) 8,670 (13.6) 
  2013 1,772 (12.9) 8,925 (14.0) 
  2014 1,799 (13.1) 8,524 (13.4) 
  2015 1,855 (13.5) 8,145 (12.8) 
  2016 1,694 (12.3) 7,571 (11.9) 
  2017 1,452 (10.6) 5,564 (8.7) 

a Breast cancer among females 
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Table 7.2: Cumulative cost of care ($CAD 2018, 95% CI) between sepsis cases and matched controls  

Time since 
cancer 

diagnosis 
(months) 

Haematology Solid tumour 

Sepsis cases Matched controls 
(no sepsis) Excess cost Sepsis cases Matched controls 

(no sepsis) Excess cost 

1 19,520 
(19,174-19,867) 

7,026 
(6,859-7,193) 

12,494  
(12,105-12,883) 

17,403  
(17,069-17,737) 

9,765 
(9,606-9,925) 

7,638 
(7,272-8,004) 

3 35,270 
(34,866-35,675) 

14,255 
(14,050-14,459) 

21,016 
(20,562-21,470) 

35,592 
(35,180-36,005) 

22,008 
(21,767-22,249) 

13,585 
(13,107-14,062) 

6 55,155 
(54,661-55,650) 

23,731 
(23,484-23,977) 

31,425 
(30,884-31,966) 

53,064 
(52,562-53,566) 

33,038 
(32,749-33,326) 

20,026 
(19,449-20,603) 

12 81,316 
(80,718-81,915) 

35,162 
(34,857-35,467) 

46,154 
(45,050-46,804) 

72,817 
(72,230-73,405) 

43,736 
(43,400-44,073) 

29,081 
(28,404-29,757) 

24 110,328 
(109,624-111,032) 

49,773 
(49,410-50,136) 

60,555 
(59,786-61,323) 

94,456 
(93,787-95,124) 

54,174 
(53,793-54,554) 

40,282 
(39,496-41,068) 

60 160,109 
(159,204-161,014) 

84,178  
(83,626-84,730) 

75,931  
(74,895-76,968) 

133,683 
(132,842-134,524) 

72,969 
(72,498-73,440) 

60,714 
(59,729-61,698) 
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Figure 7.1: Mean monthly cost of care by malignancy type.  

Light bars represent sepsis (cases) and dark bars for no sepsis (controls).   
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Figure 7.2: Variations in the 1-year cumulative excess cost by sex and age groups.  

The dotted vertical line represents the excess cost presented in our main analysis (overall 
grouped average). Error bars represent the 95% confidence intervals. 
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7.9. Supplementary materials 

Appendix 1: Data source 

Health care administrative databases containing information on all Ontario residents used 

for this study were held at and accessed through the Institute for Clinical Evaluative 

Sciences (ICES). 

Table S7.1: List of datasets and costing methodology 

Dataset 
Information / 
Type of health 

care service  

Resource use 
information for 

costing 

Cost estimation  
methodology 

Ontario Cancer 
Registry 

Used to identify 
cancer cohort, type 
of cancer diagnosed 

- - 

Registered Person 
Database 

Mortality (date of 
death) and baseline 
demographics (e.g. 
age, sex, 
socioeconomic 
status) 

- - 

Canadian 
Institute for 
Health 
Information-
Discharge 
abstract 

Inpatient 
hospitalisation & 
same day surgery 

Resource intensity 
weight (RIW) 

RIW * Unit cost 
per weighted case 
[1] 

Canadian 
Institute for 
Health 
Information-
National 
ambulatory care 
reporting system 

Ambulatory care – 
emergency 
department, cancer 
clinic and dialysis 
clinic  

Resource intensity 
weight (RIW) 

RIW * Unit cost 
per weighted case 
[1] 

Ontario Health 
Insurance Plan 
claims 

All physician 
services including 
primary care 
consultations, 
specialist 
consultations, allied 
health services, 
diagnostic tests and 
laboratory services 

Costs reported in 
dataset 

Costs as per 
provided in dataset. 
However, for 
physicians that 
were shadow-billed 
(reported cost in 
dataset = $0), costs 
were imputed using 
the mean cost of 
the fee-for-service 
records of the same 
year and fee code 
[1, 2] 
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Continuing Care 
reporting system 

Other institution-
based care; e.g. 
rehabilitation, 
complex continuing 
care and long-term 
care 

Utilisation 
intensity weight 
and length of stay 
(LOS) 

Utilisation intensity 
weight * LOS * per 
diem cost [1] 

Ontario Drug 
Benefit program 

Outpatient 
prescriptions  

Costs reported in 
dataset 

Costs as per 
provided in dataset 

New Drug 
Funding Program 

Chemotherapy 
supplied 

Costs reported in 
dataset 

Costs as per 
provided in dataset 

Activity level 
reporting system Radiation therapy 

National Hospital 
Productivity 
Improvement 
Program (NHPIP) 
codes 

Intensity of 
resource use 
(minutes) from 
NHPIP codes * 
cost per min [1, 3] 

Costs for inpatient hospitalisations, emergency department and ambulatory care visits and 

long-term care were estimated by multiplying resource intensity weight by cost per 

weighted case or day (relevant to the year the resource was used). Costs for medications, 

chemotherapy and physician services were available directly in the data. Radiation costs 

were based on the intensity of resource use captured by National Hospital Productivity 

Improvement Program (NHPIP) codes and unit cost obtained from Earle et al.[3]. All 

costs were then adjusted to 2018 dollars using the healthcare component of the Statistics 

Canada Consumer Price Index. 
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Appendix 2: Diagnostic codes used for identification of sepsis 

Sepsis cases were identified using codes from the 10th (ICD-10-CA) Revisions sourced 

from the Global Burden of Disease Study [4]. Cases were classified within two mutually 

exclusive groups, “explicit” and “implicit.” Explicit sepsis cases were those with an ICD 

code explicitly referencing sepsis listed as an admission diagnosis. Implicit sepsis cases 

were those with both an infection code and organ dysfunction code listed as admission 

diagnoses. Any cases captured through either explicit or implicit codes were considered 

to be a sepsis case.  

Table S7.2: ICD-10-CA codes used in the identification of sepsis 

Explicit 
Implicit 

Infection codes Organ dysfunction 
codes 

A02.1-A02.9, A20.7-
A20.9, A21.7-A21.9, 
A22.7-A22.9, A24.1-
A24.9, A26.7-A26.9, 
A28.2-A28.9, A32.7-
A32.9, A39.0, A39.4-

A41.9, A42.7- 
A42.9, A50-A50.9, 

A54.86, B00.7-B00.9, 
B37.7-B37.9, N98.0, 
O03.0, O03.3, O03.5, 
O03.8, O04.5, O04.8, 
O07.3, O08.0, O08.83, 

O23-O23.9, O41.1-O41.9, 
O75.3, O85- O86.8, 
O88.3-O88.3, O91- 

O91.23, O98, O98.2-
O98.9, P00.2, P22-P23.9, 
P29.1, P29.8, P35-P37, 

P37.1-P39.9, R65.2-R65.2, 
R68.1 

A01-A02.0, A03-A09.9, A19-
A20.3, A21-A21.3, A22-A22.2, 
A23-A24.0, A25-A26.0, A27-
A28.1, A31-A32.12, A36-A39, 
A39.1-A39.3, A42-A42.2, A43-
A46.0, A48-A49.9, A59-A59.9, 
A65-A65.0, A69-A69.1, A74, 

A74.8- A75.9, A77-A81.9, 
A83-A96.9, A98-B00.59, B01-

B10.89, B25-B27.99, 
B29.4, B33-B34.9, B37-B37.6, 
B38-B50.9, B54-B55, B55.1-

B55.9, B58- 
B60.8, B64, B67-B67.99, B91, 
B95-B99.9, G00-G08.0, G14-

G14.6, H05.01-H05.039, 
H60.2-H60.23, H70.0-H70.009, 
I00, I02, I02.9, I26.01-I26.09, 
I26.90-I26.99, I33-I33.9, I38-
I39.9, I40.0-I40.9, I76, I96-
I96.9,  I98.1, J01-J06.9, J09-
J22.9, J36-J36.0, J39.0-J39.1, 
J85-J86.9, K35-K37.9, K57-
K57.93, K61-K61.4, K63.0-
K63.1, K65-K65.9, K67.8, 

K75.0-K75.1, K75.3, K76.3, 
K77.0, K81.0, K81.2, K83.0, 
K95.01, K95.81, L02-L08.9, 

M00-M02.9, M86-M86.9, 
M89.6-M89.69, N10-N10.9, 
N15.1-N15.9,  N30-N30.91, 
N39.0, N41.0, N41.2-N41.3, 

D65-D65.9, D69.5-
D69.59, E87.2-
E87.99, G93.4-

G93.49, I46-I46.9, 
I95.1-I95.9, J80-

J80.9, J95.2-J95.3, 
J96- J96.92, K72-

K72.91, N00- N01.9, 
N17-N17.9, R09.02, 
R09.2, R40.0-R40.4, 
R41.82, R55-R55.0, 

R57-R57.9 
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N45-N45.9, N70-N77.8, 
R78.81, T80.2-T80.29, T81.4, 

T82.6-T82.7, T83.5, T83.6, 
T84.5-T84.7, T85.7, T88.0, 

U04 
 

Within the Ontario Health Insurance Plan (OHIP) dataset, diagnosis was captured using 

a separate set of diagnostic codes and sepsis was identified using the diagnosis code “038 

– Septicaemia”.   
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Appendix 3: Sensitivity analyses 

The following sensitivity analyses were conducted, and their results presented in the 

tables below. 

(i) Including income quintiles and additional socioeconomic scores (dependency, 

deprivation, ethnic concentration) as matching variables to identify controls (at 

the expense of identifying suitable controls) 

(ii) Excluding the 1-month pre-diagnosis period from our sepsis case definition 

(iii) Alternate case definition of sepsis (Sepsis-2) [5] using Jolley’s et al. ICD-10-

coded case definition [6] 

(iv) Duration attributed to end-of-life costs (12 months rather than 6 as in our main 

analysis) 

 In summary, the inclusion of additional matching variables and exclusion of the 1-month 

pre-diagnosis period from our sepsis case definition did not substantially change our cost 

estimates (variations between -3% and 8%). Cost estimates were sensitive to the sepsis 

definitions used. Using the Sepsis-2 definition resulted in lower excess cost, 14-33% 

lower costs for solid tumours and 3-13% lower costs for haematology. Unsurprisingly, 

the proportion of end-of-life cost increased from 57% to 77% for haematology patients 

and from 39% to 54% for solid tumour patients as the length of terminal care increased 

from 6 to 12 months.  
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Table S7.3: Cumulative cost of care ($CAD 2018) results from sensitivity analysis (i) 

Time since 
cancer 

diagnosis 
(months) 

Haematology 
Sepsis cases Matched controls Excess cost 

Mean 95% CI Mean 95% CI Mean 95% CI 
LL UL LL UL LL UL 

1 19,472 19,163 19,782 6,603 6,446 6,761 12,869 12,528 13,210 
3 35,130 34,751 35,508 13,485 13,286 13,685 21,644 21,221 22,068 
6 54,173 53,713 54,633 2,568 2,319 2,817 1,605 31,094 32,116 

12 79,978 79,391 80,564 33,759 33,454 34,064 46,218 45,577 46,860 
24 109,342 108,662 110,022 48,391 48,030 48,752 60,951 60,193 61,708 
60 158,901 157,970 159,833 82,589 82,044 83,134 76,312 75,239 77,386 

 

Time since 
cancer 

diagnosis 
(months) 

Solid tumour 
Sepsis cases Matched controls Excess cost 

Mean 95% CI Mean 95% CI Mean 95% CI 
LL UL LL UL LL UL 

1 17,194 16,879 17,510 9,388 9,223 9,552 7,807 7,448 8,166 
3 35,001 34,557 35,445 21,197 20,960 21,433 13,804 13,310 14,298 
6 52,024 51,495 52,553 32,140 31,851 32,429 19,884 19,295 20,473 

12 72,206 71,605 72,808 43,309 42,977 43,641 28,898 28,225 29,570 
24 94,157 93,477 94,838 53,846 53,482 54,210 40,311 39,547 41,076 
60 135,036 134,177 135,896 73,738 73,270 74,206 61,298 60,340 62,257 
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Table S7.4: Cumulative cost of care ($CAD 2018) results from sensitivity analysis (ii) 

Time since 
cancer 

diagnosis 
(months) 

Haematology 
Sepsis cases Matched controls Excess cost 

Mean 95% CI Mean 95% CI Mean 95% CI 
LL UL LL UL LL UL 

1 20,005 19,683 20,327 7,064 6,907 7,220 12,941 12,581 13,301 
3 36,292 35,883 36,701 14,442 14,243 14,641 21,850 21,387 22,312 
6 56,110 55,614 56,606 24,067 23,827 24,307 32,043 31,493 32,593 

12 82,887 82,285 83,489 35,557 35,252 35,861 47,330 46,654 48,006 
24 112,841 112,143 113,538 49,950 49,583 50,317 62,890 62,104 63,676 
60 164,526 163,611 165,442 83,061 82,518 83,605 81,465 80,389 82,541 

 

Time since 
cancer 

diagnosis 
(months) 

Solid tumour 
Sepsis cases Matched controls Excess cost 

Mean 95% CI Mean 95% CI Mean 95% CI 
LL UL LL UL LL UL 

1 17,819 17,474 18,164 9,873 9,699 10,047 7,946 7,563 8,330 
3 36,262 35,794 36,730 22,225 21,974 22,476 14,037 13,509 14,565 
6 53,806 53,259 54,353 33,119 32,823 33,414 20,688 20,073 21,302 

12 73,758 73,130 74,386 43,745 43,406 44,083 30,013 29,302 30,725 
24 95,619 94,911 96,326 53,697 53,318 54,075 41,922 41,128 42,716 
60 134,361 133,514 135,208 72,498 72,032 72,964 61,863 60,881 62,844 
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Table S7.5: Cumulative cost of care ($CAD 2018) results from sensitivity analysis (iii) 

Time since 
cancer 

diagnosis 
(months) 

Haematology 
Sepsis cases Matched controls Excess cost 

Mean 95% CI Mean 95% CI Mean 95% CI 
LL UL LL UL LL UL 

1 17,353 17,025 17,681 6,530 6,385 6,676 10,822 10,458 11,186 
3 32,795 32,386 33,205 13,289 13,100 13,479 19,506 19,050 19,962 
6 51,693 51,196 52,189 22,127 21,897 22,358 29,566 29,009 30,122 

12 76,441 75,834 77,049 32,507 32,215 42,798 43,935 43,244 44,625 
24 103,912 103,215 104,608 45,373 45,023 45,722 58,539 57,736 59,342 
60 153,690 152,784 154,596 73,602 73,093 74,110 80,088 79,038 81,138 

 

Time since 
cancer 

diagnosis 
(months) 

Solid tumour 
Sepsis cases Matched controls Excess cost 

Mean 95% CI Mean 95% CI Mean 95% CI 
LL UL LL UL LL UL 

1 14,284 14,010 14,559 9,097 8,932 9,263 5,187 4,861 5,513 
3 30,789 30,416 31,163 20,385 20,142 20,628 10,404 9,960 10,848 
6 46,505 46,082 46,929 30,953 30,664 31,242 15,553 15,041 16,064 

12 64,746 64,234 65,257 41,424 41,088 41,759 23,322 22,707 23,937 
24 84,259 83,668 84,851 50,343 49,969 50,717 33,916 33,218 34,614 
60 119,377 118,632 120,121 66,613 66,171 67,056 52,763 51,898 53,628 
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Figure S7.1: Excess cost of care ($CAD 2018) results from sensitivity analysis (iv) 
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Appendix 4: Kaplan-Meier survival curves comparing sepsis cases to no sepsis 
controls.  

Figure S7.2 shows Kaplan-Meier survival curves comparing sepsis cases to no sepsis 

controls. Mortality was high among sepsis cases, particularly in the first year of cancer 

diagnosis. The 5-year overall survival rate for haematology patients with sepsis was 

29.1% (95% CI, 28.2-30.0) and 66.5% (95% CI, 65.6-67.4) for those without sepsis. In 

the solid tumour cancer group, the 5-year overall survival for patients with and without 

sepsis was 28.4% (95% CI, 28.0-28.8) and 54.2% (95% CI, 53.8-54.6), respectively. The 

difference in five-year overall survival between cancer patients with sepsis and without 

sepsis was statistically significant (log rank test p<0.001) across both cancer types.   

Figure S7.2: Kaplan-Meier survival curves comparing sepsis cases and matched no sepsis 
controls for (A) haematological and (B) solid tumour cancer. 
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Appendix 5: Descriptive statistics of sepsis cases vs. matched controls by 
malignancy types 

Table S7.6: Characteristics of sepsis cases vs. matched controls for haematology patients 

Characteristic 

Haematology  

Sepsis cases Matched controls (no 
sepsis)  

Number 
(N = 13,762) Percent Number 

(N = 13,762) Percent P-value 

Age P=0.996 
  18-34 496 3.6 497 3.61  
  35-44 554 4.03 575 4.18  
  45-54 1,343 9.76 1,334 9.69  
  55-64 2,541 18.46 2,563 18.62  
  65-74 3,486 25.33 3,458 25.13  
  75-84 3,521 25.58 3,514 25.53  
  85+ 1,821 13.23 1,821 13.23  
Female 6,115 44.43 6,115 44.43 P=1.000 
Urban/rural residence P=1.000 
  Urban 12,236 88.91 12,236 88.91  
  Rural 1,526 11.09 1,526 11.09  
Income quintile P<0.001 
  Low 2,878 20.96 2,636 19.21  
  Medium-low 2,955 21.52 2,815 20.52  
  Medium 2,679 19.51 2,666 19.43  
  Medium-high 2,628 19.14 2,678 19.52  
  High 2,590 18.86 2,926 21.32  
Type of cancer 
  Leukaemia 8,174 59.40 8,174 59.40  
  Lymphoma 3,367 24.47 3,367 24.47  
  Myeloma 2,221 16.14 2,221 16.14  
Year of cancer diagnosis P=1.000 
  2010 1,767 12.84 1,767 12.84  
  2011   1,698 12.34 1,698 12.34  
  2012  1,725 12.53 1,725 12.53  
  2013 1,772 12.88 1,772 12.88  
  2014 1,799 13.07 1,799 13.07  
  2015 1,855 13.48 1,855 13.48  
  2016 1,694 12.31 1,694 12.31  
  2017 1,452 10.55 1,452 10.55  
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Table S7.7: Characteristics of sepsis cases vs. matched controls for solid tumour patients 

Characteristic 

Solid tumour  

Sepsis cases Matched controls (no 
sepsis)  

Number 
(N = 63,721) Percent Number 

(N = 63,721) Percent P-value 

Age P=0.728 
  18-34 964 1.51 973 1.53  
  35-44 1,962 3.08 1,953 3.06  
  45-54 6,141 9.64 6,338 9.95  
  55-64 13,655 21.43 13,627 21.39  
  65-74 18,639 29.25 18,551 29.11  
  75-84 15,821 24.83 15,740 24.7  
  85+ 6,539 10.26 6,539 10.26  
Female 29,765 46.71 29,765 46.71 P=1.000 
Urban/rural residence P=1.000 
  Urban 56,034 88.29 56,034 88.29  
  Rural 7,473 11.73 7,473 11.73  
Income quintile P<0.001 
  Low 14,509 22.83 12,780 20.1  
  Medium-low 13,788 21.69 13,164 20.71  
  Medium 12,531 19.71 12,701 19.98  
  Medium-high 11,675 18.37 12,492 19.65  
  High 11,060 17.4 12,432 19.56  
Type of cancer P=1.000 
  Lung 11,601 18.21 11,601 18.21  
  Colorectal 10,415 16.34 10,415 16.34  
  Breast b 6,271 9.84 6,271 9.84  
  Prostate 5,565 8.73 5,565 8.73  
  Bladder 2,929 4.6 2,929 4.6  
  Pancreatic 2,627 4.12 2,627 4.12  
  Stomach 2,224 3.49 2,224 3.49  
  Head and neck 2,220 3.48 2,220 3.48  
  Kidney 1,960 3.08 1,960 3.08  
  Liver 1,916 3.01 1,916 3.01  
  Melanoma   1,812 2.84 1,812 2.84  
  Uterus 1,705 2.68 1,705 2.68  
  Ovary 1,395 2.19 1,395 2.19  
  Brain 1,066 1.67 1,066 1.67  
  Oesophagus 1,044 1.64 1,044 1.64  
  Thyroid 666 1.05 666 1.05  
  Cervical 506 0.79 506 0.79  
  Testis 181 0.28 181 0.28  
  Others 7,618 11.96 7,618 11.96  
Year of cancer diagnosis P=1.000 
  2010 7,881 12.37 7,881 12.37  
  2011   8,441 13.25 8,441 13.25  
  2012  8,670 13.61 8,670 13.61  
  2013 8,925 14.01 8,925 14.01  
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  2014 8,524 13.38 8,524 13.38  
  2015 8,145 12.78 8,145 12.78  
  2016 7,571 11.88 7,571 11.88  
  2017 5,564 8.73 5,564 8.73  
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Appendix 6: Descriptive statistics of sepsis cases vs. unmatched cases by 
malignancy types 

Table S7.8: Characteristics of sepsis cases vs. unmatched cases for haematology patients 

Characteristic 

Haematology  
Sepsis cases Unmatched cases  

Number 
(N = 13,762) Percent Number 

(N = 2,763) Percent P-value 

Age P<0.001 
  18-34 496 3.6 116 4.2  
  35-44 554 4.03 70 2.53  
  45-54 1,343 9.76 173 6.26  
  55-64 2,541 18.46 433 15.67  
  65-74 3,486 25.33 671 24.29  
  75-84 3,521 25.58 810 29.32  
  85+ 1,821 13.23 490 17.73  
Female 6,115 44.43 1,139 41.22  
Urban/rural residence P<0.001 
  Urban 12,236 88.91 2,522 91.22  
  Rural 1,526 11.09 241 8.78  
Income quintile P=0.309 
  Low 2,878 20.96 567 20.7  
  Medium-low 2,955 21.52 553 20.19  
  Medium 2,679 19.51 551 20.12  
  Medium-high 2,628 19.14 514 18.77  
  High 2,590 18.86 554 20.23  
Type of cancer P<0.001 
  Leukaemia 8,174 59.40 1,575 57  
  Lymphoma 3,367 24.47 356 12.88  
  Myeloma 2,221 16.14 832 30.11  
Year of cancer diagnosis P<0.001 
  2010 1,767 12.84 418 15.13  
  2011   1,698 12.34 416 15.06  
  2012  1,725 12.53 478 17.3  
  2013 1,772 12.88 482 17.44  
  2014 1,799 13.07 385 13.93  
  2015 1,855 13.48 329 11.91  
  2016 1,694 12.31 180 6.51  
  2017 1,452 10.55 75 2.71  
Outcome at end of study period  
  Died 8,831 64.17 1,910 69.13 P<0.001 
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Table S7.9: Characteristics of sepsis cases vs. unmatched cases for solid tumour patients 

Characteristic 

Solid tumour  
Sepsis cases Unmatched cases  

Number 
(N = 63,721) Percent Number 

(N = 2,782) Percent P-value 

Age P<0.001 
  18-34 964 1.51 88 3.16  
  35-44 1,962 3.08 74 2.66  
  45-54 6,141 9.64 148 5.32  
  55-64 13,655 21.43 359 12.9  
  65-74 18,639 29.25 721 25.92  
  75-84 15,821 24.83 907 32.6  
  85+ 6,539 10.26 485 17.43  
Female 29,765 46.71 1,044 37.53 P<0.001 
Urban/rural residence P=0.240 
  Urban 56,034 88.29 2,408 87.53  
  Rural 7,473 11.73 343 12.47  
Income quintile P=0.058 
  Low 14,509 22.83 589 21.47  
  Medium-low 13,788 21.69 566 20.63  
  Medium 12,531 19.71 593 21.62  
  Medium-high 11,675 18.37 498 18.16  
  High 11,060 17.4 497 18.12  
Type of cancer P<0.001 
  Lung 11,601 18.21 357 12.83  
  Colorectal 10,415 16.34 486 17.47  
  Breast a 6,271 9.84 32 1.15  
  Prostate 5,565 8.73 110 3.95  
  Bladder 2,929 4.6 358 12.87  
  Pancreatic 2,627 4.12 228 8.2  
  Stomach 2,224 3.49 173 6.22  
  Head and neck 2,220 3.48 50 1.8  
  Kidney 1,960 3.08 66 2.37  
  Liver 1,916 3.01 257 9.24  
  Melanoma   1,812 2.84 33 1.19  
  Uterus 1,705 2.68 18 0.65  
  Ovary 1,395 2.19 38 1.37  
  Brain 1,066 1.67 40 1.44  
  Oesophagus 1,044 1.64 93 3.34  
  Thyroid 666 1.05 13 0.47  
  Cervical 506 0.79 20 0.72  
  Testis 181 0.28 18 0.65  
  Others 7,618 11.96 392 14.09  
Year of cancer diagnosis P<0.001 
  2010 7,881 12.37 326 11.72  
  2011   8,441 13.25 356 12.8  
  2012  8,670 13.61 459 16.5  
  2013 8,925 14.01 520 18.69  
  2014 8,524 13.38 421 15.13  
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  2015 8,145 12.78 366 13.16  
  2016 7,571 11.88 239 8.59  
  2017 5,564 8.73 95 3.41  
Outcome at end of study period 
  Died 42,357 66.47 2,145 77.1 P<0.001 

a Breast cancer among females 
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Appendix 7: Breakdown of excess cost of care due to sepsis 

Figure S7.3: Mean monthly excess cost of care due to sepsis by malignancy type.  

Black bars represent monthly mean excess costs and the grey bars represent terminal care 
cost (last 6 months).  
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Appendix 8: Sub-group analyses results 

Table S7.10: Cumulative cost of care ($CAD 2018) between sepsis cases and matched controls among females 

Time since 
cancer 

diagnosis 
(months) 

Haematology (Female) 
Sepsis cases Matched controls Excess cost 

Mean 95% CI Mean 95% CI Mean 95% CI 
LL UL LL UL LL UL 

1 18,881 18,586 19,177 7,116 6,942 7,290 11,765 11,416 12,114 
3 34,262 33,883 34,641 13,810 13,597 14,022 20,452 20,016 20,888 
6 53,478 52,986 53,970 23,080 22,816 23,344 30,398 29,835 30,961 
12 78,626 78,027 79,224 34,165 33,846 34,484 44,461 43,774 45,148 
24 107,489 106,807 108,172 48,503 48,136 48,871 58,986 58,201 59,771 
60 157,059 156,184 157,933 82,892 82,338 83,446 74,166 73,146 75,187 

 

Time since 
cancer 

diagnosis 
(months) 

Solid tumour (Female) 
Sepsis cases Matched controls Excess cost 

Mean 95% CI Mean 95% CI Mean 95% CI 
LL UL LL UL LL UL 

1 17,069 16,770 17,369 9,501 9,351 9,652 7,568 7,233 7,904 
3 34,362 33,973 34,751 21,145 20,925 21,366 13,217 12,774 13,660 
6 51,286 50,835 51,736 32,629 32,349 32,910 18,656 18,134 19,178 
12 72,642 72,129 73,154 44,588 44,246 44,931 28,053 27,446 28,660 
24 93,571 92,982 94,160 54,918 54,531 55,305 38,653 37,957 39,349 
60 131,394 130,657 132,131 73,543 73,064 74,022 57,851 56,989 58,713 
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Table S7.11: Cumulative cost of care ($CAD 2018) between sepsis cases and matched controls among males 

Time since 
cancer 

diagnosis 
(months) 

Haematology (Male) 
Sepsis cases Matched controls (no sepsis) Excess cost 

Mean 95% CI Mean 95% CI Mean 95% CI 
LL UL LL UL LL UL 

1 19,463 19,141 19,786 6,939 6,786 7,092 12,524 12,170 12,879 
3 35,922 35,528 36,315 14,625 14,425 14,825 21,297 20,854 21,740 
6 56,239 55,740 56,738 24,483 24,242 24,725 31,756 31,204 32,309 
12 82,709 82,112 83,306 36,127 35,825 36,428 46,583 45,918 47,248 
24 112,218 111,537 112,899 51,067 50,708 51,426 61,151 60,391 61,912 
60 162,082 161,234 162,930 85,493 84,951 86,035 76,589 75,588 77,589 

 

Time since 
cancer 

diagnosis 
(months) 

Solid tumour (Male) 
Sepsis cases Matched controls (no sepsis) Excess cost 

Mean 95% CI Mean 95% CI Mean 95% CI 
LL UL LL UL LL UL 

1 18,015 17,682 18,348 10,058 9,894 10,221 7,957 7,587 8,328 
3 37,309 36,858 37,760 22,697 22,457 22,937 14,611 14,089 15,134 
6 54,874 54,338 55,409 33,354 33,065 33,642 21,520 20,894 22,145 
12 73,562 72,962 74,163 42,991 42,670 43,313 30,571 29,880 31,262 
24 95,732 95,054 96,411 53,457 53,099 53,816 42,275 41,493 43,057 
60 135,851 135,006 136,697 71,915 71,472 72,358 63,936 62,970 64,903 
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Table S7.12: Cumulative cost of care ($CAD 2018) between haematology sepsis cases and matched controls by age categories 

Time since 
cancer 

diagnosis 
(months) 

Haematology (Age 18-34) 
Sepsis cases Matched controls (no sepsis) Excess cost 

Mean 95% CI Mean 95% CI Mean 95% CI 
LL UL LL UL LL UL 

1  26,543   26,038   27,047   7,331   7,139   7,523   19,212   18,681   19,742  
3  46,633   46,047   47,219  13,633  13,413  13,853   33,000   32,392   33,609  
6  71,611   70,892   72,330   23,201   22,912   23,490   48,410   47,643   49,177  
12 100,093   99,281  100,905   31,899   31,559   32,238   68,194   67,321   69,068  
24 122,815  121,894  123,735   37,218   36,855   37,582   85,596   84,614   86,579  
60 146,932  145,816  148,047   43,974   43,596   44,351  102,958  101,781  104,134  
 Haematology (Age 35-44) 
1  27,644   27,109   28,178   5,721   5,560   5,883   21,922   21,359   22,486  
3  46,253   45,669   46,837   12,598   12,386   12,810   33,655   33,025   34,286  
6  70,313   69,614   71,012   21,150   20,895   21,406   49,163   48,412   49,914  
12  99,545   98,707  100,383   28,936   28,624   29,249   70,609   69,709   71,509  
24 123,203   22,254  124,152   34,915   34,581   35,250   88,287   87,280   89,294  
60 150,125  149,082  151,169   44,165   43,797   44,534  105,960  104,851  107,069  
 Haematology (Age 45-54) 
1  24,943   24,448   25,438   5,474   5,324   5,625   19,469   18,947   19,990  
3  43,392   42,818   43,966   12,373   12,180   12,567   31,019   30,407   31,630  
6  68,321   67,585   69,058   21,204   20,962   21,447   47,117   46,343   47,891  
12  97,304   96,394   98,213   29,578   29,275   29,881   67,726   66,765   68,686  
24 123,026  122,013  124,039   36,665   36,338   36,992   86,361   85,295   87,426  
60 156,246  155,112  157,380   52,025   51,626   52,424  104,221  103,010  105,431  
 Haematology (Age 55-64) 
1  21,522   21,120   21,923   5,913   5,732   6,094   15,608   15,167   16,049  
3  40,664   40,145   41,183   12,830   12,623   13,036   27,834   27,279   28,389  
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6  64,255   63,640   64,870   22,101   21,856   22,346   42,154   41,494   42,815  
12  93,558   92,798   94,319   31,427   31,127   31,727   62,132   61,317   62,946  
24 121,625  120,727  122,523   41,986   41,627   42,346   79,639   78,662   80,615  
60 166,346  165,334  167,359   65,631   65,159   66,102  100,715   99,577  101,854  
 Haematology (Age 65-74) 
1  18,387   18,058   18,716   6,200   6,044   6,357   12,187   11,828   12,546  
3  35,181   34,762   35,600   13,996   13,796   14,196   21,185   20,713   21,657  
6  54,685   54,198   55,173   24,562   24,309   24,814   30,124   29,559   30,688  
12  81,656   81,058   82,253   37,067   36,759   37,375   44,589   43,895   45,283  
24  14,394  113,702  115,086   53,933   53,568   54,298   60,461   59,661   61,262  
60 172,429  171,562  173,296   97,012   96,435   97,589   75,417   74,361   76,474  
 Haematology (Age 75-84) 
1  16,153   15,879   16,428   7,369   7,218   7,520   8,785   8,468   9,101  
3  29,494   29,172   29,816   14,885   14,684   15,086   14,609   14,232   14,986  
6  45,127   44,754   45,499   24,245   24,007   24,482   20,882   20,443   21,322  
12  67,166   66,712   67,620   37,073   36,792   37,353   30,093   29,559   30,628  
24  95,795   95,253   96,337   56,118   55,741   56,494   39,678   39,008   40,348  
60 159,212  158,354  160,070  106,427  105,746  107,108   52,785   51,691   53,879  
 Haematology (Age 85+) 
1  15,516   15,322   15,709   10,686   10,525   10,847   4,830   4,582   5,077  
3  25,162   24,924   25,399   17,609   17,412   17,807   7,552   7,243   7,862  
6  37,738   37,437   38,039   27,731   27,469   27,994   10,007   9,605   10,408  
12  57,390   56,963   57,816   43,365   43,014   43,716   11,782   10,084   13,479  
24  90,308   89,751   90,865   71,445   70,953   71,937   14,024   13,475   14,574  
60 160,594  159,410  161,779  148,812  147,618  150,006   18,863   18,121   19,606  
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Table S7.13: Cumulative cost of care ($CAD 2018) between solid tumour sepsis cases and matched controls by age categories 

Time since 
cancer 

diagnosis 
(months) 

Solid tumour (Age 18-34) 
Sepsis cases Matched controls (no sepsis) Excess cost 

Mean 95% CI Mean 95% CI Mean 95% CI 
LL UL LL UL LL UL 

1  20,342   19,636   21,049   7,540   7,382   7,698  12,803  12,069  13,536  
3  39,657   38,844   40,470   17,266   17,034   17,499  22,391  21,539  23,242  
6  58,618   57,663   59,573   26,554   26,236   26,871  32,064  31,068  33,061  
12  81,086   80,094   82,079   37,268   36,887   37,648  43,819  42,757  44,880  
24 100,188   99,141  101,234   43,622   43,219   44,025  56,566  55,441  57,691  
60 126,715  125,552   127,878   54,177   53,719   54,634  72,539  71,293  73,785  
 Solid tumour (Age 35-44) 
1  16,672   16,360   16,985   7,999   7,845   8,153   8,673   8,324   9,023  
3  35,677   35,243   36,111   19,591   19,338   19,843  16,086  15,596  16,577  
6  53,634   53,126   54,142   30,911   30,606   31,216  22,723  22,143  23,302  
12  81,789   81,181   82,396   45,132   44,754   45,509  36,657  35,972  37,342  
24 102,269  101,606   102,931   52,682   52,277   53,087  49,587  48,834  50,339  
60 132,553  131,787   133,319   62,949   62,514   63,384  69,604  68,745  70,464  
 Solid tumour (Age 45-54) 
1  16,761   16,439   17,083   9,113   8,917   9,310   7,647   7,274   8,020  
3  36,964   36,526   37,403   22,674   22,382   22,967  14,290  13,761  14,819  
6  55,091   54,588   55,593   34,073   33,739   34,408  21,017  20,396  21,638  
12  79,098   78,526   79,669   46,224   45,846   46,602  32,874  32,171  33,577  
24  99,798   99,166   100,429   53,772   53,365   54,180  46,025  45,264   6,786  
60 131,390  130,643   132,138   64,980   64,519   65,441  66,410  65,511  67,309  
 Solid tumour (Age 55-64) 
1  17,140   16,818   17,462   9,429   9,257   9,602   7,711   7,348   8,073  
3  36,982   36,551   37,413   22,797   22,539   23,055  14,185  13,681  14,689  
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6  55,963   55,433   56,492   34,147   33,834   34,459  21,816  21,196  22,436  
12  77,051   76,444   77,658   44,896   44,539   45,253  32,155  31,442  32,868  
24  98,557   97,876   99,238   53,899   53,516   54,283  44,657  43,857  45,457  
60 133,984  133,159   134,809   68,481   68,035   68,927  65,503  64,554  66,451  
 Solid tumour (Age 65-74) 
1  17,675   17,330   18,020   9,690   9,520   9,860   7,985   7,597   8,372  
3  36,550   36,113   36,988   22,581   22,321   22,840  13,970  13,451  14,488  
6  54,886   54,362   55,409   34,473   34,158   34,788  20,413  19,795  21,031  
12  74,595   73,979   75,211   44,569   44,214   44,925  30,026  29,310  30,742  
24  95,856   95,161   96,550   54,596   54,199   54,992  41,260  40,452  42,069  
60 135,891  135,026   136,755   72,383   71,923   72,843  63,507  62,531  64,484  
 Solid tumour (Age 75-84) 
1  17,897   17,568   18,226   10,369   10,179   10,559   7,528   7,139   7,918  
3  34,847   34,375   35,318   21,635   21,384   21,886  13,212  12,679  13,745  
6  50,144   49,628   50,660   31,796   31,506   32,086  18,348  17,752  18,944  
12  66,996   66,416   67,577   41,436   41,106   41,765  25,561  24,885  26,237  
24  88,887   88,236   89,537   52,768   52,391   53,146  36,118  35,354  36,882  
60 134,325  133,440   135,210   77,195   76,690   77,700  57,130  56,112  58,148  
 Solid tumour (Age 85+) 
1  18,136   17,832   18,440   11,373   11,232   11,514   6,763   6,428   7,099  
3  30,487   30,102   30,873   20,360   20,161   20,558  10,127   9,689  10,565  
6  42,248   41,805   42,691   29,075   28,824   29,326  13,173  12,665  13,680  
12  57,902   57,407   58,397   40,844   40,522   41,166  27,781  26,655  28,906  
24  81,831   81,237   82,424   59,043   58,609   59,476  17,058  16,471  17,646  
60 133,159  132,322   133,996  105,378  104,616   106,140  22,788  22,051  23,526  
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Chapter 8: Discussion & Conclusion 

8.1. Chapter summary 

This thesis includes six individual health economics studies. They collectively contribute 

towards advancing economic evaluation methodologies and applications to support better 

decision making. In addition to these contributions, the work presented in this thesis also 

demonstrates the value of using longitudinal administrative data to supplement and test 

current evaluation limitations and assumptions, and to help bridge the translation gap 

between research and clinical practice with real-world evidence.  

Across this body of work, a diverse range of data sources (Table 8.1), locally and 

internationally, were used to answer specific research questions in two unique treatment 

populations of prevalent chronic diseases – medical (cancer) and surgical (severe 

osteoarthritis). As each data source was distinct and captured different types of data, a 

variety of data manipulation techniques, health economics and longitudinal modelling 

methods were employed to complete each of the six studies presented in this thesis. 

Table 8.1: Real-world data sources used in this thesis 

Chapter(s) 2 3 4 – 6 7 

Data source 
Published 

resources by 
Blakely et al. 

Independent 
Hospital 
Pricing 

Authority 

SMART 
Registry 

ICES Data 
Repository 

Coverage 
National  

(New 
Zealand) 

National 
(Australia) 

Single 
institution 
(Australia) 

Provincial 
(Ontario, 
Canada) 

Patient 
demographics   X X 

Clinical 
characteristics   X X 

Patient-reported 
outcomes   X  

Health care cost 
estimates X X  X 

Health service 
utilisation  X  X 

 

The first two chapters were focused on the extrapolation of costs. In Chapter 2, I 

investigated the implications of incorporating future medical costs in economic 
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evaluations through an applied example – evaluating the cost-effectiveness of a sepsis 

clinical pathway in cancer patients. To examine this, I made use of published regression 

equations to generate future costs inputs for cancer patients and structured the economic 

model to reflect changes in costs over time. I found that the inclusion of lifetime health 

care costs can result in markedly different cost-effectiveness results, leading to higher 

ICERs (up to a 290% increase). I concluded that there was potential for bias in cost-

effectiveness results if future medical costs of surviving patients are not included in the 

evaluation and this can potentially result in different policy decisions depending on 

willingness-to-pay thresholds. Through this study, I provided a methodological 

contribution by demonstrating the practicability and value of appropriately including 

future medical costs in economic evaluations to support decision-makers’ considerations 

relating to future healthcare budgets. I also show the feasibility of maximising the 

opportunity to incorporate methodological research alongside an economic evaluation.  

In Chapter 3, I used nationally reported hospital data to extrapolate the cost benefits of an 

ambulatory program for low-risk febrile neutropenia patients to show the economic 

impact of introducing the program as standard of care across Australia. Beyond 

establishing cost-effectiveness of the program, I provided evidence of benefits of 

changing practice by demonstrating the significant return-on-investment to the healthcare 

system by eliminating avoidable costs and freeing up hospital beds to meet other medical 

demands. This can be important and necessary to help facilitate efficient uptake of 

interventions that are clinically effective. This presented a strong case for institutions and 

decision makers to consider allocating resources for implementation and to support the 

continuity of the program. This study highlighted the need to also consider providing 

additional supportive evidence to help translate research findings into real-world 

implementation. 

In Chapters 4, 5 and 6, I turned my focus to the modelling and translation of long-term 

health outcomes, where I used patient-reported outcomes collected from total knee 

replacement patients over a 10-year period from the SMART registry. In Chapter 4, 

applying latent class growth analysis, I identified 6 distinct quality-of-life trajectories 

suggesting the presence of significant heterogeneity in longer term outcomes among total 

knee replacement patients. The results showed variable gains in quality-of-life and 

QALYs across different trajectory groups. Up to 55% of the cohort exhibited poor long-
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term quality-of-life outcomes with small gains in health benefit. These findings have two 

important implications – firstly, although total knee replacement is widely regarded as a 

cost-effective procedure in general, this raised the question as to whether the procedure 

is necessarily good value for all. Secondly, it highlighted the need to re-evaluate current 

approaches when extrapolating utilities in economic models as utilities are unlikely to be 

homogenous with respect to patient characteristics and time. 

The presence of heterogeneity in quality-of-life outcomes among total knee replacement 

patients was further explored in Chapter 5. Here, I employed multi-level modelling to 

investigate the differences in long-term quality-of-life patterns between patients with and 

without diabetes. I found that even after controlling for confounders such as age, sex, 

existing co-morbidities and socioeconomic status, patients with diabetes exhibit poorer 

outcomes following surgery compared to those without diabetes and these differences 

were sustained over time. This led me to conclude that cost-effectiveness results based 

on population averages may not adequately reflect the true value of the intervention and 

more needs to be done to identify vulnerable populations to improve the value of care 

provided.  

In Chapter 6, I provided another methodological contribution by examining the 

relationship between quality-of-life and mortality and its influence on survival estimates. 

This study demonstrated that the inclusion of quality-of-life measures (at baseline and 

change from baseline) when extrapolating survival does matter. It can influence health 

outcomes such as life expectancy and QALYs, which are relevant in cost-effectiveness 

analysis. Current approaches of extrapolating survival based on patient risk factors alone 

may not completely capture true effects on survival. This is important because neglecting 

the correlation between QoL and mortality can lead to imprecise extrapolations and thus 

risk misleading results affecting subsequent decisions made by policy makers. 

In Chapter 7, I conducted a matched case-control study to estimate the short- and long-

term health care costs of sepsis in cancer patients using large population-linked 

administrative health datasets. Unsurprisingly, sepsis was found to be a high cost, high 

mortality condition. However, excess cost of care associated with sepsis was observed to 

be highest in the first month of cancer diagnosis and remained high throughout the first 

year. This indicated the urgent need for increased attention and strengthening of initiatives 

for prompt sepsis identification and treatment at this critical stage on the cancer pathway. 
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The cost of care of cancer patients with sepsis was at least double in patients with 

haematological malignancies, emphasising the substantial economic burden sepsis 

imposes on top of cancer care. There is real power in population-linked administrative 

datasets as it provides a whole of system view of the impact of sepsis. It also provides 

important real-world evidence that will be helpful in improving our understanding of the 

burden of sepsis along the cancer pathway and to guide targeted strategies to alleviate this 

burden. Importantly, this study contributes to current gap in literature by generating 

reliable cost estimates that can inform economic models for infection control or treatment 

strategies targeting sepsis in cancer patients. 

A summary of the body of research covered in this thesis is presented in Table 8.2 which 

documents the health economics applications, methods employed, key contributions and 

suggestions for future directions from each of the six studies which will be discussed in 

the following sections. 
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Table 8.2: Overall summary 
 Chapter / Study Application 

Methods of 
analysis 

Key contributions Suggestions for 
future directions Methodology Clinical and policy 

I : EXTRAPOLATION OF COSTS 

A
gg

re
ga

te
 2 

Incorporating 
future medical 
costs: Impact on 
CEA 

Assess implications 
of incorporating 
future medical costs  
 
Synthesise future 
cost inputs for 
economic model 

+ Cost-utility 
analysis 

+ Decision tree 
analysis 

+ Markov model 

Demonstrate 
feasibility of 
appropriately 

including future 
medical costs 

Provide evidence of 
cost-effectiveness of 
sepsis protocol and 
highlight potential 
differences in cost-
effectiveness results 

Promote greater 
awareness and 

implications of variation 
in types and sources of 

costs 
 

Standardisation of cost 
inputs to improve quality 

and comparability 
 

3 

National cost 
savings from an 
ambulatory 
program for LR 
FN patients 

Leverage historical 
data for future trends 

+ Cost-effectiveness 
analysis 

+ GLM regression 
+ Cost projections 

Undertake evaluation 
beyond cost-
effectiveness 

analysis 

Offer strong evidence 
for national 

implementation of a 
cost-effective program 

Examine the value of 
including 

implementation 
considerations and costs 

of programs at scale 

 II : MODELLING & TRANSLATING OUTCOMES 

In
di

vi
du

al
-le

ve
l 

4 

Using PROMs to 
guide patient-
centred care and 
optimise outcomes 

Uncover 
heterogeneity of QoL 
outcomes  
 
Demonstrate value of 
care 

+ Latent class growth 
analysis 

+ Multinomial 
logistic regression 

Employ novel 
application of 

technique to uncover 
heterogeneity 

Show important 
heterogeneity in 

longer-term outcomes 
and variations in the 
value of surgery for 

different patient 
groups 

Thoroughly understand 
the real-world impact 
(value and equity) of 
heterogeneity in care 

delivery 
 

Assess benefits of 
including patient 

perspectives in value 
assessments 

5 
Co-morbidities and 
sex differences in 
long-term QoL 

Modelling QoL 
outcomes by patient 
subgroups 

+ Multi-level 
modelling 

Demonstrate method 
to assess patterns of 
change of repeated 

Highlight notable 
differences in long-
term QoL patterns 
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outcomes among 
patients with and 
without diabetes 

QoL measures over 
time and generate 
utility values for 

cost-effectiveness 
analyses 

among specific patient 
subgroups (diabetes, 
females) and need for 
tailored post-surgery 

management 

 
Incorporate patient-

reported outcomes in 
decision making tools 

 6 
Exploring the 
impact of QoL on 
survival 

Examine correlation 
between QoL and 
survival 
 
Assess implications 
on survival 
extrapolation 

+ Survival analysis 
+ Life table methods 

for life expectancy 

Advance 
understanding of 

influence and 
consequence of 

correlations between 
QoL and mortality 
when extrapolating 
survival outcomes 

Quantify impact of 
unaccounted 

correlation and 
heterogeneity on cost-
effectiveness results 

Examine the effect and 
implications of changes 
in QoL in other health 

economics disease 
progression models 

 
Assess impact of QoL 
changes due to acute 
events or temporary 

health states on lifetime 
modelling 

 III : GENERATING REAL-WORLD EVIDENCE 

In
di

vi
du

al
-le

ve
l +

 P
op

ul
at

io
n-

lin
ke

d 

7 

Economic burden 
of sepsis in cancer: 
Health care cost 
estimates from a 
population-based 
study 

Quantify cost of 
cancer care and 
excess (net) cost of 
sepsis 

+ Matching (case-
control) 

+ Panel data 
manipulation 

+ Survival-adjusted 
estimation of costs 

Generate short- and 
long-term cost 

estimates 

Provide key insights 
on burden of sepsis 

and useful inputs for 
future economic 
evaluations and 

resource allocation 
decisions 

Maximise secondary use 
of administrative data to 
aid decision making; e.g. 

understand resource 
burden across health 

system, build and 
automate updating of 

repositories of inputs for 
economic and 

epidemiology modelling 
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8.2. Implications and translational value of findings  

Extending beyond contributions to health economics methodologies and research, the 

findings of this thesis also have important implications for policy and clinical practice. 

This thesis focused on two unique treatment populations – cancer patients with infections 

requiring medical management and patients with severe osteoarthritis requiring surgical 

intervention (total knee replacement). Both are high burden and high cost conditions 

necessitating expensive interventions. In view of burgeoning health care expenditure, the 

need to slow this growth without adversely affecting health outcomes is critical to 

ensuring sustainability of the health system. It is therefore prudent that health care dollars 

spent represent good value for money and that care provided delivers the best patient 

outcomes. 

The decisions health care practitioners make will have important implications for patient 

outcomes. For both these conditions and many others, treatment decisions are often made 

based on available evidence guiding best practices (e.g. clinical guidelines, protocols) and 

clinical expertise incorporating patient’s clinical characteristics. While clinical guidelines 

ought to be followed and can improve the consistency and quality of care [1, 2], evidence 

used to inform these guidelines are often not fully representative of real-world practices 

[3, 4]. The findings presented in this thesis highlighted the presence of important 

heterogeneity in the cost of care and outcomes across different patient populations (e.g. 

patients with different cancer types) and within the same treatment group (total knee 

replacement patients). This inevitably results in variations in the value of care provided 

and could mean sub-optimal care (i.e. low-value care) and inefficient use of limited 

resources for subpopulations of patients. 

This thesis has shown the benefits of using real-world data to obtain insights not readily 

available from conventional clinical trials; for example, to monitor longer term 

consequences of treatment and uncover heterogeneity in treatment outcomes in routine 

clinical practice. Heterogeneity in treatment effects may be masked as a consequence of 

the strict inclusion and exclusion criteria to safeguard the rigour of clinical studies [5]. 

This was evident in the large variations in longer term quality-of-life outcomes of patients 

following total knee replacement (Chapters 4 and 5). The findings clearly demonstrated 

that not all patients benefit from the surgical intervention the same way, and 
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understanding this variability and identifying patient subgroups that are associated with 

poorer outcomes is an important step towards improving patient outcomes and optimising 

care provided. It also indicates that the prescribed standard surgical treatment and follow-

up plans are unlikely to be adequate. The evidence generated from this research can be 

used to supplement clinical decision making in guiding management strategies based on 

patients’ complex care needs and preferences. It can help facilitate delivery of 

individualised care through greater patient engagement and shared decision making to 

optimise outcomes for all patients.  

Increasingly, health care providers internationally and across Australia are shifting 

towards a value-based healthcare system. In Australia, initiatives such as the New South 

Wales’ Commissioning for Better Value and Leading Better Value Care programs [6] 

have been implemented to accelerate the move towards such models of care and other 

states such as Victoria [7] are following suit. As such, it is important to understand what 

value-based care delivery means. Whilst improving the health outcomes of patients 

remains paramount, ultimately health care resources are finite and devoting more 

resources to one may mean displacement or less for another. It is important for clinicians 

to recognise that treatment decisions will have considerable cost implications – to patients 

and the health system. A better understanding of cost-effective care (Chapter 2) and an 

appreciation of the true costs and consequences (Chapters 3 and 7) can help prepare 

clinicians make informed decisions to support better value in care delivery and rational 

allocation of resources. 

Measuring and tracking outcomes and costs from real-world clinical practices are 

valuable in providing insights in patient preferences, practice variation and potential 

waste. However, it is also important that evidence generated has translational value to the 

healthcare community. This thesis presented six practical examples that show the utility 

and contribution of health economics research in supporting medical decision making and 

health policy design. Each study was built on ongoing research led by exemplary clinical 

research teams and was supported with input from physicians, surgeons, health 

economists and health services researchers. These studies are examples of translational 

research seeking to close the gap and improve patient outcomes in real-world practice. 

For instance, contributing towards informing a national grant application to initiate the 

roll-out of the life-saving and cost-effective sepsis protocol state-wide (Chapter 2) and 
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helping strengthen patient-clinician relationship by exploring the use of patient-reported 

outcome measures through shared decision making (Chapters 4 and 5). This was achieved 

through high levels of engagement and collaborative work between clinicians and health 

economists to generate ideas for improvements in patient outcomes and service delivery. 

Health and policy decision makers should encourage and initiate more engagements with 

health economists to develop and demonstrate high value health programs and services 

and should aim to embed health economists in research and implementation projects. 

With the tremendous advances in information technology, rise in implementation of 

electronic health records and growing repositories of secondary data, the interest in using 

administrative health data to support health research and health care decision making is 

evident [8-12]. Globally, HTA agencies across Europe and North America are also 

incorporating the use of real-world data to provide evidence for relative effective 

assessment of medications and cost-effectiveness assessments for reimbursement 

decisions and timely access to new technologies [13-15]. The push towards using real-

world evidence to inform decision making processes has been most evident in regulatory 

processes and HTA activities. This thesis has demonstrated a number of potential 

applications to support decision making across all levels of the health care system. 

Academic researchers and government bodies should be encouraged to harness the 

potential of such data for health economics research, methodological improvements and 

to evaluate real-world clinical and policy practices. 

In Australia, infrastructure to facilitate health record linkage exists [16-18], but access to 

data continues to be a challenging and time consuming endeavour for many researchers 

[19-22]. This PhD research involved the use of individual-level population-linked 

administrative data sourced from Canada (Chapter 7) to estimate for the first time whole 

of system healthcare cost of cancer patients with and without sepsis. Access to an 

equivalent dataset in Australia would have been too costly and unfeasible within the 

timeframe of the PhD candidature. This represented just one of many research projects 

that signify the lost opportunity to maximise the potential of readily available data to 

effectively translate data into information for policy action, ultimately impacting patient 

outcomes of the Australian population. In tandem with lowering the barrier to safe and 

efficient access to health data, there also needs to be capacity development to maximise 

the use of the growing availability of large data in producing and conducting high-quality 
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and policy-relevant health economic analysis. This will need to be prioritised as we move 

towards a value-based healthcare model and/or incorporating real-world evidence in 

technology assessments for reimbursement decisions by the Medical Services Advisory 

Committee (MSAC) and PBAC.  

8.3. Strengths, limitations and future research directions 

One of the major strengths of this thesis was the ability to leverage existing health data 

from diverse sources to conduct numerous studies to answer specific research questions 

relevant to real-world settings. The wide population coverage allowed the access to 

information on patient groups who are often excluded or may be unlikely to participate 

in research, thereby increasing its relevance in informing policy decisions. By capitalising 

on these data sources, each of the studies made small but important contributions towards 

supporting improved medical decision making and better health policy design. 

Advancements in research literature included methodological research to improve 

consistency in extrapolating costs, utility inputs and modelling long-term outcomes, 

generating robust evidence for resource allocation decisions, promoting better 

understanding of real-world heterogeneity and approaches to optimise patient outcomes. 

It also aptly demonstrated the feasibility and opportunities to maximise the use of 

different data types (aggregate, individual-level, population-linked) to supplement health 

economics research by applying appropriate analytical methods. 

There are also some limitations to this thesis that need to be considered. This thesis 

succumbed to many of the same limitations real-world and longitudinal data are prone to. 

This included irregularities in data quality, limited transparency in data collection, 

incomplete patient information and potential sources of error such as measurement and 

non-response errors [11, 23, 24]. Although steps were taken understand the data 

generation process and to resolve issues around confounding and missing data, clear 

answers were at times difficult to obtain and little can be done to instigate further 

clarification. This may have restricted the interpretability of the results. Furthermore, 

administrative data are not usually collected for the purposes of research thus does not 

capture all information relevant to the population or disease studied. Therefore, 

confounding due to unmeasured variables remains. Additionally, there can also be issues 

with the reliability of collected data for research purposes. For example, the sensitivity of 
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using International Classification of Disease codes for sepsis case-ascertainment can vary 

from 52% to 74% and often underestimates the rate of sepsis [25]. This was apparent in 

the estimation of health care cost of sepsis in cancer patients (Chapter 7). Therefore, to 

mitigate such limitations, robustness checks were necessary which included testing the 

implications of different combinations of diagnosis codes. 

Incorporating heterogeneity in economic evaluations remains controversial due to ethical 

considerations. Subgrouping may lead to equity constrains in the provision of healthcare 

to certain populations and many may be uncomfortable with such approaches [26]. In 

recent years, cost-effectiveness analysis methods that incorporate health equity 

implications have been developed and used to help weigh up policy options and quantify 

equity impacts and trade-offs [27-30]. These analyses, however, do require data on 

demographics, health care utilisation and outcomes to understand underlying social 

distributions. As such, opportunities to employ real-world longitudinal data to equity-

informative cost-effectiveness analysis should explored and can be a way forward in 

generating useful evidence for policy makers in making decisions that improve total 

health in an equitable manner.  

While efforts have been made to highlight the consequences of inconsistent 

methodologies (e.g. impact of incorporating future medical costs or not fully capturing 

effects of quality-of-life on survival), this was illustrated for two selected diseases with 

specific interventions. The implications for different conditions and interventions may 

vary which warrants further investigation. For example, there is a need to test the 

correlation between quality-of-life and survival in working economic models in different 

disease areas given that evidence suggests important predictive value for survival over 

clinical and demographic baseline characteristics in other chronic diseases such as 

diabetes [31, 32] and end-stage renal disease [33]. With the increasing popularity and 

collection of patient-reported outcomes, there may be further opportunities to test this and 

it may impact the estimation of new risk equations that inform future health economics 

and risk prediction models.  

The studies (Chapters 4-6) presented in this thesis used utility values derived from a single 

instrument, SF-12. Other generic preference-based measures such as EQ-5D (3- and 5-

level), Health Utilities Index version 3 (HUI3) and Short Form 6 dimension (SF-6D) are 

more commonly used to derived utility values for economic evaluations [34]. Although 
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these measures all aim to capture health state utilities and are anchored at 1 for full health 

and 0 for ‘dead’, utility values derived from different measures can vary for the same 

patient [35-37], likely due to the constructs of these measures. This includes differences 

in dimensions of health covered, the number of levels and severity reflected for each 

dimension and in valuation sample and methods (population surveyed, theoretical and 

modelling approaches) [34, 38]. Another limitation of Chapters 4, 5 and 6 was that UK 

preference weights derived from the UK population were applied to the Australian 

generated SF-12 responses. Preference weights are known to vary across country 

populations, and this may have limited the interpretation of the results of the studies 

presented in this thesis. It is unclear if utility values from different instruments would 

provide the same level of distinction across different quality-of-life trajectories as shown 

in Chapter 4 and magnitude of impact on survival estimates in Chapter 6. Although utility 

values derived from instruments such as EQ-5D and HUI3 have similarly been shown to 

be strong predictors of mortality [31, 39], further research is required to examine if 

survival extrapolations using other instruments would give different results that could 

influence decision-making and compromise the comparability of cost-effectiveness 

analyses.  

It remains challenging to enforce standardised approaches. Perhaps a more important 

question surrounds the case for further standardising of economic evaluation 

methodology. Standardisation can improve methodological quality of evaluations and 

facilitate fair comparisons and interpretations of results for different health care 

interventions and across different settings [40]. It can also lessen the focus on 

methodology and quality, allowing decision makers to concentrate on the policy 

implications instead [41]. However, the relevance of the context and perspective from 

which decisions are made differs from institution to institution and varies across countries 

and this invariably affects the inputs informing the economic model and approach of the 

evaluation. Furthermore, standardisation of practice may in turn lead to less generalisable 

results if clinical practice varies considerably [42]. As such, support of consistency in 

evaluation methods needs to be weighed against enforcing prescriptive methodological 

rules that might not be best suited to the decision problem at hand or existing constrains.  

Standardisation is evident in most national HTA guidelines and through the use of a 

reference case [43-45] in ensuring a minimal standard of methodological quality and 
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transparency of approach. One component of economic evaluation that can benefit from 

standardising is cost, particularly when current guidelines regarding the types of costs to 

include are inconsistent and its impact can be substantial. Furthermore, the lack of reliable 

cost estimates is often cited as a limitation [46, 47]. In countries like the Netherlands, 

where guidelines on incorporation of costs are explicitly clear, resources to facilitate the 

inclusion of costs have been developed and made publicly available in an effort to 

preserve the quality and comparability of studies. Similarly, in Australia, a manual 

describing the recommended costing practices with published unit costs has been 

developed to ensure consistency and comparability of submissions to the PBAC [48]. 

These are positive steps towards standardisation; however, it remains challenging 

enforcing such standards on economic evaluations conducted for purposes beyond those 

required for formal assessments informing reimbursement decisions. For instance, 

economic evaluations are increasingly used to support decision making in policy 

development and health services planning at the state, hospital and clinical levels, whose 

setting and analytical viewpoints may differ. A possible approach to mitigate this would 

be to encourage the transparent reporting of the cost-effectiveness results for various cost 

scenarios as demonstrated in Chapter 2.  

The increasing availability of access to individual-level population-linked data from 

routinely collected health data have opened up opportunities to capture healthcare 

resource use and generate health system cost estimates. This is evidenced by the 

numerous costing studies that have been published for different diseases and by socio-

demographic characteristics and risk factors [49-55]. Moving forwards, HTA agencies 

should consider pooling these evidences together and developing repositories of cost 

estimates much like the Dutch costing manual which can be a cost-beneficial approach. 

In addition to alleviating the burden of scouring for reliable inputs, it can also help 

minimise uncertainties and avoid adopting potentially biased positions to elicit favourable 

results. Additionally, with the availability of a standardised cost resource, past cost-

effectiveness analyses on similar interventions could be updated using a standardised 

procedure that includes homogenising costs to increase the value of existing evaluations 

and help inform current decision making [56]. As future costs will change depending on 

future technologies and innovations in care delivery, the building of cost repositories 

should also integrate mechanisms for periodic (and automated) updating. 
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While re-purposing administrative data to generate evidence to support medical and 

policy decision making can be a cost-effective approach leading to potential health 

outcome benefits and cost savings, this can only be achieved through thoughtful use of 

the data and application of appropriate analytic methods. This can be achieved through 

high levels of engagement and collaborative work between clinicians, health services 

researchers and health economists to identify and translate ideas for improvements in 

patient outcomes and service delivery. Transforming and analysis of administrative data 

for research purposes requires time and learned specialised techniques. This reiterates the 

need to develop capacity in this area to fully maximise the potential of using real-world 

data to generate credible and robust evidence. Growth in this area can be motivated by 

greater use to improve the rigor of methodology being applied to real-world studies, along 

with the increasing availability of higher-quality datasets. Additionally, conducting 

research to answer deep, insightful questions and increasing research outputs to 

demonstrate the enormous potential and impact of real-world data in supporting better 

decision making across at all levels of care may motivate funders and government bodies 

to fund more research using such data sources. 

As the relevance and importance of health economics contributions towards better health 

policy and medical care continues to grow, so should the significance of conducting and 

producing high-quality research and evaluations. There should be greater promotion of 

awareness on the implications of variations in the conduct (methodology and 

types/sources of data inputs) of economic evaluations and its impact on cost-effectiveness 

results. Such efforts should be directed not only to emerging health economists, but 

clinicians as well as decision makers to increase confidence and credibility in the methods 

of cost-effectiveness analyses and their use in evidence-based decision making. Patient 

characteristics, access to care and health outcomes will invariably differ across 

populations, therefore distributive and equity questions are also important to address to 

improve total health in an equitable manner. More needs to be done to thoroughly 

understand the real-world impact (value and equity) of heterogeneity in care delivery as 

well as greater patient engagement and shared decision making to optimise outcomes for 

all patients. 
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8.4. Conclusions 

This thesis includes six studies which demonstrated the usefulness and value of real-world 

longitudinal data in health economics research as a means to advance economic 

evaluation methodologies and directly contribute to the evidence base for better medical 

decision making. Collectively, these studies highlighted important variations in the cost 

and outcomes of health care delivery in real-world settings, provided useful insights into 

the implications of such variations and demonstration of translating research findings to 

implementation. They contributed to the research literature through methodological 

research to improve consistency in extrapolating costs, utility inputs and modelling long-

term outcomes, generating robust evidence for resource allocation decisions, promoting 

better understanding of real-world heterogeneity and approaches to optimise patient 

outcomes. It is hoped that findings from this thesis will prompt greater considerations 

towards using real-world data to shape and support evidence in health policy and medical 

decision making. 
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